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Resumen

En la presente tesis abordaremos dos tópicos importantes en álgebra conmutativa y geometría

algebraica afín que son las derivaciones y los automorfismos polinomiales. Estableceremos

una correspondencia entre las acciones racionales del grupo multiplicativo Gm sobre var-

iedades algebraicas afines y ciertas derivaciones que llamaremos racional semisimple. Además

mostraremos una forma de escribir el cuerpo de funciones racionales a través del kernel de la

derivación y un elemento que llamaremos slice racional para la derivación racional semisimple.

En [7] Dubouloz y Liendo definen cuando una derivación es racionalmente integrable, este

tipo de derivaciones están en correspondencia con las acciones racionales del grupo aditivo

Ga, generalizaremos el concepto de racional semisimple y racionalmente integrable a través

de las derivaciones racional localmente finitas, una derivación racional localmente finita sat-

isface cumplir que la aplicación exponencial de ella se factoriza sobre un cuerpo de funciones

racionales. Los automorfismos racionales localmente finitos se definen a partir de un flujo

racional el cual puede ser diferenciado. Mostraremos que si tenemos una derivación racional

localmente finitas la aplicación exponencial de ella da origen a un automorfismo racional

localmente finito y viceversa, si tenemos un automorfismo racional localmente finito su difer-

enciación permite obtener una derivación racional localmente finita.
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Abstract

In the present thesis, we study two important topics in commutative algebra and algebraic

geometry: polynomial derivations and polynomial automorphisms. We establish a one-to-one

correspondence between the rational Gm-actions on algebraic varieties and certain derivations

∂ which we will call rational semisimple. Also, we proved that if there exists an element

s ∈ KX such that satisfy ∂(s) = s, called rational slice, we can decompose the field of rational

functions since KX ≃ KGm
X (s).

As defined by Dubouloz and Liendo define when a derivation is rationally integrable that

the type of derivation is in correspondence with the rational Ga-actions over algebraic varieties.

We generalize the concept of rational semi-simple and rationally integrable derivation through

rational locally finite derivation, which coincides with the regular case with the locally finite

derivations.

The rational locally finite automorphism defines a rational flow that can be differentiated.

We will show if we have a rational locally finite derivation, the exponential maps associated to

it, give origin to a rational locally finite automorphism, and viceversa. If we have a rational

locally finite automorphism with their differentiation, we will be allowed to obtain a rational

locally finite derivation.
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Notation

B[n] = B[x1, . . . , xn] Polynomial ring inn variables with coefficient inB

(Ga,+) Additive group (k,+)

(Gm,+) Multiplicative group (k∗, ·)

k[X],O(X) Ring of coordinate (ring of regular functions) of algebraic variety X

An
k Affine space n dimensional over k

B∗ Units ofB

Frac(B) Field of rational functions ofB

K(X),KX Field of rational functions associated to algebraic varietyX

Der(B) Set of derivations over B

Aut(X) Automorphism groups of variety X

[E,D] Lie bracket of maps E and D
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Introduction

The operations of derivation and integration are widely known and have been used for a

considerable amount of time as the notion of derivative in its first beginnings. This concept is

generalized through what we call derivation.

Derivations occur in many different contexts in diverse areas of mathematics and, in so

doing, they connect various branches of it. For instance, the theory of Lie algebras, theory

of geometric invariants, commutative algebra, algebraic geometry, differential algebra, and

partial differential equations among others.

The derivations are a very useful tool to study several problems in mathematics. In our

context we allow ourselves to distinguish whether two varieties are not isomorphic through in-

variants, and to describe and understand the automorphism group of affine algebraic varieties.

Our focus is on the polynomial derivations; this has form D =
∑n

i=1 Pi
∂

∂xi
where the Pi’s

are polynomials in the polynomial ring in n variables with coefficients in k k[n] = k[x1, . . . , xn]

and
∂

∂xi
corresponds to a partial derivative with respect to variable xi. Given f ∈ k[n] the

element D(f) is defined by

D(f) = P1
∂f

∂x1
+ . . .+ Pn

∂f

∂xn
.

The locally finite derivation and automorphism have contributed to understanding and

establishing equivalences to the great problems of affine algebraic geometry. Some of the

problems on affine n space are:

• Characterization problem: Finding an algebraic and geometric characterization of

the affine n dimensional space An.

• Jacobian problem: If the map φ : An → An has a Jacobian determinant with an

element of C∗ then is it an automorphism?

• Automorphism problem: Providing a description of polynomial automorphisms of

An. The polynomial automorphisms form a group under composition, which is rather

large.
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• Linearization problem: When is an automorphism of An linearizable?.

Also, the derivations help to classify a finitely generated ring associated to algebraic variety

and this way distinguish them from each other. Makar Limanov introduces an invariant

(henceforth ML invariant) that consists in the intersection of all kernels of locally nilpotent

derivations. Using the ML invariant and advanced techniques of graded ring, he managed to

describe the group of automorphisms of the Danielewski surfaces. Moreover, using the ML

invariant, he proved that the Koras-Russell variety associated with {(x, y, z, t) ∈ C4 |x+x2y+
z2 + t3 = 0} is not isomorphic with C3.

Understanding the automorphism group of the affine n-dimensional space An has always

been of great interest to mathematicians; however, since this group is larger and very difficult,

the classification is open for n ≥ 3. In 1942 Jung-Van der Kulk gave a description of the

automorphism group for A2 where the automorphism group is the amalgamated product of

elementary group and affine group, and therefore any automorphism is tame. At that time

it was believed that for n = 3 the automorphisms were also tame; however, in 1972 Nagata

constructed the unipotent automorphism (x−2y(y2+xz)−z(y2+xz)2, y+z(y2+xz), z) (expo-

nential maps of locally nilpotent derivation) and conjectured that was not tame, Shestakov in

2004 managed to prove that indeed this automorphism is not tame, rather it is wild. The group

of automorphisms is conjectured to be generated by triangular and affine automorphisms.

Within the linearization problem, we have the case in which the automorphism comes

from an action of an algebraic group. The linearization problem about regular Gm- actions is

positive for the cases n = 1, n = 2 (Gutwirth), n = 3 (Koras-Russell ). Similarly, studying the

problem of linearization of derivations for the case semisimple is analogous and more general

than the problem for actions of the multiplicative group, because the semisimple derivations

are in correspondence with the semisimple automorphisms, and hence particularly just with

some actions of the multiplicative group.

The derivations give negative answers to Hilbert’s fourteenth problem which asks whether

certain algebras are finitely generated. Zariski in 1954 proves that the problem is true for

n = 1, 2. Then in 1959 Nagata found a counterexample to Hilbert’s conjecture constructed

ring of invariants for the action of a linear algebraic group for C[n] with n ≥ 32. Daigle and

Freudenburg show a counterexample for the case n = 5 using the kernel of locally nilpotent

derivation; nevertheless, the case for n = 4 is open.

This thesis is divided into four chapters.
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• Chapter 1 presents some known facts about algebraic geometry. These topics will help us

understand the correspondence between affine algebraic varieties and finitely generated

rings, the actions of algebraic groups on affine algebraic varieties, and their equivalence

in the co action morphism.

• Chapter 2 Derivations over affine rings (rings finitely generated over a field of character-

istic zero) are introduced. We will see the classic results of this theory and its utilities,

particularly the locally nilpotent derivations and the semisimple derivations.

• In Chapter 3, I describe some results of my work during my Ph.D. We established a

correspondence between the rational actions of Gm on X and certain derivations ∂ on

the field of rational functions K(X), which we will call rational semisimple; this is an

analog to the work conducted by Duboulouz and Liendo [7] in regards to rational Ga

action. We describe K(X) using the kernel of derivations and an element which we will

call rational slice s for ∂, following Koshevoi’s idea in [12], such an element allows the

decomposition (ker ∂)(s) = K(X).

• Within Chapter 4, the correspondence between rational locally finite derivations in the

field of rational functions Frac(B) and rational locally finite automorphism in Frac(B)

will be described. This correspondence coincides in the regular case, the correspondence

between locally finite elements (regular derivations and automorphisms), the locally

nilpotent derivations, and the regular Ga action is verified, and when the eigenvalues of

a semi-simple derivation are integer numbers with the regular Gm action.
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Chapter 1

Basic notions of algebraic geometry

In this chapter, we define the basic topics of algebraic geometry and relate it with the action

of algebraic groups over algebraic varieties and the ring of regular functions, field of rational

functions, these objects are in correspondence between the category of rings finitely generated

and the category of affine algebraic variety.

1.1 Categories

Definition 1.1. A Category C consists of 3 elements.

1. A collection of objects that we denote by obj(C ).

2. For all pairs of objects A, B in obj(C ) a set Mor(A,B) where the objects will be called

morphism. When we denote a morphism Mor(A,B), we will denote it by f : A→ B.

3. Composition rule:

◦ : Mor(A,B)×Mor(B,C)→ Mor(A,C)

where ◦(f, g) denotes g ◦ f .

In addition, the following axioms must be verified:

1. Associativity. For any map f, g, h is satisfied:

h ◦ (g ◦ f) = (h ◦ g) ◦ f

if these compositions are well defined.

2. Identity. For all objects A in obj(C ) there exists a morphism in Mor(A,A) which we

denote by 1A such that for all morphisms f en Mor(A,B) f = 1B ◦ f y f = f ◦ 1A.

10



Example 1.2. 1. The category of k-vector spaces where the objects are k-vector spaces

and the morphisms are the linear transformations.

2. The category of topological spaces where the objects are topological spaces and the

morphism are continuous functions.

3. The category of topological spaces pointed where the objects are pairs (X,x0) where X

is a topological space and x0 is a fixed point in X and the morphism are continuous

functions that send the fixed point in fixed point.

4. The category of groups where the objects are groups and the morphisms are homomor-

phisms.

Definition 1.3. For a pair of categories A , B we define a covariant functor F : A → B

consisting of:

1. Identify for each A ∈ obj(A ), with an object F (A) ∈ obj(B).

2. For every pair of objects A,B in obj(A ) associate a morphism f ∈ Mor(A,B) a mor-

phism F (f) ∈ Mor(F (A), F (B)) satisfying:

(a) F (1A) = 1F (A)

(b) F (f ◦ g) = F (f) ◦ F (g)

Definition 1.4. For a pair of categories A , B we define a contravariant functor F : A −→ B

that consists of:

1. Identify for each A ∈ obj(A ), with an object F (A) ∈ obj(B).

2. For all pair of objectsA,B in obj(A ) associate to a morphism f ∈ Mor(A,B) a morphism

F (f) ∈ Mor(F (B), F (A)) verifying:

(a) F (1A) = 1F (A)

(b) F (f ◦ g) = F (g) ◦ F (f)

1.2 Algebraic set and Zariski topology

In this section, we consider k as a field of characteristic zero. Let n be positive integers,

we define An
k = {(x1, x2, . . . , xn) |xi ∈ k} and consider their set of points, for simplicity, we

denote by An when the field is known. We will write k[n] = k[x1, x2, . . . , xn] the polynomial

ring with coefficients in k, k[n] is a Noetherian ring, if P (x1, . . . , xn) is a polynomial in k[n] and

11



x = (a1, . . . , an) ∈ An, we denote P (a1, . . . , an) the evaluation of the polynomial P (x1, . . . , xn).

For simplicity we denote P (x) by P (x1, . . . , xn).

Definition 1.5. Let S be a algebraic subset arbitrary of k[n]

V (S) = {x ∈ An| for all P (x) ∈ S, P (x) = 0} (1.1)

i.e., V (S) is the set of all common zeros of the polynomials P (x) in S. V (S) we will call

it the affine algebraic set defined by S. If S = {P1, . . . , Pr} we write V (P1, . . . , Pr) instead of

V ({P1, . . . , Pr}).

Example 1.6. 1. For positive integers n we have V ({1}) = ∅ y V ({0}) = An.

2. For n = 2, we have V (x1, x2) = {(0, 0)} and W (x1x2) = {(a, 0)}∪{(0, b)} where a, b ∈ k.

Remark 1.7. 1. The function V reverses the inclusions, i.e. if S ⊂ S′, then V (S′) ⊂ V (S).

2. If S is a subset of k[n], we write ⟨S⟩ or (S) to the ideal generated by S and verify

V (S) = V (⟨S⟩). We can restrict ourselves to the case where S is an ideal.

3. Since k[n] is Noetherian, every ideal is finitely generated, that is, I = ⟨P1, . . . , Pr⟩ hence,

every affine algebraic set is determined by a finite number of polynomials and verify

V (I) = V (P1, . . . , Pn) = V (P1) ∩ . . . ∩ V (Pr).

4. The set {a} of a point in An is an affine algebraic set given by V (xi − ai) .

5. The arbitrary intersection of affine algebraic sets is an affine algebraic set
⋂
j

V (Sj) =

V

⋃
j

Sj

. If we restrict ourselves to ideals, then replace the union by the sum of

ideals.

6. The finite union of affine algebraic sets is an affine algebraic set. V (I)∪V (J) = V (IJ) =

V (I ∩ J).

From 5) and 6) we deduce that the family of the affine algebraic set in An is a family of

the closed set for the topology in An.

Definition 1.8. We define the Zariski topology over An since the topology whose closed set

are the affine algebraic sets.

Definition 1.9. We consider P ∈ k[n] and let V (P ) ⊂ An . We will call the set D(P ) =

An \ V (P ) standard open (is the complement of closed set).
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Example 1.10. 1. For a positive integer n we have D(1) = An y D(0) = ∅.

2. For n = 2 and k a field of characteristic 0 we have D(x1x2) = A2 \ {(x1, x2) ∈ A2| x1 =
0 or x2 = 0}.

Proposition 1.11. The standard open familiy of An is a basis for the Zariski topology.

Proof. The proof is given in [17].

1.3 Ideal of a affine algebraic set

We will define an operator I that associates an ideal in the polynomial ring with a set of

points.

Definition 1.12. Let V be a subset of An. We define

I(V ) = {P ∈ k[n] |P (x) = 0 for all x ∈ V } (1.2)

is called the ideal of V .

I(V ) is the set of polynomial functions vanishing in V . To verify that this is an ideal, we

consider the ring homomorphism

r : k[n] → F(V, k)

where F(V, k) is the ring of polynomial functions with domain V and codomain k.

In this way Im(r) ∈ F(V, k) are the functions whose restriction in V coincides with poly-

nomials and ker(r) = I(V ), which in consequence is an ideal. The image Im(r) we denote by

Γ(V ) and its polynomials we will call regular functions. By the first isomorphic theorem of a

ring Γ(V ) = im(r) ∼= k[n]/I(V )

1. For a positive integer n we have I(∅) = k[n].

2. If k is infinite, for n positive integer I(An
k) = 0

1.4 Irreducibility

Definition 1.13. Let X be a topological space that is not empty, a topological space X is

said to be irreducible if X = F ∪G, where F y G are closed sets in X, then X = F or X = G.

Theorem 1.14. Let V be an affine algebraic set in An endowed with the Zariski topology.

V is irreducible ⇔ I(V ) is the ideal prime ⇔ Γ(V ) integral domain.
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Proof. The proof of Theorem 1.14 is given in [17, Pages 13 and 14].

Definition 1.15. Let X be a set, a chain of subsets of X is a sequence X0 ⊂ X1 ⊂ . . . ⊂ Xn

such that Xi are differents. We will say that the above chain has a large n.

Definition 1.16. Let X be a topological space. The dimension of X is the maximum of the

lengths of chains of closed subsets irreducible of X. This number is a positive integer, or +∞,

which we denote by dimX.

Theorem 1.17. Let V be a affine algebraic subset not empty. We can write V of unique form,

except rearrangement, V = V1 ∪ . . . ∪ Vr, where the sets Vi are irreducible affine algebraic sets

and Vi ⊈ Vj. The Vi are called irreducible components of V .

Proof. The proof of Theorem 1.17 is given in [17, Pages 14 and 15].

1.5 Hilbert’s Nullstellensatz (zero-locus-theorem)

It is not difficult to prove that if V ⊂ An is an affine algebraic set, then V (I(V )) = V .

However, it is not always true that if I ⊂ k[n] is an ideal of polynomial rings, if we verify

I(V (I)) = I, then we just have I ⊂ I(V (I)).

Example 1.18. Let k = R be the real numbers and I = (x21 + x22 + 1), then V (I) = ∅ and

I(V (I)) = R[n] ̸= I.

We now consider k an algebraically closed field.

Theorem 1.19 (Weak Nullstellensatz). Let I ⊂ k[n] be a proper ideal contain in k[n]. Then

V (I) is not empty.

Proof. The proof of this theorem 1.19 is in [17, Pages 15 and 16].

Definition 1.20. Let B be a ring, we define the radical of a ideal I in B since the ideal

Rad(I) = {x ∈ B| there exist r ∈ N such that xr ∈ I} (1.3)

Rad(I) is an ideal containing I.

Example 1.21. Let B = C[1] be the polynomial ring in one variable with coefficients complex.

We consider I = (x2) then Rad(I) = (x) for all P in (x), P 2 is in (x2), (x) ⊂ Rad(I). On the

other hand, since (X) is maximal y Rad(I) ̸= C[1] is verifying Rad(I) = (x).

Theorem 1.22 (Nullstellensatz). Let I be an ideal in k[n]. then I(V (I)) = Rad(I).
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Proof. The proof of Theorem 1.22 is given in [17, Page 16].

Remark 1.23. The ideal I(V ) is radical if only if the ring Γ(V ) es reduced ( i.e, has not

nilpotent elements).

An application of the nullstellensatz tells us that if V is an affine algebraic set, we associate

V to the ideal I(V ) and this one to the algebra Γ(V ), that is, a reduced k-algebra of finite

type. Is reduced because I(V ) is a radical ideal and of finite type because it is isomorphic to

k[n]/I ([17, page 202]).

Proposition 1.24. There exist a correspondence bijective decrease W 7→ I(W ), whose inverse

is I 7→ V (I), between affine algebraic sets of An and radical ideals in k[n]. Also, the following

are equivalents :

1. W is irreducible ⇔ I(W ) prime ⇔ Γ(W ) integral.

2. W is a point ⇔ I(W ) maximal ⇔ Γ(W ) = k.

Proof. The proof of 1 is the theorem 1.14 and part 2 is deduced from theorem 1.19 and the

decreasing property of I y V .

In general, if V is an arbitrary set of affine algebraic sets with W an affine algebraic set

contained in V , I(V ) ⊂ I(W ). The theorem of homomorphism of the ring, I(W ) determinate

an ideal IV (W ) of ring Γ(V ) correspond to the set f ∈ Γ(V ) that vanishing in W and we have

the isomorphism

Γ(V )/IV (W ) ∼= Γ(W ) (1.4)

If I is an ideal of Γ(V ), we can define V (I), since the set of zeros of functions of I over V :

V (I) = {x ∈ V for allf ∈ I, f(x) = 0} (1.5)

Proposition 1.25. There exists a decreasing mutually inverse bijection W 7→ IV (W ) y I 7→
V (I), between the affine algebraic sets of V and the radical ideals in Γ(V ). In addition, the

following are equivalents.

1. W is irreducible ⇔ IV (W ) is prime ⇔ Γ(W ) is integral.

2. W is a point ⇔ IV (W ) is maximal ⇔ Γ(W ) = K.

3. W is a irreducible component of V ⇔ IV (W ) is a minimal ideal prime of Γ(V ).

15



Proof. The proof of Proposition 1.25 is in [17, Page 18] and follows from Proposition 2.

Proposition 1.26. The points of V are in bijection with the maximal ideals of Γ(V ).

Proof. The proof of Proposition 1.26 is in [17, Page 18].

Definition 1.27. Let V be a affine algebraic set and f ∈ Γ(V ) not zero. The set

DV (f) = V \ V (f) = {x ∈ V |f(x) ̸= 0} (1.6)

is called a standard open set of V .

If we know V , the open standard DV (f) will be denoted by D(f). This open set generates

a basis of a topology on V which is also called the Zariski topology on V .

1.6 Category of affine algebraic sets

For this section, k is a algebraically closed field. We will define one of the basic categories in

the work of algebraic geometry.

We will consider the family of objects

ob(V ) = {V ⊂ An| n ∈ N, V affine algebraic set } (1.7)

Definition 1.28. Given V and W elements of obj(V ) with V ⊂ An and W ⊂ Am and let

φ : V −→W be a function that can be written of form φ = (φ1, . . . , φm), where φi : V −→ A1.

We say that P is a regular map if Pi ∈ Γ(V ), and the set Mor(V,W ) we will denote by

Reg(V,W ).

It is not difficult to prove that considering the definition above and ob(V ) we can define a

category ([17, pag 20]).

Example 1.29. 1. Every element f of Γ(V ) is a morphism. In particular, the coordinate

functions are morphisms from V to A1.

2. If V is V (x2−x21) and let φ be the projection φ : V → A1 given by φ(x1, x2) = x1. Then

φ is an isomorphism of affine algebraic sets where the inverse is given by x1 7→ (x1, x
2
1).

Definition 1.30. Let φ : V → W be a morphism of algebraic sets. For any f ∈ Γ(W ) we

define φ∗(f) = f ◦ φ. Then

φ∗ : Γ(W )→ Γ(V )
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Proposition 1.31. With the information of the above definition φ∗ : Γ(W )→ Γ(V )

is a morphism of reduced k-algebras of finite type.

Remark 1.32. Γ is a contravariant functor between the category of affine algebraic sets

with the regular functions and the category of reduced k-algebras of finite type with the

homomorphism of k-algebras associate to (V, φ) with (Γ(V ), φ∗) (See [17, Page 21]).

Proposition 1.33. The functor Γ is completely faithful, that is, the map γ : φ 7→ φ∗ from

Reg(V,W ) to Homk-alg(Γ(W ),Γ(V )) is biyective.

Proof. The proof of Proposition 1.33 is in [17, Page 21]

Remark 1.34. To further emphasize this relationship between categories and the relation

between V and Γ(V ), we consider a k-algebra reduced finite dimensional n, B ≃ k[n]/I for

some ideal I of k[n]. Given V = V (I) we will write V = Spec(B) in consequence, some times

we will write V = Spec(Γ(V )).

1.7 Ringed spaces

Definition 1.35. Let X be a topological spaces. A pre sheaf over X is given by the following

information:

1. For each open set U in X, a set F(U).

2. For each pair of open U and V that verify V ⊂ U , a function rV,U : F(U) → F(V ) is

called the restriction function, which we will often denote by rV,U (f) = f |V that verify

the following conditions:

(a) Si W ⊂ V ⊂ U , then rW,U = rW,V ◦ rV,U

(b) rU,U = IdF(U)

If our pre-sheaf also verify:

If U is an open of X covered by open sets , {Uα} (α ∈ A a set of indexes), then for all the

choice of elements fα ∈ F(Uα) such that fα|Uα∩Uβ
= fβ|Uβ∩Uα there is only one f ∈ F(U)

such that f |Uα = fα, will say that F is a sheaf.

Definition 1.36. If X is a topological space and F is a sheaf over X. If U is an open set in

X, F(U) is a commutative ring and the restriction functions are homomorphisms of the ring,

we will say that F is a sheaf of the ring.
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Example 1.37. 1. Sheaf of continuous functions in R or C.

2. Sheaf of differentiable functions in R or C.

An usual notation in Sheaf’s theory is F(U) = Γ(U,F) and the elements of Γ(U,F) are

called section of F over U and when U = X the corresponding sections are called global section.

If we fix a topological space X we can define the category of sheaf over X so it is necessary

to define a set of morphisms between each pair of sheafs F and G.

Definition 1.38. A The morphism of the sheaf ϕ : F → G in a topological space X is a

family of functions {ϕ(U) : F(U) → G(U)} with an open set U of X that behaves well with

respect to inclusions, i.e., if U ⊂ V the following diagram is commutative

F(V )
ϕ(V ) //

rV,U

��

G(V )

rV,U

��
F(U)

ϕ(U)
// G(U)

Definition 1.39. If X is a topological space endowed with a sheaf of ring OX , the pair

(X,OX) is called a ringed space and OX is called the structural sheaf.

We can define the category of ringed space where objects obviously are ringed spaces and

each pair of ringed spaces (X,OX) and (Y,OY ) a morphism of a ringed space, consist in a

pair (f, ϕ) where f : X → Y is a continuous function ϕ : OY → f∗OX is a sheaf morphism.

f∗OX is the sheaf on Y that is associated with each open set U of Y the commutative ring

OX(f−1(U)).

1.8 Affine algebraic variety

Let V ⊂ An be an affine algebraic set with the Zariski topology, we want to define a structural

sheaf OV over V to define the ringed spaces (V,OV ).

It is enough to define OV based on open sets of V that verify certain conditions, which

generate a unique sheaf in V [17, page 41].
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Lemma 1.40. Let X be a topological space, B be a basis of open sets in X and I a set. We

suppose that for each open set U in B a set F(U) of functions from U to I satisfying the

following conditions:

1. If V , U are in B, V ⊂ U y s ∈ F(U), then s|V ∈ F(V ).

2. If an open set U ∈ B is covered by the set Ui indexed by i ∈ I, such that Ui ∈ B and if

s is a function of U to k such that, for all i ∈ I s|Ui in F(Ui), then s ∈ F(U).

Then there is a unique sheaf F of functions on X such that, for each U ∈ B, F(U) = F(U)

Proof. The proof of lemma 1.40 is in [17, Page 41].

Definition 1.41. Let V an affine algebraic set , for all f ∈ Γ(V ), we will consider D(f) and

we define OV (D(f)) = Γ(V )f . La localization of Γ(V ) en f .

Example 1.42. If k = C, we consider V = An, I(An) = {0}, Γ(V ) = C[n]/{0} ≃ C[n] let

f(x1, . . . , xn) = x1 . . . xn ∈ C[n] then OV (D(f)) = C[n]
x1...xn .

The definition 1.41 confirms the conditions of Lemma 1.40 (see [17, Pages 42 and 43]) and,

consequently, defines a structural sheaf over V called the sheaf of regular functions.

Definition 1.43. An affine algebraic variety is a ringed space (X,OX) that is isomorphic to a

ringed space (V,OV ), where V is an affine algebraic set and OV is the sheaf of regular functions

over V . A morphism of affine algebraic varieties is simply a morphism of ringed spaces.

We can define the category of affine algebraic varieties where the objects are affine alge-

braic varieties and for each pair of affine algebraic varieties (X,OX) y (Y,OY ) a morphism in

HomV ar(X,Y ) is a morphism of ringed spaces.

Proposition 1.44. Let V be affine algebraic set and we consider f ∈ Γ(V ) the open set D(f)

endowed with the restriction sheaf OV to D(f) is affine algebraic variety

Proof. The proof of Proposition 1.44 is in [17, Page 43].

Proposition 1.45. Let (X,OX), (Y,OY ) be two affine algebraic varieties , there is a bijection

between the following sets

HomVar(X,Y ) ≃ Reg(X,Y ) ≃ Homk -alg(Γ(Y ),Γ(X))

Proof. The proof of Proposition 1.45 is in [17, Page 44].
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In the following a affine algebraic variety (X,OX) will only be mentioned X and the mor-

phisms between the varieties will be presented since the morphism between the affine algebraic

set uses the proposition 1.45.

Definition 1.46. A topological space X is compact if, given any recovery of X, there is a

finite sub-coverage of it.

Definition 1.47. An algebraic variety is a ringed space (X,OX) such that X is compact and

locally isomorphic since the ringed spaces are affine algebraic varieties. i.e., for all x ∈ X i.e.,

for all x in X there is an open neighborhood U of x such that (U,OX |U ) is an affine algebraic

variety.

1.9 Algebraic groups

Let k be an algebraically closed field (characteristic zero). We consider affine algebraic varieties

X over k, endowed with the Zariski topology. The coordinate ring of X, or the ring of a regular

function, will be indicated by k[X] or O(X). If B is an affine k domain, then X = Spec(B)

is its corresponding affine varieties. We consider the algebraic group G over k. An algebraic

group G is an algebraic variety endowed with a group structure that is compatible with its

structure, since it is an algebraic variety.

Definition 1.48. Let G be algebraic variety over k and m : G×G→ G a regular morphism.

The pair (G,m) is an algebraic group over k if there are regular maps

IdG : ∗→G , inv : G→G

such that the following diagram commutes

G×G×G IdG×m //

m×IdG

��

G×G

m

��
G×G m

// G

G

��

(Inv,IdG)// G×G

m

��

G
(IdG,Inv)oo

��
∗ e // G ∗eoo
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∗ ×G

≃

##

e×IdG // G×G

m

��

G× ∗IdG×eoo

≃

{{
G

Example 1.49. • The additive group Ga := (k,+) is an algebraic group because the

addition is an algebraic map and O(Ga) = k[t].

• The multiplicative group Gm := (k \ {0}, ·) is an algebraic group with the usual multi-

plication and O(Gm) = k[t, t−1].

• The General linear group GLn(k) with the product of matrices is an algebraic group and

its coordinate ring is O(GLn(k)) = k[t11, t12, . . . , tnn, d
−1] with d = det{tij}.

1.10 Group actions

Definition 1.50. We denote by eG : Spec(k)→ G the neutral element of G and mG : G×G→
G the morphism given by the group operation law . An group action of a group G over X is

a morphism α : G×X −→ X such that the following diagrams are commutative.

G×G×X IdG×α //

mG×IdX

��

G×X

α

��
G×X α

// X

Spec(k)×X eG×IdX //

pr2

%%

G×X

α

��
X

This action can be seen in the ring of regular functions through the comorphism:

O(X)
α∗

//

α∗

��

O(G)⊗O(X)

(mG×IdX)∗

��
O(G)⊗O(X)

(IdG×α)∗
// O(X)⊗O(G)⊗O(G)

O(X)
α∗

//

IdO(X)

%%

O(G)⊗O(X)

eveG

��
O(X)

We suppose G is algebraic group and G acts algebraically over the k-variety X and we

write B = O(X), the ring invariants of this action is
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BG = {f ∈ B | g · f = f ∀ g ∈ G}

An element f ∈ B is called semi-invariant for the action if there exists a character χ : G→
k∗ such that g · f = χ(g)f for all g ∈ G. In this case χ the weight of the semi-invariant f .

Certain important groups, such as the lineal special group SL2(k) and the additive group Ga

have not invariant characteristics and are not trivial.

The sets of fixed points by the action are

XG = {x ∈ X|g · x = x ∀g ∈ G}

The action is free of fixed points or simply free if XG is empty. the orbit of x ∈ X is the

set {g · x| g ∈ G}, is denoted by G · x or O(x).
In terms of group actions, Our main research interests are the action of additive group

(Ga-action) and the action of multiplicative group (Gm-action) over the field k.

1.10.1 Regular Ga-action

Definition 1.51. A regular Ga-action α : Ga×X → X is a morphism between varieties such

satisfy t · (s ·x) = (t+s) ·x and 0 ·x = x. This definition has a characterization in the category

of affine algebra. A regular Ga-action α : Ga×X → X is equivalent to determining a coaction

homomorphism α∗
t : O(X) −→ O(X)[t] such that the following diagrams commute:

O(X)
α∗
t //

α∗
s

��

O(X)[t]

t7→s+t

��

O(X)
α∗
t //

IdO(X)

##

O(X)[t]

ev0

��
O(X)[s]

α̃ // O(X)[t, s] O(X).

(1.8)

Where α̃ is the extension of homomorphism of ring α∗
s , which fixed the element t, therefore

this diagram α∗
t ◦ α∗

s = α∗
t+s and ev0 ◦α∗

t = IdO(X).

Remark 1.52. The Rensthler theorem in [19] shows that all Ga-action, Ga × C2 → C2 are

conjugate to (t, (x, y)) 7→ (x, y + tf(x)), with f(x) ∈ C[1].

1.10.2 Regular Gm-action

Definition 1.53. A regular Gm-action α : Gm×X → X is a morphism between varieties that

satisfy t · (s · x) = ts · x and 1 · x = x. This definition has a characterization in the category of
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affine algebra. A regular Gm-action α : Gm ×X → X is equivalent to determining a coaction

homomorphism α∗
t : O(X) −→ O(X)[t±1] such that the following diagrams commute:

O(X)
α∗
t //

α∗
s

��

O(X)[t±1]

t7→st

��

O(X)
α∗
t //

IdO(X)

$$

O(X)[t±1]

ev1

��
O(X)[s±1]

α̃ // O(X)[t±1, s±1] O(X).

Where α̃ is the extension of homomorphism of ring α∗
s , which fixed the element t, therefore

this diagram α∗
t ◦ α∗

s = α∗
ts and ev1 ◦α∗

t = IdO(X).

The Gm-actions correspond to Z-graduations over O(X), therefore we can write O(X)

since

O(X) =
⊕
i∈Z
O(X)i = {f ∈ O(X)|t · f(x) = tif(x)}

then O(X)Gm = O(X)0, this invariants ring is finitely generated because Gm is a reductive

group. If X is a Gm-variety, Gm can be seen as a subgroup of Aut(X) via the homomorphism

ring Gm ↪→ Aut(X) given by t 7→ αt.

A regular Gm action on An is linear if t ·(x1, x2, . . . xn) = (tλ1x1, t
λ2x2, . . . , . . . , t

λnxn) with

λi ∈ Z. They are classified conjugate by an automorphism for n = 1,n = 2 [11], n = 3 [21]

and are linear , for n > 3 is open.
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Chapter 2

Derivations

Let B be a k-domain, where k is a characteristic zero field. B∗ denote the group of units of B

y Frac(B) denote the quotient field of B, Aut(B) denotes the automorphism group of B since

k-algebra.

2.1 Basic definition for derivations

Definition 2.1. Let B be a k-algebra, D : B → B be a map. A derivation is any function

D that satisfies the following conditions:

For all a, b ∈ B

1. D(a+ b) = D(a) +D(b)

2. D(ab) = aD(b) + bD(a) (Leibniz rules)

the set of all derivations over of is denoted by Der(B), if A is a subring of B, we denote

DerA(B) by the subset of all D ∈ Der(B) with D(A) = 0. The kernel of D is the set

ker(D) = {b ∈ B|D(b) = 0} (also denoted by BD the ring of constant of B with respect to

D), some important facts.

• ker(D) is a subring of B for any D ∈ Der(B).

• The subfield Q ⊂ k has Q ⊂ ker(D) for any D ∈ Der(B).

• Aut(B) acts on Der(B) by conjugation: φ ·D = φDφ−1.

• Given b ∈ B and D,E ∈ Der(B), if [D,E] := DE − ED, then bD, D + E, and [D,E]

are again in Der(B).
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We denote the nth composition D(n) by Dn and D0 = IdB is the identity map in B.

Definition 2.2. Let D ∈ LND(B), we said that D is irreducible if (DB) does not contain

a proper principal ideal of B.

2.1.1 Locally finite derivations on B

Definition 2.3. Let B be a commutative k-algebra and D a k- derivation of B, D is called

locally finite if for any b ∈ B there exists a finite generated k-module M ⊂ B such that b ∈M
and D(M) ⊂M .

Equivalently, if we denote by Vb, the k- submodule of B generated by the set of the

n -th composition {b,D(b), D2(b), D3(b), . . .}, given an element b ∈ B, the derivation D is

called locally finite, if every module Vb is finitely generated over k for all b ∈ B. This

definition indicates the existence of annihilator minimal polynomial p(T ) ∈ k[T ] such that

p(D) = Dn + an−1D
n−1 + . . . + a1D + a0I = 0. The set of locally finite derivations will be

denoted by LFD(B), and the term "locally finite" will be abbreviated as lf. Additionally,

two particular cases of lf derivations will be defined: the locally nilpotent derivations and the

semisimple derivations. An element b ∈ B is said to be semisimple in relation to D if there

exists a finite D-invariant k-subspace W ⊂ B containing b such that the k-endomorphism

D|W is semisimple.

Also, we denote by Nil(D), Sem(D) and Fin(d) the following subset of B

Nil(D) = {b ∈ B; ∃ n ∈ Z≥0 D
n(b) = 0}

Sem(D) = {b ∈ B;∃Mb ⊂ B, b ∈Mb, D|Mb
is semisimple}

Fin(D) = {b ∈ B;∃Mb ⊂ B, b ∈Mb, D(Mb) ⊂Mb,Mb is a finite k-module}

The following containments are always followed BD ⊂ Nil(D) ⊂ Fin(D) ⊂ B.

Proposition 2.4. If D is a k-derivation of a k-algebra B, where k is a field of characteristic

zero, then Nil(D), Sem(D) and Fin(D) are k- sub algebra of B.

Proof. The proof is in [14] Proposition 7.1 ,Proposition 9.5.2.

Lemma 2.5. Let S be a generating set for the k-algebra B. If for each g ∈ S the vector space

generated by elements Di(g) is finite-dimensional, then D is locally finite.

Proof. The proof is based on Lemma 2.2 in [23].
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Definition 2.6. Let D ∈ Der(B), if for each b ∈ B there exists j ∈ Z≥0 such that Dj(b) = 0

(that is, we have Nil(D) = B), D is called locally nilpotent derivation (LND for short)

. The set of locally nilpotent derivation over B is denoted LND(B) and the set of locally

nilpotent derivation with kernel A ⊂ B by LNDA(B).

Definition 2.7. Let B be a ring and D ∈ LND(B). A slice of D is an element s ∈ B that

satisfies D(s) = 1. A preslice (or local slice) of D is an element s ∈ B that satisfies D(s) ̸= 0

and D2(s) = 0.

Definition 2.8. A derivation D ∈ Der(B) is semisimple if there exists a basis {bi}i∈I of B

as k vector space such that D(bi) = λibi with λi ∈ k (that is, we have Sem(D) = B), the set

of semisimple derivation is denoted by SSD(B).

A slice s ∈ B for D ∈ SSD(B), is an element that satisfies D(s) = s. Note that a semi-

simple derivation D defines a k-graduation of B since all elements can be written as a linear

combination of elements of {bi}i∈I .
Clearly, the locally nilpotent and semisimple derivations according to their definition are

locally finite derivations.

Proposition 2.9. (Decomposition Jordan- Chevalley) Any D ∈ LFD(B) admits a decompo-

sition D = DN +DS where DN ∈ LND(B),DS ∈ SSD(B) and [DN , DS ] = 0.

Proof. For more details, see Proposition 1.3.8 in [22], Theorem 9.4.1 in [14]

Proposition 2.10. (Proposition 1.3.9 [22]) If D ∈ LFD(B) with above decomposition D =

DN +DS, we have the following:

• ker(D) = ker(DN ) ∩ ker(DS)

• For every k-subspace M of B we have: M is D-invariant if and only if M both DS and

DN -invariant.

If D ∈ LND, the exponential map determined by D is exp(D) : B → B

exp(D)(f) =
∑
i≥0

1

i!
Di(f)

for any local slice r ∈ B of D, the Dixmier map induced by r is πr : B → BD(r), where:

πr(f) =
∑
i≥0

(−1)i

i!
Di(f)

ri

(D(f))i

where BD(r) is the localization at D(r)
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2.1.2 Locally nilpotent derivation LND(B)

We describe some principies related with locally nilpotent derivations, it appear in Freuden-

burg’s book [8].

Principies for Locally nilpotent derivations

Principie 2.11. We suppose D ∈ LND(B)

1. ker(D) is factorially closed.

2. B∗ ⊂ kerD, in particular LND(B) = LNDk(B)

3. If D ̸= 0, then D admits a local slice r ∈ B.

4. Autk(B) acts over LND(B) by conjugation.

Proof. The proof is in [8, page 22].

Principie 2.12. We suppose D,E ∈ LND(B).

1. exp(D) =
∑
i≥0

Di

i!
∈ Autk(B).

2. If [D,E] = 0 then D + E ∈ LND(B) and exp(D + E) = exp(D) ◦ exp(E).

3. The subgroup of Autk(B) generated by {expD|D ∈ LND(B)} is normal.

Proof. The proof is in [8, pag 26] .

Corollary 2.13. (Slice theorem) We suppose D ∈ LND(B) admits a slice s ∈ B, and let

A = ker(D). Then

1. B = A[s] and D =
d

ds

2. A = πs(B) y ker(πs) = sB

3. If B is affine, then A is affine.

Proof. The proof is in [8, page 28] .
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2.1.3 Correspondence between Locally nilpotent derivations and the regu-
lar Ga -actions

A classic result establishes the correspondence of the locally nilpotent derivations and the

regular Ga -actions.

Theorem 2.14. Given a regular action αt : Ga × Spec(B) → Spec(B), there exists a corre-

spondence biyective between the regular actions of the additive group and the locally nilpotent

derivations:

D → (exp(tD))∗

ev0 ◦
d

dt
◦ α∗

t ← αt

Proof. For details of the proof, see [5], [8].

2.1.4 Semisimple derivation SSD(B)

Remark 2.15. We have the following remarks:

• The semisimple derivation allow decompose the ring B, B =
⊕
λ∈k

Bλ with Bλ = {b ∈

B|D(b) = λb}, satisfying BλBλ′ ⊂ Bλ+λ′ and B0 = kerD the kernel of derivation D. If

E(D) is the set of all eigenvalues of D and G(D) is the group generated by E(D), we

have B =
⊕

λ∈G(D)Bλ.

• Given f ∈ kerD, we have fD is not necessarily a semi-simple derivation (unlike LND).

Definition 2.16. We define the semisimple Makar-Limanov invariant since the intersection

of kernel of semisimple derivations whose eigenvalues are integers number or the intersection

of all regular actions of the multiplicative group:

SML(B) =
⋂

D∈SSD∗(B)

ker(D) =
⋂

Gm↷B

BGm

where SSD∗(B) ⊂ SSD(B) is the set of semi-simple derivations whose eigenvalues are inte-

ger numbers. If D ∈ SSD∗(B) then φDφ−1 ∈ SSD∗(B), because if {ai}i∈I is a semi-invariant

basis for D, hence {φ(ai)}i∈I is a semi-invariant basis for φDφ−1. Therefore φSSD∗(B)φ−1 =

SSD∗(B) and as a consequence φ(SML(B)) = SML(B)

Remark 2.17. • SML(C[n]) = C

• This invariant would allow us to work on rigid ring which the ML invariant does not

provide information.
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Example 2.18. For example, for the surface Dp = {(x, y, z) ∈ C3|xy = p(z)} with p(z) no

monomial, we have the Z-graduations have form (a,−a, 0) with a ∈ Z, therefore, the action has

form t · (x, y, z) = (tax, t−ay, z) and the semisimple derivations have form D = a(x
∂

∂x
− y ∂

∂y
),

since ker(D) = ker(λD), it is enough to compute the kernel of x
∂

∂x
− y ∂

∂y
and the kernel

ker(D) = C[xy, z] = C[p(z), z] = C[z] for all a ∈ Z. Therefore MLS(O(Dp)) = C[z] .

Correspondence semisimple derivations with eigenvalues integers and regular Gm-

action

Next, we demonstrate the bijective correspondence between the semisimple derivations whose

eigenvalues are integer numbers over B and the regular Gm-actions over Spec(B) and the

Z-graduations over B. Giving a semi-simple derivation D we define the exponential map

exp(zD)

exp(zD) : B → B[|τ |]

D 7→ exp(τD) =
∑
i≥0

τ i
Di

i!

with the relation t =
∑
i≥0

τ i

i!
.

Lemma 2.19. Let D ∈ SSD(B) be a semisimple derivation whose eigenvalues are integer

numbers, the image of the exponential map exp(τD)(B) is contained in B[t±1].

Proof. If D is a semisimple derivation whose eigenvalues are integer numbers, there is a basis

{aj}j∈J as vector space such that for each aj there exists µj ∈ Z with D(aj) = µjaj , then for

any a ∈ B we have a =
∑

j λjaj with λj ∈ Z,

exp(τD)(a) =
∑
i≥0

τ i

i!
Di(
∑
j

λjaj) =
∑
j

λj
∑
i≥0

τ i

i!
Di(aj) =

∑
j

λj
∑
i≥0

(µjτ)
i

i!
aj =

∑
j

λjajt
µj

with
∑

j λjajt
µj ∈ B[t±1].

Lemma 2.20. The exponential map (exp(τD))∗ is a regular Gm- action over Spec(B).

Proof. We use the commutative diagram 1.8

1. If t = 1, then implies that τ = 0 therefore the exponential map exp(τD) correspond

only the first element of the serie, this equivalent to identity map.
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2. Let t, t′ associated with z and z′ respectively, be clear that [τD, τ ′D] = 0, give a ∈ B we

have

exp(τD) ◦ exp(τD)(a) = exp((τ + τ ′)D)(a)

This expression is equivalent to
∑
i≥0

(τ + τ ′)i

i!
=
∑
i≥0

τ i

i!
·
∑
j≥0

τ ′j

j!
= tt′ , so the composition

of two morphisms is equivalent to the morphism given by tt′.

Lemma 2.21. Let Σ = {α∗ ∈ Homk(B,B[t±1, t′
±1

])| α∗
1 = IdB ; α∗

t ◦ α∗
t′ = α∗

tt′} be the set of

k-homomorphisms from B to B[t±1, t′±1], for each α∗
t ∈ Σ we have Dα := ev1 ◦

d

dt
◦ α∗

t is a

semi-simple derivation whose eigenvalues are integer number.

B
α∗
t−→ B[t±1]

d
dt−→ B[t±1]

ev1−−→ B

Proof. 1. Linearity because the morphisms are linear, let a, b ∈ B and λ ∈ k,

Dα(λa+b) = ev1 ◦
d

dt
◦α∗

t (λa+b) = λ ev1 ◦
d

dt
◦α∗

t (a)+ev1 ◦
d

dt
◦α∗

t (b) = λDα(a)+Dα(b)

2. By the second diagram 1.8, for all elements c ∈ B we have ev1 ◦α∗
t (c) = c , then

Dα(ab) = ev1 ◦
d

dt
◦ α∗

t (ab)

= ev1 ◦
d

dt
[α∗

t (a)α
∗
t (b)]

= ev1 ◦[α∗
t (a)

d

dt
α∗
t (b) + α∗

t (b)
d

dt
α∗
t (a)]

Dα(ab) = aDα(b) + bDα(a)

Theorem 2.22. There exists a correspondence biyective between the regular actions of the

multiplicative group and the semisimple derivations whose eigenvalues are integer numbers:

D → (exp(τD))∗

ev1 ◦
d

dt
◦ α∗

t ← αt

with t =
∑
i≥0

τ i

i!
.
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Proof. 1. → If D is a semi-simple derivation whose eigenvalues are integer numbers, there

exists a basis of eigenvalues {ai}i∈I ⊂ B such that D(ai) = λiai with λi ∈ Z, since

any element a ∈ B can be written as follows a =
∑

j γjaj , and for each aj we have

exp(τD)(aj) = tλjaj , we can compute exp(τD)(a)

exp(τD)(a) =
∑
j

γj exp(τD)(aj)

=
∑
j

γj exp(τD)(aj)

exp(τD)(a) =
∑
j

γjt
λjaj

Now, if apply
d

dt
and then ev1

ev1 ◦
d

dt
◦ exp (τD)(a) = ev1 ◦

d

dt

∑
j

γjt
λjaj


= ev1

∑
j

γjλjt
λj−1aj


ev1 ◦

d

dt
◦ exp (τD)(a) =

∑
i

γiλiai = D(a)

Equivalent to applying D to the element a.

2. ← If αt is a Gm-action, α∗
t is a coaction homomorphism and Dα = ev1 ◦

d

dt
◦α∗

t for lemma

2.21 is a semisimple derivation with integer eigenvalues, for any aj we have α∗(aj) = ajt
λj

and therefore Dn
α(ai) = (ev1 ◦

d

dt
◦ α∗

t )
n(aj) = λnj aj
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exp(τDα)(a) = exp(τDα)(
∑
j

λjaj)

=
∑
j

λj
∑
n≥0

1

n!
τnDn

α(aj)

=
∑
j

λj
∑
n≥0

1

n!
τnγnj aj

=
∑
j

λjaj
∑
n≥0

1

n!
τnγnj

=
∑
j

λjaj
∑
n≥0

1

n!
(τγj)

n

=
∑
j

λjt
γjaj

exp (τDα)(a) = α∗
t (a)

2.2 Polynomial locally finite derivation over k[n]

In this section we consider B = k[n] be the ring in n variables with coefficient in k, the deriva-

tion D ∈ Der(k[n]) has form D =
n∑

i=1

Pi(x1, . . . , xn)
∂

∂xi
, with Pi ∈ k[n], also this derivations

can be seen since vector fields V over kn given by

V : An → An

(x1, x2, . . . , xn) 7→ (P1, P2, . . . , Pn)

when we talks about polynomial vector field, we refer the same sense that polynomial derivation

hence we have the correspondence of set Der(k[n]) = Vec(An) . Moreover, we define the

divergence of a derivation D ∈ Der(k[n]), as the sum div(D) =

n∑
i=1

∂Pi

∂Xi
.

Example of polynomial derivations

Definition 2.23. A linear derivation has form D =

n∑
i=1

(

i∑
j=1

aijxj)
∂

∂xi
, this derivation we

can associate to the matrix M = [aij ]1≤i,j≤n ∈Mn(k). This kind of derivation is locally finite

because it admits a characteristic polynomial P (T ) = det(M − TI) such that P (D) = 0.

The nilpotents matrices (for example, upper triangular) are related with locally nilpotent

derivations and the diagonalizable matrices with semisimple derivation.
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Theorem 2.24. (Theorem 6.2.1 in [14] ). Let D be a k-derivation of k[X] such that D(xi) =
n∑

j=1

aijxj for i = 1, . . . , n with aij ∈ k. If the matrix [aij ] is nilpotent, then the ring of constants

k[x1, . . . , xn]
D is generated finitely on k.

Corollary 2.25. (Theorem 6.2.2. in [14]) For any linear derivation on k[n] we have that the

constant ring is finitely generated.

Also, if DA =

n∑
i=1

(

i∑
k=1

aijxj)
∂

∂xi
, DB =

n∑
i=1

(

i∑
k=1

bijxj)
∂

∂xi
whose associated matrix is A

and B, we have [DA, DB] = D[A,B].

Definition 2.26. D ∈ Der(B) is a triangular derivation ofB if only ifD(xi) ∈ C[x1, . . . , xi−1]

for i = 2, . . . , n− 1 and D(x1) ∈ k.

Example 2.27. The triangular derivation D = (x + f(y, z))
∂

∂x
+ (y + g(z))

∂

∂y
+ Z

∂

∂z
is a

locally finite derivation on k[x, y, z] for any f(y, z) ∈ k[y, z], g(z) ∈ k[z].

Definition 2.28. An derivation D is Jacobian if there exists f1, f2, . . . , fn−1 ∈ k[n], such

that for g ∈ k[n], D(g) is defined as follows:

D(g) = ∆(f1,f2,...fn−1)(g) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∂g

∂x1

∂g

∂x2
. . .

∂g

∂xn
∂f1
∂x1

∂f1
∂x2

. . .
∂f1
∂xn

...
...

. . .
...

∂fn−1

∂x1

∂fn−1

∂x1
. . .

∂fn−1

∂x1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
where ker(D) = k[f1, f2, . . . , fn−1]

2.2.1 Locally nilpotent derivation on k[n]

Definition 2.29. Let D be a locally nilpotent k-derivation on the polynomial ring k[n]. Then

we define rank of D denoted by rank(D), is defined to be the least integers i for which there

exists a coordinate system (x1, x2, . . . , xn) of B satisfying k[xi+1, . . . , xn] ⊂ ker(D).

Definition 2.30. Give D ∈ LND(k[n]) is nice if D2(xi) = 0 for all 1 ≤ i ≤ n.

Theorem 2.31. (Rentschler theorem [19]). Let D be a locally nilpotent k-derivation of k[X,X]

(where k is a field of characteristic zero). Then there exists a k-automorphism ρ of k[x, y] such

that

ρDρ−1 = f(x)
∂

∂y

for some f(x) ∈ k[X].
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For n ≥ 3 the classification of LND in k[n] is open; however, there are interesting results

regarding their characterizations; we have the following facts for n = 3.

• (Miyanishi, Kambayashi): For a field k of characteristic 0, if D ∈ LND(k[3]), then

ker(D) = k[2] (polynomial ring in two variables).

• (Zurkowski): If D is a homogeneous LND on k[x, y, z] with respect to a positive Z
grading ω, then ker(D) = k[F,G] where F,G are homogeneous with respect to ω.

• (D. Daigle): If D ∈ LND(k[n]) and ker[F1, . . . , Fn−1] then D = α∆(F1,...,Fn−1) for some

α ∈ ker(D).

2.2.2 Semisimple derivation on k[n]

Definition 2.32. A derivation over k[n] is diagonalizable if D(xi) = aixi with ai ∈ k.

Proposition 2.33. (Proposition 9.5.9., Nowicki in [16]) If k is algebraically closed, then every

semisimple k- derivation of k[x, y] is diagonalizable.

Proof. The proof is given in [16, page 110].

This means that all semi-simple derivations of k[x, y] are conjugate to the derivation of the

form ax
∂

∂x
+ by

∂

∂y
with a, b ∈ k .

Example 2.34. D = x
∂

∂x
+

(
f(x, y)− x∂f(x, y)

∂x
+ z

)
∂

∂z
is a semi-simple derivation. Since

Sem(D) is a k-algebra, we observe that x, y, f(x, y)+z are in Sem(D) and therefore Sem(D) =

k[x, y, z].
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Chapter 3

On rational multiplicative group

actions

Abstract

We establish a one-to-one correspondence between rational Gm-actions on an algebraic variety

X and derivations ∂ : KX → KX of the field of fractions KX of X satisfying that there exists a

generating set {ai}i∈I of KX as a field such that ∂(ai) = λiai with λi ∈ Z for all i ∈ I. We call

such derivations rational semisimple. Furthermore, we also prove the existence of a rational

slice for every rational semisimple derivation, i.e. an element s ∈ KX such that ∂(s) = s. By

analogy with the case of additive group actions, we prove that KX ≃ KGm
X (s) and that under

this isomorphism the derivation ∂ is given by ∂ = s d
ds . Here, KGm

X is the field of invariant of

the Gm-action.

3.1 Introduction

Let k be an algebraically closed field of characteristic zero. By a variety we mean an integral

separated scheme of finite type. We let OX be its structure sheaf and KX be its field of

rational functions, so that KX = FracOX(U) for any affine open set U ⊂ X.

We also let Gm and Ga be the multiplicative group and the additive group over k, respec-

tively. It is well known that regular additive group actions on affine varieties are in one-to-one

correspondence with certain derivations called locally nilpotent [5], [8]. Indeed, letting X be

an affine variety a locally nilpotent derivation on X is a k-derivation ∂ : OX(X) → OX(X)

such that for every f ∈ OX(X) there exists i ∈ Z≥0 with ∂i(f) = 0. All derivations in this

paper are k-derivations, so we will call them simply derivations. Given a locally nilpotent
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derivation ∂ on X we obtain a regular Ga-actions φ : Ga ×X → X on X via the exponential

map

φ∗ = exp(z∂) : OX(X)→ OX(X)[z] given by f 7→
∑
i≥0

zi∂i(f)

i!
.

On the other hand, given a regular Ga-action φ : Ga × X → X on X we obtain a locally

nilpotent derivations ∂ on X via

∂ : OX(X)→ OX(X) given by f 7→ ev0 ◦
d

dz
◦ φ∗(f) ,

where ev0 : OX(X)[z]→ OX(X) is the evaluation morphism in z = 0.

In [7] Dubouloz and the second author introduced a class of rationally integrable derivations

that generalized locally nilpotent derivations to the rational setting. In fact, a derivation

∂ : KX → KX is called rationally integrable if the exponential map

exp(z∂) : KX → KX [|z|] given by f 7→
∑
i≥0

zi∂i(f)

i!
,

factors through the ring KX(z) ∩KX [|z|]. Their main theorem provides a one-to-one corre-

spondence between rationally integrable derivations ∂ : KX → KX and rational Ga actions

φ : Ga ×X 99K X on X. The correspondence is given similarly to above via

φ∗ = exp(z∂) and ∂ = ev0 ◦
d

dz
◦ φ∗(f) ,

after recalling that KX(z)∩KX [|z|] = {r(z) ∈ KX(z) | ord0(r) ≥ 0} so that ev0 is well defined.

In this paper, we expand and generalize the results in [7] to allow a classification of rational

Gm-action. It is well known that regular Gm-actions on an affine variety X are in one-to-one

correspondence with semisimple derivations ∂ : OX(X)→ OX(X) having integer eigenvalues.

Recall that such a derivation is semisimple if there exists a basis {ai}i∈I of A as a vector space

such that ∂(ai) = λiai with λi ∈ k.
In Definition 3.5, we introduce rational semi-simple derivations. A derivation ∂ : KX → KX

on an algebraic variety X is rational semisimple if there exists a generating set {ai}i∈I of KX

(as field) such that ∂(ai) = λiai with λi ∈ Z. Every semisimple derivation whose eigenvalues

are integer numbers is rational semisimple. Our main result in this paper is Theorem 3.14

establishing a one-to-one correspondence between rational Gm-actions φ : Gm × X 99K X in

X and rational semi-simple derivations ∂ : KX → KX in X. The correspondence is as follows:

we prove in Corollary 3.2 that the image of φ∗ is contained in KX(t) ∩KX [|t− 1|] = {r(t) ∈
KX(t) | ord1(r) ≥ 0} and so we obtain ∂ from φ via

∂ : KX → KX given by f 7→ ev1 ◦
d

dt
◦ φ∗(f) .
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As for the other direction, letting σ be the isomorphism of formal power series rings given by

the logarithmic power series

σ : KX [|z|]→ KX [|t− 1|], given by z 7→
∑
i≥1

(−1)i+1 (t− 1)i

i
.

we recover the rational action φ from ∂ via φ∗ = σ ◦ exp(z∂).
As a consequence of our main result, we prove in Corollary 3.17 the existence of a rational

slice for every rational semi-simple derivation, i.e., an element s ∈ KX such that ∂(s) = s.

Moreover, we prove in Proposition 3.18 that KX = KGm
X (s) and that under this isomorphism

the derivation ∂ is given by ∂ = s d
ds . Here, KGm

X is the field of invariant of the Gm-action.

Finally, we provide in Proposition 3.20 a characterization of regular actions of the multi-

plicative group on the class of varieties that are proper over the spectrum of its ring of global

regular functions. This characterization agrees with the one recalled above in the particular

case of affine varieties.
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3.2 Rational Gm-action

Let µ : Gm × Gm → Gm the morphism given by the group law (t1, t2) 7→ t1t2, and let

eGm
: Spec(k) → Gm be the neutral element map. A rational action of the multiplicative

group is a rational map φ : Gm ×X 99K X, (x, t) 7→ t · x such that the following diagrams are

commutative:

Gm ×Gm ×X
idGm×φ //

µ×idX

��

Gm ×X

φ

��

Spec(k)×X
eGm×idX //

pr2

%%

Gm ×X

φ

��
Gm ×X

φ // X X.

(3.1)

We let dom(φ) be the largest open subset of Gm ×X where φ is well defined. If (g, x) ∈
dom(φ), we denote φ(g, x) simply by g · x. The next lemma shows that dom(φ) ∩ ({g} ×X)

is a nonempty open subset of {g} × Gm. In particular, for g = 1, dom(φ) ∩ ({1} ×X) is an

open subset, not empty. This will allow us to exhibit a criterion for the existence of rational

action in terms of the function field of X.
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Lemma 3.1. Let X be an algebraic variety endowed with a rational Gm-action. For every fixed

g ∈ Gm, we define Vg = dom(φ)∩ ({g} ×X). Vg is a non-empty open subset of {g} ×X ≃ X
and the morphism

φg : Vg 99K X

x 7→ φ(g, x)

is dominant.

Proof. Following Demazure in [6] we consider the morphism ug : Gm → Gm , h 7→ gh−1 whose

inverse is (ug)
−1 : Gm → Gm , h 7→ h−1g. We define βg = φ ◦ (ug × idX) ◦ (pr1, φ),where pr1

is the projection in the first coordinate, and idX is the identity in X. As

βg : Gm ×X
(pr1,φ)
99K Gm ×X

ug×IdX
99K Gm ×X

φ
99K X

We have βg : Gm ×X 99K X, (h, x) 7→ φ(g, x) is dominant for all choice of g.

Note that this map only depend of x. Then dom(βg) = Gm × U , with U ⊆ X an open

subset. We have βg = φg◦pr2, where pr2 is the projection of Gm×X into the second coordinate.

Hence, U = pr2(Vg). Since φg is a rational map and Vg = {g} × dom(φg), we obtain Vg ̸= ∅.
Moreover βg = φg ◦ pr2, which means φg is dominant because Im(βg) ⊆ Im(φg).

We can apply the case g = 1 to obtain the following characterization.

Corollary 3.2. Let φ : Gm ×X 99K X be a rational action then Im(φ∗) ⊆ Oν , where Oν =

{r(t) ∈ K(t) | ord1(r) ≥ 0} is the discrete valuation ring of K(t) and ord1 is the order of

vanishing in t = 1.

Proof. Let V ′ ⊆ Gm ×X and X ′ ⊆ X be affine open sets such that φ|V ′ : V ′ → X ′ is regular.

We let OGm×X(V ′) = A ⊆ K(t) and OX(X ′) = B ⊆ K. By Lemma 3.1, we may and

will assume V ′ ∩ V1 ̸= ∅ and so it is an dense open set of {1} × X. Now, the composition

V ′ ∩ V1 → V ′ → X ′ is dominant by Lemma 3.1 and induces algebra homomorphisms

B
φ∗
−→ A −→ A/A(t− 1) ,

and this composition is injective. This in turn shows that ord1(φ
∗(b)) = 0 for every b ∈ B

different from 0. Since K = FracB we have ord1(φ
∗(f)) = 0 for every f ∈ K, which proves

the corollary.

Given a rational action φ : Gm ×X 99K X, for every fixed g ∈ Gm we obtain a birational

automorphism

φg : X 99K X, x 7→ φ(g, x)
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since φ(1, x) = IdX and for every g, g′ ∈ Gm we have φg ◦ φg′(x) = φgg′(x). Moreover, the

map Gm → Bir(X) sending g to φg is a group homomorphism. Finally, a rational action

φ : Gm ×X 99K X such that dom(φ) = Gm ×X is a regular action.

3.2.1 Criterion for existence of Gm-rational actions

A Gm-rational action φ : Gm ×X 99K X in a variety X, is equivalent to the co-action homo-

morphism φ∗
t : KX → k(Gm ×X) = KX(t) where the map φ∗

t factors through the subalgebra

Oν = {r(t) ∈ KX(t) | ord1(r) ≥ 0}, with mν = {r(t) ∈ KX(t) | ord1(r) > 0}. The co-action

morphism is characterized by the commutativity of the follow diagrams:

KX

φ∗
t1 //

φ∗
t2

��

KX(t1)

t1 7→t1t2

��

KX ≃ Oν/mν
φ∗
t //

IdKX

&&

Oν

ev1

��
KX(t2)

φ̃ // KX(t1, t2) KX ≃ Oν/mν

(3.2)

The following proposition is classical.

Proposition 3.3. Le X be a variety. X admits a nontrivial rational Gm-action if only if it

is birationally isomorphic to Y × P1 for some k-variety Y .

Proof. See [20, 13, 18].

Mimicking the case of Ga-actions on affine geometry, we we have the following definition:

Definition 3.4. Let X be a Gm-variety, an element s ∈ KX such that φ∗
t (s) = ts is called

rational slice.

For each faithful rational action, a rational slice always exists. Indeed, since the action is

faithful, there are two semi-invariant a, b ∈ KX whose weights n,m are relatively prime, i.e.,

φ∗
t (a) = tna and φ∗

t (b) = tmb. By Bezout theorem we have that there exist c, d ∈ Z such that

nd+mc = 1. Hence s = adbc satisfies φ∗
t (s) = st and so is a rational slice.

A derivation on k-algebra A, is a linear map ∂ : A→ A such that satisfy the Leibniz rules,

∂(ab) = a∂(b)+ b∂(a). We define the kernel of a derivation ∂ as its kernel as a linear map, i.e.,

ker(∂) := {a ∈ A|∂(a) = 0}. The set of derivations over A is denoted by Der(A). We say ∂ is a

semisimple derivation on A if there exists a basis {ai}i∈I of A as k-vector space of eigenvalues

such that ∂(ai) ∈ kai, we will focus in the subset of semisimple derivations whose eigenvalues

are integers numbers. For more details over semisimple derivations see [?, 14]. Is known that
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the regular Gm-actions are in correspondence with the set of semisimple derivations whose

eigenvalues are integers numbers.

Analogously with the definition of semisimple derivations over a k-algebra, we will give a

definition of derivation over KX , we will call rational semisimple.

Definition 3.5. Let KX be the field of rational function associated to algebraic variety X,

∂ ∈ Der(KX). We say ∂ is rational semisimple if there exist a generating set {ai}i∈I of KX

(as field) such that ∂(ai) = λiai with λi ∈ Z.

Let ∂ : KX → KX be a k-derivation. Denoting the i-th iteration of ∂ by ∂i and ∂0 is the

identity map, we define the exponential map

exp(z∂) : KX → KX [|z|], given by f 7→
∑
i≥0

zi∂i(f)

i!
.

Furthermore, since ∂ is a k-derivation, the following proposition shows that exp(z∂) is a k-rings

homomorphism.

Proposition 3.6. Let ∂ be a k-derivation on KX , then exponential map exp(z∂) : KX →
KX [|z|] is a k-ring homomorphism.

Proof. The exponential map exp(z∂) is k-linear since ∂ is k-linear. As for the product struc-

ture, we have

exp(z∂)(fg) =
∑
i≥0

∂i(fg)zi

i!

=
∑
i≥0

1

i!

 i∑
j=0

(
n

j

)
∂j(f)∂i−j(g)

 zi

=
∑
i≥0

 i∑
j=0

∂j(f)

j!

∂i−j(g)

(i− j)!

 zi

=
∑
i≥0

∂i(f)zi

i!

∑
l≥0

∂l(g)zl

l!

exp(z∂)(fg) = exp(z∂)(f) exp(z∂)(g)

Furthermore, there is an isomorphism of formal power series rings

σ : KX [|z|]→ KX [|t− 1|], given by z 7→
∑
i≥1

(−1)i+1 (t− 1)i

i
.
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The inverse of this isomorphism is given by

σ−1 : KX [|t− 1|]→ KX [|z|], given by t− 1 7→
∑
i≥1

zi

i!
.

This corresponds to the logarithmic series and its inverse is the exponential series. In the

sequel we will show that the image of σ ◦ exp(z∂) is contained in KX(t− 1) = KX(t) and that

σ ◦ exp(z∂) is the comorphism of a rational Gm-action if and only if ∂ is a rational semisimple

derivation. With this in view, for every we denote ϕ∗∂ = σ ◦ exp(z∂) so that its comorphism

corresponds to a map ϕ∂ : Gm ×X 99K X.

Lemma 3.7. Let ∂ : KX → KX be a rational derivation. Assume that the image of ϕ∗∂ is

contained in KX(t), then ϕ∂ is an action of the multiplicative group.

Proof. From Proposition 3.6 we have ϕ∗∂ is a ring homomorphism. Let

t1 =
∑
i≥0

zi1
i!

and t2 =
∑
i≥0

zi2
i!

We have the identity

t1t2 =
∑
i≥0

1

i!
(z1 + z2)

i

By Lemma 3.1, for every t ∈ Gm we can specialize ϕ∗∂ to obtain a field automorphism

ϕ∗∂(t) : KX → KX . We extend ∂ to a derivation ∂ : KX(z1, z2) → KX(z1, z2) by setting

∂(z1) = ∂(z2) = 0. Since now the derivations z1∂ and z2∂ commute, by [14, Proposition 2.4.2]

we have

ϕ∗∂(t1t2)(f) = σ ◦ exp((z1 + z2)∂)(f)

= σ ◦
(
exp(z1∂) ◦ exp(z2∂)

)
(f)

= ϕ∗∂(t1) ◦ ϕ∗∂(t2)(f)

Furthermore, by definition of ϕ∗∂ : KX → KX [|t− 1|] the composition

ev1 ◦ϕ∗∂ = ev1 ◦σ ◦ exp(z∂)

= ev0 ◦ exp(z∂)

= ev0 ◦
∑
i≥0

zi∂i

i!

ev1 ◦ϕ∗∂ = IdKX
.

Hence, by (3.2) we see that ϕ∗∂ is the comorphism of a multiplicative group action.
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Proposition 3.8. The following are equivalent.

(i) ∂ : KX → KX is rational semisimple.

(ii) The image of ϕ∗∂ is contained in KX(t).

Proof. First, assume that ∂ is rational semisimple. Hence, there exists a set of field generators

{ai}i∈I of KX such that ∂(aj) = λjaj with λj ∈ Z. For these generators we have

ϕ∗∂(aj) = σ◦exp(z∂)(aj) = σ

∑
i≥0

zi∂i(aj)

i!

 = σ

∑
i≥0

ziλijaj

i!

 = σ

∑
i≥0

(zλj)
i

i!
aj

 = tλjaj .

Let now f, g ∈ k[ai, i ∈ I] with g ̸= 0. Now,

ϕ∗∂

(
f

g

)
= σ ◦ exp(z∂)

(
f

g

)
= σ ◦ exp(z∂)

(
f(ai, i ∈ I)
g(ai, i ∈ I)

)
=
σ ◦ exp(z∂)(f(ai, i ∈ I))
σ ◦ exp(z∂)(g(ai, i ∈ I))

=
f(tλiai, i ∈ I)
g(tλiai, i ∈ I)

∈ KX(t)

This proves (i) → (ii). Inspired by Koshevoii [12], to prove the converse assertion, we let

f ∈ KX and we let

ϕ∗∂(f) = tℓ ·
∑

i ait
i∑

i bit
i
,

with ℓ ∈ Z and a0, b0 ̸= 0. We may also assume that the representation is irreducible, meaning

that
∑

i ait
i and

∑
i bit

i are relatively prime. Furthermore, such representations of ϕ∗∂(f) are

unique if we further assume that b0 = 1.

By Lemma 3.7, we have ϕ∗∂(s) ◦ ϕ∗∂(t)(f) = ϕ∗∂(st)(f). This yields

tℓ
∑

i ϕ
∗
∂(s)(ai)t

i∑
i ϕ

∗
∂(s)(bi)t

i
= tℓ

∑
i ai(st)

i∑
i bi(st)

i
= tℓ

∑
i(ais

i)ti∑
i(bis

i)ti
.

This yields ϕ∗∂(aj) = ajt
j and ϕ∗∂(bj) = bjt

j . In particular, this implies that

ϕ∗∂(aj) = σ ◦ exp(z∂)(aj) = σ

∑
i≥0

zi∂i(aj)

i!

 .

while

tjaj = σ

∑
i≥0

(zj)i

i!

 · aj = σ

∑
i≥0

(zj)i

i!
aj

 = σ

∑
i≥0

zijiaj
i!


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We conclude that ∑
i≥0

zi∂i(aj)

i!
=
∑
i≥0

zijiaj
i!

In particular, taking equality in the term with i = 1 we obtain that ∂(aj) = jaj . Finally, since

f =

∑
i aj∑
i bi

we find that the set

{
ai, bi ∈ KX | tℓ · ϕ∗∂(f) =

∑
i ait

i∑
i bit

i
for some f ∈ KX

}

generates KX and so ∂ is a rational semisimple derivation.

Given a rational Gm-action φ on X with comorphism φ∗ : KX → KX(t), we define the

map

Dφ : KX → KX given by f 7→ ev1 ◦
d

dt
◦ φ ∗ (f), ,

generalizing the usual definition of the infinitesimal generator of a group action of one param-

eter. The following lemmas will be required in our proof of our main result.

Lemma 3.9. Let φ be a rational Gm action on X with comorphism φ∗ : KX → KX(t). Then

the following hold:

[(i)]The map Dφ is a derivation. We have an equality Dφ = ev1 ◦
d

dt
◦ φ∗ = ev0 ◦

d

dz
◦

σ−1 ◦ φ∗.

1.2. Proof. By Corollary 3.2, we know that the image of φ∗ is contained in KX [|t − 1|]. Given f

and g in KX , we let φ∗(f) =
∑

i≥0 ai(t − 1)i and φ∗(g) =
∑

i≥0 bi(t − 1)i. We have a0 = f

and b0 = g since φ∗ is the comorphism of a Gm-action. Moreover, we have

Dφ(f) = ev1 ◦
d

dt
◦ φ∗(f) = ev1

∑
i≥1

ai · i(t− 1)i−1

 = a1 , (3.3)

so that the map Dφ(f) corresponds to the first order term of φ∗(f). To prove (i), remark that

the composition Dφ = ev1 ◦ d
dt ◦ φ

∗ is k-linear and maps k to 0. Furthermore, the term of the

first order term of fg is a0b1 + a1b0. This yields the Leibniz rule since

Dφ(fg) = a0b1 + a1b0 = fDφ(g) +Dφ(f)g .
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Assertion (ii) follows by the following straightforward computation:

ev0 ◦
d

dz
◦ σ−1 ◦ φ∗(f) = ev0 ◦

d

dz
◦ σ−1

∑
i≥0

ai · (t− 1)i


= ev0 ◦

d

dz

∑
i≥0

ai

∑
j≥1

zj

j!

i


= ev0

∑
i≥1

ai · i

∑
j≥1

zj

j!

i−1

·

∑
j≥0

zj

j!


 = a1 = Dφ(f) .

We will now prove that the map ψ∗ := σ−1 ◦ φ∗ : KX → KX [|z|] is the germ of a rational

Ga-action in X. Indeed, letting s and w, in the following diagram put as subscript the

transcendental element over KX in the target ring.

KX
φ∗
t−→ KX [|t− 1|] σ−1

z−→ KX [|z|]

KX
φ∗
s−→ KX [|s− 1|] σ−1

w−→ KX [|w|]

We also let ψ∗
z := σ−1

z ◦ φ∗
t and ψ∗

w := σ−1
w ◦ φ∗

s. With these definitions we now proof the

following lemma.

Lemma 3.10. With the above notation, we have ev0 ◦ψ∗
z = IdKX

and ψ∗
z ◦ ψ∗

w = ψ∗
z+w.

Proof. Letting f ∈ KX we assume

φ∗(f) =
∑
i≥0

ai(t− 1)i so that ψ∗
z(f) =

∑
i≥0

ai

∑
j≥1

zj

j!

i

.

Since φ∗ is the co morphism of a Gm-action we have a0 = f and so ev0 ◦ψ∗
z(f) = a0 = f . To

prove the second assertion, remark that

ψ∗
z ◦ ψ∗

w(f) = σ−1
z ◦ φ∗

t ◦ σ−1
w ◦ φ∗

s

= σ−1
z ◦ σ−1

w ◦ φ∗
t ◦ φ∗

s(f)

= σ−1
z ◦ σ−1

w ◦ φ∗
st(f)

= σ−1
z ◦ σ−1

w

∑
i≥0

ai(st− 1)i


= σ−1

z ◦ σ−1
w

∑
i≥0

ai

[(
s− 1 + 1

)(
t− 1 + 1

)
− 1

]i
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Applying now σ−1
z ◦ σ−1

w amounts to replace t − 1 by
∑

i≥1
zi

i! and s − 1 by
∑

i≥1
wi

i! . Hence,

we obtain

ψ∗
z ◦ ψ∗

w(f) =
∑
i≥0

ai


∑

j≥1

wj

j!
+ 1

∑
j≥1

zj

j!
+ 1

− 1


i

=
∑
i≥0

ai


∑

j≥0

wj

j!

∑
j≥0

zj

j!

− 1


i

Now, by the usual properties of the exponential sum, we obtain

ψ∗
z ◦ ψ∗

w(f) =
∑
i≥0

ai


∑

j≥0

(w + z)j

j!

− 1


i

=
∑
i≥0

ai


∑

j≥1

(w + z)j

j!



i

ψ∗
z ◦ ψ∗

w(f) = ψ∗
w+z(f)

Lemma 3.11. Let φ be a rational Gm-action on X with comorphism φ∗ : KX → KX(t). Then

the iterations Di
φ satisfy Di

φ = ev0 ◦
di

dzi
◦ σ−1 ◦ φ∗

Proof. We can now use the argument as in [5, Proposition 4.10] applied to ψ∗ = σ−1 ◦φ∗. For

the convenience of the reader we copy the argument here. Letting ψ∗
z(f) =

∑
i≥0 aiz

i, we have∑
i≥0

ψ∗
z(ai)w

i = ψ∗
z ◦ ψ∗

w(f) = ψ∗
w+z(f) =

∑
ℓ≥0

aℓ(z + w)ℓ

=
∑
ℓ≥0

aℓ
∑

i+j=ℓ≥0

(
ℓ

i

)
zjwi

=
∑
i≥0

∑
j≥0

ai+j

(
i+ j

i

)
zj

wi

Hence we obtain

ψ∗(ai) =
∑
j≥0

ai+j

(
i+ j

i

)
zj and in particular ψ∗(a1) =

∑
j≥0

aj+1(j + 1)zj =
∑
j≥1

ajjz
j−1
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Since Dφ(f) = a1 by (3.3), we have φ∗ ◦Dφ = d
dz ◦ φ

∗. Indeed,

ψ∗(Dφ(f)) = ψ∗(a1) =
∑
j≥1

ajjz
j−1 =

d

dz

∑
j≥0

ajz
j

 =
d

dz
(ψ∗(f))

Hence, we have ψ∗ ◦Di
φ = di

dzi
◦ ψ∗ for all i ≥ 0. Composing on the left with ev0 we obtain

Di
φ = ev0 ◦

di

dzi
◦ σ−1 ◦ φ∗ ,

since ev0 ◦ψ∗ = IdKX
by Lemma 3.10.

In the following proposition, we show that the derivation Dφ is rational semisimple.

Proposition 3.12. Let φ : Gm×X 99K X be a Gm-rational action on X. Then the following

hold

(i) Dφ is a rational semisimple derivation.

(ii) The composition ϕ∗Dφ
= σ ◦ exp(zDφ) equals φ∗.

Proof. The assertion (i) follows directly from (ii) and Proposition 3.8 since in this case the

image of ϕ∗Dφ
equals the image of φ∗ which is contained in KX(t).

To prove (ii), let f ∈ KX . By Corollary 3.2, we have that φ∗(f) ∈ KX [|t − 1|] and so

σ−1 ◦ φ∗(f) ∈ KX [|z|]. Let σ−1 ◦ φ∗(f) =
∑

j≥0 ajz
j . By Lemma 3.11 we have that

ϕ∗Dφ
(f) = σ ◦

∑
i≥0

ziDi
φ(f)

i!

= σ ◦
∑
i≥0

zi

i!
· ev0 ◦

di

dzi
◦ σ−1 ◦ φ∗(f)

= σ ◦
∑
i≥0

zi

i!
· ev0 ◦

di

dzi

∑
j≥0

ajz
j


= σ ◦

∑
i≥0

zi

i!
· ev0 ◦

∑
j≥i

aj
j!

(j − i)!
zj−i


= σ ◦

∑
i≥0

zi

i!
· ai · i!

= σ ◦
∑
i≥0

aiz
i = σ ◦ σ−1 ◦ φ∗(f) = φ∗(f)
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Proposition 3.13. Let ∂ : KX → KX be a rational semisimple derivation. Then the compo-

sition Dϕ∂
= ev1 ◦ d

dt ◦ σ ◦ exp(z∂) equals ∂.

Proof. Let ∂ be a rational semisimple derivation. Then by Lemma 3.9 (ii), we have

Dϕ∂
= ev1 ◦

d

dt
◦ σ ◦ exp(z∂) = ev0 ◦

d

dz
◦ σ−1 ◦ σ ◦ exp(z∂) = ev0 ◦

d

dz
◦ exp(z∂)

Letting now f ∈ KX we obtain

Dϕ∂
(f) = ev0 ◦

d

dz
◦ exp(z∂)(f) = ev0 ◦

d

dz
◦
∑
i≥0

zi∂i(f)

i!
= ev0 ◦

∑
i≥1

izi−1∂i(f)

i!
= ∂(f) .

This proves the proposition.

The following is our main theorem in this paper establishing a one-to-one correspondence

between rational Gm-actions on X and rational semisimple derivations on KX .

Theorem 3.14. Let X be an algebraic variety. There exists a one-to-one correspondence

between the rational Gm-actions over X and rational semisimple derivations on KX given by{
Rational semisimple derivations on KX

}
←→

{
Rational Gm-actions on X

}
∂ −→ ϕ∂

Dφ ←− φ

Proof. Let X be an algebraic variety. If ∂ : KX → KX is a rational semisimple derivation, then

ϕ∗∂ is a rational Gm-action by Lemma 3.7 and Proposition 3.8. On the other hand, if φ is a

rational Gm-action onX, then, by Proposition 3.12 (i), we have thatDφ is rational semisimple.

The fact that these maps are mutually inverse to each other is proven in Proposition 3.12 (ii)

and Proposition 3.13.

3.3 Examples and applications

In this section we provide several examples and applications of our main theorem. To perform

the computations in the sequel, we need the following technical lemma proving that conjugation

of a rational semisimple derivation by an automorphism φ amounts to conjugation of the

corresponding Gm-action by the same automorphism φ.

Lemma 3.15. Letting ∂ : KX → KX be a rational semisimple derivation and φ∗ : KX → KX

be a k-automorphim, we have

ϕ∗φ∗◦∂◦(φ∗)−1 = φ∗ ◦ ϕ∗∂ ◦ (φ∗)−1
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Proof. Since (φ∗ ◦ ∂ ◦ (φ∗)−1)i = φ∗ ◦ ∂i ◦ (φ∗)−1 and σ commutes with φ∗, we have

ϕφ∗◦∂◦(φ∗)−1 = σ ◦
∑
i≥0

zi(φ∗ ◦ ∂ ◦ (φ∗)−1)i

i!
= σ ◦ φ∗ ◦

∑
i≥0

zi∂i

i!

 ◦ (φ∗)−1 = φ∗ ◦ ϕ∗∂ ◦ (φ∗)−1

Example 3.16. Letting X = A2 = Spec k[x, y] we let E be the Euler derivation given by

E = ax
∂

∂x
+ by

∂

∂y
with a, b ∈ Z .

This derivation is a regular semisimple derivation corresponding to the linear Gm-action on X

given by

Gm ×X → X where (t, (x, y)) 7→ (tax, tby) .

If we conjugate E with the birational map

φ : X 99K X given by (x, y) 7→ ((x− 1)(y − 1) + 1, y) ,

whose inverse is

φ−1 : X 99K X given by (x, y) 7→
(
x− 1

y − 1
+ 1, y

)
.

We define the rational semisimple derivation ∂ = φ∗ ◦ E ◦ (φ∗)−1. A straightforward compu-

tation shows that

∂ =

(
a((x− 1)(y − 1) + 1)− b(x− 1)y

y − 1

)
∂

∂x
+ by

∂

∂y

By Lemma 3.15, we have ϕ∗∂ = φ∗ ◦ ϕ∗E ◦ (φ∗)−1. More explicitly we obtain:

ϕ∂ : Gm ×X 99K X given by (x, y) 7→
(
ta((x− 1)(y − 1) + 1)− 1

tby − 1
+ 1, tby

)
.

We can recover the rational derivation ∂ by computing ev1 ◦ d
dt ◦ ϕ

∗
∂ . Indeed, a tedious

computation shows that

d

dt
(ϕ∗∂(x)) =

(
ata−1[(x− 1)(y − 1) + 1]

)
(tby − 1)− btb−1y[ta[(x− 1)(y − 1) + 1]− 1]

(tby − 1)2

d

dt
(ϕ∗∂(y)) =

d

dt
(tby) = btb−1y .

So that

ev1 ◦
d

dt
◦ ϕ∗∂(x) =

a((x− 1)(y − 1) + 1)− b(x− 1)y

y − 1

ev1 ◦
d

dt
◦ ϕ∗∂(y) = by ,

recovering the initial derivation ∂.
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Recall that a rational slice of a rational Gm-action φ is a function s ∈ KX such that

φ∗(s) = ts. We can also characterize slices in terms of the corresponding rational semisimple

derivation as we show in the following lemma.

Corollary 3.17. Letting X be an algebraic variety with fields of the rational function KX ,

we let ∂ : KX → KX be a rational semisimple derivation. Then s ∈ KX is a rational slice of

ϕ∗∂(t) if and only if ∂(s) = s.

Proof. Assume first that ∂(s) = s. Then ∂i(s) = s for every i ≥ 0 and so we have

ϕ∗∂(s) = σ ◦ exp (z∂)(s) = s · σ

∑
i≥0

zi

i!

 = ts .

Now if ϕ∗∂(s) = ts then ∂(s) = ev1 ◦ d
dt ◦ ϕ

∗
∂(s) = s

Furthermore, a slice provide a ruling of the field KX over the field of invariants KGm
X of

the Gm-action.

Proposition 3.18. If s is a rational slice for an faithful rational Gm-action φ : Gm×X 99K X,

then s is transcendental over KGm
X , KX = KGm

X (s) = (ker ∂)(s) and ∂ = s d
ds on KGm

X (s).

Proof. We define the set T = {a ∈ K∗
X | φ∗(a) = tia with i ∈ Z}. In the proof Proposition 3.8

we proved that T generates KX . Moreover, T is a group under multiplication. We have

φ∗(a) = t0a for all a ∈ KGm
X . Therefore T0 := KGm

X \ {0} is a subgroup of T . Let now T/T0,

given a, b ∈ T such that φ∗
t (a) = tia and φ∗

t (b) = tia, for some i ∈ Z, we have φ∗(ab−1) = ab−1

implies ab−1 ∈ T0. Hence, a and b differ by a element of T0.

We define the group homomorphism T → Z given by a 7→ i where φ∗(a) = tia. This

homomorphism is surjective by the existence of a rational slice, see Definition 3.4 and below.

Moreover, its kernel is T0. We conclude that T/T0 ≃ Z with a rational slice s as generator.

Since T0 generated the field KGm
X and T generates the field KX we obtain that KX = KGm

X (s).

Assume now that s is algebraic over KGm
X , i.e., assume that there exists a non trivial poly-

nomial P ∈ KGm
X [x] such that P (s) = 0, then φ∗(P (s)) = P (ts) = 0. This is a contradiction

since t is is transcendental over KX and so the same holds over the subfield KGm
X . We conclude

that therefore s is transcendental over KGm
X . Finally, the structure of ∂ given as ∂ = s d

ds on

KGm
X (s) follows since ∂(KGm

X ) = 0 and ∂(s) = s.

Corollary 3.19. Let ∂ : KX → KX be a rational semisimple derivation. If ∂(s) = λs, with

λ ∈ k, we have KX = ker(∂)(s)
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As in the rational case treated above, given a regular Gm-action φ on X, we define a

derivation of the structure sheaf Dφ : OX → OX given over every affine open set U ⊆ X by

Dφ : OX(U)→ OX(U) given by f 7→ ev1 ◦
d

dt
◦ φ∗(f) .

Any derivation ∂ : OX → OX induces a derivationKX → KX simply by extending ∂ : OX(U)→
OX(U) to the field of fractions Frac(OX(U)) = KX for any affine open set via the Leibniz

rule. We denote this derivation also by the same symbol ∂ : KX → KX .

In the next proposition, we characterize the derivations of the structure sheaf X that come

from a regular Gm-action in the case where X is semi-affine. Recall that a variety X is called

semi-affine if the canonical morphism X → SpecOX(X) is proper. In this case OX(X) is

finitely generated and so SpecOX(X) is an affine variety [10, corollary 3.6]. For instance,

complete or affine k-varieties are semi-affine, blow-ups of semi-affine varieties are also semi-

affine.

Proposition 3.20. Regular Gm-actions on a semi-affine variety X are in one-to-one cor-

respondence with rational semisimple derivations ∂ : OX → OX such that the derivation on

global sections ∂X : OX(X) → OX(X) on the ring of global regular functions is semisimple

with integers eigenvalues.

Proof. By Rosenlicht theorem [20], for any regular Gm-action on X there exists of a nonempty

Gm-invariant affine open subset U . Hence, ∂U : OX(U) → OX(U) is semisimple with integer

eigenvalues and since OX(X) ⊂ OX(U) it follows that ∂X is a semisimple derivation of OX(X)

with integer eigenvalues.

Conversely, let ∂ : OX → OX be a derivation such that ∂0 = ∂X : OX(X) → OX(X) is

semisimple with integer eigenvalues. Then ∂0 induces a possibly trivial regular Gm-action

φ0 : Gm × X0 → X0 on X0 = SpecOX(X) for which the canonical morphism p : X → X0

is Gm-equivariant. In particular, for every point x ∈ X, letting ξ = φ |Gm×{x} : Gm 99K X,

t 7→ φ(t, x) and ξ0 = φ0 |Gm×p(x) : Gm → X0, t 7→ φ0(t, p(x)) , we have a commutative diagram

Gm
ξ //

ξ0 ""

X

p

��
X0.

Since p is proper, we deduce from the valuative criterion for properness applied to the local

ring of every closed point t ∈ Gm that φ is defined at every point (x, t) ∈ Gm ×X whence is

a regular Gm-action on X.
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Chapter 4

Locally finite birational maps

Abstract

In this paper, we build on previous results by the authors to properly define the definition of

rational locally finite derivation of an algebraic variety, which in the regular case coincide with

the definition of a regular locally finite derivation.

Additionally, we define automorphism over the field of rational functions as rational locally

finite attributing the existence of rational flow which can be differentiated. We show that

there exists a one-to-one correspondence between the rational locally finite automorphims and

the rational locally finite derivations, and the regular case coincide with the correspondence

between locally finite automorphism and locally finite derivations.

Introduction

Dubouloz and Liendo define in [7] when a derivation is rationally integrable over the field

of rational functions, these derivations are in correspondence with the rational action of the

additive group Ga. This idea, in conjunction with the work developed by Koshevoi [12], has

allowed us to generalize in [2] the correspondence between rational Gm actions and certain

derivations called rational semisimple. In this article, we generalize the concept of locally finite

using the same idea through of an integrability condition in the exponential map, and defining

when a derivation is rational locally finite, this definition is the same as completely integrable

vector field. The definition of rational locally finite automorphism is defined over a generating

set as field, the span linear of all compositions is a finite dimensional k-vector space, this we

allow to define a rational polynomial flow which can be differentiated, and the rational locally

finite automorphism are a generalization of locally finite automorphism.
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4.1 Preliminaries

Let k be an algebraically closed field of characteristic zero, B a k-algebra finitely generated

X = Spec(B) an algebraic variety and Frac(B) = K the field of rational functions . If

φ : X → X is a morphism over X, we obtain the equivalence of categories φ∗ : B → B. If B is

generated by a {bi}i∈I as k vector space, then K is generated by {bi}i∈I as field, which means

that it is generated via k- as linear combinations and quotients of these linear combinations,

for example, C[x, y] is generated by the set {xiyi}i,j≥0 then C(x, y) is generated as field by

{xiyi}i,j≥0 through k- as linear combinations and quotients of these linear combinations.

4.1.1 Derivations

A derivation D : B → B, is a k linear map, satisfying the Leibniz rules for all a, b ∈ B we have

D(ab) = aD(b) + bD(a), we define the kernel of D as the set ker(D) = {b ∈ B|D(b) = 0} also

denoted by BD, if A ⊂ B we say D is a A-derivation if A ⊂ ker(D), for the nth composition

D(n) we denote by Dn and D0 = IdB, the set of derivations is denoted by Der(B). We say that

D is locally finite if for all b ∈ B the linear span of {b,D(b), D2(b), . . .} is finite dimensional,

the set of locally finite derivations is denoted by LFD(B) and lf means locally finite for short,

the definition is associated to existence of a vanishing polynomial Pb(T ) ∈ k[T ] ( which is verify

Pb(D)(b) = 0). A derivation is locally nilpotent if for each b ∈ B there exists n ∈ Z≥0 such

that Dn(b) = 0, the set of locally nilpotent over B is denoted by LND(B). A derivation D is

called semisimple if there exists a basis {bi}i∈I of B as a k-vector space such that D(bi) = λibi

with λi ∈ k, the set of semisimple derivations is denoted by SSD(B). Both derivations that

are locally nilpotent and semisimple are lf.

If D is an lf derivation, it admits the Jordan decomposition D = Dn +Ds where Dn is a

locally nilpotent derivation, Ds is a semisimple derivation and DsDn = DnDs.

4.1.2 Polynomial automorphisms

Let B be a k-algebra finitely generated, F ∗ : B → B an automorphism of ring, F ∗ is locally

finite if for each b ∈ B the linear span of set {b, F ∗(b), (F ∗)2(b), . . .} is finite dimensional, F is

locally finite if F ∗ is, the definition is associated with the existence of a vanishing polynomial
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Pb(T ) ∈ k[T ] ( is verify Pb(F
∗)(b) = 0). Our main object of study are the locally finite

automorphisms (lf automorphism for short), and the set of lf automorphisms is denoted by

LFA(B). An automorphism F ∗ is unipotent if F − Id is nilpotent. An automorphism is

semisimple if there exists a basis {ai}i∈I ⊂ B of eigenvectors such that F ∗(ai) = γiai with

γi ∈ k. Since the k-algebra B is finitely generated, for both automorphisms and derivations it

is enough to prove the condition lf on a generating set.

The unipotent and semisimple automorphisms are a particular case of the lf automorphism

and if F is a lf automorphism it admits the Dunford decomposition (Multiplicative Jordan de-

composition) F = FuFs where Fu is the unipotent automorphism and Fs is the semisimple

automorphism. It is well known that there is a correspondence between unipotent automor-

phisms and locally nilpotent derivations, for more details see [8],[22],[5]. There also exists a

correspondence between semisimple automorphisms and semisimple derivations, which we will

show below.

4.1.3 Polynomial flow

Definition 4.1. Let X be an algebraic variety, a map φτ : k×X → X is said a flow if satisfy:

1. φτ ◦ φs = φτ+s

2. φ0 = IdX

Let V : kn → kn be a C1-vector field, and consider the (autonomous) system of differential

equations

∂x(τ)

∂τ
= V (x(τ)) with initial condition x(0) = x0 ∈ kn (4.1)

Then there exist a unique maximal local solution (flow)

x(τ) = φ(τ, x0) = φτ (x0) (4.2)

The flow φ(τ, x0) is called a polynomial flow if φ(τ, x0) is polynomial in each fixed τ , that

is, φ(τ, x0) depends polynomially on the initial condition x0. If a flow φ(τ, x0) is polynomial

then (see [1]) it is global and even (if k = C) entire ([3]).

Since the flow φτ is polynomial if depends polynomially on x for each τ , is clear that

for each τ ∈ k, define a holomorphic automorphism. We say a polynomial flow is quasi-

algebraic if for each τ0 ∈ k the φτ0 is an algebraic automorphism. Our case of interest for

study are the algebraic and quasi algebraic because they are related with lf derivation and lf
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automorphism. A natural question would be for which V as above does the flow associated

φ depend polynomially on the initial condition x0, this question was answered by B. Coomes

and V. Zurkowski in [4] proved (for k = C) .

A polynomial vector field V = (P1, P2 . . . , Pn) has a polynomial flow if and only if the

derivation P1
∂

∂x1
+ P2

∂

∂x2
+ · · ·+ Pn

∂

∂xn
is locally finite.

This result is very important because indicate a relation between algebraic automorphisms

and derivations over kn with this characteristics.

Example 4.2. In 1985 Bass and Meisters in [1] classify the polynomial flows and locally finite

vector fields on k2 conjugate by an automorphism in k2, these are given by:

1. φτ (x, y) = (x, ebτy); D = by ∂
∂y

2. φτ (x, y) = (x+ τ, ebτy) ;D = ∂
∂x + by ∂

∂y

3. φτ (x, y) = (x, y + f(x)τ); D = f(x) ∂
∂y

4. φτ (x, y) = (eaτx, ebτy) ;D = ax ∂
∂x + by ∂

∂y

5. φτ (x, y) = (eaτx, eamτ (y + τxm)) ; D = ax ∂
∂x + (amy + xm) ∂

∂y

4.1.4 Exponential map

Given D ∈ Der(B) with D(τ) = 0, we define the exponential map with parameter τ , since the

map:

exp(τD) : B → B[|τ |]

b 7→
∑
j≥0

τ j
Dj(b)

j!

Some times for short we denote the exponential map exp(τD) =
∑
j≥0

τ j
Dj

j!
for F ∗

τD.

We extend the exponential maps exp(τD) : B[|τ |]→ B[|τ |] fixing τ .

Proposition 4.3. The exponential maps exp(τD) : B[|τ |]→ B[|τ |] is an isomorphism

Proof. Clearly if a, b ∈ B as D is linear we have exp(τD)(a+ b) = exp(τD)(a) + exp(τD)(b)
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exp(τD)(a) exp(τD)(b) =
∑
j≥0

τ j
Dj(a)

j!

∑
l≥0

τ l
Dl(b)

l!

=
∑

j+l≥0

τ j+l 1

j + l

(
j + l

j

)
Dj(a)Dj(b)

=
∑
m≥0

τm
1

m!

 ∑
j+l=m

(
j + l

j

)
Dj(a)Dj(b)


exp(τD)(a) exp(τD)(b) =

∑
m≥0

τm
1

m!
Dm(ab) = exp(τD)(ab)

Moreover if we suppose D1D2 = D2D1 we have exp(τ(D1+D2)) = exp (τD1)◦exp (τD2) =

exp (τD2) ◦ exp (τD1),

Since D1D2 = D2D1, we have (D1 +D2)
m =

∑
i+j=m

(
m

j

)
Di

1 ◦D
j
2 then

exp(τD1) ◦ exp (τD2) =
∑
j≥0

τ jDj
1

j!
◦
∑
r≥0

τ rDr
2

r!

=
∑
j≥0

∑
r≥0

1

j!r!
τ jDj

1 ◦ τ
rDr

2

=
∑
m≥0

τm

m!

m∑
l=0

m!

l!(m− l)!
Dl

1 ◦Dm−l
2

=
∑
m≥0

τm(D1 +D2)
m

m!

exp(τD1) ◦ exp (τD2) = exp(τ(D1 +D2))

In particular if D2 = −D1, we have exp(τD1)◦exp(τ(−D1)) = exp(τ(−D1))◦exp(τD1) =

Id.

4.2 Rational case

4.2.1 Rational lf derivations

Definition 4.4. Given ∂ ∈ Der(K), we say ∂ rational lf derivation, if for a generating set

{bi}i∈I ⊂ K (as field) , Vbi the linear span generated by {bi, ∂(bi), ∂2(bi), . . .} as k- vector

space is finite dimensional.

Definition 4.5. A k-derivation ∂ : K → K on a variety Spec(B) is called rationally integrable

if the formal exponential homomorphism exp(τ∂) : K → K[|τ |] factors through K(τ)∩K[|τ |].
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Definition 4.6. Let K be the field of rational functions associated to algebraic variety

Spec(B), ∂ ∈ Der(K). We say ∂ is rational semisimple if there exist a generating set {bi}i∈I of

K (as field) such that ∂(bi) = γibi with γi ∈ k. Is easy to see that exponential homomorphism

exp(τ∂) : K → K[[τ ]] factors through K(t1, t2, . . . , tr)∩K[|τ |] where ti =
∑
j≥0

(γiτ)
j

j!
, for some

a finite set γi ∈ k.

In particular if γi ∈ Z, by theorem 2.14 in [2] the rational semisimple derivation are in

correspondence with the rational -actions defining tγi =
∑
j≥0

(γiτ)
j

j!
. The rational semisimple

and rationally integrable derivations are particular case of rational lf derivations.

Lemma 4.7. If ∂ is rational lf derivations, it admits a decomposition ∂s + ∂n where ∂s is

rational semisimple, ∂n rational unipotent and ∂s∂n = ∂n∂s.

Proof. Let Λ ⊂ k the set of eigenvalues for ∂, and {bi}i∈I a generating set for K such that the

linear span of {∂j(bi)}j≥0 is finite dimensional, {bi}i∈I with the linear combinations generate

a k-algebra B and the condition {∂j(bi)}j≥0 finite dimensional implies B =
⊕

λ∈ΛBλ, where

Bλ = {b ∈ B|(∂ − λ Id)m(b) = 0, for somem > 0}, for simplicity we denote ∂ − λ Id = ∂ − λ,

also we have BλBµ ⊂ Bλ+µ because if we consider a ∈ Bλ, b ∈ Bµ there exist l,m such that

(∂ − λ)l(a) = 0, (∂ − µ)m(b) = 0, (∂ − (λ + µ))l+m(ab) =
l+m∑
j=0

(
l +m

j

)
(∂ − λ)l+m−j(a)(∂ −

µ)j(b) = 0, since we have two case the first case l +m − j ≥ l and j ≤ m this case implies

(∂ − λ)l+m−j(a) = 0 and the second case l +m − j < l and j > m then (∂ − µ)j(b) = 0, so

that BλBµ ⊂ Bλ+µ, for any λ, µ ∈ Λ.

We define ∂s as ∂s(b) =
∑
λ

λbλ if b =
∑
λ

bλ. Clearly is a derivation, linear by definition,

satisfy the Leibniz rule, if a ∈ Bλ, b ∈ Bµ we have ab ∈ Bλ+µ, hence ∂s(ab) = (λ + µ)ab =

λab + µab = ∂s(a)b + a∂s(b), for any b ∈ B is extended by linearity. Since ∂s(Bλ) ⊂ Bλ we

have ∂∂s = ∂s∂ = λ∂ on Bλ, ∂s is rational semisimple because for all b ∈ B can be writen as

b =
∑
λ

bλ, then if we consider {bλ}λ∈Λ as generating set, K can be defined as localization of

B with S−1 = B \ {0}, so that S−1B = K. We conclude {bλ}λ∈Λ is the generating set as field

and satisfy ∂s(bλ) = λbλ where λ ∈ k.
Let ∂n = ∂ − ∂s, is a derivation because ∂ and ∂s are, ∂n commute with ∂, because ∂

commute with ∂ and ∂s. Now if b ∈ Bλ, ∂n(b) = (∂ − ∂s)(b) = (∂ − λ)(b) then there exists l

sufficiently big such that 0 = (∂ − λ)l(b) = ∂ln(b), then exp(τ∂n)(b) =
l−1∑
j=0

τ j∂jn(b) and in the

same way as in the previous derivation if we consider the localization of B with S−1 = B \{0}
and {bλ}λ as generating set, the image of exponential map satisfy exp(τ∂n)(K) ⊂ K(τ)∩K[|τ |].
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To prove the uniqueness of decomposition suppose there exist two decomposition of ∂, ∂s+∂n =

∂ = ∂′s + ∂′n. Since ∂ commute with ∂s, ∂n, ∂
′
s, ∂

′
n we have ∂s commute with ∂′s and ∂n

commute with ∂′n. A difference of commuting locally nilpotent (respectively semisimple)

derivations is locally nilpotent (respectively semisimple), since ∂s − ∂
′
s = ∂

′
n − ∂n, ∂s − ∂

′
s is

semisimple and ∂′
n−∂n is locally nilpotent derivation, on Bλ we have (∂s−∂

′
s)(b) = λb−λb = 0

therefore is the zero map, so that ∂s = ∂
′
s and ∂n = ∂

′
n .

Lemma 4.8. Given ∂ ∈ Der(K), with ∂(τ) = 0 and the exponential map exp(τ∂) : K →
K[|τ |], ∂ is rational locally finite if satisfy

exp(τ∂)(K) ⊂ K(τ, t1, . . . , tr) ∩K[|τ |]

where ti =
∑
j≥0

(γiτ)
j

j!
, for some a finite set γi ∈ k.

Proof. Since ∂ admit a decomposition ∂s+∂n, we compute exp(τ(∂s+∂n)). For the generating

set {bi}i∈I , we have ∂s(bi) = λibi and ∂js(bi) = λji bi and exp(τ∂s)(bi) = tibi, if if we extend this

by linear combinations and quotients we obtain exp(τ∂s)(K) ⊂ K(t1, . . . , tr) ∩K[|τ |]. Since

∂(τ) = ∂s(τ) = ∂n(τ) = 0, the exponential maps fix the parameter τ , we can extend the maps

over τ , sending τ to τ .

exp(τ(∂s + ∂n)) = exp(τ∂s) ◦ exp(τ∂n)(K) ⊆ exp(τ∂s)(K(τ) ∩K[|τ |])

exp(τ∂)(K) ⊆ K(τ, t1, t2 . . . , tr) ∩K[|τ |]

Corollary 4.9. Let ∂ ∈ Der(K) be a rational lf derivation, then exp(∂) = exp(τ∂)|τ=1

Proof. For lemma 4.8 we have exp(τ∂)|t=1 can be factorized as exp(∂)

exp(∂)︷ ︸︸ ︷
K

exp(τ∂)−−−−−→ K(τ, t1, . . . , tr)
τ 7→1−−−→ K

4.2.2 Rational flow

Definition 4.10. Given a algebraic variety X, we define the morphism φτ : k×X 99K X, we

say φt is a rational flow if:
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• φτ ◦ φτ ′(x) = φτ+τ ′(x)

• φ0(x) = x

• For each τ0 ∈ k, we have φτ0 is a birational map.

We can distinguish two types of rational flow, the algebraic given by quotient of polynomials

and the quasi algebraic given by quotients of polynomials and exponentials with exponent a

scalar multiplied by τ .

Example 4.11. • The first example correspond to a rational flow quasi algebraic

φτ : k × A2 → A2

(τ, (x, y)) 7→ (
aeaτx

(1− eaτ )x+ a
,

aebτy

(1− eaτ )x+ a
)

and their vector field associated ∂ = (ax+ x2)
∂

∂x
+ (by + xy)

∂

∂y

• The second example is a rational flow algebraic

φτ : k × A3 → A3

(τ, (x, y, z)) 7→ (
x

1 + τx
, y +

τ

p(z)
, z)

and their vector field associated −x2 ∂
∂x

+
1

p(z)

∂

∂y

Remark 4.12. Is clear that for each τ0 ∈ k the maps φτ0 is a birational map.

4.2.3 Rational lf automorphism

Definition 4.13. Given a automorphism F ∗ in K, we say rational locally finite, if the nth

composition can be extended to rational flow (F ∗)τ which the image of a generating set {bi}i∈I

is contained in K(τ, t1, t2, . . . , tr), where ti =
∑
j≥0

(λiτ)
j

j!
for some λi ∈ k.

Remark 4.14. Given an automorphism F ∗ in K, if there exists a generating set {bi}i∈I ⊂ K
(as field) such that the set Vbi given by the linear span generated by {bi, (F ∗)(bi), (F

∗)(2)(bi), . . .}
as k- vector space is finite dimensional then F ∗ is rational locally finite, because it allow define

a rational polynomial flow whose image is contained in K(τ, t1, t2, . . . , tr), this condition is

stronger than the previous definition.

Definition 4.15. Let Fu, Fs be birational morphisms over X, Fu is rational unipotent if

F τ
u comes from a rational -actions and Fs rational semisimple if there exist a generating set

{ai}i∈I (as field) such that Fs(ai) = γiai with γi ∈ k. In particular if γi ∈ Z the rational flow

corresponds to a rational -action.
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Remark 4.16. The image of comorphism of a rational -action is contained in K(τ), and the

image of flow associated to semisimple comorphism above evaluated in the generating set as

field is contained in K(t1, . . . , tr) some finite set of {ti} therefore the rational unipotent and

rational semisimple are particular case of rational locally finite automorphism.

Lemma 4.17. If F is a rational lf automorphism then F admits a decomposition F = FuFs

where Fu rational unipotent and Fs is rational semisimple and FuFs = FsFu

Proof. Let {bi}i∈I be a generating set for K and we consider {eλi}i∈I the eigenvalues for F ∗

and we define the k-algebra B =
⊕

λ∈ΩBλ where Ω ⊂ k, the Bλ is composed of set of elements

of K that are fixed by e−λτF ∗, i.e. Bλ = {b ∈ K|e−λτ (F ∗)τ (b) = b}. Also if a ∈ Bλ we have

e−λτ (F ∗)τ (a) = a and if b ∈ Bµ we have e−µτ (F ∗)τ (b) = b then

ab = e−λτ (F ∗)τ (a)e−µτ (F ∗)τ (b) = e−(λ+µ)τ (F ∗)τ (ab)

and therefore BλBµ ⊂ Bλ+µ for any λ, µ ∈ Ω. Define (F ∗)τs as (F ∗)τs(b) =
∑

λ e
λτ bλ if

b =
∑

λ bλ. Since is linear by definition and for bλ ∈ Bλ, bµ ∈ Bµ then bλbµ ⊂ Bλ+µ and we

have (F ∗)τs(bλ)(F
∗)τs(bµ) = eλτ bλe

µτ bµ = e(λ+µ)τ bλbµ = F ∗
s (bλbµ) which can be extended for

any b ∈ K via linear combinations and quotients, their inverse for bλ ∈ Bλ satisfy ((F ∗)τs)
−1 =

e−λτ bλ . Moreover (F ∗)τ (Bλ) ⊂ Bλ for all λ, we have (F ∗)τ (F ∗
s )

τ = (F ∗
s )

τ (F ∗)τ = eλτ (F ∗)τ ,

F ∗
s commutes with (F ∗)τ . In particular, the automorphism F ∗

s is rational semisimple since

S−1B = K and there exist a generating set {bλ}λ∈Ω of K as field satisfying F ∗
s (bλ) = eλbλ,

where λ ∈ k.
Let F ∗

u = F ∗(F ∗
s )

−1, clearly is an automorphism because is the composition of two auto-

morphism ( F ∗ and (F ∗
s )

−1 are), for each Bλ we have (F ∗
u )

τ commute with (F ∗)τ , then F ∗
u

commute with F ∗ in B. Moreover, if bλ ∈ Bλ then for construction (F ∗
u )

τ = e−λτ (F ∗)τ in Bλ

(F ∗
u )

τ ′(F ∗
u )

τ = e−λτ (F ∗)τe−λτ ′(F ∗)τ
′
= e−λ(τ+τ ′)(F ∗)τ+τ ′ = F τ+τ ′

u

and (F ∗
u )

0 = e−λ·0(F ∗)0 = Id therefore correspond to condition of a regular -action on B. If

we extend over K = S−1B we obtain a (F ∗
u )

τ comes from rational -action.

Suppose there exist two decompositions of F ∗, F ∗
s F

∗
u = F ∗ = (F

′
)∗s(F

′
)∗u. Since F ∗ com-

mute with F ∗
s , F

∗
u , (F

′
)∗s, (F

′
)∗u we have F ∗

s commute with (F
′
)∗s and F ∗

u commute with (F
′
)∗u.

We have the equality F ∗
s ((F

′
)∗s)

−1 = (F ∗
u )

−1(F
′
)∗u. To composition of commuting rational

semisimple (respectively rational unipotent) derivations is rational semisimple (respectively

rational unipotent), thus must be Id, because on we have Bλ F
∗
s ((F

′
)∗s)

−1(bλ) = F ∗
s (e

−λbλ) =

e−λF ∗
s (bλ) = bλ (rational unipotent and rational semisimple simultaneously means identity),

this forces, F ∗
s = (F

′
)∗s and F ∗

u = (F
′
)∗u
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Lemma 4.18. F ∗ is a rational locally finite automorphism then F ∗ comes from a rational

polynomial flow

(F ∗)τ (b) =

∑
σ ασγ

σ·τpσ(τ)b
σ∑

ρ βργ
ρ·τqρ(τ)bρ

where φτ σ = (σ1, . . . , σr), ρ = (ρ1, . . . , ρr) ∈ Zn
≥0, b

σ = bσ1
1 b

σ2
2 . . . bσr

r , bρ = bρ11 b
ρ2
2 . . . bρrr ,

pσ(τ), qρ(τ) ∈ k[τ ], σ · τ = (σ1τ, . . . , σrτ), ρ · τ = (ρ1τ, . . . , ρrτ) i.e. γσ·τ = γσ1τ
1 . . . γσrτ

r and

γρ·τ = γρ1τ1 . . . γρrτr , with ασ, βρ ∈ k

Proof. First, we analize the particular case when F ∗ is rational semisimple, rational unipotent

and subsequently the composition of both. If F ∗
s is rational semisimple, for a generating set

we have (F ∗
s )

τ (bi) = γτi bi, and given b ∈ K, we have b =
∑

σ ασb
σ∑

ρ βρb
ρ

where σ = (σ1, . . . , σr), ρ =

(ρ1, . . . , ρr) ∈ Zn
≥0, b

σ = bσ1
1 b

σ2
2 . . . bσr

r , bρ = bρ11 b
ρ2
2 . . . bρrr and since F ∗

s is a homomorphism of

field respect the multiplication and sum (F ∗
s )

τ (b) =

∑
σ ασγ

σ·τ bσ∑
ρ βργ

ρ·τ bρ
where σ ·τ = (σ1τ, . . . , σrτ),

ρ · τ = (ρ1τ, . . . , ρrτ) i.e. γσ·τ = γσ1τ
1 . . . γσrτ

r and γρ·τ = γρ1τ1 . . . γρrτr , if we extend the

fixing the τ, τ ′’s then (F ∗
s )

τ ′((F ∗
s )

τ (b)) =

∑
σ ασγ

σ·(τ+τ ′)bσ∑
ρ βργ

ρ·(τ+τ ′)bρ
and (F ∗

s )
0(b) =

∑
σ ασγ

σ·0bσ∑
ρ βργ

ρ·0bρ
= b

which is a rational quasi algebraic flow and for each τ0 ∈ k F τ0 is algebraic. Now if F ∗
u

is rationally integrable this comes from the action of the additive group, for b =

∑
σ ασb

σ∑
ρ βρb

ρ
,

we have (F ∗
u )

τ (b) =

∑
σ ασpσ(τ)b

σ∑
ρ βρqρ(τ)b

ρ
where pσ(τ), qρ(τ) ∈ k[τ ], the coation morphism of a

rational -action satisfy (F ∗
u )

τ (F ∗
u )

τ ′ = ((F ∗
u )

τ+τ ′(b)) =

∑
σ ασpσ(τ + τ ′)bσ∑
ρ βρqρ(τ + τ ′)bρ

and (F ∗
u )

0(b) =∑
σ ασpσ(0)b

σ∑
ρ βρqρ(0)b

ρ
(this means pσ(0) = qρ(0) = 1). We suppose F ∗

s and F ∗
u fix the parameter τ ,

we can extend the homomorphism from K(τ, t1, t2, . . . , tr) to K(τ, t1, t2, . . . , tr) leaving fixed

the parameter τ as follows:

(F ∗)τ (b) = (F ∗
uF

∗
s )

τ (b)

= (F ∗
u )

τ (F ∗
s )

τ (b)

= (F ∗
u )

τ

(∑
σ ασγ

σ·τ bσ∑
ρ βργ

ρ·τ bρ

)

(F ∗)τ (b) =

∑
σ ασγ

σ·τpσ(τ)b
σ∑

ρ βργ
ρ·τqρ(τ)bρ

satisfying the condition of a rational polynomial flow (F ∗)τ
′
((F ∗)τ (b)) =

∑
σ ασγ

σ·(τ+τ ′)pσ(τ + τ ′)bσ∑
ρ βργ

ρ·(τ+τ ′)qρ(τ + τ ′)bρ

and (F ∗)0(b) =

∑
σ ασγ

σ·0pσ(0)b
σ∑

ρ βργ
ρ·0qρ(0)bρ

= b.
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Definition 4.19. Given a lf rational automorphism F ∗ we can consider the rational flow

(F ∗)τ and define a derivation associated to (F ∗)τ , as follows

∂F = ev0 ◦
d

dτ
◦ (F ∗)τ

where ev0 is the evaluation τ = 0

Clearly is a derivation over K, given a, b ∈ B, λ ∈ k we have

∂F (a+ λb) = ev0 ◦
d

dτ
◦ (F ∗)τ (a+ λb)

∂F (a+ λb) = ev0 ◦
d

dτ
[(F ∗)τ (a) + λ(F ∗)τ (b)]

∂F (a+ λb) = ev0 ◦
d

dτ
◦ (F ∗)τ (a) + λ ev0 ◦

d

dt
◦ (F ∗)τ (b)

∂F (a+ λb) = ∂F (a) + λ∂F (b)

The Leibniz rules

(F ∗)τ (ab) = (F ∗)τ (a)(F ∗)τ (b) /
d

dτ
d

dτ
◦ (F ∗)τ (ab) =

d

dτ
((F ∗)τ (a))(F ∗)τ (b) + (F ∗)τ (a)

d

dτ
((F ∗)τ (b)) / ev0

ev0 ◦
d

dτ
◦ (F ∗)τ (ab) = ev0

d

dτ
((F ∗)τ (a))(F ∗)0(b) + (F ∗)0(a) ev0

d

dτ
((F ∗)τ (b))

∂F (ab) = ∂F (a)b+ a∂F (b)

Proposition 4.20. If F is a rational lf automorphism then ∂F is rational lf derivation

Proof. We must prove that the image of exponential maps exp(∂F ) factor throughK(τ, t1, . . . , tr)∩
K[|τ |], We can distinguish three case

• If F = Fu rational unipotent then (F ∗
u )

τ comes from rational action, ∂Fu is rationally

integrable and the exponential map for [7], (F ∗
u )

τ (K) = exp(τ∂Fu)(K) ⊂ K(τ) ∩K[|τ |]

• If F = Fs rational semisimple then for a generating set as field {bi}i∈I such that we have

F ∗
s (bi) = γibi where γi ∈ k, (F ∗

s )
τ (bi) = γτi bi hence ev0 ◦

d

dτ
◦ (F ∗

s )
τ (bi) = ln(γi)bi and

exp(τ∂Fs)(bi) = γτi bi = tibi, where ti =
∑
j≥0

(ln(γi)τ)
j

j!
, for some a finite set {γi}i∈I ,

for above (F ∗
s )

τ = exp(τ∂Fs). We conclude the exponential map exp(τ∂Fs)(K) ⊂
K(t1, . . . , tr) ∩K[|τ |]
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• Using the fact F = FsFu we have

(F ∗)τ = (F ∗
s )

τ (F ∗
u )

τ

(F ∗)τ = exp(τ∂Fs) ◦ exp(τ∂Fu)

(F ∗)τ = exp(τ(∂Fs + ∂Fu)) /
d

dτ
d

dτ
◦ (F ∗)τ = exp(τ(∂Fs + ∂Fu)) ◦ (∂Fs + ∂Fu) / ev0

ev0 ◦
d

dt
◦ (F ∗)τ = (∂Fs + ∂Fu)

∂F = ∂Fs + ∂Fu

We extend exp(τ∂Fs), exp(τ∂Fu) to K(τ, t1, t2 . . . , tr)∩K[|τ |] fixing the parameter τ and

exp(τ∂F )(K) = exp(τ∂Fs) ◦ exp(τ∂Fu)(K) we have

exp(τ∂Fs) ◦ exp(τ∂Fu)(K) ⊆ exp(τ∂Fs)(K(τ) ∩K[|τ |])

exp(τ∂F )(K) ⊆ K(τ, t1, t2 . . . , tr) ∩K[|τ |]

Therefore ∂F is lf rational derivation.

Corollary 4.21. If F is rational lf automorphism over Spec(B) then ∂F = ∂Fs + ∂Fu and

F∂ = F∂sF∂n.

Proof. By the proof above we have ∂F = ∂Fs + ∂Fu . It derivation commute the exponential

maps of sum of derivations is the composition of maps associated F ∗
∂ = F ∗

∂s+∂n
= F ∗

∂s
F ∗
∂n

Proposition 4.22. If ∂ is rational lf then exp(∂) is rational lf automorphism.

Proof. Clearly is an homomorphism whose inverse maps is exp(−∂). Moreover (exp(τ∂))τ =

exp(τ∂) is a rational flow because if ∂(τ) = ∂(τ ′) = 0, exp(τ∂) and exp(τ∂) fix τ, τ ′ and

the map can be extended over K(τ, τ ′, t1, . . . , tr, t
′
1, . . . , t

′
r) then we have exp(τ∂) ◦ exp(τ ′∂) =

exp((τ + τ ′)∂) and exp(τ∂)|τ=0 = IdK represent a rational polynomial flow which the image

is contained in K(τ, t1, t2 . . . , tr)

Theorem 4.23. There exist a correspondence between rational semisimple derivations and

rational semisimple automorphism over K.

∂ → exp(∂)

ev0 ◦
d

dτ
◦ (F ∗)τ ← F

where ev0 consist in evaluate the parameter τ in 0.
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Proof. If ∂ is semisimple then there exist a generating set {bi}i∈I as field such that ∂(bi) = γibi

where γi ∈ k, ∂n(bi) = γni bi therefore exp(∂)(bi) = eγibi. If b ∈ K given by b =

∑
σ ασb

σ∑
ρ βρb

ρ

then exp(∂)(b) =

∑
σ ασe

γ·σbσ∑
ρ βρe

γ·ρbρ
where γ · σ =

∑r
i=1 γiσi and γ · ρ =

∑r
i=1 γiρi, which is a

semisimple automorphism whose inverse is exp(−∂). We have (exp(∂))τ = exp(τ∂) and for

each bi ev0 ◦
d

dτ
◦ exp(τ∂)(bi) = ev0 ◦

d

dτ
(eγiτ bi) = ev0(γie

γiτ bi) = γibi = ∂(bi), we conclude

ev0 ◦
d

dτ
◦ exp(τ∂) = ∂, i.e ∂F∂

= ∂. Conversely if F is semisimple we have a basis {ai}i∈I

such that F ∗(ai) = λiai, all element b ∈ B is written as b =
∑

σ ασa
σ∑

ρ βρa
ρ

where aσ = aσ1
1 · · · aσr

r ,

aρ = aρ11 · · · a
ρr
r , ασ, βρ ∈ k, we have F ∗(b) = b =

∑
σ ασλ

σaσ∑
ρ βρλ

ρaρ
where λσ = λσ1

1 · · ·λσr
r , λρ =

λρ11 · · ·λ
ρr
r . If we extend the composition over a parameter τ on the generating set, we obtain

(F ∗)τ (ai) = λτi ai and ev0 ◦
d

dτ
◦ (F ∗)τ (ai) = ln(λi)ai. Therefore exp(ev0 ◦

d

dτ
◦ (F ∗)τ )(ai) =

λiai = F ∗(ai) the initial automorphism, therefore F∂F = F

Theorem 4.24. There exists a correspondence between the rational lf derivation over K and

rational lf automorphism on Spec(B)

∂ → F∂

∂F ← F

Proof. To prove this bijective correspondence, 1) ∂F∂
= ∂ and 2) F∂F = F .

1. Since
d

dτ
◦ F ∗

τ∂ = F ∗
τ∂ ◦ ∂ and ev0 ◦F ∗

τ∂ = Id hence

∂F∂
= ev0 ◦

d

dτ
◦ F ∗

τ∂ = ev0 ◦F ∗
τ∂ ◦ ∂ = ∂

2. If F ∗ is an rational lf automorphism, by lemma 4.18 we have the existence of rational

polynomial flow (F ∗)τ
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(F ∗)τ (b) =

∑
σ ασγ

σ·τpσ(τ)b
σ∑

ρ βργ
ρ·τqρ(τ)bρ

/
d

dτ

d

dτ
◦ (F ∗)τ (b) =

d

dτ
(
∑

σ ασγ
σ·τpσ(τ)b

σ)(
∑

ρ βργ
ρ·τqρ(τ)b

ρ)

(
∑

ρ βργ
ρ·τqρ(τ)bρ)2

−
(
∑

σ ασγ
σ·τpσ(τ)b

σ)
d

dτ
(
∑

ρ βργ
ρ·τqρ(τ)b

ρ)

(
∑

ρ βργ
ρ·τqρ(τ)bρ)2

d

dτ
◦ (F ∗)τ (b) =

(
∑

σ(ln(γ
σ)γσ·τpσ(τ) + γσ·τ

dpσ(τ)

dτ
)ασb

σ)(
∑

ρ βργ
ρ·τqρ(τ)b

ρ)

(
∑

ρ βργ
ρ·τqρ(τ)bρ)2

−
(
∑

σ ασγ
σ·τpσ(τ)b

σ)(
∑

ρ(ln(γ
ρ)γρ·τqρ(τ) + γσ·τ

dqρ(τ)

dτ
)βρb

ρ)

(
∑

ρ βργ
ρ·τqρ(τ)bρ)2

ev0
d

dτ
◦ (F ∗)τ (b) =

(
∑

σ(ln(γ
σ) +

dpσ(τ)

dτ
|τ=0)ασb

σ)(
∑

ρ βρb
ρ)

(
∑

ρ βρb
ρ)2

−(
∑

σ ασb
σ)(
∑

ρ(ln(γ
ρ) +

dqρ(τ)

dτ
|τ=0)βρb

ρ)

(
∑

ρ βρb
ρ)2

ev0
d

dτ
◦ (F ∗)τ (b) =

∑
σ(ln(γ

σ)ασb
σ)(
∑

ρ βρb
ρ)− (

∑
σ ασb

σ)(
∑

ρ ln(γ
ρ)βρb

ρ)

(
∑

ρ βρb
ρ)2

+
(
∑

σ

dpσ(τ)

dτ
|τ=0ασb

σ)(
∑

ρ βρb
ρ)− (

∑
σ ασb

σ)(
∑

ρ

dqρ(τ)

dτ
|τ=0βρb

ρ)

(
∑

ρ βρb
ρ)2

∂F = ∂Fs + ∂Fu

Since the decomposition is unique and ∂Fu ◦ ∂Fs = ∂Fs ◦ ∂Fu by corollary 4.21, we have

F∂Fu+∂Fs
= F∂Fu

◦F∂Fs
and we consider for [7] F∂Fu

= Fu, and by theorem 4.23 F∂Fs
= Fs

Therefore

F∂F = F∂Fu+∂Fs

F∂F = F∂Fu
◦ F∂Fs

F∂F = Fu ◦ Fs

F∂F = F

Corollary 4.25. Given a ∂ rational lf derivation, we have KF ∗
∂ = ker(∂).
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Proof. 1. If b ∈ K an element not zero of invariant ring associated to F ∗, a = F ∗(a) =∑
i≥0

∂i(a)
i! , this implies ∂i(a) = 0 for i ≥ 1, therefore a ∈ ker(∂), conversely if a is in the

kernel of ∂, ∂n(a)
n! = 0 for all n > 0 so that F ∗(a) = a is an element of invariants ring of

F∂ .

4.3 Regular case

In the following section, we will show the correspondence of lf elements in a finitely generated

k-algebra.

Proposition 4.26. Let D ∈ LFD(B) then the image of exponential map exp(τD) : B → B[|τ |]

is B[τ, t1, . . . , tr], where t =
∑
j≥0

τ j

j!
for some γi ∈ k and ti = tλi .

Proof. Since D is a lf derivation admits a decomposition D = Dn+Ds, where Dn ∈ LND(B),

Ds ∈ SSD(B). We can distinguish three cases to analyze:

• If D = Dn ∈ LND(B), for all element b ∈ B there exist l ∈ Z≥0 such that Dl(b) = 0,

therefore exp(τD)(b) = b + D(b)τ +
D2(b)

2
τ2 + · · · + Dl−1(b)

l!
τ l−1 and the image of

exponential map is contained B[τ ].

• If D = Ds ∈ SSD(B) there exist a basis of eigenvectors {bi}i∈I such that D(bi) = γibi

hence Dj(bi) = γji bi. therefore exp(τD)(bi) = bi
∑
j≥0

(γiτ)
j

j!
= bit

γi , where for each i we

write ti = tγi :=
∑
j≥0

(γit)
j

j!
. Every element b ∈ B can be written as b =

m∑
j=1

βjbj we

can extend for linearity the exponential map for b of the following way exp(τD)(b) =
m∑
j=1

βjajtj , we conclude exp(τD)(B) ⊂ B[t1, . . . , tr].

• The last case is when D = Ds + Ds. The exponential maps exp(τ(Ds + Dn)) is equal

to exp(τDs) ◦ exp(τDn) = exp(τDn) ◦ exp(τDs) because τDs(τDn) = τDs(τDn). The

exponential map fix τ and also in consequence the ti’s. we can extend the composition

as follows

exp(τD)︷ ︸︸ ︷
B

exp(τDn)−−−−−−→ B[τ ]
exp(τDs)−−−−−−→ B[τ, t1, . . . , tr]
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Remark 4.27. When we evaluate τ = 0 we obtain ti = 1, and if τ = 1 we obtain ti = eγi .

Also,
dτ

dτ
= 1 and

dti
dτ

= γiti

Corollary 4.28. Let D ∈ LFD(B) then the image of exponential map exp(τD) : K → K[|τ |]

is contain in K(τ, t1, . . . , tr), where ti =
∑
j≥0

(γiτ)
j

j!
for some γi ∈ k and 1 ≤ i ≤ r.

Proof. if a, b ∈ B with b ̸= 0 we have

exp(τD)

(
a

b

)
= exp(τD)(ab−1) = exp(τD)(a) exp(τD)(b−1) =

exp(τD)(a)

exp(τD)(b)

where exp(τD)(a), exp(τD)(b) ∈ B[τ, t1, . . . , tr]

Corollary 4.29. Let D ∈ LFD(B), then exp(D) = exp(τD)|τ=1

Proof. For the proposition 4.26 we have exp(τD)|t=1 can be factorized as exp(D)

exp(D)︷ ︸︸ ︷
B

exp(τD)−−−−−→ B[τ, t1, . . . , tr]
τ 7→1−−−→ B

Theorem 4.30. There exist a correspondence between semisimple derivations and semisimple

automorphism over B.

D → exp(D)

ev0 ◦
d

dτ
◦ (F ∗)τ ← F

where ev0 consist in evaluate the parameter τ in 0.

Proof. If D is semisimple then there exist a basis {bi}i∈I such that D(bi) = γibi where γi ∈ k,
Dn(bi) = γni bi therefore exp(D)(bi) = eγibi. If b ∈ B then b =

∑
i αibi then for linearity

exp(D)(b) =
∑

i αie
γibi , which is a semisimple automorphism whose inverse is exp(−D). We

have (exp(D))τ = exp(τD) and ev0 ◦
d

dτ
◦ exp(τD)(bi) = ev0 ◦

d

dτ
(eγiτ bi) = ev0(γie

γiτ bi) =

γibi = D(bi), we conclude ev0 ◦
d

dτ
◦exp(τD) = D, i.e DFD

= D. Conversely if F is semisimple

we have a basis {ai}i∈I such that F ∗(ai) = λiai, all element b ∈ B is written as b =
∑

i βiai

we have F ∗(b) =
∑

i βiλiai. If we extend the composition over a parameter τ we obtain

(F ∗)τ (ai) = λτi ai and ev0 ◦
d

dτ
◦ (F ∗)τ (ai) = ln(λi)ai. Therefore exp(ev0 ◦

d

dτ
◦ (F ∗)τ )(ai) =

λiai = F ∗(ai) the initial automorphism, therefore FDF
= F

Proposition 4.31. Let D ∈ LFD(B), then exp(D) : B → B is a lf automorphism.

66



Proof. We first prove that it is a homomorphism, invertible and then locally finite

1. Since Dj(a+ b) = Dj(a) +Dj(b) we have exp(D)(a) + exp(D)(b)

exp(D)(a) exp(D)(b) =
∑
j≥0

Dj(a)

j!

∑
l≥0

Dl(b)

l!

=
∑

j+l≥0

1

j + l

(
j + l

j

)
Dj(a)Dj(b)

=
∑
m≥0

1

m!

 ∑
j+l=m

(
j + l

j

)
Dj(a)Dj(b)


exp(D)(a) exp(D)(b) =

∑
m≥0

Dm(ab)

m
= exp(D)(ab)

2. exp(D) is an homomorphism and exp(−D) is their inverse.

3. IfDs is semisimple then exp(Ds) is semisimple and ifDn is locally nilpotent then exp(Dn)

is unipotent, also ifD admit a decompositionD = Dn+Ds whereDsDn = DnDs we have

the Dunford decomposition is given by exp(D) = exp(Ds +Dn) = exp(Ds) ◦ exp(Dn),

it is unique, therefore is locally finite.

Theorem 4.32. There exist a correspondence between lf derivations and lf automorphism over

B.

D → exp(D)

ev0 ◦
d

dτ
◦ (F ∗)τ ← F

where ev0 consist in evaluate the parameter τ in 0.

Proof. To prove this bijective correspondence, 1) ∂FD
= ∂ and 2) FDF

= F .

1. Since
d

dτ
◦ F ∗

τD = F ∗
τD ◦D and ev0 ◦F ∗

τD = Id hence

DFD
= ev0 ◦

d

dτ
◦ F ∗

τD = ev0 ◦F ∗
τD ◦D = D

2. If b =
∑

σ ασγ
σbσ we define (F ∗)τ (b) =

∑
σ ασγ

σ·τpσ(τ)b
σ with pi(0) = 1
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(F ∗)τ (b) =
∑
σ

ασγ
σ·τpσ(τ)b

σ

d

dτ
◦ (F ∗)τ (b) =

∑
σ

(ln(γσ)γσ·τpσ(τ) + γσ·τ
dpσ(τ)

dτ
)ασb

σ

ev0 ◦(F ∗)τ (b) =
∑
σ

(ln(γσ) +
dpσ(τ)

dτ
|τ=0)ασb

σ

ev0 ◦(F ∗)τ (b) =
∑
σ

ln(γσ)ασb
σ +

∑
σ

dpσ(τ)

dτ
|τ=0ασb

σ

ev0 ◦(F ∗)τ (b) = DFs(b) +DFn(b)

Hereinafter

F ∗
DF

= exp(DF ) = exp(DFs +DFu) = exp(DFs) exp(DFu) = F ∗
s F

∗
u = F ∗

, therefore FDF
= F

Nowicki theorem showed "if G is a connected algebraic group which acts algebraically on

the polynomial ring B, then there exists D ∈ Der(B) with ker(D) = BG. In particular, this

means BG is an algebraically closed subring of B".

Corollary 4.33. Let B = k[n] the polynomial ring in n variables, D ∈ LFD(B)

There exist a locally finite derivation D such that ker(D) = A if only if there exist an

algebraic group G such that BG = A

Proof. If D is lf we have FD is an algebraic automorphism and for theorem 0.12.1 in [9] there

exist G = ⟨FD⟩ ⊂ Aut(B) such that ker(D) = BG. If BG = A, since we have G ↪→ Aut(B),

we choose some g ∈ G, D = ev0 ◦
d

dτ
◦ gτ where ker(D) = A

Corollary 4.34. Let D,D1, D2 ∈ LFD(B), φ ∈ Aut(B), we have the following facts:

1. If D1, D2 are commutative, then D1 +D2 is locally finite and F ∗
D1+D2

= F ∗
D1
◦ F ∗

D2
.

2. F ∗
D ∈ LFAut(B) and (F ∗)−1

D = F ∗
−D.

3. H = {F ∗
D|D ∈ LFD(B)} then ⟨H⟩ is a normal subgroup of Aut(B).

4. F ∗
D ◦D = D ◦ F ∗

D and
d

dτ
◦ F ∗

τD = F ∗
τD ◦D.
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5. ker (D) = BF ∗
D .

6. If D is locally finite, this can be obtained by differentiating F ∗
τD and then evaluating at

τ at zero, i.e.

D =

(
F ∗
τD − Id

τ

) ∣∣∣
τ=0

. In particular if If D is locally nilpotent we have the equivalence D = log(I + F ∗) =∑
i≥1

(−1)i+1 (F
∗
D − Id)i

i
.

7. FD is linearizable if only if D is linearizable.

8. BD = BDs ∩BDn

Proof. 1.

F ∗
D1
◦ F ∗

D2
= expD1 ◦ expD2

=
∑
j≥0

Dj
1

j!
◦
∑
r≥0

Dr
2

r!

=
∑
j≥0

∑
r≥0

1

j!r!
Dj

1 ◦D
r
2

=
∑
m≥0

1

m!

m∑
l=0

m!

l!(m− l)!
Dl

1 ◦Dm−l
2

=
∑
m≥0

(D1 +D2)
m

m!

F ∗
D1
◦ F ∗

D2
= exp(D1 +D2) = F ∗

D1+D2

2. Since D = Ds + Dn and commute, and we have F ∗
Ds

is a semisimple automorphism

and F ∗
Dn

unipotent we have FD is lf automorphism . Since D(−D) = (−D)D we have

F ∗
D ◦ F ∗

−D = F ∗
−D ◦ F ∗

D = F ∗
0 = IdB

3. Let φ ∈ Aut(B), since φ ◦Dj ◦ φ−1 = (φDφ−1)j , we have the exponential maps satisfy

φF ∗
Dφ

−1 = F ∗
φDφ−1 and the conjugation of lf derivations is a lf derivation φDφ−1 ∈

LFD(B) then φ ◦ F ∗
D ◦ φ−1 ∈ H and therefore is in ⟨H⟩.

4.

D ◦ F ∗
D = D ◦

∑
j≥0

Dj

j!
=
∑
j≥0

Dj+1

j!
=
∑
j≥0

Dj

j!
◦D = F ∗

D ◦D

and
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d

dτ
◦ F ∗

τD =
d

dτ
◦
∑
j≥0

τ j
Dj

j!
=
∑
j≥1

τ j−1 Dj

j − 1!
=
∑
j≥0

τ j
Dj+1

j!
= F ∗

τD ◦D

5. If b ∈ ker(D) for j ≥ 1 we have Dj(b) = 0 thus
∑

j≥0

Dj(b)

j!
= b this implies ker(D) ⊂

BF ∗
D . Conversely if b ∈ BF ∗

D we have FD(b) = b, this means Dj(b) = 0 for j ≤ 1, in

particular for j = 1 then BF ∗
D ⊂ ker(D).

6.

F ∗
τD =

∑
j≥0

τ j
Dj

j!
/−D0

F ∗
τD − Id =

∑
j≥1

τ j
Dj

j!
/ · 1

τ

F ∗
τD − Id

τ
=

∑
j≥1

τ j−1D
j

j!
/ ev0(

F ∗
τD − Id

τ

) ∣∣∣
τ=0

= D

The proof of D = log(I+F ) =
∑
i≥1

(−1)i+1 (F
∗
D − Id)i

i!
can be seen in Van de Essen book

[22].

7. Using the fact FφDφ−1 = φFDφ
−1, we can conclude if D is linearizable then φDφ−1 is

linear and FφDφ−1 is linear and thus φFφ−1, the same applies if FD is linearizable.

8. The proof is in Corollary 2.3 [15]

4.3.1 Examples

Example 4.35. Let F be the automorphism

F : C2 → C2

(x, y) 7→ (4x+ 4y2, 2y)

This maps can be decomposed as (4x+4y2, 2y) = (4x, 2y)◦(x+y2, y) where Fu = (x+y2, y)

is unipotent and Fs = (4x, 2y) is semisimple and both commute.

• F τ
s = (4τx, 2τy) then DFs = ln(4)x

∂

∂x
+ ln(2)y

∂

∂y
.
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• F τ
u = (x+ τy2, y) then DFu = y2

∂

∂x
.

Therefore FDs = Fs, DFs = Ds and DFu = Dn, DFs = Ds and

D = (ln(4)x+ y2)
∂

∂x
+ ln(2)y

∂

∂x

Example 4.36. In the linear case, the derivation and automorphism are lf, one very obvious

reason is due to the existence of the characteristic polynomial. If M ∈ GLn, it is diagonalizable

then there exist P,D ∈ GLn such that M = PDP−1 where D = diag(a1, . . . , an) is a diagonal

matrix, then

(PDP−1)τ = PDτP−1

= P diag(aτ1 , . . . , a
τ
n)P

−1 /
d

dτ
d

dτ
((PDP−1)τ ) = P diag(ln(a1)a

τ
1 , . . . , ln(an)a

τ
n)P

−1 / ev0

ev0
d

dτ
((PDP−1)τ ) = P diag(ln(a1), . . . , ln(an))P

−1

The derivation conjugate to linear automorphism is P diag(ln(a1)x1
∂

∂x1
. . .+ln(an)xn

∂

∂xn
)P−1.

Conversely if A ∈Mn A = N + S where NS = NS, S is diagonazable and N is nilpotent,

then exp(A) = exp(M +N) = exp(M) exp(N) is a linear automorphism.

Example 4.37. Let D ∈ SSD(k[3]) given by D = x
∂

∂x
+ (f(x, y)− x∂f(x, y)

∂x
+ z)

∂

∂z
where

f(x, y) ∈ k[x, y]. We compute FD where it is sufficient to calculate it for x, y and z. We obtain

FD(x) = ex, FD(y) = y. By above we have FD(f(x, y)) = f(FD(x), FD(y)) = f(ex, y) and as

D(z + f(x, y)),

FD(z) = FD(z + f(x, y)− f(x, y))

= FD(z + f(x, y))− FD(f(x, y))

= e(z + f(x, y))− f(ex, y)

FD(z) = ez + ef(x, y)− f(ex, y)

Example 4.38. We consider the following flow:

FτD : k × A2 → A2

(τ, (x, y)) 7→ (cos(τ)x− sin(τ)y, sin(τ)x+ cos(τ)y)

is quasi-algebraic linear polynomial flow. We have a not algebraic action give by
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F (x, y) =

cos(τ) − sin(τ)

sin(τ) cos(τ)

 ·
x
y


If we derivate respecto to τ we obtain

d

dτ
F (x, y) =

− sin(τ) − cos(τ)

cos(τ) − sin(τ)

 ·
x
y



Finally we evaluate τ in 0 and obtain DF =

0 −1
1 0

 ·
x
y

 equivalent to the derivation

DF = −y ∂
∂x

+ x
∂

∂y

Note that de action is quasi algebraic and the derivation associated is locally finite.

Example 4.39. Is known the Lie algebra sl2 is generated by the matrices

D1 =

0 1

0 0

 , D2 =

0 0

0 1

 and D3 =

1 0

0 −1


every one can be related with the derivations

sl2 ≃ ⟨Y
∂

∂X
,X

∂

∂Y
,X

∂

∂X
− Y ∂

∂Y
⟩ = CY

∂

∂X

⊕
CX

∂

∂Y

⊕
C(X

∂

∂X
− Y ∂

∂Y
)

and the algebraic group is SL2 is generated by FD1 =

1 0

1 1

 , FD2 =

1 1

0 1

 and FD3 =e 0

0 e−1


SL2 = ⟨(X,Y +X), (X + Y, Y ), (eX, e−1Y )⟩

.
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