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Introduction

Let k be a closed field of characteristic 0 and let X be an affine variety on k.
By Aut(X) we mean to the automorphism group of X.

An important aspect in the study of Aut(X) is its geometric structure, it was
proved that there exists a filtration V1 ↪→ V2 ↪→ . . . such that, as set, Aut(X) '
lim−→Vi, where Vi are affine varieties on k and Vi → Vi+1 are closed embeddings, thus

we can endow the final topology on Aut(X) induced by V1 ↪→ V2 ↪→ . . . . Roughly,
we can see to Aut(X) like a “infinite dimensional variety” (see [9]).

Affine ind-variety and the affine ind-schemes are natural generalization of
finite dimensional affine algebraic variety and affine scheme to infinite dimension.
There exist two definition of this structure, one defined by Shafarevich [22, 23] and
developed by himself, as well as other authors [9, 16, 17, 18, 27], see section 0.3.1,
a ind-variety is a set V together a filtration V1 ↪→ V2 ↪→ . . . where:

(1) V ' lim−→Vi,
(2) Vi are finite dimensional varieties on k,
(3) Vi → Vi+1.

Ind-varieties are said to be affine (resp. projective) if Vi are affine (resp. projec-
tive). Morphisms in the category of ind-varieties ara maps ψ : lim−→Vi → lim−→Wj

such that for all i there exists j := j(i) such that ψ|Vi : Vi → Wj is a morphism
of varieties. Ind-groups G are ind-varieties such that the inverse and the binary
operation are morphisms of ind-varieties. In Chapter 1 we present the article “On
toric ind-varieties and pro-affine semigroups”, this article is devoted to ob-
tain a generalization of affine toric variety to the context of affine ind-variety. More
explicitly, the set

(C∗)∞ = {(a1, a2, . . . ) | ai ∈ C∗ and ai 6= 1 for finitely many i}

with the canonical structure of ind-variety given by the filtration C∗
ϕ1
↪→ (C∗)2

ϕ2
↪→ . . . ,

where ϕi (a1, . . . , ai) = (a1, . . . , ai, 1) for all integer i > 0, has a natural structure
of ind-group where the group law is given by component-wise multiplication. An
ind-torus T is an ind-group isomorphic to either an algebraic torus or (C∗)∞ so
the definition proposed generalizes affine toric variety:

Definition A. An affine toric ind-variety is a curve-connected affine ind-variety
V having an ind-torus T as an open subset such that the action of T on itself by
translations extends to a regular action of T on V.

In general an irreducible ind-variety V does not necessarily admit an equivalent
filtration V1 ↪→ V2 ↪→ . . . by irreducible varieties as shown in [3, Remark 4.3],
see also [9, Example 1.6.5]. But an ind-variety V is curve-connected if and only
if there exists an equivalent filtration V1 ↪→ V2 ↪→ . . . by irreducible varieties [9,
Proposition 1.6.3]. So the property of curve-connected in Definition A instead of
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2 INTRODUCTION

irreducible as the finite dimensional definition of affine toric variety allow us to
obtain an equivalent description of affine toric ind-variety expressed in the follow
theorem:

Theorem B. Let V = lim−→Vi be an ind-variety endowed with a regular action of
the ind-torus T . Then V is an affine toric ind-variety with respect to T if and only
if V ' lim−→Wj where Wj are affine toric varieties with acting torus Tj, the closed
embedding ϕj : Wj ↪→Wj+1 are toric morphisms and the ind-torus T is the inductive
limit lim−→Tj.

We introduce the natural dual objects to affine toric ind-varieties that we call
pro-affine semigroups. Let S be a commutative semigroup with a unity and a
descending filtration R1 ⊃ R2 ⊃ . . . of S×S of equivalence relations on S that satisfy
certain compatibility condition with respect to the semigroup operation generating
a semigroup operation in the set of equivalence classes S/Ri, see Section 1.3 for
details. We call a semigroup S endowed with such a filtration a filtered semigroup
to obtain the dual object to afine toric ind-variety presented in the follow definition

Definition C. A pro-affine semigroup S is a filtered semigroup with filtration
R1 ⊃ R2 ⊃ . . . of compatible equivalence relations in S that is complete and such
that S/Ri is an affine semigroup, for all integer i > 0.

Our main result respect to pro-affine semigroups is:

Corollary D. An abstract semigroup S admits a filtration by compatible equiv-
alence relations on S making S a pro-affine semigroup if and only if there exists an
embedding ι : S ↪→ Zω where ι(S) is closed and (πi ◦ ι)(S) is finitely generated for
every i > 0. Moreover, if such a filtration exits, then it is unique (up to equivalence).

Finally, our principal result in chapter 1, is the equivalence of categories between
pro-affine semigroups and affine toric ind-varieties, announced as follow:

Theorem E.

(1) The assignment V(•) is a contravariant functor from the category of pro-
affine semigroups with homomorphisms of semigroups to the category of
affine toric ind-varieties with toric morphisms.

(2) The assignment S(•) is a contravariant functor from the category of affine
toric ind-varieties with toric morphisms to the category of pro-affine semi-
groups with homomorphisms of semigroups.

(3) The pair (V(•),S(•)) is a duality between the categories of affine toric ind-
varieties and pro-affine semigroups.

In Chapter 2 we present the submitted article “Topologically integrable
derivations and additive group action on affine ind-schemes”. In this article
we develop a generalization of the correspondence between locally nilpotent deriva-
tion and Ga-action to the context of affine ind-scheme, we will see in Section 2.2, it
will be necessary to add topological condition on the derivation for to obtain the de-
sired generalization of the correspondence. In Chapter 2, Unlike Chapter 1, we work
with a different notion of affine ind-variety, more in relation with that proposed by
Kambayashi [14, 15] presented in this thesis in section 0.3.2. This approximation is
closer to the Grothendieck theory of ind-representable functors and formal schemes
studied in [1, 10].
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For explanatory and expository purposes of this introduction, we will restrict
ourselves to k a closed field of zero characteristic and to affine ind-variety, but a
broader definition and affine ind-scheme will be developed in Section 2.3.

A commutative topological k-algebra A is said to be an pro-affine k-algebra if
there exists a fundamental system a0 ⊂ a1 ⊂ . . . of neighborhood of 0 consisting in
ideals such that A ' lim←−A/ai and {0} = ∩∞i=0ai. Particularlly topological k-algebra
A is said to be linearly topologized if has a fundamental system a0 ⊂ a1 ⊂ . . .
of neighborhood of 0 consisting in ideals. We call a continuous k-derivation ∂ of
A topologically integrable if the sequence of k-linear endomorphisms (∂n)i∈N of
A converges continuously to the zero homomorphism, that is, if for every f ∈ A
and every i ∈ N, there exists an indices n0, j ∈ N such that ∂n(f + aj) ⊂ ai for
every integer n ≥ n0. This definition coincide with the definition of locally nilpotent
derivation when A is endowed with the discrete topology.

The geometric object proposed by Kambayashi, as alternative definition of affine
ind-variety, is the set Spf(A) of open prime ideals of A, endowed with the subspace
topology inherited from the Zariski topology on the usual prime spectrum Spec(A).
Morphisms between such affine ind-varieties are determined by continuous homo-
morphisms between the corresponding topological algebras, see Section 2.3.

With the previous definition, a simplified version of the main result of Chapter
2 is the following:

Theorem F. Let X = Spf(A) be the affine ind-k-scheme associated to a lin-
early topologized complete k-algebra A which admits a fundamental system of open
neighborhoods of 0 consisting of a countable family of ideals. Then there exists a
one-to-one correspondence between Ga,k-actions on X and topologically integrable
k-derivations of A.

An importan result of the algebraic theory of locally nilpotent derivations is the
existence for every nonzero such derivation ∂ of a k-algebra A of a so-called local
slice, that is, an element s ∈ A such that ∂(s) ∈ ker(∂) but ∂(s) 6= 0. Not every
nonzero topologically integrable derivation k-derivation ∂ of a pro-affine k-algebra
A has a local slice. But, when the topologically integrable derivations admits a local
slices, the theory follow closely the finite-dimensional case. Respect to the previous
coincidence with the classical case we prove the next theorem:

Theorem G. Let A be linearly topologized complete k-algebra and let ∂ : A → A
be a topologically integrable derivation admitting a slice s such that ∂(s) = 1. Then
A ∼= (ker ∂){s} and exp(T∂) coincides with the homomorphism of topological (ker ∂)-
algebras

(ker ∂){s} → (ker ∂){s}{T} ∼= (ker ∂){s, T}, s 7→ s+ T.





Preliminar

Set theory

Let I be a set, and � a preorder relation on I that is � satisfies the transitivity
and the reflexivity, � is said to be right directed if for all α and β elements in I
there exists γ such that α � γ and β � γ. Analogously is said to be left directed
if for all α and β elements in I there exists γ such that γ � α and γ � β. Naturally,
we can define a preorder on a subset J ⊂ I, J is said to be a cofinal subset of I
if for all α ∈ I there exists an element β ∈ J such that α � β. J is said to be a
coinitial subset of I if for all α ∈ I there exists β ∈ J such that β � α. Let Γ be
a family of sets (or sets with additional structure) and a bijective map E : I → Γ of
I a preorder set into Γ, if α ∈ I we will use Eα instead of E(α) for the image of α
and (Eα)α∈I instead Γ when we will want to express a family of set is indexed by a
preorder set.

Categories

By a category C we will refer to all the next information:

(1) A collection of object obj(C).
(2) Sets of morphisms Mor(A,B) defined for each pair of elements A,B ∈

obj(C). The elements in Mor(A,B) are denoted by f : A→ B
(3) A composition operator ◦ : Mor(A,B) ×Mor(B,C) → Mor(A,C). ◦(f, g)

is often written g ◦ f .
Additionally it is necessary:
(a) For any f, g, h is verified h ◦ (g ◦ f) = (h ◦ g) ◦ f when the composition

is defined.
(b) For all A in obj(C) there exists a morphism IA in Mor(A,A) such that

for all f in Mor(A,B), f = IB ◦f and f = f ◦ IA.

For some authors, this definition is of a locally small category. If C is a category
we can match the oposite category to C denoted Copp and defined by obj(Copp) :=
obj(C) but for all A,A′ ∈ obj(Copp) the set of morphism is defined in the other direc-
tion i.e. MorCopp(A,A′) := MorC(A′, A). A covariant functor F from a category C
to a category C′, written F : C → C′, is the next data: A map F : obj(C)→ obj(C′),
also for each pair A1, A2 in obj(C) a map F : Mor(A1, A2) → Mor(F (A1), F (A2))
such that F (IA) = IF (A) for all A ∈ obj(C) and F preserve the composition, i.e.
F (f ′ ◦ f) = F (f ′) ◦ F (f). Contravariant functor C → C′ are defined as covari-
ant functor Copp → C′. Also there exists a definition of composition of covariant
functor, if F : C → C′ and F ′ : C′ → C′′ are covariant functors, by F ′ ◦ F : C → C′′
we will refer to the covariant functor defined naturally. A natural transforma-
tion of covariant functors F : C → C′ and F ′ : C → C′ is a family of morphisms
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6 PRELIMINAR

{m(A) : F (A)→ F ′(A)}A∈obj(C)

F (A)
F (f)

//

m(A)
��

F (A′)

m(A′)
��

F ′(A)
F ′(f)

// F ′(A′)

is commutative for all f ∈ Mor(A,A′). A natural transformation of covariant
functors is said to be natural isomorphism of covariant functors if the elements
in {m(A) : F (A)→ F ′(A)}A∈obj(C) are isomorphisms. We will say just F and F ′ are
naturally isomorphic if there exists a natural isomorphism of covariant functors be-
tween F and F ′. Natural transformation and natural isomorphism on contravariant
functor is defined analogously but with some changes in arrow directions.

Finally, two categories C and C′ are equivalent if there exist covariant functors
F : C → C′ and F ′ : C′ → C such that F ◦ F ′ is naturally isomorphic to the functor
IC′ and F ′ ◦ F is naturally isomorphic to the functor IC . Also, two categories C and
C′ are coequivalent if Copp and C′ are equivalent.

0.0.1. Representable functor. Let C be a category and Set the category of
sets. For each object A ∈ obj(C) we have the contravariant functor MorA from the
category C to the category Set. MorA verifies that for all X an object in obj(C)
is sent to MorA(X) := Mor(A,X) and the morphism f : X → Y in Mor(X,Y )
is sent to MorA(f) : MorA(Y ) → MorA(X) ∈ Mor(MorA(Y ),MorA(X)) where
MorA(f)(φ : Y → A) = φ ◦ f : X → A. A contravariant functor F from a cate-
gory C to the category of sets Set is said to be a representable functor if F is
naturally isomorphic to MorA for some A ∈ obj(C).

0.0.2. Projective limits. Let I be a preorder set. A projective system of
object in a category C relative to the index set I is a pair ((Eα)α∈I , (ϕαβ)) where
(E)α∈I is a family of objects in the category C indexed by I and (ϕαβ) a collec-
tion of morphism ϕαβ : Eβ → Eα defined if α � β, such that ϕαγ = ϕαβ ◦ ϕβγ
when α � β � γ and ϕαα is the identity morphism of Eα. The projective system
((Eα)α∈I , (ϕαβ)) will be denoted by (Eα, ϕαβ) when the additional information are
clear by the context. The projective limit (some authors prefer inverse limit)
of a projective system (Eα, ϕαβ) in a category C, is an object lim←−

α∈I
(Eα, ϕαβ) in the

category, again when the context and the additional information are clear, the ob-
ject lim←−

α∈I
(Eα, ϕαβ) could be expressed by lim←−

α∈I
Eα or simply lim←−Eα, together a collec-

tion of morphism (πβ : lim←−Eα → Eβ)β∈I called the canonical mappings, satisfying
πα = ϕαβ ◦ πβ when α � β. In addition this object and the morphism must be
an universal object in the sense if there exists another object X in the category
and a collection of morphism (π′β : X → Eβ)β∈I there exists a unique morphism
u : X → lim←−Eα such that the diagram
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X

u

��
π′β

��

π′α

��

lim←−Eα

πβ
||

πα
""

Eβ
ϕαβ

// Eα

is commutative.
The projective limit does not necessarily exist but, when it exists and the objects

are sets (possibly with more structure) we can consider Πα∈IEα the product of
the family (Eα)α∈I , with the respective additional structure, and the morphism
(prβ : Πα∈IEα → Eβ)β∈I the natural projections so we can see lim←−Eα as the subset

of x ∈ Πα∈IEα such that prα(x) = ϕαβ ◦ prβ(x) for all α, β ∈ I such that α � β and
(πβ : lim←−Eα → Eβ)β∈I as the restriction of (prβ : Πα∈IEα → Eβ)β∈I .

0.0.3. Inductive limits. Let I be a right directed preorder set. A direct sys-
tem of object in a category C relative to the index set I is a pair ((Eα)α∈I , (ϕαβ))
where (E)α∈I is a family of object in the category C indexed by I and (ϕαβ) a col-
lection of morphism ϕαβ : Eα → Eβ defined if α � β, such that ϕαγ = ϕβγ ◦ ϕαβ
when α � β � γ and ϕαα is the identity morphism of Eα. The direct system
((Eα)α∈I , (ϕαβ)) will be denoted by (Eα, ϕαβ) when the additional information is
clear by the context. The inductive limit (some authors prefer direct limit) of a di-
rect system (Eα, ϕαβ) in a category C, is an object lim−→

α∈I
(Eα, ϕαβ) in the category, again

when the context and the additional information is clear, the object lim−→
α∈I

(Eα, ϕαβ)

could be expressed by lim−→
α∈I

Eα or simply lim−→Eα. Together a collection of morphism

(ıβ : Eβ → lim−→Eα)β∈I , called the canonical mappings, satisfying ıα = ıβ ◦ ϕαβ when
α � β. In addition this object and the morphism must be an universal object in
the sense if there exists another object X in the category and a collection of mor-
phism (ı′β : Eβ → X)β∈I there exists a unique morphism u : lim−→Eα → X such that
the diagram

Eα
ϕαβ

//

ıα

""

ı′α

��

Eβ
ıβ

||

ı′β

��

lim−→Eα

u

��

X

is commutative. The inductive limit does not necessarily exist but, when it
exists and the objects are sets (possibly with more structure) we can see lim←−Eα
as tα∈IEα/ ∼ the disjoint union of the (Eα)α∈I , with the respective additional
structure, and the equivalence relation: eα ∈ Eα and eβ ∈ Eβ then eα ∼ eβ if and
only if there is some γ ∈ I with α ≤ γ and β ≤ γ and such that ϕαγ(eα) = ϕβγ(eβ).
the morphisms are naturally defined as to send an element to its equivalence class
(ıβ : Eβ → tα∈IEα/ ∼)β∈I .
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Example H. Two particular examples of the above construction will appear
several time in the chapter 1 of this thesis. Recall that Zω is the group of arbitrary
sequences of integer numbers. This group is also called the Baer-Specker group
[26]. A sequence a in Zω is denoted by a = (a1, a2, . . . ). Equivalently, Zω is the
projective limit of the system Z1 ← Z2 ← . . . , where the morphisms ϕi : Zi+1 → Zi
are the projections forgetting the last coordinate and the projection πi : Zω → Zi
is forget are coordinates after of coordinate i. Furthermore, the subgroup of Zω of
eventually zero sequences is denoted by Z∞, so a ∈ Z∞ is such that ai = 0 except
for finitely many positive integers i. Equivalently, Z∞ is the inductive limit of the
system Z1 → Z2 → . . . , where the maps are the injections setting the last coordinate
to 0. If we take any inductive or projective subsystem of the system defining Z∞ or
Zω, respectively with the obvious morphisms given by compositions, then the limits
are canonically isomorphic to Z∞ or Zω, respectively.

More generally, a projective or inductive system is called split if every morphism
in the system admits a section. It is a straightforward computation to show that
for any split projective system Zn1 ← Zn2 ← . . . , with a strictly increasing sequence
n1 < n2 < . . . of positive integers, the limit is isomorphic to Zω. Similarly, for
any split inductive system Zn1 → Zn2 → . . . , with a strictly increasing sequence
n1 < n2 < . . . of positive integers, the limit is isomorphic to Z∞

0.1. Algebraic geometry summary

The main object of study in this thesis was introduced by Shafarevich, so in
this section we summarize the main definitions of algebraic geometry in terms of the
ideas proposed by the same author [24, 25] but other definition here can be studied
in [11].

By a ringed space we mean to a pair (X,OX) where X is a topological
space and OX a sheave of ring on X. A morphism between ringed space is a
pair (ϕ,ϕ#) : (X,OX) → (Y,OY ) verifying ϕ : X → Y is a continuous map and
ϕ# : OY → ϕ∗OX the map of sheaves on Y induced by ϕ : X → Y . A ringed
space (X,OX) is a locally ringed space if for all x ∈ X the rings OX,x are
local rings. A morphism of locally ringed spaces is a morphism of ringed spaces

(ϕ,ϕ#) : (X,OX)→ (Y,OY ) such that for each x ∈ X the map induced ϕ#
x : OY,f(x) →

OX,x is a local homomorphism of local ring i.e ϕ#
x (mY,f(x)) ⊂ mX,x.

By a scheme we mean to a ringed space (X,OX) such that X has a cover-
ing of open {Ui}i∈I such that (U,OX|U ) is isomorphic with (Spec(A),O) where

O(Spec(A)) ' A for some ring A. Morphisms between schemes (ϕ,ϕ#) : (X,OX)→
(Y,OY ) are the morphisms corresponding to the local ringed space. Commonly we
will only refer to scheme X instead of (X,OX) and a morphism of schemes by
ϕ : X → Y instead (ϕ,ϕ#) : (X,OX) → (Y,OY ). By affine scheme we mean to X
such that X = Spec(A) for some ring A ' OX(X). If we fix an scheme S, by a
Scheme on S we mean to a scheme X together a morphism of scheme ϕ : X → S,
commonly if S = Spec(A) for some ring A we say a scheme on A instead a scheme
on Spec(A). Particularly all the rings are Z-algebras so we can see any scheme X
as a scheme on Z.

0.1.0.1. Some properties of schemes. Let X be a scheme, X is said to be re-
duced if for all open U ⊂ X the rings OX(U) are reduced i.e OX(U) has no
nilpotent elements.
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Definition A. A morphism of schemes ϕ : Y → X is a closed embedding if
every point x ∈ X has an affine neighbourhood U such that ϕ−1(U) ⊂ Y is an affine

subscheme and the homomorphism ϕ#
U : OX(U)→ OY (ϕ−1(U)) is surjective.

Recall a scheme X is said to be separated if the diagonal morphism ∆ :=
(id, id) : X → X×Spec(Z)X is a closed embedding. Finally if X is a scheme on a ring
B, X is said of finite type on B if there exists a finite covering {Ui}i∈I of X such
that Ui = Spec(Ai) and Ai are of finite type over B, equivalently, Ai are B-algebras
finitely generated as B-algebra.

Definition B. A variety over an algebraically closed field k is a reduced sep-
arated scheme of finite type over k,

Morphisms of varieties are morphisms of schemes.
other authors define the varieties similarly but with the additional property of

irreducibility [11].

0.2. Linear topology on Groups, Rings and Modules

In this section I make a summary about the principal definitions and results in
the literature relative to linear topology on groups, rings and modules. Principally
the reference to these contents is [21, Chapter 9]

Definition A. A topological group is a group G with a topology such that
the mappings M1 : G × G → G defined as (g, g′) 7→ g + g′ and M2 : G → G defined
as g 7→ −g are continuous, where G×G is endowed with the product topology.

The continuity of M1 and M2 is equivalent with the continuity of the map
M3 : G × G → G defined as (g, g′) 7→ g − g′. In addition, we can conclude, for
all g′ ∈ G the continuity of the mappings Mg’+ : G → G defined g 7→ g′ + g and
Mg’- : G → G defined g 7→ g′ − g. Naturally the morphisms between topological
groups are defined as continuous homomorphisms.

If we endow of group structure and a topology to a set G, the group structure and
a the topology are said to be compatible if the mappings in the previous definition
are continuous.

Example B. The discrete topology and the group structure of any group G are
compatible.

Example C. The additive group structure and the Zariski topology on Z, are
not compatible since that the preimage of {0} in Z× Z, the set {(g,−g) ∈ Z× Z},
is not a closed set, because any (h, h′) in the complement of {(g,−g) ∈ Z× Z} and
neighborhood U of (h, h′) intersected with {(g,−g) ∈ Z× Z} is a set no empty.

Through this thesis, we will be interested in a special class of topological group
G with a necessary property when we study geometric objects matched with G.

Definition D. Let X := (X,T) be a topological space, a fundamental system
of neighborhoods of a set A ⊂ X is any S ⊂ T such that for each neighborhood V
of A there is a neighborhood W ∈ S such that W ⊂ V .

When A = {x} ⊂ X we are going to refer to a fundamental system of a point x.
So, from now on,
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ours topological group always will be assumed with a fundamental
system of neighborhoods S, of the neutral element 0 of G, consisting in

a countable family of subgroups of G.

This assumption gives us the possibility to obtain a fundamental system (Hn)n∈N
indexed by the set N of non-negative integers with the property Hn ⊂ Hm when
m ≤ n and H0 = G. The topologies verifying the previous condition will be called
linear topology and we will refer to S briefly as the fundamental system of G.

Example E. Any group G endowed with the discrete topology is a topological
group with linear topology, where the fundamental system is the family S = {{0}}.

Example F. (R,+) with de euclidean topology and the fundamental system the

family of intervals S = {(− 1

n
,

1

n
) | n ∈ N}.

Proposition G. Let G be a topological group with fundamental system S then
the topology is the family of set V verifying the condition ”If an element g ∈ G is an
element in V , there exists H ∈ S such that the set g +H is contained in V ”

Proof. Let V be an open of G and g an element of V , 0 is an element in −g+V
so there exists H ∈ S such that H ⊂ −g + V then g +H ⊂ V . Also the sets g +H
are open because is the preimage of H under continuous map M(-g)+ thus the set V
with the condition ”If an element g ∈ G is an element in V , there exists H ∈ S such
that the set g +H is contained in V ” are open. �

Easily with the proof in the previous proposition we can conclude the family
B = {g + H | g ∈ G and H ∈ S} is a basis of the topology of G and another
fundamental system gives us the same topology. Also is posible to conclude that our
topological group are first-countable topological space.

Remark H. If H < G is an open subgroup the group G/H endowed with
the discrete topology is isomorphic as topological group to G/H with the quotient
topology defined by the relation g ∼ g′ if g − g′ ∈ H.

More general, for all subgroup Hα of G the subspace topology on Hα is compati-
ble with the operation preserved of G, so the subgroup will be consider as topological
group with subspace topology also the quotient G/Hα will be endowed with the quo-
tient topology and the quotient map will be denoted Pα : G→ G/Hα.

Lemma I. Let G be a topological group and Hα < Hβ < G subgroups. The
natural map Pαβ : G/Hβ → G/Hα is continuous.

Proof. The continuity of Pαβ is deduced of the equality Pα = Pαβ ◦Pβ and the
definition of the quotient map. �

0.2.1. Complete topological group. Let G be a topological group with fun-
damental system (Hα)α∈J , the property of being separated as topological space is
equivalent with the intersection of all open groups consist of the set {0} and equiv-
alent with the intersection of open groups in the fundamental system consist of the
set {0}. If (Hα)α∈I is the family of open subgroups of G where I is a preordered
set and the preorder is given by α � β if Hβ ⊂ Hα. We can define the projective
system (G/Hα, Pαβ) of topological group and the respective projective limit the sep-

arated topological group Ĝ := lim←−
α∈I

G/Hα with the structure induced by Πα∈IG/Hα
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together the continuous homomorphism πα : Ĝ → Hα. In our particular case, with

the assumption of a countable fundamental system, Ĝ is a topological group in our
sense because for all α ∈ I the topological groups G/Hα have the discrete topology

then (Kerπα)α∈I is a fundamental system of Ĝ. By c : G→ lim←−
α∈I

G/Hα we will refer

to the map induced by the morphisms Pα : G → G/Hα, α ∈ I this map is a homo-

morphism of topological groups whose image is a dense subgroup of Ĝ and whose
kernel is equal to the closure of {0} in G. Furthermore, the induced morphism of
topological groups c : G→ c(G) is open [4, III.7.3 Proposition 2].

Proposition J. Let G be a topological group with fundamental system (Hα)α∈J
and (Hα)α∈I the family of open subgroups of G then it is verified that Ĝ is a separated
topological group isomorphic as topological group to lim←−

α∈J
G/Hα endowed with the

inverse topology.

Proof. Ĝ is separated because ∩α∈I Kerπα = {0}. By the definition of funda-
mental system of neighborhood, the family J is a cofinal subset of direct set I so the

canonical mapping Ĝ→ lim←−
α∈J

G/Hα defined by x 7→ (πα(x))α∈J is a bijective map by

[4, III.7.2, Proposition 3] and by [5, III.7.2] is a continuous homomorphism, easily
we can see the inverse of a bijective homomorphism is homomorphism. In addition
I is a right directed set so by [4, I.4.4] the map is an homeomorphism. �

Proposition K. With the notation in this section, the continuous homomor-

phism πα : Ĝ→ G/Hα are surjective.

Proof. By the existence of a countable fundamental system and the morphisms
Pαβ are surjective, we can use directly the corollary I of Mittag-Leffler theorem [4,
II.3.5 Corollary I]. �

The topological group Ĝ will be called the separated completion of the topo-
logical group G and we will say that G is complete if the continuous homomorphism

c : G→ Ĝ is an isomorphism of topological group.

Proposition L. Let G and G′ be topological groups with respective separated

completions c : G → Ĝ and c′ : G′ → Ĝ′. Then for every homomorphism of topo-
logical groups h : G→ G′ there exists a unique homomorphism of topological groups

ĥ : Ĝ→ Ĝ′ such that c′ ◦ h = ĥ ◦ c.
Conversely, every homomorphism of topological groups ĥ : Ĝ → Ĝ′ is uniquely

determined by its ”restriction” ĥ ◦ c : G→ Ĝ′ to G.

Proof. The first assertion is an immediate consequence of the universal prop-

erty of the separated completion homomorphism c : G→ Ĝ [4, III.3.4 Proposition 8],
which says that given a homomorphism of topological groups f : G→ G′′ where G′′

is complete, there exists a unique homomorphism of topological groups f̂ : Ĝ→ G′′

such that f = f̂ ◦ c. The second assertion follows from the fact that the image of

the separated completion homomorphism c : G→ Ĝ is dense. �
Lemma M. Let (Gn)n∈N be an inverse system of complete topological groups with

surjective transition homomorphisms pm,n : Gm → Gn for every m ≥ n ≥ 0 and Sn

the respective fundamental systems. Then the inverse limit G = lim←−n∈NGn endowed
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with the inverse limit topology is a complete topological group and each canonical
projection p̂n : G → Gn is a surjective homomorphism of topological groups.

Proof. The fact that G endowed with the inverse limit topology is a linearly

topologized abelian group with fundamental system ∪n∈N{P̂−1n (H) | H ∈ Sn} and
the fact that the canonical projections p̂n : G → Gn are continous homomorphisms
are clear. The surjectivity of p̂n follows again from Mittag-Leffler theorem [4, II.3.5
Corollary I]. Finally, since each Gn is complete, it follows from [4, II.3.5 Corollary
to Proposition 10] that G is complete. �

0.2.2. Recollection on topological rings. A topological ring A is a topolog-
ical group with a multiplicative structure such that multiplication map A×A → A
is continuous. Like the topological group, from now, we will assume the topological
ring A endowed with a linear topology where the fundamental system of neighbor-
hoods of 0 consist in a countable family (an)n∈N of ideals of A. Again, we will be
able to assume a fundamental system such that an ⊂ am when m ≤ n and a0 = A
the continuous homomorphism between topological ring will be refer as homomor-
phism of topological ring. A topological ring is said to be complete if is complete
in the sense of topological group. Below, I present a summary of basic results and
definitions contained in [15] relating to A a separated and complete topological ring.

Proposition N. The group of units U(A) of A is topologically closed.

Proposition O. Let b be a closed ideal in A and Ai := A/ai, then

A/b ' lim←−(Ai)/πi(b)

Proposition P. For any maximal ideal m ⊂ A, the following conditions are
equivalent:

(1) m is closed;
(2) For some i, πi(m) ( Ai;
(3) For some i, ai ⊂ m;
(4) For some i, m = π−1i (m) for some maximal ideal in A;
(5) m is open.

Proposition Q. For any prime ideal p ⊂ A, the following conditions are equiv-
alent:

(1) p is open;
(2) For some i, p = π−1i (πi(p));

(3) For some j and a prime ideal q, p = π−1j (πj(q)).

In accordance with the definitions of Kambayashi [15], let A be a topological
ring, the formal nilradical of A is the ideal N(A) :=

⋂
p⊂A p, with the p’s range

the open prime ideal of A. The formal radical of A is the ideal R(A) :=
⋂

m⊂Am,
with the m’s ranges the open maximal ideal of A. Finally for all a ideal of A, the
formal radical of a is defined by

√
a :=

⋂
a⊂p p with p’s again ranging the open prime

ideal of A. The previous definition let us make two type of reduction of A, basically
Ared := A/N(A) and ARED := lim←−((Ai)red)[14, 15] so A is said to be reduced if
A = Ared and strongly reduced if A = ARED.
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0.2.2.1. Localization. Let f be an element in A a topological ring, f is said to
be topologically nilpotent if limN→∞ fN = 0. By a multiplicative set S in A
a topological ring we mean to a S ⊂ A such that 1 ∈ S and 0 /∈ S so S−1A
is the typical normalization and by AS we mean to lim←−S

−1
i Ai endowed with the

topology co-induced by the map iS : A → AS i.e. the linear system of AS is defined
by {〈ϕ(ai)〉}i∈N where 〈ϕ(ai)〉 is the ideal generated by ϕ(ai). Since lim←−S

−1
i Ai '

lim←−S
−1
i Ai we will assume S is a closed set. Principal localizations are to consider

S = A − p for some open prime ideal p or S = {fn | n non negative integer} for
some f ∈ A non topologically nilpotent. These localization are denoted Ap and Af
respectivelly.

Proposition R. Let ϕ : A → B be a homomorphism of topological ring, if
ϕ(f) = g then the ring homomorphism ϕf : Af → Bg induced by ϕ is continu-
ous.

Proof. Let 〈ig(b)〉 basic open neighborhood of 0 in Bg where ig : B → Bg.
There exists a basic open neighborhood of 0 in A such that ϕ(a) ⊂ b. We use the
commutative diagram

A ϕ
//

if
��

B
ig
��

Af ϕf
// Bg

to conclude ϕf (〈if (a)〉) ⊂ 〈ig(b)〉
�

0.2.2.2. Topological modules. An A-module M over a topological ring A is called
topological A-module if M is a topological group and the scalar multiplication
A×M →M is continuous, obviously A×M is endowed with product topology. the
topological A-modules M will be assumed with a linear topology with fundamental
system (Mn)n∈N of topological sub A-modules with the property Mn ⊂ Mm when
m ≤ n and M0 = M . Continuous homomorphisms between topological A-modules
will be called homomorphism of topological A-modules.

0.2.2.3. Topological Algebras. A R-algebra A over a topological ring R, is called
a topological R-algebra if A is topological ring and the scalar multiplication
R ×A → A is continuous. When the context is clear we will omite the ring R and
just we will say a topological algebra instead of topological R-algebra. The continuos
R-homomorphism between topological algebras will be called homomorphisms of
topological algebras. By the continuity of homomorphisms ϕ : A → B between the
topological algebras A and B, For all bm there exists an such that ϕ(an) ⊂ bm and
the next diagram is commutative:

A //

��

B

��

A/an // B/bm
Special case is when R is a Field k endowed with the discrete topology. A

topological k-algebras A is said to be pro-affine if is complete and separated.
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If A and B are pro-affine k-algebras with fundamental system of neighborhoods
of 0 (an)n∈N and (bn)n∈N respectively, the product A × B is pro-affine k-algebra
with fundamental system of neighborhoods of 0 {an× bn | n ∈ N} and the complete

tensor product A⊗̂kB := Â ⊗k B also is pro-affine with fundamental system {an ⊗k

B +A⊗k bn | n ∈ N} of A⊗k B [15].

Theorem S. Let A be a pro-affine k-algebra. For the canonical map ρ : A →
ARED the following are verified:

(1) ker(ρ) = N(A);
(2) The sequence 0 → N(A) → A → ARED is exact and im(ρ) is dense in
ARED;

(3) N(A) = {f ∈ A | limN→∞ fN = 0} the set of topologically nilpotent ele-
ments of A.

A proof of previous theorem is proposed in [14, Proposition 1.2]. Pro-affine k-
algebra is said to be algebraic over k or k-algebraic if we can find a fundamental
system of neighborhoods of 0 consist in a countable family (an)n∈N of ideals of A
such that A/αi are finitely generated over k.

Theorem T (Nullstellensatz.). If a pro-affine k-algebra A is algebraic over k,
then R(A) = N(A).

0.3. Ind-Geometry

A motivation to study the Ind-geometry is the Jacobian conjeture. Basically the
Jacobian conjeture proposes:

Let k be a field, if the characteristic of k is zero, then every algebraic
endomorphism P of an affine space An over k, whose Jacobian is a non-zero

constant, is an automorphism.

So, a way to understand this conjeture, it is to study Aut(An) the automorphisms
group of affine space n dimensional. Shafarevich [22, 23] noticed that it is possible
to give a geometry structure to Aut(An) and this structure could be interpreted as
a natural generalization of algebraic group to infinite dimensional algebraic group.
Kambayashi [13] noted some details in the theory proposed by Shafarevich and gives
a different way more general to approximate infinite dimensional algebraic varieties
[14, 15]. In this section I make a brief summary of both theories and the main
results in the literature used in the articles in this thesis presented.

0.3.1. Shafarevich’s Ind-varieties. For the study of the structure proposed
by Shafarevich I propose the lecture of [17, Chapter 4] also [9, 27], those works
have a detailed review of the concepts in current terminology also important results
and examples used in the development of this thesis.

Definition A. An ind-variety over a field k is the inductive limit V = lim−→Vi
of the direct system induced by a filtration V1 ↪→ V2 ↪→ . . . such that each Vn is a
finite-dimensional algebraic variety over k and each inclusion Vi ↪→ Vi+1 are closed
embeddings.

And ind-variety is said to be affine if each Vi is affine and projective if each Vi
is projective. The ind-variety has a structure of topological space with the inductive
topology, that is: For all i ∈ N ıi : Vi → V are the canonical mappings, a subset
U ⊂ V is an open if ıi(U)−1 is an open in Vi for all i ∈ N. Naturally we can identify
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each Vi as a subset of V so we can see V1 ⊂ V2 ⊂ · · · ⊂ V and for the above we will
prefer to use V = ∪i∈NVi and a subset U ⊂ V an open in V if U∩Vi is open in each Vi,
this topology will be called the Ind-topology. A morphism between ind-varieties
V and V ′ with filtrations {Vi}i∈N and {V ′j }j∈N respectively, is a map ϕ : V → V ′
satisfying that for every i ∈ N there exists a j ∈ N such that ϕ (Vi) ⊂ V ′j and

ϕ|Vi : Vi → V ′j is a morphism of algebraic varieties. A morphism ϕ of ind-varieties is

an isomorphism if ϕ is bijective and ϕ−1 is a morphism of ind-varieties. Furthermore,
two filtrations V1 ↪→ V2 ↪→ . . . and W1 ↪→ W2 ↪→ . . . on the same underlying set
V are equivalent if the identity map is a isomorphism of ind-varieties. If we take
any subfiltration of the filtration V1 ↪→ V2 ↪→ . . . , the ind-varieties obtained by both
filtrations are equivalent.

Definition B. An ind-group is an ind-variety G endowed with a group structure
such that the inversion and multiplication maps are morphisms of ind-varieties.

Example C. If V is an algebraic variety, V has natural structure of Ind-variety
with filtration Vi = V for all i ∈ N and closed embedding the identity morphism.

Example D. Let V and W be ind-varieties with filtration V1 ⊂ V2 ⊂ . . . and
W1 ⊂ W2 ⊂ . . . respectively V × W has structure of ind-variety with filtration
V1 ×W1 ⊂ V2 ×W2 ⊂ . . . where Vi ×Wi is the product variety induced by Vi and
Wi.

Example E.

(1) The infinite-dimensional vector space

C∞ := {(a1, . . . ) | ai ∈ C and ai 6= 0 for finitely many i}
has a canonical structure of ind-variety given by the filtration C

ϕ1
↪→ C2 ϕ2

↪→
C3 ϕ3

↪→ . . . where ϕn(a1, . . . , ai) = (a1, . . . , ai, 0), for all i > 0. This ind-
variety is called the infinite-dimensional affine space. Remark that we can
change the complex number 0 in the filtration definition of C∞ and in
(i+ 1)-th coordinate of ϕi by any other number. The ind-variety obtained
this way is easily seen to be isomorphic to C∞. For instance, we denote
by C∞1 the ind-variety isomorphic to the infinite-dimensional affine space
given by C∞1 := {(a1, . . . ) | ai ∈ C and ai 6= 1 for finitely many i}.

(2) The set

(C∗)∞ = {(a1, a2, . . . ) | ai ∈ C∗ and ai 6= 1 for finitely many i}
has a canonical structure of ind-group given by the filtration C∗

ϕ1
↪→ (C∗)2

ϕ2
↪→

(C∗)3
ϕ3
↪→ . . . , where ϕi (a1, . . . , ai) = (a1, . . . , ai, 1) for all i > 0. This

ind-variety is an open set in the infinite-dimensional affine space. This
follows straightforward from the isomorphism C∞ ' C∞1 above. Remark
that (C∗)∞ has a natural structure of ind-group given by component-wise
multiplication.

Example F. Let V be an affine algebraic variety then Aut(V ) has structure of
affine ind-group [9, Theorem 5.1.1]

If we endow A1
k with structure of ind-variety, the morphisms V → A1

k are the
elements in k[V] := lim←−k[Vi]. This ring is called the ring of regular function on V
and the element in k[V] are the regular map on V. Additionally k[V] is endowed with
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the projective topology induced by k[Vi] with the discrete topology. Easily we can
see, since the definition of morphism between ind-varieties, a morphism ϕ : V → W
induces a continuous k-homomorphism ϕ∗ : k[W] → k[V] so we can identify each
point v in an ind-variety V with the continuous k-homomorphism k[V]→ k defined
by f 7→ f(v).

0.3.2. Kambayashi’s affine ind-scheme. The study of Kambayashi gives us
a notion of Ind-variety more in relation with the modern idea of affine scheme,
Kambayashi defined the affine ind-scheme also the affine ind-variety through of a
special ring and making a special ringed space. Kambayashi in [15] showed a detailed
construction of this object and interesting example about this theory. In this section
I make a summary and a generalization about the principal concept and results.

Definition G. Let A be a topological ring, the formal spectrum and the
formal maximal spectrum of A are the topological space Spf(A) = {p ∈ A |
p open prime ideal} and Spfm(A) = {m ∈ A | m open maximal ideal} with the
topology defined by declaring that the closed sets are the subsets of the form

V (E) = {p ∈ Spf(A) | p ⊇ E}
and

V (E) = {m ∈ Spfm(A) | m ⊇ E}
respectively, where E ranges through all subsets of A. This topology we will called
it the Zariski topology on Spf(A) and Spfm(A).

The previous sets define a topology this is possible to verify as a consequence of
the below proposition [14, Proposition 2.1.1]

Proposition H. Let E be a subset of A, the following sentences are verifying:

(1) Let a := 〈E〉 the ideal generated in A by E, and let
√
a. Then, V (a) =

V (E) = V (
√
a);

(2) V ({0}) = Spf(A), V ({1}) = φ;
(3) Given a family {Ei}i∈I of subset of A. then

V
(⋃

i∈I
Ei

)
=
⋂

i∈I
V (Ei)

;
(4) For ideals b and c, then V (bc) = V (b) ∪ V (c).

Like the Zariski topology on affine scheme the sets D(f) := Spf(A)\V ({f})
where f ranges through all elements of A are the principal open and give us a basis
of the Zariski topology of Spf(A) (analogous with Spfm(A)) as can be concluded
from the following proposition.

Proposition I. Let f , g and a family {fi}i∈I be elements of A. Then,

(1) D(f) ∩D(g) = D(f · g);
(2)

⋃
α∈I D(fi) = V (〈{fi}i∈I〉)c;

(3) D(f) = φ⇔ f ∈ N(A)⇔ f is topologically nilpotent;
(4) If A is a separated and complete ring, then D(f) = Spf(A)⇔ f is a unit;

(5) D(g) ⊂ D(f)⇔ g ∈
√
〈{f}〉.

The next proposition was proposed by Kambayashi for make the ringed space
structure on Spf(A) when A is a separated and complete topological ring.
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Proposition J. Let A be a separated and complete topological ring. If U =
D(f), V = D(g), OSpf(A)(U) := Af and OSpf(A)(V ) := Ag

(1) If U = V , then OSpf(A)(U) ' OSpf(A)(V )
(2) If V ⊂ U , then there exit a canonical homomorphism of topological ring

ρUV : OSpf(A)(U)→ OSpf(A)(V )
(3) Let U, V be as above and W = D(h) for some h ∈ A. If W ⊂ V ⊂ U , we

have ρUU = IdOSpf(A)(U), ρUW = ρVW ◦ ρUV
Finally the structural sheave on Spf(A) a separated complete topological ring

A is defined matched to an open U ⊂ Spf(A) the inverse limit OSpf(A)(U) :=
lim←−OSpf(A)(V ) where V ranges through all the standard open V ⊂ U .

With the previous information [15, Theorem 2.2.3] defines a sheaf on Spf(A) of
topological ring for some separated complete topological ring so the affine ind-scheme
matched to a separated complete topological ring A is denoted an defined by XA :=
(Spf(A),OSpf(A)) Particularly if A is an pro-affine k-algebra similarly the affine
ind-variety matched to A is denoted and defined by VA := (Spfm(A),OSpfm(A)).

We can see if V ' lim−→Vi is an affine ind-variety on a closed field k in the

Shafarevich sense, k[Vi] are reduced k-algebras finitely generated, additionally the
closed embedding Vi ↪→ Vi+1 the respective map k[Vi+1] → k[Vi] are surjective k-
homomorphisms and if we endow all k[Vi] with the discrete topology the topological
k-algebra k[V] := lim←−k[Vi] is a strongly reduced algebraic pro-affine k-algebra with

fundamental system (ker(k[V]→ k[Vi])i∈N and we can obtain a affine ind-variety in
the Kambayashi sense Vk[V] := (Spfm(k[V]),Ok[V]). In the other direction, If A is
a strongly reduced algebraic pro-affine k-algebra, with fundamental system {ai}i∈N
such that Ai := A/ai is reduced we take the affine varieties Vi := (Spec(Ai),OAi)
naturally the surjective morphism Ai+1 → Ai defines an affine ind-variety in Sha-
farevich sense.

0.3.2.1. Morphism. As usual in the algebraic geometry we defined the affine
ind-scheme step to step. First we defined a set, then we endow a topology on
the set and finally we gave it a topological ring structure on the topology space.
A first approximation to the morphism in this try of category was proposed in
[14]. A homomorphism of topological ring ϕ : A → B induces a continuos map
ϕ∗ : Spf(B)→ Spf(A) So the morphisms between affine ind-schemes are the induced
by the corresponding continuous homomorphism between the respective topological
rings

0.4. Locally nilpotent derivation

Locally nilpotent derivation on rings are closely related with the geometric struc-
ture of the corresponding scheme. A complete study of this special derivation will
be study in [8].

Let B be a k-algebra, a derivation on B is a map δ : B → B such that for
a, b ∈ B verifies δ(a+ b) = δ(a) + δ(b) and δ(ab) = aδ(b) + bδ(a).

Example A. If f ∈ k[x1, . . . xn],f
d

dxi
: k[x1, . . . xn] → k[x1, . . . xn] is a deriva-

tion for all i.

A derivation on B is said to be locally nilpotent (lnd henceforth) if for all

a ∈ B there exists a non negative integer n depending of a such that δ(n)(a) = 0.
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Example B. xn
d

dy
: k[x, y]→ k[x, y] is a lnd. Analogously yn

d

dx
also is lnd.

If Der(B) is the set of derivations on B, by LND(B) we will refer to the set
of δ ∈ Der(B) such that δ is lnd and by Derk(B) the set of δ ∈ Der(B) such
that δ(k) = 0 for all k ∈ k. If M is an abelian monoid a M -graded k-algebra is
an associative, commutative k-algebra with unity and a direct sum decomposition
B =

⊕
m∈M Bm where Bm are k-submodules and BmBm′ ⊂ Bm+m′ . The Bm are

the M -homogenous component and we will say that the elements a in Bm for some
m ∈ M are M -homogeneous elements of degree m. Special derivation are defined
on M -graded k-algebra B, a derivation δ ∈ Der(B) is said to be homogenous
if we send homogeneous elements into homogeneous elements and by the degree
of a homogenous derivation δ we mean to the element e ∈ M such that δBm ⊂
Bm+e for all m ∈ M . The degree of δ is denoted by deg δ. The study of locally
nilpotent derivation has importance since the geometric perspective in particular
if X is an affine variety and O(X) the rings of regular function, there exists a
correspondence between LND(O(X)) and {λ : Ga ×X → X | λ is a regular action}
where the correspondence is defined as follows: Let λ : Ga × X → X be a regular
Ga-action on X we can match it a locally nilpotent derivation δλ : O(X) → O(X)

defined by f 7→ [
d

dt
◦λ∗(f)]t=0 furthermore, every regular Ga-action on X arises from

such a locally nilpotent derivation δλ. The regular Ga-action λδ : Ga×X → X is the
comorphism of λ∗δ : O(X) → O(X) ⊗ k[t] ' O(X)[t] defined by f 7→ exp(tδ)(f) :=
∑∞

i=0

tiδ(i)(f)

i!
. Commonly we will refer to a regular action λ : G × X → X of

an algebraic group G as a homomorphism of group λ : G → Aut(X), naturally by
Aut(X) we will refer to the automorphism group of X. Finally we will say that two
LNDs δ and δ′ on B are equivalent if ker δ = ker δ′ Geometrically this means that
the generic orbits of the associated Ga-actions coincide.

0.4.1. Locally finite iterative higher derivation. Sometimes we work with
rings B such that X = Spec(B) is an affine variety over an arbitrary field k, previous
correspondence fails when k has characteristic different of 0 because in the proof we
need to divide for, possibly, some integers equal to 0 module the characteristic of k.

Definition C. Let ∂ = {∂(i)}i∈Z≥0
be a sequence of k-linear operators on B.

We say that ∂ is a locally finite iterative higher derivation (LFIHD henceforth)
if it satisfies the following conditions:

(1) The operator ∂(0) is the identity map.
(2) For any i ∈ Z≥0 anf for all f1, f2 ∈ B we have the Leiniz rule

∂(i)(f1f2) =

i∑

j=0

∂(j)(f1)∂
(i−j)(f2)

.
(3) The sequence ∂ is locally finite, i.2. for any f ∈ B there exists a positive

integer n such that for any i ≥ n, ∂(f) = 0.
(4) For all i, j ∈ Z≥0 and for any regular function f ∈ B we have

(
∂(i) ◦ ∂(j)

)
(f) =

(
i+ j

i

)
∂(i+j)(f)

.
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When ∂ verifies only (1) and (2), ∂ is said to be Hasse-Schmidt derivation [12]
and if ∂ verifies only (1), (2) and (4) ∂ is said to be iterative higher derivation.

With the same idea in the previous section we have a correspondence between
Ga-action on X and LFIHD on B [20]. An easy computation proves that when the

characteristic of k is 0 then ∂ is uniquelly determinated by ∂(1).

0.5. Affine toric variety

An algebraic torus T is an algebraic group isomorphic to Gn
m where n is a non

negative integer. The algebraic torus is matched with free abelian group of rank n

M := {m : T→ Gm | m is a homomorphism group}
N := {u : Gm → T | u is a homomorphism group}

and a bilinear map 〈 , 〉 : M × N → Z defined by (m,u) 7→ 〈m,u〉 := z where z
is the integer such that m ◦ u(t) = tz. Naturally we can identify M = Hom(N,Z)
N = Hom(M,Z) and the bilinear map is expressed as 〈m,u〉 = m(u). The previous
definition gives us the identification k[T] the ring of regular maps of T with k[M ] :=⊕

m∈M kχm the M -graduated k-algebra where the multiplication rule is given by

χm · χm′ = χm+m′ and χ0 = 1.
By an affine toric variety we will refer to an irreducible affine algebraic variety

X containing a torus T as a Zariski open subset such that the action of T on itself
extends to an algebraic action of T on X. This definition is the proposed in [2]
so we don’t assume the property of normality on X unlike other authors [28, 7].
The category of affine toric varieties is dual with the opposite category of affine
semigroups. An affine semigroup is a finitely generated monoid S embeddable
in a free abelian group M of rank n, S is said to be saturated if for all m ∈ M
such that there exists a positive integers l verifying l · m is an element in S then
m ∈ S. To obtain the correspondence between objects, if S is an affine semigroup,
the algebraic affine variety XS = Spec(k[S]) matched is affine toric variety where
k[S] :=

⊕
m∈S χ

m and the torus T = Spec(k[M ]) corresponding to the free abelian
group M = ZS := {m1 − m2 | m1,m2 ∈ S}. In the other direction if X is an
affine toric variety with torus T we can use the dominant inclusion T ⊂ X so
k[X] ⊂ k[T] ' k[M ] thus the affine semigroup SX matched to X is the semigroup
{m ∈M | χm ∈ k[X]}.

Although our interest is in non necessarily normal affine toric variety but the
property of normality on an affine toric variety will be so used in this paper, normal
affine toric varieties are in correspondence with saturated affine semigroups and
object in the convex geometry. These objects give us several tools to advance the
study of this type of algebraic varieties.
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CHAPTER 1

On toric ind-varieties and pro-affine semigroups

In this chapter, I present the research developed with Alvaro Liendo.
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ON TORIC IND-VARIETIES AND PRO-AFFINE SEMIGROUPS

ROBERTO DÍAZ AND ALVARO LIENDO

ABSTRACT. An ind-variety is an inductive limit of closed embeddings of algebraic vari-
eties and an ind-group is a group object in the category of ind-varieties. These notions were
first introduced by Shafarevich in the study of the automorphism group of affine spaces
and have been studied by many authors afterwards. An ind-torus is an ind-group obtained
as an inductive limit of closed embeddings of algebraic tori that are also algebraic group
homomorphisms. In this paper, we introduce the natural definition of toric ind-varieties as
ind-varieties having an ind-torus as an open set and such that the action of the ind-torus on
itself by translations extends to a regular action on the whole ind-variety. We are brought to
introduce and study pro-affine semigroups, which turn out to be unital semigroups isomor-
phic to closed subsemigroups of the group of arbitrary integer sequences with the product
topology such that their projection to the first i coordinates is finitely generated for all
positive integers i. Our main result is a duality between the categories of affine toric ind-
varieties and the the category of pro-affine semigroups.

INTRODUCTION

Shafarevich first introduced in [14, 15] the notion of infinite-dimensional algebraic vari-
eties and infinite-dimensional algebraic groups, the so called ind-varieties and ind-groups,
respectively. These notions were later expanded and revisited by several authors, see for
instance [10, 9, 17] and the recent preprint [8] that includes a detailed exposition of gen-
eralities on ind-varieties and ind-groups. In this paper, we generalize the notion of toric
varieties to the category of ind-varieties.

We work over the field of complex numbers C. An ind-variety is a set V together with
a filtration V1 ↪→ V2 ↪→ . . . such that V =

⋃
Vi, where each Vi is a finite-dimensional

algebraic variety and the inclusions ϕi : Vi↪→Vi+1 are closed embeddings. Morphisms in
the category of ind-varieties are defined in the natural way, see Section 1.3 for details. An
ind-group is a group object in the category of ind-varieties, i.e., it is an ind-variety endowed
with a group structure such that the inversion and multiplication maps are morphisms of
ind-varieties. The set

(C∗)∞ = {(a1, a2, . . . ) | ai ∈ C∗ and ai 6= 1 for finitely many i}

with the canonical structure of ind-variety given by the filtration C∗
ϕ1
↪→ (C∗)2

ϕ2
↪→ . . . ,

where ϕi (a1, . . . , ai) = (a1, . . . , ai, 1) for all integer i > 0, has a natural structure of ind-
group where the group law is given by component-wise multiplication. An algebraic torus
T is an algebraic group isomorphic to (C∗)k for some integer k ≥ 0. An ind-torus T is an
ind-group isomorphic to either an algebraic torus or (C∗)∞.

A toric variety V is an irreducible algebraic variety having an algebraic torus T as an
open set and such that the action of T on itself by translations extends to a regular action
on V . Toric varieties can be classified by certain combinatorial devices, see [12, 6, 4]. This
classification allows to translate many algebro-geometric properties of a toric variety into
combinatorial terms that may then be computed algorithmically. Hence, toric varieties rep-
resent a fertile testing ground for theories in algebraic geometry. Toric morphisms between
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toric varieties are characterized by the property that they restrict to a morphism of algebraic
groups between the corresponding algebraic tori. For affine toric varieties their combinato-
rial nature is represented by the fact that the category of affine toric varieties is dual to the
category of affine semigroups, i.e., finitely generated semigroups that can be embedded in
Zk for some integer k ≥ 0. By convention, all our semigroups will be commutative and
unital. A unital semigroup is usually called a monoid.

In this paper we introduce the natural notion of toric ind-variety. A toric ind-variety V
is an ind-variety having an ind-torus T as an open set and such that the action of T on
itself by translations extends to a regular action on V , see Definition 2.1. Furthermore, toric
morphisms between toric ind-varieties are morphisms that restrict to morphisms of ind-
groups between the corresponding ind-tori, see Definition 2.5. Our first result in this paper,
contained in Theorem 2.3, shows that every toric ind-variety can be obtained as an inductive
limit of toric varieties. This result allows us to investigate toric ind-varieties applying usual
methods from toric geometry.

In Section 3 we introduce the natural dual objects to affine toric ind-varieties that we call
pro-affine semigroups. We need to develop the theory of pro-affine semigroups from scratch
since, to our knowledge, only the case of pro-finite semigroups has been previously studied
in the literature in detail, see for instance [3]. Let S be a commutative unital semigroup.
In analogy with the case of topological algebras [13, Section 9.2] taking into account the
lack of the notion of ideal of a semigroup, the natural way to endow the semigroup S
with a topology is with a descending filtration R1 ⊃ R2 ⊃ . . . of S × S of equivalence
relations on S that satisfy certain compatibility condition with respect to the semigroup
operation allowing to define a semigroup operation in the set of equivalence classes S/Ri,
see Section 3 for details. We call a semigroup S endowed with such a filtration a filtered
semigroup. A pro-affine semigroup S is a filtered semigroup with filtration R1 ⊃ R2 ⊃ . . .
of compatible equivalence relations in S that is complete and such that S/Ri is an affine
semigroup, for all integer i > 0. Our main result concerning pro-affine semigroups is
contained in Corollary 3.11 and is a classification of pro-affine semigroups as semigroups
isomorphic to subsemigroups S of Zω, the group of arbitrary sequences of integers, that are
closed in the product topology and such that πi(S) is finitely generated for all integer i > 0,
where πi : Zω → Zi is the projection to the first i-th coordinates.

Finally, our main result in this paper is Theorem 4.5 where we show that the category
of affine toric ind-varieties with toric morphisms is dual to the category of pro-affine semi-
groups with homomorphisms of semigroups.

The contents of the paper are as follows. In Section 1 we collect the preliminary notions
of toric varieties, inductive and projective limits and ind-varieties required in this paper. In
Section 2 we introduce toric ind-varieties. In Section 3 we define pro-affine semigroups. In
Section 4 we prove the duality of categories that is our main result. Finally, in Section 5 we
provide some examples to ilustrate our results.

Acknowledgements. The authors would like to thank the anonymous referee of this man-
uscript for useful comments and for spotting a gap in a proof. Part of this work was done
during a stay of both authors at IMPAN in Warsaw. We would like to thank IMPAN and
the organizers of the Simons semester “Varieties: Arithmetic and Transformations” for the
hospitality.
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1. PRELIMINARIES

In this section we recall the notions of toric geometry, injective and projective limits and
ind-varieties needed for this paper.

1.1. Toric varieties. To fix notation we recall the basics of toric geometry. For details,
see [12, 6, 4]. An algebraic torus T is a linear algebraic group isomorphic to (C∗)k for
some integer k ≥ 0. A toric variety on C is an irreducible algebraic variety V having an
algebraic torus as a dense open set such that the action of T on itself by translations extends
to a regular action of T on V . Similarly to [4], we will not assume that a toric variety is
necessarily normal. It is well known that affine toric varieties are in correspondence with
affine semigroups S, i.e., with finitely generated semigroups that admit an embedding in Zk
for some integer k ≥ 0. By convention, all our semigroups are commutative and unital.

Indeed, given an affine semigroup S, the corresponding affine toric variety is given by
V(S) = SpecC[S], where C[S] is the semigroup algebra given by C[S] =

⊕
m∈S C · χm.

Here, χm are new symbols and the multiplication rule is defined by χ0 = 1 and χm ·χm′ =
χm+m′ . On the other hand, the character lattice M of the torus T is a finitely generated free
abelian groupM ' Zk of rank k = dimT . Let V be an affine toric variety with acting torus
T . We define the semigroup S(V ) of the toric variety V as the semigroup of characters of
T in M that extend to regular functions on V .

A toric morphism between toric varieties is a regular map that restricts to a morphism of
algebraic groups between the corresponding algebraic tori acting on each toric variety. It
is well known that the assignments V(•) and S(•) extend to functors from the category of
affine varieties with toric morphisms to the category of affine semigroups and vice versa,
respectively. Furthermore, the functors V(•) and S(•) together form a duality between the
categories of affine toric varieties with toric morphisms and affine semigroups with homo-
morphisms of semigroups.

1.2. Inductive and projective limits. In this paper we will require several instances of
inductive and projective limits of algebraic and geometric objects. We give here a brief
account to fix notation. For details, see any reference on category theory such as [11, Chap-
ter III]. All the systems of morphisms required in this paper will be indexed by the positive
integers with the usual order. Hence we restrict the exposition to this setting.

An inductive system indexed by the positive integers in a category C is a sequence

X1

ϕ1→ X2

ϕ2→ X3

ϕ3→ . . . ,

where the Xi are objects in C and ϕi : Xi → Xi+1 are morphisms in C. We denote such an
inductive system by (Xi, ϕi). For every i, j > 0 with i ≤ j, we define ϕij : Xi → Xj as
ϕij = ϕj ◦ ϕj−1 ◦ · · · ◦ ϕi, where by definition ϕii = id: Xi → Xi. The inductive limit
of an inductive system (Xi, ϕi) is an object lim−→Xi in C and morphisms ψi : Xi → lim−→Xi

verifying ψi = ψj◦ϕij and satisfying the following universal property: if there exist another
object Y and morphisms ψ′i : Xi → Y verifying ψ′i = ψ′j ◦ ϕij , then there exists a unique
morphism u : lim−→Xi → Y such that ψ′i = u ◦ ψi for all i > 0.

The notion of projective limit is dual to the notion of inductive limit and is defined as
follows. A projective system indexed by the positive integers in a category C is a sequence

X1

ϕ1← X2

ϕ2← X3

ϕ3← . . . ,

where the Xi are objects in C and ϕi : Xi+1 → Xi are morphisms in C. We denote such a
projective system by (Xi, ϕi). For every i, j > 0 with i ≤ j, we define ϕij : Xj → Xi as
ϕij = ϕi ◦ ϕi+1 ◦ · · · ◦ ϕj , where by definition ϕii = id: Xi → Xi. The projective limit
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of a projective system (Xi, ϕi) is an object lim←−Xi in C and morphisms πi : lim←−Xi → Xi

verifying πi = ϕij ◦πj and satisfying the following universal property: if there exist another
object Y and morphisms π′i : Y → Xi verifying π′i = ϕ′ij ◦ π′j , then there exists a unique
morphism u : Y → lim←−Xi such that π′i = πi ◦ u for all i > 0.

Both limits may not exist in arbitrary categories but in the categories of our interest
(sets, groups, rings, algebras, semigroups, topological spaces) both limits can be realized
by explicit constructions. Indeed, the inductive limit lim−→Xi of an inductive system (Xi, ϕi)

can be constructed as lim−→Xi =
⊔
i>0Xi/ ∼, where ∼ is the equivalence relation given

by xi ∼ xj , where xi ∈ Xi and xj ∈ Xj , if there exist k verifying i ≤ k and j ≤ k
such that ϕik(xi) = ϕjk(xj). The morphisms ψ : Xi → lim−→Xi are induced by the natural
injections Xi →

⊔
i>0Xi. Furthermore, if the morphisms ϕi are injective, then we can

naturally regard each Xi as a subobject of the inductive limit lim−→Xi. On the other hand, the
projective limit lim←−Xi of the projective system (Xi, ϕi) can be constructed as

lim←−Xi =
{

(x1, x2, . . . ) ∈
∏

i>0

Xi | xi ∈ Xi and ϕij(xj) = xi

}
,

and the morphisms πi : lim←−Xi → Xi are induced by the natural projections
∏
i>0Xi →

Xi. Furthermore, if the morphisms ϕi are surjective, then we can naturally regard each Xi

as a quotient of the projective limit lim←−Xi. Finally, in the case where the Xi are topological
spaces, the topology on the projective limit lim←−Xi coincides with the subspace topology
induced by

∏
i>0Xi with the product topology.

Example 1.1. Two particular instances of the above construction will appear very often
in this paper. Recall that Zω is the group of arbitrary sequences of integer numbers. This
group is also called the Baer-Specker group. A sequence in a ∈ Zω is denoted by a =
(a1, a2, . . . ). Equivalently, Zω is the projective limit of the system Z1 ← Z2 ← . . . ,
where the morphisms ϕi : Zi+1 → Zi are the projections forgetting the last coordinate.
Furthermore, the subgroup of Zω of eventually zero sequences is denoted by Z∞, so a ∈ Z∞
is such that ai = 0 except for finitely many positive integers i. Equivalently, Z∞ is the
inductive limit of the system Z1 → Z2 → . . . , where the maps are the injections setting the
last coordinate to 0.

If we take any inductive or projective subsystem of the system defining Z∞ or Zω, respec-
tively with the obvious morphisms given by compositions, then the limits are canonically
isomorphic to Z∞ or Zω, respectively. More generally, a projective or inductive system
is called split if every morphism in the system admits a section. It is a straightforward
computation to show that for any split projective system Zn1 ← Zn2 ← . . . , with a strictly
increasing sequence n1 < n2 < . . . of positive integers, the limit is isomorphic to Zω. Sim-
ilarly, for any split inductive system Zn1 → Zn2 → . . . , with a strictly increasing sequence
n1 < n2 < . . . of positive integers, the limit is isomorphic to Z∞.

In the sequel we will need the following lemma showing that Zω and Z∞ are mutu-
ally dual. Showing that Hom(Z∞,Z) ' Zω is a straightforward exercise, but showing
Hom(Zω,Z) ' Z∞ is more involved, see [16] for the original proof or [5, Example 3.22]
for a modern proof.

Lemma 1.2. The groups Zω and Z∞ are mutually dual and this duality is realized by the
usual dot product

〈 , 〉 : Zω × Z∞ → Z, (m, p) 7→
∑

i>0

(mi · pi) .
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1.3. General ind-varieties. In this section we introduce the necessary notions and results
regarding ind-varieties. The definitions are borrowed from [10], [9] and [8].

Recall that an ind-variety is a set V together with a filtration V1 ↪→ V2 ↪→ . . . such
that V = lim−→Vi :=

⋃
Vi, each Vi is a finite-dimensional variety over C, and the inclusion

ϕi : Vi↪→Vi+1 is a closed embedding. An ind-variety V is affine if each Vi is affine. We also
define the ind-topology on an ind-variety V as the topology where a set U ⊂ V is open if
and only if U ∩ Vi is open in Vi for all i > 0. In particular, the filtration V1 ↪→ V2 ↪→ . . .
is an inductive system and the set V is the inductive limit. The topology defined on V
corresponds to the inductive topology given by this inductive system. The dimension of V
is lim dim(Vi) as i tends to infinity.

A morphism between ind-varieties V and V ′ with filtrations Vi and V ′j respectively, is a
map ϕ : V → V ′ satisfying that for every i > 0 there exists a positive integer j > 0 such that
ϕ (Vi) ⊂ V ′j and ϕ|Vi : Vi → V ′j is a morphism of varieties. A morphism ϕ of ind-varieties
is an isomorphism if ϕ is bijective and ϕ−1 is a morphism of ind-varieties. Furthermore,
two filtrations V1 ↪→ V2 ↪→ . . . and W1 ↪→ W2 ↪→ . . . on the same underlying set V
are equivalent if the identity map is an isomorphism of ind-varieties. In analogy with the
similar Example 1.1, if we take any subfiltration of the filtration V1 ↪→ V2 ↪→ . . . , the
ind-varieties obtained by both filtrations are isomorphic. The Cartesian product of two ind-
varieties is again an ind-variety with the product filtration. Moreover, an ind-group is an
ind-variety G endowed with a group structure such that the inversion and multiplication
maps are morphisms of ind-varieties.

Recall that a topological space is irreducible if it is not equal to the union of two proper
closed sets. An irreducible ind-variety V does not necessarily admit an equivalent filtration
V1 ↪→ V2 ↪→ . . . by irreducible varieties as shown in [1, Remark 4.3], see also [8, Exam-
ple 1.6.5]. An ind-variety V is called curve-connected if for any two points a, b ∈ V there
exists an irreducible algebraic curve C and a morphism C → V whose image contains a
and b. An ind-variety V is curve-connected if and only if there exists an equivalent filtration
V1 ↪→ V2 ↪→ . . . by irreducible varieties [8, Proposition 1.6.3].

Recall that a set in a topological space is locally closed if it is the intersection of an open
set and a closed set. Let V = lim−→Vi be an ind-variety. A subset A ⊂ V is called algebraic
if it is locally closed and contained in Vi for some i > 0, so A has a natural structure of an
algebraic variety. A morphism α : V → V ′ is called an embedding if the image α(V) ⊂ V ′
is locally closed and induces an isomorphism of ind-varieties between V and α(V). An
embedding is called a closed embedding (resp. an open embedding) if α(V) ⊂ V ′ is closed
(resp. open). Finally, recall that a constructible set is a finite union of locally closed subsets.

Example 1.3. (1) The infinite-dimensional vector space

C∞ := {(a1, . . . ) | ai ∈ C and ai 6= 0 for finitely many i}

has a canonical structure of ind-variety given by the filtration C
ϕ1
↪→ C2 ϕ2

↪→ C3 ϕ3
↪→

. . . where ϕn(a1, . . . , ai) = (a1, . . . , ai, 0), for all i > 0. This ind-variety is called
the infinite-dimensional affine space. Remark that we can change the complex num-
ber 0 in the (i + 1)-th coordinate of ϕi by any other number. The ind-variety ob-
tained this way is easily seen to be isomorphic to C∞. For instance, we denote
by C∞1 the ind-variety isomorphic to the infinite-dimensional affine space given by
C∞1 := {(a1, . . . ) | ai ∈ C and ai 6= 1 for finitely many i}.

(2) The set

(C∗)∞ = {(a1, a2, . . . ) | ai ∈ C∗ and ai 6= 1 for finitely many i}
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has a canonical structure of ind-variety given by the filtration C∗
ϕ1
↪→ (C∗)2

ϕ2
↪→

(C∗)3
ϕ3
↪→ . . . , where ϕi (a1, . . . , ai) = (a1, . . . , ai, 1) for all i > 0. This ind-

variety is an open set in the infinite-dimensional affine space. This follows straight-
forward from the isomorphism C∞ ' C∞1 above. Remark that (C∗)∞ has a natural
structure of ind-group given by component-wise multiplication.

A commutative topological C-algebra A is pro-affine if it is Hausdorff, complete and
admits a base {Ii}i>0 of open neighborhoods of 0, where Ii ⊂ A is an ideal for all i > 0.
Furthermore, we can assume that the Ii form a descending filtration I1 ⊃ I2 ⊃ . . . of ideals
of A. Recall that the Hausdorff property is equivalent to

⋂
Ii = {0} and completeness

is equivalent to A = lim←−Ai where the algebra Ai := A/Ii is taken with the discrete
topology, see [13, Section 9.2] for details. A pro-affine algebra A is algebraic if Ai is
finitely generated over C for all i > 0. Every finitely generated algebra over C is pro-affine
algebraic with Ii = {0} for all i > 0. In the sequel all pro-affine algebras are assumed to
be algebraic, so we will drop algebraic from the notation.

For an ind-variety V with filtration V1
ϕ1
↪→ V2

ϕ2
↪→, . . . the ring of regular functions C[V] is

defined as lim←−C[Vi] with respect to the projective system C[V1]
ϕ∗1← C[V2]

ϕ∗2← . . . where each
C[Vi] is taken with the discrete topology and lim←−C[Vi] has the projective limit topology i.e.,

C[V] = lim←−C[Vi] =
{

(f1, f2, . . . ) | fi ∈ C[Vi] and ϕ∗i (fi+1) = fi

}
⊂
∏

i>0

C[Vi] ,

with the subspace topology. The projective limit comes equipped with natural projections
πi : C[V]→ C[Vi].

Let α : V → V ′ be a morphism of ind-varieties. Then for every i > 0 there exists
j > 0 such that α induces a homomorphism C[V ′j ]→ C[Vi] and so α induces a continuous
homomorphism of pro-affine algebras α∗ : C[V ′] → C[V]. Conversely, every continuous
homomorphism β : C[V ′] → C[V ] of pro-affine algebras induces for every i > 0 a homo-
morphism C[V ′j ] → C[Vi] for some j > 0 and so it induces a morphism Vi → Vj which
in turns gives a morphism β∗ : V → V ′ [10, 9]. This yields an equivalence of categories
between pro-affine algebras and affine ind-varieties.

2. TORIC IND-VARIETIES

An algebraic torus T is an algebraic group isomorphic to (C∗)i for some i ≥ 0. An ind-
torus T is an ind-group isomorphic to either an algebraic torus or (C∗)∞. A regular action
of an ind-torus T on an ind-variety V is a group action α : T × V → V by automorphisms
of V such that α is also a morphism of ind-varieties.

Definition 2.1. A toric ind-variety is a curve-connected ind-variety V having an ind-torus
T as an open subset such that the action of T on itself by translations extends to a regular
action of T on V .

If V is finite dimensional, then this definition coincides with the usual notion of toric
variety since curve-connectedness is equivalent to irreducibility in the finite-dimensional
case, see for instance [4, Definition 1.1.3]. Asking for an ind-toric variety V to be curve-
connected is equivalent to asking for V to be presented as the inductive limit of irreducible
varieties [8, Proposition 1.6.3]. Remark that similarly to [4] and unlike other references
[12, 6], we do not require toric varieties to be normal.
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Example 2.2. Recall that Z∞ is defined as the inductive limit of the inductive system Z→
Z2 → . . . where the maps are the injections setting the last coordinate to 0. Taking tensor
product of this system with C∗ we obtain the inductive system defining (C∗)∞. In analogy
with the finite-dimensional case, we denote this by by (C∗)∞ = Z∞ ⊗Z C∗. Now, it
follows directly from Example 1.1 that for every sequence C∗

ϕ1
↪→ (C∗)2

ϕ2
↪→ (C∗)3

ϕ3
↪→ . . .

with ϕi injective homomorphisms of algebraic groups, the corresponding ind-variety is an
ind-group isomorphic to (C∗)∞.

In the next theorem we show that for every toric ind-variety, we can find an equivalent
filtration composed of toric varieties and toric morphisms.

Theorem 2.3. Let V = lim−→Vi be an ind-variety endowed with a regular action of the ind-
torus T . Then V is an affine toric ind-variety with respect to T if and only if V ' lim−→Wj

where Wj are affine toric varieties with acting torus Tj , the closed embedding ϕj : Wj ↪→
Wj+1 are toric morphisms and the ind-torus T is the inductive limit lim−→Tj .

Proof. The finite dimensional case is trivial since we can take Wj = V and Tj = T , for all
j > 0. Hence, we only deal with the case where T = (C∗)∞. To prove the “only if” part we
may assume that each Vi is irreducible since V is curve-connected. Let Wj be the closure
of (C∗)j in V . The acting torus in Wj is Tj = (C∗)j and so it follows that T = lim−→Tj .
Fix an integer j > 0. Let A be a closed set in V . Then A ∩ (C∗)∞ is closed in (C∗)∞ so
A ∩ (C∗)j+1 is closed in (C∗)j+1. Hence, the inclusion (C∗)j+1 ↪→ V is continuous and
so by [8, Lemma 1.1.5], there exist i > 0 such that Wj+1 ⊂ Vi. Furthermore, the inclusion
(C∗)j ↪→ (C∗)j+1 induces an inclusion ϕj : Wj ↪→ Wj+1. Since Vi is closed in V we have
that Wj and Wj+1 are closed in Vi and so ϕj is a closed embedding.

We claim that the varieties Wj are toric with respect to the algebraic tori Tj = (C∗)j
and that the morphisms ϕj : Wj ↪→ Wj+1 are toric. Indeed, since (C∗)j is irreducible, Wj

is also irreducible, for all j > 0. Furthermore, the Tj-action on Tj by translations extends
to a Tj-action in Wj since for every t ∈ Tj , we have t.Wj is contained in the closure of
t.(C∗)j = (C∗)j and so Wj is stabilized by Tj . Finally, by [2, Proposition 1.11], the Tj-
orbit (C∗)j is locally closed in Wj and so we conclude that (C∗)j is an open set in Wj .
Hence Wj is a toric variety. Furthermore, the morphism ϕj : Wj ↪→ Wj+1 is toric since its
restriction to the acting torus is a group homomorphism by definition.

Finally, we prove that V ' lim−→Wj by proving that the filtrations given by Vi and Wj

respectively, are equivalent. We already proved above that for every j > 0 there exists
i > 0 such that Wj ⊂ Vi is a closed embedding. To prove the other direction, we need
to prove that for every Vi there exists Wk with Vi ⊂ Wk. Without loss of generality, we
may and will assume that W1 ⊂ Vi. Observe that the set X = Vi ∩ (C∗)∞ is a non-
empty algebraic subset of V . Furthermore, since (C∗)∞ ⊂ ⋃

j>0Wj and X ⊂ (C∗)∞

we have X =
⋃
j>0X ∩Wj . By [8, Lemma 1.3.1], there exists a positive integer k such

that X = X ∩ Wk and so X ⊂ Wk. Moreover, the closure of X in V is Vi since Vi is
irreducible by our assumption above. Since Wk is closed, we conclude that Vi ⊂ Wk is a
closed embedding. This concludes the proof of the “only if” part of the theorem.

We now prove the “if” direction of the theorem. The ind-variety V ' lim−→Wj is curve-
connected since each Wj is irreducible. Furthermore, by Example 2.2 the limit T = lim−→Tj
is an ind-torus. Moreover, T is an open set in lim−→Wj by the definition of the ind-topology.
Moreover, the action of T on itself by multiplication extends to lim−→Wj since the same holds
in all the strata for Tj acting on Wj . This concludes the proof. �
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Remark 2.4. The above theorem can be generalized to the case of ind-varieties endowed
with an action of a nested ind-group, i.e., an ind-group admitting an equivalent filtration by
algebraic groups [8, Section 9.4]. We restrict to the case of the ind-torus for simplicity.

Let V = lim−→Vi be a toric ind-variety. We say that V1 ↪→ V2 ↪→ . . . is a toric filtra-
tion if for every i > 0 the variety Vi is toric with acting torus Ti, the closed embedding
ϕi : Vi ↪→ Vi+1 is a toric morphism and the acting ind-torus T is the inductive limit lim−→Ti.
Theorem 2.3 above ensures the every toric ind-variety admits a toric filtration.

We define toric morphisms in direct analogy with the case of classical toric varieties.

Definition 2.5. Let TV and TV ′ be ind-tori acting on toric ind-varieties V = lim−→Vi and
V ′ = lim−→V ′j , respectively. A morphism α : V → V ′ of ind-varieties is toric if the image of
TV by α is contained in TV ′ and α|TV : TV → TV ′ is a morphism of ind-groups.

Proposition 2.6. Let α : V → V ′ be a morphism of toric ind-varieties V and V ′. Then α
is a toric morphism if and only if for every pair of toric filtrations V1 ↪→ V2 ↪→ . . . and
V ′1 ↪→ V ′2 ↪→ . . . of V and V ′, respectively, and every i > 0, there exists an integer j > 0
such that α|Vi : Vi → V ′j is a toric morphism.

Proof. To prove the “only if” direction of the proposition, we assume that α is toric and by
Theorem 2.3 we let V1 ↪→ V2 ↪→ . . . and V ′1 ↪→ V ′2 ↪→ . . . be toric filtrations of V and
V ′, respectively. By definition of morphism of ind-varieties, for every i > 0 there exists
j > 0 such that α restricts to a morphism of varieties α|Vi : Vi → V ′j . Let TV = lim−→Ti
and TV ′ = lim−→Hj are the acting tori with the filtration coming from the toric filtration of
V and V ′, respectively. By the definition of toric morphism, we have α(Ti) ⊂ TV ′ and so
α(Ti) ⊂ Hj = V ′j ∩ TV ′ . Since α : TV → TV ′ is a group homomorphism, the same holds
for α|Ti : Ti → Hj . This proves this direction of the proposition.

To prove the “if” part, we let V1 ↪→ V2 ↪→ . . . and V ′1 ↪→ V ′2 ↪→ . . . be toric filtrations of
V and V ′, respectively. We further assume that for every i > 0, there exists an integer j > 0
such thatα|Vi : Vi → V ′j is a toric morphism. Furthermore, replacing the toric filtration of V ′
by a renumbered subfiltration we may and will assume α|Vi : Vi → V ′i is a toric morphism.
It follows that α(Ti) ⊂ Hi, where TV = lim−→Ti and TV ′ = lim−→Hj be the acting tori with
the filtration coming from the toric filtration of V and V ′, respectively. Hence, we conclude
α(TV) ⊂ TV ′ . Similarly, the fact that α|Ti : Ti → Hi is a homomorphism of groups implies
that α|TV : TV → TV ′ is a homomorphism of ind-groups, proving the proposition. �

Remark 2.7. It is straightforward to show that a toric morphism α : V → V ′ of toric ind-
varieties is equivariant, i.e., α(t.x) = α(t).α(x), for all t ∈ TV and all x ∈ V .

A character of an ind-torus T is a morphism χ : T → C∗ of ind-varieties that is also
a group homomorphism. The set of characters of T forms a group denoted by M. If
dim T < ∞ it is well known that M is a finitely generated free abelian group of rank
dim T . Similarly, a one-parameter subgroup of T is a morphism λ : C∗ → T of ind-
varieties that is also a group homomorphism. The set of one-parameter subgroups of T
forms a group denoted by N . If dim T < ∞ it is well known that N is also a finitely
generated free abelian group of rank dim T . Furthermore, if dim T < ∞, then the groups
M and N are dual with dualityM×N → Z given by 〈χ, λ〉 = k where k is the unique
integer such that χ ◦ λ : C→ C maps t to tk.

We now compute the groups of characters and one-parameter subgroups of the infinite-
dimensional ind-torus and prove the analogous duality result. Let T be the infinite-dimensional
ind-torus with toric filtration T1 ↪→ T2 ↪→ . . . . Letting Mi and Ni be the character lattice
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and the one-parameter subgroup lattice of Ti, respectively, the filtration induces naturally a
projective system M1 ←M2 ← . . . and an inductive system N1 → N2 → . . . .

Proposition 2.8. Let T be the infinite-dimensional ind-torus with toric filtration T1 ↪→
T2 ↪→ . . . . Then

(1) The group of charactersM of T is lim←−Mi and is isomorphic to Zω.
(2) The group of one-parameter subgroupsN of T is lim−→Ni and is isomorphic to Z∞.
(3) The groupsM and N are naturallly dual to each other and the duality is realized

by the pairing 〈 , 〉 : M×N → Z given by 〈χ, λ〉 = k, where λ ◦ χ : C∗ → C∗
maps t 7→ tk.

Proof. To prove (1), we let χ : T → C∗ be a character of T . By the definition of morphism
of ind-varieties, we have that χ|Ti : Ti → C∗ is a character of Ti for all i > 0. This produces
homomorphisms πi : M → Mi satisfying πi = ϕ∗i ◦ πi+1, where ϕ∗i : Mi+1 → Mi is the
map induced by ϕ : Ti → Ti+1. By the universal property of the projective limit we have
a homomorphismM→ lim←−Mi. On the other hand, we define the inverse homomorphism
lim←−Mi →M in the following way. Let (χ1, χ2, . . . ) be an element in the projective limit
lim←−Mi. We associate a character χ ∈ M given by χ : T → C∗ via t 7→ χk(t) for any
k > 0 such that t ∈ Tk. By the definition of projective limit this map is well defined. It is a
straightforward verification that it is a homomorphism. This proves thatM is the projective
limit lim←−Mi. Finally,M is isomorphic to Zω by Example 1.1.

To prove (2), let λi : C∗ → Ti be a one-parameter subgroup in Ni. Composing with
the injection Ti ↪→ T we obtain a one-parameter subgroup λ : C∗ → T of the ind-torus.
This yields homomorphisms ψi : Ni → N . By the universal property of the inductive
limit we have a homomorphism lim−→Ni → N . On the other hand, we define the inverse
homomorphism in the following way. Let λ : C∗ → T be a one-parameter subgroup of T .
By the definition of morphism of ind-varieties, we have that there exists k > 0 such that
the one-parameter subgroup λ restricts to λk : C∗ → Tk is a one-parameter subgroup of Tk.
Hence, λk ∈ Nk and composing with ψk : Nk → lim−→Ni we obtain a homomorphismN →
lim−→Ni. By the definition of inductive limit this map is well defined. It is a straightforward
verification that it is a homomorphism. Finally, N is isomorphic to Z∞ by Example 1.1.

To prove (3), a routine computation shows that 〈 , 〉 is bilinear and under the isomor-
phisms in (1) and (2) corresponds to the usual dot product defined in Lemma 1.2. This
proves the proposition. �

In the proof of our main result, we will need the following lemma whose proof is straight-
forward.

Lemma 2.9. Let T and T ′ be ind-tori and let α : T → T ′ be an ind-group homomorphism
with character group MT and MT ′ and one-parameter subgroup group NT and NT ′ .
Then α induces homomorphisms α∗ : MT ′ →MT and α∗ : NT → NT ′ .

3. PRO-AFFINE SEMIGROUPS

A semigroup is a set (S,+) with an associative binary operation. All our semigroups
will be commutative and unital. A semigroup S is called affine if it is finitely generated and
can be embedded in a Zk for some k ≥ 0. It is well known that the category of affine toric
varieties with toric morphisms is dual to the category of affine semigroups with homomor-
phisms of semigroups. The main result of this paper is a generalization of this result to the
case of affine toric ind-varieties. In this section, we define and study the semigroups S that
will appear as the semigroup of an affine toric ind-variety V .
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Recall that the ring of regular functions C[V] of an ind-variety is a pro-affine algebra
and so it is endowed with a topology holding the information of the filtration of V [9]. We
will first transport the notion of pro-affine algebra into the context of semigroups. A pro-
affine algebraA is defined using a filtration of ideals onA and the projective limit topology
induced by the quotients of A by the ideals in this filtration. In the case of semigroups,
there exists an analog notion of ideal, but there is no bijection between ideals and quotient
semigroups. For this reason, in the context of semigroups, we need the more general notion
of compatible equivalence relations to keep track of all the possible quotients.

An equivalence relation on a set S is a subset R ⊂ S × S satisfying the usual properties
of being reflexive, symmetric and transitive. An equivalence relation on a semigroup S is
called compatible if for every (m,n) and (m′, n′) in R we have that (m+m′, n+ n′) also
belongs to R. In this case, the set of equivalence classes S/R inherits a natural structure of
semigroup with binary operation given by [m] + [m′] = [m + m′], where [m] denotes the
class of m in S/R.

A filtered semigroup is a couple (S, F ), where S is a semigroup and F is a descending
filtration R1 ⊃ R2 ⊃ . . . of S × S of compatible equivalence relations on S. We denote
a filtered semigroup simply by S if F is clear from the context. In close analogy with [13,
Section 9.2], the filtration of compatible equivalence relations on S defines a topology on
S having basis {Em,k | m ∈ S, k > 0}, where Em,k = {m′ ∈ S | (m,m′) ∈ Rk} is the
equivalence class ofm under the equivalence relationRk. It is straightforward to verify that
this topology coincides with the finest topology making all the quotient morphisms S →
S/Rk continuous where S/Rk is taken with the discrete topology. The trivial equivalence
relation on S corresponds to the diagonal in S×S . The trivial filtration on a semigroup S is
given by setting each equivalence relation Ri to be trivial. In this case the induced topology
on S is the discrete topology.

Let S be filtered semigroup with filtration R1 ⊃ R2 ⊃ . . . of compatible equivalence
relations in S. It is straightforward to verify that the topology on S is Hausdorff if and
only if

⋂
k>0Rk equals the diagonal in S × S . Additionally, we can generalize the notion

of Cauchy sequence to this context of semigroups. Indeed, a sequence
{
a(i)
}
i>0
⊂ S in

the semigroup is said to be Cauchy sequence if given any k > 0 there exists an integer N
such that

(
a(i), a(j)

)
∈ Rk for all i, j > N . A direct computation shows that a convergent

sequence is always Cauchy. We say that a filtered semigroup S is complete if every Cauchy
sequence converges.

Given a projective system S1 ← S2 ← . . . of semigroups we define a filtration R1 ⊃
R2 ⊃ . . . of compatible equivalence relations on the projective limit S = lim←−Si by Ri =

{(m,m′) ∈ S × S | πi(m) = πi(m
′)}. The topology induced on S by this filtration

coincides with the projective limit topology.

Proposition 3.1. Let S1 ← S2 ← . . . be a projective system of semigroups where each Si
carries the discrete topology. Then the projective limit semigroup S = lim←−Si is Hausdorff
and complete.

Proof. A couple (m,m′) ⊂ S × S belongs to Rk if and only if mi = m′i for all i ≤ k.
Hence, the couple (m,m′) belongs to

⋂
k>0Rk if and only if m = m′. We conclude that⋂

k>0Rk equals the diagonal of S × S and so S is Hausdorff. To prove that S is complete,
let
{
m(i)

}
i>0
⊂ S be a Cauchy sequence in S. Recall that, by the definition of projective

limit, each m(i) equals
(
m

(i)
1 ,m

(i)
2 , . . .

)
∈ ∏i>0 Si. For every k > 0 there exist N such

that
(
m(i),m(i+1)

)
∈ Rk for all i > N . Hence, for every k there exist N such that
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m
(i)
k = m

(i+1)
k = m

(i+2)
k = · · · when i > N . Letting mk = m

(i)
k ∈ Sk for any i > N , we

let m = (m1,m2 . . . ) ∈ S. Now, for every k > 0 there exist N such that
(
m,m(i)

)
∈ Rk

for all i > N and so the Cauchy sequence
{
m(i)

}
i>0
⊂ S converges to m. �

Remark 3.2. If a filtered semigroup S with filtration R1 ⊃ R2 ⊃ . . . of compatible equiv-
alence relations in S is Hausdorff and complete, then lim←−Si, where Si = S/Ri with the
morphism induced from Ri ⊃ Ri+1, is canonically isomorphic to S. Indeed, the canonical
map S → lim←−Si into the projective limit given by m 7→ (π1(m), π2(m), . . . ) has inverse
given by ([m1], [m2], . . . ) 7→ limmi, where {mi}i>0 is the Cauchy sequence given in S by
{m1,m2, . . . }.

We now define the natural notion of morphism of filtered semigroups.

Definition 3.3. (1) Let S and S′ be filtered semigroups with filtrationsR1 ⊃ R2 ⊃ . . .
and R′1 ⊃ R′2 ⊃ . . . , respectively. A map β : S → S ′ is called a morphism of
filtered semigroups if β is a semigroup homomorphism and for every i > 0 there
exists j > 0 such that (β×β)(Rj) ⊂ R′i. In particular, every morphism β : S → S ′
of filtered semigroups is continuous since the condition (β × β)(Rj) ⊂ R′i implies
point-wise continuity at every m ∈ S. As usual, an isomorphism β : S → S ′
of filtered semigroups is a bijective morphism whose inverse is also a morphism.
We also say that two filtrations R1 ⊃ R2 ⊃ . . . and R′1 ⊃ R′2 ⊃ . . . on the
same semigroup S are equivalent if the identity map is an isomorphism of filtered
semigroups.

(2) Let S be a filtered semigroup with filtration R1 ⊃ R2 ⊃ . . . . A filtered subsemi-
group is a semigroup S ′ ⊂ S endowed with the filtration of compatible equivalence
relations Ri ∩ (S ′ × S ′) on S ′.

Lemma 3.4. With the notation in Definition 3.3, the morphism β : S → S ′ of filtered semi-
groups induces a natural homomorphism of semigroups βij : Sj → S′i where Sj = S/Rj
and S′i = S ′/R′i such that the following diagram commutes.

S β //

πj

��

S ′

π′i
��

Sj
βij // S′i

Proof. The map βij : Sj → Si defined naturally by [m] 7→ [β(m)] is well defined due to
the condition (ϕ× ϕ)(Rj) ⊂ R′i. The rest of the proof is straightforward. �

We now define pro-affine semigroups, which are the generalization of the affine semi-
groups that are the objects dual to classical affine toric varieties.

Definition 3.5.
A pro-affine semigroup S is a filtered semigroup with filtration R1 ⊃ R2 ⊃ . . . of compat-
ible equivalence relations in S that is complete, Hausdorff and such that every S/Ri is an
affine semigroup.

Example 3.6.
(1) We define the canonical filtration R̃1 ⊃ R̃2 ⊃ . . . of equivalence relations on the

semigroup Zω by R̃k = {(m,m′) ∈ Zω × Zω | mi = m′i, for all i ≤ k}. By
Proposition 3.1, we conclude that Zω is complete. Furthermore, Zω/Ri is naturally
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isomorphic to Zi with quotient morphism πi : Zω → Zi the projection to the first i-
th coordinates. Hence, Zω/Ri is an affine semigroup and so the filtered semigroup
Zω is a pro-affine semigroup.

(2) The filtered subsemigroups Zω≥0 of Zω of arbitrary sequences of non-negative inte-
gers is also pro-affine by a similar argument as in (1).

(3) Any affine semigroup S ⊂ Zi with the constant filtration given by the trivial equiv-
alence relation is pro-affine.

(4) Let ei = (0, . . . , 0, 1, 0, . . . ) ∈ Zω, where the non-zero coefficient is located at
the position i > 0. The subsemigroup S = Zω≥0 \ {e1} of Zω is not complete
and so is not pro-affine. Indeed, the sequence {ai = e1 + ei}i>0 is Cauchy but not
convergent in S.

Theorem 3.7. Let S be a pro-affine semigroup, then S is isomorphic to a filtered subsemi-
group of Zω. Moreover, we can assume that S is embedded inM with ZS = M, where
M' Zω orM' Zk for some k > 0.

Proof. Letting R1 ⊃ R2 ⊃ . . . be the filtration of compatible equivalence relations in S
we let Si = S/Ri and ϕi : Si+1 → Si be the homomorphisms given by the inclusions
Ri ⊃ Ri+i. Hence, we have a commutative diagram

S1

��

S2oo

��

S3oo

��

· · ·oo

ZS1 ZS2oo ZS3oo · · ·oo

where ZSi is the group generated by Si for any embedding Si ↪→ Zk and the homomor-
phisms ZSi+1 → ZSi are induced by Si+1 → Si, for all i > 0. Since the homomorphisms
in the upper system are surjective, the same holds for the lower system. Hence, the lower
projective system is split. If the homomorphisms in the lower system become also injective
for i large enough, then the projective limit of the lower system is isomorphic to Zk for some
k ≥ 0. Furthermore, since Zk is embedded in Zω the first statement follows in this case.
Assume now that there is no integer i > 0 such that the homomorphisms in the lower system
become injective for all integer j > i. In this case, by Example 1.1 we have that the lower
projective limit is isomorphic to Zω and under this isomorphism we have that lim←−Si ⊂ Zω
is an embedding of filtered semigroups. Since S is Hausdorff and complete, by Remark 3.2
we have S = lim←−Si. The second statement follows directly from the construction above in
this proof. �

In the following example we show the surprising consequence of the Specker Theorem
(Lemma 1.2) that every group homomorphism β : Zω → Zω is a morphism of filtered
semigroups for the canonical filtration R̃i.

Example 3.8. (1) Every homomorphism β : Zω → Zω is a morphism of filtered semi-
groups with respect to the canonical filtration. Indeed, since Zω is a group, we have
that E0,k is a subgroup of Zω and

R̃k =
⋃

m∈Zω

(m+ E0,k)× (m+ E0,k)

Hence, it is enough to show that for every i > 0 there exists j > 0 such that
β(E0,j) ⊂ E0,i. By Lemma 1.2, the composition πi◦β : Zω → Zi corresponds to an
element in (p1, . . . , pi) ∈ (Z∞)i under the isomorphism Hom(Zω,Z) ' Z∞ given
by the duality map, see also [7, Theorem 94.3 and Corollary 94.5]. By definition
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of inductive limit, each pi ∈ Zji for some ji > 0. Taking j to be the maximum of
{j1, . . . , ji} we obtain that β(E0,j) ⊂ E0,i.

(2) A similar argument shows that every homomorphism β : Zω → Zk is a morphism of
filtered semigroups with respect to the canonical filtration in Zω and trivial filtration
in Zk, for every k ≥ 0.

The above example allows us to prove that every homomorphism between pro-affine
semigroups is a morphism.

Proposition 3.9. Let S and S ′ be pro-affine semigroups. If β : S → S ′ is any homomor-
phism of semigroups then β is a morphism of filtered semigroups.

Proof. By Theorem 3.7, we can assume that S is a subsemigroup ofM = Zω orM = Zk
for some k ≥ 0 with ZS = M. Similarly, we can assume that S ′ is a subsemigroup of
M′ = Zω or M′ = Z` for some ` ≥ 0 with ZS ′ = M′. The homomorphism β can be
extended to a homomorphism β̂ : M →M′ via m −m′ 7→ β(m) − β(m′). IfM = Zk,
then β̂ is trivially a morphism of filtered semigroups since the filtration by equivalence
relation on Zk is trivial. Furthermore, ifM = Zω the homomorphism β̂ is also a morphism
of filtered semigroups by Example 3.8. Now, the proposition follows since S and S ′ are
filtered subsemigroups ofM andM′, respectively. �

Remark 3.10. It follows from Proposition 3.9 above that two different filtrationsR1 ⊃ R2 ⊃
. . . and R′1 ⊃ R′2 ⊃ . . . of compatible equivalence relations in a pro-affine semigroup S
are always equivalent since the identity is an isomorphism of semigroups and so it is also
an isomorphism of filtered semigroups.

It is straightforward to prove, mimicking the classical argument for metric spaces, that
a subsemigroup in a complete filtered semigroup is complete if and only if it is closed.
This allows us to derive the following corollary that acts as alternative definition of pro-
affine semigroups. Recall that Zω/R̃i is naturally isomorphic Zi with quotient morphism
πi : Zω → Zi the projection to the first i-th coordinates.

Corollary 3.11. An abstract semigroup S admits a filtration by compatible equivalence
relations on S making S a pro-affine semigroup if and only if there exists an embedding
ι : S ↪→ Zω where ι(S) is closed and (πi ◦ ι)(S) is finitely generated for every i > 0.
Moreover, if such a filtration exists, then it is unique (up to equivalence).

Proof. If S admits a structure of pro-affine semigroup, then the “only if” part follows from
Theorem 3.7. On the other hand, if S is embedded in Zω, then it inherits a filtration R1 ⊃
R2 ⊃ from this embedding. By definition S/Ri ' (πi ◦ ι)(S) which is assumed to be
finitely generated. Furthermore, S is complete with the induced filtration since ι(S) is
closed in Zω and S is Hausdorff since Zω is. This yields that S is a pro-affine semigroup
with this filtration. Finally, the uniqueness statement follows from Proposition 3.9 and
Remark 3.10. �

4. AFFINE TORIC IND-VARIETIES AND PRO-AFFINE SEMIGROUPS

In this section we prove that the category of affine toric ind-varieties with toric morphisms
is dual to the category of pro-affine semigroups with homomorphisms of semigroups.



ON TORIC IND-VARIETIES AND PRO-AFFINE SEMIGROUPS 37

Given an affine toric ind-variety V with toric filtration V1 ↪→ V2 ↪→ . . . , applying the
functor S(•) defined in Section 1.1, we obtain a projective system

V1

��

ϕ1 // V2

��

ϕ2 // V3

��

ϕ3 // · · ·

S1 S2
S(ϕ1)oo S3

S(ϕ2)oo · · ·S(ϕ3)oo

where each semigroup Si = S(Vi) is the affine semigroup associated to the toric variety Vi,
i.e, C[Vi] = C[Si] and S(ϕi) : Si+1 → Si is the semigroup homomorphism corresponding
to the toric morphism ϕi : Vi → Vi+1 [4, Proposition 1.3.14]. We define the semigroup
S(V) associated to V as the projective limit lim←−Si of this projective system. By Proposi-
tion 3.1 and the paragraph preceding it, we have that S(V) is a pro-affine semigroup.

On the other hand, given a pro-affine semigroup S with the filtration R1 ⊃ R2 ⊃ . . . of
compatible equivalence relations on S, we let S1 ← S2 ← . . . be the associated projective
system of semigroups where each Si = S/Ri is an affine semigroup and the homomor-
phisms ϕi : Si+1 → Si are given by [m]i+1 7→ [m]i, where [m]i is the class of m ∈ S
inside the quotient Si. The homomorphisms ϕi are surjetive. Hence, applying the func-
tor V(•) defined in Section 1.1 for toric varieties, we obtain an inductive system of closed
embeddings

S1

��

S2
ϕ1oo

��

S3
ϕ2oo

��

· · ·ϕ3oo

V1
V(ϕ1) // V2

V(ϕ2) // V3
V(ϕ3) // · · ·

where each Vi = V(Si) is the toric variety associated to the semigroup Si and V(ϕi) : Vi →
Vi+1 is the toric morphism corresponding to the semigroup homomorphism ϕi : Si+1 → Si.
The corresponding inductive limit lim−→Vi of this system is an affine toric ind-variety by
Theorem 2.3 that we denote by V(S). The ind-torus acting on V(S) is T = lim−→Ti, where
Ti is the algebraic torus acting on Vi. It is clear that these constructions provide a bijection
between affine toric varieties and pro-affine semigroups up to isomorphisms.

Let now V be an affine toric ind-variety and let S = S(V). In general, projective lim-
its do not commute with direct sums, hence we cannot expect to have, as in the classical
case, an isomorphism between the ring of regular functions C[V] on V and the semigroup
algebra C[S], see Example 5.2 below. Nevertheless, the semigroup algebra carries a natural
descending filtration of ideals I1 ⊃ I2 ⊃ . . . , where Ii = kerπi and πi is the natural projec-
tion πi : C[S] → C[Vi], for all i > 0 induced by the projections πi : S → Si coming from
the projective limit. It follows directly from [13, Chapter 9, Theorem 10] that the algebra
C[V] is the completion of C[S] with respect to I1 ⊃ I2 ⊃ . . . .

In the following proposition, we summarize the considerations above.

Proposition 4.1. The assignments V 7→ S(V) for every affine toric ind-variety and S 7→
V(S) for every pro-affine semigroup are inverses up to isomorphism, i.e., V(S(V)) is iso-
morphic to V for every affine toric ind-variety and S(V(S)) is isomorphic to S for every
pro-affine semigroup S . Furthermore, for every affine toric ind-variety V , the ring of regular
functions C[V] is isomorphic as filtered algebra to the completion of C[S].

We will also need the following lemma generalizing the usual equivalent statement in the
classical case.
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Lemma 4.2. Let V be an affine toric ind-variety with acting ind-torus T whose character
lattice is M. Then S(V) is naturally embedded in M with ZS(V) = M. On the other
hand, let S be a pro-affine semigroup embedded inM ' Zω orM ' Zk for some k ≥ 0
as filtered semigroup with ZS = M. Then the character lattice of the ind-torus T acting
on the affine toric ind-variety V(S) is naturally isomorphic toM.

Proof. The case whereM ' Zk corresponds to the classical case of affine toric varieties.
Hence, we will only deal with the case whereM ' Zω. Assume first that V is an affine
toric ind-variety. With the above notation, by the classical case we have that each Si is
naturally embedded in the character lattice Mi of the algebraic torus Ti acting on Vi with
Mi = ZSi. By Theorem 2.3, we have that T equals the inductive limit lim−→Ti. Furthermore,
by Proposition 2.8 we have thatM equals lim←−Mi. The first assertion now follows. On the
other hand, given S embedded inM ' Zω, we let Mi be the character lattice of the torus
Ti acting on Vi. By the classical finite dimensional case of the lemma, we have ZSi = Mi.
The result now follows again from Proposition 2.8. �

We come now to morphisms in both categories. Let first S and S ′ be pro-affine semi-
groups and let β : S → S ′ be a semigroup homomorphism. By Proposition 3.9 the pro-
affine semigroups S and S ′ admit filtrations of equivalence relations R1 ⊃ R2 ⊃ . . . and
R′1 ⊃ R′2 ⊃ . . . , respectively, such that β is a morphism of filtered semigroups with re-
spect to these filtrations. We let V = V(S) and V ′ = V(S ′) be the corresponding affine
toric ind-varieties defined above with the toric filtrations V1 ↪→ V2 ↪→ . . . and V ′1 ↪→
V ′2 ↪→ . . . , respectively, where Vi = V(Si), V ′i = V(S′i) and the closed embeddings are
V(ϕi) and V(ϕ′i) associated to the surjective semigroup homomorphisms ϕi : Si+1 → Si
and ϕ′i : S

′
i+1 → S′i respectively. We define a homomorphism C[S] → C[S ′] of semigroup

algebras by χm 7→ χβ(m), for all m ∈ S . By abuse of notation, we denote this map also by
β : C[S]→ C[S ′].
Lemma 4.3. The homomorphism β : C[S] → C[S ′] is a continuous homomorphism of
topological algebras and so we can extend β to an unique continuous homomorphism
V(β)∗ : C[V] → C[V ′] whose comorphism defines a toric morphism of affine toric ind-
varieties V(β) : V ′ → V .

Proof. To prove that β : C[S] → C[S ′] is continuous we have to prove that for all i >
0 there exists j > 0 such that β(Ij) ⊂ I ′i. Here Ij = kerπj and πj is the projection
πj : C[S]→ C[Sj ] induced by S → Sj , for all j > 0 and similarly I ′i = kerπ′i and π′i is the
projection π′i : C[S ′]→ C[S′i] induced by S ′ → S′i, for all i > 0.

Let i > 0 be an integer. By Proposition 3.9 and the definition of morphism of filtered
semigroup, there exists j > 0 such that (β×β)(Rj) ⊂ R′i. Let f =

∑
amχ

m be an element
in Ij where the sum is finite. Belonging to Ij is equivalent to πj(f) =

∑
amχ

πj(m) = 0.
On the other hand, π′i(β(f)) =

∑
amχ

(π′i◦β)(m). By Lemma 3.4, the homomorphism
β induces a homomorphism βij : Sj → S′i and we have π′i ◦ β = βij ◦ πj so we have
π′i(β(f)) =

∑
amχ

(βij◦πj)(m) = βij
(∑

amχ
πj(m)

)
= 0. We conclude that β(Ij) ⊂ I ′i

and so β : C[S]→ C[S ′] is continuous.
Finally, the algebra C[S] is dense in C[V] by the second statement of Proposition 4.1.

Hence, the homomorphism β can be extended to a continuous homomorphism V(β)∗ : C[V]→
C[V ′] as required, see [13, Ch.9, Th. 5]. Moreover, by Proposition 2.6, the morphism
V(β) : V ′ → V is toric. �

Let now α : V → V ′ be a toric morphism of affine toric ind-varieties and let S = S(V)
and S ′ = S(V ′) be the corresponding pro-affine semigroups. By Lemma 4.2 we have that
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S and S ′ are naturally embedded in M and M′, respectively. In particular, we have that
α|TV : TV → TV ′ is a homomorphism of ind-groups and so by Lemma 2.9 the comorphism
(α|TV )∗ induces a semigroup homomorphism α∨ : M′ → M on the character lattices via
(α|TV )∗(χm) = χα

∨(m). Furthermore, given m ∈ S ′, the regular function χm ∈ C[V ′] is
mapped to the regular function χα

∨(m) ∈ C[V]. This yields α∨(m) ∈ S, for all m ∈ S ′.
Hence α∨ restricts to a homomorphism S ′ → S. We denote this homomorphism by S(α).

In the following proposition, we summarize the considerations above.

Proposition 4.4. let S and S ′ be pro-affine semigroups. Then, for every homomorphism
β : S → S ′ the map V(β) : V(S ′)→ V(S) is a toric morphism of affine toric ind-varieties.
Moreover, for every toric morphism α : V(S ′)→ V(S) there exists a unique homomorphism
β : S → S ′ such that α = V(β). In particular, for every pair of pro-affine semigroups S and
S ′ there is a bijection between semigroup homomorphisms S → S ′ and toric morphisms
V(S ′)→ V(S).

The assignment V(•) is a contravariant functor, i.e., V(id) = id and V(β′ ◦ β) = V(β) ◦
V(β′), for every pair of semigroup homomorphisms β : S → S ′ and β′ : S ′ → S ′′, where S,
S ′ and S ′′ are pro-affine semigroups. This follows directly from the definition of V(β) as the
comorphism of the unique extension of the morphism C[S]→ C[S ′] given by χm 7→ χβ(m).

On the other hand, the assignment S(•) is also a contravariant functor. Indeed, let
α′ : V ′′ → V ′ and α : V ′ → V be morphisms of affine toric ind-varieties V , V ′ and V ′′. By
Proposition 4.1 and Proposition 4.4, there exist pro-affine semigroups S, S ′, S ′′ such that
V = V(S), V ′ = V(S ′) and V ′′ = V(S ′′) with morphisms β : S → S ′ and β′ : S ′ → S ′′
such that β = S(α) and β′ = S(α′). By Proposition 4.4, we have V(β′ ◦ β) = α ◦ α′ or,
equivalently, β′ ◦ β = S(α ◦ α′) so that S(α′) ◦ S(α) = S(α ◦ α′).

In the following theorem, that is our main result, we summarize the results in this section.

Theorem 4.5.
(1) The assignment V(•) is a contravariant functor from the category of pro-affine

semigroups with homomorphisms of semigroups to the category of affine toric ind-
varieties with toric morphisms.

(2) The assignment S(•) is a contravariant functor from the category of affine toric
ind-varieties with toric morphisms to the category of pro-affine semigroups with
homomorphisms of semigroups.

(3) The pair (V(•),S(•)) is a duality between the categories of affine toric ind-varieties
and pro-affine semigroups.

A well-known feature of the classical duality between affine toric varieties and affine
semigroups is the correspondence between points on the toric variety and semigroup homo-
morphism to (C, ·). In the following proposition, we generalize this result to the case of
affine toric ind-varieties.

Recall that a semigroup S has the cancellation property if m + m′ = m + m′′ implies
m′ = m′′, with m,m′,m′′ ∈ S . Let (C, ·) be the semigroup of complex numbers under
multiplication. This semigroup is not pro-affine since it does not have the cancellation
property and all pro-affine semigroups inherit the cancellation property from the embedding
in Zω shown in Corollary 3.11.

We endow (C, ·) with the trivial descending filtration R′1 ⊃ R′2 ⊃ . . . of compatible
equivalence relations R′i = {(t, t) ∈ C × C | t ∈ C} so that C/Ri ' C. Unlike the
case of pro-affine semigroups, not every semigroup homomorphism S → (C, ·) is a filtered
morphism. See [7, page 159] and apply the fact that (C, ·) contains an isomorphic copy Q
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of the additive group of the rational numbers. For instance, we can takeQ = {exp(q) | q ∈
Q} where exp: C→ C∗ is the usual exponential map.

Proposition 4.6. Let V be an affine toric ind-variety and let S = S(V). Then there are
bijective correspondences between the following:

(1) Points v in V .
(2) Closed maximal ideals m in C[V], which is isomorphic to the completion of C[S].
(3) Morphisms of filtered semigroups Λ: S → (C, ·).

Proof. The correspondence between of (1) and (2) is general for ind-varieties and was first
proven in [9]. Let R1 ⊃ R2 ⊃ . . . be the filtration of compatible equivalence relations
in S and let Λ: S → C be a filtered semigroup morphism. By the definition of filtered
semigroups, there exists j > 0 such that (Λ×Λ)(Rj) is contained in the diagonal in C×C
defining the trivial equivalence relation in C. By Lemma 3.4, the morphism Λ induces
a semigroup homomorphisms Λj : Sj → C, where Sj = S/Rj . The homomorphism
Λj : Sj → C induces a surjective C-algebra homomorphism Λj : C[Sj ] → C given by
χm 7→ Λj(m). Since C is a field, we have m = ker Λj is a maximal ideal. The preimage m
of m by the homomorphism π̂j : C[V]→ C[Sj ] coming from the projective system C[S1]←
C[S2] ← . . . is also maximal. By [9, Proposition 1.2.2] we have that m is closed since
Îj = ker π̂j is subset of m.

On the other hand, let m be a closed maximal ideal in C[V]. By [9, Proposition 1.2.2],
there exist j > 0 and m a maximal ideal of C[Sj ] such that m is the preimage of m by
π̂j . This maximal ideal m defines an algebra homomorphism Λj : C[Sj ] → C ' C[Sj ]/m.
By [4, proposition 1.3.1], this algebra homomorphism defines a semigroup homomorphism
Λj : Sj → C given by Λj(m) = Λj(χ

m). We define Λ: S → C by Λ = Λj ◦ πj , where
πj : S → Sj is the quotient morphism. The semigroup homomorphism Λ is a filtered
semigroup morphism since (Λ×Λ)(Rj) is contained in the diagonal in C×C defining the
trivial equivalence relation in C. It is a straightforward verification that these constructions
provide the required bijection. �

5. EXAMPLES

To conclude the paper, we provide the following three examples of affine toric ind-
varieties.

Example 5.1. The ind-torus T = (C∗)∞ is a toric ind-variety. Furthermore, since the
algebra of regular functions of (C∗)i is C[Zi] we obtain that S(T ) = Zω by Example 1.1.

Example 5.2. The infinite dimensional affine space C∞1 ' C∞ defined in Example 1.3 is
a toric ind-variety. Furthermore, since the algebra of regular functions of Ci is C[Zi≥0] we
obtain that S(C∞1 ) = Zω≥0, see also Example 3.6.

We take advantage of this example to show that in general C[S] ( C[V]. To do so, we
show that C[Zω≥0] is not a complete topological ring. Recall that

C[Zω≥0] =
⊕

m∈Zω
≥0

Cχm .

We also let

xi = χm, with m = (1, 1, . . . , 1︸ ︷︷ ︸
i-times

, 0, 0, . . .), f1 = x1, and fi =
xi

2i−1
+

i−1∑

k=1

xk
2k
.
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The sequence (fi)i>0 is Cauchy since

fj − fi =
xj

2j−1
+

j−1∑

k=i

xk
2k
− xi

2i−1
for all j > i ,

and a straightforward computation shows that

π`(fj − fi) =

(
1

2j−1
+

j−1∑

k=i

1

2k
− 1

2i−1

)
χm
′

= 0 for all j > i and i, j > ` .

Here m′ = (1, 1, . . . , 1) ∈ Z` and π` : C[Zω≥0] → C[Z`≥0] is the natural morphism coming
from the projective limit that in this case corresponds to the semigroup homomorphism
Zω≥0 → Z`≥0 restriction to the ` first coordinates. Finally, the sequence is not convergent in
C[Zω≥0] since the limit is an infinite sum that cannot belong to the direct sum in the definition
of C[Zω≥0].

Example 5.3. Let V be the affine toric ind-variety V1 ↪→ V2 ↪→ . . ., where Vi is the i-
dimensional affine toric variety given in Ci+1 with coordinates (y, x1, . . . , xi) by the equa-
tion y2 = x1 · · ·xi, where Vi ↪→ Vi+1 is the closed embedding given by the toric map
(y, x1, . . . , xi) 7→ (y, x1, . . . , xi, 1).

From the equation y2 = x1 · · ·xi we obtain that the embedding of the acting torus of
Vi in the acting torus of Ci+1 corresponds to the homomorphism of the character lattices
Zi+1 = M(Ci+1)→M(Vi) = Zi given by the matrix




1 2 0 0 . . . 0
0 −1 1 0 . . . 0
0 −1 0 1 0
...

...
...

...
. . .

...
0 −1 0 0 . . . 1



.

Hence, we obtain that Vi = SpecC[Si] where Si = ωi ∩ Zi and ωi is the cone spanned in
Ri by the rays 



2
−1
−1

...
−1



,




0
1
0
...
0



,




0
0
1
...
0



, . . . ,




0
0
0
...
1



.

The semigroup Si is thus given in Zi by

Si =
{

(m1, . . . ,mi) ∈ Zi | m1 ≥ 0, and m1 + 2mj ≥ 0, for all j = 2, 3, . . . , i
}
.

Furthermore, the closed embedding Vi ↪→ Vi+1 corresponds to the map Zi+1 → Zi of the
respective character lattices given by the matrix




1 0 0 . . . 0 0
0 1 0 . . . 0 0
0 0 1 0
...

...
...

. . .
...

...
0 0 0 . . . 1 0



.
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Taking the projective limit we obtain that the pro-affine semigroup S corresponding to the
affine toric ind-variety V is given by

S =
{

(m1,m2, . . .) ∈ Zω | m1 ≥ 0, and m1 + 2mj ≥ 0, for all j ≥ 2
}
.
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CHAPTER 2

Topologically integrable derivations and additive group
actions on affine ind-schemes

In this chapter, I present the research developed with Adrien Dubouloz and
Alvaro Liendo.
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TOPOLOGICALLY INTEGRABLE DERIVATIONS AND
ADDITIVE GROUP ACTIONS ON AFFINE IND-SCHEMES

ROBERTO DÍAZ, ADRIEN DUBOULOZ, AND ALVARO LIENDO

ABSTRACT. Affine ind-varieties are infinite dimensional generalizations of algebraic va-
rieties which appear naturally in many different contexts, in particular in the study of au-
tomorphism groups of affine spaces. In this article we introduce and develop the basic
algebraic theory of topologically integrable derivations of complete topological rings. We
establish a bijective algebro-geometric correspondence between additive group actions on
affine ind-varieties and topologically integrable derivations of their coordinate pro-rings
which extends the classical fruitful correspondence between additive group actions on affine
varieties and locally nilpotent derivations of their coordinate rings.
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INTRODUCTION

Motivated by the study of algebro-geometric properties of some "infinite dimensional"
groups which appear naturally in algebraic geometry, such as for instance the group of
algebraic automorphisms of the affine n-space Ank over a field k, n ≥ 2, Shafarevich [20, 21]
introduced and developed the notions of infinite-dimensional affine algebraic variety and
infinite-dimensional affine algebraic group. In Shafarevich’s sense, an affine ind-variety
over an algebraically closed field k is a topological space X which is homeomorphic to the
colimit lim−→n∈NXn of a countable inductive system of closed embeddings X0 ↪→ X1 ↪→
X2 ↪→ · · · of ordinary affine algebraic k-varieties, endowed with the final topology. One
declares that a morphism between two such ind-varieties lim−→n∈NXn and lim−→n∈N Yn consists
of a collection of compatible morphisms of ordinary affine algebraic varieties between the
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corresponding inductive systems, and a group object in the so-defined category is then called
an affine ind-group. Since Shafarevich pioneering work, this notion has been developed
further by many authors [16, 15, 22, 17, 9, 6] driven mainly by its numerous applications to
the study of algebraic automorphism groups of affine varieties.

A different approach to affine ind-varieties, closer to the Grothendieck theory of ind-
representable functors and formal schemes [10, 1], was proposed by Kambayashi [12, 13,
14] in the form of a category of locally ringed spaces anti-equivalent to the category whose
objects are linearly topologized complete k-algebras A which admit fundamental systems
of open neighborhoods of 0 consisting of a countable families of ideals (an)n∈N, with the
property that all the quotients An = A/an are integral finitely generated k-algebras. The
underlying topological space of an affine ind-k-variety in Kambayashi’s sense is defined as
the set Spf(A) of open prime ideals of A, endowed with the subspace topology inherited
from the Zariski topology on the usual prime spectrum Spec(A). Morphisms between such
ind-k-varieties are in turn simply determined by continuous homomorphisms between the
corresponding topological algebras, see Section 2.

It is known that these two notions of ind-k-varieties are not equivalent, even already at
the topological level (see [22] for an in-depth comparison). Despite its natural definition
and its algebraic flavor which allows to easily extend it to more general complete topolog-
ical algebras, leading to a natural theory of affine ind-schemes, so far, the applications of
Kambayashi’s notion of affine ind-varieties have not been researched as much as those of
Shafarevich’s version.

The main goal of this paper is to develop the basic tools to extend the existing rich
algebro-geometric theory of additive group actions on affine varieties and schemes to Kam-
bayashi’s affine ind-varieties and ind-schemes. To explain our results and put them into
context, we restrict ourselves in this introduction to affine schemes and ind-schemes de-
fined over an algebraically closed field k of characteristic zero. Every algebraic action of
the additive group Ga,k = Spec(k[T ]) on an affine k-scheme is uniquely determined by its
comorphism µ : A → A ⊗k k[T ] = A[T ]. The fact that µ is the comorphism of a Ga,k-
action implies that the map which associates to every f ∈ A the element d

dT (µ(f))|T=0 is
a k-derivation ∂ of A, which corresponds geometrically to the velocity vector field along
the orbits of the action on X . Conversely, an algebraic vector field ∂ on X determines an
algebraic action of Ga,k on X if and only if its formal flow is algebraic, that is, if and only
if the formal exponential homomorphism

exp(T∂) : A→ A[[T ]], f 7→
∑

n

∂n(f)

n!
Tn

factors through the polynomial ring A[T ] ⊂ A[[T ]]. Clearly, a k-derivation ∂ of A satisfies
this polynomial integrability property if and only if for every f ∈ A, there exists n ∈ N such
that ∂n(f) = 0. Derivations with this property are called locally nilpotent, and we obtain
the well-known correspondence between Ga,k-actions on an affine k-variety X = Spec(A)
and locally nilpotent k-derivations of A.

Let now A be a linearly topologized complete k-algebra which admits a fundamental
system of open neighborhoods of 0 consisting of a countable family (an)n∈N of ideals ofA.
We call a continuous k-derivation ∂ ofA topologically integrable if the sequence of k-linear
endomorphisms (∂n)i∈N of A converges continuously to the zero homomorphism, that is,
if for every f ∈ A and every i ∈ N, there exist indices n0, j ∈ N such that ∂n(f + aj) ⊂ ai
for every integer n ≥ n0 (see Definition 1.8). Note that in the case where the topology on
A is the discrete one, a k-derivation of A is topologically integrable precisely when it is
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locally nilpotent. Our main result is the following extension of the classical correspondence
for affine k-varieties to the case of affine ind-k-schemes (see Theorem 3.6 for the general
version which applies to arbitrary relative affine ind-schemes over a base affine ind-scheme).

Theorem. Let X = Spf(A) be the affine ind-k-scheme associated to a linearly topologized
complete k-algebra A which admits a fundamental system of open neighborhoods of 0
consisting of a countable family of ideals. Then there exists a one-to-one correspondence
between Ga,k-actions on X and topologically integrable k-derivations of A.

This correspondence is made explicit as follows. The topological integrability of a con-
tinuous k-derivation ∂ ofA is equivalent to the property that its associated formal exponen-
tial homomomorphism exp(T∂) factors through a continuous homomorphism with values
in the subringA{T} ⊂ A[[T ]] of restricted power series, consisting of formal power series∑

i∈N aiT
i whose coefficients ai tend to 0 for the topology on A when n tends to infin-

ity. The topological ring A{T} is isomorphic to the completed tensor product A⊗̂kk[T ]
with respect to the given topology on A and the discrete topology on k[T ]. The resulting
continuous homomorphism

exp(T∂) : A → A{T} ∼= A⊗̂kk[T ]

determines through Kambayashi’s definition a morphism of affine ind-k-schemes

Ga,k ×k Spf(A) ∼= Spf(A{T})→ Spf(A)

which satisfies the axioms of an action of the additive group Ga,k on the affine ind-k-scheme
Spf(A). We show conversely that every continuous homomorphism e : A → A{T} which
satisfies the axioms of a comorphism of a Ga,k-action on an affine ind-k-scheme Spf(A) is
the restricted exponential homomorphism exp(T∂) associated to a topologically integrable
k-derivation ∂ of A (see Theorem 2.26.)

One of the cornerstones of the algebraic theory of locally nilpotent derivations is the
existence, for every nonzero such derivation ∂ of a k-algebra A, of a so-called local slice,
that is, an element s ∈ A such that ∂(s) ∈ ker(∂) \ {0}. Not every nonzero topologically
integrable derivation k-derivation ∂ of a linearly topologized complete k-algebra A admits
a local slice (see Example 2.13 for a counterexample). On the other hand, we establish that
the theory of topologically integrable derivations with local slices closely resembles the
usual finite-dimensional case: after an appropriate localization, these derivations admit a
Dixmier-Reynolds operator (see Definition 2.15) which provides a retraction ofA onto their
kernels. In particular, we have the following result (see Proposition 2.16 and Corollary 2.18
for the general case).

Theorem. Let A be linearly topologized complete k-algebra and let ∂ : A → A be a
topologically integrable derivation admitting a slice s such that ∂(s) = 1. Then A ∼=
(ker ∂){s} and exp(T∂) coincides with the homomorphism of topological (ker ∂)-algebras

(ker ∂){s} → (ker ∂){s}{T} ∼= (ker ∂){s, T}, s 7→ s+ T.

The paper is organized as follows. In Section 1 we collect and review essential definitions
and results on the classes of topological groups, rings and modules which are relevant in the
context of Kambayashi’s definition of affine ind-schemes. In Section 2, we develop the basic
algebraic theory of restricted exponential homomorphisms and their correspondence with
topologically integrable iterated higher derivations. Section 3 is devoted to the geometric
side of the picture: there, for the convenience of the reader, we first review the main steps
of the construction of the affine ind-scheme associated to a linearly topologized complete
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ring, and then, we illustrate the resulting anti-equivalence between restricted exponential
homomorphisms and additive group actions on affine ind-schemes.

1. PRELIMINARIES ON TOPOLOGICAL GROUPS AND RINGS

In this section we recall and gather general results on topological groups, rings and mod-
ules. Standard references for theses topics are for instance Bourbaki [3, Chapter III], [4,
Chapter III] and Northcott [19].

Recall that a topological abelian group is an abelian group G endowed with a topology
for which the map G × G → G, (x, y) 7→ x − y is continuous. The topology on G is
called linear if G has a fundamental system of open neighborhoods of its neutral element 0
consisting of open subgroups. In what follows, we only consider topological abelian groups
G endowed with a linear topology which satisfy the following additional condition:

(?) There exists a fundamental system of open neighborhoods of the neutral ele-
ment 0 consisting of a countable family of open subgroups.

A topological group satisfying this property is in particular a first-countable topological
space. For simplicity, we refer to them simply as topological groups and we refer those fun-
damental systems of open neighborhoods of the neutral element simply to as fundamental
systems of open subgroups of G. Given such a fundamental system (Hn)n∈N parametrized
by the set N of non-negative integers, we always assume in addition that H0 = G and that
Hm ⊆ Hn whenever m ≥ n.

A continuous homomorphism f : G → G′ between topological groups is refered to as
a homomorphism of topological groups. Note that such a homomorphism is automatically
uniformly continuous in the sense of [3, II.2.1].

1.1. Separated completions of topological groups. A topological group G is separated
as a topological space if and only if the intersection of all open subgroups of G consists of
the neutral element 0 only; hence, since every open subgroup of a topological group is also
closed [3, III.2.1 Corollary to Proposition 4], if and only if {0} is a closed subset of G.

Given a topological groupG, the collection of topological groupsG/H , whereH ranges
through the set Γ of open subgroups of G, together with the canonical surjective homomor-
phisms pH′,H : G/H ′ → G/H whenever H ′ ⊆ H , form an inverse system of topologi-
cal groups when each G/H is endowed with the quotient topology, which is the discrete
one as H is open. Note that with respect to these topologies, the canonical homomor-
phisms pH : G → G/H , H ∈ Γ, are homomorphisms of topological groups. The limit
Ĝ = lim←−H∈Γ

G/H of this system endowed with the inverse limit topology is a linearly

topologized abelian group. We denote by p̂H : Ĝ → G/H , H ∈ Γ, the associated canoni-
cal continuous homomorphisms and by c : G→ Ĝ the continuous homomorphism induced
by the homomorphisms pH : G→ G/H , H ∈ Γ.

Proposition 1.1. Let G be a topological group and let (Hn)n∈N be a fundamental system
open subgroups of G. Then the following hold:

1) The group Ĝ is a separated topological group canonically isomorphic to the group
lim←−n∈NG/Hn endowed with the inverse limit topology,

2) The canonical projections p̂H : Ĝ→ G/H are surjective homomorphisms of topolog-
ical groups,

3) The canonical map c : G→ Ĝ is a homomorphism of topological groups whose image
is a dense subgroup of Ĝ and whose kernel is equal to the closure of {0} inG. Furthermore,
the induced morphism of topological groups c : G→ c(G) is open.
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Proof. Since all the G/H are endowed with the discrete topology, {0} is closed in G/H
and so, {0} is closed in Ĝ by definition of the inverse limit topology. This yields that
Ĝ is separated. Since (Hn)n∈N is a cofinal subset of Γ, the canonical homomorphism
Ĝ → lim←−n∈NG/Hn is an isomorphism of topological groups. A countable fundamental

system of open subgroups of Ĝ is given by the kernels of the projections p̂Hn , n ∈ N.
This shows that Ĝ is a topological group in our sense. Since each pH′,H : G/H ′ → G/H ,
H,H ′ ∈ Γ, is surjective and (Hn)n∈N is a countable cofinal subset of Γ, by Mittag-Leffler’s
theorem [3, II.3.5 Corollary I], the canonical homomorphisms p̂H : Ĝ → G/H are all
surjective. Assertion 3) is [3, III.7.3 Proposition 2]. �

Definition 1.2. The topological group Ĝ is called the separated completion of the topolog-
ical group G. We say that a topological group is complete if the canonical homomorphism
c : G→ Ĝ is an isomorphism of topological groups.

The separated separated completion c : G → Ĝ is characterized by the following uni-
versal property [3, III.3.4 Proposotion 8]: For every homomorphism of topological groups
f : G → G′′ where G′′ is complete, there exists a unique homomorphism of topological
groups f̂ : Ĝ→ G′′ such that f = f̂ ◦ c.
Remark 1.3. A separated topological group G is metrizable. Indeed, given a countable
fundamental system of open subgroups (Hn)n∈N, a metric d inducing the topology on G is
for instance defined by

d(x, y) =

{
0 if x = y
1

2n if x− y ∈ Hn \Hn+1.

For such a group, the notion of completeness of Definition 1.2 is equivalent to the fact that
the metric space (G, d) is a complete in the usual sense, see also Proposition 1.7 below.

Proposition 1.4. LetG andG′ be topological groups with respective separated completions
c : G→ Ĝ and c′ : G′ → Ĝ′. Then for every homomorphism of topological groups h : G→
G′ there exists a unique homomorphism of topological groups ĥ : Ĝ→ Ĝ′ such that c′◦h =

ĥ ◦ c.
Conversely, every homomorphism of topological groups ĥ : Ĝ → Ĝ′ is uniquely deter-

mined by its restriction ĥ ◦ c : G→ Ĝ′ to G.

Proof. The first assertion is an immediate consequence of the universal property of sepa-
rated completion. The second assertion follows from the fact that the image of the separated
completion homomorphism c : G→ Ĝ is dense. �
Lemma 1.5. Let (Gn)n∈N be an inverse system of complete topological groups with sur-
jective transition homomorphisms pm,n : Gm → Gn for every m ≥ n ≥ 0. Then the limit
G = lim←−n∈NGn endowed with the inverse limit topology is a complete topological group
and each canonical projection p̂n : G → Gn is a surjective homomorphism of topological
groups.

Proof. The fact that G endowed with the inverse limit topology is a linearly topologized
abelian group and the fact that the canonical projections p̂n : G → Gn are continuous ho-
momorphisms are clear. The surjectivity of p̂n follows again from Mittag-Leffler’s theorem
[3, II.3.5 Corollary I]. A countable fundamental system of open subgroups of G is given for
instance by the collection of inverse images of such fundamental systems of each Gn by the
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homomorphisms p̂n. Finally, since each Gn is complete, it follows from [3, II.3.5 Corollary
to Proposition 10] that G is complete. �

1.2. Convergence and summability in topological groups.

Definition 1.6. Let G be a topological group and let (xi)i∈I be a family of elements of
G parametrized by a countable infinite index set I . For every finite subset J ⊂ I , set
sJ = sJ((xi)i∈I) =

∑
j∈J xj ∈ G.

a) The family (xi)i∈I is said to be Cauchy if for every open subgroupH ofG there exists
a finite subset J(H) of I such that xi − xj ∈ H for all i, j ∈ I \ J(H).

b) The family (xi)i∈I is said to converge to an element x ∈ G if for every open subgroup
H of G there exists a finite subset J(H) such that xi − x ∈ H for all i ∈ I \ J(n).

c) The family (xi)i∈I is said to be summable of sum s ∈ G if for every open subgroup
H of G there exists a finite subset J(H) ⊂ I such that sJ − s ∈ H for every every finite
subset J ⊃ J(H) of I .

If G is separated then an element x ∈ G to which a family (xi)i∈I converges is unique if
it exists, we call it the limit of the family (xi)i∈I . We say that a family (xi)i∈I is convergent
if it converges to an element x ∈ G. Similarly, an element s ∈ G such that (xi)i∈I is
summable of sum s ∈ G is unique if it exists. We call it the sum of the family (xi)i∈I and
we write s =

∑
i∈I xi.

Proposition 1.7. [4, III.2.6 Proposition 5] For a separated topological groupG, the follow-
ing conditions are equivalent:

a) G is a complete topological group,
b) Every Cauchy family (xi)i∈I of elements of G is convergent in G,
c) Every family (xi)i∈I of element of G which converges to 0 is summable in G.

Definition 1.8. Let G and G′ be topological groups, let fn : G→ G′, n ∈ N, be a sequence
of homomomorphisms of groups and let f : G→ G′ be a homomorphism of groups.

a) The sequence (fn)n∈N is said to converge pointwise to f if for every g ∈ G and every
open subgroup H ′ of G′, there exists an index n0 such that fn(g) − f(g) ∈ H ′ for every
integer n ≥ n0,

b) The sequence (fn)n∈N is said to converge continuously to f if every fn, n ∈ N, is
continuous and for every g ∈ G and every open subgroup H ′ of G′, there exists an open
subgroup H of G and an index n0 such that fn(g + x)− f(g + x) ∈ H ′ for every element
x ∈ H and every integer n ≥ n0.

Clearly, a sequence (fn)n∈N which converges continuously to a homomorphism f con-
verges pointwise to this homomorphism.

Lemma 1.9. Let G be a topological group, let G′ be separated topological group and let
fn : G → G′, n ∈ N, be a sequence of homomorphisms of topological groups. Then the
following properties are equivalent:

a) The sequence (fn)n∈N converges continuously to a homomorphism f : G→ G′,
b) There exists a homomorphism of topological groups f : G → G′ such that the se-

quence fn − f converges continuously to the zero homomorphism,
c) The sequence (fn)n∈N is pointwise convergent to a homomorphism of topological

groups f : G → G′, and for every open subgroup H ′ of G′, there exists an open subgroup
H of G and an integer n0 ≥ 0 such that (fn − f)(H) ⊂ H ′ for every n ≥ n0.

In particular, if a sequence (fn)n∈N of homomorphisms of topological groups converges
continuously to a homomorphism f : G→ G′, then f is continuous.



50 ROBERTO DÍAZ, ADRIEN DUBOULOZ, AND ALVARO LIENDO

Proof. The implication b)⇒ a) is clear. Conversely, assume that the sequence (fn)n∈N con-
verges continuously to a homomorphism f : G → G′ and denote by (hn)n∈N the sequence
of group homomorphisms defined by hn = fn−f for every n ∈ N. Applying the definition
of continuous convergence to the point 0 of G, it follows that for every open subgroup H ′

of G′, there exists an open subgroup H1 of G such that hn(H1) ⊂ H ′ for all sufficiently
large n. On the other hand, since fn is continuous for every n, there exists an open sub-
group H2(n) of G such that fn(H2(n)) ⊂ H ′. Choosing n sufficiently large, we have
−f(x) = hn(x) − fn(x) ∈ H ′ for every x ∈ H = H1 ∩H2(n). Thus f(H) ⊂ H ′ which
shows that f is continuous at 0, hence continuous since it is a homomorphism of groups.
Then (hn)n∈N is a sequence of homomorphisms of topological groups which converges
continuously to the zero homomorphism. Thus, a) implies b).

Now assume that for some homomorphism of topological groups f the sequence hn =
fn−f , n ∈ N, converges continuously to the zero homomorphism. Applying the definition
of continuous convergence to the element 0 ∈ G, we conclude that, for every open subgroup
H ′ of G, there exists an open subgroup H of G and an integer n0 such that hn(H) ⊂ H ′

for every n ≥ n0. So b) implies c). Conversely, assume that c) holds, let H ′ be an open
subgroup of G′ and let g be an element of G. Since by hypothesis the sequence (fn(g))n∈N
converge to an element f(g) of G, there exists an integer n1 ≥ 0 such that hn(g) ∈ H ′

for every n ≥ n1. Since on the other hand there exists by hypothesis an open subgroup
H of G and an integer n0 ≥ 0 such that hn(H) ⊂ H ′ for every n ≥ n0, we conclude
that hn(g + H) ⊂ H ′ for every n ≥ max(n0, n1). So the sequence (hn)n∈N converges
continuously to 0, which shows that c) implies b). To prove that f is continuous, sinceH ′ is
an open subgroup of G′, it also closed. It follows that for every g ∈ H , the limit f(g) of the
sequence (fn(g))n∈N belong to H ′, so that f(H) ⊂ H ′. This shows that f is continuous at
0, hence continuous since it is a homomorphism. �
Lemma 1.10. Let G be a topological group and let G′ be a separated topological group
with respective separated completions c : G→ Ĝ and c′ : G′ → Ĝ′. Let fn : G→ G′, n ∈
N, be a sequence of homomorphisms of topological groups, let f̃n = c′ ◦ fn : G→ Ĝ′, n ∈
N, and let f̂n : Ĝ → Ĝ′, n ∈ N, be the sequence of homomorphisms of topological groups
deduced from the sequence (f̃n)n∈N by the universal property of the separated completion.

If the sequence (fn)n∈N converges continuously to a homomorphism f : G→ G′ then the
sequences (f̃n)n∈N and (f̂n)n∈N converge continuously respectively to the homomorphism
of topological groups f̃ = c′◦f and to the homomorphism of topological groups f̂ : Ĝ→ Ĝ′

deduced from f̃ by the universal property of the separated completion.

Proof. Note that f̃n and f̂n are homomorphisms of topological groups for every n ∈ N.
By Lemma 1.9, f is a homomorphism of topological groups so that f̃ and f̂ are homomor-
phisms of topological groups as well. Let g ∈ G and let Ĥ ′ be an open subgroup of Ĝ′.
Then H ′ = c′−1(Ĥ ′) is an open subgroup of G′. Since (fn)n∈N converges continuously to
f , there exists an open subgroupH ofG and an index n0 such that fn(g+x)−f(g+x) ∈ H ′
for every element x ∈ H and every integer n > n0. Since c′(H ′) ⊂ Ĥ ′, this implies that
f̃n(g + x) − f̃(g + x) ∈ Ĥ ′, which shows that (f̃n)n∈N converges continuously to f̃ . Re-
placing G′ by Ĝ′, the sequence fn by the sequence f̃n and the homomorphism f by f̃ we
can now assume thatG′ is complete. By Lemma 1.9, it remains to show that the sequence of
group homomorphisms (ĥn)n∈N defined by ĥn = f̂n− f̂ converges continuously to the zero
homomorphism on Ĝ. By definition of (ĥn)n∈N, continuous convergence holds in restric-
tion to the subgroup G0 = c(G) of Ĝ. Since ĥn is uniformly continuous and G0 is dense in
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Ĝ, it follows that (ĥn)n∈N converges pointwise to the zero homomorphism on Ĝ. Let H ′ be
an open subgroup of G′. Then there exist an integer n0 and an open subgroup H of Ĝ such
that ĥn(z) ∈ H ′ for every z ∈ H0 = G0∩H and every n ≥ n0. SinceH0 is dense inH and
H is a first-countable topological space, for every x ∈ H , there exists a sequence (xn)n∈N
of elements of H0 which converges to x. Setting yn = x−xn, we deduce that the sequence
(ĥi(yj))(i,j)∈N2 converges to 0 in Ĝ′. This implies in particular that there exists a strictly in-
creasing map ϕ : N→ N and an integer n1 ≥ 0 such that ĥn(yϕ(n)) ∈ H ′ for every n ≥ n1.
It follows that for every n ≥ max(n0, n1), ĥn(x) = ĥn(xϕ(n)) + ĥn(yϕ(n)) belongs to H ′,
which shows, by Lemma 1.9 c), that the sequence (ĥn)n∈N converges continuously to the
zero homomorphism on G. �
Corollary 1.11. Let G be a topological group and let G′ be separated topological group
with separated completion c′ : G′ → Ĝ′. Let hn : G→ G′, n ∈ N, be a sequence of homo-
morphisms of topological groups which converges continuously to the zero homomorphism.
Then the sequence of homomorphisms sN =

∑N
n=0 c

′ ◦hn, N ∈ N, converges continuously
to the homomorphism

s =
∑

n∈N
c′ ◦ hn : G→ Ĝ′, g 7→

∑

n∈N
c′(hn(g)).

In particular, s is continuous.

Proof. Let h̃n = c′ ◦ hn : G → Ĝ′. First note that since for every g ∈ G the sequence
(hn(g))n∈N converges to 0 inG′, it follows from Proposition 1.7 that the family (h̃n(g))n∈N
of elements of Ĝ′ is summable, so that the map s is indeed well defined. Since every h̃n
is a homomorphism of groups, for every g1, g2 ∈ G and every integer N ∈ N, we have
sN (g1 + g2) = sN (g1) + sN (g2). Since Ĝ′ is separated, this implies that s(g1 + g2) =

s(g1) + s(g2), showing that s : G → Ĝ′ is a homomorphism. Let Ĥ ′ be an open subgroup
of Ĝ′. Since the sequence (h̃n)n∈N converges continuously to the zero homomorphism,
Lemma 1.9 implies that there exists an integer n0 ≥ 0 and an open subgroup H1 of G such
that h̃n(H1) ⊂ Ĥ ′ for every n ≥ n0. Since for every n ∈ N, h̃n is continuous, hence in
particular continuous at 0, there exists an open subgroup H2 of G such that h̃n(H2) ⊂ Ĥ ′

for every n = 0, . . . , n0. Putting H = H1 ∩ H2, we have h̃n(H) ⊂ Ĥ ′ for every n ∈ N,
which implies in turn that sN (H) ⊂ Ĥ ′ for every N ∈ N. Since Ĥ ′ is an open subgroup of
Ĝ, it also closed. It follows that for every g ∈ H , the limit s(g) of the sequence (sn(g))n∈N
belong to Ĥ ′, so that s(H) ⊂ Ĥ ′ and (sN − s)(H) ⊂ Ĥ ′ for all N ∈ N so we have the
hypothesis of c) Lemma 1.9 there fore sN converge continuosly to the homomorphism s.
The continuty of s also is a consequence of the last part of Lemma 1.9. �
1.3. Recollection on topological rings and modules. Recall that a commutative topo-
logical ring A is a topological abelian group endowed with a ring structure for which the
multiplication A × A → A is continuous. A module M over a topological ring A is a
called a topological A-module if it is a topological abelian group and the scalar multiplica-
tion A×M → M is continuous, where A×M is endowed with product topology. In the
sequel, unless otherwise specified, the term topological ring (resp. topological module) will
refer to a commutative topological ringA (resp. topological module M over some topolog-
ical ring A) endowed with a linear topology for which there exists a fundamental system
of neighbourhoods of 0 consisting of a countable family (an)n∈N of ideals of A (resp. en-
dowed with a linear topology with a fundamental system of neighbourhoods of 0 consisting
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of a countable family of open submodules (Mn)n∈N). We also always assume that a0 = A
and that am ⊆ an whenever m ≥ m and similarly that M0 = M and Mm ⊆Mn whenever
m ≥ n. A continuous homomorphism f : A → A′ between topological rings is refered
to as a homomorphism of topological rings. We denote by CHom(A,B) the subgroup of
the abelian group Hom(A,B) consisting of continuous homomorphisms. Similarly, a con-
tinuous homomorphism of topological modules f : M → N over a topological ring A is
refered to as a homomorphism of topologicalA-modules and we denote by CHomA(M,N)
the A-module of such homomorphisms.

Given a topological ringA (resp. a topological module M over a topological ringA) the
separated completion Â of A (resp. M̂ of M ) as a topological group carries the structure
of a topological ring (resp.of a topological A-module) and the canonical homomorphism
of topological groups c : A → Â (resp. c : M → M̂ ) is a homomorphism of topological
rings (resp. of topological A-modules). We say that A (resp. M ) is a complete topological
ring (resp. a complete topological A-module) if c : A → Â (resp. c : M → M̂ ) is an
isomorphism.

For every complete topological ring B the composition with c : A → Â induces an
isomorphism

c∗ : CHom(Â,B)→ CHom(A,B), f̂ 7→ f̂ ◦ c.
Let A be a topological ring and let B be a complete topological ring, with fundamental
systems (an)n∈N and (bn)n∈N of open neighborhoods of 0, respectively. Set An = A/an
and Bm = B/bm so that we have Â ∼= lim←−n∈NAn and B ∼= lim←−m∈NBm. Every homo-

morphism of topological rings f : Â → B is equivalently described by an inverse system
of continuous homomorphisms fm : Â → Bm. The kernel of each such fm being an open
ideal of Â, it contains some open ideal an and so, fm factors through a homomorphism
fn,m : An → Bm. Summing up, we have:

CHom(Â,B) = CHom(lim←−n∈NAn, lim←−m∈NBm) ∼= lim←−m∈N(CHom(lim←−n∈NAn, Bm))
∼= lim←−m∈N(lim−→n∈N Hom(An, Bm)).

1.3.1. Completed tensor product. We recall basic properties of completed tensor products
of topological modules, see [4, III] and [10, 0.7.7].

Definition 1.12. ([4, III Exercise 28]) Let M and N be topological modules over a topo-
logical ringA. The completed tensor product M⊗̂AN of M and N overA is the separated
completion M̂ ⊗A N of the tensor product M ⊗A N with respect to the linear topology
generated by open neighborhoods of 0 of the form U ⊗N + M ⊗ V , where U and V run
respectively through the set of open A-submodules of M and N .

We denote by τ : M ×N → M⊗̂AN the composition of the canonical homomorphism
of topologicalA-modulesM ×N →M ⊗AN , whereM ×N is endowed with the product
topology, with the separated completion homomorphism c : M ⊗A N →M⊗̂AN

It follows from the universal properties of the tensor product and of the separated com-
pletion that the canonical homomorphism of topologicalA-modules τ : M×N →M⊗̂AN
satisfies the following universal property: For every continuous A-bilinear homomorphism
Φ: M × N → E into a complete topological A-module E, there exists a unique homo-
morphism of topological A-modules ϕ̂ : M⊗̂AN → E such that Φ = ϕ̂ ◦ τ . As for the
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usual tensor product, this universal property implies the following associativity result whose
proof is a direct adaptation of that of [5, II.3.8, Proposition 8]:

Lemma 1.13. Let A be a topological ring, let M and B be respectively a topological A-
module and a topological A-algebra and let N and P be topological B-modules. Then
there is a canonical isomorphism of complete topological B-modules

(M⊗̂AN)⊗̂BP ∼= M⊗̂A(N⊗̂BP )

where M⊗̂AN is viewed as topological B-module via the B-module structure of N .

In the case where M = B1 and N = B2 are topological A-algebras, the completed ten-
sor product B1⊗̂AB2 is a complete topological A-algebra and the composition σ1 : B1 →
B1⊗̂AB2 (resp. σ2 : B2 → B1⊗̂AB2) of idB1 ⊗ 1: B1 → B1 ⊗A B2 (resp. 1⊗ idB2 : B2 →
B1 ⊗A B2) with the separated completion homomorphism B1 ⊗A B2 → B1⊗̂AB2 is a ho-
momorphism of topological A-algebras. The A-algebra B1⊗̂AB2 satisfies the following
universal property: For every complete topological A-algebra C and every pair of homo-
morphisms of topological A-algebras fi : Bi → C there exists a unique homomorphism of
topological A-algebras f : B1⊗̂AB2 → C such that fi = f ◦ σi, i = 1, 2.

In general, given a finitely generated algebra R over the field k, the covariant functor
R⊗k − which associates to a k-algebra A the k-algebra R⊗k A is not representable in the
category of k-algebras. The following example shows in contrast that the natural extension
of R⊗̂k− of R⊗k − to the category of complete topological k-algebras is representable.

Example 1.14. Let R be a finitely generated algebra over a field k, both endowed with the
discrete topology. Then the covariant functor

R⊗̂k− : (CTop/k)→ (Sets)

associating to a complete topological k-algebra A the completed tensor product R⊗̂kA is
representable.

Proof. Since R is finitely generated, it is a countable k-vector space. We can thus write
R = lim−→n∈N Vn =

⋃
n∈N Vn where the Vn are an increasing sequence of finite dimensional

k-vector spaces V0 ⊂ · · · ⊂ Vn ⊂ Vn+1 ⊂ · · · which form an exhaustion of R. For every
n ≤ n′, the inclusion Vn ⊂ Vn′ induces a dual surjection V ∨n′ → V ∨n between the duals
of Vn′ and Vn respectively, hence a surjective k-algebra homomorphism Sym·(V ∨n′) →
Sym·(V ∨n ) between the symmetric k-algebras of V ∨n′ and V ∨n , respectively. Viewing each
Rn = Sym·(V ∨n ) as endowed with the discrete topology, the ringR = lim←−n∈NRn endowed
with the initial topology is a complete topological k-algebra whose isomorphism type is
independent on the choice of a particular exhaustion {Vn}n∈N of R by finite dimensional
k-vector subspaces.

Now let A = lim←−m∈NAm be a complete topological k-algebra. Since tensor product
commutes with colimits and the k-vector spaces Vn are finite dimensional, we have natural
isomorphisms of sets

R⊗̂kA ∼= lim←−m∈N(R⊗k Am) = lim←−m∈N((lim−→n∈N Vn)⊗k Am)
∼= lim←−m∈N(lim−→n∈N(Vn ⊗k Am))
∼= lim←−m∈N(lim−→n∈N(Homk−mod(V ∨n , Am)).

The universal property of symmetric algebras provides in turn natural isomorphisms

Homk−mod(V ∨n , Am) ∼= Homk−alg(Sym·(V ∨n ), Am) = Homk−alg(Rn, Am).
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Summing up, we obtain for every A a natural isomorphism

ΦA : CHomk(R,A) = lim←−
m∈N

(lim−→
n∈N

(Homk−alg(Rn, Am))
∼=−→ R⊗̂kA.

These isomorphisms are easily seen from the construction to be functorial in A, defining
an isomorphism of covariant functors Φ: CHom(R,−) → R⊗̂k− which shows that R
represents the functor R⊗̂k−.

The universal element u = ΦR(idR) ∈ R⊗̂kR can be described as follows. For every
n ∈ N, let un ∈ R⊗k Rn = R⊗k Sym·(V ∨n ) be the image by the natural homomorphism

Vn ⊗k V ∨n → R⊗k Sym·(V ∨n )

of the element corresponding to idVn via the isomorphism Homk(Vn, Vn) ∼= Vn ⊗k V ∨n .
The collection of elements un ∈ R ⊗k Rn is an inverse system with the respect to the
projection homomorphisms R⊗k Rn′ → R⊗k Rn, n ≤ n′ and we have u = lim←−n∈N un ∈
lim←−n∈NR⊗k Rn = R⊗̂kR. �

1.3.2. Separated completed localization. In what follows by a multiplicatively closed sub-
set of a ring A, we mean a subset S of A containing 1 and stable under multiplication.
We now recall basic results on separated completed localizations of topological rings and
modules, see [10, 0.7.6].

Definition 1.15. Let A be a be a topological ring and let S ⊂ A be a multiplicatively
closed subset of A. The separated completed localization Ŝ−1A of A with respect to S
is the separated completion of the usual localization S−1A endowed with the topology co-
induced by the localization homomorphism j : A → S−1A. The composition

j̃ = c ◦ j : A j→ S−1A c→ Ŝ−1A
of the usual localization homomorphism with the separated completion homomorphism
is a homomorphism of topological ring, which we call separated completed localization
homomorphism of A with respect to S.

Notation 1.16. Given a topological ring A and element f ∈ A (resp. a prime ideal p of A),
we denote by Âf (resp. Âp) the separated completed localization of A with respect to the
multiplicatively closed subset S = {fn}n≥0 (resp. S = A \ p).

The separated completed localization enjoys the following universal property:

Proposition 1.17. With the notation above, let B be a complete topological ring and let
ϕ : A → B be a homomorphism of topological rings such that ϕ(S) ⊂ B∗. Then there exists
a unique homomorphism of topological rings Ŝ−1ϕ : Ŝ−1A → B such that ϕ = Ŝ−1ϕ ◦ j̃.
Proof. By the universal property of the usual localization j : A → S−1A, the exists a
unique homomorphism S−1ϕ : S−1A → B such that ϕ = S−1ϕ ◦ j. The homomor-
phism S−1ϕ is continuous for the topology on S−1A co-induced by that on A, and since
B is complete, it follows that there exists a unique homomorphism of topological rings
Ŝ−1ϕ : Ŝ−1A → B such that S−1ϕ = Ŝ−1ϕ ◦ c. We then have ϕ = S−1ϕ ◦ j =

Ŝ−1ϕ ◦ c ◦ j = Ŝ−1ϕ ◦ j̃. �

Lemma 1.18. LetA be a topological ring with separated completion c : A → Â, let S ⊂ A
be a multiplicatively closed subset and let Ŝ ⊂ Â be the closure of c(S) in Â. Then there

exists a canonical isomorphism Ŝ−1A ∼= ̂̂
S−1Â of complete topological rings.
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Proof. Let (an)n∈N be a fundamental system of open ideals in A, let pn : A → An =

A/an, n ∈ N, be the quotient homomorphisms and let Sn = pn(S) ⊂ An. Then Ŝ =

lim←−n∈N Sn ⊂ lim←−n∈NAn = Â so that, by definition,

Ŝ−1A ∼= lim←−
n∈N

S−1
n An ∼= ̂̂

S−1Â.

�
Corollary 1.19. Let A be a topological ring, let c : A → Â be its separated completion
and let S ⊂ A be a multiplicatively closed subset. Then Ŝ−1A is the zero ring if an only if
0 belongs to the closure Ŝ of c(S) in Â.

Proof. In view of Lemma 1.18, we are reduced to the case where A is complete and S is
closed inA. Now if 0 ∈ S then S−1A is the zero ring, and so Ŝ−1A is the zero ring as well.
Conversely, using the notation of the proof of Lemma 1.18, if Ŝ−1A = lim←−n∈N S

−1
n An is

the zero ring, then S−1
n An is the zero ring for every n ∈ N, which implies that 0 ∈ Sn for

every n ∈ N. It follows that 0 belongs lim←−n∈N Sn = S as S is closed. �

Example 1.20. LetA = C[u] endowed with the u-adic topology, with fundamental system
of neighbourhoods of 0 given by the ideals an = unC[u], n ≥ 0, and let S = {um}m≥0. We
have then Â ∼= C[[u]] endowed with the u-adic topology and Ŝ = c(S) = {um}m≥0. Since
An = C[u]/(un) = C[[u]]/(un) the images Sn = πn(S) = πn(Ŝ), n ≥ 1, all contain the
element 0. Thus S−1

n An = {0} for every n ≥ 0 from which it follows that Ŝ−1A is the
zero ring. On the other hand, we have S−1A = C[u±1] and Ŝ−1Â = C[[u±1]] = C((u))
and the images of the ideal an and c(an) by the respective localization homomorphisms are
all equal to the unit ideals in C[u±1] and C((u)) respectively. The induced topologies on
S−1A and Ŝ−1Â are thus the trivial ones, which implies that the separated completions of
these rings are both isomorphic to the zero ring.

Lemma 1.21. Let i : A → B be an injective closed homomorphism of complete topological
rings and let S be a multiplicatively closed subset of A. Then Ŝ−1i : Ŝ−1A → ̂i(S)−1B is
an injective homomorphism of topological rings.

Proof. Since A (resp. B) is complete, the kernel of the separated completed localization
homomorphism A → Ŝ−1A (resp. B → ̂i(S)−1B) consists of elements of A (resp. B)
which are anihilated by the multiplication by an element of the closure of S in A (resp.
of the closure of i(S) in B). On the other hand, since i is a closed homomorphism of
topological rings, i(A) is complete subspace of B, hence a closed subspace, so that the
closures of i(S) in i(A) and B coincide. �
Remark 1.22. Note that the conclusion of Lemma 1.21 does not hold if i : A → B is not a
closed homomorphism. For instance, the inclusion C[u]→ C[[u]] where C[u] and C[[u]] are
endowed respectively with the discrete topology and the u-adic topology is continuous but
not closed. The separated completed localizations of these topological rings with respect to
the multiplicatively closed subset S = {um}m≥0 are respectively isomorphic to C[u, u−1]

endowed with the discrete topology and to the zero ring, so that Ŝ−1i is not injective in this
case.

Definition 1.23. Let A be a be a topological ring, let M be a topological A-module and let
S ⊂ Amultiplicatively closed subset ofA. The separated completed localization Ŝ−1M of
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M with respect to S is the separated completion of the S−1A-module S−1M = S−1A⊗A
M with respect to the topology co-induced by the localization homomorphism jM : M →
S−1M

The natural structure of topological S−1A-module on S−1M induces a structure of com-
plete topological Ŝ−1A-module on Ŝ−1M . The composition

j̃M = c ◦ jM : M
jM→ S−1M

c→ Ŝ−1M

of the usual localization homomorphism with the separated completion homomorphism is a
homomorphism of topological modules which we call the separated completed localization
homomorphism of M with respect to S.

For every homomorphism of topologicalA-modules f : M → N , we denote by Ŝ−1f : Ŝ−1M →
Ŝ−1N the homomorphism of topological Ŝ−1A-modules induced by the universal proper-
ties of usual localization and separated completion.

1.4. Restricted power series. We recall properties of restricted power series rings with
coefficients in a topological ring following [4, III.4.2], see also [10, 0.7.5].

Definition 1.24. Let A be a topological ring with separated completion c : A → Â and let
T1, . . . , Tr be a collection of indeterminates.

The ring of restricted power series with coefficients in Â is the separated completion
Â{T1, . . . , Tr} of the polynomial ring A[T1, . . . , Tr] endowed with the topology generated
by the ideals a[T1, . . . , Tr], where a runs through the set of open ideals of A.

We denote by i0 : Â → Â{T1, . . . , Tr} the homomorphism of topological rings de-
duced by the universal property of c : A → Â from the composition of the inclusion
A ↪→ A[T1, . . . , Tr] as the subring of constant polynomials with the separated comple-
tion homomorphism A[T1, . . . , Tr]→ Â{T1, . . . , Tr}. The elements in the image of i0 are
said to be constant restricted power series.

Letting (an)n∈N be a fundamental system of open ideals ofA, it follows from the defini-
tion that

Â{T1, . . . , Tr} ∼= lim←−
n∈N

(A/an)[T1, . . . , Tr].

Identifying a polynomial in Â[T1, . . . , Tr] with the family (aI)I∈Nr of its coefficients, we
see that the elements of Â{T1, . . . , Tr} are represented by families (aI)I∈Nr of elements of
Â which converge to 0 in the sense of Definition 1.6, namely, a family of elements (aI)I∈Nr
of Â represents a restricted power series if and only if for every open ideal a of Â, all but
finitely many of the aI belong to a.

Following [4, III.4.2], we henceforth identify Â{T1, . . . , Tr} with the Â-subalgebra of
the algebra of formal power series with coefficients in Â consisting of formal power series

∑

I=(i1,...,ir)∈Nr
aIT

i1
1 · · ·T irr

such that the family (aI)I∈Nr converges to 0. Note that such a family is summable in Â by
Proposition 1.7, so that with our identification, the family (aIT

i1
1 · · ·T irr )I∈Nr of elements

of Â{T1, . . . , Tr} is summable, with sum
∑

I∈Nr aIT
i1
1 · · ·T irr . Recall [3, 5.3 Proposition 2

and Theorem 2] that for every partition (Jλ)λ∈L of Nr, the subfamily (aI)I∈Jλ is summable,
say of sum sλ ∈ Â, and the family (sλ)λ∈L is summable, with the same sum as the family
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(aI)I∈Nr , so that, with our identification, we have
∑

I∈Nr
aIT

i1
1 · · ·T irr =

∑

λ∈L

∑

I∈Jλ
aIT

i1
1 · · ·T irr .

Proposition 1.25. The ring Â{T1, . . . , Tr} satisfies the following universal property: for
every continuous ring homomorphism f : A → B to a complete topological ring B and
every choice of r elements b1, . . . , br of B, there exists a unique continuous ring homomor-
phism f : Â{T1, . . . , Tr} → B such that f |c(A) = f̂ and such that f(Ti) = bi for every
i = 1, . . . , r.

Proof. This follows from [4, III.4.2 Proposition 4] and the universal property of the sepa-
rated completion homomorphism c : A → Â. �

Corollary 1.26. Let A be a complete topological ring and let B be a complete topological
A-algebra. Then for every r ≥ 1, there are canonical isomorphisms

CHomA−alg(A{T1, . . . , Tr},B) ∼= CHomA−mod(A⊕r,B) ∼= B⊕r.

Notation 1.27. Given a complete topological ringA and a subset J ⊂ {1, . . . , r}, we denote
by

π(1,J) : A{Ti}i∈{1,...,r} → A{Ti}i 6∈J
the unique homomorphism of topological A-algebras defined by π(1,J)(Ti) = 1 if i ∈ J
and π(1,J)(Ti) = Ti otherwise. For J = {1, . . . , r}, we denote the corresponding homo-
morphism A{T1, . . . , Tr} → A simply by π(1,...,1).

For any collection a1, . . . , ar of elements of A, we denote by λ(a1, . . . , ar) the unique
endomorphisms of topological A-algebras of A{T1, . . . , Tr} defined by Ti 7→ aiTi, i =
1, . . . , r.

Finally, we denote by ∆: A{T1, . . . , Tr} → A{T} the unique homomorphism of topo-
logical A-algebras that maps Ti to T for every i = 1, . . . , r.

It follows from the definition of the completed tensor product that we have canonical
isomorphisms

Â{T1, . . . , Tr} ∼= A⊗̂ZZ[T1, . . . , Tr] ∼= Â⊗̂ZZ[T1, . . . , Tr]

where Z[T1, . . . , Tr] is endowed with the discrete topology. The following lemma is then a
straightforward consequence of Lemma 1.13.

Lemma 1.28. For every complete topological ringA and every set of variables T1, . . . , Ts, Ts+1, . . . , Tr,
there exist canonical isomorphisms of complete topological A-algebras

A{T1, . . . , Ts, Ts+1, . . . Tr} ∼= A{T1, . . . , Tr}⊗̂AA{Ts+1, . . . , Tr} ∼= A{T1, . . . , Ts}{Ts+1, . . . Tr}.

Lemma 1.29. Let B be the limit of a countable inverse system (Bn)n∈N of complete topo-
logical rings with surjective continuous transition homomorphisms pm,n : Bm → Bn for
everym ≥ n ≥ 0 and let T1, . . . , Tr be indeterminates. Then the canonical homomorphism
of complete topological rings

B{T1, . . . , Tr} ∼= (lim←−
n∈N
Bn)⊗̂ZZ[T1, . . . , Tr]→ lim←−

n∈N
(Bn⊗̂ZZ[T1, . . . Tr]) ∼= lim←−

n∈N
(Bn{T1, . . . , Tr})

is an isomorphism.
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Proof. Let pn : B → Bn, n ∈ N be the canonical projection homomorphisms. By definition,
elements of B{T1, . . . , Tr} are represented by families (bI)I∈Nr of elements of B which
converge to 0 in B. Since the projection homomorphisms pn are surjective, it follows from
the definition of the topology on B that these families are in one-to-one correspondence with
collections of families (bn,I)I∈Nr of elements of Bn, n ∈ N, such that (bn,I)I∈Nr converges
to 0 in Bn for every n ∈ N and such that bn,I = pm,n(bm,I) for every m ≥ n ≥ 0 and every
I ∈ Nr. �

Lemma 1.30. Let A be a topological ring, let B be a separated topological ring with
separated completion c : B → B̂ and let hn : A → B be a sequence of homomorphisms of
groups which converges pointwise to the zero homomorphism. Then the map

s : A → B̂{T}, a 7→
∑

n∈N
c(hn(a))Tn

is a well-defined homomorphism of groups and the following assertions are equivalent:
a) The homomorphism s : A → B̂{T} is continuous,
b) Every hn, n ∈ N, is continuous and the sequence (hn)n∈N converges continuously to

the zero homomorphism.

Proof. Let un : A → B̂{T}, n ∈ N, be the sequence of homomorphisms of groups defined
by un(a) = c(hn(a))Tn. Since the sequence (hn)n∈N converges pointwise to the zero
homomorphism, it follows from the definition of the topology on B̂{T} that the sequence
(un)n∈N converges pointwise to the zero homomorphism. Arguing as in the proof of Corol-
lary 1.11, we conclude that the map s is a well-defined homomorphism of groups, and that
the sequence of homomorphisms (sN )N∈N defined by sN =

∑N
n=0 un converges pointwise

to s.
If each hn, n ∈ N, is continuous and the sequence (hn)n∈N converges continuously to

the zero homomorphism, then s is a homomorphism of topological groups by Corollary
1.11. Conversely, assume that s is continuous. By definition of the topology on

B̂{T} ⊂ B̂[[T ]]∼=
∏

n∈N
B̂,

where the isomorphism B̂[[T ]]∼=
∏
n∈N B̂ is induced by the product topology on

∏
n∈N B̂,

every projection pn : B̂{T} → B̂, (bn)n∈N 7→ bn, n ∈ N, is a homomorphism of topological
groups. It follows that pn ◦ s = c ◦ hn is continuous for every n ∈ N, which implies in turn
that hn is continuous since c : B → B̂ is open onto its image. Furthermore, for every open
ideal b̂ of B̂, there exists an index n ≥ 0 such that c(hn(a)) ∈ b̂ for every a ∈ A and every
n ≥ n0. This implies that the sequence (c ◦ hn)n∈N converges continuously to the zero
homomorphism, hence that the sequence (hn)n∈N converges to the zero homomorphism.

�

Lemma 1.31. Let A be topological ring with separated completion c : A → Â and let
S ⊂ A be a multiplicatively closed subset. Let T1, . . . , Tr be a set of indeterminates and let
Ŝ0 ⊂ Â{T1, . . . , Tr} be the image of S by the composition of c with the inclusion i0 : Â ↪→
Â{T1, . . . , Tr}. Then there exists a canonical isomorphism of complete topological Ŝ−1A-
algebras

Ŝ−1A{T1, . . . , Tr} ∼= ̂
(Ŝ−1

0 (Â{T1, . . . , Tr})),
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where ̂
(Ŝ−1

0 (Â{T1, . . . , Tr})) is viewed as an Ŝ−1A-algebra via the unique homomorphism
of topological rings deduced from the homomorphism of topological rings

A i0◦c→ Â{T1, . . . , Tr} → ̂
(Ŝ−1

0 (Â{T1, . . . , Tr}))

by the universal property of separated completed localization.

Proof. Indeed, it follows from the definition of the separated completed localization and the
definition of the restricted power series rings that these topological rings are both isomor-
phic, as topological Ŝ−1A-algebras, to the separated completion of the ring S−1A[T1, . . . , Tr] =
S−1A⊗ZZ[T1, . . . , Tr] with respect to the topology generated by the open ideals S−1a[T1, . . . , Tr],
where a ranges through the set of open ideals of A. �

Notation 1.32. Given a multiplicatively closed subset S of a topological ring A, we denote
by

j̃T1,...,Tr : Â{T1, . . . , Tr} → Ŝ−1A{T1, . . . , Tr}

the homomorphism of topological Â-algebras such that j̃T1,...,Tr(Ti) = Ti for every i =
1, . . . , r.

2. RESTRICTED EXPONENTIAL HOMOMORPHISMS AND TOPOLOGICALLY
INTEGRABLE DERIVATIONS

In this section, we develop the basic algebraic theory of restricted exponential homomor-
phisms, which are the counterpart for topological rings of the co-action homomorphisms
e : B → B ⊗Z Z[T ] of the Hopf algebra Z[T ] of the additive group scheme Ga,Z in
the category of rings. We establish a one-to-one correspondence between restricted ex-
ponential homomorphisms and suitable systems of continuous iterated higher derivations
which extends the classical correspondence between algebraic exponential homomorphisms
e : B → B ⊗Z Z[T ] and locally finite iterative higher derivations of the ring B [18, 2, 8].

2.1. Restricted exponential homomorphisms. Recall that the ring Z[T ], where T is an in-
determinate, carries the structure of a cocommutative Hopf algebra whose comuliplication,
coinverse and counit are given respectively by the following Z-algebra homomorphisms:

m : Z[T ]→ Z[T ]⊗Z Z[T ] ∼= Z[T, T ′], T 7→ T + T ′

ι : Z[T ]→ Z[T ], T 7→ −T
ε : Z[T ]→ Z, T 7→ 0.

Given any complete topological ringA, the complete topological ringA{T} = A⊗̂Z[T ]
inherits the structure of a cocommutative topological HopfA-algebra with comultiplication
idA⊗̂m, coinverse idA⊗̂ι and counit idA⊗̂ε.

Definition 2.1. Let A be a complete topological ring and let B be a complete topological
A-algebra. A restricted exponential A-homomorphism is a homomorphism of topological
A-algebras

e : B → B{T} = B⊗̂ZZ[T ]

which defines a coaction of the Hopf A-algebra A{T} on B. This means equivalently that
the following diagrams of A-algebra homomorphisms are commutative:
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B e //

e

��

B{T}
idB⊗̂m
��

B{T}
e⊗̂idZ[T ]// B{T ′}{T} = B{T ′, T}

B e //

idB

''

B{T}
q=idB⊗̂ε
��

B = B{T}/TB{T}.

Let pi : B[[T ]] =
∏
i∈N B → B denote the i-th projection. Then by definition of the

topology on B{T}, the composition ei = pi ◦ e : B → B is a homomorphism of topological
A-modules for every i ∈ N for which we can write

e =
∑

i∈N
eiT

i.

The commutativity of the right hand side diagram of Definition 2.1 means that e0 = idB.
On the other hand, with the identifications made, the homomorphisms e⊗̂idZ[T ] and idB⊗̂m
are given by

e⊗̂idZ[T ] : B{T} → B{T ′, T},
∑

i∈N
biT

i 7→
∑

i∈N
e(bi)T

i =
∑

(i,j)∈N2

ej(bi)T
′jT i

idB⊗̂m : B{T} → B{T ′, T},
∑

i∈N
biT

i 7→
∑

i∈N
bi(T

′ + T )i.

The commutativity of the left hand side diagram in Definition 2.1 says that in B{T, T ′}, we
have ∑

(i,j)∈N2

(ej ◦ ei)T
′jT i =

∑

`∈N
e`(T

′ + T )`. (2.1)

In the next subsections, we first establish general properties of restricted exponential
homomorphisms e. Then we discuss in more detail the properties of their associated collec-
tions (ei)i∈N of homomorphisms of topological modules. In what follows, unless otherwise
specified all topological modules and rings and are assumed to be modules and algebras
over a fixed topological ring A, and homomorphisms between these are assumed to be ho-
momorphisms of A-modules and A-algebras respectively.

2.2. Basic properties of restricted exponential automorphisms.

2.2.1. Rings of invariants and associated restricted exponential homomorphisms.

Definition 2.2. Let B be a complete topological ring and let e : B → B{T} be a restricted
exponential homomorphism. We say that en element b ∈ B is e-invariant if e(b) = i0(b).
We denote by

Be = Ker(e− i0) ⊆ B
the subset of all e-invariant elements of B, endowed with the induced topology.

Proposition 2.3. Let B be a complete topological ring and let e =
∑

i∈N eiT
i : B → B{T}

be a restricted exponential homomorphism. Then the following hold:
a) The set Be is a complete topological subring of B.
b) For every i ≥ 1, the homomorphism ei : B → B is a homomorphism of topological

Be-modules.
c) If B admits a fundamental system (bn)n∈N of open prime ideals of B then Be is facto-

rially closed in B. In particular, every invertible element of B is contained in Be.
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Proof. The fact that Be is a subgring of B is clear. Since B{T} is complete, hence sepa-
rated, {0} is a closed subset of B{T}. Since e − i0 : B → B{T} is a homomorphism of
topological groups, Be is a closed subgroup of B, hence a complete topological group since
B is complete. Assertion b) is clear from the definition of Be and the homomorphisms ei.

Now let (bn)n∈N be a fundamental system of open prime ideals of B and let

πn : B{T} = lim←−
n∈N

(B/bn)[T ]→ (B/bn)[T ], n ∈ N,

be the canonical projections. Write e =
∑

i∈N eiT
i, where e0 = idB, and let b, b′ ∈ B.

Assume that e(bb′) = e(b)e(b′) = bb′. Then for every n ≥ 0, we have

πn(e(b)e(b′)) =

(∑

i∈N
πn(ei(b))T

i

)(∑

i∈N
πn(ei(b

′))T i
)

= πn(bb′) = πn(b)πn(b′)

in the integral domain (B/bn)[T ]. It follows that πn(ei(b)) = πn(ei(b
′)) = 0 for every

i ≥ 1. This implies that for every i ≥ 1, ei(b) and ei(b
′) belong to

⋂
n≥1 bn = {0} as B is

separated. Thus e(b) = b and e(b′) = b′. Finally, if b ∈ B is invertible, then bb−1 = 1 ∈ Be

and so, b and b−1 belong to Be. �
Example 2.4. If the topology onB is the discrete one, the existence of a fundamental system
of open prime ideals of B is equivalent to the property that B is an integral domain. This is
not true in general, and the conclusion of assertion b) in Proposition 2.3 does not hold under
the weaker assumption that B is integral. Indeed, let B = lim←−n∈NC[u]/(un) ∼= C[[u]] be
the completion of C[u] for the u-adic topology. The homomorphism of C-algebras C[u]→
C[[u]]{T} defined by

u 7→ u
∑

i∈N
(uT )i =

∑

i∈N
ui+1T i

induces a uniquely determined continuous homomorphism e : B → B{T} which satisfies
the axioms of a restricted exponential C-homomorphism. The ring of invariants Be is equal
to the subring of constant formal power series. In particular, the invertible element 1− u of
B does not belong to Be, so that Be is not factorially closed in B.

Proposition 2.5. Let B be a complete topological ring and let e : B → B{T} be a restricted
exponential homomorphism. Then for every element a ∈ Be, the homomorphism

eλ(a) := λ(a) ◦ e : B e→ B{T} T 7→aT−→ B{T}
is a restricted exponential homomorphism.

Proof. Since the homomorphisms e and λ(a) are continuous, so is eλ(a). The commutativity
of the right hand side diagram in Definition 2.1 for eλ(a) is clear. Writing e =

∑
i∈N eiT

i,
we have

eλ(a) =
∑

i∈N
ei(aT )i =

∑

i∈N
(aiei)T

i,

where aiei is the homomorphism defined by b 7→ aiei(b) for every b ∈ B. Since a ∈ Be,
ai ∈ Be for every i ≥ 0. Since by Proposition 2.3 b) each ei, i ≥ 1, is a homomorphism of
topological Be-modules, applying (2.1), we obtain

(eλ(a)⊗̂idZ[T ]) ◦ eλ(a) =
∑

i∈N(eλ(a) ◦ (aiei))T
i

=
∑

(i,j)∈N2(ej ◦ (aiei))(aT
′)jT i

=
∑

(i,j)∈N2(ej ◦ ei)(aT
′)j(aT )i

=
∑

`∈N e`(aT
′ + aT )` = (idB⊗̂m) ◦ eλ(a).
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This shows that the commutativity of left hand side diagram in Definition 2.1 is satisfied for
eλ(a). �

Proposition 2.6. Let B be a complete topological ring and let e : B → B{T} be a restricted
exponential homomorphism. Let S ⊂ Be be a multiplicatively closed subset, let j̃ : B →
Ŝ−1B be the separated completed localization homomorphism and let j̃T : B{T} → Ŝ−1B{T}
be the induced homomorphism.

Then there exists a unique restricted exponential homomorphism Ŝ−1e : Ŝ−1B → Ŝ−1B{T}
such that j̃T ◦ e = Ŝ−1e ◦ j̃

Proof. We identify S ⊂ B with i0(S) ⊂ B{T} and ̂S−1(B{T}) with Ŝ−1B{T} by the
canonical isomorphism of Lemma 1.31. Since S ⊂ Be,we have e(S) = S ⊂ B{T} so
that by the universal property of separated completed localization, there exists a unique
homomorphism of topological rings

Ŝ−1e : Ŝ−1B → Ŝ−1B{T}

such that j̃T ◦ e = Ŝ−1e ◦ j̃. Write e =
∑

i∈N eiT
i. Since S ⊂ Be and since ei is a

homomorphism of topological Be-modules for every i ≥ 0 by Proposition 2.3 b), it follows
that each ei, i ∈ N, induces a uniquely determined homomorphism of topological S−1Be-
modules S−1ei : S

−1B → S−1B, hence by the universal property of separated completed
localization, a homomorphism Ŝ−1ei : Ŝ−1B → Ŝ−1B of topological Ŝ−1Be-modules. By
construction, we then have

Ŝ−1e =
∑

i∈N
Ŝ−1eiT

i.

To show that Ŝ−1e is a restricted exponential homomorphism, it is enough to check the
commutativity of the two diagrams of Definition 2.1 in restriction to the dense image of
S−1B in Ŝ−1B by the separated completion morphism c : S−1B → Ŝ−1B. Let x = s−1b ∈
S−1B, where b ∈ B. Then by definition of Ŝ−1e, we have

Ŝ−1e(c(x)) =
∑

i∈N
Ŝ−1ei(c(x))T i = cT

(∑

i∈N
(S−1ei)(x)T i

)
= cT

(∑

i∈N
s−1ei(b)T

i
)
,

where cT : S−1B{T} → Ŝ−1B{T} denotes the separated completion homomorphism. This
immediately implies the commutativity of the right hand side diagram of Definition 2.1. On
the other hand, letting cT,T ′ : S−1B{T, T ′} → Ŝ−1B{T, T ′} be the separated completion
homomorphism, we have

(Ŝ−1e⊗̂idZ[T ])(Ŝ−1e(c(x)) =
∑

i∈N Ŝ
−1e(c(s−1ei(b)))T

i

=
∑

(i,j)∈N Ŝ
−1ej(c(s

−1ei(b)))T
′jT i

= cT,T ′(
∑

(i,j)∈N2 S−1ej((s
−1ei(b)))T

′jT i)

= cT,T ′(
∑

(i,j)∈N2 s−1ej(ei(b))T
′jT i)

= cT,T ′(
∑

`∈N s
−1e`(b)(T

′ + T )`)
= cT,T ′(

∑
`∈N S

−1e`(x)(T ′ + T )`)

= (
∑

`∈N Ŝ
−1e`(c(x))(T ′ + T )`) = (idB⊗̂m)(Ŝ−1e(c(x)),

which shows the commutativity of the left hand side diagram. �
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Proposition 2.7. Let π : B → C be a surjective open homomorphism of complete topolog-
ical rings. Let I = Ker(π) and let e : B → B{T} be a restricted exponential homomor-
phism. Assume that e(I) ⊂ i0(I)B{T}. Then there exists a unique restricted exponential
homomorphism e : C → C{T} such that πT ◦ e = e ◦ π, where πT : B{T} → C{T} is the
unique homomorphism of topological B-algebras which maps T to T .

Proof. The assumptions imply that e induces a unique homomorphism of rings

ẽ : C = B/I → B{T}/i0(I)B{T} ∼= B/I ⊗ B{T} ∼= C ⊗ B{T}

such that (π⊗ idB{T})◦ e = ẽ◦π. Since π is open, ẽ is continuous when we endow the ring
C ⊗B{T} with the linear topology generated by open ideals of the form UC ⊗B{T}+ C ⊗
VB{T} where UC and VB{T} run through the sets of open ideals of C and B{T} respectively.
Note also that π⊗ idB{T} is an open homomorphism of topological rings. The composition

e : C → C⊗̂B{T} ∼= C{T}

of ẽ with the separated completion homomorphism c : C ⊗ B{T} → C⊗̂B{T} is then a
homomorphism of topological rings. The commutativity of the two diagrams in Definition
2.1 is straightforward to check. �

2.2.2. Operations on restricted exponential homomorphism.
Recall (cf. Notation 1.27) that for a complete topological ring B, ∆: B{T, T ′} → B{T ′′}
denotes the unique continuous B-algebra homomorphism which maps T and T ′ to T ′′.

Proposition 2.8. Let B be a complete topological ring and let e : B → B{T} and e′ : B →
B{T ′} be restricted exponential homomorphisms such that the following diagram com-
mutes

B e′ //

e

��

B{T}
e′⊗̂idZ[T ]

��
B{T ′}

e⊗̂idZ[T ′]

// B{T, T ′}

Then the map e′′ : B → B{T ′′} defined by

e′′ = ∆ ◦ (e⊗̂idZ[T ′]) ◦ e′ = ∆ ◦ (e′⊗̂idZ[T ]) ◦ e

is a restricted exponential homomorphism.

Proof. Being the composition of homomorphisms of topological rings, e′′ is a homomor-
phism of topological rings. Denoting T ′′ by T0, we have, by definition of e′′,

e′′ =
∑

n∈N
e′′nT

n
0 =

∑

(i,j)∈N2

(e′j ◦ ei)T
i+j
0 =

∑

(i,j)∈N2

(ej ◦ e′i)T
i+j
0 . (2.2)

This implies in particular that e′′0 = e′0 ◦ e0 = idB, hence that the commutativity of the right
hand side diagram of Definition 2.1 holds for e′′. Combining Equation (2.2) above with
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Equation (2.1) for e and e′, we obtain on the other hand that

(idB⊗̂m) ◦ e′′ =
∑

(i,j)∈N2(e′j ◦ ei)(T0 + T ′0)i+j

=
∑

(i,k,`)∈N3(e′` ◦ e′k ◦ ei)T
′
0
`T k0 (T0 + T ′0)i

=
∑

(i,k,`)∈N3(ei ◦ e′` ◦ e′k)(T0 + T ′0)iT `0T
k
0

=
∑

(m,n,k,`)∈N4(en ◦ em ◦ e′` ◦ e′k)T
′
0
nTm0 T ′0

`T k0
=

∑
(m,n,k,`)∈N4(en ◦ e′` ◦ em ◦ e′k)T

′
0
n+`T k+m

0

=
∑

(i,n,`)∈N3(en ◦ e′` ◦ e′′i )T
′
0
n+`T i0

=
∑

(i,j)∈N2(e′′j ◦ e′′i )T
′
0
jT i0

= (e′′⊗̂idZ[T0]) ◦ e′′,

which shows that e′′ is a restricted exponential homomorphism. �

Proposition 2.9. Let (Bn)n∈N be a countable inverse system of complete topological rings
with continuous and surjective transition homomorphisms pm,n : Bm → Bn for every m ≥
n ≥ 0. Let B be its limit and let pn : B → Bn, n ∈ N, be the canonical continuous
projections. Let en : Bn → Bn{T}, n ∈ N, be a collection of restricted exponential homo-
morphisms such that

en ◦ pm,n = (pn,m⊗̂idZ[T ]) ◦ en ∀m ≥ n ≥ 0.

Then there exists a unique restricted exponential homomorphism e = lim←−n∈N en : B →
B{T} such that en ◦ pn = (pn⊗̂idZ[T ]) ◦ e for every n ∈ N.

Proof. The hypothesis combined with Lemma 1.29 implies the existence of a unique ho-
momorphism of topological rings

e = lim←−
n∈N

en : B = lim←−
n∈N
Bn → lim←−

n∈N
Bn{T} ∼= B{T}

such that en ◦ pn = (pn⊗̂idZ[T ]) ◦ e for every n ∈ N. The equality en,0 = idB for every
n ∈ N implies that e0 = idB. Similarly, since (idB⊗̂m) ◦ en = (en⊗̂idZ[T ]) ◦ en for
every n ∈ N, it follows that (idB⊗̂m) ◦ e = (e⊗̂idZ[T ]) ◦ e, showing that e is a restricted
exponential homomorphism. �

2.2.3. Restricted exponential homomorphisms and automorphisms.

Proposition 2.10. Let B be a complete topological ring and let e : B → B{T} be a re-
stricted exponential homomorphism. Then for every continuous ring automorphism α of B,
the composition

αe := (α⊗̂idZ[T ]) ◦ e ◦ α−1 : B → B{T}
is a restricted exponential homomorphism.

Proof. It is clear that αe is a homomorphism of topological rings. By definition, we have

αe =
∑

i∈N

αeiT
i =

∑

i∈N
(α ◦ ei ◦ α−1)T i.

Since e0 = idB, we have αe0 = idB showing that commutativity of the right hand side
diagram of Definition 2.1 holds for αe(b). On the other hand, applying Equation (2.1), we
have
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(idB⊗̂m) ◦ αe =
∑

`∈N(α ◦ e` ◦ α−1)(T + T ′)`

=
∑

(i,j)∈N2(α ◦ ei ◦ ej ◦ α−1)T ′jT i

=
∑

(i,j)∈N2

(
(α ◦ ei ◦ α−1) ◦ (α ◦ ej ◦ α−1)

)
T ′jT i

= (αe⊗̂idZ[T ]) ◦ αe,
which shows that αe is a restricted exponential homomorphism. �
Proposition 2.11. Let B be a complete topological ring and let e : B → B{T} be a re-
stricted exponential homomorphism. Then the compositions

ϕ = π(1) ◦ e : B e→ B{T} T 7→1−→ B and ψ = π(−1) ◦ e : B e→ B{T} T 7→−1−→ B
are continuous ring automorphisms of B inverse to each other.

Proof. The homomorphisms ϕ and ψ are clearly continuous. Note that by definition, ψ =
π(1) ◦ eλ(−1). Furthermore, letting π(1,1) = π(1) ◦∆: B{T, T ′} → B be the unique contin-
uous B-algebra homomorphism that maps T and T ′ to 1, we have

ψ ◦ ϕ = π(1,1) ◦ (eλ(−1)⊗̂idZ[T ]) ◦ e and ϕ ◦ ψ = π(1,1) ◦ (e⊗̂idZ[T ′]) ◦ eλ(−1).

Let f : B → B{T, T ′} be the composition of e with the unique continuous B-algebra ho-
momorphism B{T} → B{T, T ′} that maps T to T − T ′. Since e is a restricted exponential
homomorphism, Equation (2.1) implies that

(eλ(−1)⊗̂idZ[T ]) ◦ e = f = (e⊗̂idZ[T ′]) ◦ eλ(−1).

Since π(1,1) ◦ f = idB, the assertion follows. �

2.3. Sliced restricted exponential homomorphisms.

Definition 2.12. Let B be a complete topological ring and let e : B → B{T} be a restricted
exponential homomorphism. A local slice for e is an element s ∈ B such that e(s) ∈ B{T}
is a polynomial of degree 1.

Example 2.13. Let B = C[u] endowed with the discrete topology, so that B{T} = C[u][T ].
Then e : C[u] → C[u][T ] defined by P (u) 7→ P (u + T ) is a restricted exponential homo-
morphism which has the element s = u as a slice. On the other hand, letting B = C[[u]]
endowed with the u-adic topology, the restricted exponential homomorphism

e : C[[u]]→ C[[u]]{T}, u 7→ u
∑

i∈N
(uT )i =

∑

i∈N
ui+1T i

of Example 2.4 does not admit a local slice.

Let e =
∑

i∈N eiT
i : B → B{T} be a restricted exponential homomorphism and let s be

a local slice. Then, by definition, we have e(s) = e0(s) + e1(s)T = s+ e1(s)T . Applying
e⊗̂idZ[T ] to this last equation we obtain

s+e1(s)(T+T ′) = ((idB⊗̂m)◦e)(s) = ((e⊗̂idZ[T ])◦e)(s) = e(s)+e(e1(s))T = s+e1(s)T ′+e(e1(s))T

in B{T, T ′}. It follows that s1 := e1(s) belongs to Be.
Let

j̃s1 : B → B̂s1 = Ŝ−1B and j̄s1 : Be → B̂e
s1 = Ŝ−1Be

be the separated completed localization homomorphisms of B and Be with respect to the
multiplicative subset S = {sn1}n≥0 of Be ⊆ B. Since Be is closed in B by Proposition
2.3, the homomorphism of topological rings îs1 : B̂e

s1 → B̂s1 induced by the inclusion



66 ROBERTO DÍAZ, ADRIEN DUBOULOZ, AND ALVARO LIENDO

i : Be ↪→ B is injective by Lemma 1.21. We henceforth consider B̂s1 as a B̂e
s1-algebra

via this homomorphism. By Proposition 2.6, there exists a unique restricted exponential
homomorphism ês1 := Ŝ−1e : B̂s1 → B̂s1{T} such that the following diagram commutes

B e //

j̃s1 ��

B⊗̂ZZ[T ]

j̃s1 ⊗̂id
��

B̂s1
ês1 // B̂s1⊗̂ZZ[T ].

Let σ be the image of the element s−1
1 s ∈ Bs1 in B̂s1 by the separated completion

homomorphism.

Lemma 2.14. The image σ ∈ B̂s1 of the element s−1
1 s ∈ Bs1 by the separated completion

homomorphism is a regular element of B̂s1 . Furthermore, if B̂s1 is not the zero ring, then
ês1(σ) = σ + T .

Proof. If B̂s1 is the zero ring, there is nothing to prove. We can thus assume that B̂s1 6= {0}.
By Corollary 1.19, 0 does not belong to the closure of S in B, so that the image of s1 in B̂s1
is a nonzero invertible element. By definition of ês1 , we have ês1(σ) = σ + T , so that σ is
a local slice for ês1 . Now let b ∈ B̂s1 be an element such that σb = 0. Then we have

0 = ês1(σb) = ês1(σ)ês1(b) = (σ+T )
∑

i∈N
ês1 i(b)T

i = σb+
∑

i≥1

(σês1 i(b)+ ês1 i−1(b))T i,

from which we infer by induction that

b = ês10(b) = (−1)iês1 i(b)σ
i for every i ∈ N.

Since ês1(b) ∈ B̂s1{T}, the sequence (ês1 i(b))i∈N converges to 0 in B̂s1 by definition of
the topology on B̂s1{T}. This implies in turn that the sequence((−1)iês1 i(b)σ

i)i∈N also
converges to 0, hence that b = 0. So σ is a regular element of B̂s1 . �

We let
υ−σ : B̂s1{T} → B̂s1 and υσ : B̂s1{T} → B̂s1

be the unique homomorphisms of topological B̂s1-algebras mapping T to−σ and σ respec-
tively.

Definition 2.15. With the notation above, we call the topological ring homomorphisms

Rs = υ−σ ◦ ês1 : B̂s1 → B̂s1 and θs = υσ ◦ (îs1⊗̂id) : B̂e
s1{T} → B̂s1

the Dixmier-Reynolds homomomorphism and the cylinder homomorphism associated to the
local slice s.

Proposition 2.16. Let B be a complete topological ring, let e : B → B{T} be a restricted
exponential homomorphism and let s be a local slice for e. Then the following hold:

a) The homomorphism Rs : B̂s1 → B̂s1 is a homomorphism of topological B̂e
s1-algebras

with image equal to B̂e
s1 and such that Rs(Rs(b)b′) = Rs(b)Rs(b

′) for every b, b′ ∈ B̂s1 .
b) The homomorphism θs : B̂e

s1{T} → B̂s1 is an isomorphism of topological B̂e
s1-algebras.

Proof. Since by Proposition 2.3 Be is closed in B, it follows that 0 belongs to closure of
S = {sn1}n≥0 in Be if and only if it belongs to the closure S of S in B. This implies that B̂e

s1

and B̂s1 are equal to the zero ring if and only if 0 ∈ S. If 0 ∈ S then assertions a) and b)
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hold trivially. We thus assume from now on that 0 6∈ S so that the images of s1 in B̂e
s1 and

B̂s1 are non-zero invertible elements. By Lemma 2.14, σ is a local slice for ês1 . Replacing
B by B̂s1 , e by ês1 and s by σ, we may thus assume without loss of generality from the very
beginning that e(s) = s+ T .

To prove assertion a), we first observe that since Be = Ker(e−i0), where i0 : B → B{T}
is the inclusion ofB as the subring of constant restricted power series, we haveRs|Be = idBe
so that Rs is indeed a Be-algebra homomorphism. Now given an element b ∈ B, we have
Rs(b) =

∑
i∈N ei(b)(−s)i and then

(e ◦Rs)(b) = e(
∑

i∈N ei(b)(−s)i)
=

∑
i∈N e(ei(b))(−e(s))i

=
∑

i∈N e(ei(b))(−s− T )i

=
∑

(i,j)∈N(ei ◦ ej)(b)T
j(s− T )i

=
∑

`∈N e`(b)(T − s− T )` = Rs(b).

This shows that e ◦ Rs = Rs hence that the image of Rs is contained in Be ⊂ B. Finally,
since Rs|Be = idBe , we have for every b, b′ ∈ B, Rs(Rs(b)b′) = Rs(Rs(b))Rs(b

′) =
Rs(b)Rs(b

′). This shows a).
To prove assertion b), we observe that the composition

(
υs ◦ (idZ[T ]⊗̂υ−s)

)
◦ (id⊗̂m) ◦ e : B → B{T} → B{T, T ′} → B

is equal to the identity. Writing υs⊗̂υ−s for υs ◦ (idZ[T ]⊗̂υ−s) for simplicity, it follows that
for every element b ∈ B, we have

b = ((υs⊗̂υ−s) ◦ (id⊗̂m) ◦ e)(b) = ((υs⊗̂υ−s) ◦ (e⊗̂id) ◦ e)(b)

= (υs⊗̂υ−s)(
∑

(i,j)∈N2(ej ◦ ei)(b)T
′jT i)

=
∑

i∈N(υ−s ◦ e)(ei(b))s
i

=
∑

i∈NRs(ei(b))s
i

Since Rs(ei(b)) ∈ Be for every i ∈ N, this implies that θ is surjective. Suppose that θ
is not injective and let a =

∑
i∈N aiT

i ∈ Be{T} be a nonzero element of minimal order
ord0(a) = min{i, ai 6= 0} such that θ(a) =

∑
i∈N ais

i = 0. Since by Lemma 2.14 s is
a regular element of B, the minimality of ord0(a) implies that that a0 6= 0. On the other
hand, since Rs(s) = 0, we have

a0 =
∑

i∈N
aiRs(s)

i = Rs(θ(a)) = 0,

a contradiction. This shows that θ is injective, hence an isomorphism. �

Remark 2.17. For a restricted exponential homomorphism e : B → B{T} with a local slice
s such that e(s) = s+ s1T , assertion a) in Proposition 2.16 says that the homomorphism of
topological rings

Rs = υ−s−1
1 s ◦ ês1 : B̂s1 → B̂s1

of Definition 2.15 is an idempotent endomorphism that satisfies the property of a Reynolds
operator with values in the subalgebra of ês1-invariant elements of B̂s1 . The composition
πs : B → B̂s1 of the separated completed localization homomorphism B → B̂s1 with Rs
is the analog in the context of restricted exponential homomorphisms of the Dixmier map
introduced in [8, 1.1.9].
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Corollary 2.18. Let B be a complete topological ring and let e : B → B{T} be a restricted
exponential homomorphism. Assume that e has a local slice s ∈ B such that e(s) = s+ T .
Then B ∼= Be{s} and e coincides with the homomorphism of topological Be-algebras

Be{s} → Be{s}{T} ∼= Be{s, T}, s 7→ s+ T.

2.4. Topologically integrable iterated higher derivations. In this subsection, we extend
to arbitrary complete topological rings the correspondence between locally finite iterative
higher derivations and exponential homomorphisms which classically holds for discretely
topologized rings.

2.4.1. Continuous iterated higher derivations.

Definition 2.19. Let A be a topological ring, let B be a topological A-algebra and M be
a topological B-module. A continuous A-derivation of B into M is a homomorphism of
topological A-modules ∂ : B → M which satisfies the Leibniz rule ∂(bb′) = b · ∂(b′) +
∂(b) · b′ for all b, b′ ∈ B.

Lemma 2.20. With the notation of Definition 2.19, let cB : B → B̂ and cM : M → M̂ be the
separated completions of B and M respectively. Then for every continuous A-derivation
∂ : B → M there exists a unique continuous A-derivation ∂̂ : B̂ → M̂ such that ∂ ◦ cM =

∂̂ ◦ cB .

Proof. The existence of a unique homomorphism of topological A-modules ∂̂ : B̂ → M̂

such that cM ◦ ∂ = ∂̂ ◦ cB follows from Proposition 1.4. By construction, ∂̂ is the homo-
morphism obtained from ∂̃ = cM ◦ ∂ by the universal property of the separated completion
homomorphism cB. Since ∂̃ satisfies the Leibniz rule, it follows that ∂̂ satisfies the Leibniz
rule in restriction to the image of cB, hence on B̂ because ∂̂ is uniformly continuous and
cB(B) is dense in B. �

Definition 2.21. LetA be a topological ring and let B be a topologicalA-algebra. A contin-
uous iterated higher A-derivation of B is a collection D =

{
D(i)

}
i≥0

of homomorphisms

of topological A-modules D(i) : B → B which satisfy the following properties:

(1) The homomorphism D(0) is the identity homomorphism of B,
(2) For every i ≥ 0, the Leibniz rule D(i)(bb′) =

∑i
j=0D

(j)(b)D(i−j)(b′) holds for
every pair of elements b, b′ ∈ B,

(3) For every i, j ≥ 0, D(i) ◦D(j) =
(
i+j
i

)
D(i+j).

Note that the first two properties imply in particular that ∂ = D(1) : B → B is a contin-
uous A-derivation of B into itself. If A contains the field Q then the third property implies
that D(i) = 1

i!∂
i for every i ≥ 0, where ∂i denotes the i-th iterate of ∂. In this case, a

continuous iterated higher A-derivation is then uniquely determined by a continuous A-
derivation ∂ of B into itself. The notion of higher derivation was first introduced by Hasse
and Schmidt in [11].

Definition 2.22. Let A be a topological ring and let B be a topological A-algebra. A topo-
logically integrable iterated higher A-derivation of B (an A-TIIHD for short) is a continu-
ous iterated higher A-derivation D =

{
D(i)

}
i≥0

such that the sequence of homomorphims

of topological A-modules (D(i))n∈N converges continuously to the zero endomorphism of
B.
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When A contains the field Q, we say that a continuous A-derivation ∂ is topologically
integrable if its associated continuous iterated higher A-derivation D =

{
1
i!∂

i
}
i≥0

is topo-
logically integrable, or equivalently, if the sequence of homomorphims of topological A-
modules (∂i)i∈N converges continuously to the zero endomorphism of B.

Remark 2.23. WhenA and B are topological rings endowed with the discrete topology, the
condition that the sequence (D(i))n∈N is continuously convergent to the zero map means
equivalently that for every element b ∈ B there exists an integer i0 such that D(i)(b) = 0
for every i ≥ i0. We thus recover in this case the classical notions of locally finite iterated
higher A-derivation of B ([18], [2]) and locally nilpotent A-derivation of B ([8]).

Lemma 2.24. With the notation of Definition 2.21, let c : B → B̂ be the separated comple-
tion of B. Then for every iterated higher A-derivation D =

{
D(i)

}
i≥0

of B, there exists a

unique iterated higher A-derivation D̂ =
{
D̂(i)

}
i≥0

of B̂ such that D̂(i) ◦ c = c ◦D(i) for
every i ≥ 0.

Furthermore, if D is topologically integrable, then so is D̂.

Proof. The existence of a unique collection of homomorphism of topological A-modules
D̂(i) such that D̂(i) ◦ c = c ◦D(i) for every i ≥ 0 follows from the universal property of the
separated completion. The fact that D̂ =

{
D̂(i)

}
i≥0

satisfies the properties of an iterated
higher A-derivation follows from the same argument as in the proof of Lemma 2.20. The
second assertion follows from Lemma 1.10. �

Example 2.25. Let A be a complete topological ring and let A[T ] be endowed with the
topology generated by the ideals a[T ], where a runs through the set of open ideals ofA. Let
∆: A[T ]→ A[T, S] be the homomorphism of topological A-algebras T 7→ T + S and let
for every i ≥ 0,

D(i) = (
1

i!

∂i

∂Si
|S=0) ◦∆: A[T ]→ A[T ]

be the homomorphism of A-modules which associates to a polynomial P (T ) ∈ A[T ] the
i-th coefficient of the Taylor expansion at 0 of P (T + S) with respect to the variable S. In
particular, D(1) is simply the A-derivation ∂

∂T of A[T ].
It is straightforward to check that D = {D(i)}i≥0 is a continuous locally finite iterated

higher A-derivation of A[T ]. In particular, the sequence (D(i))i∈N is pointwise convergent
to the zero homomorphism. Since on the other hand D(i)(aA[T ]) ⊆ aA[T ] for every
i ≥ 0 and every open ideal a of A, it follows from Lemma 1.9 that the sequence (D(i))i∈N
converges continuously to the zero map (see Exemple 1.9). The collection D = {D(i)}i≥0

is thus a topologically integrable iterated higher A-derivation of A[T ]. By Lemma 2.24,
its canonical extension D̂ = {D̂(i)}i≥0 to the separated completion A{T} of A[T ] is a
topologically integrable iterated higher A-derivation of A{T}.
2.4.2. The correspondence between restricted exponential homomorphisms and topologi-
cally integrable iterated higher derivations.

Theorem 2.26. Let A be a complete topological ring let B be a complete topological A-
algebra. Then there exists a one-to-one correspondence between restricted exponential
A-homomorphisms B → B{T} and topologically integrable iterated higher A-derivations
of B.

The correspondence is defined as follows:



70 ROBERTO DÍAZ, ADRIEN DUBOULOZ, AND ALVARO LIENDO

1) Given a restricted exponential homomorphism e =
∑

i∈N eiT
i : B → B{T}, it

follows from the identities (2.1) expressing the commutativity of the two diagrams in Def-
inition 2.1 that the collection of homomorphisms of topological A-modules D(i) = ei,
i ∈ N, is a continuous iterated higher A-derivation of B. Since e is continuous, it follows
in turn from Lemma 1.30 that the so-defined sequence (D(i))i∈N converges continuously
to the zero homomorphism. This shows that D =

{
D(i)

}
i∈N is a topologically integrable

iterated higher A-derivation of B.
2) Conversely, given a topologically integrable iterated higher A-derivation D ={

D(i)
}
i∈N of B, it follows from Lemma 1.30 again that the A-module homomorphism

e = exp(TD) :=
∑

i∈N
D(i)T i : B → B{T}

is well-defined and continuous. The properties of an iterated higher A-derivation listed in
Definition 2.21 guarantee precisely that e satisfies the axioms of a restricted exponential
homomorphism.

In the case where the base topological ringA contains the field Q, the fact that a continu-
ous iterated higherA-derivation D =

{
D(i)

}
i∈N, is uniquely determined by the continuous

A-derivation ∂ = D(1) of B implies in turn that a restricted exponential A-homomorphism
e =

∑
i∈N eiT

i : B → B{T} is uniquely determined by the topologically integrable A-
derivation

∂ = e1 = ∂
∂T |T=0 ◦ e.

The following example illustrates the importance of continuous convergence in the cor-
respondence between topologically integrable A-derivation and restricted exponential ho-
momorphisms.

Example 2.27. LetA be a complete topological k-algebra of finite type containing Q, with
fundamental system of open ideals (an)n∈N, and letA[(Xi)i∈N] = A⊗Z Z[(Xi)i∈N] be the
polynomial ring in countably many variables Xi, i ∈ N. Let B be the separated completion
of A[(Xi)i∈N] with respect to the topology induced by the fundamental system of open
ideals

an = an ⊗Z Z[(Xi)i∈N] +A⊗Z (Xi)i≥n, n ∈ N.
Note that sinceA is separated and

⋂
i∈N(Xi)i≥n = {0},A[(Xi)i∈N] is a separated topolog-

ical ring so that the separated completion homomorphism c : A[(Xi)i∈N]→ B is injective.
Let ∂ be the A-derivation of A[(Xi)i∈N] defined by

∂(X0) = X1, ∂(X2i−1) = X2i+1, and ∂(X2i) = X2i−2 ∀i ≥ 1.

It is easily seen that ∂ is continuous and that the sequence of homomorphisms (∂i)i∈N
converges pointwise to the zero homomorphism. However, it does not converge contin-
uously to the zero homomorphism. Indeed, since ∂`(X2`) = X0, it follows that for
any given i ∈ N there cannot exist any integer n0 such that ∂n(ai) ⊆ a1 for every
n ≥ n0. Since c : A[(Xi)i∈N] → B is injective, this implies in turn that the associated
A-derivation ∂̂ of B is not topologically integrable. The associated A-algebra homomor-
phism exp(T ∂̂) : B → B{T} is well-defined but not continuous, hence is not a restricted
exponential homomorphism.

We now briefly translate some of the main basic properties of restricted exponential
homomorphisms established in subsection 2.2 to the language of topologically integrable
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derivations. We first observe that the ring of invariants Be of the restricted exponential ho-
momorphism associated to a topologically integrable A-derivation ∂ of B is equal to the
kernel of ∂.

Proposition 2.28. LetA be a topological ring containing Q, letB be a complete topological
A-algebra and let ∂ be a topologically integrable A-derivation of B. Then the following
hold :

a) For every element f ∈ Ker(∂), the A-derivation f∂ of B is topologically integrable.
b) For every multiplicatively closed subset S of Ker(∂), theA-derivation Ŝ−1∂ of Ŝ−1B

is topologically integrable.
c) For every surjective open homomorphism of complete topological rings π : B → C

such that ∂(Kerπ) ⊂ Kerπ, the induced A-derivation ∂ of C ∼= B/Kerπ is topologically
integrable.

d) For every topologically integrable A-derivation ∂′ of B such ∂ ◦ ∂′ = ∂′ ◦ ∂, the
A-derivation ∂′′ = ∂ + ∂′ of B is topologically integrable.

Proof. The assertions follow respectively from Propositions 2.5, 2.6, 2.7 and 2.8 �

Similarly, the following proposition is a consequence of Proposition 2.9:

Proposition 2.29. LetA be a topological ring containing Q and let (Bn)n∈N be a countable
inverse system of complete topologicalA-algebras with continuous and surjective transition
homomorphisms pm,n : Bm → Bn for every m ≥ n ≥ 0. Let B be its limit and let pn : B →
Bn, n ∈ N, be the canonical continuous projections. Let ∂n : Bn → Bn, n ∈ N, be
a sequence of topologically integrable A-derivations such that ∂n ◦ pm,n = pm,n ◦ ∂m
for all m ≥ n ≥ 0. Then there exists a unique topologically integrable A-derivation
∂ = lim←−n∈N ∂n of B such that ∂n ◦ pn = pn ◦ ∂ for every n ∈ N.

Proposition 2.16 b) can be translated as follows:

Proposition 2.30. LetA be a topological ring containing Q, letB be a complete topological
A-algebra and let ∂ be a topologically integrable A-derivation of B. If Ker ∂2 \ Ker ∂ is
not empty then for every s ∈ Ker ∂2 \ Ker ∂ with ∂(s) = s1 ∈ Ker ∂, there exists an
isomorphism of topological ̂(Ker ∂)s1-algebras

B̂s1
∼=→ ̂(Ker ∂)s1{S}

which maps the induced topologically integrable ̂(Ker ∂)s1-derivation ∂̂s1 of B̂s1 onto the
topologically integrable ̂(Ker ∂)s1-derivation ∂

∂S of ̂(Ker ∂)s1{S}.
In contrast with the case of usual locally nilpotent derivations of discrete topological rings

containing Q, there exist topologically integrable derivations ∂ of complete topological
rings containing Q for which Ker ∂n = Ker ∂ for every n ≥ 1 so that in particular Ker ∂2 \
Ker ∂ = ∅. This is the case for instance for the topologically integrable derivation u2 ∂

∂u
of C[[u]] corresponding to the restricted exponential homomorphism of Example 2.13. The
following example provides another illustration of this phenomenon.

Example 2.31. As in Example 2.27, letA be a complete topological ring containing Q with
fundamental system of open ideals (an)n∈N and let B be the separated completion of the
polynomial ring A[(Xi)i∈N] = A⊗Z Z[(Xi)i∈N] in countably many variables with respect
to the topology induced by the fundamental system of open ideals

an = an ⊗Z Z[(Xi)i∈N] +A⊗Z (Xi)i≥n, n ∈ N.



72 ROBERTO DÍAZ, ADRIEN DUBOULOZ, AND ALVARO LIENDO

Then the A-derivation ∂̂+ of B induced by the A-derivation of A[(Xi)i∈N] defined by

∂+(Xi) = (i+ 1)Xi+1, ∀i ≥ 0,

is topologically integrable with Ker ∂̂n+ = A for all n ≥ 1.

Proof. For every n ≥ 1, let B̂n = A{X0, . . . , Xn−1} be the separated completion of

A[X0, . . . , Xn−1] = A⊗̂ZZ[X0, . . . , Xn−1]

with respect to the topology generated by the ideals aiA[X0, . . . , Xn−1], i ∈ N. The
topological rings B̂0 = A and B̂n, n ≥ 1, form an inverse system of complete topolog-
ical A-algebras for the collection of continuous and surjective transition homomorphisms
pm,n : B̂m → B̂n with kernels (Xn, . . . , Xm−1)B̂m, m ≥ n ≥ 0, whose limit is canonically
isomorphic to B. We denote by

pn : B = lim←−
n∈N
B̂n → B̂n, n ∈ N

the canonical continuous surjective homomorphisms. For every n ≥ 1, the A-derivation
δ̂n : B̂n → B̂n+1 induced by the A-derivation

δn =

n−1∑

i=0

(i+ 1)Xi+1
∂

∂Xi
: A[X0, . . . , Xn−1]→ A[X0, . . . , Xn]

is continuous and the composition of δ̂n with the projection pn+1,n : B̂n+1 → B̂n is a topo-
logically integrable A-derivation ∂̂+,n of B̂n. Since by construction pn ◦ ∂̂+ = ∂̂+,n ◦ pn
for every n ∈ N, it follows from Proposition 2.29 that ∂̂+ is topologically integrable.

Using the canonical isomorphisms A{X0, . . . , Xn−1} ∼= A{X0, . . . , Xn−2}{Xn−1} of
Lemma 1.28, it is straightforward to check by induction on n that for every n ≥ 1, the
kernel of the A-derivation δ̂n is equal to A. Since pn+1 ◦ ∂̂+ = δ̂n ◦ pn for every n ∈ N,
this implies that Ker ∂̂+ = A. Finally, if Ker ∂̂n+ \Ker ∂̂+ 6= ∅ for some n ≥ 2, then there
would exist an element s ∈ Ker ∂̂2

+ \ Ker ∂̂+. Letting s1 = ∂̂+(s), it would follow from
Proposition 2.30 that B̂s1 ∼= Âs1{S}, which is impossible. Thus Ker ∂̂n+ = A for every
n ≥ 1, which completes the proof. �

3. GEOMETRIC INTERPRETATION: ADDITIVE GROUP ACTIONS ON AFFINE
IND-SCHEMES

In this section, we recall a construction due to Kambayashi which associates to every
complete topological ring A a locally topologically ringed space (Spf(A),OSpf(A)) called
the affine ind-scheme of A. We then establish that restricted exponential homomorphisms
correspond through this construction to actions of the additive group ind-scheme on affine
ind-schemes.

As in the previous sections, we use the term topological ring to refer to a linearly topolo-
gized ring A which admits a fundamental system of open neighborhoods of 0 consisting of
a countable family (an)n∈N of ideals of A.

3.1. Recollection on affine ind-schemes. We review the basic steps of the construction of
the affine ind-scheme associated to a complete topological ring A following Kambayashi
[12, 13].
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Definition 3.1. A topologically ringed space is a ringed space (X,OX) such that for every
open subset V of X, OX(V ) is a topological ring and such that for every pair of open
subsets V ′ ⊆ V of X, the restriction homomorphism OX(V ) → OX(V ′) is a continuous
homomorphism of topological rings.

A morphism of topologically ringed spaces from (X,OX) to (Y,OY) is a pair (f, f ])

consisting of a continuous map f : X → Y and a homomorphism f ] : OY → f∗OX

of sheaves of rings on Y such that for every open subset V of Y the homomorphism
f ](V ) : OY(V ) → f∗OX(V ) = OX(f−1(V )) is a continuous homomorphism of topo-
logical rings.

LetA be a complete topological ring with a fundamental system (an)n∈N of open neigh-
borhoods of 0. For every m ≥ n ≥ 0, let πn : A → An = A/an and πm,n : Am →
An be the quotient morphisms and let (jn, j

]
n) : Xn = (Spec(An),OSpec(An)) → X =

(Spec(A),OSpec(A)) and

(jm,n, j
]
m,n) : Xn = (Spec(An),OSpec(An))→ Xm = (Spec(Am),OSpec(Am))

be the corresponding closed immersion of schemes.
We let Spf(A) be the subset of Spec(A) consisting of open prime ideals of A, endowed

with the subspace topology induced by the usual Zariski topology on Spec(A). For every
n ≥ 0, the structure sheaf ofXn induces a sheaf of ringsOSpf(A),n = (jn,∗OSpec(An))|Spf(A)

on Spf(A). Since jn = jm ◦ jm,n for every m ≥ n, the collection of homomorphisms

j]m,n : OSpec(Am) → (jm,n)∗OSpec(An)

induces an inverse system of homomorphisms of sheaves of rings ϕm,n : OSpf(A),m →
OSpf(A),n. Considering each of the sheaves OSpf(A),n as sheaves of discrete topological
rings on Spf(A), we letOSpf(A) be the limit of this inverse system in the category of sheaves
of topological rings. So, for every open subset V = U ∩ Spf(A) of Spf(A), where U is a
Zariski open subset of Spec(A), we have

OSpf(A)(V ) = (lim←−
n∈N
OSpf(A),n)(V ) = lim←−

n∈N
OSpec(An)(j

−1
n (U))

endowed with the initial topology.

Definition 3.2. The affine ind-scheme of a complete topological ringA is the topologically
ringed space (Spf(A),OSpf(A)).

LetA andB be a complete topological rings with respective fundamental systems (an)n∈N
and (bn)n∈N of open neighborhoods of 0, and let ϕ : A → B be a homomorphism of topo-
logical rings. The continuity of ϕ implies that the image of the restriction to Spf(B) ⊆
Spec(B) of the continuous map Spec(B)→ Spec(A) is contained in the subset Spf(A) ⊆
Spec(A). Furthermore, for every ideal bn ⊆ B, there exists an index n′ = n′(n) such that
an′ ⊆ ϕ−1(bn). It follows that ϕ induces a morphism of schemes αn,n′ : Spec(B/bn) →
Spec(A/an′) and that, letting α : Spf(B) → Spf(A) be the continuous map induced by ϕ,
the following diagram of continuous maps of topological spaces commutes

Spf(B)
α // Spf(A)

Spec(B/bn)

jB,n

OO

αn,n′ // Spec(A/a′n).

jA,n′

OO
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Pushing forward the homomorphism α]n,n′ : OSpec(A/an′ ) → (αn,n′)∗OSpec(B/bn) by jA,n′
gives a homomorphism of sheaves of rings

OSpf(A),n′ = (jA,n′)∗OSpec(A/an′ ) → α∗(jB,n)∗OSpec(B/bn) = α∗OSpf(B),n

on Spf(A). The homomorphism of sheaves of topological rings

OSpf(A) = lim←−
n′∈N
OSpf(A),n′ → OSpf(A),n′ → α∗OSpf(B),n

is continuous and independent on the choice of an index n′ such that an′ ⊆ ϕ−1(bn). This
yields in turn a canonical continuous homomorphism of sheaves of topological rings

α] : OSpf(A) → lim←−
n∈N

α∗OSpf(B),n = α∗OSpf(B).

The morphism of topologically ringed spaces

(α, α]) : (Spf(B),OSpf(B))→ (Spf(A),OSpf(A))

is called the morphism of affine ind-schemes associated to ϕ. We henceforth denote it sim-
ply by Spf(ϕ).

Remark 3.3. Let A be a complete topological ring with a fundamental system (an)n∈N
of open neighborhoods of 0. Since a prime ideal p ∈ Spec(A) is open if and only it is
equal to π−1

n (πn(p)) for some n ≥ 0, the set Spf(A) ⊂ Spec(A) is equal to the union
of the images of the closed immersions jn : Spec(An) ↪→ Spec(A), n ≥ 0. Furthermore
the induced canonical map lim−→n∈N Spec(An) → Spf(A) is bijective and continuous with
respect to the final topology on lim−→n∈N Spec(An) and the Zariski topology on Spf(A). Note
however that this canonical map is in general not a homeomorphism, i.e. the final topology
on lim−→n∈N Spec(An) is strictly finer than the Zariski topology, see [22].

For every f ∈ A, we let

D(f) = Spf(A) ∩D(f) = {p ∈ Spf(A) | f 6∈ p}
where D(f) is the usual principal open subset {p ∈ Spec(A) | f 6∈ p} of Spec(A).
These open subsets D(f) form a basis of the Zariski topology on Spf(A). Let Âf =
lim←−n∈N(An)πn(f) be the separated completed localization of A with respect to the multi-
plicatively closed set {fn}n∈N (see Definition 1.15 and Notation 1.16). Then the collection
of canonical projections

Âf → (An)πn(f) = OSpec(An)(D(πn(f))) = OSpf(A),n(D(f)), n ≥ 0

induces a canonical isomorphism of topological rings Âf → lim←−n∈NOSpf(A),n(D(f)) =

OSpf(A)(D(f)). Since the canonical homomorphism A → Â1 = lim←−n∈NAn is an iso-
morphism because A is complete, we have in particular A ∼= OSpf(A)(Spf(A)) and the
restriction homomorphism

A ∼= OSpf(A)(Spf(A))→ OSpf(A)(D(f)) = Âf
coincides with the separated completed localization homomorphism j̃f : A → Âf . The
morphism of affine ind-schemes Spf(j̃f ) = (j̃f , j̃

]
f ) : Spf(Âf ) → Spf(A) is an open im-

mersion with image equal to D(f).
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Given a point p ∈ Spf(A), the stalk OSpf(A),p of OSpf(A) at p can be described as
follows. Let S be the multiplicatively closed subset ofA consisting of elements f such that
p ∈ D(f). Then S is a directed set under the relation f ≤ g if and only if D(g) ⊆ D(f),
equivalently, if and only if the separated completed localization homomorphism j̃g : A →
Âg factors through j̃f : Â → Âf . Since by definition of the Zariski topology on Spf(A),
the open subsets D(f), f ∈ S, form a cofinal subset of the set of all open neighborhoods of
p in Spf(A), we have a canonical isomorphism of rings

OSpf(A),p = lim−→
U3p
OSpf(A)(U) ∼= lim−→

f∈S
OSpf(A)(D(f)) ∼= lim−→

f∈S
Âf .

By [13, Theorem 2.2.3.], the ring OSpf(A),p is local and the canonical homomorphism
h : OSpf(A),p → Âp induced by the collection of compatible canonical homomorphisms
Âf → Âp has dense image in the local topological ring Âp. Moreover, the image in
OSpf(A),p by the canonical homomorphism Âf → OSpf(A),p of an element af = (af,n) ∈
Âf = lim←−n∈N(An)πn(f) belongs to the kernel of h if and only for every n ≥ 0 then exists
g = g(n, f) ≥ f such that af,n belongs to the kernel of the restriction homomorphism

(An)πn(f) = OSpec(An)(D(πn(f)))→ OSpec(An)(D(πn(g))) = (An)πn(g)

corresponding to the inclusion of principal open subsetsD(πn(g)) ⊂ D(πn(f)) of Spec(An).
It follows in particular that the affine ind-scheme Spf(A) = (Spf(A),OSpf(A)) of a

complete topological ring A is a locally topologically ringed space. One can also check
that the morphism of topologically ringed spaces Spf(ϕ) : Spf(B)→ Spf(A) associated to
a continuous homomorphism of complete topological rings ϕ : A → B is a morphism of
locally topologically ringed spaces.

Definition 3.4. An affine ind-scheme is a locally topologically ringed space (X,OX) iso-
morphic to the affine ind-scheme (Spf(A),OSpf(A)) of a complete topological ring A.

A morphism between affine ind-schemes (Y,OY) and (X,OX) is a morphism of locally
topologically ringed spaces

(f, f ]) : (Y,OY) ∼= (Spf(B),OSpf(B))→ (Spf(A),OSpf(A)) ∼= (X,OX)

which is induced by a continuous homomorphism of complete topological rings ϕ : A → B.

Given an affine ind-scheme S = Spf(A), an affine ind-S-scheme is an affine ind-
scheme X ∼= Spf(B) with a morphism of affine ind-schemes f : X → S. A morphism
between affine ind-S-schemes g : Y → S and f : X → S is a morphism of affine-
ind-schemes h : Y → X such that g = f ◦ h. The category (AffInd/S) of affine ind-
S-schemes is by construction anti-equivalent to the category of complete topological A-
algebras ϕ : A → B. Given two such affine ind-S-schemes X ∼= Spf(B) and X′ ∼= Spf(B′)
corresponding to complete topological A-algebras ϕ : A → B and ϕ′ : A → B′ respec-
tively, it follows from the universal property of the completed tensor product (see subsection
1.3.1) that the affine ind-S-scheme Spf(B⊗̂AB′) together with the projections morphisms
p1 : Spf(B⊗̂AB′)→ Spf(B) and p2 : Spf(B⊗̂AB′)→ Spf(B′) induced respectively by the
canonical homomorphisms σ1 : B → B⊗̂AB′ and σ2 : B → B⊗̂AB′ is the fibered product
of X and X′ in the category of affine ind-S-schemes. We denote it by X×̂SX

′.

Example 3.5. Let R be a finitely generated algebra over a field k and let X = Spec(R) be
the associated affine k-scheme of finite type. Then the functor

F̂ = Mor(X,A1
k) : (AffIndSch/k)

◦ → (Sets)
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which associates to every affine ind-k-scheme S the set of morphisms of affine ind-S-
schemes from X×̂kS to A1

k×̂kS is representable.

Proof. Indeed, given an affine ind-k-scheme S = Spf(A), we have

F̂ (S) = HomS(X×̂kS,Ak×̂kS) ∼= CHomA−alg(A{T}, R⊗̂kA) ∼= R⊗̂kA,

where the last isomorphism follows from Corollary 1.26. So F̂ coincides via the anti-
equivalence between the category of affine ind-k-schemes and the category of complete
topological k-algebras to the covariant functor R⊗̂k−. By Example 1.14 and its proof, the
latter is represented by the complete topological k-algebra R = lim←−n∈N Sym·(V ∨n ), where

{Vn}n∈N is any exhaustion of R by finite dimensional k-vector subspaces. It follows that F̂
is represented by the affine ind-k-scheme X = Spf(R). The universal element u ∈ R⊗̂kR
defined in the proof of Example 1.14 corresponds in turn to a morphism of affine ind-k-
schemes υ : X×̂kX→ A1

k.
By construction, the set X(k) = Mork(Spec(k),X) of k-rational points of X is equal

to the union of the sets of k-rational points of the schemes Spec(Sym·(V ∨n )), hence to⋃
n∈N Vn = R. The map υ(k) : (X×̂kX)(k) = X(k)×X(k)→ A1

k(k) = k is the universal
evaluation map which associates to pair (x, f) consisting of a k-rational point x of X and a
k-rational point f ∈ R of X the element υ(x, f) = f(x) of k. �

3.2. Additive group ind-scheme actions. We now give the geometric interpretation of
restricted exponential homomorphisms as comorphisms of actions of the additive group
ind-scheme on affine ind-schemes.

Let A be a complete topological ring and let S = Spf(A) be its associated affine
ind-scheme. Let A{T} ∼= A⊗̂ZZ[T ] be the ring of restricted power series in one vari-
able over A, let i0 : A → A{T} be the canonical inclusion homomorphism of A as
the subring of constants restricted power series (see subsection 1.4). Recall (c.f Sub-
section 2.1) that (A{T},m, ι, ε) is a cocommutative topological Hopf A-algebra, where
m : A{T} → A{T, T ′} is the unique continuous homomorphism of topologicalA-algebras
that maps T to T + T ′, ι : A{T} → A{T} is the unique continuous homomorphism of
topological A-algebras that maps T to −T and ε : A{T} → A is the unique continuous
homomorphism of topological A-algebras that maps T to 0 ∈ A.

The affine ind-S-scheme Spf(i0) : Spf(A{T}) → S is then an abelian group object in
the category of affine ind-S-schemes, with respective group law and neutral section given
by the morphisms

Spf(m) : Spf(A{T})×̂SSpf(A{T}) ∼= Spf(A{T, T ′})→ Spf(A{T})
and Spf(ε) : S = Spf(A) → Spf(A{T}), which is isomorphic to the affine ind-S-group
scheme Ga,Z×̂ZS, where Ga,Z = Spec(Z[T ]) is the usual additive group scheme. We
henceforth denote this affine ind-S-group scheme by Ga,S and call it the additive group
ind-scheme over S.

Given any complete topological A-algebra ϕ : A → B, it follows from Proposition 1.25
that the map B → HomB-alg(A{T},B), b 7→ ϕb, where ϕb is the unique continuous A-
algebra homomorphism ϕ̄b : A{T} → B such ϕ̄b(T ) = b, is an isomorphism of topological
abelian groups. This implies in turn that the affine ind-S-group scheme Ga,S represents the
covariant functor

Γ: (AffInd/S)opp → (TopAbGrps)
(Spf(B),OSpf(B)) 7→ Γ(Spf(B),OSpf(B)) = OSpf(B)(Spf(B)) = B



TOPOLOGICALLY INTEGRABLE DERIVATIONS AND ADDITIVE GROUP ACTIONS 77

from the opposite category of affine ind-S-schemes to the category of topological abelian
groups.

Now let ϕ : A → B be a complete topological A-algebra and let X = Spf(B) be
the affine ind-S-scheme of B. Since B is complete we have a canonical isomorphism
B{T} ∼= B⊗̂AA{T}. Let e : B → B{T} ∼= B⊗̂AA{T} be a restricted exponential A-
homomorphism as in Definition 2.1. Then Spf(B{T}) ∼= Ga,S×̂SX and the morphism
of ind-S-schemes µ := Spf(e) : Ga,S×̂SX → X satisfies the axioms of an action of the
ind-S-group scheme Ga,S on X, namely, the commutativity of the following two diagrams

Ga,S×̂SGa,S×̂SX
id×µ //

m×id
��

Ga,S×̂SX

µ

��
Ga,S×̂SX

µ // X

S×̂SX

∼=
&&

Spf(ε)×id// Ga,S×̂SX

µ

��
X

Conversely, given an action µ : Ga,S×̂SX→ X of Ga,S on X = Spf(B), the homomor-
phism of complete topological A-algebras

e = µ](Spf(B)) : B = OSpf(B)(Spf(B))→ µ∗OGa,S×̂SX(Spf(B)) ∼= µ∗OSpf(B{T})(Spf(B)) ∼= B{T}
satisfies the axioms of a restricted exponential A-homomorphism. In other words, via the
anti-equivalence between the category of affine ind-Sschemes f : X→ S and the category
of complete topological A-algebras ϕ : A → B, restricted exponential A-homomorphisms
e : B → B{T} correspond to Ga,S-actions on the affine ind-S-scheme Spf(B).

Combined with Theorem 2.26, this yields the following extension of the classical corre-
spondence between Ga,S-actions on an affine scheme X = Spec(B) over an affine scheme
S = Spec(A) and locally finite higher iterative A-derivations (A-LFHID) of B:

Theorem 3.6. LetA be a complete topological ring and let ϕ : A → B be a complete topo-
logical A-algebra. Let S = Spf(A) and let f : X = Spf(B) → S be the corresponding
affine ind-scheme and affine ind-S-scheme respectively.

Then actions Ga,S×̂SX → X of the additive group ind-scheme Ga,S on X are in one-
to-one correspondence with topologically integrable iterated higher A-derivations D =
{D(i)}i≥0 of B.

We now consider examples of affine ind-schemes with actions of the additive group ind-
scheme. A first natural example is given by the affine ind-scheme Mor(X,A1

k) associated
to an affine k-scheme of finite type X endowed with a non-trivial Ga,k-action.

Example 3.7. Let X = Spec(R) be an affine scheme of finite type over a field k of
characteristic zero endowed with a non-trivial Ga,k-action µ : Ga,k ×k X → X . Let
X = Mor(X,A1

k) be the ind-scheme of Example 3.5 and let µ̂ : Ga,k×̂kX → X be the
morphism of functors given by the composition at the source by the k-automorphisms of X
associated to the Ga,k-action µ. Then µ̂ is a morphism of affine ind-schemes which defines
a Ga,k-action on X.

Proof. The assertion is an immediate consequence of Yoneda embedding lemma. Never-
theless, let us give a constructive argument following the lines of that of Example 3.5. Let
δ be the non-zero locally nilpotent k-derivation corresponding the Ga,k-action µ. Then R
admits an exhaustion by a countable familyW = {Wn}n∈N of finite dimensional δ-stable
k-vector subspaces. Indeed, given any exhaustion ofR by a countable family V = {Vn}n∈N
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of finite dimensional k-vector subspaces, the fact that δ is locally nilpotent implies that for
every n ∈ N, the k-vector subspace Wn generated by the elements δm(f), m ≥ 0, where
the elements f run through a k-basis of Vn is finite dimensional and δ-stable. Furthermore,
since Vn ⊆ Vm for every m ≥ n and Vn ⊆ Wn, we have Vn ⊆ Wn ⊆ Wm so that the Wm

forms an increasing exhaustion of R by δ-stable finite dimensional k-vector subspaces.
LetW = {Wm} be a δ-stable exhaustion of R as above. Then, for every m ∈ N, the re-

striction of δ toWm is a nilpotent linear endomorphism δm ofWm. The dual endomorphism
δ∨m of W∨m defines a unique k-derivation ∂m of the symmetric algebra Sym·(W∨m) of W∨m,
which is locally nilpotent. The collection of so-defined locally nilpotent k-derivations ∂m of
the k-algebras Sym·(W∨m) form an inverse system with respect to the surjective projection
homomorphisms pm,n : Sym·(W∨m)→ Sym·(W∨n ) associated to the inclusionsWn ⊆Wm,
m ≥ n. By Proposition 2.29, there exists a unique topologically integrable k-derivation ∂
of the topological k-algebra R = lim←−n∈N Sym·(W∨n ) such that for every n ∈ N, we have
∂n ◦ pn = pn ◦ ∂, where pn : R → Sym·(W∨n ) is the canonical continuous projection.

By Example 3.5, the affine ind-scheme X = Spf(R) ofR represents the functor Mor(X,A1
k).

The Ga,k-action µ̂ : Ga,k×̂kX → X is then that associated to the topologically inte-
grable k-derivations ∂ of R. Note that the k-derivation ∆ = −δ⊗̂kidR + idR⊗̂k∂ of
R⊗̂kR is also topologically integrable. It defines a Ga,k-action on the affine ind-k-scheme
X×̂kX = Spf(R⊗̂kR) for which, by construction, the universal evaluation morphism
υ : X×̂kX→ A1

k of Example 3.5 is Ga,k-invariant. �

Remark 3.8. With the notation of Examples 3.5 and 3.7, the restriction to the set X(k) =
R of k-rational points of X of the Ga,k-action µ̂ : Ga,k×̂kX → X coincides with the
contragredient representation of (k,+) on R defined for every f in R by

t · f = exp((−t)δ)(f) =
∑

n≥0

(−1)n
tn

n!
δn(f).

In particular, for every k-rational point x of X , we have (t · f)(x) = f((−t) · x) and hence

υ(t · (x, f)) = (t · f)(t · x) = f(x) = υ(x, f).

Example 3.9. As a concrete illustration of Example 3.7, consider the locally nilpotent k-
derivation δ = ∂/∂x of R = k[x] corresponding to the action of Ga,k on A1

k by translations
and the exhaustion of R by the δ-stable subspaces

Wn = k[x]≤n = k〈x0, . . . , xn〉, n ∈ N,

consisting of polynomials of degree less than or equal to n. For every n ∈ N, the algebra
Sym·(W∨n ) is isomorphic to the polynomial ring k[X0, . . . , Xn], where (X0, . . . , Xn, . . .) is
the family of elements of the dual R∨ of R as a k-vector space defined by Xi(xj) = δi,j for
every i, j ∈ N. The complete topological k-algebraR = lim←−n∈N Sym·(W∨n ) is isomorphic
to the separated completion of the polynomial ring k[(Xi)i∈N] with respect to the topology
induced by the fundamental system of open ideals an = (Xi)i≥nk[(Xi)i∈N]. The universal
element u ∈ R⊗̂kR of the proof of Example 1.14 can be represented by the formal power
series

∑
n∈N x

nXn ∈ k[x][[(Xi)i∈N]].
On the other hand, the k-derivation ∂n of Sym·(W∨n ) is given by ∂n(Xi) = (i+ 1)Xi+1,

if i ≤ n − 1 and ∂n(Xn) = 0. The corresponding topologically integrable k-derivation
∂ = lim←−n∈N ∂n of R induced by the inverse system of locally nilpotent k-derivations ∂n,
n ∈ N, coincides with the topologically integrable k-derivation with trivial kernel k of
Example 2.31. Note that in contrast, for the topologically integrable k-derivation ∆ =
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−δ⊗̂kidA + idR⊗̂k∂ of R⊗̂kR, we have

∆(u) =
∑

n≥0

∆(xnXn) =
∑

n≥1

(−nxn−1Xn + (n+ 1)xnXn+1) = 0.

For an affine scheme X of finite over a field k, there are many natural affine ind-k-
schemes that can be constructed from the ind-k-scheme X = Mor(X,A1

k) (see e.g. [9]).
These include for instance the ind-k-scheme Mork(X,Y ) where Y is any affine k-scheme
and the ind-k-scheme Autk(X) of k-automorphisms of X . Since every non-trivial Ga,k-
action on X gives rise to a non-trivial Ga,k-action on these affine ind-k-schemes, this pro-
vides a large supply of natural affine ind-k-schemes with interesting natural Ga,k-actions.

Another family of examples is given by the following ind-scheme counterpart of Danielewski
hypersurfaces.

Example 3.10. Let A be an integral complete topological algebra over a field k of charac-
teristic zero. Let A{y, z} be the restricted power series ring in two variables over A. Let
x ∈ A be a non-zero element and let P (y) ∈ A{y} be a non-zero restricted power se-
ries. Then there exists a unique continuous A-derivation ∂ of A{y, z} such that, ∂(y) = x
and ∂(z) = P ′(y), where P ′(y) ∈ A{y} denote the derivative of the restricted power se-
ries P (y). The so defined A-derivation ∂ is topologically integrable. Indeed, let (an)n∈N
be a fundamental system of open ideals of A so that we have by definition A{y, z} =
lim←−n∈NAn[y, z], where An = A/an. Let xn ∈ An and Pn(y) ∈ An[y] denote the respec-
tive residue classes of x ∈ A and P (y) ∈ A{y}, n ≥ 0. Then we have ∂ = lim←−n∈N ∂n,
where ∂n is the triangular, hence locally nilpotent, An-derivation of An[y, z] defined by
∂n(y) = xn and ∂n(z) = P ′n(y). Thus ∂ is topologically integrable by Proposition 2.29.
Note that the element xz − P (y) belongs to the kernel Ker∂ of ∂, in particular, in contrast
with the example considered in Example 2.31, A is a proper sub-algebra of Ker∂.

Now assume in addition that x and P (y) are chosen so that the principal ideal I = (xz−
P (y)) of A{y, z} is prime and closed. Then B = A{y, z}/I is a topological A-algebra
when endowed with the quotient topology, and the quotient homomorphism q : A{y, z} →
B is continuous. Since ∂(I) ⊂ I , ∂ induces a topologically integrable A-derivation ∂ of B.
Letting X = Spf(A), the homomorphismA{y, z} → B corresponds to a closed embedding
of affine ind-X-schemes

Y = Spf(B) ↪→ A2
X = Spf(A{y, z})

which is equivariant for the Ga,X-actions on Y and A2
X associated to ∂ and ∂ respectively.

For a concrete illustration, consider the completion A of the polynomial ring k[(Xi)i∈N]
in countably many variables with respect to the topology generated by the ideals an =
(Xi − 1)i>n. Let x ∈ A be the element represented by the Cauchy sequence xn =∏n
i=0Xi ∈ k[X0, . . . , Xn]. Choosing for the restricted power series P (y) a non-constant

polynomial P (y) ∈ k[y] ⊂ A{y}, we obtain an associated affine ind-X-scheme Y ⊂ A2
X

which is a colimit of so-called Danielewski varieties in An+3
k defined by equations of the

form
∏n
i=0Xiz = P (y) (see e.g. [7]). One can also choose non-polynomial restricted

power-series P (y) ∈ A{y}, for instance, the one P (y) =
∑∞

i=0(Xi − 1)iyi+1.
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