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1. Lecture I : Global fields and class field theory

1.1. Galois groups. Let K be a field. We let Ksep be a separable closure of K. We let
GK = AutK(Ksep) be the absolute Galois group of K.

Let L ⊂ Ksep be a finite extension of K. We say that L is Galois if for all σ ∈ GK ,
σ(L) = L. The Galois group of L over K is Gal(L/K) = AutK(L).

Proposition 1.1. Let L/K be a Galois extension.

(1) The natural map GK → Gal(L/K) is surjective.
(2) The group Gal(L/K) has cardinality dimKL.

Any finite extension L ⊂ Ksep is contained in a Galois extension. Therefore, GK =
limL/K,finite galoisGal(L/K).

We equip GK with a topology by declaring that an open basis of neighborhoods of
1 is given by the GL = Gal(Ksep/L) for L/K a finite extension. Then GK is a profinite
group. Moreover the Galois correspondence is :

Theorem 1.1.

{Open subgroups of GK} ↔ {Finite separable field extensions of K}
H 7→ (Ksep)H

GL ←[ L

Example 1. Let q = pr and let K = Fq be the finite field with q elements. Let Fq be an

algebraic closure of Fq. For all n ≥ 0, there is a unique extension of Fq, Fqn ⊂ Fq of degree
n. Its Galois group is isomorphic to Z/nZ, and a generator is given by the Frobenius

Frobq : x 7→ xq. Therefore GFq ' Ẑ and Frobq is a topological generator.

Example 2. Let K = R be the field of real numbers. We have R = C and GR = Z/2Z, the
generator is given by the complex conjugation c : z 7→ z.

1.2. Discrete valuation rings.

1.2.1. Valuations. Let K be a field. A discrete valuation v (of rank 1) on K is a surjective
function : v : K× → Z which satisfies :

(1) v(xy) = v(x) + v(y),
(2) v(x+ y) ≥ inf{v(x), v(y)}.
One extends v to K by setting v(0) = +∞.

Example 3. The trivial valuation on a field K is defined by v(x) = 1 for all x ∈ K×.

Example 4. Let p be a prime number. For all x ∈ Q×, write x = x′pn where p does not
appear in the prime decomposition of x′, and set vp(x) = n. This is the p-adic valuation
on Q.

Example 5. Let k be a field. Let k(T ) be the field of rational functions over k. Let P
be an irreducible polynomial. For any x ∈ k(T )×, write x = x′Pn where P does not
appear in the decomposition of x in product of prime ideals and let vP (x) = n. This is
the P -adic valuation on k(T ). Let deg : k(T )→ Z ∪ {∞} be the degree map. Then −deg
is a valuation.

Theorem 1.2 (Ostrowski). The only non-trivial valuations on Q are (up to equivalence)
the p-adic valuations vp for prime numbers p.
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Proof. [Cas67], section. 3, p. 45. �

Theorem 1.3. The only non-trivial valuation on k(T ) which are trivial on k are the vP
for P an irreducible polynomial and −deg.

1.2.2. Valuation ring. We let A = {x ∈ K, v(x) ≥ 0}. This is the ring of the valuation v.
It is easy to check that A is a discrete valuation ring, namely a principal domain which
has a unique non-zero prime ideal. Conversely, A determines the valuation v. Indeed, we
have a group isomorphism K×/A× ' Z which sends a generator π of the maximal ideal
of A to 1 and we recover v as the composite K× → K×/A× ' Z.

We let |.|v = e−v(.) be the associated norm. It is called non-archimedean because
|x+ y|v ≤ sup{|x|v, |y|v}.

1.2.3. Completion. If A is a discrete valuation ring, we can consider its completion Â with
respect to the norm |.|v. Concretely, Â = limnA/p

n.

1.3. Dedekind rings.

1.3.1. Definition.

Definition 1.1. A Dedekind ring is a noetherian domain which is integrally closed of
dimension one.

Proposition 1.2. A noetherian domain is a Dedekind ring if and only if, for all maximal
ideal p of A, the localization A(p) is a discrete valuation ring.

Proof. See [Ser68], proposition 4 on p. 22. �
For any maximal ideal p of A, we denote by vp the corresponding p-adic valuation.

We will also denote by Ap = Â(p) the completion of A for the p-adic topology.

1.3.2. Fractional ideals. A fractional ideal of a Dedekind ring A is a non-zero finitely
generated submodule of K = Frac(A). The set of fractional ideals is a monoid under
multiplication, with neutral element A itself.

Proposition 1.3. The fractional ideals of a Dedekind ring form a group. Any fractional
ideal a has a unique expression

a =
∏
p

pnp

where almost all the np are zero.

Proof. See [Ser68], corollaire and proposition 7 on p. 24. �

1.3.3. Extension of Dedekind rings. Let A be a Dedekind ring with fraction field K. Let
L be a finite extension of K. Let B be the integral closure of A in K.

Theorem 1.4. If either A is a finite type algebra over a field, or L is a separable extension
of K, B is a finite A-algebra and a Dedekind ring.

Proof. See [Ser68], part I, chap. 4. �

We assume that the assumptions of the theorem hold. There is a (surjective) map
Spec B → Spec A. We say that a prime ideal P in B divides a prime ideal p and write
P | p if P is mapped to p.

If p is a maximal ideal of A, we have p =
∏

P|pP
eP . The integer eP is called the

ramification index at P. The residual degree at P is the degree of the finite extension
A/p→ B/P and is denoted by fP.

Proposition 1.4. We have the formula
∑

P|p ePfP = dimKL.
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Proof. B⊗A(p) is a finite free A(p)-module of finite rank dimKL. By reduction modulo p
we find that B/p→

∏
B/PeP is an isomorphism. The formula is obtained by comparing

the dimensions as A/p-modules on both sides. �

Definition 1.2. We say that B is unramifed over A at P if eP = 1.

1.3.4. Ramification. Let K ⊂ L be a finite separable extension of fields. We have a non-
degenerate bilinear trace map Tr : L × L → K. Let A ⊂ K be a Dedekind ring with
fraction field K. Let B be the integral closure of A in L. We assume that the assumptions
of theorem 1.4 hold.

We can define D−1
B/A = {x ∈ L,Tr(xB) ⊆ A}. This is a fractional ideal of B and its

inverse DB/A is an ideal called the different of B with respect to A.

Proposition 1.5. The set of ramified prime of B over A is exactly the set of primes which
divide the different DB/A. In particular this is a finite set.

Proof. See [Ser68], thm 1 on page 62. �

1.3.5. Unramified extensions in complete discrete valuation rings. Let OK be a complete
discrete valuation ring. Let K be its field of fraction. For any finite separable extension
L of K, we let OL be the inegral closure of OK in L.

Lemma 1.1. The ring OL is a complete discrete valuation ring.

Proof. We know that OL is a Dedekind ring and has finitely many maximal ideals. Each
of these ideals induce a topology on L which extends the topology of K. Since K is
complete, this topology is unique (this is the product topology on Kn identified with L.
Therefore there is a unique maximal prime in OL. �

Let Ksep be a separable closure of K. This is a valued field (in general not complete).
Let mOsep

K
be the maximal ideal of OKsep . Let ksep = OKsep/mOsep

K
.

Theorem 1.5. ksep is a separable closure of k and there is an equivalence of category :

{Unramified finite extensions L ⊂ Ksep} → {finite extensions ` ⊂ ksep}
L 7→ OL/mOL

Proof. [Fr7], p. 26. �

Assume that L/K is Galois. Let Gal(L/K) be the Galois group. We have a surjective
map Gal(L/K) → Gal(l/k) whose kernel is denoted by IL/K and is called the inertia.
Passing to the limit over L we have an exact sequence :

1→ IK → GK → Gk → 1.

1.4. Global fields.

1.4.1. Definition. A global field K is either a number field or a function field of one variable
over a finite field Fq.

(1) K is a number field. That is K is a field of characteristic 0 and is a finite extension
of Q.

(2) K is a function field of one variable over a finite field Fq. That is, K is a field of
characteristic p and is a finite type extension of transcendance degree 1 over Fp.
Moreover Fq is the integral closure of Fp in K. The simplest example of such field
is Fq(T ).

If K is a number field, K is finite over Q and we let OK be the ring of integer. If
K is a function field, we can choose T ∈ K which is not algebraic over Fp and K is finite
over Fq(T ). But T is not unique.
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1.4.2. Places. A place v of K is an equivalence class of non-trivial rank one norm :

|.|v : K → R≥0.

There is the following description of the places of K.

Proposition 1.6. If K is a number field, the places of K are the non-archimedean norms
|.|P attached to the maximal ideals P ∈ Spec OK and the archimedean norms |.|σ for
embeddings σ : K → C.

Proof. [Cas67], p. 45. �

Remark 1.1. Two conjugate embeddings σ and σ̄ give the same archimedean norm.

Proposition 1.7. If K is a function field, there exists a unique non-singular complete
curve X with function field K and the places of K are the valuations attached to the
closed points of the curve X.

Proof. See lecture II. �

Remark 1.2. If we consider Fp(T ), the associated curve is P1
Fp

= A1
Fp
∪ {∞}. The closed

points of A1 are the irreducible monic polynomials P ∈ Fp[T ] with corresponding norms
|.|P , and ∞ corresponds to the valuation −deg.

In all cases, we let X (or KX if the context is unclear) be the set of places of K. In
the number field case, we have X = Xfin ∪X∞ where Xfin = Specmax OK is the set of
finite places and X∞ = {σ : K → C}/{complex conjugation} is the set of infinite places.

1.5. From global to local fields. If v is a place of K, we let Kv be the completion of K
with respect to |.|v. If v is not achimedean, we let Ov or OKv the ring of elements x ∈ Kv

with v(x) ≥ 0. If v is archimedean, then Kv = R or C.
Let L/K be a finite field extension of K. Let w be a place of L. Then w restricts to

a place v of K and we say w | v. Therefore, we have a map LX → KX.
We have the following ”localization” formula :

Proposition 1.8. The canonical map L⊗K Kv →
∏
w|v Lw is an isomorphism.

Definition 1.3. We say that the extension L/K is unramified at a finite place v if all the
extensions Lw/Kv are unramified.

Proposition 1.9. A finite extension L/K is ramified at only finitely many places of K.

1.6. Decomposition group. Let L/K be a finite Galois extension. Let f : LX → KX.
The group Gal(L/K) acts on LX, trivially on KX.

Proposition 1.10. For any v ∈ KX, the action of Gal(L/K) is transitive on f−1(v).

Proof. See [Tat67], prop. 1.2. �

Let w ∈ f−1(v) and let Dv = {σ ∈ Gal(L/K), σw = w}.

Proposition 1.11. The map Dv → Gal(Lw/Kv) is an isomorphism.

Proof. See [Tat67], prop. 1.2. �

The group Dv is independant of w and called the decomposition group at v. Its
embedding in Gal(L/K) depends on w, but its conjugacy class is independent of w.

1.7. Frobenius substitution. If we assume that L/K is unramified at a finite place v,
then we have a canonical element Frobv ∈ Dv, and therefore a conjugacy class Frobv ∈
Gal(L/K).
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1.8. The Artin reciprocity map. We now assume that L/K is abelian. This implies
that the conjugacy action of Gal(L/K) on itself is trivial. Let Σ be the set of finite places
where L/K is ramified.

Let IΣ be the free abelian group generated by finite places not in Σ.
We define a map :

recL/K : IΣ → Gal(L/K)

v 7→ Frobv

Theorem 1.6 (crude reciprocity law). The map recL/K is onto and there exists ε > 0

such that for all a ∈ K× which satisfy :

(1) |a− 1|v < ε for all v ∈ Σ,
(2) σ(a) > 0 for all σ : K → R in the number field case,

we have recL/K(a) = 1.

Remark 1.3. By recL/K(a) we mean recL/K(
∑

v/∈Σ v(a).v). This is a very hard result, you
can consult [Tat67].

In this course, we will be interested in everywhere unramified extensions of K. Let
H/K be the maximal abelian everywhere unramified extension ofK (also called the Hilbert
class field of K).

In the number field case, we have a map IX∞ → Gal(H/K). We remark that IX∞ is
the group of fractional ideals over Spec OK . Let

Cl+(OK) = IX∞/{a ∈ K×, ∀ σ : K → R, σ(a) > 0}

be the strict class group.
In the function field case we have a map I∅ → Gal(H/K). We remark that I∅ is the

group of divisors on the curve X corresponding to K. Let Pic(X) = Div(X)/div(K×) be
the Picard group.

Theorem 1.7. In the number field case, the map Cl+(OK) → Gal(H/K) is an isomor-
phism. In the function field case, the map Pic(X) → Gal(H/K) is injective with dense
image.

One of the main goal of these lectures is to give Deligne’s geometric proof of this
theorem in the function field case. We can further geometrize the statement by interpreting
Gal(H/K) as π1(X)ab. Therefore the theorem reads as an injection with dense image :

Pic(X)→ π1(X)ab.

One can actually refine the statement. We have a degree map Pic(X)→ Z. We also

have a natural map π1(X)→ π1(Spec Fq) = Ẑ. Let us define the Weil group of X, W (X)
as the preimage of Z in π1(X). Then the refined statement is that we have a commutative
diagram:

Pic(X)

��

// π1(X)ab

��

Z // Ẑ

which induces an isomorphism between Pic(X) and W (X)ab.

1.9. Adèles and idèles.
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1.9.1. Adèles. In this course we will meet at several points the ring AK of adèles of a
global field K. By definition, AK is the subring of

∏
v∈ KX

Kv of elements (xv)v such

that xv ∈ OKv for almost all v (all except finitely many ones). We equip AK with a ring
topology by declaring that a basis of opens of 0 are given by opens

∏
v∈KX Uv where for all

v, Uv is an open neighborhood of 0 in Kv, and for almost all v, Uv = OKv . The diagonal
embedding K →

∏
vKv factorizes through AK .

1.9.2. Idèles. The group of idèles is A×K and it carries the subset topology given by the

inclusion A×K → AK × AK , x 7→ (x, x−1).
Class field theory is best formulated using idèles (see [Tat67], section 5). Let us simply

remark the following :

Proposition 1.12. In the number field case, there is a natural isomorphism :

K×\A×K/(
∏

v∈Xfin

O×v
∏
v∈X∞

K×,◦v )→ Cl+(OK).

In the function field case there is a natural isomorphism :

K×\A×K/
∏
v∈X
O×v → Pic(X).

In the above formula K×,◦v is the component of the identity in K×v .

2. Lecture II : Curves

2.1. Algebraic curves. Let k be a field.

Definition 2.1. A function field of dimension one over k is a field K of finite type,
transcendance degree 1 and such that k is algebraically closed in K.

We attach a set X (or KX) to K: the set of all non-trivial valuations on K which
are trivial on k (up to equivalence). We put a topology on X as follows : the opens are ∅
and the complements of a finite set of points.

Remark 2.1. We will also add to X a generic point η, which belongs to all non-empty open
subsets.

We now equip X with a sheaf of rings OX . If U is some open, we let OX(U) = {f ∈
K, v(f) ≥ 0 ∀v ∈ U}, so that (X,OX) becomes a ringed space.

Definition 2.2. A curve C over Spec k is a scheme of pure dimension 1 over Spec k.

It is reasonable to add a few more assumptions.

Definition 2.3. A Dedekind scheme is a quasi-compact, separated scheme which is covered
by affines Spec A where A is a Dedekind ring.

Definition 2.4. A non-singular curve over Spec k is an irreducible, quasi-compact, sep-
arated Dedekind scheme over Spec k.

Let K be the fonction field of an irreducible curve. We say that C is geometrically
connected if k is algebraically closed in K.

Definition 2.5. A scheme X over Spec k is projective if it can be embedded as a closed
subscheme of a projective scheme PNk .

Theorem 2.1. Let K be a function field over k. The locally ringed space (X,OX) is a
geometrically connected, non-singular, projective curve over Spec k.
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A complete proof can be found in [Har77], I, 6. Let us give some elements of proof.

Proposition 2.1. Let x ∈ K \k. We consider U = {v ∈ X, v(x) ≥ 0}. Then U is open in
X and OX(U) is the normalisation of k[x] in K. Moreover, (U,OX |U ) = (SpecB,OSpec B)
for B = OX(U).

From this proposition, we deduce that X is a non-singular curve. Indeed, let V =
{v ∈ X, v(x−1) ≥ 0}. Then X = U ∪ V is an affine cover of X. Moreover, U ∩ V =
Spec (Normalization of k[x, x−1] in K) is also affine.

The projectivity is a little bit delicate. Nevertheless one can easily prove the following:

Proposition 2.2. H0(X,OX) = k.

Proof. Let x ∈ K \ k. We need to find v ∈ X such that v(x) < 0. Let V = {v ∈
X, v(x−1) ≥ 0}. Then OX(V ) = B and k[x−1] → B is finite flat. We can find a prime
ideal above (x−1) in B and it corresponds to a valuation v for which v(x−1) > 0. �

2.2. An equivalence of category. We now prove that the last construction exhausts
all projective non-singular curves.

Lemma 2.1. Let C be a projective non-singular curve over Spec k. Then there is an
isomorphism C → KX where K is the function field of C.

Proof. We first define a morphism. To any closed point x of C, we have a local ring
OC,x ↪→ K which is a discrete valuation ring because the curve is non-singular. Therefore
we have a map C → KX. This map is injective (the curve C is separated). The map
extends to a locally ringed space map (C,OC)→ ( KX,O KX), since for any open U of C,
OC(U) = ∩x∈UOC,x. The map C → KX is therefore a map of algebraic curve. Its image
is closed since C is projective, it is all of KX. �

Let X and Y be two schemes. A morphism f : X → Y is finite flat if for any affine
Spec A ⊂ Y , f−1(Spec A) = Spec B is affine and A→ B is a finite flat map.

Lemma 2.2. Let f : X → Y be a non-constant morphism between projective non-singular
algebraic curves. Then f maps the generic point ηX of X to the generic point ηY of Y .
The morphism f is finite flat and is determined by the morphism OY,ηY → OX,ηX on
generic points.

Proof. The image of f is a connected closed subset of Y . It is either Y or a closed point of
Y . It is therefore Y and the generic point of X maps to the generic point of Y . Therefore
we have a map K → L where K is the function field of Y and L is the function field of
X. Let x ∈ K be an element which is not algebraic over k. The we have finite flat maps
k[x]→ A→ B where A is the normalization of k[x] in K and B the normalization of k[x]
in B. And Spec(B) = D(f?(x))→ D(x) is finite flat. �

Theorem 2.2. The functor ”generic point” induces an equivalence of categories between:

{Non-singular, geometrically connected projective curves on Spec k, non constant morphisms}

and

{Function fields of one variable over k}.

Proof. This is [Har77], corollary 6.12. �
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2.3. Divisors.

Definition 2.6. We let Div(X) be the free abelian group generated by the closed points
x ∈ X.

We have a partial order on Div(X). If D =
∑
nxx and D′ =

∑
mxx, we say that

D ≥ D′ is nx ≥ mx for all x. We say that a divisor D is effective if D ≥ 0.
If f ∈ K×, we let div(f) =

∑
x∈X vx(f)x. These divisors are called principal. We let

deg : Div(X)→ Z which maps
∑
nxx to

∑
nx[k(x) : k]. We let Div0(X) be the kernel of

deg.

Lemma 2.3. For all f ∈ K×, deg(div(f)) = 0.

Proof. [Ser88], prop. 1, p. 8. �

Definition 2.7. We let Pic(X) = Div(X)/div(K×) be the Picard group of X.

By lemma 2.3, the map deg passes to the quotient and defines a map deg : Pic(X)→
Z. We let Picr(X) = deg−1(r).

2.4. Geometric interpretation of divisors. A sheaf F of OX -modules is called a lo-
cally free sheaf of rank n if there is an open covering X = ∪Ui such that F |Ui ' On

Ui
. An

invertible sheaf is a locally free sheaf of rank one. Let D ∈ Div(X). We let OX(D) be the
invertible sheaf defined by OX(D)(U) = {x ∈ K, v(x) + v(D) ≥ 0, ∀v ∈ U}.

Lemma 2.4. There is a bijection between :

{Locally free sheaves of rank one L + non-zero rational section f ∈ Lη \ {0}}/isom

and Div(X).

Proof. To D ∈ Div(X) we associate OX(D) equipped with the rational section 1. Con-
versely let (L, f). Then for all x ∈ X, we consider Lx ⊂ Lη. This is an OX,x- rank one
module inside a K-vector space of dimension 1. The module f.OX,x is another rank 1 sub-
module inside Lη. Let tx be a uniformizing parameter at x. Then we have f.OX,x = t−nx

x Lx
for a unique integer nx. We let D =

∑
nxx. The map OX(D)

×f→ L is an isomorphism
which sends 1 to f . �

Corollary 2.1. There is a bijection between :

{Locally free sheaves of rank one L}/isom

and Pic(X).

2.5. Cohomology of line bundles. Attached to a locally free of rank one L (in fact any
abelian sheaf !), we have the cohomology groups H0(X,L) and H1(X,L).

Theorem 2.3. (1) The k-vector spaces Hi(X,L) are finite dimensional. Let g =
dimkH

1(X,OX) be the genus of the curve.
(2) We have dimkH

0(X,L)− dimkH
1(X,L) = deg(L)− g + 1.

(3) Assume that X/k is smooth. There is an invertible line bundle Ω1
X/k of degree

2g − 2, and a canonical isomorphism H1(X,Ω1
X/k)→ k.

(4) We have a Serre duality perfect pairing :

H0(X,L)×H1(X,Ω1
X/k ⊗ L

−1)→ k.

Proof. See [Ser88], prop. 2 and thm. 1, p. 10 and corollary p. 17. �

Remark 2.2. We notice that if degL < 0, then H0(X,L) = 0. Using the duality theorem,
we deduce that if degL > 2g − 2, H1(X,L) = 0 and dimkH

0(X,L) = degL − g + 1.
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Remark 2.3. A non-singular curve needs not necessarily be smooth in caracteristic p. For
example let k = Fp(t), and consider the curve of equation Y 2 = Xp − t. This curve is
regular at Y = 0 but not smooth.

2.6. Explicit definition of the cohomology. We let AK be the ring of adèles of K.
For a divisor D =

∑
nxx, we let Ô(D) = {(fx) ∈ AK , vx(fx) + nx ≥ 0}.

Then we have an exact sequence :

0→ H0(X,OX(D))→ K → AK/Ô(D)→ H1(X,OX(D))→ 0

Indeed, we can consider the following resolution of the sheaf OX(D) by skyscraper
sheaves (which are acyclic):

0→ OX(D)→ (ιη)?K → ⊕x∈X(ιx)?Kx/t
−nx
x Ox → 0

where Ox = ˆOX,x and tx is a uniformizing element, ιη : η → X is the inclusion of the
generic point and ιx : x→ X is the inclusion of the closed point x.

Remark 2.4. One can therefore interpret H1(X,OX) as measuring the obstruction to con-
struct a global rational function whose polar part has been given at a finite set of points.

2.7. Duality. We follow here [Tat68]. We first construct the dualizing sheaf JX/k as
follows. At the generic point, this is the sheaf of continuous linear forms :

` : K\AK → k

On some open U , we let JX/k(U) = {` : K\AK/
∏
x∈U Ox → k}. We see that by definition,

H0(X, JX/k(−D)) = H1(X,OX(D))∨. We now assume that the curve is smooth over k. In
such a case, there is an isomorphism given by the residue (see [Tat68] and [Ser88]):

Ω1
X/k → JX/k

ω 7→
∑

resx(fxω)

2.8. Weil’s formula. We let BunGLn(X) be the set of isomorphism classes of locally free
sheaves of rank n. Note that BunGL1(X) = Pic(X).

Theorem 2.4. There is an isomorphism :

BunGLn(X) = GLn(K)\GLn(AK)/
∏
x

GLn(Ox).

Proof. Let F be a locally free sheaf of rank n. Let s1, · · · , sn be a basis of sections at
η. Then for all point x ∈ X, there is a unique element fx ∈ GLn(Kx)/GLn(Ox) and an
isomorphism Kn/fxO

n
x = Fη/Fx. Conversely, given a collection (fx) ∈ GLn(AK) we can

define the subsheaf of (ιη)?K
n by F (U) = {s ∈ Kn, ∀x ∈ U, s ∈ fxOnx}. �

Here is a similar, but slightly simpler formula for P1.

Theorem 2.5.

BunGLn(P1) = GLn(k[x−1])\GLn(k[x, x−1])/GLn(k[x])

Proof. Since k[x] and k[x−1] are principal, any locally free sheaf F is trivial on Spec k[x]
or Spec k[x−1]. Elements in GLn(k[x, x−1]) give the gluing data. Namely, we can take a
basis e1, · · · , en of F (Spec k[x]) and a basis f1, · · · , fn of F (Spec k[x−1]). Restricting to
Spec k[x, x−1], we find a matrix in GLn(k[x, x−1]) which passes from the basis (ei) to the
basis (fi). �



11

We deduce from this theorem very easily that Pic(P1)
deg
' Z. We let O(n) be a sheaf

of degree n. We have the following theorem of Grothendieck :

Theorem 2.6. Any vector bundle on P1 is a direct sum of line bundles O(n).

Proof. By theorem 2.5, we are reduced to certain matrix computations. See [HM82]. �

2.9. Finiteness of the Pic0(X) over finite fields.

Theorem 2.7. If k is a finite field Pic0(X) is finite.

Proof. It suffices to prove the finiteness of Picn(X) for large n. If n is very large, any D
is equivalent to an effective divisor because dim H0(X,OX(D)) > 0. But there are clearly
finitely many effective divisors of degree less than n. �

3. Lecture III : Jacobians

3.1. The Yoneda functor. Let C be a category. Let F(Cop, SET ) be the category of
contravariant functors from Cop to SET .

Lemma 3.1. We have a fully faithfull functor :

C → F(Cop, SET )

X 7→ Hom(−, X)

A functor F ∈ F(Cop, SET ) is said to be representable if it is in the essential image
of C.

3.2. The functor of points of a scheme. If X is a scheme, then we let X(−) =
Hom(−, X) be the corresponding functor of points. Actually this functor of points is a
sheaf for the fppf topology.

Definition 3.1. Let T be a scheme. An fppf covering of T is a family of morphisms
{fi : Ti → T}i∈I of schemes such that each fi is flat, locally of finite presentation and such
that T = ∪fi(Ti).
Remark 3.1. A Zariski or an étale covering is an fppf covering.

3.3. The relative cohomology over the curve. Let X be a curve over k as before.
For any k-scheme S, we can define a relative curves XS = X ×Spec k S and we denote by
pS : XS → S the projection.

Let F be a coherent sheaf over XS . We let Rq(pS)?(F ) be the sheaf associated to
the presheaf U 7→ Hq(XU ,F ).

Theorem 3.1. The sheaf Rq(pS)?(F ) is a coherent sheaves.

Assume that S = Spec A is affine and F is a locally free sheaf of finite rank.

Theorem 3.2. There exists a perfect complex M• : 0→M0 →M1 → 0 with the property
that for any affine scheme S′ = SpecA′ → S, Hi(XS′ ,F ) = Hi(M• ⊗A A′)
Corollary 3.1. (1) For all s ∈ S, the function s 7→ χ(s) = dimk(s) H1(Xs,F ) −

dimk(s) H0(Xs,F ) is locally constant.

(2) For all s ∈ S, the function s 7→ dimk(s) Hi(Xs,F ) increases under specialization.

(3) Assume that for all s ∈ S, dimk(s) Hi(Xs,F ) is constant. Then Ri(pS)?(F ) is a
locally free sheaf.

Corollary 3.2. Let L be an invertible sheaf on XS. For all s ∈ S, the function s 7→
deg(Ls) is locally constant. We call it deg(L). If deg(L) ≥ 2g− 1, then (pS)?L is a locally
free sheaf of rank deg(L)− g + 1 over S.
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3.4. The relative Picard functor. In this section we define the Picard functor. A good
reference is [Kle05].

Let S be a scheme. We let Pic(S) be the group of isomorphism classes of line bundles
over S.

Let X be a curve over k as before. For any k-scheme S, we can define a relative
curves XS = X ×Spec k S.

The functor S 7→ Pic(XS) cannot be representable because this is not a sheaf. Indeed,
let L ∈ Pic(S) be a non-trivial sheaf. Let p : XS → S be the structural map. Then we
see that p?L and OXS

are not isomorphic. On the other hand, they are locally isomorphic
We can therefore consider the functor S 7→ Pic(XS)/P ic(S). There is still an issue.

This functor is not a sheaf in general, and cannot be representable.

Example 6. Let X = V (X2 +Y 2 +Z2) ⊂ P2
R be the twisted form of P1

R. This is a complete
curve over R, of genus 0, with no real point. In particular, the degree of any line bundle
in X is even. We have XC = P1

C with a descent automorphism σ : z 7→ 1
z̄ . We consider

O(1) ∈ PX(C). Clearly σ?O(1) ' O(1). On the other hand there is no degree 1 line
bundle on X, so O(1) does not descend.

We let PX(−) be the sheafification (in the fppf or étale topology) of S 7→ Pic(XS)/P ic(S).
This is the relative Picard functor of the curve. Since PX(−) is a sheafification of a presheaf,
it may be hard to describe its value on a given scheme S. We nevertheless have :

Proposition 3.1. Suppose that X has a k-rational point P . Then

PX(−) = {L ∈ Pic(XS), L|P×S = OS}.

Proposition 3.2. We have an exact sequence :

0→ Pic(Xk)→ PX(k)→ Br(k)

In particular, if k is a finite field, Pic(Xk) = PX(k).

For any r ∈ Z, we can also define Picr(XS), P rX(−)....

3.5. Representability of the relative Picard functor. We have the classical theorem:

Theorem 3.3. The relative Picard functor is representable and P 0
X is an abelian scheme,

called the Jacobian of the curve.

We sketch the proof. A good reference is [Mil86].

3.5.1. Relative Cartier divisors.

Definition 3.2. An effective relative Cartier divisor D over XS is a closed subscheme
D ↪→ XS such that pS : D → S is finite flat.

Attached to D, we have the invertible sheaf OXS
(−D) = ID, to which we can attach

the pair (OXS
(D), 1 : OXS

→ OXS
(D)). The set of effective Cartier divisors over S,

Div≥0(S), is the set of isomorphism classes of pairs (L ∈ Pic(XS), f : OXS
→ L) such

that L/OXS
is finite flat over S. This last condition is also equivalent to asking that f is

nowhere identically zero over S.
Let r ≥ 0. We let Divr≥0(−) be the functor which maps S to the set of isomorphism

classes of effective relative Cartier divisors of degree r over XS .
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3.5.2. Quotienting schemes by finite groups. Let A be a ring and let G be a finite group
acting on A. Let B = AG. Let p : Spec A = X → Spec B = Y be the corresponding
morphism.

Proposition 3.3 ([Gro03], exp V, prop. 1.1). (1) The ring A is integral over B.
(2) The morphism p is surjective and closed and the map X → Y induces an homeo-

morphism Y ' X/G (where X/G carries the quotient topology).
(3) For any scheme Z, we have that Hom(Y,Z) = Hom(X,Z)G.

We now let X be a scheme and we assume that G acts on X and that X admits an
affine covering stable by G.

Proposition 3.4 ([Gro03], exp V, prop. 1.8). There is a scheme Y and a surjective
morphism p : X → Y such that :

(1) The morphism p is surjective and closed and the map X → Y induces an homeo-
morphism Y ' X/G (where X/G carries the quotient topology).

(2) For any scheme Z, we have that Hom(Y,Z) = Hom(X,Z)G.
(3) We have OY = p?OG

X .

The scheme Y of the proposition (which is unique up to a unique isomorphism) is
called a categorial quotient of X by G.

3.5.3. Representing Divr≥0(−). We will prove that Divr≥0(−) is representable. Let Xr =
X × · · · ×X be the r-th fold product of the curve. The symmetric group Sr acts on Xr

by permutation of the factors.

Lemma 3.2. The categorical quotient Xr/Sr = X(r) exists and is smooth.

Proof. See [Mil86], prop. 3.2. �

We have a map Xr → Divr≥0 which sends (P1, · · · , Pr) to (OXS
(
∑
Pi),OXS

→
OXS

(
∑
Pi)). This map pass to the quotient to a map X(r) → Divr≥0.

Proposition 3.5. X(r) → Divr≥0 is an isomorphism.

Proof. We need to show injectivity and surjectivity. For surjectivity, it suffices to prove
the surjectivity of Xr → Divr≥0. We will show that if (L ∈ Pic(XS), f : OXS

→ L) is a

degree r cartier divisor, there is a finite flat map T → S and sections P1, · · · , Pr ∈ X(T )
such that (L, f) ' (OXT

(
∑
Pi), 1). We prove this by induction on r. The case r = 1

is trivial. Let us assume r ≥ 2. Let T = V (L−1) ⊂ XS . The map T → S is finite

flat. Over XT we have the degree 1 divisor P : T
∆
↪→ T ×S T ↪→ XT . We see that

fT : OXT
→ LT (−P ) → LT and LT (−P ) is now of degree r − 1. We conclude by

induction.
We need to show injectivity. We do this when r = 2, the general case is left to the

reader. Let P1, P2 and Q1, Q2 by Spec R-points of X. We assume that OXS
(−P1 − P2) =

OXS
(−Q1 −Q2).
After localizing in Spec R, we can find an affine open Spec A of XS with the property

that P1, P2, Q1, Q2 factor through Spec A. Therefore, we have morphisms Qi : A → R
with kernel Ii and Pi : A → R with kernel Ji and by assumption I1I2 = J1J2. We
want to deduce that the maps P1 ⊗ P2 : A ⊗ A → R and Q1 ⊗ Q2 : A ⊗ A → R
have the same restriction to (A ⊗ A)Σ2 . We claim that for any a ∈ A, Q1(a)Q2(a) =
P1(a)P2(a) and Q1(a) + Q2(a) = P1(a) + P2(a) because they can be interpreted as the
coefficients of the characteristic polyomial of a acting on A/I1I2 = A/J1J2. We deduce
that P1⊗P2(a⊗ 1 + 1⊗ a) = Q1⊗Q2(a⊗ 1 + 1⊗ a) and P1⊗P2(a⊗ a) = Q1⊗Q2(a⊗ a).
The elements a⊗ 1 + 1⊗ a and a⊗ a generate (A⊗A)Σ2 as an algebra. �
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3.5.4. The Abel-Jacobi map. We call the map AJr : X(r) → P rX the Abel-Jacobi map. We
will use this map to prove the representability of P rX .

Let us assume that r ≥ 2g−1. Let S → Spec k and let L ∈ Picr(XS) (corresponding

to a point x : S → P rX). Then the fiber product X(r) ×AJr,P r
X ,x

S is the set of nowhere

vanishing sections f ∈ R0(pS)?L, up to isomorphism.
But since r ≥ 2g − 1, R0(pS)?L is a locally free sheaf of rank r − g + 1, and

X(r) ×AJr,P r
X ,x

S = (R0(pS)?L \ {0})/O×S
is therefore a fibration in projective spaces of dimension r − g.

If we had a section s : P rX → X(r), then we would deduce that P rX is representable.

Indeed, if we let q : X(r) → P rX
q→ X(r) then the morphism p induces an isomorphism

between X(r) ×q,X(r),id X
(r) and P rX .

We will prove that there are local sections. At this stage, we assume that the field k
is separably closed. By Galois descent, we can reduce to this case.

For any r − g-uple of points t = (t1, · · · , tr−g) ∈ X(k)r−g, we let

X
(r)
t = {(P1, · · · , Pr), dimH0(OX(

r∑
i=1

Pi −
r−g∑
i=1

tj)) = 1}.

This is an open of X
(r)
t and moreover, X(r) = ∪tX(r)

t .
We similarly defined (P rX)t has the subfunctor parametrizing L with the property

that dimH0(L(−
∑r−g

i=1 tj)) = 1. The map X
(r)
t → (P rX)t is an isomorphism and therefore

(P rX)t is representable. And we have a covering P rX = ∪(P rX)t.

We finally deduce that P rX is smooth and geometrically connected because X(r) is.
Finally for any line bunde L of degree s over X, the map − ⊗ L : P rX → P r+sX is an

isomorphism. We deduce the representability of P rX for all r.

4. Lecture IV : Fundamental groups and geometric class field theory

4.1. The classical fundamental group. Let S be a connected, locally arcwise con-
nected, locally simply connected topological space. Let s ∈ S be a point. We can define
π1(S, s), the group of homotopy classes of loops γ : S1 → S with γ(0) = s. Let Cov be
the category of coverings of S. Recall that S′ → S is a covering if any point x ∈ S has
a neighborhood Ux such that p−1(Ux) ' Ux × I for a discrete set I. We define a functor
F : Cov → SET by sending p : S′ → S to p−1(s). Let π1(S, s) − SET be the category of
sets equipped with an action of π1(S, s). We have the following classical theorem :

Theorem 4.1. The functor F can be enriched to an equivalence of categories Cov →
π1(S, s)− SET.

Moreover, F is representable functor : let p̃ : S̃ → S be the universal cover of S, and
ξ ∈ F (S̃) = p̃−1(s). Then F (−) = S̃(−).

Remark 4.1. One can recover π1(S, s) abstractly from the functor F , as the group of
automorphisms of F .

4.2. The fundamental group of a field k. Let k be a field. A connected covering of k
is by definition of finite separable field extension of k. A covering of k will be by definition
a finite product of finite separable extension of k (we say also a finite étale extension of
k). Let Cov be the category of coverings of k. Let k be an algebraic closure of k and
ksep ⊂ kalg be the separable closure. We define a functor F : Cov → FSET by mapping
`/k to Hom(`, k) where FSET is the category of finite sets. Let Gal(ksep/k) = Gk and
Gk − FSET the category of finite sets equipped with a continuous left action of Gk.
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Theorem 4.2. The functor F can be upgraded to an equivalence of category Cov →
Gk − FSET.

Proof. This is a reformulation of Galois theory. We exhibit and inverse functor. If I is a
Gk-set. We consider the algebra of functions f : I → ksep which are Gk-equivariant. �

The functor F is pro-representable. We can write ksep = ∪iki has a filtered union of
finite extensions, and F (−) = colimiHom(−, ki).

4.3. The étale fundamental group of a scheme. The original reference is [Gro03].
Another good reference is [Mur67].

4.3.1. Etale covers. We let X be a locally noetherian scheme.

Definition 4.1. A morphism p : Y → X of schemes is finite étale if

(1) For all affine open SpecA ↪→ X, the fiber Spec A×X Y = Spec B is affine and B
is a finite projective A-module,

(2) For all point x ∈ X, Yx is the spectrum of a finite étale extension of k(x).

A finite étale cover p : Y → X is a finite étale map which is surjective. In general,
the image of p is an open and closed subscheme of X. In particular, if X is connected, an
finite étale morphism is a cover. We assume that X is connected.

We let Cov be the category whose objects are finite étale schemes Y → X and
morphisms are X-morphisms of schemes.

4.3.2. The main theorem. We let x ∈ X be a point and we pick x̄→ x a geometric point
above x. We can define a functor F : Cov → FSET by mapping Y to the set Y ×X x̄.

Theorem 4.3 ([Mur67], thm. 4.4.1). (1) There exists a unique profinite group π1(X, x̄)
such the functor F can be enriched to an equivalence of categories :

Cov → π1(X, x̄)− FSET.

(2) Let x′ → X be another point geometric point of X. There exists a topological
isomorphism: π1(X, x̄)→ π1(X, x̄′), which is unique up to an inner automorphism.

If Y → X is a morphism of schemes, the pull-back of étale covers from X to Y induces
a morphism π1(Y, y)→ π1(X,x).

Remark 4.2. We can revisit Frobenius substitution. If X → Spec Z is a finite type scheme.
Then any closed point s ∈ X has residue field a finite field. Let x be a geometric point of
X. For any s ∈ X and any geometric point s→ s, we get a morphism (well defined up to
conjugacy) π1(s, s) → π1(X,x). If s is a closed point, π1(s, s) is topologically generated
by the Frobenius.

4.4. P1 is geometrically simply connected. In this section we prove :

Theorem 4.4. Let k be an algebraically closed field. Then π1(P1
k, x) = 1.

Proof. Let f : X → P1
k be a finite étale cover. Let f?OX . This is a vector bundle over P1

k.
Therefore, f?OX = ⊕ri=1O(ni) for integers ni. We will prove that this is the trivial bundle
(all ni are 0). This will prove that f?OX = H0(X,OX) ⊗k OP1

k
. Since k is algebraically

closed, H0(X,OX) = kr (as algebra) and X is the disjoint union of r copies of P1
k. There

is a bilinear trace map : f?OX × f?OX → OP1
k

and this is a perfect pairing. Therefore we

deduce that it is enough to prove that for all i, ni ≥ 0. Let i be the index for which ni is
minimal and assume that ni < 0. The product map m : f?OX ⊗ f?OX → f?OX restricts
to a map O(ni) ⊗ O(ni) → f?OX . But there are no non-zero maps O(2ni) → f?OX .
Therefore m(O(ni)⊗O(ni)) = 0. But X is a smooth curve and therefore it is reduced. �
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4.5. Descent of étale covers. We consider the following situation : X is a scheme and
Γ is a finite group acting on X. We assume that X has an affine covering stable under Γ.
We can define the categorical quotient X/Γ (see [Gro03], exposé V, sect. 1). For a point
x ∈ X, we let Γx be the inertia group at x. This is the subgroup of Γ of elements which
stabilize x and act trivially on the residual field at x, k(x).

Let Y → X be an étale cover. We assume that Y carries an action of Γ compatible
with the action on X.

We can therefore consider the quotient Y/Γ and we have a diagram :

Y

��

// Y/Γ

��
X // X/Γ

The following two propositions are [Gro03], exposé IX, rem. 5.8.

Proposition 4.1. The map Y/Γ→ X/Γ is finite étale if and only if, for all x ∈ X, if we
let Γx the inertia subgroup at x, then Γx acts trivially on Yx.

Proposition 4.2. We have an equivalence between the category of finite étale cover of
X/Γ and the finite étale cover of X which carry an action of Γ compatible with the action
on X and such that for all x ∈ X, Γx act trivially on the fiber.

4.6. Pr is geometrically simply connected.

Theorem 4.5. Let k be an algebraically closed field. Then π1(Prk, x) = 1.

Proof. We first need to prove that π1((P1
k)
r, x) = 1. We prove this by induction on r.

The case r = 1 is theorem 4.4. We assume r ≥ 2 and consider the map p : (P1
k)
r → (P1

k)
r−1

given by the projection on the first r − 1 coordinates. We now let f : X → (P1
k)
r be a

finite étale cover of degree d. We claim that p?f?OX is a locally free sheaf of algebras over
(P1
k)
r−1. This follows from corollary 3.1. Indeed, for each point t ∈ (P1

k)
r−1, p−1(t) = P1

k(t)

and Xt → P1
k(t) is isomorphic to P1

k(t) ×Spec k(t) Spec k(t)′ for a finite étale extension of

k(t)′ of degree d. We find that dimk(t)(P1
k(t), (ft)?OXt) = d is constant. Let X ′ be the

spectrum of this sheaf of algebras. We see that X ′ → (P1
k)
r−1 is finite flat and moreover,

X ′ ×(P1
k)r−1 (P1

k)
r ' X. In other words, X ′ descends X. We see that X ′ → (P1

k)
r−1 is

smooth, because X → (P1
k)
r is. Therefore we deduce that X ′ is a finite étale cover. We also

deduce that the map p : π1((P1
k)
r, x)→ π1((P1

k)
r−1, p(x)) is an isomorphism. By induction

we deduce that π1((P1
k)
r, x) = 1. Then we use proposition 4.2. Indeed, Prk = (P1

k)
r/Sr.

Let X → Prk be an étale cover. Its pullback to (P1
k)
r is X̃ and it is isomorphic to (P1

k)
r× I

where I is a finite set over which Γ acts. Take a point in the diagonal x. Then the inertia
group is (Sr)x = Sr and we deduce that Sr acts trivially on I. Therefore X = Prk × I. �

4.7. Descending étale covers under projective fibration.

Theorem 4.6. Let f : X → Y be a projective fibration. Then the map π1(X,x) →
π1(Y, f(x)) is an isomorphism.

Proof. We have seen a proof in theorem 4.5 in the case of a fibration in projective lines.
A similar argument applies. �
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4.8. Geometric class field theory. Let L be a finite abelian group. Let X be a complete
non-singular curve over Fq. We will prove the following theorem :

Theorem 4.7. There is a canonical bijection :

{χ : π1(X)→ L} → {ρ : Pic(X)→ L}
χ 7→ ρ

where ρ is defined by the rule that for all x ∈ X, ρ(O(x)) = χ(Frobx).

As a corollary, we deduce :

Theorem 4.8. We have a commutative diagram:

Pic(X)

��

// π1(X)ab

��

Z // Ẑ

which induces an isomorphism between Pic(X) and W (X)ab.

Proof. The theorem 4.7 implies that the profinite completion of Pic(X) is isomorphic
to π1(X)ab. Now we have an exact sequence 1 → Pic0(X) → Pic(X) → Z → 1 (which
splits non-canonically) and Pic0(X) is a finite group. Therefore the profinite completion

of Pic(X) is Pic0(X)× Ẑ. �

4.8.1. Systems of abelian covers over {X(r)}r≥0, compatible with the monoidal structure.

We recall that we have multiplications m : X(r) × X(r′) → X(r+r′), and projections p1 :
X(r) ×X(r′) → X(r) and p2 : X(r) ×X(r′) → X(r′). It will be convenient to consider also
Div≥0 =

∐
r≥0X

(r). So that we have three maps, m, p1, p2 : Div≥0 × Div≥0 → Div≥0.

We also let π1(Div≥0)ab = ⊕r≥0π1(X(r))ab.
Let L be a finite abelian group. Let χ1 : π1(X)→ L be a character.

Proposition 4.3. There is a unique way to attach to χ1 a character χ =
∏
r≥0 χr :

π1(Div≥0)ab → L such that :

m?χ = p?1χ+ p?2χ

as characters of π1(Div≥0 ×Div≥0)ab.

Remark 4.3. We thus claim that there is a unique system of characters {χr : π1(X(r))→
L}r≥1 which satisfy that the pull backs of χr + χr′ and χ(r+r′) to characters of π1(X(r) ×
X(r′)) coincide:

π1(X(r) ×X(r′)) //

��

π1(X(r+r′))
χr+r′ // L

π1(X(r))× π1(X(r′))

χr+χr′

��
L

Proof. Let Y → X be the abelian cover with group L corresponding to χ1. We construct
an abelian cover over Xr corresponding to χ⊕r1 : π1(Xr)→ L. This is Y r/H → Xr where

H = Ker(Lr
Σ→ L). Then we check that the action of Sr on Xr lifts to Y r and passes
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to the quotient Y r/H. Moreover, the action of the inertia group is trivial on the fibers.

Therefore the cover descends to X(r). �

Lemma 4.1. Let r0 ≥ 0. Assume that we have a system of characters {χr : π1(X(r)) →
L}r≥r0 which satisfy that the pull backs p?1χr + p?2χr′ = m?χ(r+r′) has characters of

π1(X(r) ×X(r′)).
Then, there exists a unique character χ1 : π1(X,x)→ L such that this system arises

from χ1.

Proof. Let x0 be a rational point on X(r) for r ≥ r0. We get a map X → X(r+1) by
sending x to (x, x0). We let χ1 : π1(X)→ π1(X(r+1))→ L. �

4.8.2. Systems of abelian covers of PX , compatible with the monoidal structure. Recall
that PX(Fq) = Pic(X). We have maps m : PX × PX → PX as well as projections
pi : PX × PX → PX .

A character ρ : π1(PX) → L is compatible with the monoidal structure if we have
p?1ρ+ p2 ? ρ = m?ρ as characters of π1(PX × PX).

To such a character we can associated a group morphism : ρ̃ : Pic(X) → L by
evaluating on Frobx for each x ∈ Pic(X).

Proposition 4.4. The association ρ 7→ ρ̃ defines an bijection between characters compat-
ible with the monoidal structure on PX and characters of Pic(X).

Proof. Let PX
Frobq−1→ PX be the Lang isogeny which maps L to Frob?qL ⊗ L−1. Its

kernel is precisely PX(Fq) = Pic(X). This provides a map ρLang : π1(PX) → Pic(X).
Moreover, for any L ∈ Pic(X), ρLang(FrobL) = L. It is an easy exercise to check that
m?ρLang = p?1ρLang + p?2ρLang.

Let ρ : π1(PX) → L be a character compatible with the monoidal structure. We

need to find a factorization ρ : π1(PX)
ρLang→ Pic(X) → L. We therefore need to prove

that π1(PX)
Frobq−1→ π1(PX)

ρ→ L is the trivial character. But this is nothing else than
Frob?qρ − ρ (because ρ is compatible with the monoidal structure). And we know that
Frob?qρ = ρ.

�

4.8.3. Proof of theorem 4.7. We see that the following sets are in natural bijection :

(1) Characters χ : π1(X)→ L,

(2) Characters {χr : π1(X(r))→ L}r≥0, compatible with the monoidal structure,

(3) Characters {χr : π1(X(r))→ L}r≥r0 , compatible with the monoidal structure,
(4) Characters {ρr : π1(P rX)→ L}r≥r0 , compatible with the monoidal structure,
(5) Characters {ρr : π1(P rX)→ L}r≥0, compatible with the monoidal structure,
(6) Characters ρ̃ : Pic(X)→ L.

• (1)⇔ (2) is proposition 4.3,
• (2)⇔ (3) is lemma 4.1,
• (3)⇔ (4) is proposition 4.6,
• (4)⇔ (5) is similar to lemma 4.1,
• (5)⇔ (6) is proposition 4.4

Remark 4.4. We can restate our theorem as follows. Given a character χ : π1(X) → L,
there exists a unique character ρ : π1(PX)→ L such that for m : X × PX → PX the map
which sends (x,L) to L(x), we have m?ρ = p?1χ+ p?2ρ.
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5. Lecture V : The Langlands correspondence for GLn over function
fields

5.1. The space of spherical cuspidal automorphic functions. We consider the Q-
vector space F of locally constant functions GLn(K)\GLn(AK)/

∏
x∈X GLn(Ox)→ Q.

We let Z be the center of GLn (isomorphic to GL1). We let χ : Z(K)\Z(AK)/
∏
x Z(Ox)→

Q× be a character.
We let Ccusp(GLn, χ) be the subspace of F of functions f which satisfy :

(1) (central character) f(zg) = χ(z)f(g),
(2) (cuspidality) For all standard parabolic P of GLn, with unipotent radical U , for

all x ∈ GLn(AK), we have∫
U(K)\U(AK)

f(ux)du = 0.

(3) (growth condition) There is a compact C ⊂ GLn(AK) such that f vanishes outside
of Z(Af )C.

Remark 5.1. The locally profinite group U(Af ) carries a Haar measure du. We normalize
the Haar measure by du(U(

∏
Ox)) = 1. Then this Haar measure takes rational values.

Theorem 5.1. The space Ccusp(GLn, χ) is finite dimensional.

We will only give the proof of this theorem for the group GL2.
By the Iwasawa decomposition we have that GL2(A) = B(A)

∏
xGL2(Ox) where B

is the upper triangular Borel.
We will now define Siegel sets. Let v be a fixed place of K, Cv ⊂ (AvK)× and C0 ⊂ AK

be compact open subsets.
Let

SCv ,C0 = {
(

1 y
0 1

)(
x′ 0
0 x

)
k, y ∈ C0, x

′, x ∈ K×v × Cv, |x′x−1| ≥ 1, k ∈
∏
x

GL2(Ox)}

be a Siegel set.

Lemma 5.1. For any Siegel set SCv ,C0 and any c ∈ R>0, the subset S≤cCv ,C0
of elements(

1 y
0 1

)(
x′ 0
0 x

)
k which satisfy the condition that |(x′x−1)v|v ≤ c is compact modulo the

center.

Proof. We have to see that x′x−1 belongs to some compact. From the conditions |x′x−1| ≥
1 and x′x−1 ∈ K×v × Cv, we deduce that |(x′x−1)v|v ≥ c1 for a constant c1. Therefore,
(x′x−1)v belongs to a compact. �

Lemma 5.2. For Cv and C0 big enough, we have that GL2(K).SCv ,C0 = GL2(AK).

Proof. We first claim that for any g ∈ GL2(A), there exists γ ∈ GL2(K) such that

g =

(
x′ y
0 x

)
k

with k ∈ K, and |x′x−1| ≥ 1.

Indeed, any g has an expression of the form g =

(
x′ y
0 x

)
k by the Iwasawa decompo-

sition. Let us assume that |x′x−1| < 1. We can conjugate g by the element w =

(
0 1
1 0

)
∈

GL2(K) ∩
∏
x GL2(Ox) and we find that wg =

(
x 0
y x′

)
k′ for k′ ∈

∏
x GL2(Ox).
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We observe that

(
x 0
y x′

)
=

(
x 0
0 x′

)(
1 0

(x′)−1y 1

)
.

Let us put α = (x′)−1y. For each place v where |αv|v ≤ 1, we have that

(
1 0
αv 1

)
∈

GL2(Ox).
Let S be the finite set of places for which |αv|v > 1. We find that for v ∈ S,(

1 0
αv 1

)
=

(
αv 1
0 α−1

v

)
k′′ with (k′′)−1 =

(
0 1
−1 α−1

v

)
.

We deduce that wg =

(
x
∏
v∈S αv y′

0 x′
∏
v∈S α

−1
v

)
k′′′.

We claim that there is a compact Cv ⊂ (AvK)× such that K×.KvC
v = A×K . Therefore,

for any g ∈ GL2(AK), there is γ ∈ GL2(K) such that γg =

(
x′ y
0 x

)
k with k ∈ K, and

|x′x−1| ≥ 1 and x′, x−1 ∈ K×v × Cv.

We have thus reduced to the case that g =

(
1 y
0 1

)(
x′ 0
0 x

)
k where |x′x−1| ≥ 1 and

x′, x−1 ∈ K×v × C. We now we claim that there is a compact C0 such that K + C0 = AK
and we are done. �

Proof.[of theorem] By the cuspidality assumption, we find that
∫
U(K)\U(AK) f(ux)du = 0.

Observe that U(AK) ' AK . There is a compact subgroup C ⊂ AK such that C surjects
onto AK/K. Therefore,

∫
C f(ug)du = 0.

We apply this to an element g =

(
x′ y
0 x

)
.

As we have that (
1 u
0 1

)(
x′ y
0 x

)
=

(
x′ y
0 x

)(
1 x(x′)−1u
0 1

)
We therefore deduce that if for all w ∈ X, with |(x(x′)−1)w|w ≤ 1, then

∫
C f(ug)du =

vol(C)f(g) = 0.
We now take a Siegel set SCv ,C0 as in lemma 5.2. We deduce that f |SCv,C0

is supported

on S≤1
Cv ,C0

which is compact modulo the center.

It follows that any f ∈ Ccusp(GL2, χ) is dermined by its restriction to a set of repre-

sentatives of S≤1
Cv ,C0

/
∏
x GL2(Ox)Z(AK) and this set is indeed finite !

�
It is harmless to assume that χ is a finite order because we can always twist the space

Ccusp(GLn, χ) by a function of the form Ψ ◦ deg ◦ det for a character Ψ : Z→ Q×. We will
make this assumption.

5.2. The spherical Hecke algebra.

5.2.1. The Satake isomorphism. For all x ∈ X we let Hx be the algebra of functions on
f : GLn(Kx)→ Q with compact support and which are left and right GLn(Ox)-invariant,
equipped with the convolution product :

f ? g(h) =

∫
GLn(Ox)

f(h)g(h−1t)dh.

We let T be the maximal diagonal torus of GLn. We let X?(T ) be the group of
cocharacters. Each such cocharacter is of the form t 7→ diag(tk1 , · · · , tkn) for (k1, · · · , kn) ∈
Zn. We say that a cocharacter is dominant if k1 ≥ · · · ≥ kn and we denote by X?(T) the
cone of dominant cocharacters.
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By the Cartan decomposition, GLn(Kx) =
∐
λ∈X?(T )+ GLn(Ox)λ(tx)GLn(Ox) and

therefore the characteristic functions Tλ,x = 1GLn(Ox)λ(tx)GLn(Ox) form a basis of the Q-
vector space Hx.

For all 1 ≤ i ≤ n, we let λi be the cocharacter with coefficient (1, · · · , 1, 0, · · · , 0)
with i many 1 and we let Ti,x = Tλi,x.

Theorem 5.2 (Satake isomorphism). The algebra Hx is commutative, isomorphic to
Q[T1,x, · · · , Tn,x, T−1

n,x].

The proof of this theorem relies on the Satake transform (see [Gro98] for example) :

Hx → Q[X?(T )]Sn

f → [t 7→ δ(t)
1
2

∫
U(Kx)

f(tu)du]

Let GLn(Q)ss/conj be the set of semi-simple conjugacy classes in GLn(Q). This set is
in bijection with the set of unitary degree n polynomials via the characteristic polynomial
function M 7→ det(XId−M).

We now define a bijection

Spec(Hx)(Q) = GLn(Q)ss/conj

by associating to an homorphism Θ : Hx → Q the semi-simple conjugacy class correspond-
ing to the characteristic polynomial Xn −Θ(T1,x)Xn−1 + · · ·+ (−1)nΘ(Tn,x).

5.2.2. Action of the spherical Hecke algebra. The spherical Hecke algebra Hx acts on
Ccusp(GLn, χ) by convolution. Namely we let

h.f(g) =

∫
GLn(Kx)

h(u)f(gu)du.

5.3. The Langlands correspondence. The global Hecke algebra H = ⊗′x∈XHx acts on
Ccusp(GLn, χ) by convolution.

Theorem 5.3 ([Dd80], [Laf02]). (1) The space Ccusp(GLn, χ) has a spectral decompo-
sition into one dimensional eigenspaces for the action of H : there are finitely
many distinct homomorphisms Θ1, · · · ,Θr : H → Q such that Ccusp(GLn, χ) =
⊕ri=1Ccusp(GLn, χ)[Θi] and dimQ Ccusp(GLn, χ)[Θi] = 1.

(2) Let ` 6= p and fix an embedding Q → Q`. To any Θi we can attach an irreducible
representation :

ρi : π1(X,x)→ GLn(Q`)

which satisfies that det(XId−ρi(Frobx)) = Xn−Θi(T1,x)Xn−1+· · ·+(−1)nΘi(Tn,x).
(3) The map Θi 7→ ρi is a bijection between the set {Θ1, · · · ,Θr} and the set of iso-

morphism classes of irreducible representations ρ : π1(X,x)→ GLn(Q`) such that
det ρ corresponds to χ via class field theory.
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