EXERCICES "ALGEBRAIC CURVES AND AUTOMORPHIC FORMS"

Some definitions

Let K be a field endowed with a discrete valuation $v_{K}: K \rightarrow \mathbb{Z}$ (with the convention $\left.v_{K}(0)=\infty\right)$. We assume that K is complete with respect to the topology induced by the norm

$$
|\cdot|_{K}: K \longrightarrow \mathbb{R}, \quad|\alpha|_{K}=e^{-v_{K}(\alpha)} .
$$

Such K is called a local field.
Let

$$
\begin{aligned}
& O_{K}=\left\{\alpha \in K: v_{K}(\alpha) \geq 0\right\}=\left\{\alpha \in K:|\alpha|_{K} \leq 1\right\}, \\
& m_{K}=\left\{\alpha \in K: v_{K}(\alpha)>0\right\}=\left\{\alpha \in K:|\alpha|_{K}<1\right\} .
\end{aligned}
$$

Then, O_{K} is a discrete valuation ring with residue field $k:=O_{K} / m_{K}$. This is a finite field.
Let L / K be a finite extension of degree n.
Fact: There is a unique extension of the norm $|\cdot|_{K}$ to a norm

$$
|\cdot|_{L}: L \rightarrow \mathbb{R}
$$

This extension is given by

$$
\begin{equation*}
|\alpha|_{L}=\left|N_{L / K}(\alpha)\right|_{K}^{1 / n}, \quad \alpha \in L . \tag{0.1}
\end{equation*}
$$

This fact is not obvious, but we will assume it as a black box (for a proof, see [Neu99], (4.8) Theorem, p.131). The field L, endowed with this extension, is also a local field.

We define O_{L}, m_{L} as before and set $\ell:=O_{L} / m_{L}$. Since O_{L} is a DVR, we have that there exists $e \in \mathbb{N}$ with $m_{K} O_{L}=m_{L}^{e}$. The integer e is called the ramification index of the extension L / K. We say that L / K is unramified if the extension is separable and $e=1$. Otherwise, we say that L / K is ramified.

The exercices
(1) Let $p \geq 3$ be a prime number.
a) Show that $\mathbb{Q}_{p}(\sqrt{p}) / \mathbb{Q}_{p}$ is a ramified extension.
b) Let $D \in \mathbb{Z}$. Show that $\mathbb{Q}_{p}(\sqrt{D}) / \mathbb{Q}_{p}$ is unramified whenever p does not divide D
(2) Assume L / K is a unramifed and galois. Show that

$$
\operatorname{Gal}(L / K) \simeq \operatorname{Gal}(l / k) .
$$

(3) Let $\hat{\mathbb{Z}}:=\prod_{p \text { prime }} \mathbb{Z}_{p}$. Show that for all prime numbers p we have that $\operatorname{Gal}\left(\overline{\mathbb{F}_{p}} / \mathbb{F}_{p}\right) \simeq \hat{\mathbb{Z}}$. The solutions are on the back. Look only after careful thought

The solutions

(1) Let $p \geq 3$ be a prime number.
a) Show that $\mathbb{Q}_{p}(\sqrt{p}) / \mathbb{Q}_{p}$ is a ramified extension.

Solution: set $L=\mathbb{Q}_{p}(\sqrt{p})$ and $K=\mathbb{Q}_{p}$. Let $f(x)=x^{2}-p$ ant let $\pi \in L$ be a root of f.
We remark that $f(x)$ is irreducible over \mathbb{Q}_{p}. Indeed, if f were not irreducible, then $\pi \in \mathbb{Q}_{p}$. But then $2 v_{p}(\pi)=v_{p}\left(\pi^{2}\right)=v_{p}(p)=1$, whence $v_{p}(\pi)=1 / 2$. However, this is not possible, as v_{p} takes values in \mathbb{Z} (alternatively, one can use Eisenstein's criterion).
Since $f(x)$ is irreducible, we have that $[L: K]=2$ and $N_{L / K}(\pi)= \pm p$. Hence, $|\pi|_{L}=|p|_{p}^{1 / 2}<1$. In particular, π belongs to m_{L}.
Let's check that $\pi \notin m_{K} O_{L}$. Assume for contradiction that π belongs to $m_{K} O_{L}$. Since $m_{K}=p \mathbb{Z}_{p}$, this means that $\pi=p \alpha$, with $\alpha \in m_{L}$. But then the calculation in the previous paragraph shows that $|\alpha|_{L}=|p|_{p}^{-1 / 2}>1$. Hence $\alpha \notin m_{L}$, a contradiction.
We deduce that $p O_{L} \neq m_{L}$, hence the extension is ramified.
Comment: a bit more calculation shows that the ramification index is 2 .
b) Let $D \in \mathbb{Z}$. Show that $\mathbb{Q}_{p}(\sqrt{D}) / \mathbb{Q}_{p}$ is unramified whenever p does not divide D

Solution: set $L=\mathbb{Q}_{p}(\sqrt{p})$ and $K=\mathbb{Q}_{p}$. We may assume D is squarefree. We may also assume that the polynomial $g(x)=x^{2}-D$ is irreducible over \mathbb{Q}_{p} (for otherwise $L=K$ and there is nothing to prove). In particular, $[L: K]=2$ and L / K is Galois.
First we remark that the Galois group acts on L by isometries. Indeed, if $\sigma \in$ $\operatorname{Gal}(L / K)$, then $|\sigma(\cdot)|_{L}$ is a norm on L extending $|\cdot|_{K}$. Hence $|\sigma(\cdot)|_{L}=|\cdot|_{L}$ because of the Fact stated at the beginning.
We need to show that $m_{L} \subseteq m_{K}=p \mathbb{Z}_{p}$. Let $\pi \in L$ be a root of $g(x)$. Since p does not divide D, we have that $|\pi|_{L}=|D|_{p}^{1 / 2}=1$. Hence, π is a unit in O_{L}.
Let $\alpha \in m_{L}$. Since $N_{L / K}(\alpha)= \pm \prod_{\sigma \in \operatorname{Gal}(L / K)} \sigma(\alpha)$ and the trace $T_{L / K}(\alpha)=$ $\pm \sum_{\sigma \in \operatorname{Gal}(L / K)} \sigma(\alpha)$ are polynomials on the conjugates of α, and the Galois group acts by isometries, we have that $\left|N_{L / K}(\alpha)\right|_{L}<1$ and $\left|T_{L / K}(\alpha)\right|_{L}<1$.
There exists $a, b \in \mathbb{Q}_{p}$ such that $\alpha=a+b \pi$. Since $T_{L / K}(\alpha)=2 a$ and $p \neq 2$, we deduce that $|a|_{p}=|2 a|_{p}<1$. In other words, $a \in p \mathbb{Z}_{p}$.
On the other hand, $N_{L / K}(\alpha)=a^{2}-\pi b^{2}$. Since $\left|\pi b^{2}\right|_{L}=\left|b^{2}\right|_{L}$ and the norm $|\cdot|_{L}$ is non archimedean, we deduce that $|b|_{p}<1$ (for otherwise $\left|N_{L / K}(\alpha)\right|_{p}=|b|^{2} \geq 1$, contradicting the previous observation). Hence, $b \in p \mathbb{Z}_{p}$. We deduce that $\alpha \in p O_{L}$, as desired.
(2) Assume L / K is a unramifed and galois. Show that

$$
G a l(L / K) \simeq G a l(l / k)
$$

Solution: first we show that both groups have the same cardinality. Let $n=[L: K]$. Then, we need to show that $n=[\ell: k]$.

Let $m=[\ell: k]$. Let $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{m} \in O_{L}$ be such that their images in ℓ form a k-basis. We claim that these elements are linearly independent. Indeed, if $\sum_{i} a_{i} \alpha_{i}=0$ with $a_{i} \in K$, we can divide this relation by an element a_{i} with the biggest norm and after reordering obtain a relation of the form

$$
\sum_{i} b_{i} \alpha_{i}=0, \quad b_{i} \in O_{L}, \quad\left|b_{1}\right|_{L}=1
$$

Taking the image in this relation in ℓ, we obtain a nonzero linear combination of a basis of ℓ / k, a contradiction. This proves our claim.

We deduce that $m \leq n$. In order to show the other opposite inequality, we remark that any element $\alpha \in O_{L}$ is of the form

$$
\alpha=\beta+\sum_{i} a_{i} \alpha_{i}, \quad \beta \in m_{L}, \quad a_{i} \in O_{K}
$$

Indeed, the image of α in ℓ is a k-linear combination of the images of the α_{i} and when we lift this relation to O_{L} we obtain such an expression.

Let M be the O_{K}-module inside O_{L} spanned by the α_{i}. The previous remark and the fact that the extension is unramified show that

$$
O_{L}=M+m_{K} O_{L}
$$

Since O_{K} is a DVR, by Nakayama's lemma ${ }^{1}$, we conclude that $O_{L}=M$.
Since L is the fraction field of O_{L}, we conclude that $n=[L: K] \leq m$, as desired.
Now let $\sigma \in \operatorname{Gal}(L / K)$. Since $N_{L / K}(\cdot)$ is invariant under the Galois group, equation (0.1) shows that σ acts as an isometry on L. In particular, we have that $\sigma\left(O_{L}\right)=O_{L}$ and $\sigma\left(m_{L}\right)=m_{L}$. Then, there is an induced k-automorphism $\tilde{\sigma}: \ell \rightarrow \ell$. Let

$$
\phi: \operatorname{Gal}(L / K) \rightarrow G a l(\ell / k), \quad \phi(\sigma)=\tilde{\sigma}
$$

be the map thus constructed. It is clearly an homomorphism between groups of the same cardinality. In order to finish, it is then enough to check that ϕ is injective.

Since ℓ / k is a separable extension (these are finite fields), there exists $a \in \ell$ such that $\ell=k(a)$. In particular, $\left\{1, a, a^{2}, \ldots, a^{n-1}\right\}$ is a k-basis of ℓ. Choose $\alpha \in O_{L}$ with image in ℓ equal to a. The previous reasoning involving Nakayama's lemma implies that $\left\{1, \alpha, \alpha^{2}, \ldots, \alpha^{n-1}\right\}$ is a O_{K}-basis of O_{L}. In particular, O_{L} is an O_{K}-module of finite type and α is a root of a monic degree n irreducible polynomial $h(x) \in O_{K}[x]$. Moreover, the image of $h(x)$ in $k[x]$ is the minimal polynomial of a. Hence, any $\sigma \in \operatorname{Gal}(L / K)$ is determined by the element $\sigma(\alpha)$. If $\phi(\sigma)=i d_{\ell}$, then $\tilde{\sigma}(a)=a$, implying $\sigma(\alpha)=\alpha$ (otherwise there would be two different roots of $h(x)$ mapping to a and $h(x)$ would become reducible in $k[x]$). Hence, σ is trivial. This shows that ϕ is injective, as desired.

Comment: by taking the element in $\operatorname{Gal}(L / K)$ corresponding to the frobenius of ℓ / k throught this specific isomorphism, this is how a "frobenius" element was defined in $\operatorname{Gal}(L / K)$ during Vincent's first lecture.
(3) Let $\hat{\mathbb{Z}}:=\prod_{p \text { prime }} \mathbb{Z}_{p}$. Show that for all prime numbers p we have that $\operatorname{Gal}\left(\overline{\mathbb{F}_{p}} / \mathbb{F}_{p}\right) \simeq \hat{\mathbb{Z}}$.

Solution: For any n, we have that $\operatorname{Gal}\left(\mathbb{F}_{p^{n}} / \mathbb{F}_{p}\right) \simeq \mathbb{Z} / n \mathbb{Z}$. We fix the isomorphism by taking the frobenius automorphism to 1 . With this convention, we deduce that $\operatorname{Gal}\left(\overline{\mathbb{F}_{p}} / \mathbb{F}_{p}\right) \simeq \lim _{n} \mathbb{Z} / n \mathbb{Z}$.

On the other hand, for any prime q, we have that $\mathbb{Z}_{q} \simeq \lim _{m} \mathbb{Z} / q^{m} \mathbb{Z}$. Using the chinese reminder theorem, we deduce that $\hat{\mathbb{Z}} \simeq \lim _{n} \mathbb{Z} / n \mathbb{Z}$, as desired.

References

[Neu99] Jürgen Neukirch. Algebraic number theory, volume 322 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. SpringerVerlag, Berlin, 1999. Translated from the 1992 German original and with a note by Norbert Schappacher, With a foreword by G. Harder. (document), 1

Facultad de Matemáticas, PUC, Vicuña Mackenna 4860, Santiago, Chile

E-mail address: rmenares@mat.uc.cl

[^0]
[^0]: ${ }^{1}$ for the particular form of Nakayama's lemma needed here, see [Neu99], Chapter I, section 11, Exercice 7

