
Introduction The Theory Some Properties Final Comments

Quintic Quasitopological Gravity

Luis Guajardo 1

in collaboration with

Adolfo Cisterna 2 Mokthar Hassäıne 1 Julio Oliva 3
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Quasitopological Gravity

Context: AdS/CFT Correspondence

Higher curvature theories have received some attention.

Lovelock’s Theory as a natural extension of General Relativity.

The curvature invariants of k−th order in Lovelock theory
don’t contribute to the field equations if D ≤ 2k.

Contrary to this last property, new theories like
Quasitopological Gravities appears.



Introduction The Theory Some Properties Final Comments

Quasitopological Gravity

First result on 2010 [J Oliva, S. Ray: arxiv.org/1003.4773],
introducing a cubic interaction in D = 5:
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On spacetimes with spherical/planar/hyperbolic symmetry,
the theory has second order field equations.

Among others, this theory has the following properties:

The trace of the field equations is proportional to the
Lagrangian.
Birkhoff’s Theorem.
Interaction with GR and Gauss-Bonnet terms lead to an
asymptotically AdS black hole.
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Quasitopological Gravity

Goals of the speech:

To present a theory in D = 5 which is fifth order in curvature,
but with second order field equations on
spherical/planar/hyperbolic spacetimes.

To give some properties:

Birkhoff’s Theorem.
No ghosts on AdS.
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The Theory

Here we are considering the following gravity theory:
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where L2 stands for the Gauss-Bonnet combination

L2 = R2 − 4RabR
ab + RabcdR

abcd ,

L3 was defined on (1). The quartic quasitopological term L4 can
be written as
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The Theory

The new quintic Quasitopological combination is
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The Theory

And the coefficients that define the new quintic quasi-topological
interaction in (3) are:
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The Theory

The quasitopological gravities are defined up to the addition
of the corresponding Euler densities.

A geometric interpretation of the quasitopological theories
remains as an open problem.
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Some Properties: Birkhoff’s Theorem

Claim: For generic values of the couplings ak , the spherically
(planar or hyperbolic) symmetric solution is static and it is
determined by a quintic polynomial equation.

The proof is done through the Reduced Action approach,
evaluating the Lagrangian on the metric

ds2 = −f (t, r)b2(t, r)dt2+2m(t, r)b(t, r) dtdr+
dr2

f (t, r)
+r2dΣ2

γ .

Here dΣγ denotes the line element of a Euclidean 3d manifold
of constant curvature γ ∈ {±1, 0}.



Introduction The Theory Some Properties Final Comments

Some Properties: Birkhoff’s Theorem

For convenience, we define h(t, r) = f (t, r)− γ. The variation
of the reduced action with respect to h, b,m, and a posteriori
gauge fixing m(t, r) = 0 leads to:

0 = (−24r6h(t, r)a2 − 6r4h(t, r)2a3 − 4r2h(t, r)3a4 + 5h(t, r)4a5 + 6r8)
∂b(t, r)

∂r
(4)

0 = h(t, r)5r−5a5 − h(t, r)4r−3a4 − 2h(t, r)3r−1a3 − 12h(t, r)2ra2 + r5Λ + 6r3h(t, r) + µ(t)r (5)

0 = (−24r6h(t, r)a2 − 6r4h(t, r)2a3 − 4r2h(t, r)3a4 + 5h(t, r)4a5 + 6r8)
∂h(t, r)

∂t
(6)
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Some Properties: Birkhoff’s Theorem

The fact that the values ak are generic induces that
∂h(t, r)

∂t
=
∂b(t, r)

∂r
= 0, hence µ(t) is in fact constant.

From this, b(t) can be absorbed by a time reparametrization,
which means that the metric now reads:

ds2 = −f (r)dt2 +
dr2

f (r)
+ r2dΣ2

γ ,

Now it’s easy to see that the solution is static.
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Some Properties: No-ghosts around AdS

Claim: Around maximally symmetric backgrounds, quintic
quasitopological gravities lead to the same propagator that G.R,
with an effective Newton’s constant which depends on the values
of the couplings ak .

Fast-linearization procedure for gravity theories involving
contractions of the Riemman tensor, ie, L(Rαβρσ, gµν) around
maximally symmetric backgrounds.
[P. Bueno, P.Cano: arxiv.org/1607.06463].
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Some Properties: No-ghosts around AdS

The linearized field equations are written in terms of values
a, b, c , e, which depend on the theory under consideration.

Their method consists in the evaluation of the Lagrangian on
a deformed curvature that depends on two parameters, (α, χ).

The values a, b, c , e can be obtained by taking specific
derivatives and evaluations on this effective action.
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Some Properties: No-ghosts around AdS

In the quintic quasitopological gravity case, we assume that
the maximally symmetric solution has a dressed constant
curvature, λ, which is fixed by the polynomial

P[λ] := a5λ
5 + 6a4λ

4 − 72a3λ
3 + 2592a2λ

2 + 7776(Λ− λ) = 0

Scaling λ→ λ
6 for simplicity, the linearized equations read

dP[λ]

dλ
GL
µν = 0,

where GL
µν is the linearized Einstein tensor.
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Final Comments

Assuming that (5) has a solution f (r) with a single zero
located at r = rh, the Black Hole thermodynamical properties
can be analyzed. In this case we have:
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)
satisfying the 1st Law of Thermodynamics, dM = T dS.
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Final Comments

Quasitopological Gravities shares with its Lovelock counterpart a
lot of properties. For mention a few:

2nd order field equations, although QTG have shown to have
this property on spherically/planar/hyperbolic spacetimes.

The asymptotic behavior allowed by Wheeler’s polynomial
coincides with that of General Relativity.

Birkhoff’s Theorem.
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Final Comments

THANKS FOR YOUR ATTENTION!
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