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Introduction

The purpose of this thesis is to complete the proofs of the character formulas from [4]

for the diagonalizable and unitary irreducible representations in category O of the rational

Cherednik algebra of type W =G(ℓ,1,n). We establish two sorts of character formulas: firstly,

for the diagonalizable irreducible representations we prove a combinatorial rule for comput-

ing the graded W-characters of these representations; secondly, for the unitary irreducible

representations we are able to go farther, and deduce from the graded character formula a

combinatorial formula for the dimensions of the Ext groups with standard modules (some-

times referred to as the Kazhdan-Lusztig character).

The main ideas of the proofs of these formulas have been published in [4], but that

part of the proof having to do with the representation theory of a certain subalgebra of the

Cherednik algebra was only sketched. The subalgebra is a certain W -analog of the degen-

erate affine Hecke algebra of the symmetric group, and the part of its representation theory

that is relevant for this problem is the classification and description of those irreducible rep-

resentations that are diagonalizable with respect to a large abelian subalgebra. In this thesis

we complete the proofs in detail. Namely we show that the irreducible diagonalizable repre-

sentations are indexed by certain combinatorial objects, the cyclotomic ℓ-skew shapes and

that the representation indexed by a skew shape D has a basis of eigenvectors indexed by

standard Young tableaux of shape D . Moreover we show that the restriction to W of the irre-

ducible representation corresponding to D is described by Littlewood-Richardson numbers.

We now describe the objects and ideas involved somewhat more precisely, referring to

the body of the thesis when appropriate.

The rational Cherednik algebra Hc is an algebra attached to a complex reflection group

W depending on a set of parameters c = (c0,d0,d1, . . . ,dℓ−1) indexed by the conjugacy classes

of reflections in W . An ℓ-partition λ of n is a sequence λ = (λ0,λ1, . . . ,λℓ−1) of ℓ with n

total boxes, we write Pℓ,n for the set of all ℓ-partitions of n. The ℓ-partitions of n index

the irreducible representations of G(ℓ,1,n) and therefore also the standard and irreducible

objects of category Oc , we will write ∆c (λ) and Lc (λ) for the standard and irreducible objects

of category Oc corresponding for the ℓ-partition λ.

For a box b ∈λ, we define its charged content ctc (b) by

ctc (b) = dβ(b) +ℓct(b)c0

3



4 CHAPTER 0. INTRODUCTION

and write ctc (λ) for the sum of the charged contents of the boxes of λ

ctc (λ) = ∑
b∈λ

ctc (b)

For a skew ℓ-diagram D and ℓ-partitions λ,µ,ν we denote by cD
λ

and cλµν = cλ\µ
ν for a cer-

tain cyclotomic version of the Littlewood-Richardson numbers, which are simply products

of certain classical Littlewood-Richardson numbers.

Also we define a certain set Tabc (λ) of tableaux Q in λ satisfying the following properties:

(1) Q is a filling of the boxes of λ by non-negative integers such that Q(b) ≤Q(b′) when-

ever b ≤ b′,
(2) If b is a box of λ and k is a positive integer such that

ctc (b) = dβ(b)−k +k

then Q(b) < k, and

(3) If b and b′ are boxes of λ and k is a positive integer with k = β(b)−β(b′) mod ℓ

and such that

ctc (b)−ctc (b′) = k ±ℓc0

then

Q(b) ≤Q(b′)+k.

The set Tabc (λ) is the indexing set for the irreducible Hℓ,n-modules of Lc (λ). Given Q ∈
Tabc (λ) we write sc (Q) for the skew diagram indexing its isotype as an Hℓ,n-module.

Now we are in conditions to state the main result of [4]

THEOREM 0.1. Let λ be an ℓ-partition of n.

1. If Lc (λ) is t-diagonalizable, then

ch(Lc (λ)) = ∑
Q∈Tabc (λ)
µ∈Pℓ,n

c sc (Q)
µ [Sµ]t |Q|

2. If Lc (λ) is unitary, then for each ℓ-partition µ of n

dimC

[
Exti

Oc
(∆c (µ),Lc (λ))

]
= ∑

Q∈Tabc (λ)
ν∈Pℓ,n ,η∈Pℓ,n−i ,χ∈Pℓ,i
|Q|=ctc (λ)−ctc (µ)−i

c sc (Q)
ν cνηχcµ

ηχt

Now we summarize the contents in this thesis. In Chapter 1 we define the rational

Cherednik Hc algebra and state and prove the Poincaré-Birkhoff-Witt theorem (PBW), this

result allows to describe the rational Cherednik algebra by generators and relations and to

construct the standard modules. With standard modules defined, we introduce the category

Oc , simple and unitary representations and the characters of the rational Cherednik algebra.

In Section 2 we define a highest weight category (in the sense of Cline, Parshall and Scott

[12]) and observe that Oc satisfy its conditions.
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In section 1 of Chapter 2, we describe in detail the combinatorial objects we will use,

such as ℓ-partitions and skew shapes. In section 2 we define the groups of complex reflec-

tions G(ℓ,1,n) and in Section 3, the rational Cherednik algebra attached to them (which we

will refer to as the cyclotomic rational Cherednik algebra).

In Chapter 3 we construct a subalgebra of Hc which is isomorphic to the cyclotomic

degenerate affine Hecke algebra Hℓ,n . and we study in detail the class of diagonalizable Hℓ,n-

modules with respect to a certain commutative subalgebra of Hℓ,n . In Chapter 4 we state and

proof the main theorem using the classification of Hℓ,n-modules in the preceding Chapter.

We include an appendix with a catalog of unitary spectra and characters for the cyclo-

tomic rational Cherednik algebra of type B, this is for ℓ= 2 corresponding to the Weyl group

of type B .
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CHAPTER 1

Preliminaries

1. The rational Cherednik algebra

Let h be a finite dimensional complex vector space and h∗ its dual space, with the natural

pairing 〈·, ·〉 between h∗ and h defined by 〈x, y〉 = x(y). Let W be a finite subgroup of linear

transformations of h and R be the set of reflections in W , namely elements w ∈W such that

codim(fixh(w)) = 1, in other words the elements w ∈W whose fixed space is a hyperplane of

h.

For each reflection r ∈ R we fix a constant cr ∈ C satisfying

cwr w−1 = cr for all w ∈W.

and αr ∈ h∗ such that

fixh(r ) = ker(αr ).

Also there is a unique α∨
r ∈ h such that

r (x) = x −〈x,α∨
r 〉αr , for x ∈ h∗. (1.1)

We define the partial derivation in the direction y as the function ∂y characterized uniquely

by the following properties

(1) ∂y ( f g ) = f ∂y (g )+∂y ( f )g for f , g ∈ C[h] and

(2) ∂y (x) = x(y) if x ∈ h∗.

For each y ∈ h define the Dunkl operator D y acting on C[h] by the formula

D y ( f ) = ∂y ( f )− ∑
r∈R

cr 〈αr , y〉 f − r f

αr
for f ∈ C[h], (1.2)

EXAMPLE 1. (1) Let W = Z2 and h= C. Up to scalars, there is only one Dunkl oper-

ator and is given by

D = ∂x − c(1− s)

x
.

We write s for the unique reflection in W , whose action is given by (s f )(x) = f (−x).

(2) Let W = Sn and h= Cn , write {y1, . . . , yn} for a basis of h with dual basis {x1, . . . , xn}.

In this case the set of reflections R consists of the transpositions si , j with i < j . And c

reduces to one parameter. Then the Dunkl operator for yi ∈ h is given by

D yi f = ∂xi ( f )− c

∑
j 6=i

f − si , j f

xi −x j

 ,

for f ∈ C[h] ∼= C[x1, . . . , xn].

9



10 CHAPTER 1. PRELIMINARIES

Using the fact that αr generates the ideal of functions vanishing on the fixed space of r

we have that the quotient
f − r f

αr
is actually an element of C[h] and hence Dunkl operators

D y are well defined.

One of Dunkl’s important results was that Dunkl operators commute with each other,

which is not at all obvious from the formula. To prove the commutativity we follow Etingof’s

idea [3] instead of the original proof of Dunkl. The partial derivation introduced above satisfy

useful properties. .

REMARK 1. Note that, for w ∈ W and y ∈ h, w∂y w−1 is a derivation of C[h] satisfying

w∂y w−1(x) = ∂w y x. Thus by uniqueness of ∂y we have w∂y w−1 = ∂w y . Analogously we can

check ∂y1 −∂y2 = ∂y1−y2 and ∂t y = t∂y .

LEMMA 1. The Dunkl operators satisfy the following properties

(1) wD y w−1 = Dw y for w ∈W, y ∈ h,

(2) [D y , f ] = ∂y ( f )−∑
r∈R cr 〈αr , y〉 f − r f

αr
r for f ∈ C[h],

(3) D y1 −D y2 = D y1−y2 and D t y = tD y , y1, y2, y ∈ h, t ∈ C.

PROOF. (1) For the first part notice that fix(wr w−1) = ker(wαr ). As fix(wr w−1) =
ker(αwr w−1 ) and the definition of the Dunkl operators does not depend on the

choice of αr , we have

ker(wαr ) = ker(αwr w−1 ).

We compute wDw−1 y w−1 acting on f ∈ C[h].

wDw−1 y w−1( f ) = w
(
Dw−1 y (w−1 f )

)
= w

(
∂w−1 y (w−1 f )− ∑

r∈R
cr 〈αr , w−1 y〉w−1 f − r w−1 f

αr

)

= w∂w−1 y w−1 f − ∑
r∈R

cr wαr (y)
f −wr w−1 f

wαr

= ∂y ( f )− ∑
r∈R

crαwr w−1 (y)
f − (wr w−1) f

αwr w−1

As cr = cwr w−1 we can substitute r by wr w−1 in the sum obtaining

wDw−1 y w−1 f = ∂y f − ∑
r∈R

cr 〈αr , y〉 f − r f

αr
= D y f .

Finally the assertion follows by using this result with w y instead of y .

(2) The second part follows by direct computation of the Dunkl operator D y acting on

a product of two polynomial functions f , g ∈ C[h]

D y ( f g ) = ∂y ( f g )− ∑
r∈R

〈αr , y〉 f g − r f g

αr

= ∂y (g )g + f ∂y (g )− ∑
r∈R

cr 〈αr , y〉 f g − r f · r g

αr
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= ∂y ( f )g + f ∂y (g )− ∑
r∈r

〈αr , y〉
(

f
g − r g

αr
+ f − r f

αr
r g

)

=
(
∂y ( f )− ∑

r∈R
〈αr , y〉 f − r f

αr
r

)
g + f D y (g )

This implies that D y f (g ) − f D y (g ) =
(
∂y ( f )−∑

r∈R〈αr , y〉 f − r f

αr
r

)
g , and second

part follows.

(3) The last part follows from Remark 1.

□

THEOREM 1.1 (Dunkl, C.). The Dunkl operators D y , y ∈ h are pairwise commutative

PROOF. Equivalently we will prove that

[D y1 ,D y2 ] = 0 for all y1, y2 ∈ h.

Notice that for x ∈ h∗ we have D y (x) = x(y)−∑
r∈R cr 〈αr , y〉〈x,α∨

r 〉. From the definition (1.2)

of Dunkl operators we know that the quantity 〈αr , y〉〈x,α∨
r 〉 is indepedent of the choice of αr

and α∨
r satisfying such equation. Then, by Lemma 1

[[D y1 , x],D y2 ] = [x(y1)− ∑
r∈R

〈αr , y1〉〈x,α∨
r 〉r,D y2 ]

= ∑
r∈R

cr 〈αr , y1〉〈x,α∨
r 〉(D y2 r − r D y2 )

= ∑
r∈R

cr 〈αr , y1〉〈x,α∨
r 〉(D y2 r −Dr y2 r )

= ∑
r∈R

cr 〈αr , y1〉〈x,α∨
r 〉(D y2 −Dr y2 )r

= ∑
r∈R

cr 〈αr , y1〉〈x,α∨
r 〉(D y2−r y2 )r

= ∑
r∈R

cr 〈αr , y1〉〈x,α∨
r 〉D〈αr ,y2〉α∨

r
r

= ∑
r∈R

cr 〈αr , y1〉〈x,α∨
r 〉〈αr , y2〉Dα∨

r
r.

Interchanging y1 and y2 gives [[D y2 , x],D y1 ] = ∑
r∈R cr 〈αr , y2〉〈x,α∨

r 〉〈αr , y1〉Dα∨
r

r . Using

the Jacobi identity we have

[[D y1 ,D y2 ], x] = [[D y1 , x],D y2 ]− [[D y2 , x],D y1 ] = 0.

This implies that

[[D y1 ,D y2 ], f ] = 0 for all f ∈ C[h],

hence

[D y1 ,D y2 ] = 0.

□
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The Rational Cherednik algebra associated to (W,h) is the subalgebra Hc = Hc (W,h) of

End(C[h]) generated by the group W, the ring C[h] (acting on itself by multiplication) and

the commuting Dunkl operators D y , y ∈ h, where the deformation parameter c is the tuple

(cr )r∈R .

Notice that the rational Cherednik algebra has a similar behavior to what we would ex-

pect from the enveloping algebras of a Lie algebra. For instance, the rational Cherednik al-

gebra has a version of the Poincaré-Birkhoff-Witt theorem (or PBW theorem), a result that

in Lie algebras setup gives an explicit description of its universal enveloping algebra. The

following version we give of PBW theorem for the rational Cherednik algebra will allow us to

give a presentation of Hc given by generators and relations.

THEOREM 1.2 (PBW theorem for rational Cherednik Algebra). The map

C[h]⊗CW ⊗C[h∗]
∼→ Hc

given by multiplication is an isomorphism of vector spaces.

This result is actually a consequence of the commutativity of the Dunkl operators, for a

proof of this we refer to Etingof and Ma [3].

PROPOSITION 1. The rational Cherednik algebra Hc may be presented as the algebra gen-

erated by the group algebra CW , the commuting operators y ∈ h and x ∈ h∗ subject to relations

w xw−1 = w(x), w y w−1 = w(y)

and

y x −x y = 〈x, y〉− ∑
r∈R

cr 〈αr , y〉〈x,α∨
r 〉r (1.3)

PROOF. Consider the following two maps

T (h∗⊕h) → Hc and

x 7→ x “multiplication by x"

y 7→ D y

W → Hc

w 7→ w as operator in Hc

then the map

T (h∗⊕h)⋊W → Hc

f ⊗w 7→ f w

is an algebra homomorphism. Let I be the ideal of T (h∗⊕h)⋊W generated by

x1x2 −x2x1, ∀x1, x2 ∈ h∗

y1 y2 − y2 y1, ∀y1, y2 ∈ h
y x −x y −x(y)+ ∑

r∈R
cr 〈αr , y〉〈x,α∨

r 〉r, ∀x ∈ h∗, y ∈ h

then, there exists a morphism
(T (h∗⊕h)⋊W )⧸I → Hc .
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The natural map

C[h]⊗CW ⊗C[h∗]↠ T (h∗⊕h)⋊W⧸I

f ⊗w ⊗ g 7→ f ⊗w ⊗ g

is a surjective vector spaces morphism, since we have enough relations in I to write each

word in the right order. By PBW theorem the composition

C[h]⊗CW ⊗C[h∗]↠ T (h∗⊕h)⋊W⧸I → Hc

is an isomorphism, this implies that the second map is an isomorphism as well. □

EXAMPLE 2. Using the previous proposition we can give explicit presentations for the cor-

responding Rational Cherednik algebras given in Example 1

(1) Hc (Z2,C) is the algebra generated by variables x, y, s subject to

• s2 = 1

• sx =−xs

• s y =−y s

• y x −x y = 1−2cs

(2) Hc (Sn ,Cn) is the algebra generated by the symmetric group Sn , the commuting vari-

ables x1, . . . , xn and commuting variables y1, . . . , yn subject to relations

• w xi w−1 = ww(i ) and w yi w−1 = yw(i ) for w ∈ Sn and 1 ≤ i ≤ n

• yi x j −x j yi = csi . j for 1 ≤ i 6= j ≤ n

• yi xi −xi yi = 1− c
∑

j 6=i si , j .

1.1. Standard modules and the category Oc . Let E be an irreducible representation of

CW . Define the standard module ∆c (E) for Hc as the induced representation

∆c (E) = IndHc
C[h∗]⋊W (E),

where C[h∗]⋊W is the subalgebra of Hc generated by h and W , and it acts on E by

ye = 0, ∀y ∈ h, ∀e ∈ E .

By the PBW theorem, we have that

∆c (E) ∼= C[h]⊗E

as a C[h]⋊W -module. These standard modules can be seen as analogs of the Verma modules

for complex semisimple Lie algebras.

EXAMPLE 3. The group Z2 has two irreducible (one-dimensional) representations, namely

tr i v and sg n, consequently there are two standard modules, ∆c (tr i v) ∼= C[x]⊗tr i v and ∆c (sg n) ∼=
C[x]⊗ sg n. The action of C[y] on ∆c (E) is given by

y · (xi ⊗e) = ∂x (xi )⊗e − c
(xi − (−x)i )

x
⊗ se (1.4)
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=

(i − c(1− (−1)i ))xi−1 ⊗e, if E = tr i v

(i + c(1− (−1)i ))xi−1 ⊗e, if E = sg n
(1.5)

Let Oc be the Serre subcategory of Hc -mod generated by the standard modules. In the

following proposition we give an explicit characterization of the objects of the category Oc .

PROPOSITION 2. The category Oc consists of finitely generated Hc -modules M that are

locally nilpotent for the action of each y ∈ h, in the sense that for each m ∈ M, there is some

positive integer n with yn ·m = 0 for all y ∈ h.

For a proof of this proposition we refer to Ginzburg, Guay, Opdam an Rouquier [5]. We

will introduce a parametrization that simplifies the expression of many numbers arising nat-

urally in the study of the Cherednik algebra, in particular we will use it later to give an explicit

presentation for the rational Cherednik algebra attached to the group G(ℓ,1,n), which is the

object of study of this work.

Let A be the set of hyperplanes H in h, where H = fix(r ) for some r ∈ R. For each H ∈A
we choose αH ∈ h∗ such that H = ker(αH ). The subgroup WH = {w ∈W |w(v) = v if v ∈ H } is

a cyclic subgroup and we write W ∨
H for its character group.

For χ ∈W ∨
H the corresponding primitive idempotent is given by

eH ,χ= 1

nH

∑
w∈WH

χ(w−1)w ∈ CWH , (1.6)

where nH denotes the size of WH . Define cH ,χ by

cH ,χnH = ∑
r∈WH−{1}

cr (1−χ(r )). (1.7)

PROPOSITION 3. With this reparametrization for each y ∈ h the equation (1.2) for the

Dunkl operator D y becomes

D y ( f ) = ∂y ( f )− ∑
H∈A

〈αH , y〉
αH

∑
χ∈WH−{1}

cH ,χnH eH ,χ f , f ∈ C[h]. (1.8)

PROOF. This is obtained by straightforward computation, using the following formulas.∑
χ∈W ∨

H

eH ,χ = 1 (1.9)

which comes from the orthogonality relations in W ∨
H , and

w = ∑
χ∈W ∨

H

χ(w)eH ,χ, for w ∈WH , (1.10)

which follows from the relation arising since w ∈ W and eH ,χ, for χ ∈ W ∨
H are basis of the

group algebra CWH . Recalling that αr ∈ h∗ is chosen in such a way that ker(αr ) = fix(r ), then

for H ∈A with fix(r ) = H (or equivalently r ∈ WH ) we have λαH = αr for some scalar λ ∈ C×

and therefore
〈αr , y〉
αr

= 〈αH , y〉
αH

for all r ∈WH .
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Then for each y ∈ h and f ∈ C[h] we have

D y ( f ) = ∂y ( f )− ∑
r∈R

cr 〈αr , y〉 f − r f

αr

= ∂y ( f )− ∑
H∈A

∑
r∈WH−{1}

cr 〈αr , y〉 f − r f

αr

= ∂y ( f )− ∑
H∈A

〈αH , y〉
αH

 ∑
r∈WH−{1}

cr (1− r )

 f

From equations (1.9) and (1.10) we have

∑
r∈WH−{1}

cr (1− r ) = ∑
r∈WH−{1}

cr

 ∑
χ∈W ∨

H

eH ,χ−
∑

χ∈W ∨
H

χ(r )eH ,χ


= ∑

r∈WH {1}
cr

 ∑
χ∈W ∨

H −{1}

(1−χ(r ))eH ,χ


= ∑

χ∈W ∨
H −{1}

 ∑
r∈WH−{1}

cr (1−χ(r ))

eH ,χ

= ∑
χ∈W ∨

H −{1}

cH ,χnH eH ,χ

which finishes the proof. □

PROPOSITION 4. In terms of the parameters cH ,χ the equation (1.3) is

y x −x y = 〈x, y〉− ∑
H∈A

〈αH , y〉〈x,α∨
H 〉

〈αH ,α∨
H 〉

∑
χ∈W ∨

H

(cH ,χ⊗det−1 − cH ,χ)nH eH ,χ (1.11)

PROOF. Note that
〈αr , y〉〈x,α∨

r 〉
〈αr ,α∨

r 〉
= 〈αH , y〉〈x,α∨

H 〉
〈αH ,α∨

H 〉 for r ∈WH , then we have

y x −x y = 〈x, y〉− ∑
r∈R

cr 〈αr , y〉〈x,α∨
r 〉r

= 〈x, y〉− ∑
H∈A

∑
r∈WH−{1}

cr 〈αr , y〉〈x,α∨
r 〉r

〈αr ,α∨
r 〉

〈αr ,α∨
r 〉

= 〈x, y〉− ∑
H∈A

∑
r∈WH−{1}

cr
〈αH , y〉〈x,α∨

H 〉
〈αH ,α∨

H 〉 r 〈αr ,α∨
r 〉

= 〈x, y〉− ∑
H∈A

〈αH , y〉〈x,α∨
H 〉

〈αH ,α∨
H 〉

∑
r∈WH−{1}

〈αr ,α∨
r 〉cr r.

To finish the proof we use equation (1.10) and 〈αr ,α∨
r 〉 = 1−deth r−1, then

∑
r∈WH−{1}

〈αr ,α∨
r 〉cr r = ∑

r∈WH−{1}
〈αr ,α∨

r 〉cr
∑

χ∈W ∨
H

χ(r )eH ,χ
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= ∑
χ∈W ∨

H

∑
r∈WH−{1}

(1−detr−1)crχ(r )eH ,χ

= ∑
χ∈W ∨

H

 ∑
r∈WH−{1}

cr (1−χ⊗det−1r )− ∑
r∈WH−{1}

cr (1−χ(r ))

eH ,χ

= ∑
χ∈W ∨

H

(cH ,χ⊗det−1 − cH ,χ)nneH ,χ

□

1.2. The Fourier transform and the contravariant form.

PROPOSITION 5. There exists a conjugate linear isomorphism f : h→ h∗ satisfying

f (w(y)) = w( f (y)), ∀w ∈W, y ∈ h.

If W acts irreducibly on h then such isomorphism is unique up to scalars.

PROOF. Since W ⊆ GL(h) is finite, then there exists a W -invariant positive definite her-

mitian form on h, we denote such form by (·, ·). Then the function f given by f (y) = (·, y) is

the desired isomorphism. Uniqueness holds by Schur’s lemma. □

We fix an isomorphism as above, and we denote it by conjugation. By abuse we use the

same notation for the inverse, then y ∈ h∗ for y ∈ h, x ∈ h for x ∈ h∗ and y = y.

THEOREM 1.3. Suppose cr is real, in the sense that cr = cr−1 , for all r ∈ R. Then there exists

a unique conjugate linear antiautomorphism

Hc → Hc

h 7→ h

extending the maps

h−→←−h∗

y 7→ y

x ←[ x
as above, such that w = w−1, for all w ∈W .

PROOF. Write A for he C-algebra A with the conjugate C-vector space structure

α ·a =αa, ∀a ∈ A and α ∈ C.

The maps

h−→←−h∗ and

y 7→ y

x ← [ x
W →W

w 7→ w = w−1
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fit together to give

T (h∗⊕h) → T (h∗⊕h)

x 7→ x

y 7→ y

which induces

T (h∗⊕h)⋊W T (h∗⊕h)⋊W

Hc Hc

Using the presentation of Hc given by Proposition 1, it remains to check that the follow-

ing relations hold in Hc

x1 x2 = x2 x1 ∀x1, x2 ∈ h∗

y1 y2 = y2 y1, ∀y1, y2 ∈ h
y x −x y = y(x)+ ∑

r∈R
cr 〈αr , x〉〈y ,α∨

r 〉r, ∀x ∈ h∗, y ∈ h.

First and second relations are immediate since the morphism constructed is linear. To

check the last relation we need to prove that 〈x, y〉 = 〈y , x〉, in fact, by the previous proposi-

tion we can consider y1 ∈ h to be the image of x ∈ h∗, thus x = y1 and y1 = x. Then x = (·, y1),

and

〈x, y〉 = x(y) = (y, y1) = (y1, y) = (x, y) = y(x) = 〈y , x〉
This implies that r−1(x) = x −〈x,αr 〉α∨

r for all x ∈ h∗, which finishes the proof. □

We abuse notation and also denote by conjugation to this antiautomorphism, which we

call the Fourier transform.

EXAMPLE 4. In Hc (Z2,C) the Fourier transform is given by x = y, y = x, s = s and complex

conjugation on scalars.

Fix a positive definite W-equivariant hermitian form (·, ·) on E . Each standard module

has a contravariant form 〈·, ·〉c defined by the formula

〈G1 ⊗e1,G2 ⊗e2〉c = (e1, (G1 ·G2 ⊗e2)(0)), (1.12)

where we evaluate at zero by considering each element of C[h]⊗E as a function on h with

values in E .

PROPOSITION 6. The form is conjugate linear in the first variable, linear in the second

variable and satisfies

〈G1,G2〉c = 〈G2,G1〉c . (1.13)

Moreover, for all h ∈ Hc and G1,G2 ∈∆c (E) we have

〈h ·G1,G2〉c = 〈G1,h ·G2〉c . (1.14)
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The property (1.13) is a “baby case" of a symmetry in the double affine Hecke algebra,

wich is connected to the evaluation and norm formulas for Macdonald polynomials.

PROOF. To prove (1.13) note that

G1G2 =
∑

w∈W
cw w (1.15)

where cw = c0
w + ∑

deg f g>0
f (x)g (y). Hence G1 ·G2 ⊗e2(0) = ∑

w∈W
c0

w w ⊗e2.

Using the Fourier transform in (1.15) we have that G2G1 ⊗e1(0) = ∑
w∈W

c0
w w−1 ⊗e1. Then

〈G1 ⊗e1,G2 ⊗e2〉c
de f=

(
e1, (G1G2 ⊗e2)(0)

)
=

(
e1,

∑
w∈W

c0
w w ⊗e2

)

=
( ∑

w∈W
c0

w w−1 ⊗e1,e2

)
=

(
(G2G1 ⊗e1)(0),e2

)
= (e2, (G2G1 ⊗e1)(0))

= 〈G2 ⊗e2,G1 ⊗e1〉c .

Property (1.14) can be checked on generators straightforward from the definition, which

is enough to prove the result and finishes the proof. □

EXAMPLE 5. The contravariant form is determined by the action of Dunkl operators in the

standard modules, in Hc (Z2,C) the contravariant form is given by 〈x j ⊗ e, xi ⊗ e〉c = 0 if i 6= j

and

〈xi ⊗e, xi ⊗e〉c =


∏i

t=1(t − (1− (−1)t )c), if E = tr i v∏i
t=1(t + (1− (−1)t )c), if E = sg n

(1.16)

1.3. The grading element.

DEFINITION 1. Let {y1, . . . , yn} be a basis of h and {x1, . . . , x2} its corresponding dual basis.

We define the Euler element as the operator

eu =
n∑

i=1
xi∂yi .

Using the definition of the Dunkl operator, the Euler element can be written as eu =∑n
i=1 xi D yi +

∑
r∈R cr (1− r ), in this way we have that eu ∈ Hc . Note that since the Fourier

transform exchanges multiplication with differentiation, in the same way this occur in a Weyl

algebra, the Euler element is stable under de Fourier transform, i.e. eu = eu.

PROPOSITION 7. The Euler element satisfies the following properties

(1) [eu, x] = x, for all x ∈ h∗
(2) [eu, y] =−y, for all y ∈ h
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(3) [eu, w] = 0, for all w ∈W .

PROOF. (1) We compute directly, using that eu =∑n
i=1 xi D yi +

∑
r∈R cr (1− r )

[eu, x] =
[

n∑
i=1

xi D yi +
∑
r∈R

cr (1− r ), x

]

=
(

n∑
i=1

xi D yi +
∑
r∈R

cr (1− r )

)
x −x

(
n∑

i=1
xi D yi +

∑
r∈R

cr (1− r )

)

=
n∑

i=1
xi (D yi x −xD yi )+ ∑

r∈R
(xr − r x)

=
n∑

i=1
xi [D yi , x]−+ ∑

r∈R
(xr − r x)

=
n∑

i=1
xi

(
x(yi )− ∑

r∈R
cr 〈αr , yi 〉〈x,α∨

r 〉r
)
−+ ∑

r∈R
(xr − r x)

=
n∑

i=1
xi x(yi )− ∑

r∈R
cr 〈x,α∨

r 〉
(

n∑
i=1

xiαr (yi )

)
r + ∑

r∈R
(xr − r x)

= x + ∑
r∈R

cr ((x −〈x,α∨
r 〉αr )r − r x)

= x + ∑
r∈R

cr (r (x)r − r x)

= x + ∑
r∈R

cr (r x − r x)

= x

(2) Using that y ∈ h∗ and the Fourier transform used in part (a) we have

[eu, y] = yeu−euy = euy − yeu = y eu−eu y = y eu−eu y

= [y ,eu] =−[eu, y] =−y

(3) We prove that w eu w−1 = eu which is equivalent to [eu, w] = 0, in fact

w eu w−1 = w

(
n∑

i=1
xi D yi +

∑
r∈R

cr (1− r )

)
w−1

=
n∑

i=1
w xi D yi w−1 + ∑

r∈R
cr w(1− r )w−1

=
n∑

i=1
w xi w−1wD yi w−1 + ∑

r∈R
cr (1−wr w−1)

=
n∑

i=1
w(xi )Dw(yi ) +

∑
r∈R

cr (1−wr w−1)

equality holds since for w ∈ GL(h) the set {w(yi ) : 1 ≤ i ≤ n} is another basis of h

with dual basis {w(xi ) : 1 ≤ i ≤ n} and that cr = cwr w−1 .

□

By Schur’s lemma, the Euler element acts on E by a constant we denote by cE . Since

Dunkl operators act by 0 on E , we have that eu =∑
r∈R cr (1−r ) on E . In terms of idempotents

defined in subsection 1.1 eu =∑
H∈A

∑
χ∈W ∨

H −{1} cH ,χnH eH ,χ on E .
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EXAMPLE 6. For Hc (Z2,C) we have that eu = xdx = xD + c(1− s) and

eu(1⊗e) = (xD + c(1− s))(1⊗e) = c ⊗e − c ⊗ se

then cE =

0, if E = tr i v

2c, if E = sg n

For an element in ∆c (E) we have eu(x⊗e) = (1+cE )(x⊗e), i.e. the Euler element increases

in 1 the grade. Inductively, for f ∈ C[h] homogeneous of degree d , we have

eu f = (cE +d) f .

This allow us to define the part of grade d on ∆c (E) by

∆c (E)cE+d = {
m ∈∆c (E) |eum = dm

}
and then the grading on ∆c (E) is given by

∆c (E) = ⊕
d∈Z≥0

∆c (E)cE+d .

Analogously the Euler element decreases in 1 the degree of an element y ∈ h, with this

and properties in Proposition 7 the eigenspace decomposition of Hc under the action of

[eu, ·] gives a grading on Hc , where W is in degree 0, h∗ is in degree 1 and h in degree -1.

Hence each object M of Oc is C-graded with finite dimensional weight spaces M =⊕
d∈C Md ,

where

Md = {m ∈ M | (eu−d)N ·m = 0 for N sufficiently large}.

Moreover, Md = 0 unless d ∈ cE +Z≥0 for some irreducible representation E of W , since

this is valid for standard modules and the category Oc is the Serre subcategory generated by

them.

1.4. Simple and unitary representations.

PROPOSITION 8. The standard module ∆c (E) has a unique maximal submodule.

PROOF. Let M ⊂∆c (E) be a proper submodule, since ∆c (E) = ⊕
d∈Z≥0

∆(E)cE+d , we have

M = ⊕
d∈Z≥0

(
M ∩∆c (E)ce+d

)
.

By hypothesis we have that M 6=∆c (E), which implies that M ∩∆c (E)cE = 0. Then

M ⊂ ⊕
d∈Z>0

∆c (E)cE+d ,

and therefore ∑
M⊊∆c (E)

M

is the unique maximal submodule of ∆c (E). □
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Note that form the previous proposition we have that Rad(∆c (E)) =∑
M⊊∆c (E) M and

then Rad(〈·, ·〉c ) = Rad(∆c (E)). From what has been worked so far we define Lc (E) to be the

unique irreducible quotient of ∆c (E), i.e.

Lc (E) =∆c (E)/Rad(〈·, ·〉c ) (1.17)

The contravariant form descends to this quotient and it is non degenerate, and we say that

Lc (E) is a unitary representation if the contravariant form in Lc (E) is positive definite.

COROLLARY 1. Let L be an irreducible Hc -module in Oc , then there exists E ∈ IrrCW such

that L ∼= L(E).

PROOF. Let M be a Hc -module in Oc , define

H 0(h, M) := {m ∈ M | y ·m = 0,∀y ∈ h}

which is nonzero since M is locally nilpotent for the action of each y ∈ h. Then for an ir-

reducible CW -module E there exists a nonzero map E → H 0(h, M) and by Frobenius reci-

procity we have a nonzero map ∆(E) → M . This map is surjective when M = L is irreducible,

therefore L ∼= L(E). □

By the previous proposition we can establish a very useful correspondence between Hc -

modules and CW -modules given by the map

I r r CW → I r rOc

E 7→ Lc (E).

EXAMPLE 7. For Hc (Z2,C) the contravariant form 〈·, ·〉c is non-degenerate and Lc (E) =
∆c (E), unless c ∈ 1

2 +Z. In the other case, the irreducible module depends on the representation

E as follows

• E = tr i v:

If c ∈ 1
2 +Z≥0 then Rad〈·, ·〉c is spanned by {xi ⊗ e | i ≥ 2c}. Then Lc (tr i v) is

spanned by {xi ⊗e |0 ≤ i ≤ 2c −1}.

• E = sg n:

If c ∈ 1
2 +Z<0 then Rad〈·, ·〉c is spanned by {xi ⊗ e | i ≥ −2c}. Then Lc (sg n) is

spanned by {xi ⊗e |0 ≤ i ≤−2c −1}.

1.5. Characters. For E ∈ Irr(CW ) we define two types of characters for the irreducible

Hc -module Lc (E). The graded character of Lc (E) is given by

ch(Lc (E)) =∑
d

[Lc (E)d ]t d (1.18)

where [Lc (E)] ∈ K (CW ) is an object of the Grothendieck group of Irr(CW ) and t is a formal

variable.

The Kazhdan-Lusztig character of Lc (E) is given by
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ch(Lc (E)) =∑
i

dim
(
Exti (∆c (F )i ,Lc (E))

)
[F ]q i

where q is a formal variable.

EXAMPLE 8. In Hc (Z2,C), we compute the graded character. In this case K (CW ) = {[tr i v], [sg n]}

then

(1) ch(Lc (tr i v)):

• If c ∉ 1
2 +Z≥0 then

Lc (tr i v)d =∆c (tr i v)d = {m ∈∆c (tr i v) |eu ·m = dm}

which is spanned by {xd ⊗e}, where e ∈ E. Note that

s · (xd ⊗e) = (s(xd )⊗ se) = (−1)d xd ⊗e =

xd ⊗e if d is even

−xd ⊗e if d is odd

then [(tr i v)d ] =

[tr i v] if d is even

[sg n] if d is odd.

• If c ∈ 1
2 +Z≥0 we have

Lc (tr i v)d = {m ∈ Lc (tr i v) | (eu −d)N ·m = 0, for some N sufficiently large}.

In this case we have that Lc (tr i v)d is spanned by {xd ⊗ e} if d < 2c and {0} in

other case. Then

[(tr i v)d ] =


[tr i v] if d < 2c is even

[sg n] if d is odd

0 if d ≥ 2c.

(2) ch(Lc (sg n)):

• If c ∉ 1
2 −Z≥0, since csg n = 2c we have that Lc (sg n)d is spanned by {xd−2c ⊗e} if

d −2c ∈ Z, then

[(sg n)d ] =


[tr i v] if d −2c is odd

[sg n] if d −2c is even

0 if d −2c ∉ Z.

• If c ∈ 1
2 −Z≥0 then Lc (sg n) is spanned by {xd−2c ⊗ e} as long as 2c ≤ d ≤ 0 and

then

[(sg n)d ] =


[tr i v] if d −2c is odd

[sg n] if d −2c is even

0 if d ≥ 0 or d < 2c.
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1.6. Duality. For a finite dimensional C-vector space V , we write

V ∨ = { f : V → C | f (av1 +bv2) = a f (v1)+b f (v2), for all v1, v2 ∈V and a,b ∈ C}

for the conjugate linear dual of V . This defines an exact contravariant functor from Oc to it-

self, which is conjugate-linear on Hom sets. Moreover it is an equivalence and an involution,

then the dual of a projective object in Oc is injective, and vice versa. Furthermore, simple

objects remain simple under this duality.

Since our Hc -modules are graded we define a compatible grading for the dual of an ob-

ject M of Oc with grading M =⊕
Md in the following way

M∨ =⊕
M∨

d

Given E ∈ Irr(CW ), we define the costandard module ∇c (E) to be the dual of the standard

module ∆c (E).

THEOREM 1.4 (BGG reciprocity). For standard and costandard objects ∆(E) and ∇(E),

respectively, with projective cover P (E) and injective envelope I (E) we have the following reci-

procity formulas

[∆(E) : L(F )] = [I (F ) : ∇(E)] and [∇(E) : L(F )] = [P (F ) : ∆(E)] (1.19)

PROOF. Since each layer on a good filtration of ∆(E) is autodual, we have that the num-

ber [∆(E) : L(F )] of times L(F ) appears as a section of G j (F )/G j−1(F ) in a good filtration of

∆(E) equals the number of times that L(F ) appears as a section in a good filtration of ∇(E),

i.e [∆(E) : L(F )] = [∇(E) : L(F )] then

[∆(E) : L(F )] = [∇(E) : L(F )] (1.20)

= dimHom(P (F ),∇(E)) (1.21)

by duality we have dimHom(P (F ),∇(E)) = dimHom(∆(E), I (F )) = [I (F ) : ∇(E)], obtaining the

first equality. From (1.21) and using duality again we obtain the second equality. □

2. Highest weight categories

We recall some concepts and definitions used by Cline, Parshal and Scott ([12]) about

highest weight categories. Let C be an abelian category and let k be a field.

DEFINITION 2. A composition series of an object A of C is a sequence of subobjects

A = X0 ⊋ X1 ⊋ · · ·⊋ Xn = 0

such that each quotient object Xi /Xi+1 is simple (for 0 ≤ i ≤ n).

If A has a composition series, the integer n only depends on A and its called the length of

A.
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Attached to the previous definition, we have that a composition factor S of an object A

of C is a composition factor of a subobject of finite length. And the multiplicity (possibly

infinite) of S in A is

[A : S] = sup{[B : S] |B is a subobject of finite length of A}

We say that a poset Λ is interval-finite if for every µ≦λ in Λ, the “interval"

[µ,λ] = {τ ∈Λ |µ≦ τ≦λ}

is finite.

DEFINITION 3. A highest weight category is a k-linear category C satisfying the following

conditions

• Is locally artinian (this means that C admits arbitrary directed unions of subobjects

and if every object is a union of its subobjects of finite length)

• Has enough injectives

• (Grothendieck condition) For a subobject B and a directed family of subobjects {Aα}

of an object X

B ∩ (
⋃

Aα) =⋃
(B ∩ Aα).

and such that there is an integral-finite poset Λ (whose elements are called weights of C ) sat-

isfying the following conditions

(1) There is a complete collection {L(λ)}λ∈Λ of non-isomorphic simple objects of C in-

dexed by the set Λ.

(2) There is a collection {∇(λ)}λ∈Λ of objects on C and, for each λ an embedding L(λ) ⊂
∇(λ) such that the composition factors L(µ) of ∇(λ)/L(λ) satisfy µ < λ. For λ,µ ∈ Λ

we have dimk HomC (∇(λ),∇(µ)) and [∇(λ) : L(µ)] are finite.

(3) Each simple object L(λ) has an injective envelope I (λ) in C . Also, I (λ) has a “good

filtration" which begins with ∇(λ) – namely, an increasing (finite or infinite) filtra-

tion 0 =G0(λ) ⊂G1(λ) ⊂ ·· · such that

(i) G1(λ) ∼=∇(λ);

(ii) for n > 1, Gn(λ)/Gn−1(λ) '∇(µ) for some µ=µ(n) >λ;

(iii) for a given µ ∈Λ, µ(n) =µ for finitely many n;

(iv) ∪Gi (λ) = I (λ).

EXAMPLE 9. Let U be the algebra of upper triangular matrices over k. Put C = mod −U .

In one hand we know that for any ring R, R- mod

✓ is abelian

✓ has enough injectives

✓ satisfies Grothendieck condition

and on the other hand the category of left modules over U

✓ is locally artinian
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✓ U is a k-linear category, since Hom(A,B) is a vector space over k for a pair of U -

modules A and B

then the conditions not involving the poset Λ are satisfied.

Let Λ = {1, . . . ,n} and consider kn as a left U -module, and let {e1, . . . ,en} be its standard

basis as a k vector space. Now define Ui to be the span of ei , i.e. Ui =U ei = {Mei |M ∈U } and

put L(i ) =∇(i ) =Ui .

(1) The set {L(i ) | i ∈Λ} is a complete collection of non-isomorphic simple left U -modules,

they are 1-dimensional.

(2) Clearly 1L(i ) : L(i ) → L(i ) =∇(i ) is an injection, and ∇(i )/L(i ) ∼= 0 has no simple com-

position factors. For i , j ∈ λ we have that dimHom(∇(i ),L(i )) is finite since L(i ) is

finite for any i ∈λ; and [∇(i ) : L( j )] is either 0 or 1.

(3) The injective hull of L(i ) =Ui /Ui−1 is I (i ) =Un/U i −1. Define Gp (i ) =Ui−1+p /Ui−1

for 0 ≤ p ≤ n − i +1, then the following increasing filtration of I (i )

0 ∼=G1(i )⊊ · · ·⊊Gn−i+1(i ) = I (i ).

is a “good filtration", i.e.

(i) G1(i ) =Ui /U i −1 =∇(i )

(ii) For p > 1 we have Gp (i )/Gp−1(i ) = (Ui−1+p /Ui−1)/(Ui−2+p /Ui−1) ∼=Ui−1+p /Ui−2+p =
∇(i −1+p), 1+p −1 > i

(iii) For a fixed i ∈Λ, i −1+p is the only value µ ∈Λ such that Gp (i )/Gp−1(i ) ∼=∇(µ).

(iv) Clearly ∪n−i+1
p=0 Gp (i ) = I (i ).

therefore the category of left modules over U is a highest weight category.

Note that C f determines C by taking direct limits where C f denotes the full subcategory

of C consisting of all subobjects of finite length, though C f rarely contains enough injectives,

The following lemma lists several immediate consequences of the above axioms for a highest

weight category C .

LEMMA 2. Let C be a highest weight category with poset Λ of weights. Let λ,µ ∈Λ. Then:

(1) L(λ) is the socle of ∇(λ).

(2) If either Ext1
C (∇(µ),∇(λ)) or Ext1

C (L(λ),L(µ)) is nonzero, then necessarily µ > λ. If

Ext1
C (L(λ),L(µ)) 6= 0, then λ and µ are strictly comparable (i.e. either λ>µ or µ>λ).

(3) If M , N are objects in C of finite length, then HomC (M , N ) and Ext1
C (M , N ) are finite

dimensional.

(4) The filtration {Gn(λ)} in axiom 3 (f) can be choosen to satisfy the additional condi-

tion:

(v) for all i , j > 0 if µ(i ) <µ( j ), then i < j .

This correspond to Lemma 3.2 in [12]. Moreover in Lemma 3.8 they extend to Extn sev-

eral of the results above involving Ext1.
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THEOREM 1.5. The category Oc of Hc -modules is a highest weight category, with weights

in Λ= Irr(CW ). The order considered in Λ is given by the relation for E ,F ∈ Irr(CW ), E < F if

and only if cE − cF is a positive integer.

In [5] Guay, Ginzburg, Opdam and Rouquier checked that category Oc of Hc -modules is

a highest weight category in this sense, with {L(λ)} the set of simple Hc -modules defined in

previous section and collection {∇(λ)} of costandard modules by using BGG-reciprocity on

properties of category Oc and standard modules ∆(E).

3. Homology of unitary representations

For the following definition notice that C is a C[h]-module via evaluation at the origin

0 ∈ h.

DEFINITION 4. For an Hc -module M, define a right-exact functor from Oc to CW -modules

given by H0(h∗, M) = C⊗C[h] M. Denote by Hi (h∗, M) to the homology of its left derived functor.

DEFINITION 5. Similarly we define a left-exact functor from Oc to graded CW -modules by

H 0(h, M) = {m ∈ M |D y (m) = 0, for all y ∈ h}.

And we denote by H i (h, M) to the cohomology of its right derived funtor.

The following theorem is a synthesis of results due to Huang-Wong [9], Ciubotaru [1]

and Griffeth [7].

THEOREM 1.6. Let L be an irreducible object of Oc . Then we have the following isomor-

phism of graded W -modules:

Hi (h∗,L) ∼= H i (h,L)

and consequently an isomorphism of graded W -modules

Tori (L,C) ∼=
⊕

E∈Irr(CW )
Exti

Oc
(∆c (E),L)⊗C E .

Moreover, for any object M of Oc the following equivariant purity property holds: if the E-

isotypic component of the degree d piece of the Tor-group Tori (M ,C)E ,d is not zero, then d = cE .

Finally, if L is a unitary irreducible object of Oc , then

Exti (∆c (E),L) ∼= HomCW (E ,LcE−i ⊗Λih∗).
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The cyclotomic rational Cherednik algebra

1. Combinatorics

We recall some definitions and basic notions of partitions and standard young tableaux

used in further sections.

A partition is a non-increasing sequence λ1 ≥ λ2 ≥ . . . ≥ λr ≥ 0 of positive integers. We

identify partitions with their Young diagrams and visualize them as collections of boxes. The

diagram of λ is the collection of points (x, y) for x and y integers satisfying 1 ≤ y ≤ ℓ and

1 ≤ x ≤ λy , which we think of as a subset of R2. A skew shape is a finite subset D ⊆ R2 such

that whenever (x, y) ∈ D and (x + k, y + l ) ∈ D for nonnegative integers k and l , then (x +
k ′, y + l ′) ∈ D for all integers 0 ≤ l ′ ≤ l and 0 ≤ k ′ ≤ k. We think of the points of the skew

shape as boxes. A skew shape D is called integral if D ⊆ Z2
>0. Each integral skew shape is

the difference D = α \β of two partitions, which are not uniquely determined by D . Boxes

b = (x, y) and b′ = (x ′, y ′) are called adjacent if either

(1) x = x ′ and y = y ′±1, or

(2) y = y ′ and x = x ′±1.

Adjacency is boxes of a skew shape is a equivalence relation, and the equivalent classes

of a skew shape D are called connected components of D , and D is connected if it has inly one

connected component.

For a fixed integer ℓ > 0, an ℓ-partition is a sequence λ = (λ0,λ1, . . . ,λℓ−1) of partitions,

some of which may be empty. Likewise, an ℓ-skew shape is a sequence D = (D0,D1, . . .Dℓ−1)

of ℓ skew shapes, some of which may be empty. A box of D is a box of some D j , thn we write

β(b) = j

if the box b ∈ D is a box of D j .

If there are n total boxes in λ then we say that λ is an ℓ-partition of n and we write Pℓ,n

for the set of all ℓ-partitions of n. Given λ ∈ Pℓ,n we define its transpose λt as the ℓ-partition

obtained from λ by cycling its components one spot to the left and transposing them all, i.e.

λt = (
(λ1)t , (λ2)t , . . . , (λℓ−1)t , (λ0)t )

where µt denotes the classical transpose of a partition µ.

We order the boxes of each ℓ-skew shape and each ℓ-partition as follows, let b = (x, y)

and b′ = (x ′, y ′) then

b ≤ b′ ⇔β(b) =β(b′) with x ′−x ∈ Z≥0 and y ′− y ∈ Z≥0

27
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In this section we study reflections and representations of the complex reflection group

G(ℓ,1,n) in order to specialize W in the definition of the rational Cherednik algebra to this

group which we will call cyclotomic rational Cherednik algebra.

2. The group G(ℓ,1,n)

Let µℓ be the cyclic group of ℓth roots of unity and Sn the symmetric group of degree n,

the group G(ℓ,1,n) can be defined as µℓ oSn the wreath product of µℓ and Sn and it acts on

h= Cn in the obvious way. Let y1, . . . , yn be the standard basis of h then this group consists of

all matrices of size n by n with exactly one non-zero entry in each row and column, which is

an ℓth root of unity.

EXAMPLE 10.


0 −1 0

1 0 0

0 0 −1

 ∈G(2,1,3) and


0 0 0 i

−1 0 0 0

0 0 1 0

0 i 0 0

 ∈G(4,1,4)

With this characterization, the group G(1,1,n) is the group of permutation matrices of

size n by n, which is isomorphic to the symmetric group Sn . And the group G(2,1,n) is the

group of signed permutation matrices also known as the Weyl group of type Bn .

For a fixed primitive ℓth rooth of unity ζ, we denote by ζi to the diagonal matrix with

ones all over the diagonal except in the position i where there is ζ, si j denotes the permuta-

tion matrix which exchanges coordinates i and j , and si = si ,i+1.

EXAMPLE 11. In the group G(ℓ,1,3),

ζ1 =


ζ 0 0

0 1 0

0 0 1

 , ζ2 =


1 0 0

0 ζ 0

0 0 1

 , ζ3 =


1 0 0

0 1 0

0 0 ζ


and

s1 =


0 1 0

1 0 0

0 0 1

 , s13 =


0 0 1

0 1 0

1 0 0


The set of reflections of G(ℓ,1,n) is the set R = R1 ∪R2, where

R1 = {ζ j
i |1 ≤ i ≤ n , 1 ≤ j ≤ ℓ−1} and R2 = {ζk

i si j ζ
−k
i |1 ≤ i < j ≤ n , 0 ≤ k ≤ ℓ−1}.

The group G(ℓ,1,n) has ℓ conjugacy classes, let ζ1,ζ2, . . . ,ζℓ−1 be the representatives of the

ℓ−1 conjugacy classes in R1 and let s (some transposition) be the representative of the con-

jugacy class R2.

The irreducible complex representations of G(ℓ,1,n) are in bijection with ℓ-partition λ

of n, and for λ ∈ Pℓ,n we write Sλ for the corresponding irreducible representation [10]. We

write h= Cn for the defining representation, which is irreducible for ℓ> 1.



2. THE GROUP G(ℓ,1, N ) 29

With this indexing of the complex irreducible representations of G(ℓ,1,n), the represen-

tation indexed by λt is the tensor product of the representation Λnh∗.

There is a combinatorial formula for the dimension of λ given by

dim(λ) = # of standard tableaux of shape λ

= n!
r∏

i=1

∏
b∈λ(i )

1

hb

where hx is the hook length at the box b. This formula follows from the corresponding result

for the symmetric group which is the case ℓ= 1.

2.1. Jucys-Murphy-Young elements. In the group algebra CG(ℓ,1,n) we define the fol-

lowing analog of Jucys-Murphy-Young elements.

ϕi =
∑

1≤ j<i
0≤k≤ℓ−1

ζk
i si j ζ

−k
i = ∑

1≤ j<i
0≤k≤ℓ−1

ζk
j si j ζ

−k
j 1 ≤ i ≤ n

PROPOSITION 9. The elements ϕ1,ϕ2, . . . ,ϕn are pairwise commutative.

PROOF. Let ψi be the conjugacy class sum given by

ψi =ϕ1 +·· ·+ϕi =
∑

1≤p<q≤i
0≤k≤ℓ−1

ζk
q spqζ

−k
q

therefore ψi is a central element of CG(ℓ,1, i ). Since ψi commutes with ψ1, . . . ,ψi it follows

that ψ1,ψ2, . . . ,ψn are pairwise commutative. The result follows by observing that ϕi =ψi −
ψi−1. □

PROPOSITION 10. The Jucys-Murphy-Young elements ϕ1, . . . ,ϕn satisfy

(1) ϕiζ j = ζ jϕi for 1 ≤ i ≤ n and 1 ≤ j ≤ n.

(2) ϕi s j = s jϕi for j 6= i −1, i .

(3) ϕi si = siϕi+1 −πi for 1 ≤ i ≤ n −1, where πi =∑
0≤k≤ℓ−1 ζ

k
i ζ

−k
i+1.

PROOF. (1) Note that if 1 ≤ i < j the element ζ j commute with si t for all 1 ≤ t < i

and then ζ j commutes with ϕi . The case i = j follows from

ζiϕiζ
−1
i = ζi

 ∑
1≤t<i

0≤k≤ℓ−1

ζk
i si tζ

−k
i

ζ−1
i = ∑

1≤t<i
0≤k≤ℓ−1

ζk+1
i si tζ

−(k+1)
i =ϕi .

Note that ψi ,ψi−1 are central in CG(ℓ,1, i −1) then ϕi =ψi −ψi−1 commutes with

every ζ j and s j for 1 ≤ j < i , which proves (a)

(2) By the same arguments used in (a) the element ζ j commutes si for j 6= i −1, i .

(3) For this part we compute

ϕi si =

 ∑
1≤ j<i

0≤k≤ℓ−1

ζk
i si j ζ

−k
i

 si =
∑

1≤ j<i
0≤k≤ℓ−1

ζk
i si j siζ

−k
i+1
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= ∑
1≤ j<i

0≤k≤ℓ−1

ζk
i si si+1, j ζ

−k
i+1 =

∑
1≤ j<i

0≤k≤ℓ−1

siζ
k
i+1si+1, j ζ

−k
i+1

= si

 ∑
1≤ j<i

0≤k≤ℓ−1

ζk
i+1si+1, j ζ

−k
i+1

= si

(
ϕi+1 −

∑
0≤k≤ℓ−1

ζk
i+1siζ

−k
i+1

)

= siϕi+1 −
∑

0≤k≤ℓ−1
ζk

i ζ
−k
i+1

□

Let u be the subalgebra of CG(ℓ,1,n) generated by ϕ1, . . . ,ϕn and ζ1, . . . ,ζn . Let M be a

u-module, a weight of u on M is a C-algebra homomorphism α : u→ C such that

Mα 6= 0

where Mα = {
m ∈ M |x ·m =α(x)m for all x ∈ u}

. We identify the C-algebra homomor-

phism α as above with the list

(α(ϕ1), . . . ,α(ϕn),α(ζ1), . . . ,α(ζn)).

In this way, given a u-eigenvector m ∈ M we define the weight of the vector m to be the tuple

w t (m) = (a1, . . . , an ,ζb1 , . . . ,ζbn )

if ϕi m = ai m and ζi m = ζbi m for i ≤ i ≤ n.

LEMMA 3. (1) The algebra u acts semisimple on each CG(ℓ,1,n)-module M.

(2) Let M be a CG(ℓ,1,n)-module and let m ∈ M be a u-weight vector with

w t (m) = (a1, . . . , an ,ζb1 , . . . ,ζbn )

then

(ai ,ζbi ) 6= (ai+1,ζbi+1 ) for 1 ≤ i ≤ n −1

PROOF. Let M be a CG(ℓ,1,n)-module, note that ϕi is a self adjoint operator and ζi is

a unitary operator with respect to any W -invariant positive definite hermitian form on M .

Then u is a commutative algebra, which proves (a).

For (b) suppose that (ai ,ζbi ) = (ai+1,ζbi+1 ) for some 1 ≤ i ≤ n −1, then by part (c) of Proposi-

tion 10 we have

ϕi si ·m = (siϕi+1 −πi ) ·m = (si ai+1 −π)m = ai+1si m −ℓm

hence (ϕi −ai )si m =−ℓm 6= 0 while (ϕi −ai )2si m =−(ϕi −ai )·ℓm = 0 so sii m is a generalized

eigenvector, which is not an eigenvector for ϕi which contradicts (a).

□
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3. The rational Cherednik algebra of type G(ℓ,1,n)

The cyclotomic rational Cherednik algebra is the algebra Hc (G(ℓ,1,n),Cn), with set of

parameters (c0,c1, . . . ,cℓ−1), where c0 = cs1 and ci = cζi
1
.

In order to give an explicit presentation of the cyclotomic rational Cherednik algebra we

use the parametrization introduced in the previous section. Let y1, . . . , yn be the standard

basis of h and x1, . . . , xn is the dual basis in h∗. For a reflection r = ζ
j
i , the hyperplane

H = fix(r ) = {(v1, v2, . . . , vn) ∈ Cn |ζ j vi = vi } = {(v1, v2, . . . , vn ∈ Cn) |vi = 0}.

Note that in this case WH and its character group W ∨
H are cyclic groups, the first one is gener-

ated by ζi and the second one by det, then the primitive idempotent given by equation (1.6)

is

eH ,det j = 1

ℓ

ℓ−1∑
k=0

ζ−k j ζk
i . (3.1)

and the parameter cH ,χ in (1.7) is

cH ,det j = 1

ℓ

ℓ−1∑
k=1

ck (1−ζk j ). (3.2)

Define

d j =
ℓ−1∑
k=1

ζk j ck , (3.3)

then cH ,det j = 1
ℓ (d0 −d j ).

For r = ζk
i si j ζ

−k
i we have

H = {(v1, v2, . . . , vn) ∈ Cn |vi = ζk v j },

and in this case WH is a group of order two generated by reflection r . Then

eH ,χ =


1
2 (1− r ) if χ 6= 1

1
2 (1+ r ) if χ= 1

and cH ,χ =

c0 if χ 6= 1

0 if χ= 1.

Note that

d0 +d1 +·· ·+dℓ−1 =
ℓ−1∑
j=0

ℓ−1∑
k=1

ζk j ck =
ℓ−1∑
k=1

ck

ℓ−1∑
j=0

ζk j

= 0,

PROPOSITION 11. The cyclotomic rational Cherednik algebra is generated by the polyno-

mial rings C[y1, . . . , yn] and C[x1, . . . , xn] and the group algebra CW , which acts by automor-

phisms on the two polynomial rings, subject to the relations

w xw−1 = w(x) and w y w−1 = w(y) for w ∈W, x ∈ h∗ and y ∈ h,

yi xi = xi yi +1− c0
∑

1≤ j 6=i≤n
0≤t≤ℓ−1

ζt
i si j ζ

−t
i −

ℓ−1∑
t=0

(dt −dt−1)ei t

for 1 ≤ i ≤ n, where

ei t = 1

ℓ

ℓ−1∑
k=0

ζ−ktζk
i
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and

yi x j = x j yi + c0

ℓ−1∑
t=0

ζ−tζt
i si j ζ

−t
i

for 1 ≤ i 6= j ≤ n.

PROOF. We choose

αH =λxi and α∨
H =λ′yi , for r = ζ

j
i ,

where λ and λ′ are nonzero scalars, and

αH = xi −ζk x j and α∨
H = yi −ζ−k y j , for r = ζk

i si j ζ
−k
i .

For i = j equation (1.11) turns

yi xi −xi yi = 〈xi , yi 〉−
∑

H={xk=0}

〈αH , yi 〉〈xi ,α∨
H 〉

〈αH ,α∨
H 〉

∑
χ∈W ∨

H

(cH ,χ⊗det−1 − cH ,χ)nH eH ,χ

− ∑
H={xp=ζt xq }

〈αH , yi 〉〈xi ,α∨
H 〉

〈αH ,α∨
H 〉

∑
χ∈W ∨

H

(cH ,χ⊗det−1 − cH ,χ)nH eH ,χ

= 1− ∑
H={xk=0}

〈λxk , yi 〉〈xi ,λ′yk〉
〈λxk ,λ′yk〉

ℓ−1∑
t=0

(
cH ,dett−1 −cH ,dett

)
·ℓ ·eH ,dett

− ∑
{xp=ζt xq }

〈xp −ζt xq , yi 〉〈xi , yp −ζ−k yq 〉
〈xp −ζk xq , yp −ζ−k yq 〉

(
(cH ,det − cH ,1)eH ,1 + (cH ,1 − cH ,det)eH ,det

)
= 1−

ℓ−1∑
t=0

(
1

ℓ
(d0 −dt−1)− 1

ℓ
(d0 −dt )

)
·ℓ ·eH ,dett

− c0
∑

1≤p<q≤n
0≤t≤ℓ−1

(
〈xp , yi 〉〈xi , yp〉+〈xq , yi 〉〈xi , yq 〉

)
ζt

p spqζ
−t
p

= 1−
ℓ−1∑
t=0

(dt −dt−1)ei t − c0
∑

1≤i 6= j≤n
0≤t≤ℓ−1

ζt
i si j ζ

−t
i

where ek i = eH ,dett for H = {xi = 0}. If i < j

yi x j −x j yi =− ∑
H={xp=ζt xq }

〈αH , yi 〉〈x j ,α∨
H 〉

〈αH ,α∨
H 〉

∑
χ∈W ∨

H

(cH ,χ⊗det−1 − cH ,χ)nH eH ,χ

=− ∑
1≤p<q≤n
0≤t≤ℓ−1

−ζ−t 〈xp , yi 〉〈x j , yp〉
2

·2c0 ·ζt
p spqζ

−t
p

= c0

ℓ−1∑
t=0

ζ−tζt
p spqζ

−t
p

The calculation for j < i is similar. □

From now on we write Hc for the rational Cherednik algebra attached to this group,

where c denotes the list of central parameters, i.e.

c = (c0,d0,d1, . . . ,dℓ−1) ∈ Rℓ+1
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with d0 + . . .+dℓ−1 = 0. These parameters give rise to statistics on ℓ-partitions as follows,

given λ an ℓ-partition and a box b ∈λ we define its charged content ctc (b) by

ctc (b) = dβ(b) +ℓct(b)c0,

and we define the charged content of λ to be sum of the charged contents of its boxes

ctc (λ) = ∑
b∈λ

ctc (b).

This statistic is essentially the c-function of the representation indexed by λ.

3.1. The rational Cherednik algebra of type B . In the examples at the end of this thesis

we focus on calculations for this algebra.

The rational Cherednik algebra of type B is the cyclotomic rational Cherednik algebra

attached to the Weyl group of type B, this is W =G(2,1,n) and h= Cn .

For the parameter c = (cr )r∈R note that this group has only two conjugacy classes, and

then we fix d0 = d , d1 =−d and c0 = c as we describe before. For the deformation parameter

c we use the pair (c,d) where d0 = d .

There exists a bijection between irreducible Hc -modules and irreducible representations

of the group G(2,1,n) (or CW -modules), which are indexed by 2-tuples of partitions λ =
(λ0,λ1), with n total boxes. We denote the irreducible representation by λ. There is a combi-

natorial formula for the dimension of λ as follows

EXAMPLE 12. Let n = 3, the set of 2-partitions of 3 is{(
,;)

,
(

,;
)

,

(
,;

)
,
(

,
)

,
(

,
)

,

(
,

)
,
(

,
)

,

(
;,

)(
;,

)
,
(;,

)}
the dimensions of the corresponding irreducible representations are (1,2,1,3,3,3,3,1,2,1), re-

spectively.
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The cyclotomic degenerate affine Hecke algebra

Let Hc be the cyclotomic rational Cherednik algebra for the group G(ℓ,1,n). In this

section we will construct a subalgebra of Hc isomorphic to the graded Hecke algebra for

G(ℓ,1,n) defined in [11]. This subalgebra we call the degenerate affine Hecke algebra of type

G(ℓ,1,n) was identified in [2] where is called generalized graded Hecke algebra.

The degenerate affine Hecke algebra of type G(ℓ,1,n) is the algebra Hℓ,n generated by

C[u1, . . . ,un] and the group G(ℓ,1,n) subject to the relations

ζi u j = u j ζi , for all i , j (0.1)

si u j = u j si , if j 6= i , i +1 (0.2)

si ui = ui+1si −πi (0.3)

where

πi =
ℓ−1∑
k=0

ζk
i ζ

−k
i+1.

The following lemma is a generalization of (0.2) and (0.3).

LEMMA 4. Let f ∈ C[u1, . . . ,un]. Then

si f = si ( f )si −πi
f − si ( f )

ui −ui+1
, for 1 ≤ i ≤ n −1. (0.4)

where si ( f ) is the left action of Sn on C[u1, . . . ,un] given by

w(ui ) = uw(i )

PROOF. We prove by induction on deg( f ). The case when deg( f ) = 1 is given by formulas

(0.2) and (0.3). Now assuming that (0.4) holds for a polynomial f ∈ C[u1, . . . ,un] we prove for

g = u j f . If j 6= i , i +1 then

si g = si u j f = u j si f = u j

(
si ( f )si −πi

f − si ( f )

ui −ui+1

)

= u j si ( f )si −πi
u j f −u j si ( f )

ui −ui+1

= si (u j )si ( f )si −πi
u j f − si (u j )si ( f )

u j −ui+1

= si (u j f )si −πi
u j f − si (u j f )

ui −ui+1

= si (g )si −πi
g − si (g )

ui −ui+1

35
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If j = i , then

si g = si ui f = (ui+1si −πi ) f = ui+1si f −πi f

= ui+1

(
si ( f )si −πi

f − si ( f )

ui −ui+1

)
−πi f

= si (ui f )si −πi
ui+1 f − si (ui f )+ui f −ui+1 f

ui −ui+1

= si (ui f )si −πi
ui f − si (ui f )

ui −ui+1
= si (g )si −πi

g − si (g )

ui −ui+1

A similar computation handles the case j = i +1. □

For 1 ≤ i ≤ n define

zi = yi xi + c0ϕi .

where ϕi is the i th Jucys-Murphy-Young element for the group G(ℓ,1,n).

PROPOSITION 12. The elements z1, z2, . . . , zn of Hc are pairwise commutative

PROOF. Using the relations in Proposition 11 we first compute

[yi xi , y j x j ] = yi xi y j x j − y j x j yi xi

= yi xi y j x j − y j x j yi xi + yi y j xi x j − yi y j xi x j

= yi (xi y j − y j xi )x j + y j (yi x j −x j yi )xi

= yi

(
−c0

ℓ−1∑
k=0

ζ−kζk
j si j ζ

−k
j

)
x j + y j

(
c0

ℓ−1∑
k=0

ζ−kζk
i si j ζ

−k
i

)
xi

=−yi xi

(
c0

ℓ−1∑
k=0

ζk
j si j ζ

−k
j

)
+

(
c0

ℓ−1∑
k=0

ζk
i si j ζ

−k
i

)
yi xi

then

0 = yi xi y j x j − y j x j yi xi + yi xi

(
c0

ℓ−1∑
k=0

ζk
j si j ζ

−k
j

)
−

(
c0

ℓ−1∑
k=0

ζk
i si j ζ

−k
i

)
yi xi

= yi xi

(
y j x j + c0

ℓ−1∑
k=0

ζk
j si j ζ

−k
j

)
−

(
y j x j + c0

ℓ−1∑
k=0

ζk
i si j ζ

−k
i

)
yi xi

Thus [
yi xi , y j x j + c0

ℓ−1∑
k=0

ζk
i si j ζ

−k
i

]
= 0 (0.5)

We assume that i < j , so ϕi commutes with y j x j . Using formula (0.5) together with the

commutativity of ϕi we compute

[zi , z j ] = [yi xi + c0ϕi , y j x j + c0ϕ j ] = [yi xi , y j x j + c0ϕ j ]

=

yi xi , y j x j + c0
∑

1≤t< j
0≤k≤ℓ−1

ζk
j st j ζ

−k
j
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=

yi xi , y j x j + c0

ℓ−1∑
k=0

ζk
j si j ζ

−k
j + ∑

1≤t 6=i< j
0≤k≤ℓ−1

ζk
j si j ζ

−k
j




=

yi xi , y j x j + c0

ℓ−1∑
k=0

ζk
j si j ζ

−k
j + c0

∑
1≤t 6=i< j
0≤k≤ℓ−1

ζk
j si j ζ

−k
j



=
[

yi xi , y j x j + c0

ℓ−1∑
k=0

ζk
j si j ζ

−k
j

]
+

yi xi ,c0
∑

1≤t 6=i< j
0≤k≤ℓ−1

ζk
j si j ζ

−k
j


=

[
yi xi , y j x j + c0

ℓ−1∑
k=0

ζk
i si j ζ

−k
i

]
+

yi xi ,c0
∑

1≤t 6=i< j

ℓ−1∑
k=0

ζk
j si j ζ

−k
j

= 0

□

PROPOSITION 13. The elements z1, z2, . . . , zn in Hc satisfy the following relations

ζi z j = z j ζi for all 1 ≤ i , j ≤ n. (0.6)

si z j = z j si for j 6= i , i +1. (0.7)

si zi = zi+1si − c0
∑

0≤k≤ℓ−1
ζk

i ζ
−k
i+1 (0.8)

PROOF. First we check that the elements ζi and ϕ j commute for all 1 ≤ i , j ≤ n. This is

clear if i > j , since st j commutes with ζi for all 1 ≤ t ≤ j . If i = j then

ζ jϕ j ζ
−1
j = ζ j

 ∑
1≤t< j

0≤k≤ℓ−1

ζk
j st j ζ

−k
j

ζ−1
j

= ∑
1≤t< j

0≤k≤ℓ−1

ζk+1
j st j ζ

−k−1
j =ϕ j

Similarly, if i < j

ζiϕ j ζ
−1
i = ζi

 ∑
1≤t< j

0≤k≤ℓ−1

ζk
j st j ζ

−k
j

ζ−1
i

= ζi

ℓ−1∑
k=0

ζk
j si j ζ

−k
j + ∑

1≤t 6=i< j
0≤k≤ℓ−1

ζk
j st j ζ

−k
j

ζ−1
i

=
ℓ−1∑
k=0

ζk
j ζi si j ζ

−1
i ζ−k

j + ∑
1≤t 6=i< j
0≤k≤ℓ−1

ζk
j st j ζ

−k
j

=
ℓ−1∑
k=0

ζk−1
j si j ζ

−k+1
j + ∑

1≤t 6=i< j
0≤k≤ℓ−1

ζk
j st j ζ

−k
j =ϕ j
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Then (0.6) follows from observe that the element ζi commutes with yi xi for i 6= j and

ζi yi xi = ζyiζi xi = ζζ−1 yi xiζi = yi xiζi .

For (0.7) note that if j 6= i , i +1 then si commutes with y j x j and ϕ j , hence with z j = y j x j +
coϕ j . Finally (0.8) follows from

si zi = si (yi xi + c0ϕi ) = si

yi xi + c0
∑

1≤t<i
0≤k≤ℓ−1

ζk
i st iζ

−k
i


= yi+1xi+1si + c0

∑
1≤t<i

0≤k≤ℓ−1

ζk
i+1st ,i+1ζ

−k
i+1si

=

yi+1xi+1 + c0
∑

1≤t<i
0≤k≤ℓ−1

ζk
i+1st ,i+1ζ

−k
i+1

 si

=

yi+1xi+1 + c0
∑

1≤t<i+1
0≤k≤ℓ−1

ζk
i+1st ,i+1ζ

−k
i+1 − c0

ℓ−1∑
k=0

ζk
i+1siζ

−k
i+1

 si

= zi+1si − c0

ℓ−1∑
k=0

ζk
i+1siζ

−k
i+1si

= zi+1si − c0

ℓ−1∑
k=0

ζk
i+1ζ

−k
i

□

A consequence of the previous result the algebra Hℓ,n can be realized as the subalgebra

of Hc generated by G(ℓ,1,n) and z1, z2, . . . , zn .

PROPOSITION 14. For c0 6= 0 there is a unique homomorphism Hℓ,n → Hc determined by

ui 7→ 1

c0
zi si 7→ si ζi 7→ ζi .

By abuse of notation we denote the image of Hℓ,n by the previous map by Hℓ,n .

THEOREM 3.1 (PBW). The set
{

ui1 ui2 . . . ,uip w |1 ≤ i1 ≤ ·· · ≤ ip ≤ n, w ∈W
}

is a C-basis for

Hℓ,n .

PROOF. By Proposition 14 we will prove that the set
{

z1, z2, . . . , zn , w |w ∈W
}

is a C-basis

for the image of Hℓ,n in Hc . For each J = ( j1, j2, . . . , jn) where ji ∈ Z≥0 for all 1 ≤ i ≤ n, we

put |J | = j1 + j2 + ·· · + jn , z J = z j1
1 z j2

2 · · ·z jn
n , x J = x j1

1 x j2
2 · · ·x jn

n and y J = y j1
1 y j2

2 · · · y jn
n . As a

consequence of the relations proved in the previous result we can write each element of Hℓ,n

in the form ∑
0≤|J |≤m

w∈W

λJ ,w z J w (0.9)
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for some scalars λJ ,w ∈ C and we need to prove that this expression is unique. Suppose that

the expression (0.9) is zero, let (J , w) such that |J | = m and maximal with the property λJ ,w 6=
0.

We claim that we can write

z J = y J x J + ∑
0≤|K |,|L|<|J |

w∈W

µK ,L,w yK xL w (0.10)

for some scalars µK ,L,w ∈ C. We prove this by induction on |J |. In fact, by definition we have

zi = yi xi + c0ϕi which proves the case |J | = 1. Now let ji a component of J such that ji ≥ 1

and let ei = (0, . . . ,0,1,0, . . . ,0) where the 1 is in i th position, then |J −ei | = |J |−1 and

z J = z J−ei zi

=

y J−ei x J−ei + ∑
0≤|K |,|L|<|J |−1

w∈W

µK ,L,w yK xL w

zi

=

y J−ei x J−ei + ∑
0≤|K |,|L|<|J |−1

w∈W

µK ,L,w yK xL w

 (yi xi + c0ϕi )

= y J−ei x J−ei yi xi +
∑

0≤|K |,|L|<|J |−1
w∈W

µK ,L,w yK xL w yi xi + yi xi c0ϕi +
∑

0≤|K |,|L|<|J |−1
w∈W

µK ,L,w yK xL wc0ϕi

by the commutation relations for Hc given in Proposition 11 we have

x J−ei yi = yi x J−ei −∑
T x I y I ,

where T x I y I ∈ Hc are polynomials of degree lower than |J |−1.

Since none of these relations change the degree of elements x and y then the leader term

of the last expression in the equation is y J x J and every other term has degree at most |J |−1,

finishing the induction. Using this result expression (0.9) can be rewritten in the form∑
|J |=m
w∈W

λJ ,w y J w x J +error term (0.11)

where the error term involves only polynomial with degree at most |J | − 1. From theorem

1.2 (PBW for the rational Cherednik algebra) we get that λJ ,w = 0 for all |J | = m, hence a

contradiction. □

Then Hℓ,n is isomorphic to C[u1, . . . ,un]⊗CG(ℓ,1,n) as vector spaces.

PROPOSITION 15. The center of Hℓ,n is C[u1,u2, . . . ,un]Sn ⊗C[ζ1,ζ2, . . . ,ζn]Sn .

PROOF. Note that by (0.1) and (0.4) we have that C[u1,u2, . . . ,un]Sn ⊗C[ζ1,ζ2, . . . ,ζn]Sn ⊆
Z (Hℓ,n). By an inductive argument similar to that used in the proof of the PBW theorem one

obtains that a ∈ C[u1,u2, . . . ,un]Sn ⊗C[ζ1,ζ2, . . . ,ζn]Sn . See [2] for details. □
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1. Intertwining operators

For 1 ≤ i ≤ n −1 define the intertwining operators τi by

τi = si + c0

ui −ui+1
πi (1.1)

The operator τi is well-defined on Hℓ,n-modules since ui−ui+1 is invertible on the image

of πi .

PROPOSITION 16. Let M be a Hℓ,n-module and m ∈ M such that

w t (m) = (a1, . . . , an ,ζb1 , . . . ,ζbn ).

(1) w t (τi m) = si (w t (m)) where Sn acts on the set of 2n-tuples by simultaneously per-

muting the subindices of ai and bi .

(2) τ2
i =

(ui −ui+1 −πi )(ui −ui+1 +πi )

(ui −ui )2

(3) τiτi+1τi = τi+1τiτi+1

PROOF. For (a) we use the operator

(ui −ui+1)τi = (ui −ui+1)si +πi (1.2)

instead of (1.1) (which is an element of Hc ) te check that

uiτi = τi ui+1 (1.3)

ui+1τi = τi ui (1.4)

u jτi = τi u j , | j − i | 6= 1 (1.5)

ζiτi = τiζi+1 (1.6)

ζi+1τi = τiζi (1.7)

ζ jτi = τiζ j , | j − i | 6= 1 (1.8)

then

u jτi m =


τi ui+1m = ai+1τi m j = i

τi ui m = aiτi m j = i +1

τi u j m = a jτi m | j − i | 6= 1

and

ζ jτi m =


τiζi+1m = ζbi+1τi m, j = i

τiζi m = ζbi τi m, j = i +1

τiζ j m = ζb j τi m, | j − i | 6= 1

then τi m is an eigenvector with eigenvalue

si ((a1, . . . , an ,ζb1 , . . . ,ζbn )) = (a1, . . . , ai+1, ai , . . . , an ,ζb1 , . . . ,ζbi+1 ,ζbi , . . . ,ζbn ) (1.9)

For (b) we compute

((ui −ui+1)τi )2 = (ui −ui+1)τi (ui −ui+1)τi
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= (ui −ui+1)(τi ui −τi ui+1)τi

= (ui −ui+1)(ui+1τi −uiτi )τi

= (ui −ui+1)(ui+1 −ui )τ2
i

and using (1.2) we have that

((ui −ui+1)τi )2 = ((ui −ui+1)si +πi )2

= (ui −ui+1)si (ui −ui+1)si + (ui −ui+1)siπi +πi (ui −ui+1)si +π2
i

= (ui −ui+1)(si ui − si ui+1)si +2(ui −ui+1)πi si +π2
i

= (ui −ui+1)(ui+1 −ui )s2
i +π2

i

= (ui −ui+1)(ui+1 −ui )+π2
i

then

(ui −ui+1)(ui+1 −ui )τ2
i = (ui −ui+1)(ui+1 −ui )+π2

i

−(ui −ui+1)2τ2
i =−(ui −ui+1)2 +π2

i

(ui −ui+1)2τ2
i = (ui −ui+1)2 −π2

i

τ2
i =

(ui −ui+1 −πi )(ui −ui+1 +πi )

(ui −ui+1)2

Using that ui ui+1ui = ui+1ui ui+1, part (c) follows by (a long) straightforward calculation. □

From part (b) then τi is invertible in m in the following cases

(1) bi 6= bi+1

(2) bi = bi+1 and ai+1 6= ai ±ℓ

Let M be a Hℓ,n-module, M is called u-diagonalizable if it has a basis consisting of si-

multaneous eigenvectors for u.

2. Automorphisms of Hℓ,n

PROPOSITION 17. For each κ ∈ C there exists unique automorphisms tκ and ρ of Hℓ,n

given by

tκ(ui ) = ui +κ, tκ(ζi ) = ζi , tκ(si ) = si

ρ(ui ) =−un−i+1, ρ(ζi ) = ζn−i+1 ρ(si ) = sn−i .

PROOF. We write A =C〈u1, . . . ,un ,ζ1, . . . ,ζn , s1 . . . , sn−1〉 for the tensor algebra on this gen-

erators, then Hℓ,n ' A/I where

I = 〈ui u j −u j ui , for all 1 ≤ i , j ≤ n

ζ j ζi −ζiζ j , for all 1 ≤ i , j ≤ n

si s j − s j si , for j 6= i , i +1

si si+1si − si+1si si+1

ζi u j −u j ζi , for all 1 ≤ i , j ≤ n
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si u j −u j si for j 6= i , i +1

si ui −ui+1si +πi 〉

To check tκ is an automorphism, it is enough to check that tκ(a) ∈ I , for all a ∈ I . We will

check only the las relation. Note that tκ(πi ) =πi since tκ(ζi ) = ζi , hence

tκ(si )tκ(ui )− tκ(ui+1)tκ(si )+ tκ(πi ) = si (ui +κ)− (ui+1 +κ)si +πi

= si ui +κsi −ui+1si −κsi +πi

= si ui −ui+1si +πi ∈ I

In the same way we did for tκ, we will check that

ρ : A/I → A/I

is an automorphism.

• For the first relation

ρ(ui u j −u j ui ) = (−un−i+1)(−un− j+1)− (−un− j+1)(−un−i+1)

= un−i+1un− j+1 −un− j+1un−i+1 ∈ I

• For 1 ≤ i , j ≤ n the cases ρ(ζiζ j −ζ j ζi ),ρ(si si+1si − si+1si si+1),ρ(ζi u j −u j ζi ) ∈ I and

ρ(si s j − s j si ),ρ(si u j −u j si ) ∈ I for j 6= i , i +1 are similar.

• Note that

ρ(πi ) = ρ

(
ℓ−1∑
k=0

ζk
i ζ

−k
i+1

)
=

ℓ−1∑
k=0

ζk
n−i+1ζ

−k
n−i =πn−i

hence

ρ(si ui −ui+1si +πi ) = ρ(si )ρ(ui )−ρ(ui+1)ρ(si )+ρ(πi )

= sn−i (−un−i+1 − (−un−i )sn−i +πn−i

= un−i sn−i − sn−i un−i+1 +πi

= sn−i (sn−i un−i −un−i+1sn−i +πn−i )sn−i ∈ I

then sn−i un−i −un−i+1sn−i +πn−i ∈ I .

□

Both of these automorphisms preserve the group algebra CG(ℓ,1,n) and their restric-

tions to CG(ℓ,1,n) are inner. Given an Hℓ,n-module M and an automorphism a of Hℓ,n we

write M a for the Hℓ,n-module which is equal to M as an abelian group, and with the Hℓ,n-

action defined by

h ·m = a(h)m for h ∈ Hℓ,n and m ∈ M .

If a = ρ or a = tκ then M a is isomorphic to M as a CG(ℓ,1,n)-module, since the restric-

tions of this automorphisms to G(ℓ,1,n) are inner.
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3. Hℓ,n -modules via branching for G(ℓ,1,n)

Let m ∈ Z>0. Then for all 1 ≤ i ≤ n and 1 ≤ j ≤ n−1 there exists a map Hℓ,n → CG(ℓ,1,m+
n) given by

ui 7→ϕm+i

s j 7→ sm+ j

ζi 7→ ζm+i

The image of this map is contained in the centralizer CG(ℓ,1,m+n)G(ℓ,1,m) so that Hℓ,n

acts on the module

Sλ\µ = HomCG(ℓ,1,m)(Sµ,Resm+n
m (Sλ))

for all pairs λ,µ of ℓ-partitions, where λ is an ℓ-partition of m +n and µ is an ℓ-partition of

m. It follows from Young’s orthogonal form that Sλ\µ = 0 unless µ⊆λ in which case Sλ\µ has

a basis indexed by the set of standard Young tableaux on the skew diagram λ\µ.

Given T ∈ SYT(µ) and U ∈ SYT(λ\µ) we define T ∪U ∈ SYT(λ) by

T ∪U (b) =

T (b), if b ∈µ

U (b)+m, if b ∈λ\µ

Then

Sλ\µ = HomCG(ℓ,1,m)(Sµ,Resm+n
m (Sλ))

and we define ψU ∈ Sλ\µ by the formula

ψu(vT ) = vT∪U

THEOREM 3.2. Sλ\µ is an irreducible Hℓ,n-module with basis {ψU |U ∈ SYT(λ\µ)}

Moreover we will see that each u-diagonalizable Hℓ,n-module can be obtained as one of

this.

Let D ⊆ R2 ×Z/ℓ be a skew shape with connected components D1, . . . ,Dk . After diago-

nal slides, we may assume that each Di is such that for any (x, y) ∈ Di we have yi ∈ Z and

moreover the set of y-coordinates of distinct Di ’s are disjoint. We may choose (non-unique)

α1, . . . ,αk ∈ C and integral skew shapes λ1 \µ1, . . . ,λk \µk such that

Di =λi \µi + (αi ,0)

so that their union is disjoint and a skew shape,

λ\µ=∐
λi \µi

and so λ1 \µ1, . . . ,λk \µk are the connected components of their disjoint union λ \µ. Then

define

SD = Ind
Hℓ,n
A

(⊗i (Sλi \µi )tαi
)

where A = Hℓ,n1 ⊗Hℓ,n2 ⊗·· ·⊗Hℓ,nk
and n1, . . . ,nk are certain nonnegative integers such that∑

ni
= n.



44 CHAPTER 3. THE CYCLOTOMIC DEGENERATE AFFINE HECKE ALGEBRA

THEOREM 3.3. SD defined as above is an irreducible Hℓ,n-module.

In order to prove this result we will see some combinatorial results involving skew shaped

diagrams and tableaux.

Let D be a skew diagram of shape λ\µ, for a box b ∈ D with b = (x, y) we define R(b) = y

and C (b) = x, i.e. R(b) and C (b) are, respectively, the row and the column of the box b in

D . Let T be a standard Young tableau in D , define I (T ) as the set of pairs (i , j ) of numbers

1 ≤ i < j ≤ n such that j appears in D in a row strictly above than i , i.e.

I (T ) := {(i , j ) |R(T −1(i )) > R(T −1( j )), for 1 ≤ i < j ≤ n}

EXAMPLE 13. Let D be the skew shape

D =

and let T be the tableau in D given by

T =
1 3 4

2 5 6 8
7

then

I (T ) = {(2,3), (7,8)}

since the box containing the number 2 is in a row above than the box containing the number

3, same occurs with boxes containing numbers 7 and 8.

LEMMA 5. Suppose (i , i +1) ∈ I (T ) and si T ∈ SYT(D) then I (si T ) = si (I (T ) \ {(i , i +1)}).

PROOF. Note that (si T )−1(si ( j )) = T −1( j ) then R((si T )−1(si ( j ))) = R(T −1( j )), then for ( j ,k) ∈
I (T ) such that ( j ,k) 6= (i , i +1) we have

R((si T )−1(si ( j ))) = R(T −1( j )) > R(T −1(k)) = ((si T )−1(si (k)))

then si ( j ,k) ∈ I (si T ). And (i , i +1) ∉ I (si T ) since

R((si T )−1(i +1)) = R(T −1(i )) > R(T −1(i +1)) = ((si T )−1(i )).

□

Let D be diagram with n boxes and let T be a tableau on D , we write r w(T ) for the

reading word of a tableau T which is the word obtained by concatenating the rows of the

diagram D , starting from the bottom row in English notation. The row reading tableau of

shape D is the tableau T with reading word 123 · · ·n, this is a Standard Young tableau.

EXAMPLE 14. The reading word of the tableau of the previous example es 13425687. The

row reading tableau in λ= (4,3,1) is

T =
1 2 3

4 5 6 7
8

LEMMA 6. If (i , i +1) ∉ I (T ) for all 1 ≤ i ≤ n then T is the row reading tableau.
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PROOF. We suppose that T is row reading until the appearance of i , i.e. for all j < i we

have β(T −1( j +1)) =β(T −1( j )) or β(T −1( j +1)) =β(T −1( j ))+1

R(T −1( j )) ≤ R(T −1(i )) and one of the following

(1) R(T −1( j )) = R(T −1( j +1)) and C (T −1( j +1)) =C (T −1( j ))+1 or

(2) R(T −1( j +1)) > R(T −1( j ))

Now since (i , i + 1) ∉ I (T ) then R(T −1(i + 1)) ≥ R(T −1(i )) and since T is standard we have

C (T −1(i )) ≤C (T −1(i +1)).

(1) If R(T −1(i )) = R(T −1(i +1)) then necessarily C (T −1(i +1)) =C (T −1(i ))+1.

(2) If R(T −1(i +1)) > R(T −1(i )) from our assumption of D being row reading until the

appearance of i in this case we have that T −1(i +1) is the first box in its row. Now

if we suppose that there is a box b on the right of T −1(i ) such that T (b) = i +k, for

some integer k > 1 then R(T −1(i+k−1)) > R(T −1(i )) = R(T −1(i+k)) then (i+k−1, i+
k) ∈ I (T ) which is a contradiction and then T −1(i ) is the last box in its row. Besides,

there is not any box b in D in a row between i and i + 1 (i.e. with R(T −1(i )) <
R(T −1(b)) < R(T −1(i +1))) then T (b) = i +k for some k and then (i +1,T (b)) ∈ I (T ).

□

Moreover note that if T is the row reading tableau in D then R(T −1(i )) ≤ R(T −1( j )) for

all 1 ≤ i < j ≤ n −1 then clearly (i , j ) ∉ I (T ) and I (T ) =;. If λ is a row then there is only one

standard Young tableau which is the row reading.

LEMMA 7. Let D be a skew diagram with n boxes. Then given T and T ′ two standard

young tableaux on D there exists a sequence of simple transpositions si1 , si2 , . . . , sip such that

sip sip−1 · · · si1 (T ) = T ′

and sik sik−1 · · · si1 (T ) ∈ SYT(D) for all 1 ≤ k ≤ p.

PROOF. Without lost of generality we may assume T is the row reading tableau and pro-

ceed by induction on the number #I (T ′). If #I (T ′) = 1 then T ′ is not the reading tableau and

there is exactly a pair (i , j ) ∈ I (T ′), by Lemma 6 necessarily j = i +1. Since T is standard then

r w(T ′) = 12 · · · (i − 1)(i + 1)i (i + 2) · · ·n then necessarily T ′−1(i ) is the last box on a row and

T ′−1(i +1) is the first box of the next row, then si (T ′) = T which is standard.

For the general case let T ′ ∈ SYT(D) such that #I (T ′) = l > 0, then T ′ is not the row read-

ing tableau and by Lemma 6 (i , i +1) ∈ I (T ′) for some 1 ≤ i ≤ n −1 then T ′(b) < i for boxes

b such that R(b) = R(T ′−1(i +1)) and C (b) < C (T ′−1(i +1)) and T ′(b) > i +1 for boxes R(b) =
R(T ′−1(i+1)) and C (b) >C (T ′−1(i+1)). Likely, T ′(b) < i for boxes b such that R(b) = R(T ′−1(i ))

and C (b) <C (T ′−1(i )) and T ′(b) > i +1 for boxes R(b) = R(T ′−1(i )) and C (b) >C (T ′−1(i )) then

si T ′ ∈ SYT(D) and by Lemma 5 I (si T ′) = si (I (T ′) \ {(i , i +1)}). Thus #I (si T ′) = I (T ′)−1, and

by induction on si T ′ there exists a sequence si2 , si3 , . . . , sil of simple transpositions such that

sil sil−1 · · · si2 (si T ′) = T and

sik sik−1 · · · si2 (si T ′) ∈ SYT(D) for all 2 ≤ k ≤ l
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then the result follows by indexing si1 = si . □

Note that this sequence of simple transpositions given in the preceding lemma corre-

sponds to a sequence of invertible intertwiners, and as a consequence of this lemma we can

“connect" every pair of standard Young tableaux of shape D by a sequence of invertible in-

tertwiners. Now we are in conditions to prove Theorem 3.3.

PROOF OF THEOREM 3.3. Let ni be the number of boxes of the diagram λi \µi , and n =∑k
i ni .

By Theorem 3.2 each Sλi \µi has basis {ψU |U ∈ SYT(λi \µi )}. Since λ \µ = ∐
λi \µi then

the set

{
ψU

∣∣∣U ∈ SYT(λ\µ) such that U (b) ∈ {ni−1 +1, . . . ,ni } if b ∈λi \µi
}

(3.1)

is a C basis of
⊗

i Sλi \µi , where n0 = 0.

Note that Hℓ,n can be understand as the free module over the subalgebra Hℓ,n1 ⊗Hℓ,n2 ⊗
·· ·⊗Hℓ,nk

which by PBW-theorem for Hℓ,n has basis indexed by the set{
w

∣∣∣w ∈ Sn/Sn1 ×Sn2 ×·· ·×Snk

}
(3.2)

Then the Hℓ,n-module

SD = Ind
Hℓ,n
Hℓ,n1⊗Hℓ,n2⊗···⊗Hℓ,nk

(⊗
i

Sλi \µi
)
= Hℓ,n ⊗Hℓ,n1⊗Hℓ,n2⊗···⊗Hℓ,nk

(⊗
i

Sλi \µi
)tαi

has a basis ψU ⊗w where ψU runs over the set (3.1) and w runs over the set (3.2), these pairs

are in bijection with standard Young tableaux of shape λ\µ.

Let U as in (3.1) and w as in (3.2) with minimal length (as a word on simple transposi-

tions). For a fixed reduced expression for w = si1 · · · sip the correspondence given by

si1 · · · sip → τi1 · · ·τip

is well defined, since the intertwining operators τi satisfy the braid relations (part (c) in

Proposition 16). Note that wU ∈ SYT(λ\µ) and

τi1 · · ·τip (1⊗ψU ) = w ⊗ψU +∑
v ⊗ψU (3.3)

is an eigenvector with eigenvalue wU , where the length of element v is lower than the length

of w . This gives rise to a basis for SD of eigenvectors of u, now if SD has a nonzero sub-

module, such submodule must contain one of this eigenvectors and by Lemma 7 we can

connect a pair of two Young tableaux by a sequence of invertible intertwiners, hence SD is

irreducible. □

Up to isomorphism, the representation SD is independent of the choices made in its

construction and, since the automorphisms tκ are the identity in G(ℓ,1,n), its restriction to

G(ℓ,1,n) is isomorphic to Sλ\µ.
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4. Littlewood-Richardson numbers

Assuming ℓ is fixed, then without causing confusion we may write Gn = G(ℓ,1,n) and

introduce the following notation

Indn
m = IndCGn

CGm
, Resn

m = ResCGn
CGm

, Indm+n
m,n = IndCGm+n

C(Gm×Gn ) and Resm+n
m,n = ResCGm+n

C(Gm×Gn )

for the appropriate functors of induction and restriction.

By ⊗-Hom adjunction and Frobenius reciprocity we have isomorphisms

HomGn (Sν,HomGm (Sµ),Resm+n
m (Sλ)) ∼= HomGm×Gn (Sµ⊗Sν,Resm+n

m,n Sλ)

∼= HomGm+n (Indm+n
m,n (Sµ⊗Sν),Sλ)

Then the (cyclotomic) Littlewood-Richardson number cλµν is given by

cλµν = dimC

(
HomGm+n

(
Indm+n

m,n (Sµ⊗Sν),Sλ
))

Defining

cλ\µ
ν = dimC

(
HomGn

(
Sν,HomGm (Sµ,Resm+n

m (Sλ))
))

we have cλ\µ
ν = cλµν.

If D is any skew diagram such that λ\µ may be obtained form D by translating its con-

nected components without merging any of them, then SD ∼= Sλ\µ as Gn-modules, and hence

defining

cD
ν = cλ\µ

ν

we have an isomorphism of Gn-modules.

Given λ= (λ0, . . . ,λℓ−1), µ= (µ0, . . . ,µℓ−1)) and ν= (ν0, . . . ,νℓ−1) be ℓ-partitions. Note that

Sλ can be realized as

Sλ = IndGm0×Gm1×···×Gmℓ−1

(
Sλ0 ⊗Sλ1 ⊗·· ·⊗Sλℓ−1)

where mi = |λi | and Gmi acts on the Specht module Sλi
via the surjective application CGmi →

CSmi given by

s → s for all s ∈ Smi

ζ j → ζi for all j .

The Littlewood-Richardson number cν
λµ

may be expressed as a product of the classical

Littlewood-Richardson numbers as follows

cνλµ =
ℓ−1∏
j=0

c
ν j

λ j µ j

Now we give the most classical construction to compute the classical Littlewood-Richardson

numbers.

A Littlewood-Richardson tableau on a skew diagram D (for ℓ = 1) is a function T : D →
Z>0 such that
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(1) The tableau T is column strict in the sense that T (x, y) < T (x, y+1) whenever (x, y), (x, y+
1) ∈ D and T (x, y) ≤ T (x +1, y) whenever (x, y), (x +1, y) ∈ D , and

(2) The row-reading word T1T2 . . .Tn (obtained by reading the entries from T from top

to bottom and right to left) of T satisfies the LR property: for each integer i ∈ Z>0

and each 1 ≤ k ≤ n, the number of occurrences of i in the sequence T1T2 . . .Tk is at

leas as large as the number of occurrences of i +1.

The weight of a tableau T is the sequence ν1,ν2, . . . where νi is the number of boxes b ∈ D

with T (b) = i . The Littlewood-Richardson coefficient cD
ν is then the number of Littlewood-

Richardson tableaux on D of weight ν.

We write h = Cn for the defining representation of Gn , then the Littlewood-Richradson

numbers arise in the calculation of the tensor products Sν⊗Λi (h∗) as Gn-modules. For λ =
(λ0,λ1, . . . ,λℓ−1) an ℓ-partition of n we have

Sλ⊗Λn(h∗) = Sλt

where the partition λt transpose of the ℓ-partition λ. When n is fixed and clear for the con-

text, we denote by det−1 to the one dimensional character of Gn acting on Λn(h∗). Note that

Λi (h∗) contains the vector vn−i+1 ∧ vn−i+2 ∧ ·· ·∧ vn , which is fixed by Gn−i and transforms

like det−1 under Gi embedded in Gn via the las i coordinates, and is therefore induced from

a one-dimensional representation

Λ(h∗) = IndGn
Gn−i×Gi

(1×det −1).

Now we compute the tensor product of this representation with Sν as follows

Sν⊗Λi (h∗) ∼= Sν⊗ IndGn
Gn−i×Gi

(1×
−1

det) ∼= IndGn
Gn−i×Gi

(
Resn

n−i ,i (Sν)⊗ (1×det −1)
)

and hence

HomGn

(
Sµ,Sν⊗Λi (h∗)

)∼= HomGn

(
Sµ, Indn

n−i ,n(Resn
n−i ,i (Sν)⊗ (1det −1))

)
∼= HomGn−i ,i

(
Resn

n−i ,i (Sµ),Resn
n−i ,i (Sν)⊗ (1×det −1)

)
.

Taking dimensions gives

dim
(

HomGn (Sµ,Sν⊗Λi (h∗))
)= ∑

η`n−i
χ`i

cνηχcν
t

ηχ (4.1)

5. Classification of irreducible u-diagonalizable Hℓ,n -modules

LEMMA 8. Let (a1, . . . , an ,ζb1 , . . . ,ζbn ) be a sequence satisfying the property: if i < j with

ai = a j and bi = b j mod ℓ, then there are i < k,m < j with bk = bm = bi mod ℓ and

ak = ai +ℓ, am = ai −ℓ.

Then there is a skew shape D and a standard Young tableau T of shape D satisfying

ℓct(T −1(i )) = ai and β(T −1(i )) = bi , for 1 ≤ i ≤ n.
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Moreover, T and D are unique up to diagonal slides of their connected components.

PROOF. We proceed by induction on n. Let ℓ= 1 then we have the sequence (a1, . . . , an).

In this case D has only one component, if n = 1 then D has a single box with content a1 and

T is the standard Young tableau that assigns to that box the number 1. For n > 1, by induction

we suppose that the sequence (a1, . . . , an−1) possesses a standard Young tableau T ′ on a skew

diagram D ′. Notice that the condition: “if i < j with ai = a j then there are i < k,m < j with

ak = ai +ℓ and am = ai −ℓ" implies that for boxes of D ′ such that ct(T −1(k)) = ai + 1 and

ct(T −1(m)) = ai −1 we have

ct(T −1(k)) = ct(T −1(i ))+1 and ct(T −1(m)) = ct(T −1(i ))−1.

Then the condition implies that D ′ is in fact a skew diagram and that D ′ possesses an addable

box b with ct(b) = an . We obtain T and D by adjoining b to D ′ and defining T (b) = n.

For the case ℓ 6= 1 then D has ℓ components. We obtain the component Di1 by consider-

ing the subsequence (ai1 , . . . , aip ) of (a1, . . . , an) such that bi1 = ·· · = bip mod ℓ and proceed-

ing as before. □

In Section 1 of the next Chapter we have computed explicitly in the cyclotomic rational

Cherednik algebra of type B the skew diagram D and the standard Young tableau T men-

tioned in this Lemma.

THEOREM 3.4. Let M be an irreducible u-diagonalizable Hℓ,n-module and suppose m ∈ M

satisfies

ui m = ai m and ζi m = ζbi m for 1 ≤ i ≤ n.

Then there is a standard Young tableau T on a skew shape D such that ai = ℓct(T −1(i )) and

bi = β(T −1(i )) for 1 ≤ i ≤ n and M ∼= SD , and moreover T and D are unique up to diagonal

slides of their connected components.

PROOF. For the first part we will check that the sequence (a1, . . . , an ,ζb1 , . . . ,ζbn ) satisfies

the hypothesis of Lemma 8. Suppose that there is an index j > i with ai = a j and bi = b j

mod ℓ, we claim that j > i +2.

Suppose that j = i +1, then

(ai ,ζbi ) = (ai+1,ζbi+1 ),

and by the relations between ui and si we have

ui si m = (si ui+1 −πi )m = si ui+1m −πi m = si ai m −ℓm = ai si m −ℓm (5.1)

ui+1si m = (si ui +πi )m = si ui m +πi m = si ai m +ℓm = ai si m +ℓm (5.2)

Notice that si m = ±m, since s2
i = 1. Then if we suppose si m = m then ui si m = ui m =

ai m and if si m =−m then ui si m =−ai m, both cases leads to a contradiction with (5.1). We

conclude that si m and m are linearly independent and the subspace of M generated by m

and si m is stable under ui and ui+1. Moreover ui =
ai −ℓ

0 ai

 and ui+1 =
ai ℓ

0 ai

, then M
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is not diagonalizable since there exist this Jordan blocks, which is a contradiction and then

j 6= i +1.

For j = i +2, note that if τi was invertible then by part (a) of Proposition 16 τi (m) has

eigenvalue

(a1, . . . , ai+1, ai , ai+2, . . . , an ,ζb1 , . . . ,ζbi+1 ,ζbi ,ζbi+2 , . . . ,ζbn )

with ai = ai+1 and bi = bi+2 which contradicts the previous case. Hence τi is not invertible,

then necessarily bi = bi+1 and ai+1 = ai ±ℓ. If ai+1 = ai +ℓ then si is acting by 1 on m and

si+1 is acting by −1 on m, which contradicts the braid relation. Analogously if ai+1 = ai −ℓ,

si acts by −1 on m and si+1 acts by 1, contradicting the braid relation again.

Since j > i +2 and the operators τi and τ j are invertible then by Lemma 8 there is T and

D as required.

It remains to prove that M ∼= SD . Let T0 be the row reading tableau and ψT0 the corre-

sponding eigenvector in SD . Let m ∈ M with w t (T0) = w t (m), we will show there exists a ho-

momorphism φ : SD → M such that φ(ψT0 ) = m. Given T ∈ SYT(D) by Lemma 7 there exists a

sequence of simple transpositions si1 , . . . , sip such that sip · · · si1 T = T0 with sik sik−1 · · · si1 T0 ∈
SYT(D), this produces a sequence of invertible intertwiners τi1 , . . . ,τip . Choosing p minimal

(as a word in the symmetric group) we define a map given by

φ(τip . . .τi1ψT ) = τip · · ·τi1 m.

Firstly, this map is well-defined which can be proved by the solution of the word problem

in the braid group since the intertwiners τi satisfy braid relations. Secondly, it is compatible

with the action of u since commutes with the action τi . Thus we have produced a non-

zero homomorphism between the irreducible Hℓ,n-modules SD and M , which finishes the

proof. □

6. The Dunkl-Opdam subalgebra

The Dunkl-Opdam subalgebra of Hc is the subalgebra t generated by the elements z1, . . . , zn

and ζ1, . . . ,ζn .

The map given in Proposition 14 is an injection of Hℓ,n into Hc . Via this injection ui acts

on fP,Q by

ui fP,Q = 1

c0

(
Q

(
P−1(i )

)+1− (
dβ(P−1(i )) −dβ(P−1(i ))−Q(P−1(i ))−1

))−ℓct(P−1(i )).

PROPOSITION 18. Let Lc (λ) be a t-diagonalizable Hc -module. Then for Q ∈ Tabc (λ) fixed,

the span

LQ = C{ fP,Q | (P,Q) ∈ Γc (λ)}

is an irreducible Hℓ,n-module.

For a proof of this result we refer [4].
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Main theorem

In order to proof the main theorem of [4] we prove a few results. First, given a skew

diagram D we define a skew diagram Dr , the reverse, as follows. Twisting SD by the auto-

morphism ρ of Hℓ,n we obtain another u-diagonalizable module (SD )ρ , and Dr is the skew

diagram with SDr ∼= (SD )ρ .

THEOREM 4.1. Let Lc (λ) be a t-diagonalizable Hc -module and let d be a positive integer.

Then as a Hℓ,n-module, the degree cλ+d part of Lc (λ) is semisimple and isomorphic to the

direct sum

Lc (λ)cλ+d
∼=

⊕
Q∈Tabc (λ),|Q|=d

Ssc (Q)r

PROOF. By previous Proposition LQ is an irreducible Hℓ,n-module. Then there is a unique

(up to diagonal slides of connected components) skew diagram D and a standard Young

tableau T on D with

ct(T −1(i )) = 1

c0

(
Q

(
P−1(i )

)+1− (
dβ(P−1(i )) −dβ(P−1(i ))−Q(P−1(i ))−1

))−ℓct(P−1(i )).

It follows from this, the definition of sc (Q) and Theorem 3.4 that LQ is isomorphic to Ssc (Q)r

as an Hℓ,n-module.

To establish irreducibility we use Lemma 7.4 of [8]. This lemma, translated into the no-

tation we use here, shows that given P,P ′ with (P,Q), (P ′,Q ′) ∈ Γc (λ) there is a sequence of

simple transpositions si1 , . . . , sip such that the Hℓ,n submodule of Lc (λ) generated by fP,Q is

LQ ; together with the fact that any Hℓ,n-submodule of LQ must contain some weight vector

this finishes the proof. □

The following corollary proves the first part of Theorem 0.1.

COROLLARY 2. Suppose Lc (λ) is t-diagonalizable is a CG(ℓ,1,n)-module, the degree cλ+d

part of Lc (λ) is

Lc (λ)cλ+d
∼=

⊕
Q∈Tabc (λ), |Q|=d

µ∈Pℓ,n

(
Sµ

)⊕c sc (Q)
µ

PROOF. Twisting the representation Ssc (Q)r
by the automorphism ρ of Hℓ,n shws that as

a CG(ℓ,1,n)-module, LQ is isomorphic to Ssc (Q), which proves the corollary. □

For a parameter c, each standard module has a basis fP,Q consisting of eigenvectors for

the Dunkl-Opdam subalgebra t. Each irreducible quotient Lc (λ) that is t-diagonalizable has

51
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a certain subset of these fP,Q as a basis; this subset is indexed by pairs (P,Q) of tableaux on λ

satisfying the following properties:

(1) Q is a filling of the boxes of λ by non-negative integers such that Q(b) ≤Q(b′) when-

ever b ≤ b′,
(2) P is a bijection from the boxes of λ to the set of integers {1,2, . . . ,n} such that if

b ≤ b′ and Q(b) ≤Q(b′) then P (b) > P (b′),

(3) If b is a box of λ and k is a positive integer such that

ctc (b) = dβ(b)−k +k

then Q(b) < k, and

(4) If b and b′ are boxes of λ and k is a positive integer with k = β(b)−β(b′) mod ℓ

and such that

ctc (b)−ctc (b′) = k ±ℓc0

then

Q(b) ≤Q(b′)+k

with equality implying P (b) > P (b′).

We write Γc (λ) for the set of such pairs (P,Q) and define Tabc (λ) to be the set of Q such

that there exists a P with (P,Q) ∈ Γc (λ), so that Tabc (λ) is the projection of Γc (λ) on its second

coordinate

Tabc (λ) =π2(Γc (λ)).

For each Q ∈ Tabc (λ) there is a skew diagram sc (Q) which is unique up to diagonal slides

of its connected components. Theorem 3.4 and first line of the proof of Theorem 4.1 give an

algorithm determining a standard Young tableau T with

β(T −1(i )) =β(P−1(n − i +1))−Q(P−1(n − i +1)) (0.1)

and

ct(T −1(i )) =ct(P−1(n − i +1))− 1

ℓc0

(
Q(P−1(n − i +1))

−
(
dβ(P−1(n−i+1)) −d

β
(

P−1(n−i+1)−Q(P−1(n−i+1))
))).

(0.2)

Then we define sc (Q) to be the shape of T , which is independent of the choice of P . We

define the degree |Q| of Q by

|Q| = ∑
b∈λ

Q(b).

Finally we deduce the second part of Theorem 0.1

COROLLARY 3. Suppose Lc (λ) is unitary. Let i be a non-negative integer and let µ be an

ℓ-partition of n. Then

dim

(
Exti

(
∆c (µ),Lc (λ)

))
=∑

cSc (Q)
ν cνηχcµ

ηχt .

PROOF. The formula follows from the preceding corollary and applying Theorem 1.6 and

(4.1) since Lc (λ) is unitary. □
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1. Type B examples

Recalling definitions and notation from Chapter 2, the cyclotomic algebra of type B is the

cyclotomic rational Cherednik algebra attached to Weyl group of type B with deformation pa-

rameter (c,d) ∈ R2 and Cn for the defining representation, i.e. the algebra H(c,d)(G(2,1,n),Cn).

With the notation we introduce in Section 3 of Chapter 2 parameters (c0,d0,d1) are related

with the pair (c,d) by c = c0 and d = d0 = −d1. For the remainder of this section we denote

this algebra simply by Hc .

For a 2-partition λ= (λ0,λ1) the charged content of a b of λ is

ctc (b) =

d +2ct(b) if b ∈λ0, and

−d +2ct(b)c if b ∈λ1

Then the charged content of λ can be expressed

ctc (λ) = d(|λ0|− |λ1|)+2c
∑
b∈λ

ct(b),

where |µ| is the number of boxes of the partition µ. The set of c-admissible tableaux Tabc (λ)

consists of all tableaux Q : λ→ Z≥0 such that

(1) Q(b) ≤Q(b′) whenever b ≤ b′,
(2) Q(b) < k if k is an odd positive integer and

d +ct(b)c = k/2,

or if k is an even positive integer and

ct(b)c = k/2,

and

(3) Q(b) ≤Q(b′)+k if k =β(b)−β(b′) mod 2 and ctc (b)−ctc (b′) = k ±2c.

Define the function sc of the boxes of λ as follows, we must distinguish two cases. By

symmetry we may assume λ0 6= ;.

Case 1. First assume either that λ1 6= ; or that λ1 =; but equation

d +ct(b)c = 1/2

does not hold, where b is the removable box of λ0 of largest content. In this case

we define the c-shifting function sc : R2 ×Z/2 → R2 ×Z/2 by

sc (x, y,0) =
(

x −λ0
1, y −λ0

1 +
1

2c
− d

c
, 1

)
and

sc (x, y,1) =
(

x −λ1
1, y −λ1

1 +
1

2c
+ d

c
, 0

)

where if λi =; then we interpret λi
1 = 0.
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Case 2. Now we assume that λ1 =; and the equation

d +ct(b)c = 1/2

holds. In this case we put

sc (x, y,0) =
(

x −p, y −p + 1

2c
− d

c
, 1

)

sc (x, y,1) =
(

x, y + 1

2c
+ d

c
, 0

)
where p is the length of the second longest part of λ0.

Then the skew shape sc (Q) is obtained by applying the kth iterate sk
c to each box b ∈ λ

with Q(b) = k.

The classification of unitary representations is quiet inntricate and we do not state it

here (see [6]).

Now for λ ∈ P2,n we give a few examples of the indexing sets Γc (λ). And given Q ∈
Tab(c,d)(λ) we will produce the tableau T determined by (0.1) and (0.2) and the skew shape

sc (Q).

EXAMPLE 15. For λ= (
,;)

, the unitary spectrum is given by

c

d

d = 1/2

d +
c =

1/2

c = 1/2

(1) Along the line d + c = 1/2 the set Γc (λ) consists of pairs (P,Q) of tableaux on λ such

that

(1) Q is a filling of the boxes of λ by non-negative integers such that Q(b) ≤ Q(b′)
whenever b ≤ b′.

(2) P is a bijection from the boxes of λ to the set of integers {1,2, . . . ,n} such that if

b ≤ b′ and Q(b) =Q(b′) then P (b) > P (b′).

(3) Q(b) < 1 for boxes b ∈λ with ct(b) = 1.

(4) Q(b1) ≤ Q(b2)+ 2 for boxes b1 ∈ λ0 and b2 ∈ λ1 with ct(b1)− ct(b2)± 1 = 1. If

Q(b1) =Q(b2)+2 implies that P (b1) > P (b2).
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Since λ1 = ; condition (4) does not apply, but condition (3) forces Q = ( 0 0 0 ,;)

since ct(b) = 1

λ=
(

b ,;
)

and

Γc (λ) =
{(

( 2 1 ,;), ( 0 0 ,;)
)}

.

We produce a standard Young tableau T and the skew shape sc (Q) for this pair

by the algorithm obtained before, which is determined by equations (0.1) and (0.2).

We have

β(T −1(1)) =β(P−1(2))−Q(P−1(2)) = 0−0 = 0

ct(T −1(1)) = ct(P−1(2))− 1

2c

(
Q(P−1(2))− (dβ(P−1(2)) −dβ(T −1(2)))

)
= 0− 1

2c
(0− (d0 −d0)) = 0

β(T −1(2)) =β(P−1(1))−Q(P−1(1)) = 0−0

ct(T −1(2)) = ct(P−1(1))− 1

2c

(
Q(P−1(1))− (dβ(P−1(1)) −dβ(T −2(1)))

)= ct(P−1(2))

= 1− 1

2c
(0− (d0 −d0)) = 1

Then T =
(

1 2 ,;
)

and sc (Q) = shape(T ) =
(

,;
)
.

(2) Along the line c = 1/2 the set Γc (λ) consists of pairs (P,Q) of tableaux on λ such that

(1) Q is a filling of the boxes of λ by non-negative integers such that Q(b) ≤ Q(b′)
whenever b ≤ b′.

(2) P is a bijection from the boxes of λ to the set of integers {1,2, . . . ,n} such that if

b ≤ b′ and Q(b) =Q(b′) then P (b) > P (b′).

(3) Q(b) < 2 for boxes b ∈λ with ct(b) = 2.

(4) Q(b1) ≤ Q(b2) + 2 for boxes b1,b2 in the same component of λ with ct(b1) −
ct(b2)±1 = 2. If Q(b1) =Q(b2)+2 implies that P (b1) > P (b2).

Since λ does not have any box b with ct(b) = 2 and λ1 =; conditions (3) and (4) does

not apply. We list some pairs (P,Q) ∈ Γc (λ)
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P Q(
2 1 ,;) (

0 0 ,;)
(

2 1 ,;) (
0 1 ,;)(

1 2 ,;)
(

2 1 ,;) (
1 1 ,;)

(
2 1 ,;) (

0 2 ,;)(
1 2 ,;)

(
2 1 ,;) (

1 2 ,;)
(

2 1 ,;) (
0 3 ,;)(

1 2 ,;)
...

...

First, we will produce the tableau T and the skew shape sc (Q) for the pair (P,Q) =((
2 1 ,;)

,
(

0 1 ,;))
.

β(T −1(1)) =β(P−1(2))−Q(P−1(2)) = 0−0 = 0

ct(T −1(1)) = ct(P−1(2))− 1

2c

(
Q(P−1(2))− (dβ(P−1(2)) −dβ(T −1(2)))

)
= 0− 1

2c
(0− (d0 −d0)) = 0

β(T −1(2)) =β(P−1(1))−Q(P−1(1)) = 0−1 = 1 mod 2

ct(T −1(2)) = ct(P−1(1))− 1

2c

(
Q(P−1(1))− (dβ(P−1(1)) −dβ(T −2(1)))

)= ct(P−1(2))

= 1− 1

2c
(0− (d0 −d1)) = 1+ d

c

since d < 0 and c = 1/3, ct(T −1(2)) = 1+3d. Hence (up to diagonal slides of the

box containging 2) the tableau T looks like T =
(

1 ,
2 )

and then sc (Q) = shape(T ) =(
,

)
.

Now we will produce the tableau T and the skew shape sc (Q) for the pair (P,Q) =((
1 2 ,;)

,
(

0 2 ,;))
.

β(T −1(1)) =β(P−1(2))−Q(P−1(2)) = 0−2 = 0 mod 2

ct(T −1(1)) = ct(P−1(2))− 1

2c

(
Q(P−1(2))− (dβ(P−1(2)) −dβ(T −1(2)))

)
= 2− 1

2c
(2− (d0 −d0)) = 1− 1

c
=−2

β(T −1(2)) =β(P−1(1))−Q(P−1(1)) = 0

ct(T −1(2)) = ct(P−1(1))− 1

2c

(
Q(P−1(1))− (dβ(P−1(1)) −dβ(T −2(1)))

)= ct(P−1(2))
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= 1− 1

2c
(0− (d0 −d0)) = 1

Hence (up to diagonal slides of the box containing 1) the tableau T looks like

T =
(

2

1

,;
)

and then sc (Q) = shape(T ) =
(

,;
)
.

EXAMPLE 16. For λ= (
,;)

, the unitary spectrum is given by

c

d

d = 1/2
d +

2c =
1/2

c = 1/3

d +
c =

1/2

(1) Along the line d + c = 1/2 the set Γc (λ) consists of pairs (P,Q) of tableaux on λ such

that

(1) Q is a filling of the boxes of λ by non-negative integers such that Q(b) ≤ Q(b′)
whenever b ≤ b′.

(2) P is a bijection from the boxes of λ to the set of integers {1,2, . . . ,n} such that if

b ≤ b′ and Q(b) =Q(b′) then P (b) > P (b′).

(3) Q(b) < 1 for boxes b ∈λ with ct(b) = 1.

(4) Q(b1) ≤ Q(b2)+ 1 for boxes b1 ∈ λ0 and b2 ∈ λ1 with ct(b1)− ct(b2)± 1 = 1. If

Q(b1) =Q(b2)+1 implies that P (b1) > P (b2).

Since λ1 =; condition (4) does not apply. Note that the ct(b) = 1

λ=
(

b ,;
)

forcing the value of Q to be 0 in two boxes of λ, as follows Q =
(

0 0 ,;
)
. Then a

list of some (P,Q) ∈ Γc (λ) is given by
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P Q(
3 2 1 ,;) (

0 0 0 ,;)
(

3 2 1 ,;) (
0 0 1 ,;)(

3 1 2 ,;)
(

2 1 3 ,;)
(

3 2 1 ,;) (
0 0 2 ,;)(

3 1 2 ,;)
(

2 1 3 ,;)
(

3 2 1 ,;) (
0 0 3 ,;)(

3 1 2 ,;)
(

2 1 3 ,;)
...

...

We will produce the tableau T and the skew shape sc (Q) for the pair (P,Q) =
((

3 2 1 ,;)
,
(

0 0 1 ,;))
.

β(T −1(1)) =β(P−1(3))−Q(P−1(3)) = 0

ct(T −1(1)) = ct(P−1(3))− 1

2c

(
Q(P−1(3))− (dβ(P−1(3)) −dβ(T −1(3)))

)= ct(P−1(3)) = 0

β(T −1(2)) =β(P−1(2)−Q(P−1(2)) = 0

ct(T −1(2)) = ct(P−1(2))− 1

2c

(
Q(P−1(2))− (dβ(P−1(2)) −dβ(T −1(2)))

)= ct(P−1(2)) = 1

β(T −1(3)) =β(P−1(1)−Q(P−1(1)) = 0−1 = 1 mod 2

ct(T −1(3)) = ct(P−1(1))− 1

2c

(
Q(P−1(1))− (dβ(P−1(1)) −dβ(T −1(1)))

)
= 3− 1

2c
(1− (d0 −d1)) = 3− 1

2c
+ d

c

since d + c = 1/2 then
1

2c
− d

c
= 1 and

ct(T −1(3)) = 2.

Hence (up to diagonal slides of the box containing 3) the tableau T looks like

T =
(

1 2 , 3
)

and sc (Q) = shape(T ) =
(

,
)
.

(2) Along the line c = 1/3 the set Γc (λ) consists of pairs (P,Q) of tableaux on λ such that

(1) Q is a filling of the boxes of λ by non-negative integers such that Q(b) ≤ Q(b′)
whenever b ≤ b′.
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(2) P is a bijection from the boxes of λ to the set of integers {1,2, . . . ,n} such that if

b ≤ b′ and Q(b) =Q(b′) then P (b) > P (b′).

(3) Q(b) < 2 for boxes b ∈λ with ct(b) = 3.

(4) Q(b1) ≤ Q(b2) + 2 for boxes b1,b2 in the same component of λ with ct(b1) −
ct(b2)±1 = 3. If Q(b1) =Q(b2)+2 implies that P (b1) > P (b2).

Note that λ has no boxes b with ct(b) = 3, and boxes b1,b2 as in the diagram

below satisfy condition (4) since ct(b1) = 2 and ct(b2) = 0

λ=
(

b2 b1 ,;
)

We list some pairs of tableaux (P,Q) ∈ Γc (λ)

P Q(
3 2 1 ,;) (

0 0 0 ,;)
(

3 2 1 ,;) (
0 0 1 ,;)(

3 1 2 ,;)
(

2 1 3 ,;)
(

3 2 1 ,;) (
0 1 1 ,;)(

2 3 1 ,;)
(

1 3 2 ,;)
(

3 2 1 ,;) (
0 0 2 ,;)(

3 1 2 ,;)
(

3 2 1 ,;) (
0 1 2 ,;)(

3 1 2 ,;)
(

2 3 1 ,;)
(

3 2 1 ,;) (
1 1 1 ,;)

(
3 2 1 ,;) (

0 2 2 ,;)(
3 2 1 ,;)

...
...

The tableau T for the pair (P,Q) =
((

3 2 1 ,;)
,
(

0 1 2 ,;))
satisfy

β(T −1(1)) =β(P−1(3))−Q(P−1(3)) = 0

ct(T −1(1)) = ct(P−1(3))− 1

2c

(
Q(P−1(3))− (dβ(P−1(3)) −dβ(T −1(3)))

)= 0

β(T −1(2)) =β(P−1(2))−Q(P−1(2)) = 0−1 = 1 mod 2

ct(T −1(2)) = ct(P−1(2))− 1

2c

(
Q(P−1(2))− (dβ(P−1(2)) −dβ(T −1(2)))

)
= 1− 1

2c
(1− (d0 −d1)) = 1− 1

2c
+ d

c
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β(T −1(3)) =β(P−1(1))−Q(P−1(1)) = 0−2 = 0 mod 2

ct(T −1(3)) = ct(P−1(1))− 1

2c

(
Q(P−1(1))− (dβ(P−1(1)) −dβ(T −1(1)))

)
= 2− 1

2c
(2− (d0 −d0)) = 2− 1

c
=−1

Then (up to diagonal slides of the connected components of each component)

the tableau T looks like

T =
(

1

3 , 2
)

therefore

sc (Q) = shape(T ) =
(

,
)
.
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Catalog of Unitary Spectra and graded characters

For the rational Cherednik algebra of type Bn , we compute the unitary spectrum, i.e. the

values for parameters (c,d) that give rise to a unitary representation of Hc for n ≤ 6. For this

we use Corollaries 8.4 and 8.5 in [6], where unitary representations are explicitly classified.

Using the main result of this thesis 0.1 , we compute the graded character for the unitary

representation Lc (λ) for λ a 2-partition of n and parameters c > 0.

Note that if i = 0 then

ν,η ∈ Pℓ,n and χ ∈ Pℓ,0

hence χ = (;, . . . ,;) and the coefficients cνηχ, cµ
ηχt are nonzero if η = ν = µ, so the only ele-

ment appearing in Ext0 is λ. For this reason we will omit the column of i = 0 in the tables

characters.

n = 1

λ= (
,;)

. In this case the unitary spectrum is d ≤ 1/2. For d < 1/2 the standard module

is simple. For d = 1/2 the only non-trivial Ext-group is Ext1 for µ= (;,
)
.
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n = 2

λ= (
,;)

.

FIGURE 1. Unitary

spectrum

c

d

d = 1/2

d +
c =

1/2

c = 1/2

TABLE 1. Character

i = 1 i = 2

d + c = 1/2
(

,
) (

;,
)

c = 1/2
(

,;
)

d = 1/2
(;,

)

λ= (
,

)
FIGURE 2. Unitary

spectrum

c

d

d +
c =

1/2d
− c =

1/2

−d −
c =

1/2 −d
+c =

1/2

TABLE 2. Character

i = 1

d + c = 1/2
(
;,

)
−d + c = 1/2

(
,;

)
d − c = 1/2

(;,
)

−d − c = 1/2
(

,;)
(

1
2 ,0

) (
,;

)
+

(
;,

)
(
− 1

2 ,0
) (

,;)+ (;,
)
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n = 3

λ= (
,;)

.

FIGURE 3. Unitary spectrum

c

d

d = 1/2

d +
2c =

1/2

c = 1/3

d +
c =

1/2

TABLE 3. Character

i = 1 i = 2 i = 3

d +2c = 1/2
(

,
) (

,
) (

;,

)

c = 1/3
(

,;
) (

,;
)

d + c = 1/2
(

,
) (

;,
)

d = 1/2
(;,

)
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λ=
(

,;
)

FIGURE 4. Unitary spectrum

c

d

d
− c =

1/2
d +

c =
1/2

c =−1/3 c = 1/3

TABLE 4. Character

i = 1 i = 2

d + c = 1/2
(

,
) (

;,

)

c = 1/3

(
,;

)

d − c = 1/2
(

,
) (;,

)
c =−1/3

(
,;)
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λ= (
,

)
FIGURE 5. Unitary spectrum

c

d

•

•

•

(
− 1

2 , 1
2

)

(
1
3 ,− 1

6

)

(
− 1

3 , 1
6

)

d = 1/2

d +
2c =

1/2

d
− c =

1/2

−
d −

2c =
1/2

−d
+ c =

1/2

TABLE 5. Character

i = 1 i = 2

d +2c = 1/2
(

,
) (

;,

)
(

1
3 ,− 1

6

) (
,;

)
+

(
,

) (
;,

)

−d + c = 1/2
(

,;
)

d = 1/2
(

,
)

(
− 1

2 , 1
2

) (
,;)+ (

,
)+ (

,
) (

,
)
+ (;,

)
d − c = 1/2

(;,
)

(
− 1

3 , 1
6

) (
,;)+ (;,

)
−d −2c = 1/2

(
,;)
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n = 4

λ= (
,;)

FIGURE 6. Unitary spectrum

c

d

d = 1/2

d +
3c =

1/2

c = 1/4

d +2c = 1/2

d +
c =

1/2

TABLE 6. Character

i = 1 i = 2 i = 3 i = 4

d +3c = 1/2
(

,
) (

,
) (

,

) (
;,

)

d +2c = 1/2
(

,
) (

,
) (

;,

)

d + c = 1/2
(

,
) (

;,
)

d = 1/2
(;,

)

c = 1/4
(

,;
) (

,;
) (

,;
)
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λ=
(

,;
)

FIGURE 7. Unitary spectrum

c

d

d
− c =

1/2 d +
2c =

1/2

c =−1/4 c = 1/4

TABLE 7. Character

i = 1 i = 2 i = 3

d +2c = 1/2
(

,
) (

,
) (

;,

)

d − c = 1/2
(

,
) (;,

)
c = 1/4

(
,;

) (
,;

)

c =−1/4
(

,;)
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λ=
(

,;
)

FIGURE 8. Unitary spectrum

c

d

d = 1/2

d
−c =

1/2
d +

c =
1/2

c =−1/3 c = 1/3

c =−1/2 c = 1/2

TABLE 8. Character

i = 1 i = 2 i = 3

d = 1/2
(

,
) (

,
)
+

(
,

) (
,

)

d + c = 1/2
(

,
)
+

(
,

)
(

1
2 ,0

) (
,;

)
+

(
,

) (
,

)
+

(
,

) (
;,

)

c = 1/2

(
,;

) (
,;

)

c = 1/3

(
;,

)

d − c = 1/2
(

,
) (

,
)

(
− 1

2 ,0
) (

,;
)
+ (

,
) (

,
)+ (

,
) (;,

)
c =−1/2

(
,;

) (
,;)

c =−1/3
(;,

)
gg
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λ= (
,

)
FIGURE 9. Unitary spectrum

c

d

•

•

•

(
− 1

3 , 1
2

)

(
− 1

4 , 1
4

)

(
1
4 ,− 1

4

)

d = 1/2

d
−c =

1/2

−d
+ c =

1/2

−
d −

3c =
1/2

d +
3c =

1/2

TABLE 9. Character

i = 1 i = 2 i = 3

d +3c = 1/2
(

,
) (

,

) (
;,

)
(

1
4 ,− 1

4

) (
,;

)
+

(
,

) (
,

)
+

(
,;

)
+

(
,

) (
;,

)
+

(
,;

)

−d + c = 1/2
(

,;
)

d = 1/2
(

,
)

(
− 1

3 , 1
2

) (
,;)+ (

,
) (;,

)
d − c = 1/2

(;,
)

(
− 1

4 , 1
4

) (;,
)+ (

,;)
−d −3c = 1/2

(
,;)
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λ=
(

,
)

FIGURE 10. Unitary spectrum

c

d

• •
(
− 1

4 ,0
) (

1
4 ,0

)
d +

2c =
1/2

−d
+2

c
= 1

/2

−
d −

2c =
1/2

d
−2

c
= 1

/2

TABLE 10. Character

i = 1 i = 2

d +2c = 1/2
(

,
) (

;,

)
(
− 1

4 ,0
) (

,;
)
+

(
,

) (
,;

)
+

(
;,

)

−d +2c = 1/2

(
,;

)

d −2c = 1/2
(

,
) (;,

)
(

1
4 ,0

) (
,;

)
+

(
,

) (
,;)+ (;,

)
−d −2c = 1/2

(
,;

)
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λ= (
,

)

FIGURE 11. Unitary spectrum

c

d

•

•

• • •
(
− 1

4 ,0
)

(
1
4 ,0

)

(
− 1

3 , 1
6

)

(
− 1

3 ,− 1
6

)

(
− 1

2 ,0
)

d
− c =

1/2

−d −
c =

1/2

d +
2c =

1/2

−d
+2

c
= 1/

2−
d −

2c =
1/2

d
−2

c
= 1/

2
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TABLE 11. Character

i = 1 i = 2 i = 3

d +2c = 1/2
(

,
) (

;,

)
(

1
4 ,0

) (
,

)
+

(
,

) (
,;

)
+

(
,

)
+

(
;,

) (
,;

)
+

(
;,

)

−d +2c = 1/2
(

,
) (

,;
)

d − c = 1/2
(

,
)

(
− 1

3 , 1
6

) (
,

)
d −2c = 1/2

(
,

) (
;,

)
(
− 1

4 ,0
) (

,
)
+

(
,

) (
;,

)
+

(
,

)
+

(
,;

) (
;,

)
+

(
,;

)

−d −2c = 1/2
(

,
) (

,;
)

−d − c = 1/2
(

,
)

(
− 1

3 ,− 1
6

) (
,

)
(
− 1

2 ,0
) (

,
)+ (

,
) (

,;)+ (;,
)
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λ=
(

,
)

FIGURE 12. Unitary spectrum

c

d

•

•

•

•

d = 1/2

d =−1/2

d
− c =

1/2

−d
+ c =

1/2

−
d −

3c =
1/2

d +
3c =

1/2

(
− 1

4 , 1
4

)

(
1
4 ,− 1

4

)

(
− 1

3 , 1
2

)

(
1
3 ,− 1

2

)
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TABLE 12. Character

i = 1 i = 2 i = 3

d +3c = 1/2

(
,

) (
;,

)
(

1
4 ,− 1

4

) (
,

)
+

(
,;

) (
;,

)
+

(
,;

)

−d + c = 1/2

(
,;

)

d =−1/2
(

,
) (

,;
)

(
1
3 ,− 1

2

) (
,

)
+

(
,

) (
;,

)
+

(
,

)
+

(
,;

) (
,;

)

d = 1/2
(

,
) (

;,
)

(
− 1

3 , 1
2

) (
,

)+ (
,

) (
,;)+ (

,
)+ (

;,
) (;,

)
d − c = 1/2

(
;,

)
(
− 1

4 , 1
4

) (
,

)+ (
;,

) (
,;)+ (;,

)
−d −3c = 1/2

(
,

) (
,;)
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n = 5

λ= (
,;)

)

FIGURE 13. Unitary spectrum

c

d

d +
4c =

1/2

d +
3c =

1/2

d +
2c =

1/2d +
c =

1/2

d = 1/2

c = 1/5
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FIGURE 17. Unitary spectrum
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FIGURE 20. Unitary spectrum

c

d

•

•
•

•

••

•

−
d −

3c =
1/2

d +
3c =

1/2

−d
+2

c
= 1/

2

d
−2

c
= 1/

2d
−c =

1/2

d = 1/2

−
d −

2c =
1/2

(
− 1

5 , 1
10

)

(
1
5 ,− 1

10

)

(
− 1

4 , 1
4

)

(
− 1

4 ,0
)

(
− 1

3 , 1
2

)(
− 1

2 , 1
2

)

(
− 1

3 , 1
6

)

λ=
(

,
)

FIGURE 21. Unitary spectrum

c

d

•

•

•

−
d −

2c =
1/2

d +
2c =

1/2

−d
+3

c
= 1

/2

d
−3

c
= 1

/2

−d −
c =

1/2

(
− 1

4 ,− 1
4

)

(
− 1

5 ,− 1
10

)

(
1
5 , 1

10

)



0. N = 5 83

λ=
(

,
)

FIGURE 22. Unitary spectrum
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FIGURE 25. Unitary spectrum
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FIGURE 29. Unitary spectrum
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FIGURE 31. Unitary spectrum
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FIGURE 32. Unitary spectrum
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FIGURE 34. Unitary spectrum
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