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Introduction

Roughly speaking, a non-symmetric algebraic operad is an algebraic struc-
ture spanned linear operations (not necessarily binary) satisfying certain re-
lations, in which the variables stay in the same order. The canonical example
of this type of structure is the operad of the associative algebras, spanned
by a binary product · : a⊗ b → a · b, which satisfies the relation

(a · b) · c = a · (b · c),

for any elements a, b, c in an algebra over this operad.
Associative algebras are naturally related to other type of algebraic struc-

ture: Lie algebras. By definition, a Lie algebra over a field K is a K-vector
space g, equipped with a binary operation [, ] , called Lie bracket, satisfying
the following relations:

(1) antisymmetry, [x1, x2] = −[x2, x1],
(2) Jacobi identity, [x1, [x2, x3]] + [x2, [x3, x1]] + [x3, [x1, x2]] = 0,

for all x1, x2, x3 ∈ g.
Given an associative algebra (A, ·), a Lie algebra structure on the underlying
vector space of A, is defined by the bracket

[a, b] := a · b− b · a,

for a, b ∈ A. This Lie algebra is denoted by (ALie, [, ]).
The map (A, ·) → (ALie, [, ]) determines a functor, denoted by (−)Lie, from
the category of associative algebras over a field K to the category of Lie
algebras over the same field.

There exists a canonical left adjoint functor U to (−)Lie. Given a Lie alge-
bra g, the functor U assigns an associative algebra U(g), called the universal
enveloping algebra of g. As a vector space g →֒ U(g), that is g coincides with
the subspace of homogeneous elements of degree one of U(g). Note that the
vector space U(g)n has positive dimension, for all n ∈ N. So, one of the
main questions about associative algebras is when an associative algebra is
the enveloping algebra of a Lie algebra.
The answer of this problem, in characteristic zero, was given in 1965 by J.W.
Milnor and J.C. Moore in [28]. Let us describe briefly their result, which
involves the notion of bialgebras.

A coassociative coalgebra is the dual notion of an associative algebra, that
is, a vector space C over K, equipped with a linear map

∆ : C → C ⊗K C,
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which is coassociative, that is, ∆ satisfies that

(∆⊗ IdC) ◦∆ = (IdC ⊗∆) ◦∆.

A unital associative algebra (A, ·, η) equipped with coassociative counital
coproduct (∆, ǫ) satisfying that the coproduct ∆ and the counit ǫ are algebra
morphisms, is called a bialgebra.

Our main example of bialgebra is the free associative algebra over a vector
space V , with the concatenation product and the coproduct given in terms
of shuffle permutations (see [6]).

Milnor-Moore’s Theorem(see [28]) states that, over a field of characteris-
tic zero, any conilpotent cocommutative bialgebra H is isomorphic to the
enveloping algebra of a Lie algebra. So, there exists an equivalence of cate-
gories between conilpotent cocommutative bialgebras and Lie algebras, over
a field K of characteristic zero.

The statement becomes less definite in positive characteristic (see for
instance [6],[28] and [29]). But the Milnor-Moore Theorem still holds when
the category VectK of vector spaces over a field K, is replaced by other
symmetric monoidal categories (see [27]).

In the context of operad theory, J.-L. Loday introduced in [25] the notion
of generalized bialgebra, which includes, between other cases, the classical
notions of bialgebras, Lie bialgebras, infinitesimal bialgebras and dendriform
bialgebras.

A type of generalized bialgebra is determined by a coalgebra structure Cc,
an algebra structure A and compatibility relations between the operations
and the co-operations, called distributive laws. In the triple of operads in-
volved in the Milnor-Moore Theorem, we have Cc = Comc (cocommutative
coassociative coalgebra) and A = As (associative algebra) and the relation
between these structures is the Hopf compatibility relation. Loday proved
that, under certain conditions, there is a structure theorem for generalized
bialgebras, which gives rise to various generalizations of the Milnor-Moore
Theorem.

Of particular interest to our work is the notion of infinitesimal bialgebra,
which was introduced by M. Joni and G.-C. Rota in [20], and modified by J.-
L. Loday and M. Ronco in [26], in order to consider infinitesimal bialgebras
with unit.
A unital infinitesimal bialgebra (H, ·,∆) is a vector space H over a field K,
equipped with a unital associative product · and a counital coassociative
coproduct ∆, which are related by the unital infinitesimal relation :

∆(x · y) = (x⊗ 1) ·∆(y) + ∆(x) · (1⊗ y)− x⊗ y.

The main example of infinitesimal bialgebra is the tensor algebra over a
vector space V , denoted by T (V ), equipped with the concatenation product
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and the deconcatenation coproduct. The space T (V ), with this structure,
is denoted by T c(V ).

The structure theorem in this case (see [26]), states that any conilpotent
unital infinitesimal bialgebra H is isomorphic to (T c(V ), for some vector
space V .

The main object of our work is the study of generalized bialgebra struc-
tures for certain non-symmetric operad: the operad of compatible associative
algebras.
A compatible associative algebra over a field K is a vector space A equipped
with two associative products, · : A⊗A → A and ◦ : A⊗A → A, such that
the sum

x ∗ y := x · y + x ◦ y,

is an associative product, too. Equivalently, A is a compatible associative
algebra if the product x ⋆ y := µx · y + λ(x ◦ y) is associative for all pair
of elements µ, λ ∈ K. When µ = 1, the product ⋆ can be considered as
a deformation of the product · in the parameter λ. Following the notation
given by H. Strohmayer in [37], the operad associated to this type of algebras
is denoted by As2.

One of the motivations for the study of As2-algebras is its close rela-
tionship with others algebraic structures, as compatible Lie algebras and
bi-Hamiltonian algebras. Recall that a compatible Lie algebra is a K-vector
space A, equipped with two Lie brackets [, ] and {, } , satisfying that their
sum is also a Lie bracket.

When the compatible Lie algebra A is equipped with a commutative and
associative product · such that the brackets are both derivations for the
product ·, we say that A is a bi-Hamiltonian algebra. In particular, a bi-
Hamiltonian algebra has two structures of Poisson algebra, so the brackets
are called Poisson brackets.

Given an associative algebra (A, ·) a natural problem is to find out the
possible associative products, defined on the underline vector space of A,
which are compatible with the original associative product. In [30], A.
Odesskii and V. Sokolov showed that the associative products compatible
with the usual matrix product are in one-to-one correspondence with repre-
sentations of certain algebraic structures, called M -structures. They studied
the semisimple case and introduced, when A is finite direct sum of matrix
algebras, the PM -structures (see [30]), whose representations describe the
compatible associative products on A. The same authors showed, in [30],
that the classification of M and PM structures are related with the Cartan
matrices of certain affine Dynkin diagrams.
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In [5], J. F. Carinena, J. Grabowski and G. Marmo introduced the notion
of Nijenhuis tensor for associative algebras, which originates interesting ex-
amples of compatible associative algebras, some of which are considered in
Subsection 3.1.4.

The operads of Lie compatible algebras and bi-Hamiltonian algebras have
been studied in [9]. In this work, V. Dotsenko and A. Khoroshkin computed
the dimensions of the components for the operad of the compatible Lie alge-
bras and for the bi-Hamiltonian operad. They also calculated the characters
of these spaces as Sn-modules and Sn × SL2-modules.

As in the case of associative algebras, there exists a functor from the
category of As2 algebras over K to the category of compatible Lie algebras
over the same field. If (A, ·, ◦) is a compatible associative algebra, then the
Lie brackets given by

[x, y] = x · y − y · x,
{x, y} = x ◦ y − y ◦ x,

define a structure of compatible Lie algebra on the underlying vector space
of A.

In [37], H. Strohmayer developed the general notion of compatible alge-
braic structures. He computed the Koszul dual of As2, denoted by 2As,
which is a set theoretical operad, by arising an operadic partition poset (see
[39]). H. Strohmayer showed, using B. Valette’s results, that 2As is a Koszul
operad, and therefore As2 is Koszul operad, too. In [41], Y. Zhang explicitly
gave the realization of the homology complex for the compatible associative
algebras.

Using that the operad As2 is Koszul, V. Dotsenko obtained in [8] the
dimensions of the operad As2 and calculated the characters of As2(n) as
Sn-module and Sn × SL2-module. In particular, the dimension of As2(n) is
cn · n!, where cn is Catalan number.

In our work, we give an explicit construction of free objects in the cate-
gory of As2-algebras, using planar rooted trees. As As2 is a non-symmetric
operad, the operad is determined by the free object on one element. We
show that any free As2-algebra admits a coassociative coproduct which sat-
isfies the unital infinitesimal condition with both associative products. This
last result motivates the definition of compatible infinitesimal bialgebra, as
a compatible algebra (A, ·, ◦) equipped with a coproduct ∆ : A → A ⊗ A,
satisfying the unital infinitesimal relation with both associative products.

The study of the subspace of primitive elements of compatible associative
bialgebra, gives rise to the notion of N -algebra. We show that operad N is
non-symmetric, and that the dimension of theK-vector spaceNn is the Cata-
lan number cn−1. We obtain a structure theorem for conilpotent compatible
associative bialgebras, which gives a new triple of operads (As,As2,N ), in
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the sense of [25].

In our work, we consider also a particular type of compatible associative
algebras, the so-called matching dialgebras, previously studied in [40]. A
matching dialgebra over field K is a vector space A equipped with two as-
sociative products · and ◦ satisfying the following compatibility conditions:

(a · b) ◦ c = a · (b ◦ c) and (a ◦ b) · c = a ◦ (b · c),

for all the elements a, b, c ∈ A. Clearly, any matching dialgebra is a com-
patible associative algebra.

We give various examples of this type of algebras. In particular, we con-
sider matching dialgebras obtained from semi-homomorphism of associative
algebras. Moreover, we describe the free matching dialgebra over a vector
space V as a quotient of the free compatible associative algebra As2(V). We
also develop the notion of compatible infinitesimal bialgebras in a matching
dialgebra, which we obtain a triple of operads, as noted J-L. Loday in [25].

As a second step, we consider the operad of algebras equipped with two
compatible associative products, satisfying that one of them is commutative.
In this case the operad do not is non-symmetric since one of the products is
commutative. We obtain a basis for this operad and give a recursive formula
that allow us to compute their dimensions.

Finally, we look at the operad of compatible associative algebras, whose
two products are commutative, which we denote by Com2. We show that
it is Koszul. Unlike the cases studied in [37], the Koszul dual of Com2,
denoted 2Lie, is not a set-theoretical operd. So, we cannot associate a
operadic partition poset to 2Lie, and the methods developed in [39] are not
applicable in this case. In [18], E. Hoffbeck developed the notion of PBW
basis for operads. He showed that an operad P that admits a PBW basis
is Koszul. Moreover, if an operad P has a PBW basis, then its Koszul dual
operad has a PBW basis, which is determined by the PBW basis of P. In
our case, the study of the Koszul dual operad 2Lie allows us to determine
a PBW basis for Com2, which is Koszul. The PBW basis in this case is
described on the vector space spanned by the set of increasing trees. In
particular, the dimension of Com2(n) is equal to n!. Additionally, we obtain
recursive formulas that allow us to express the elements of Com2 as linear
combination of elements of this basis.

This work is organized as follows: Section 1 is devoted to recall the basic
notion of associative algebras, coalgebras, bialgebras and Hopf algebras. In
the Section 2 is devoted to recall the basic concepts of operad theory required
to understand the remaining sections. In Section 3 we give some examples
of compatible associative algebras that arise in the study of Nijenhuis ten-
sor for associative algebras, and construct the free compatible associative
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algebra over a vector space V . In Section 4 we develop the notion of com-
patible infinitesimal bialgebra, and introduce the notion of N -algebra. In
Section 5 we consider a particular case of compatible associative algebras:
the matching dialgebras. We show some examples that arise from semi-
homomorphisms of associative algebras. We also describe some notions of
coalgebras compatible with this type of structure. In Section 6 we study the
operad with two compatible associative products with the additional con-
dition that one of them is commutative, while Section 7 is devoted to the
study of compatible commutative algebras, that is compatible associative
algebras satisfying that both products are associative and commutative.
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Notations

All vector spaces and algebras considered in the manuscript are over a
field K. Given a set X, we denote by K[X] the vector space spanned by X.
For any vector space V , we denote by V ⊗n the tensor product of V ⊗· · ·⊗V ,
n times, over K. In order to simplify notation, we shall denote an element
of V ⊗n indistinctly by x1 ⊗ · · · ⊗ xn or simply x1 · · · xn.
If n is a positive integer, we denote by [n] the set {1, . . . , n}. The symmetric
group of permutations of [n] is denoted by Sn. Given a permutation σ ∈ Sn,
we write σ = (σ(1), . . . , σ(n)), identifying σ with its image.
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1. Bialgebras

This section is dedicated to developed basic notions of associative alge-
bras, coalgebras, bialgebras and Hopf algebras.
The concepts and examples described here have been chosen to make easier
the reading of the manuscript. Our aim is to help the reader to understand
a classical result in the study of Hopf algebras: the Milnor-Moore Theorem.
This Theorem states that, in characteristic zero, a conilpotent cocommu-
tative Hopf algebra H is isomorphic to the universal enveloping algebra of
its Lie algebra of primitive elements, H ∼= U(Prim(H)). Although the de-
velopment of this section is standard in Hopf algebra theory, our text is
essentiality based on the description given by J.-L. Loday and B. Vallette
in [22].

1.1. Associative algebras.

1.1.1. Definition. An associative algebra is a vector space A equipped with
a bilinear map µ : A⊗ A → A, which satisfies that µ ◦ (id ⊗ µ) = µ ◦ (µ ⊗
id). The associativity of the product µ can be represented by the following
commutative diagram:

A⊗A⊗A A⊗A

A⊗A A
❄

id⊗µ

✲µ⊗id

❄

µ

✲µ

An algebra A is unitary if there exist a linear application η : K → A,
called unit, such that the following diagram commute :

K⊗A A⊗A A⊗K

A

◗
◗
◗
◗◗s

≃

✲η⊗id

❄
µ

✛id⊗η

✑
✑

✑
✑✑✰

≃

1.1.2. Notation. For any pair of elements x and y in an associative algebra
A, we denote by x · y the element µ(x ⊗ y). The associativity condition
satisfied by µ implies that (x · y) · z = x · (y · z) and η(λ) · x = λx = x · η(λ),
for all x, y, z ∈ A and λ ∈ K.

Note that if (A, ·) and (B, ◦) are two associative algebras, then the tensor
product A⊗B is also an associative algebra with the product defined by

(x1 ⊗ y1) ∗ (x2 ⊗ y2) := (x1 · x2)⊗ (y1 ◦ y2),

for all x1, x2 ∈ A, y1, y2 ∈ B.
Let us now recall the notion of graded vector spaces.
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1.1.3. Definition. A vector space V is graded if there exist a collection of
subspaces {Vn}n∈Z such that

V =
⊕

n∈Z

Vn.

An element x ∈ Vn is homogeneous of degree n and we write |x| = n.
We assume that n will run over the integer non negative only, with which
we will write

V =
⊕

n≥

Vn.

1.1.4. Definition. An associative unital algebra A is graded if its underlying
vector space is graded, that is A =

⊕
n≥0An, and it satisfies:

(1) An ·Am ⊂ An+m,, for all integers n,m ≥ 0 and
(2) η(K) ⊂ A0.

An associative algebra (A, ·) is commutative if the product · satisfies that
a · b = b · a, for all a, b ∈ A. From now on, for us a commutative product is
an associative and commutative product and a commutative algebra (A, ·) is
a vector space A with a commutative product · : A⊗A → A.

1.1.5. Example. The polynomial ring A = K[x1, x2, . . . , xn] in n variables
over the field K is a graded commutative algebra. In this case, A0 = K,
while the homogeneous component of degree i ≥ 1 is the subgroup of all
K-linear combinations of monomials of degree i.

1.1.6. Tensor algebra. Let V be a vector space over K. The tensor algebra
over V is the graded vector space

T (V ) =
⊕

n≥0

V ⊗n = K1⊕ V ⊕ · · ·V ⊗n ⊕ · · · ,

equipped with the concatenation product T (V )⊗ T (V ) → T (V ) given by

λ · (v1 · · · vn) = (v1 · · · vn) · λ = λv1 · · · vn, if λ ∈ K

and

(v1 · · · vn) · (vn+1 · · · vn+m) = v1 · · · vnvn+1 · · · vn+m.

The concatenation product is associative. The tensor algebra T (V ) is
graded, where the component of degree zero is the field K = T 0(V ) and
T n(V ) := V ⊗n is the component of degree n. Its unit is given by 1K ∈
K = T 0(V ). The tensor algebra is the free associative algebra over V , which
means that T (V ) satisfies the following universal property:
given a associative unital algebra A and a linear application f : V → A,

there exists an unique algebra morphism f̃ : T (V ) → A which extends f ,
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that is, the following diagram commute:

V A

T (V )
❄

i

✲f

�
�
�✒

f̃

where i : V → T (V ) is the inclusion of V = T 1(V ) in T (V ).

In fact, if f : V → A is a linear application, we define f̃ : T (V ) → A by:

(1) f̃(1) = 1,

(2) f̃(v) = f(v), if v ∈ V ,

(3) f̃(v1 · · · vn) = f(v1)·. . .·f(vn), where · denote the associative product
of A.

It is immediate to verify that f̃ is morphism of algebras. Moreover, it is
clear that this morphism is unique. So, T (V ) is free on V .

1.1.7. Proposition. Let A =
⊕

n≥0An be a graded algebra and consider a
two-sided ideal I of A generated by homogeneous elements. We have that

I =
⊕

n≥0

I ∩An

and the quotient algebra A/I is graded with (A/I)n = An/(I ∩An), for all
n ≥ 0.

Proof. The ideal I is generated by homogeneous elements xi of degree di.
So, if x ∈ I then we have that

x =
∑

i

ai · xi · bi,

for some ai, bi ∈ A. Since A is a graded algebra, we can write ai =
∑

j aij
and bi =

∑
k bij , where aij and bij are homogeneous elements of degree j.

So, x =
∑

i,j,k ·aij ·xibik is a sum of homogeneous elements of degree dj+j+k

in I, which implies that I ⊆
⊕

n≥0 I ∩An. The other inclusion is obvious.

The graduation of the quotient A/I follows from the previous result. �

1.1.8. Symmetric algebra. Let V be a vector space. The symmetric algebra
S(V ) over V is the quotient of the tensor algebra T (V ) by the two-sided
ideal I(V ), generated by all the elements of the form

v1v2 − v2v1, for all v1, v2 ∈ V.

As a free associative unital algebra T (V ) is generated by V , so the com-
mutativity of the elements of degree one in the quotient S(V ), implies that
S(V ) is a commutative algebra. On the other hand, since the ideal I(V ) is
generated by homogeneous elements of degree two, S(V ) is a graded algebra.
If we denote by Sn(V ) the image of T n(V ) under the projection of T (V )
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onto S(V ), we get that Sn(V ) is the subspace of homogeneous elements of
degree n.

The subspace Sn(V ) can be characterized as the quotient of T n(V ) by
the subspace generated by all the elements of the form

(v1v2 · · · vn)− (vσ(1)vσ(2) · · · vσ(n)),

for all vi ∈ V and all permutation σ ∈ Sn.

1.1.9. Remark. (1) The symmetric algebra S(V ) satisfies the following
universal property:

For any commutative unital algebra A and any K-linear map f :

V → A, there exists an unique algebra morphism f̃ : T (V ) → A
which extends f , that is, the following diagram commute:

V A

S(V )
❄

i

✲f

�
�
�✒

f̃

where i : V → S(V ) is the inclusion of V in S(V ). The construction

of the extension f̃ is similar to the associative case (see 1.1.6).
(2) If V is finite dimensional, then S(V ) is isomorphic to the algebra of

polynomials in n variables K[x1, . . . , xn] ([22], 1.1.10).

For the next example, we need to recall the definition of a Lie algebra.

1.1.10. Definition. A Lie algebra over K is a vector space g together with
a binary operation [−,−] : g ⊗ g → g , called bracket, which satisfies the
following relations:

(1) antisymmetry, [x1, x2] = −[x2, x1],
(2) Jacobi identity, [x1, [x2, x3]] + [x2, [x3, x1]] + [x3, [x1, x2]] = 0,

for all x1, x2, x3 ∈ g.

The underlying vector space of any associative algebra A has a natural
structure of Lie algebra with the bracket

[x, y] := x · y − y · x,

for x, y ∈ A. We denote by ALie the underlying vector space of A, equipped
with the Lie algebra structure given by [−,−]. This construction defines a
forgetful functor from the category of associative algebras to the category
of Lie algebras,

(−)Lie : As-alg → Lie-alg.
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1.1.11. Universal enveloping algebra. Let g be a Lie algebra. The tensor
algebra T (g) is the free unital associative algebra over the underlying vector
space of g.

1.1.12. Definition. The universal enveloping algebra U(g) is the quotient of
T (g) by the two-sided ideal generated by the elements

x⊗ y − y ⊗ x− [x, y], for all x, y ∈ g.

Note that there exists a Lie algebra homomorphism ι : g → U(g) given by
the composition ι := π ◦ i, where i : g → T (g) is the inclusion of g = T (g)1
in T (g) and π : T (g) → U(g) is the projection of T (g) onto the quotient
U(g).

1.1.13. Proposition. Let g be a Lie algebra. The universal enveloping al-
gebra satisfies the following universal property:
if A is an associative algebra and f : g → ALie is a Lie algebra morphism,

then there exist an algebra morphism f̃ : U(g) → A such that the following
diagram commute:

g A

U(g)
❄

ι

✲f

�
�
�✒

f̃

Proof. Let A be an associative algebra and consider a Lie algebra morphism
f : g → ALie. As f is a linear application, by the universal property of T (g),

there exists an unique algebra morphism f̃ : T (g) → A which extend f . So,
we get that:

f̃(x⊗ y − y ⊗ x) = f(x)f(y)− f(y)f(x) = [f(x), f(y)] = f([x, y]),

which implies that f̃(x ⊗ y − y ⊗ x − [x, y]) = 0, consequently the algebra

morphism f̃ is defined on the quotient U(g).
�

1.1.14. Remark. Proposition 1.1.13 shows that the functor U : Lie-alg →
As-alg is left adjoint to the functor (−)Lie : As-alg → Lie-alg, that is, for
any Lie algebra g and any associative algebra A there is an isomorphism

HomAs(U(g), A) ∼= HomLie(g, A
Lie).

1.2. Coalgebras. The notion of a coalgebra is dual to the notion of alge-
bra, and is obtained by reversing all arrows in the diagrams defining an
associative algebra.
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1.2.1. Definition. A coassociative coalgebra is a K-vector space C with a
coproduct ∆ : C → C ⊗ C such that the following diagram commute:

C C ⊗C

C ⊗ C C ⊗ C ⊗ C
❄

∆

✲∆

❄

∆⊗Id

✲Id⊗∆

Additionally, a coalgebra C is counitary if there exist ǫ : C → K, called
counit, such that the following diagram commute:

C

K⊗C C ⊗C A⊗K

✑
✑

✑
✑✑✰

≃

❄
∆

◗
◗
◗
◗◗s

≃

✲ǫ⊗Id✛Id⊗ǫ

A coalgebra (C,∆) is cocommutative when the coproduct satisfies ∆ =
τ ◦∆, where τ : C ⊗ C → C ⊗ C is given τ(x⊗ y) = y ⊗ x.
Given two coalgebras (C,∆, ǫ) and (C ′,∆′, ǫ′), a morphism of coalgebras is
a linear map f : C → C ′ such that

(f ⊗ f) ◦∆ = ∆′ ◦ f and ǫ = ǫ′ ◦ f.

1.2.2. Remark. (1) The field K is a coalgebra with the coproduct given
by ∆(1) = 1⊗ 1.

(2) A coalgebra is coaugmented if there exists a morphism of coalgebras
u : K → C. In particular, ǫ ◦ u = IdK. If C is coaugmented, then C
is isomorphic, as vector space, to C ⊕K1, where C = ker ǫ . In such
case, we define the reduced coproduct ∆̄ : C → C ⊗ C by

∆̄(x) = ∆(x)− x⊗ 1− 1⊗ x,

which is also coassociative.
(3) Let (C,∆A, ǫA) and (D,∆D, ǫB) be two counital coalgebras. The

tensor product C ⊗D has a natural structure of coalgebra with the
coproduct given by ∆C⊗D := (Id⊗ τC,D ⊗ Id) ◦ (∆C ⊗∆D) and the
counit ǫC⊗D := ǫC ⊗ ǫD.

1.2.3. Definition. A co-algebra (C,∆, ǫ) is graded if the vector space C =⊕
n≥0Cn is graded, and the coproduct ∆ satisfies:

(1) ∆(Cn) ⊆
⊕

i≤n

Ci ⊗ Cn−i, for all n ≥ 0 and

(2) ǫ(Cn) = 0, for n 6= 0.

1.2.4. Notation. Let (C,∆, ǫ) be a coalgebra. Given x ∈ C we denote the
image of x under ∆ using the Sweedler’s notation,

∆(x) =
∑

x(1) ⊗ x(2) or simply ∆(x) = x(1) ⊗ x(2).
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Using Sweedler’s notation, the coassocitivity of ∆ is expressed as:

(x(1)(1) ⊗ x(1)(2))⊗ x(2) = x(1) ⊗ (x(2)(1) ⊗ x(2)(2)),

for all x ∈ C. So, we may write

(∆ ⊗ Id)∆(x) = (Id⊗∆)∆(x) = x(1) ⊗ x(2) ⊗ x(3).

The counit condition of ǫ may be reformulated as:

ǫ(x(1))x(2) = x = x(1)ǫ(x(2)),

for all x ∈ C. On the other hand, C is cocommutative if x(1) ⊗ x(2) =
x(2) ⊗ x(1), for all x ∈ C.

The coassociativity of the coproduct ∆ allow us to define n-ary coopera-
tions on a coalgebra C.

1.2.5. Definition. Given a coalgebra (C,∆) (not necessarily counital), we

define recursively n-ary co-operations, ∆(n) : C → C⊗n as follow:

• ∆(1) = Id, ∆(2) = ∆
• ∆(3) := (∆⊗ Id) ◦∆ = (Id⊗∆) ◦∆

• ∆(n) := (∆ ⊗ Id⊗(n−2)) ◦∆(n−1)

1.2.6. Remark. By the coassociativity of ∆, we get

∆(n) := (Id⊗ · · · ⊗ Id⊗∆⊗ Id · · · ⊗ Id) ◦∆(n−1).

In particular,

∆(n)(x) = ∆(n−1)(x(1))⊗ x(2)
= x(1) ⊗∆(n−1)(x(2)).

Extending Sweedler’s notation, we write

∆(n)(x) = x(1) ⊗ · · · ⊗ x(n).

Given a coaugmented coalgebra C, there exists a natural filtration on C
given by:

• F1(C) := {x ∈ C | ∆̄(x) = 0},
• Fn(C) := {x ∈ C | ∆̄(r)(x) = 0, for any r ≥ n} for a given n ≥ 1,
where ∆̄(x) := ∆(x)− 1⊗ x− x⊗ 1.

The previous filtration give place to the notion of conilpotent coalgebra.

1.2.7. Definition. The counital coalgebra C is said to be conilpotent if

C =
⋃

n≥1

Fn(C) .

1.2.8. Remark. Note that if (C,∆) is a conilpotent coalgebra, any element

in C is conilpotent, that is, for any x ∈ C there exists n such that ∆̄(m)(x) =
0, for any m ≥ n. We say that the conilpotency degree of x ∈ C is the
smallest positive integer n that ∆̄(n)(x) = 0. Moreover, by Remark 1.2.6, if
∆̄(x) = x(1) ⊗ x(2), the conilpotency degree of the elements x(1) and x(2) is
strictly smaller than the conilpotency degree of x.
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1.2.9. Tensor Coalgebra. Let V be a vector space. We denote by T c(V ) the
vector space

T c(V ) =
⊕

n≥0

V ⊗n = K⊕ V ⊕ · · ·V ⊗n ⊕ · · · ,

equipped with the deconcatenation coproduct ∆c : T c(V ) → T c(V )⊗T c(V )
given by

∆c(x1 · · · xn) :=
n∑

i=0

(x1 · · · xi)⊗ (xi+1 · · · xn) and ∆c(1) = 1⊗ 1,

for x1, . . . , xn ∈ V .
The counit ǫ : T c(V ) → K is the projection on K, that is, it is the identity

on K and 0 otherwise.
The coproduct ∆ is coassociative and counital. Note that T c(V ) is coaug-
mented by the inclusion i : K → T (V ). Moreover, T c(V ) is a graded and
conilpotent coalgebra. In this case, the filtration is given by

Fn(T
c(V )) =

⊕

r≤n

V ⊗r .

The reduced coproduct is given by

∆̄c(v1 · · · vn) :=
n−1∑

i=1

v1 · · · vi ⊗ vi+1 · · · vn.

1.2.10. Remark. The coalgebra T c(V ) satisfies the following universal con-
dition:
any linear map ϕ : C → V , where C is a conilpotent coassociative coal-
gebra, satisfying ϕ(1) = 0, extends uniquely into a coaugmented coalgebra
morphism ϕ̃ : C → T c(V ):

C

T c(V ) V

❄

ϕ̃

❅
❅
❅
❅❅❘

ϕ

✲pV

where pV : T c(V ) → V is the projection map, which is the identity on V
and 0 otherwise. We say then that T c(V ) is the cofree conilpotent coalgebra
over V (see [22], Proposition 1.2.7).

1.2.11. Definition. Let (C,∆, ǫ, u) be a coaugmented coalgebra. An element
x ∈ C is primitive if ∆(x) = x⊗ 1 + 1⊗ x or, equivalently, x ∈ F1(C). The
subspace of primitive elements of C is denoted by Prim(C).
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1.3. Bialgebras.

1.3.1. Definition. A bialgebra (H,µ, η,∆, ǫ) is K-vector space H equipped
with a unital algebra structure (H,µ, η) and a counital coalgebra structure
(H,∆, ǫ), satisfying that ∆ y ǫ are algebra homomorphisms,

∆(x · y) = (µ⊗ µ) ◦ (IdH ⊗ τ IdH) ◦ (∆(x)⊗∆(y)) and ǫ(x · y) = ǫ(x)ǫ(y),

for any pair of elements x, y ∈ H.

1.3.2. Remark. (1) The compatibility condition between the algebra
structure and the coalgebra structure in H is equivalent to require
that µ and η are coalgebra homomorphisms.

(2) When we consider the non-unital bialgebra H := ker(ǫ) with the
reduced coproduct ∆̄(x) = ∆(x) − x ⊗ 1 − 1 ⊗ x, the compatibility
relation is given by:

∆̄(xy) = x⊗ y + y ⊗ x+ x(1) ⊗ x(2)y + x(1)y ⊗ x(2)+
xy(1) ⊗ y(2) + y(1) ⊗ xy(2) + x(1)y(1) ⊗ x(2)y(2),

where ∆̄(x) = x(1) ⊗ x(2) and ∆̄(y) = y(1) ⊗ y(2).
(3) A bialgebra (H,µ, η,∆, ǫ) is graded, if H is a graded algebra and a

graded coalgebra, with the same graduation.

1.3.3. Proposition. If H is a bialgebra, then the subspace of primitive ele-
ments Prim(H) is a Lie subalgebra of H.

Proof. Suppose that x and y are primitive elements of H, we get that

∆(x·y) = (µ⊗µ)◦(IdH⊗τ⊗IdH)(x⊗1K⊗y⊗1K+x⊗1K⊗1K⊗y+1K⊗x⊗y⊗1K

+1K ⊗ x⊗ 1K ⊗ y) = x · y ⊗ 1K + x⊗ y + y ⊗ x+ 1K ⊗ x · y,

which implies that

∆([x, y]) = ∆(x · y)−∆(y · x)
= (x · y − y · x)⊗ 1K + 1K ⊗ (x · y − y · x)
= [x, y]⊗ 1K + 1K ⊗ [x, y].

So, Prim(H) is a Lie subalgebra of H. �

1.4. The tensor bialgebra. Let V be a vector space. As T (V ) is the free
associative unital algebra over V , there exists an unique algebra morphism
∆sh : T (V ) → T (V )⊗ T (V ) such that

∆sh(v) = v ⊗ 1 + 1⊗ v,

for any v ∈ V .
By the universal property of T (V ), the coproduct ∆sh is coassociative.

Therefore, T (V ) is a bialgebra, which is graded, cocommutative and conilpo-
tent. The data (T (V ), ·,∆sh, ι, ǫ) is called the tensor bialgebra over V .

Let us give an explicit formula for the coproduct ∆sh.
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1.4.1. Definition. A (n,m)-shuffle is a permutation σ ∈ Sn+m such that
σ(1) < · · · < σ(n) and σ(n + 1) < · · · < σ(n + m). We denote the set all
(n,m)-shuffle by Sh(n,m).

1.4.2. Proposition. Let V be a vector space. The coproduct ∆sh on T (V )
is given by

∆sh(v1 · · · vn) =
n∑

i=0

∑

σ∈Sh(i,n−i)

vσ(1) · · · vσ(i) ⊗ vσ(i+1) · · · vσ(n).

1.4.3. Remark. In an analogous way, the symmetric algebra S(V ) has a
natural structure of bialgebra by defining

∆(x) = x⊗ 1 + 1⊗ x, for x ∈ V

and extending this map to ∆ : S(V ) → S(V ) ⊗ S(V ), using the universal
property of S(V ).

Let us describe the formula for the coproduct ∆ in this case. For an
homogeneous element x = v1 · · · vn ∈ Sn(V ) (see 1.1.8), let I be a subset of
[n]. If I = ∅, then we define xI := 1. If I = {i1, . . . , ik}, with I 6= ∅, then
we define xI := vi1 · · · vik . So, xI ∈ Sk(V ). In this way, we have that

∆(x) =
∑

I∪J=[n]

xI ⊗ xJ .

The symmetric algebra over V with this coalgebra structure is denoted
by Sc(V ).

1.5. Bialgebra structure for U(g). Let g be a Lie algebra. As U(g) is a
quotient of T (g), it suffices to verify that the bialgebra structure is compat-
ible with the quotient map to get a bialgebra structure on U(g). The map
∆ is Lie algebra homomorphism. Indeed, if x, y ∈ g then:

∆([x, y]) = [x, y]⊗ 1 + 1⊗ [x, y]
= (xy − yx)⊗ 1 + 1⊗ (xy − yx)
= (x⊗ 1 + 1⊗ x)(y ⊗ 1 + 1⊗ y)− (y ⊗ 1 + 1⊗ y)(x⊗ 1 + 1⊗ x)
= ∆(x)∆(y)−∆(y)∆(x)
= [∆(x),∆(y)].

By the universal property of U(g), there exists a unique algebra homo-
morphism ∆ : U(g) → U(g)⊗ U(g), which extend ∆(x) = x⊗ 1 + 1⊗ x, for
x ∈ g. Therefore, the universal enveloping U(g) is a bialgebra.

Note that, in particular, if H is a bialgebra, then Prim(H) is a Lie al-
gebra (1.3.3). So, U(Prim(H)) is a biagebra with the structure previously
described.

To define a Hopf algebra, we need previously to introduce the notion of
antipode.
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1.5.1. Definition. Let (H,µ,∆, η, ǫ) be a bialgebra. Given a pair of K-linear
maps f, g ∈ EndK(H), the convolution product of f and g is the linear map
f ⋆ g : H → H given by the composition

f ⋆ g := µ ◦ (f ⊗ g) ◦∆.

It is immediate to verify that the endomorphism η ◦ ǫ is a unit for ⋆ and
that ⋆ is associative. So, the data (HomK(H), ⋆, η ◦ ǫ) is a unital associative
algebra.

1.5.2. Definition. A Hopf algebra is a bialgebra (H,µ,∆, η, ǫ) equipped with
a linear map S : H → H such that S is the inverse of id : H → H with
respect to the convolution product, that is

S ⋆ id = id ⋆ S = η ◦ ǫ.

The linear endomorphism S is called an antipode for H.

1.5.3. Remark. If H conilpotent bialgebra, then H is equipped with an
antipode map S, given by the formula

S(x) := −x+
∑

n≥1

(−1)n+1µn ◦ ∆̄n−1(x).

In particular, for any vector space V , the tensor bialgebra T (V ) is a Hopf
algebra. Similarly, if g is a Lie algebra, the universal enveloping U(g) is a
Hopf algebra, too.

1.6. Dual Hopf algebra. Let V be a vector space. Consider V ∗ = HomK(H,K)
the dual space of V . The linear map ϕ : V ∗ ⊗ V ∗ → (V ⊗ V )∗, given by
ϕ(f ⊗ g)(x ⊗ y) = f(x)g(y), is a isomorphism whenever V is finite dimen-
sional.

On the other hand, if V and W are vector spaces and F : V → W
is a linear map, then F induce a linear map F ∗ : W ∗ → V ∗, given by
F ∗(f) = f ◦ F .

If (C,∆) is a coalgebra, then (C∗,∆∗ ◦ϕ) is an associative algebra (in this
case, we do not need that C has finite dimension).

Respectively, if (A,µ) is associative algebra of finite dimension, then
(A∗, ϕ−1 ◦ µ) is a coassociative coalgebra.

Suppose now that (H,µ,∆) is a Hopf algebra of dimension n < ∞. Let
B = {ei}i∈[n], respectively B∗ = {δi}i∈[n], be a basis the underlying vector
space of H, respectively its dual basis. There exists a canonical isomorphism
of vector spaces H∗ ∼= H, given by δi ↔ ei. The last isomorphism, which
strongly depends on the basis, gives another Hopf algebra structure on H,
induced by (H∗, µ∗,∆∗), that we denote (H,µ′,∆′).

The product µ′ and co-product ∆′ are given, in terms of the basis B, by
the formulas:

(1) µ′(ei ⊗ ej) =
∑

r

λr
i,jer, where ∆(er) =

∑

l,k

λr
l,kel ⊗ ek and
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(2) ∆′(ei) =
∑

j,l

aijlej ⊗ el, where µ(ej ⊗ el) =
∑

i

arjler.

The last construction may be extended to any graded Hopf algebra. Let

V =
⊕

n≥0

Vn be graded vector space such that its homogeneous components

are of finite dimension.

(1) The graded dual V ∗ is the graded vector space
⊕

n≥0

V ∗
n . Moreover,

as its homogeneous components are of finite dimension, V ∼= V ∗.
(2) The tensor product V ⊗ V is also a graded vector space, with grad-

uation given by (V ⊗ V )n =
n⊕

i=0

Vi ⊗ Vn−i, for all n ≥ 0. Moreover,

under the finite dimensional hypothesis, (V ⊗ V )∗ ∼= V ∗ ⊗ V ∗.
(3) Consider V and W are two graded vector space, both with its ho-

mogenous components of finite dimension, and F : V → W , homo-
geneous of degree d, that is, F (Vn) ⊆ Wn+d, for all n ≥ 0. Then,
there exist an unique F ∗ : W ∗ → V ∗ given by F ∗(f) = f ◦ F .

The previous considerations imply that if (H,µ,∆) is a graded Hopf alge-
bra, then the graded dual H∗ is also a Hopf algebra. Moreover, as H ∼= H∗,
it induces another Hopf algebra structure on H.

1.6.1. Example. Consider the tensor bialgebra (T (V ), µ,∆), where µ is the
concatenation product and ∆ is the shuffle co-product. In this case, the
dual coalgebra structure is given by the tensor coalgebra T c(V ) considered
in 1.2.9. The coproduct is given by the deconcatenation coproduct,

∆c(x1 · · · xn) :=
n∑

i=0

(x1 · · · xi)⊗ (xi+1 · · · xn).

Conversely, it is not difficult to see that the dual product is given by

(v1 · · · vn) ∗ (vn+1 · · · vn+m) =
∑

σ∈Sh(n,m)

vσ−1(1) · · · vσ−1(n+m),

which is called the shuffle product. The bialgebra (T c(V ), ∗,∆c) is known as
the shuffle bialgebra.

1.7. Cartier-Milnor-Moore theorem. Let us describe one of the main
structure theorems for cocommutative bialgebras, due to J. Milnor and J.
Moore. The version included in the present manuscript is due to J.-L. Loday
and B. Vallette in [25], Theorem 1.3.6, which contains two classical results:
the Cartier-Milnor-Moore theorem and the Poincaré-Birkhoff-Witt theorem
[25]. For more details about this theorem we refer to [25], while the original
version of the result, we refer to [28] and [35].

1.7.1.Theorem. Let K be a characteristic zero field. For any cocommutative
bialgebra H over K, the following are equivalents:
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(1) H is conilpotent,
(2) H ∼= U(Prim(H)) as bialgebra.
(3) H ∼= Sc(Prim(H)) as a conilpotent coalgebra.

1.7.2. The Grossman-Larson’s Hopf algebra. In [17], R. Grossman and R.G.
Larson described Hopf algebras which are associated with certain families
of trees. Let T be the set of all non-planar rooted trees and Tn the subset
of trees in T with n+ 1 vertices. For instance,

• T0 = { },

• T1 =

{ }
,

• T2 =

{
,

}
,

• T3 =





, , ,




,

where the root of the tree is painted in black. The tree with only one vertex
is denoted by e, and belongs to T0. Given a tree t and a vertex v ∈ t , we
say that a vertex v′ ∈ t is a child of v if v′ is directly connected to the vertex v.

Let H = K[T ] be the vector space generated by the set T . The vector
space H is naturally graded by

H =
⊕

n≥0

K[Tn],

where K[Tn] is the vector space spanned by Tn.
The associative product on H is defined as follows. If t1 and t2 are two

rooted trees, the product t1 · t2 is the sum of the trees obtained by attaching
the children of the root of t1 to the vertices of t2 in all possible ways. For
example:

· = + 2 + .

Note that this product is not commutative and the unit is given by the
tree e.

Let us describe the coalgebra structure forH. Let t be a tree and v1, . . . , vr
the children of the root of t. Let X = {t1, . . . , tr} be the set of subtrees of t
whose roots are given by v1, . . . , vr, respectively.

Consider Y a subset of X. If Y = ∅, then define tY := e. If Y =
{ti1 , . . . , tik}, then define tY as the tree that is obtained by attaching of
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trees ti1 , . . . , tik to a new the root.
The coproduct ∆(t) is given by

∆(t) =
∑

Y⊆X

tY ⊗ tX\Y .

So, the coproduct ∆(t) is the sum of the 2r terms t′⊗t′′, where the children
of the root of t′ and the children of the root t′′ range over all 2r possible
partitions of the children of the root of t into two subsets. For instance,

∆( ) = ⊗ + 2 ⊗ + ⊗ .

Note that, if t = e, then ∆(e) = e⊗ e. The counit ǫ is given by ǫ(e) = 1,
ǫ(t) = 0 if t 6= e.

The coproduct ∆ is cocommutative and (H, ·,∆) is a conilpotent bialge-
bra. So, by Remark 1.5.3, H is a Hopf algebra.

By Cartier-Milnor-Mooree theorem, H is isomorphic, as bialgebra, to the
universal enveloping algebra of its primitive elements, H ∼= U(Prim(H)).
Explicitly, Prim(H) has as basis the set all rooted trees whose root has
exactly one child (for more details, see [17])

1.8. Chain complex and homology. We give the basic notions of chain
complexes and homology.

For two graded vector spaces V and W , a morphism of degree r , f : V →
W , is a family of linear maps fn : Vn → Wn+r, for all n ∈ Z. The integer r
is called the degree of f and we write |f | = r. Note that |f(v)| = |f |+ |v|.

The tensor product V ⊗W (in the graded framework) is defined as:

(V ⊗W )n :=
⊕

i+j=n

Vi ⊗Wj.

The suspension of the graded vector space V is sV , where we identify
(sV )i with Vi−1. So, sV is the graded vector space V with the degree shifted
in 1. Respectively, the desuspension of V is given by s−1V . In this case, it
is the graded vector space V with Vi+1 considered in degree i.

1.8.1. Chain complex. A chain complex, also called differential graded vector
space, is a graded vector space (C∗, d) equipped with a linear map

d : C∗ → C∗−1,

of degree −1, called differential o boundary map, satisfying the condition
d ◦ d = 0. We assume that the graduation of C is non negative and we
represent the chain complex by

· · · → Cn+1 → Cn → Cn−1 → · · · → C1 → C0.

Given a differential vector space (C, d), a cycle of degree n is an element
of the kernel Kerdn, while a boundary in Cn is an element of Imdn+1. The
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condition d ◦ d = 0 implies that Im(dn+1) ⊆ Ker(dn).

The n-th. homology group of a chain complex (C, d) is the quotient
Hn(C∗) := Ker(dn)/Im(dn+1).

A morphism of complexes f : C → C ′ is a map of graded vector spaces
of degree 0, such that the following diagram commute for any n,

Cn Cn−1

C ′
n C ′

n−1

❄

fn

✲d

❄

fn−1

✲d

The commutativity of the diagram implies that f induces a morphism
f∗ : Hn(C) → Hn(C

′).
A homomorphism of complexes f : C∗ → C ′

∗ is a quasi-isomorphism if f∗
is an isomorphism, for all integer n.

Given two differential graded vector spaces (chain complexes) (V, dV ) and
(W,dW ), their tensor product is the graded vector space V ⊗ W , whose
subspace of homogeneous elements of degree n is (V ⊗W )n :=

⊕
i+j=n Vi ⊗

Wj, equipped with the differential map

dV⊗W := dV ⊗ IdW + IdV ⊗ dW .

If v ⊗ w ∈ Vi ⊗Wj, then

dV⊗W (v ⊗ w) = dV (v)⊗ w + (−1)iv ⊗ dW (w).

1.8.2. Differential graded algebra and differential graded coalgebra. A differ-
ential graded associative algebra (A, ·, d) is a graded algebra equipped with
a differential map d : A → A of degree −1 satisfying that d is a derivation
for the product, that is:

d(a · b) = d(a) · b+ (−1)|a|a · d(b).

The last identity can be expressed as:

d ◦ · = · ◦ (d⊗ id + id⊗ d),

where · is the product in A. So, · : A ⊗ A → A is a morphism of chain
complexes.

Respectively, a differential graded coassociative coalgebra (C,∆, d) is a
graded coalgebra equipped with a differential map d : C → C of degree −1,
which is a coderivation for the coproduct ∆, that is:

∆ ◦ d = (d⊗ id + id⊗ d) ◦∆.

Equivalently, ∆ : C → C ⊗C is a morphism of chain complexes.
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1.8.3. Bicomplex. A bicomplex (also called double complex) is a bigraded
vector space C = {Cpq}p≥0,q≥0 together with a horizontal differential dh :
Cpq → C(p−1)q and a vertical differential dv : Cpq → Cp(q−1) satisfying that:

dh ◦ dv + dv ◦ dh = 0.

Graphically, we have:

C20 C21 C22

C10 C11 C12

C00 C01 C02

❄

dv

❄

dv

❄

dv

❄

dv

❄

dv

✛dh

❄

dv

✛dh ✛ dh

❄

dv

✛dh

❄

dv

❄

dv

✛dh ✛ dh

✛dh ✛dh ✛ dh

The total complex associated to a bicomplex (C, dh, dv) is defined by

(TotC)n :=
⊕

p+q=n

Cpq and d = dh + dv.

We can easily verify that the conditions satisfied by the differential maps
dv and dh imply that ((TotV )n, d) is a chain complex. The homology groups
Hn(TotC) are called the homology groups of the bicomplex C∗∗.

Other chain complex may be defined from a bicomplex (C, dh, dv). First,
consider the homology groups of vertical complex Hp(C∗,q), for a fixed q.
The horizontal differential induces a map

(dh)∗ : Hp(C∗,q) → Hp(C∗,q−1),

for all fixed p. The homology groups of the last complex are denoted by
Hh

qH
v
p (C). Similarly, we can define other complex considering first the hor-

izontal homology and then the vertical homology. In such case, we denote
the homology groups by Hv

pH
h
q (C).

The following proposition establishes a relationship between these homol-
ogy groups and the total complex homology groups.
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1.8.4. Proposition. Let (C, dh, dv) be a bicomplex. Suppose that, for all
integer q, the vertical homology groups Hp(C∗,q) are 0, for p > 0. Let
Kn := H0(C∗,n), be the unique non trivial homology group . We have that
Hn(TotC∗∗) = Hn(K∗, d

v), for n ≥ 0.

Proof. See [23], Proposition 1.0.12. �

1.9. Unital infinitesimal bialgebras. In [20], M. Joni and G.-C. Rota
introduced the notion of infinitesimal bialgebra. This notion was modified
by J.-L. Loday and M. Ronco [26] in order to consider infinitesimal bialgebras
with units. We give a brief description of the last type of structure, for a
more complete definition and basic results we refer to [26].

1.9.1. Definition. A unital infinitesimal bialgebra (H, ·,∆) is a vector space
H equipped with a unital associative product · : H⊗H → H and a counital
coproduct ∆ : H → H ⊗H which satisfy the following relation:

∆(x · y) = x · y(1) ⊗ y(2) + x(1) ⊗ x(2) · y − x⊗ y,

for x, y ∈ H, where ∆(x) = x(1) ⊗ x(2) and ∆(y) = y(1) ⊗ y(2).

1.9.2. Remark. Note that the unital infinitesimal relation in a unital infin-
itesimal bialgebra (H, ·,∆) is equivalent to require that the reduced coprod-
uct ∆̄ verifies the relation

∆̄(x · y) = x · y(1) ⊗ y(2) + x(1) ⊗ x(2) · y + x⊗ y,

for x, y ∈ H, where ∆̄(x) = x(1) · x(2) and ∆̄(y) = y(1) ⊗ y(2).

The last equality implies that

∆̄(n)(x · y) =

n∑

i=1

x(1) ⊗ · · · ⊗ (x(i) · y(1))⊗ · · · ⊗ y(n−i)

+
n−1∑

i=1

x(1) ⊗ · · · ⊗ x(i) ⊗ y(1) ⊗ · · · ⊗ y(n−i),

where ∆̄(i)(x) = x(1) ⊗ · · · ⊗ x(i), for all 1 ≤ i ≤ n.

1.9.3. Example. Consider H = K[x], the polynomial algebra in the variable
x with its usual product. Define ∆ : H → H ⊗H as

∆(xn) =

n∑

i=0

xi ⊗ xn−i,

for n ≥ 0. The polynomial algebra K[x], equipped with ∆, is a unital
infinitesimal bialgebra.

1.9.4. Remark. The unital infinitesimal relation differs from the infinitesi-
mal relation used by S. Joni and G.-C. Rota in [20] by the presence of term
−x⊗ y, which implies that ∆(1) = 1⊗ 1.
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The main example of example of unital infinitesimal bialgebra is given by
the tensor algebra T (V ) over a vector space V , equipped with coassociative
coalgebra structure given by deconcatenation coproduct.

1.9.5. Proposition. The tensor algebra T (V ) over V equipped with the
deconcatenation coproduct ∆ is a unital infinitesimal bialgebra.

Proof. Consider the tensors x = v1 · · · vp and y = vp+1 · · · vp+n. Computing
∆(x · y), we obtain:

∆(x · y) = ∆(v1 · · · vpvp+1 · · · vp+n)

=

p+n∑

i=0

v1 · · · vi ⊗ vi+1 · · · vp+n

=

p∑

i=0

v1 · · · vi ⊗ vi+1 · · · vpvp+1 · · · vp+n

+

p+n∑

i=p+1

v1 · · · vpvp+1 · · · vi ⊗ vi+1 · · · vp+n

=

p∑

i=0

v1 · · · vi ⊗ (vi+1 · · · vp) · y

+

p+n∑

j=0

x · (vp+1 · · · vi)⊗ vi+1 · · · vp+n − x⊗ y

= x(1) ⊗ x(2) · y + x · y(1) ⊗ y(2) − x⊗ y.

�

Let us recall the linear operator e, originally defined by J.-L. Loday and
M. Ronco in [26], for a conilpotent unital infinitesimal bialgebra (H, ·,∆).

1.9.6. Definition. Let (H, ·,∆) be a conilpotent unital infinitesimal bialge-
bra, with unit η and counit ǫ. The linear operator e : H → H is defined
by

e := J − J ⋆ J + · · ·+ (−1)n−1J⋆n + · · · ,

where J := Id− η ◦ ǫ.

1.9.7. Remark. Note that the operator e is well defined. In fact, if x = 1
H
,

then e(x) = 0 because ∆(1
H
) = 1

H
⊗ 1

H
. If x ∈ H, we can write

(∗) e(x) = x−x(1) ·x(2)+x(1) ·x(2) ·x(3)−· · ·+(−1)n−1x(1) ·x(2) · · · x(n)+· · · ,

where ∆̄(n)(x) = x(1) ⊗ · · · ⊗ x(n), and we have omitted the sum symbol.
Since (H, ·,∆) is a conilpotent coalgebra, there exists a positive integer n
such that ∆̄(n)(x) = 0. So, the sum in (∗) is finite. Therefore, e is well
defined.

The following proposition was proved in [26].
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1.9.8. Proposition. Let (H, ·,∆) be a conilpotent unital infinitesimal bial-
gebra. The linear operator e : H → H defined in 1.9.6, has the following
properties:

(1) Im(e) = Prim(H),
(2) if x, y ∈ H then e(x · y) = 0,
(3) the operator e is an idempotent,
(4) for (T (V ), ·,∆), where · is the concatenation and ∆ the deconcatena-

tion, the operator is the identity on V and 0 on the other components.

Proof. First, note that Remark 1.9.7 implies that if x ∈ H, then

(∗) e(x) = x− x(1) · e(x(2)).

(1) By (∗), we have that if x ∈ Prim(H), then e(x) = x, because ∆̄(x) = 0.
So, Prim(H) ⊆ Im(e) and e(x) ∈ Prim(H), if x ∈ Prim(H).

Let x be a element of H. We want to see that e(x) is a primitive element.
If x = 1 then e(x) = 0, because ∆(1) = 1 ⊗ 1. For x ∈ H, we proceed by
induction on n = the conilpotency degree of x.

If n = 1 then x is primitive element and e(x) = x. Consider now n > 1
and suppose that e(y) is a primitive element if the degree of y is smaller
than n. Let x be a element in (H) whose conilpotency degree is n. By (∗),
we have that

∆̄(e(x)) = ∆̄(x− x(1)e(x(2)))
= x(1) ⊗ x(2) − ∆̄(x(1) · e(x(2)))
= x(1) ⊗ x(2) − x(1) · ∆̄(e(x(2)))

−x(1)(1) ⊗ x(1)(2) · e(x(2))− x(1) ⊗ e(x(2)).

By Remark 1.2.8, the conilpotency degree of x(1) and x(2) is strictly less

than the conilpotency degree of x for all x(1) ⊗ x(1) in the sum ∆̄(x) =

x(1) ⊗ x(2). By induction, we have that ∆̄(e(x(2))) = 0.

On the other hand, by the coassociativity of ∆̄, we have that
x(1)(1) ⊗ x(1)(2) · e(x(2)) = x(1) ⊗ x(2)(1) · e(x(2)(2)). Therefore,

∆̄(e(x)) = x(1) ⊗ x(2) − x(1) ⊗ x(2)(1) · e(x(2)(2))− x(1) ⊗ e(x(2))
= x(1) ⊗ (x(2) − x(2)(1) · e(x(2)(2)))− x(1) ⊗ e(x(2))
= x(1) ⊗ e(x(2))− x(1) ⊗ e(x(2))
= 0,

which proves that e(x) is a primitive element.

(2) We proceed by induction on the conilpotency degree of the product
x · y, with x, y ∈ H. If x and y are both primitives, we have that

∆̄(x · y) = x⊗ y and ∆̄(2)(x · y) = 0.

So, we obtain that e(x · y) = x · y− (x · y)(1)e((x · y)(2)) = x · y−x · y = 0.
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Suppose now that the conilpotency degree of x · y is n > 2 and suppose
the assertion is true for degree strictly less than n. Computing e(x · y), we
have that:

e(x · y) = x · y − x(1) · e(x(2) · y)− x · y(1) · e(y(2))− x · e(y)
= x · (y − y(1) · e(y(2)))− x · e(y), by induction
= x · e(y)− x · e(y), by (∗)
= 0,

which concludes the proof.

(3) The assertion follows immediately from (1), because e(x) = x, if x is
primitive and e(x) is primitive for all x ∈ H.

(4) The proof of this statement is by direct inspection.
�

The following theorem was stated by J.-L. Loday and M. Ronco in [26].

1.9.9. Theorem. Any conilpotent unital infinitesimal bialgebra H is iso-
morphic to T c(PrimH) := (T (PrimH), ν,∆), where ν is the concatenation
product and ∆ is the deconcatenation coproduct.

Proof. Let (H, ·,∆) be a conilpotent unital infinitesimal bialgebra. We de-
note by V := Prim(H) and a tensor in V ⊗n is denoted by x1 · · · xn. We
define G : H → T (V ) by the formula

G(x) :=
∑

n≥1

e⊗n ◦ ∆̄(n)(x).

Note that as H is conilpotent and Im(e) = Prim(H), by Proposition 1.9.8,
then G is well defined. Moreover, we can write

G(x) = e(x) + e(x(1))e(x(2)) + e(x(1))e(x(2))e(x(3)) + · · · .

By Remark 1.9.2 and Proposition 1.9.8, part (2), we have that:

G(x · y) =
∑

n≥1

n∑

i=1

e(x(1)) · · · e(x(i))e(y(1)) · · · e(y(n−i))

=
∑

n≥1

n∑

i=1

(e⊗i ◦ ∆̄(i)(x))(e⊗(n−i) ◦ ∆̄(n−i)(y))

= G(x)G(y).

So, G is an algebra morphism.
Let us show that G is also a coalgebra morphism.

We must prove that (G⊗G) ◦ ∆̄ = ∆̄ ◦G, where we use ∆̄ indistinctly for

the reduced of H and of H ⊗H. As G(x) =
∑

n≥1

e(x(1)) · · · e(x(n)), we have
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that

∆̄(G(x)) =
∑

n≥1

∆̄(e(x(1)) · · · e(x(n)))

=
∑

n≥1

n−1∑

i=1

(e(x(1)) · · · e(x(i)))⊗ (e(x(i+1)) · · · e(x(n))).

On the other hand, we know that

(G⊗G)(∆̄(x)) = G(x(1))⊗G(x(2))

= (
∑

l≥1

e(x(1)(1)) · · · e(x(1)(l)))⊗ (
∑

m≥1

e(x(2)(1)) · · · e(x(2)(m))).

Distributing and using the coassociativity of ∆̄, we obtain

(G⊗G)(∆̄(x)) =
∑

n≥1

n−1∑

i=1

(e(x(1)) · · · e(x(i)))⊗ (e(x(i+1)) · · · e(x(n)))

= ∆̄(G(x)).

Therefore, G is bialgebra morphism.

To see that it is a isomorphism, define F : T (V ) → H by

F (v1 · · · vn) := v1 · . . . · vn, for n ≥ 1.

It is clear that F is a bialgebra morphism. Let us now see that F (G(x)) =
x, for all x ∈ H. The proof is by induction on the conilpotency degree of x.

Since ∆̄(n) = ∆̄(n−1)(x(1))⊗ x(2), we can write

G(x) = e(x) + e(x(1))e(x(2)) + e(x(1))e(x(2))e(x(3)) + · · ·
= e(x) +G(x(1))e(x(2)).

Let x be a element in H and let n be degree of x. If n = 1, then x is
primitive. So, we have that ∆̄(x) = 0 and e(x) = x, which implies that
F (G(x)) = e(x) = x.

Consider now n > 1 and suppose that F (G(y)) = y, when the degree of
y is strictly less than n. Computing F (G(x)), we obtain that:

F (G(x)) = F (e(x)) + F (G(x(1)))F (e(x(2)))
= e(x) + x(1)e(x(2)), by induction
= x− x(1)e(x(2)) + x(1)e(x(2)), by 1.9.8
= x.

On the other hand, we have that,

G(F (v1 · · · vn)) = G(v1 · . . . · vn)
= G(v1) · · ·G(vn)
= e(v1) · · · e(vn)
= v1 · · · vn,

where we have used the fact that e(vi) = vi, for all 1 ≤ i ≤ n, because vi is
primitive. Therefore, H is isomorphic to T (V ). �
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1.9.10. Remark. Note that Theorem 1.9.9 is still valid if we consider a non-
unital associative algebra (H, ·,∆) together with a coassociative coproduct
∆ : H → H ⊗H satisfying

∆(x · y) = x · y(1) ⊗ y(2) + x(1) ⊗ x(2) · y + x⊗ y.

2. Algebraic Operads

The present section is dedicated to introduce the basics concepts of operad
theory used in the next sections. For a more details about operads, we refer
to [22] and [13].

2.0.1. Definition. A S-module is a collection M = {M(n), n ≥ 1} of vector
spaces such that each M(n) is a right Sn-module.

Given two S-modules M and N , a morphism of S-modules, ϕ : M → N
is a collection of K[Sn]-morphisms ϕ(n) : M(n) → N(n).

2.0.2. Notation. The category of S-module is denoted by S-mod.

To give the definition of an algebraic operad, we previously need to de-
scribe certain type of permutations. Let n be a positive integer and consider
an ordered collection of positive integer m = (m1, . . . ,mn):

(1) Given a permutation σ ∈ Sn, we can define a permutation σm ∈
Sm1+···+mn , called block permutation, as follows. First, we denote by

mi := (m1 + · · · +mi−1 + 1, . . . ,m1 + · · ·+mi−1 +mi),

for each 1 ≤ i ≤ n. So, we define σm := (mσ(1), . . . ,mσ(n)). For in-
stance, if m = (3, 2, 2) and σ = (3, 2, 1), then σm = (6, 7, 4, 5, 1, 2, 3).

(2) Given permutations σi ∈ Smi
, for 1 ≤ i ≤ n, the permutation

σ1 × · · · × σn ∈ Sm1+···+mn is the permutation that is obtained by
concatenating the σ′

is. For example, if σ1 = (2, 1), σ2 = (3, 2, 1) and
σ3 = (1, 3, 2), then

σ1 × σ2 × σ3 = (2, 1, 5, 4, 3, 6, 8, 7).

2.0.3. Definition. An algebraic operad, or simply an operad, is a S-module
P = {P (n), n ≥ 1} together with a collection of linear maps, called compo-
sitions,

γ : P (n)⊗ P (m1)⊗ · · · ⊗ P (mn) → P (m1 + · · · +mn),

for all collection positive integer {m1, . . . ,mn}. We write µ(ν1, . . . , νn) in-
stead γ(µ⊗ν1⊗· · ·⊗νn). The compositions γ satisfy the following conditions:

(1) There exist an element 1 ∈ P (1), called the unit, such that µ(1, . . . , 1) =
µ for any l and for any µ ∈ P (l).

(2) The composition of operations is associative, that is,

µ(µ1(ν
1
1 , . . . , ν

1
m1

), . . . , µn(ν
n
1 , . . . , ν

n
mn

)) = µ(µ1, . . . , µn)(ν
1
1 , . . . , ν

n
mn

).

(3) Compatibility of γ with the action of Sn. Consider µ ∈ P (n) and
µi ∈ P (mi), for 1 ≤ i ≤ n. Then:
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(a) For all permutation σ ∈ Sn,

(µ · σ)(µ1, . . . , µn) = µ(µσ(1), . . . , µσ(1)) · σ(m1,...,mn).

(b) Given permutations σi ∈ Smi
, for 1 ≤ i ≤ n,

µ(µ1, . . . , µn) · (σ1 × · · · × σn) = µ(µ1 · σ1, . . . , µn · σn).

2.0.4. Example. Let V be a vector space. Its operad of endomorphisms,
EV is the element

EV (n) := Hom(V ⊗n, V ),

with the compositions defined as follows: consider f : V ⊗n → V and fi :
V ⊗mi → V , for 1 ≤ i ≤ n. The element γ(f, f1, . . . fn) is

γ(f, f1, . . . fn) := f ◦ (fm1 ⊗ · · · ⊗ fmn).

The action of Sn on EV (n) is induced by the left action of the symmetric
group on V ⊗n,

(f · σ)(v1 · · · vn) := f(vσ−1(1) · · · vσ−1(n)).

We have that EV (1) = End(V ) and 1 = 1V , where 1V : V → V is the
identity map.

2.0.5. Remark. The notion of operad can be developed over any symmetric
monoidal category, equipped with a symmetric monoidal operation ⊗. For
instance, a set operad is an operad in the category of sets, with the set prod-
uct × as monoidal operation. There exist several ways to define an operad,
which are equivalent to Definition 2.0.3.

An operad P is a monad in category of S-modules, equipped with another
monoidal structure, which is not symmetric. Denote by VectK the category
of vector spaces over a fiel K. Let P be a S-module, its Schur functor ,
which is also denoted by P , P : Vect → Vect is defined by

P (V ) :=
⊕

n≥0

P (n)⊗Sn V ⊗n.

If P and Q are two S-modules, then the composition P ◦Q is again a Schun
functor of some S-module, which is also denoted by P ◦Q. The description
of (P ◦Q)(n) involves sums, tensor products and induced representations of
the representations of P (i) and Q(i) for all i ≤ n. Explicitly, we have that

(P ◦Q)(n) =
n⊕

k=1

⊕

i1+···+ik=n

P (k)⊗Sk
((Q(i1)⊗· · ·⊗Q(ik))⊗Si1

⊗···⊗Sik
K[Sk]).

The category of S-modules, equipped with this composition is a monoidal
category ([25], 1.1.2). An operad P is an S-module together with two maps
η : IdVect → P and γ : P ◦ P → P , which make P into a monad.

2.0.6. Definition. Given two operads P and Q, a morphism of operads
ϕ : P → Q is a morphism of S-modules, satisfying the following conditions:
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(1) ϕ(1)(1P ) = 1Q and
(2) for all µ ∈ P (n), µi ∈ P (mi), with 1 ≤ i ≤ n, we have that

ϕ(m1 + · · · +mn)(µ(µ1, . . . , µn)) = ϕ(n)(µ)(ϕ(m1)(µ1), . . . , ϕ(mn)(µn)).

Let us now develop the idea of algebraic operad as a type of algebra.
Let P be an algebraic theory defined by operations and relations. In this
context, the vector space P (n) is spanned by the n-ary operations of the
theory. Given an operation µ ∈ P (n), the right Sn-module action is given
by

(µ · σ)(x1, . . . , xn) = µ(xσ(1), . . . , xσ(n)),

for σ ∈ Sn and variables x1, . . . , xn. The element 1 ∈ P (1) is the 1-ary
identity map. The composition γ correspond to the natural compositions of
operations. For variables x1, . . . , xm1 , . . . , xm1+···+mn , and operations µi ∈
P (mi) and µ ∈ P (n), the composition is given by

γ(µ, µ1, . . . , µn)(x1, . . . , xm1 , . . . , xm1+···+mn)

= µ(µ1(x1, . . . , xm1), . . . , µn(xm1+···+mn−1+1, . . . , xm1+···+mn)).

2.0.7. The operad As. The vector space As(n) is generated by all possi-
ble operations in n variables which we can define using a unique associa-
tive product ·. The unique operations that we can perform using · on n
different variables x1, . . . , xn are the linear combinations of the products
xσ(1) · . . . · xσ(n), for any σ ∈ Sn. So, As(n) is generated by n! operations,
one for each permutation σ ∈ Sn. Moreover, the action of Sn on As(n)
coincides with the product of the elements in Sn. So, as representation of
Sn, As(n) is K[Sn], the regular representation of Sn.

To describe the compositions in the operad As, consider permutations
σ ∈ Sn and σi ∈ Smi

, with 1 ≤ i ≤ n. The compositions of these operations
is given by (see [22]):

σ(σ1, . . . , σn) = (σ1 × · · · × σn)σ(m1,...,mn).

For instance, for σ = (3, 2, 1), σ1 = (2, 3, 1), σ2 = (1, 2) and σ3 = (2, 1),
we get that (σ1 × σ2 × σ3)σ(3,2,2) = (7, 6, 4, 5, 2, 3, 2, 1) and

σ(σ1, σ2, σ3)(x1, . . . , x7) = σ(σ1(x1, x2, x3), σ2(x4, x5), σ3(x6, x7))
= σ(x2 · x3 · x1, x4 · x5, x7 · x6)
= x7 · x6 · x4 · x5 · x2 · x3 · x1
= (σ1 × σ2 × σ3)σ(3,2,2)(x1, . . . , x7).

2.0.8. The operad Com. The commutative algebras are defined by a binary
operation ·, which is associative and commutative. Since the product is
associative, using the previous paragraph, we get that the n-ary operations
of the theory are linear combinations of expressions of type xσ(1) · · · · ·xσ(n),
for any permutation σ ∈ Sn.

As · is commutative, we get that:

x1 · . . . · xn = xσ(1) · . . . · xσ(n),
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for any permutation σ ∈ Sn.
So, the unique n-ary operation in Com(n) is the product x1 · · · · · xn,

and Com(n) = K is trivial representation of Sn. Denoting the product of n
elements by 1n := x1 · . . . · xn, the composition of the operad Com is given
by

1n(1m1 , . . . , 1mn) = 1m1+···+mn .

2.0.9. The operad Lie. The description of the operad Lie, describing Lie al-
gebras, is more complicated than the operads As and Com. In two variables,
Lie(2) is generated by a single operation [x1, x2], with [x2, x1] = −[x1, x2].
So, Lie(2) = K is the sign representation of S2.

For n ≥ 3, the space of operations Lie(n) is more complicated to de-
scribe. Given three variables, we may apply to them two types of brack-
etings, [xσ(1), [xσ(2), xσ(3)]] and [[xσ(1), xσ(2)], xσ(3)], for any σ ∈ S3. The
antisymmetry of the bracket implies that

[xσ(1), [xσ(2), xσ(3)]] = [[xσ(2), xσ(3)], xσ(1)].

So, the elements of the type [[xσ(1), xσ(2)], xσ(3)], with σ ∈ Sn, generate
Lie(n). Again, by antisymmetry, we have that the elements [[x1, x2], x3],
[[x1, x3], x2] and [[x2, x3], x1] generate Lie(3). Now, by Jacoby identity,

[[x2, x3], x1] = [[x1, x3], x2]− [[x1, x2], x3].

So, the set {[[x1, x2], x3], [[x1, x3], x2]} is a basis for Lie(3).
It is well-known (see, for instance, [21] and for an operadic proof [9]) that

the dimension of the space Lie(n) is (n−1)!. As a complex representation of
Sn, it can be shown that Lie(n) is isomorphic to the induced representation

IndSn

Cn
(ρ), where Cn is the cyclic group of order n and ρ is the representation

of Cn of dimension one given by an irreducible nth root of unity (see [21]).
Denote the element [[. . . [x1, x2], . . . , xn−1], xn] by

[x1, x2, . . . , xn] := [[. . . [x1, x2], . . . , xn−1], xn].

The proof of the following proposition is similar to the proof given in [3],
Lemma 4.1, where it is considered another basis for Lie(n).

2.0.10. Proposition. The set of elements [x1, xσ(2), . . . , xσ(n)] with σ ∈ Sn

such that σ(1) = 1, form a basis for Lie(n).

Proof. Let us denote B the set of these elements. Since the dimension of
Lie(n) is (n − 1)!, it suffices to show that B generates Lie(n). First, let us
prove that any monomial in Lie(n) can be express as linear combination of
elements of the form [X,xi], where 2 ≤ i ≤ n and X is a monomial of degree
(n− 1) in the remaining variables.

The Jacoby identity may be rewritten as:

[x, [y, z]] = [[x, y], z] − [[x, z], y].

If n ≥ 2, any monomial in Lie(n) can be write as [X,Y ], where X and Y
are monomials of degree strictly smaller than n. By antisymmetry of the
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bracket, we can suppose that that the variable x1 is in X. If Y is of degree
one our assertion is true. If Y is of degree bigger than one, we can write
[X,Y ] = [X, [Y1, Y2]]. So, by Jacoby identity, we have that

[X, [Y1, Y2]] = [[X,Y1], Y2]− [[X,Y2], Y1].

If Y1 and Y2 are of degree one, we have proved the assertion. If Y1 or
Y2 are of degree bigger than one, we can apply again the Jacoby identity.
Iterating this process, which is finite, we arrive to the expected result.

Let us now see that any monomial in Lie(n) can be write as linear com-
bination of elements of B. The proof is by induction on n. The assertion
is obvious if n = 2. Consider n > 2. By the previous result, any monomial
can be write as linear combination of elements of the form [X,xi], where
2 ≤ i ≤ n and X is a monomial of degree (n− 1) in the remaining variables.
So, Applying the inductive hypothesis on X, we have the assertion and we
can conclude that B is a basis for Lie(n). �

2.1. Algebras over an operad.

2.1.1. Definition. Let P be an algebraic operad. A P -algebra is a vector
space A equipped with a morphism of operads ρ : P → EA, where EA is the
operad of endomorphisms of A, defined in 2.0.4.

Note that A is a P algebra if, and only if, there exists a collection of linear
maps

ρn : P (n)⊗A⊗n → A,

which is compatible with the compositions γP , and such that, for any per-
mutation σ ∈ Sn and any operation µ ∈ P (n),

ρn((σ · µ)⊗ (a1 · · · an)) = ρn(µ⊗ (aσ(1) · · · aσ(n))).

It is easy to verify that an As-algebra is nothing but an associative algebra
in the usual sense.

2.1.2. Free P -algebra. A P -algebra F (V ), equipped with a linear map ι :
V → F (V ) is said to be free over the vector space V if it satisfies the
following universal condition:
for any P -algebra A and any linear map f : V → A ,there exists a unique

P -algebra morphism f̃ : F (V ) → A, which extends f :

V A

F (V )
❄

ι

✲f

�
�
�✒

f̃

Note that a free algebra is unique up to a unique isomorphism. For
example, the free associative algebra is the tensor algebra T (V ), while the
free commutative algebra is the symmetric algebra S(V ).
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2.1.3. Remark. Let V be a vector space and let P be an algebraic operad.
The graded vector space P (V ) is defined by

P (V ) :=
⊕

n≥1

P (n)⊗K[Sn] V
⊗n,

where the left action of Sn on V ⊗n is given by σ·(v1 · · · vn) = vσ−1(1) · · · vσ−1(n).

The compositions in P induce linear maps P (n)⊗P (V )⊗n → P (V ), which
make of P (V ) a free P -algebra over the vector space V .

2.2. Non-symmetric operads.

2.2.1. Definition. A non-symmetric operad is a graded vector space P
equipped with a family of linear maps

γ : Pn ⊗ Pm1 ⊗ · · · ⊗ Pmn → Pm1+···+mn ,

for each positive integer n and each ordered collection of positive integer
m1, . . . ,mn, which satisfy the conditions (1) and (2) in the Definition 2.0.3.

Sometimes, we will refer to an operad P as a symmetric operad to clearly
distinguish it from a non-symmetric operad.

2.2.2. Remark. Given a non-symmetric operad P , we can associate a sym-
metric operad, which we also denote by P , as follows:

(1) The vector space P (n) = Pn ⊗K[Sn].
(2) The action of Sn on P (n) is given by the action of Sn on the regular

representation K[Sn].
(3) The composition map in the symmetric operad P is given by the

tensor product of the composition map γ in the non-symmetric op-
erad P with the composition map of the symmetric operad As given
by

σ(σ1, . . . , σn) = (σ1 × · · · × σn)σ(m1,...,mn).

Considered as symmetric operad, P is sometimes called a regular operad.
In particular, if P is a types of algebraic structures in whose relations the
variables stay in the same order, then P is a regular operad.

2.2.3. Example. The classical example of a regular operad is As. Using
the same notation for non-symmetric operad associated, we have that Asn
is generated by only one operation,

µ(x1, . . . , xn) = x1 · . . . · xn.

The composition map

γ : Asn ⊗Asm1 ⊗ · · · ⊗Asmn → Asm1+···+mn

is given by µn(µ1, . . . , µn) := µm1+···+mn .
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2.2.4. Remark. By Remark 2.2.2, if P is a regular operad, then the free
P -algebra on a vector space is given by

P (V ) =
⊕

n≥1

P (n)⊗K[Sn] V
⊗n

=
⊕

n≥1

(Pn ⊗K[Sn])⊗K[Sn] V
⊗n

=
⊕

n≥1

Pn ⊗ V ⊗n

2.2.5. Proposition. A non-symmetric operad P is completely determined
by the free P -algebra on one generator.

Proof. We have that in a non-symmetric operad P the free algebra on one
generator is given by

P (K) :=
⊕

n≥1

Pn ⊗K
⊗n =

⊕

n≥1

Pn.

So, each Pn correspond to the n-multilinear part of graded vector space
P (K). Since P (K) is a P -algebra, for each positive integer n, we have linear
maps

ρn : Pn ⊗ P (K)⊗n → P (K).

So, we can define composition maps

γ : Pn ⊗ Pm1 ⊗ · · · ⊗ Pmn → Pm1+···+mn

by γ(µ⊗ µ1 ⊗ · · · ⊗ µn) := ρn(µ ⊗ µ1 ⊗ · · · ⊗ µn). �

2.3. Binary quadratic operads. There exists a close relationship between
the description of algebraic operads and spaces spanned by colored trees.
More precisely, the free operad on an S-module E may be described on the
vector space spanned by non-planar trees with the internal vertices colored
by the elements of E. As any operad is a quotient of a free operad, it may
be described in terms of a quotient of a vector space spanned by a collection
of trees. In particular, when the operad is generated by binary operations
and these operations are subject uniquely to quadratic relations (that is,
relations which involve three arguments), such an operad is called a binary
quadratic operad. In particular, the operads As, Com and Lie are examples
of binary quadratic operads.

2.3.1. The free operad. The forgetful functor from operads to S-modules
admit a left adjoint functor, which gives place to a free operad over an S-
module. If E is an S-module, the free operad over E is denoted by F(E)
and it is characterized by the following universal property: any S-module
morphism f : E → P , where P is an operad, extends uniquely into an op-

erad morphism f̃ : F(E) → P .

Let us describe free operad over a S-moduleE. For this, we use non-planar
rooted trees.
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If t is a non-planar rooted tree, we will refer to it simply as a tree. Given
a tree t and a vertex v ∈ t, we denote by In(v) the set of input edges at
v. Given a positive integer n, if I is a set such that |I| = n, a I-tree is a
tree t with n leaves, which are decorated by the elements of the set I. In
particular, if I = [n] = {1, . . . , n}, we say that t is a n-tree. Consider a
I-tree t such that I is a set of positive integers, with |I| = n. There is a
natural bijection between σI : I → [n] which preserves the order(from lowest
to highest) in the set I.

We say that is normalized if the leaves of t are redecorated by the elements
of [n] according to bijection σI , which makes of t a n-tree. A tree t is binary
if each vertex of t has exactly two inputs. It is known that the number of
n-binary trees is given by

(2n − 3)!! = 1 · 3 · 5 · · · (2n − 3).

We have a natural composition between labelled trees as follows. Given
a n-tree t and t1, . . . , tn, mi-trees, with 1 ≤ i ≤ n, the tree t(t1, . . . , tn) is
the (m1 + · · ·+mn)-tree that is obtained by grafting the roots of the trees
t1, . . . , tn in the n leaves of t, with the natural re-enumeration of the leaves
of the trees t1, . . . , tn.

Consider now an S-module E = {E(n)|n ≥ 1}, which will represent the
set of operations in certain algebraic theory. We assume that E(1) = 0 and
for each n > 1, E(n) is generated by a finite number of n-ary operations.
Given a tree t, we define

E(t) :=
⊗

v∈t

E(In(v)),

where v ∈ t is a vertex of t. For any positive integer n we define

F(E)(n) :=
⊗

n−tree t

E(t).

In this way, F(E)(n) is the space of all the n-ary operations that we can
construct from the operations that generate E. The composition in F(E) is
induced by the composition between trees.
In low dimension, we have

F(E)(1) = E(1) = 0,
F(E)(2) = E(2),
F(E)(3) = E(3)⊕ (3E(2) ⊗ E(2)),

where the copies of E(2)⊗E(2) is determined by the 3-binary trees, which
allow us to see the action S3 on 3E(2)⊗E(2) from the action of S2 on E(2):

3E(2) ⊗ E(2) = IndS3
S2
(E(2) ⊗E(2)) = (E(2) ⊗ E(2)) ⊗S2 K[S3],

where the action of S2 on E(2) ⊗ E(2) is on the second factor only.
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From the description that we have given, we can think F(E)(n) as the
space generated by all n-trees, whose vertices are labelled by the operations
that generate E, where an vertex with k inputs is labelled by an element
of E(k). In particular, if E is generated only by binary operations, that is,
E(n) = 0, if n 6= 2, we have that F(E)(n) consists of n-binary trees whose
vertices are labelled by the binary operations that generate E.

2.3.2. Definition. Let P be an operad. An ideal of P is an S-submodule I of
P such that for any family of operations {µ, µ1, . . . , µn}, if one of them is in
I, then µ(µ1, . . . , µn) is also in I. Given a collection of sets R = {R(n)}n≥1

such that R(n) ⊆ P (n), the ideal of generated by R is the smallest ideal of
P which has R as a subset. The ideal generated by R is denoted by (R).

If I is an ideal P , then the quotient operad is defined by:

(P/I)(n) =
P (n)

I(n)
,

with the composition maps induced by the composition maps defined in the
operad P .

2.3.3. Definition. An operad P = F(E)/(R) is a binary quadratic operad
if E is generated by binary operations and R ⊆ F(E)(3). In such case, we
write P = P (E,R).

A binary quadratic operad is an operad which codifies an algebraic theory
whose generating operations are binary, under quadratic relations. Exam-
ples of this type of operads are As, Com and Lie.

2.3.4. Example. If P = As, we have that E is generated by two operations
x1 · x2 and x2 · x1. So, E = K[S2], the regular representation. In this case,

F(E)(3) = IndS3
S2
(E ⊗ E)

= (K[S2]⊗K[S2])⊗S2 K[S3]
= K[S2]⊗K[S3]
= K[S3]⊕K[S3].

So, the dimension of F(E)(3) is 12. We can think the generators of first
summand as the operations of the type xσ(1) ·(xσ(2) ·xσ(3)) and the generators
of the second summand as the operations of the type (xσ(1) · xσ(2)) · xσ(3),
where σ ∈ S3. The space of relations R is generated by 6 elements, the set

{xσ(1) · (xσ(2) · xσ(3))− (xσ(1) · xσ(2)) · xσ(3)| σ ∈ S3}.

2.3.5. Remark. Let P = P (E,R) be a binary quadratic operad. Since the
S-module E is generated by binary operations, we have that the free operad
F(E) consists of linear combinations of rooted trees whose internal vertices
has exactly two inputs, which are labelled by these binary operations. More
specifically, if BE = {◦1, . . . , ◦s} is a basis for E(2), we have that the space
F(E)(3) is generated by the set of trees:
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{
1 2

◦i

3

◦j

,

2 3

◦i

1

◦j

,

3 1

◦i

2

◦j

}

1≤i,j≤s

So, since that 1 ≤ i, j ≤ s, the dimension of F(E)(3) is equal to 3 · s2.
We can also represent this basis by means of operations in three variables,
we have that

B = {(x1 ◦i x2) ◦j x3, (x2 ◦i x3) ◦j x1, (x3 ◦i x1) ◦j x2}1≤i,j≤s.

In the binary quadratic operad P = P (E,R), the set of relations R con-
sists of t linearly independent relations, which are linear combinations of
elements in the basis BE , where t ≤ 3 · s2.

2.3.6. Example. Consider the Lie operad P = Lie. It is generated by a
single binary operation: the Lie bracket [x1, x2]. By antisymmetry of the
bracket [−,−], we have that [x1, x2] · (2, 1) = −[x1, x2]. So, E(2) is the sign
representation of S2. The space F(E)(3) is generated by three elements
[[x1, x2], x3], [[x2, x3], x1] and [[x3, x1], x2]. Applying the Jacoby identity,
the space of relations is generated by a single element in F(E)(3). So,

R = {[[x1, x2], x3] + [[x2, x3], x1] + [[x3, x1], x2]}.

2.4. Coalgebras over a operad. Given an operad P , a P algebra is a
vector space with some n-ary operations, for n ≥ 1. A P -coalgebra is a
vector space C, equipped with an operation δµ : C −→ C⊗n, for any n-ary
operation µ ∈ P , which satisfies the relations obtained by reversing all the
arrows in the relations defining a P algebra. To simplify the exposition,
we shall only consider binary quadratic operads. For more details about
coalgebras over an operad and its relationship with the concept of cooperad
we refer to [22].

Given a binary quadratic operad P with P (1) = 0, which is generated by
binary operations µ1, . . . , µn and relations of the form

∑

i,j

αijµi(µj ⊗ id) =
∑

i,j

βijµi(id⊗ µj), αij , βij ∈ K,

a coalgebra C over P is defined by cooperations δµi
: C → C ⊗ C satisfying

the relations:
∑

i,j

αij(δµj
⊗ id)δµi

=
∑

i,j

βij(id ⊗ δµj
)δµi

, αij , βij ∈ K

(see [25], 1.3.6). Thus, for instance, when P = As, the notion of coalgebra
over As coincides with the notion of coassociative coalgebra given in 1.2.1.



39

2.4.1. Primitive part, conilpotency. Let P be an binary quadratic operad
and consider C a P -coalgebra. We define a filtration on C as follows:

F1C = PrimC = {x ∈ C|δµ(x) = 0 for any operation µ ∈ P}.

The elements of PrimC are called primitive elements of C and the sub-
space PrimC is called the subspace of primitive elements of C. We define a
filtration by

FrC := {x ∈ C|δµ(x) = 0 for any µ ∈ P (n), with n > r}.

We say that the coalgebra C is conilpotent or connected, if C =
⋃

r≥1 FrC.

2.4.2. Cofree coalgebra. We define a cofree coalgebra over a operad P . We
say that a P -coalgebra C0 is cofree over the vector space V if it is conilpotent
and it is equipped with a map s : C0 → V such that C0 satisfies the following
universal property: any linear map ϕ : C → V , where C is a conilpotent
P -coalgebra, extends uniquely to a P -coalgebra homomorphism ϕ̃ : C → C0:

C

C0 V
❄

ϕ̃
❅
❅

❅❅❘

ϕ

✲s

The cofree coalgebra over V is well-defined up to isomorphisms. For in-
stance, when P = As, the cofree coalgebra over V is given by T (V ) equipped
with the deconcatenation coproduct (see 1.2.10).

2.5. Koszul duality for operads. The Koszul duality for algebras was
introduced by S. B. Priddy in [34]. This notion was generalized to binary
quadratic operads by V. Ginzburg and M. Kapranov in [13]. Later, the
Koszul dualitity was extended to quadratic operads (not necessarily binary)
by E. Getzler in [12], other versions of Koszul duality are due to B. Vallette
(see [38]) and R. Berger, M. Dubois-Violette and M. Wambst (see [2] and
[1]). In our work, we will only consider Koszul duality for binary quadratic
operads. Let us recall some definitions needed to introduce the notion of a
Koszul operad.

2.5.1. Definition. Let V be a right Sn-module. We denote by V ∨ the right
Sn-module V ∗ ⊗ sgnn, where sgnn is the sign representation of Sn.

Let us describe the right Sn-module V ∨. By definition, V ∗ = HomK(V,K)
and the right action of a permutation σ ∈ Sn on an element f ∈ V ∗ is given
fσ(x) = f(x · σ−1). So, the action of Sn on V ∨ is given by

fσ(x) = sgn(σ)f(x · σ−1).

Moreover, if V is finite dimensional and BV = {e1, . . . , es} is a basis for
V , then there is a natural isomorphism of vector spaces V ∼= V ∨ . The image
of ei under this isomorphism is denoted by e∨i , for all 1 ≤ i ≤ s.
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2.5.2. Definition. Let E be a S-module such that E(n) is finite dimensional
for all n. Its Czech dual is the S-module E∨ given by E∨(n).

Consider now P = P (E,R) a binary quadratic operad and let BE =
{◦1, . . . , ◦s} be a basis for E(2). Considering the basis B of F(E)(3) as in
Remark 2.3.5, we have a natural pairing 〈, 〉 : F(E∨)(3) ⊗ F(E)(3) → K,
given by

〈(xa ◦i xb) ◦j xc, (xd ◦
∨
k xe) ◦∨

l xf 〉 := δ(a,b,c),(d,e,f)δi,kδj,l.

We denote by R⊥ the relations orthogonal to R with respect to this pair-
ing.

2.5.3. Definition. Let P = P (E,R) be a binary quadratic operad, with
E(2) finite dimensional. We define its Koszul dual operad by P ∨ = F(E∨)/(R⊥).

2.5.4. Example. It is well-known that Lie! = Com and Com! = Lie. Let us
compute the Koszul dual of the operad Lie. In the presentation of the operad
Lie, we have that E is generated by [x1, x2], with [x1, x2] · (2, 1) = −[x1, x2],
and

R = {[[x1, x2], x3] + [[x2, x3], x1] + [[x3, x1], x2]}.

Let us denote by ◦ the dual of [, ]. So, E∨(2) is generated by ◦. Since
[x1, x2] · (2, 1) = −[x1, x2], we have that (x1 ◦ x2) · (2, 1) = x1 ◦ x2. So, the
product ◦ is commutative and E∨(2) is the trivial representation. Using the
formula of Remark 2.3.5, a direct compute shows that

R⊥ = {(x1 ◦ x2) ◦ x3 − (x2 ◦ x3) ◦ x1, (x1 ◦ x2) ◦ x3 − (x3 ◦ x1) ◦ x2}.

So, the product is associative, which implies that Lie! = Com.

2.5.5. Koszul dual: Non-symmetric case. Let us now consider the case of
a binary quadratic operad P = P (E,R) which is additionally regular. So,
the operad P is generated by binary operations which do not satisfy any
symmetry property. Since P is a regular operad, we have that E = E′ ⊗
K[S2], for some vector space E′. So, the space of operations in three variables
is

F(E)(3) = IndS3
S2
(E ⊗ E)

= (E ⊗ E)⊗S2 K[S3]
= [(E′ ⊗K[S2])⊗ (E′ ⊗K[S2])]⊗S2 K[S3]
= [(E′ ⊗K[S2])⊗ E′]⊗K[S3]
= (E′⊗2 ⊕ E′⊗2)⊗K[S3].

We can represent the generators of the first summand as operations of the
type x1 · (x2 ◦ x3) and the generators of the second summand as operations
of the type (x1 ·x2)◦x3, where (·, ◦) is any pair of generators elements of E′.
Let us denote by VP the vector space generates by the operations described
above. So, we have that

F(E)(3) = VP ⊗K[S3].

The following proposition is proved in [24], Appendix B, Proposition 3.
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2.5.6. Proposition. Let P = P (E,R) be a binary quadratic operad is ad-
ditionally regular with E = E′ ⊗ K[S2]. The Koszul dual operad of P is a
regular operad and

P ! = P (E,R⊥),

where R⊥ is the annihilator of R for the scalar product on VP given by

〈x1 · (x2 ◦ x3), x1 · (x2 ◦ x3)〉 = 1,
〈(x1 · x2) ◦ x3, (x1 · x2) ◦ x3〉 = −1,

and 0 in other case, where (·, ◦) is any pair of generator elements of E′.

2.5.7. Example. Consider the regular operad P = As. In this case, E′ is
generated by a single element ·. So, the vector space VP is generated by two
elements, x1 · (x2 ·x3) and (x1 ·x2) ·x3. In this case, the subspace of relations
is generated by

R = {x1 · (x2 · x3)− (x1 · x2) · x3}.

So, the annihilator of R with respect to scalar product described in Propo-
sition 2.5.6 is generated by a single element. Since

〈x1 · (x2 · x3)− (x1 · x2) · x3, x1 · (x2 · x3)− (x1 · x2) · x3〉 = 0,

we have that R is its own annihilator. So, As! = As.

2.5.8. Homology and Koszul duality. Let P = P (E,R) be a binary quadratic
operad and let P ! be its dual operad. V. Ginzburg and M. Kapranov have
showed in [13], that to any P -algebra A there is an associated chain-complex
CP
∗ given by

· · · → P !(n)∨ ⊗Sn A⊗n → P !(n− 1)∨ ⊗Sn−1 A
⊗(n−1) → · · · → P !(1)∨ ⊗A,

whose differential d agrees, in low dimension, with the P -algebra structure
of A,

γA(2) : P (2) ⊗A⊗2 → A.

The differential d is characterized by the condition above and the fact that,
on the cofree coalgebra P !∗(sA), d is a graded coderivation([24], appendix
B.4). The associated homology groups are denoted HP

n (A), for n ≥ 1. We
say that an operad P is Koszul when, for any vector space V , the groups
HP

n (P (V )) are trivial for n > 1. This definition is equivalent to the first
one given by V. Ginzburg and M. Kapranov in [13], the equivalence of both
definitions was stated by them in the same work. It is well-known that the
operads As, P = Com and Lie are Koszul operads (see [13]). Let us give a
brief description of the chain-complexes associated to these operads.

Let us first consider the case P = As, the operad associated to the asso-
ciative algebras. Since As! = As, we have that

CAs
n (A) = As!(n)∨ ⊗Sn A⊗n = K[Sn]⊗Sn A⊗n = A⊗n,

for any associative algebra A.
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So, the complex given the homology of A, with coefficients in the field K,
is of the form

· · · → A⊗n → A⊗(n−1) → · · · → A,

where the elements of A have degree 1. In order to simplify notation, we
denote by (a1, . . . , an) the n-tensor a1 ⊗ · · · ⊗ an in A⊗n.

As the differential d2 coincides with the product on A, we have that
d2(a, b) = a · b. In the case CAs

∗ (A), the coalgebra structure is given by
deconcatenation coproduct,

∆(a1, . . . , an) =
i=1∑

n−1

(a1, . . . , ai)⊗ (ai+1, . . . , an).

Since d is a graded coderivation with respect to ∆, we obtain that

dn(a1, . . . , an) =

n−1∑

i=1

(−1)i+1(a1, . . . , ai · ai+1, . . . , an).

When P = Com, we have that for a commutative associative algebra
A, the chain-complex CCom

∗ (A) is given by the Harrison complex ( see [22],
13.1.10).

For the case P = Lie, we have that Lie!(n)∨ = Com(n) ⊗ sgnn. Since
Com(n) is the trivial representation of Sn, we obtain that Com(n)⊗ sgnn is
the sign representation. So, for a Lie algebra g, we have that

CLie

n (g) = sgnn ⊗Sn g
⊗n = Λn(g),

the nth exterior power of the space g. The differential d is given by

d(x1 ∧ · · · ∧ xn) =
∑

i<j

(−1)i+j−1[xi, xj ] ∧ x1 ∧ · · · ∧ x̂i ∧ · · · ∧ x̂j ∧ · · · ∧ xn.

Note that the antisymmetry property of the bracket [, ] implies that the
differential d is well defined and the Jacobi identity implies that d2 = 0.

2.6. PBW basis for operads. In [18], E. Hoffbeck introduced the notion
of Poincaré-Birkhoff-Witt (for short, we write PBW) basis for operads and
he showed that, if an operad P admits a PBW basis, then P is a Koszul
operad ([18], Theorem 3.10), generalizing the criterion given by S. Priddy
for algebras in [34]. To simplify the exposition, we only will consider binary
quadratic operads.

To describe the method developed by E. Hoffbeck, we need to introduce
some conventions and definitions. Recall that a n-binary tree t is a binary
non-planar rooted tree with n leaves which are labelled by the set [n]. We
identify each leaf of t with the element in [n] that labelled it. Given a n-
binary tree t, we denote by V (t) the set of vertices of t and by E(t) the set
of edges of t. An edge e ∈ E(t) is oriented from a S(e) ∈ V (t) ∪ [n] to a
F (e) ∈ V (t) ∪ {0}, where 0 denote the root of t. Sometimes, to specify the
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tree t to which we refer, if e ∈ E(t) we will write St(e) and Ft(e). If v ∈ V (t)
, we denote set of the inputs of v by

Iv = {S(e), e ∈ E(t) such that F (e) = v}.

We fix a planar representation of t as follows. We say that a leaf i is
linked to a vertex v ∈ V (t) if there is a monotonic path of edges between i
and v. We assume also that a leaf i is linked to itself. Thus, if a ∈ Iv, we
denote by m(a) ∈ [n] the minimum of the leaves that are linked to a.

For instance, if t is the tree given by

t =

1 23

v1

v2

then Iv1 = {v2, 2}, m(v2) = 1 and m(2) = 2.

Given a binary tree t and a vertex v ∈ t, the application m induces an
order on Iv. In this way, the planar representation of t is obtained to order
the inputs of each vertex v ∈ t in an increasing order from left to right.

2.6.1. Example. The planar representation of the 3-binary trees is given by
the set {1 32

,

1 23

,

1 2 3}

In what follows, when we speak of a tree t, we will be considering the
planar representation of t described above.

A subtree t′ of a n-tree t is a tree such that V (t′) ⊆ V (t) and E(t′) ⊆ E(t)
satisfying the following conditions.

(1) For all v ∈ V (t′) and for all e ∈ E(t), we have that if S(e) = v or
F (e), then e ∈ E(t′).

(2) For all e ∈ E(t′) if e is an internal edge, then St′(e) = St(e) and
Ft′(e) = Ft(e). Moreover, if St′(e) is a leaf in the tree t′ then it
is labelled by m(St(e)). This makes of t′ a I-tree, where I is some
subset of [n], with |I| = m ≤ n. We consider the tree t′ normalized,
which t′ is a m-tree.

The subtree t′ of a tree t generated by an internal edge e ∈ E(t) is the
tree te such that V (te) = {S(e), F (e)} and the only internal edge of te is e.
The leaves are labelled as specified above.

2.6.2. Example. Consider the tree t given by

t =

1 43

v2

2

v1

v3

e

e′
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The subtree generated by the edge e is

te =

1 3

v2

2

v1
e

and the subtree generated by the edge e′ is

te′ =

1 32

v2

v3e′ .

Given a binary quadratic operad P = P (E,R), we denote by B
F(E)
n the

basis for F(E)(n) given by the n-binary trees whose vertices are labelled by
the binary operations that generate E, which are considered with the planar
representation described above. We refer to these trees as labelled trees. A
basis for the free operad F(E) is given by

BF(E) =
⋃

n≥1

BF(E)
n .

Given a n-binary tree t, we denote by B
F(E)
t the set of all the elements

of BF(E) whose underlying tree is t.

The description of a PBW basis requires the partial compositions on the
free operad F(E). Given positive integers m and n, we define

◦i : F(E)(m) ⊗F(E)(m) → F(E)(m + n− 1),

for 1 ≤ i ≤ m, as follows: for any pair of labelled trees α ∈ F(E)(m) and
β ∈ F(E)(n), the composition α◦iβ is the labelled tree obtained by grafting
the root of β to the ith. leaf of α.

2.6.3. Definition. Given two labelled trees α and β with m and n leaves,
respectively, a permutation w ∈ Sm+n−1 is a pointed shuffle of the composi-
tion α ◦i β if the order the entries of α and β coincides with the order in the
composition (α ◦i β) · w, and the minimal leaf of β in the composition is i.

Note that this definition implies that the leaves labelled from 1 to i − 1
are not modified. For example,

(
1 2

µ

◦1
1 2

µ

)
· (1, 3, 2) =

1 23

µ

µ

For the construction of a PBW basis, we need to fix an order on the basis
of F(E)(n), for each n ∈ N, which must satisfy the following compatibility
condition:

For two pairs (α, β) and (α′, β′) of labelled trees, with m leaves the first
pair and n leaves the second one, we have that if α ≤ β and α′ ≤ β′, then
for all i, (α ◦i α

′) · w ≤ (β ◦i β
′) · w, for all pointed shuffle w.

In such case, we say that ≤ is a suitable order for F(E).
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2.6.4. Example. A example of a suitable order is the so-called lexicographi-
cal order, considered in [18], Example 3.4. Let us describe this order. We can

associate to each element of the basis BF(E) a sequence of words. Given a la-
belled trees α with n leaves, we associate a sequence of n words (a1, . . . , an)
to α as follows. For any 1 ≤ i ≤ n, there exists a unique monotonic path of
vertices from the root to i-th. leaf. The word ai is composed of the labels
of the vertices, which are the generating operations of E, read from bottom
to top.

For an ordered basis of E, let a and b be two words on the elements of
the basis. We compare the length of the words, that is a < b, whenever
l(a) < l(b). If the lengths of the words are equal, then we compare them
lexicographically.

Given two labelled trees α and β with n leaves such that α 6= β, we can
compare them as follows. We have associated to α and β two sequences of
n words (a1, . . . , an) and (b1, . . . , bn), respectively. So, we compare first a1
and b1 lexicographically. For instance, if a1 < b1, then α < β. If a1 = b1,
we compare a2 and b2, etc. This define a strict relation of order.

In [18], Proposition 3.5, it is proved that it is a suitable order for F(E).

Analogously, we can define the reverse-length order. If a and b are two
words, we first compare the length of them and a > b if l(a) < l(b). If
l(a) = l(b), then we compare them lexicographically. So, to define the order
on F(n), we proceed in a similar way to the previous case.

2.6.5. Poincaré-Birkhoff-Witt basis. We can introduce now the definition of
PBW basis.

Let P = F(E)/(R) be a binary quadratic operad. Consider a set BP ⊂
BF(E) of elements representing a basis of the underlying vector space of P .
Given a tree t ∈ F , we denote by BP

t the set of all the elements of BP

whose underlying tree is t. We say that BP is a PBW basis for P if 1 ∈ BP ,
BE ⊂ BP and for each t ∈ F we have that:

(1) For α ∈ BP
t , β ∈ BP

t′ and any pointed shuffle w, either (α ◦i β) ·w is

in BP
(t◦it′)·w

, or the elements of the basis δ ∈ BP , which appear in the

unique decomposition (α◦iβ)·w ≡
∑

δ cδδ, satisfy that δ > (α◦iβ)·w
in F(E).

(2) A element α is in BP
t if, and only if, for every internal edge e of t,

the labelled tree α|te belongs to BP
te
.

2.6.6. Remark. As a consequence of condition (2), we only need to specify
the quadratic part of the basis to determine the basis completely. As E.
Hoffbeck has described in [18], there are two main methods to find PBW
basis:
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• We can star with a basis and find an order on E such that it is a
PBW basis, that is, to verify that it satisfies the condition (1) and
(2).

• We can start with an ordered basis of E. The quadratic part is
chosen in such a way that it satisfies the conditions (1) and (2). The
quadratic elements determine the choice of elements of the basis in
higher degree. Finally, we must check that effectively this set is a
basis for P .

E. Hoffbeck also proved in [18], Theorem 5.1, that if P has a PBW basis,
then its Koszul dual P ! also has a PBW basis, whose quadratic elements are
determined by the quadratic elements of P . Let us describe how the basis
of P ! is obtained from the PBW basis of P .

We have that in F(E)(3) its basis BF(E)(3) can be described as the disjoint
union:

BF(E)(3) = {α |α 6∈ BP } ∪ {α |α ∈ BP}.

The elements of first set, labelled now with the respective dual elements,
form a basis of the subspace of quadratic elements of the PBW basis of P !.

In higher degrees, the labelled trees are constructed using the previous
choice and applying condition (2). The set obtained in that way is a PBW
basis of P !, with respect to the opposite order originally defined. In Section
7 we use this result to find a PBW basis for the operad Com2, generated by
two associative and commutative compatible products.

2.6.7. Example. Consider the operad Lie, generated by a single binary
operation [−,−]. Using a lexicographical order, we get that a PBW basis
for the subspace of quadratic elements is given by the set of trees of the
form: 




1 2

[, ]

3

[, ]

,

1 3

[, ]

2

[, ]





By the PBW conditions, in higher degrees the PBW basis consists of trees
of the form

t =
[, ]

[, ]

[, ]

σ(2) σ(3) σ(n)1

,

where σ is any permutation of the set {2, . . . , n}. This PBW basis for Lie(n)
is just the basis described in 2.0.10.
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3. Compatible associative algebras

3.0.1. Definition. A compatible associative algebra is a vector space A to-
gether with two associative products · : A ⊗ A → A and ◦ : A ⊗ A → A,
satisfying that their sum ∗ := ·+ ◦ is an associative product, too.

Note that the if the product ∗ = · + ◦ is associative, then all linear
combinations λ · + µ ◦ are associative products, for any coefficients λ and
µ in K.

3.0.2. Remark. The condition ·+ ◦ is an associative product, is equivalent
to:

x ◦ (y · z) + x · (y ◦ z) = (x ◦ y) · z + (x · y) ◦ z,

for all elements x, y, z ∈ A.

3.1. Examples of associative compatible algebras.

3.1.1. Matrix case. Let (A, ·) be an associative algebra. An associative prod-
uct ◦ : A ⊗ A → A, compatible with the original product, is obtained by
setting x ◦ y = x · a · y, for some fixed element a ∈ A.

An interesting problem is to find all the possible associative products ◦
on A compatible with the original product ·.
When A = Matn is the vector space of square matrices with coefficients in
the field K , in [30], the authors describe all the associative products ◦ on
A compatible with usual matrix product. In this case, there exists a linear
map R : A → A, such that any associative product ◦ has the form

x ◦ y = R(x) · y + x ·R(y)−R(x · y).

Note that in our first example, the map R : A → A is given by R(x) :=
a · x, for any a ∈ A.

3.1.2. Example. Consider A = Matn with usual matrix product, and let a
and b be two elements of A. Define R : A → A as R(x) := a(xb− bx). The
new product ◦ is given by

x ◦ y = (ax− xa)(by − yb),

which is associative whenever a2 = b2 = 1 and ab = −ba.

In general, if (A, ·) is a unital associative algebra and a and b are elements
of A satisfying the conditions of the previous paragraph, then (A, ·, ◦) is a
compatible associative algebra.

3.1.3. Remark. Note that if (A, ·) is an associative algebra and R : A → A
is a linear map, then the product ◦ defined as above is not necessarily an
associative product. However, the products · and ◦ verify the compatibility
condition

x ◦ (y · z) + x · (y ◦ z) = (x ◦ y) · z + (x · y) ◦ z.
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So, if ◦ is associative, then (A, ·, ◦) is an associative compatible algebra.

3.1.4. Nijenhuis algebras. In [5], J.F. Carinena, J. Grabowski and G. Marmo
introduced the notion of Nijenhuis tensor for an associative algebra. Given
an associative algebra (A, ·) and a linear map R : A → A , the map R is a
Nijenhuis tensor if it satisfies the following condition:

R(R(x) · y + x ·R(y)−R(x · y)) = R(x) ·R(y), for all x and y in A .

Thus, an associative Nijenhuis algebra is an associative algebra (A, ·) to-
gether with a Nijenhuis tensor R : A → A. Defining x ◦ y = R(x) · y + x ·
R(y) − R(x · y), we get that R(x ◦ y) = R(x) · R(y). In this case, ◦ is an
associative product.

So, any associative Nijenhuis algebra defines a compatible associative al-
gebra. For more details about Nijenhuis tensor, we refer to [5].

3.1.5. Modified Quasi-Shuffle Algebra. In [10], for the construction of the
free commutative unital associative Nijenhuis algebra over a commutative
unital associative algebra, K. Ebrahimi-Fard introduced the modified quasi-
shuffle product.

Let (A, ·) a unital associative algebra with unit e and consider the tensor
algebra T (A) =

⊕
n≥0A

⊗n

over the vector space A.

The quasi-shuffle product [19] on T (A) is defined inductively by

(aU) ∗ (bV ) = a(U ∗ bV ) + b(aU ∗ V )− (a · b)(U ∗ V ),

with U ∗ 1 = 1 ∗ U = U , U ∈ T (A). This product is associative and it is
commutative if (A, ·) is a commutative algebra (see [19]).
The modified quasi-shuffle product [10] on T (A) is defined inductively using
the algebra unit e ∈ A by :

(aU)⊛ (bV ) = a(U ⊛ bV ) + b(aU ⊛ V )− e(a · b)(U ⊛ V ),

with U ⊛ 1 = 1⊛ U = U , U ∈ T (A). Again, this product is associative and
it is commutative whenever (A, ·) is a commutative algebra.

The operator B+
e : T (A) → T (A) defined by B+

e (a1 · · · an) = ea1 · · · an, is
a Nijenhuis tensor with respect to the product ⊛, and therefore T (A) is an
associative compatible algebra, whose products are both commutative when
A is a commutative algebra (see [10]).

3.1.6. Remark. The free commutative unital associative Nijenhuis algebra
over a commutative unital associative K-algebra A (see [10]) is the data
(T (A),⊠, B+

e ), where the product ⊠ is defined by:

aU ⊠ bV = (a · b)(U ⊛ V ).

The product ⊠ is associative and commutative, and e⊠U = U ⊠ e = U , for
all U ∈ T (A).
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3.2. The free associative compatible algebra. Free objects in the cat-
egory of associative compatible algebras were studied by V. Dotsenko in [8],
where he determined the structures of Sn-module and Sn × SL2-module of
As2(n). In particular, he showed that the dimension of As2(n) is cn · n!,
where cn is the nth. Catalan number. He constructed associative products
on vector spaces spanned by trees using R. Grossman and R.G. Larson’s
constructions (see [17]), but the associative products are compatible only in
certain cases and quite difficult to deal with.

We give a different construction of the free associative compatible al-
gebra, applying Dotsenko’s results on its dimensions, by means of planar
rooted trees.

Let V be a vector space with basis X = {ai}i∈I . Denote by TX
n the set of

planar rooted trees with (n + 1) vertices, whose vertices different from the
root are colored by the elements of X. For instance:

TX
1 = {

b

a

: a ∈ X}

TX
2 = {

b

a b ,
b

a

b

: a, b ∈ X}

TX
3 = {

bc

b ca , a c

b

bc

, b c

bc

a

, c

b

bc

a

,

a

c

bc

b

: a, b, c ∈ X}.

Consider the vector space As2(V ) = K[
⋃

n≥1 T
X
n ] =

⊕
n≥1K[TX

n ], whose

basis is the set
⋃

n≥1 T
X
n of all planar rooted colored trees.

3.2.1. Remark. For any tree t in TX
n , we say that t has degree n and we

write |t| = n. We consider the tree t oriented from bottom to top.
Given a vertex v ∈ t, we say that a vertex v′ ∈ t is a child of v if v′ is

directly connected to the vertex v.

3.2.2. Notation. Given a tree t, the set of vertices of t is denoted by Vert(t)
and the root of t by root(t). The subset Vert(t) \ {root(t)} of Vert(t) is
denoted by Vert∗(t).

We define two associative products in As2(V ).

3.2.3. Definition. Let t, w be trees in As2(V ). Define t · w as the tree
obtained by identifying the roots of t and w. Extending this binary operation
by linearity, we get an associative product

· : As2(V )⊗As2(V ) → As2(V ).
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3.2.4. Remark. Note that any tree t in As2(V ) may be written in a unique
way as t = t1 · . . . · tr, where r ≥ 1 and the root of each ti has only one child,

for each i ∈ {1, . . . , r}. Clearly, we have that |t| =
r∑

i=1

|ti|.

When the root of a tree t ∈ TX
n has a unique child, we say that t is

irreducible. We identify the elements of the basis X with the trees of degree
one (which are irreducible).

Denoting by Irr the vector space spanned by the set of all irreducible trees
in As2(V ), we have that (As2(V ), ·) is free over Irr as an associative algebra.
The set of irreducible trees of degree n is denoted by Irrn.

3.3. Second product. Let t and w be trees in As2(V ), with t = t1 · . . . · tr

as described in Remark 3.2.4. A second product t ◦ w is defined proceeding
by induction on the degree n of w.

If n = 1, then w = a, for some a ∈ X. In this case, the element t ◦ w is
the tree obtained by replacing the root of t by the vertex, colored with a,
and adding a new root.

t ◦ w =

b

t1 t2 tr

a
.

Assume now that n > 1, and that the product t ◦ w has been defined for
any |w| < n.

Let w = w1 · . . . · wm be the unique decomposition of w as a product of
irreducible trees.

If m = 1, then w = w1 = u ◦ a, where u is a tree such that |u| = n − 1
and a is an element of the basis X. Applying a recursive argument, we may
suppose that t ◦ u is already defined. The product t ◦ w is the element

t ◦ w := t ◦ (u ◦ a) = (t ◦ u) ◦ a.

For m > 1, the element t ◦ w is defined by the following formula:

t ◦ w =

m∑

i=1

((t · w1 · . . . · wi−1) ◦ wi) · . . . · wm

−
m∑

i=2

t · ((w1 · . . . · wi−1) ◦ wi) · wi+1 · . . . · wm

Note that the recursive hypothesis states that each term of the previous
formula is well defined.

3.3.1. Example. Let a1, . . . , an be elements of the basis X, with n ≥ 2.
Consider the tree w given by
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w =

b

a1 a2 an. . .

= a1 · . . . · an

If n = 2, then we have that

t ◦ w = t ◦ (a1 · a2) = (t ◦ a1) · a2 − t · (a1 ◦ a2) + (t · a1) ◦ a2,

therefore we get

t ◦ w = a b

bc

t

− t b

a

bc

+ b

a

bc

t

.

In general, for w = a1 · . . . · an, we get the formula:

t ◦ w =
n∑

i=1

t a1 ai−1

ai an

b

. . .

. . . . . . −
n∑

i=2

a1

ai an

b

. . .

ai−1. . .

t .

3.3.2. Proposition. The vector space As2(V ), equipped with the products ·
and ◦ defined in 3.2.3 and 3.3, is the free associative compatible algebra on
V .

Proof. Note that the definition of the product ◦ implies that the products ·
and ◦ satisfy the compatibility condition.

Let us prove that the product ◦ is associative. Let t1, t2, t3 be trees in
As2(V ). To see that t1 ◦ (t2 ◦ t3) = (t1 ◦ t2) ◦ t3, we proceed by induction on
the degree of the third term t3.

If the degree of t3 is one, the assertion is follows easily from Definition
3.3.

Suppose that n = |t3| > 1. If t3 is an irreducible tree, then t3 = w ◦ a,
where w is a tree with |w| = n − 1, and a is an element of the basis X.
Applying a recursive argument, we get the following identities:

t1 ◦ (t2 ◦ t3) = t1 ◦ (t2 ◦ (w ◦ a))
= t1 ◦ ((t2 ◦ w) ◦ a)
= (t1 ◦ (t2 ◦ w)) ◦ a
= ((t1 ◦ t2) ◦ w) ◦ a
= (t1 ◦ t2) ◦ (w ◦ a)
= (t1 ◦ t2) ◦ t3,

which imply the result.
Suppose now that t3 = w · z, where w and z are trees of degree smaller

than |t3|.
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By the compatibility condition and a recursive argument, we get that:

t1 ◦ (t2 ◦ t3) = t1 ◦ (t2 ◦ (w · z))
= t1 ◦ ((t2 ◦ w) · z − t2 · (w ◦ z) + (t2 · w) ◦ z)
= (t1 ◦ (t2 ◦ w)) · z − t1 · ((t2 ◦ w) ◦ z) + (t1 · (t2 ◦ w)) ◦ z

−(t1 ◦ t2) · (w ◦ z) + t1 · (t2 ◦ (w ◦ z)) − (t1 · t2) ◦ (w ◦ z)
+t1 ◦ ((t2 · w) ◦ z)

= ((t1 ◦ t2) ◦ w) · z − (t1 ◦ t2) · (w ◦ z)
+(t1 ◦ (t2 · w)− (t1 · t2) ◦ w + t1 · (t2 ◦ w)) ◦ z.

As (t1 ◦ t2) ·w = t1 ◦ (t2 ·w)− (t1 · t2) ◦w+ t1 · (t2 ◦w), we conclude that

t1 ◦ (t2 ◦ t3) = ((t1 ◦ t2) ◦ w) · z − (t1 ◦ t2) · (w ◦ z) + ((t1 ◦ t2) · w) ◦ z
= (t1 ◦ t2) ◦ (w · z)
= (t1 ◦ t2) ◦ t3.

To end the proof, we need to see that As2(V ) is free as associative compat-
ible algebra. Let A be an associative compatible algebra and let f : V → A

be a linear map. The homomorphism f̃ : As2(V ) → A is defined in a
recursive way.

Let t be a tree in As2(V ). If |t| = 1 then t = a with a ∈ X and therefore

f̃(t) = f(a).

Suppose that |t| > 1. If t = t′ ◦a, for some a ∈ X, is irreducible, we define

f̃(t) = f̃(t′) ◦ f(a),

which is well defined by a recursive argument.

If t = t1 · . . . · tr for some r > 1, then we can assume that f̃(ti) is defined,

for 1 ≤ i ≤ r, and set f̃(t) = f̃(t1) · . . . · f̃(tr).

To see that f̃ is unique, consider g : As2(V ) → A, a homomorphism of
compatible associative algebras such that g(a) = f(a), for a ∈ V . Let t be

a tree in As2(V ). If |t| = 1, then t = a, with a ∈ X. So, by definition of f̃ ,

g(t) = f̃(t). Suppose that |t| > 1. We have that t = t′ ◦ a, for some a ∈ X,
or t = t1 · . . . · tr, for some r > 1. Applying a recursive argument, we have

that g(t) = f̃(t). This show that f̃ is unique, which ends the proof.
�

3.4. The operad As2. As the operad As2 is generated by two associative
products which do not satisfy any symmetry, the operad As2 is regular. So,
As2 is determined by a non-symmetric operad, with As2 = {As2n}n≥1, such
that

As2(n) = As2n ⊗K[Sn],

where K[Sn] is the regular representation of Sn.
By Proposition 2.2.5, the non-symmetric operad As2 is completely deter-

mined by the free As2-algebra on one generator.
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So, As2n is the vector space spanned by the set of planar trees with (n+1)
vertices. As a consequence of the previous assertion, the dimension of As2n
is the Catalan number cn, and therefore the dimension of As2(n) is n!cn, as
showed by V. Dotsenko in [8].

Let Tn be the set of planar trees with (n + 1) vertices. We can identify
each tree t in Tn with an operation in n variables, x1, . . . , xn. There is only
one way to label the non-root vertices of t by the set {1, . . . , n} so that the
labels are in an increasing order, seen from left to right, and an increasing
order on each path from of a vertex to the root. Using the description of
the products · and ◦ in As2(V ), this rule determine a unique operation µt

in n variables x1, . . . , xn.
For example, when t is the tree

t =

1

4
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we get µt = ((x1 ◦ x2) · ((x3 · (x4 ◦ x5)) ◦ x6)) ◦ x7 ◦ x8.

To describe the composition γ of the operad, we use the structure of com-

patible associative algebra of As2(K) =
⊕

n≥1

Tn. Explicitly, given a collection

of trees t, t1, . . . , tn, where t ∈ Tn and ti ∈ Tmi
, for 1 ≤ i ≤ n and considering

the identification of t with the operation µt, we define

γ(t, t1, . . . , tn) := µt(t1, . . . , tn),

which can be determined inductively by the formulas given in 3.2 for the
products · and ◦.

3.5. Koszul dual of As2. The Koszul dual of As2 was originally described
by H. Strohmayer in [37]. In his work, H. Strohmayer established the general
notion of operads of compatible structures.

He proved, among other examples, that (As2)! is a Koszul operad. As a
consequence of this result, the operad As2 is Koszul operad, too. Following
the notation of [37], we denote the Koszul dual of As2 by 2As.
The operad 2As is generated by two associative products, denoted by · and
◦, respectively, satisfying the relations

(x1 · x2) ◦ x3 = x1 · (x2 ◦ x3) = (x1 ◦ x2) · x3 = x1 ◦ (x2 · x3).

The operad 2As was studied in detail by Y. Zhang, C. Bai and L.Guo in
[42].
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Let us describe a basis for 2Asn, given by Y. Zhang in [41]. For each
0 ≤ i ≤ n− 1, the operations µi are defined by

µi(x1, . . . , xn) = x1 · . . . · xi+1 ◦ . . . ◦ xn,

with i copies of the product · and (n− i) copies of the product ◦ (note that,
by the relations present in 2As, the position of the products · and ◦ in µi is
irrelevant).

The set {µ1, . . . , µn} is a basis for 2Asn and the composition in the operad
2As is given by

µn(µm1 , . . . , µmn) = µn+m1+···+mn ,

as it was showed in [41], Proposition 3.2. So, 2Asn is n-dimensional and
2Asn = Asn ⊕ · · · ⊕Asn, it is direct sum of n copies of Asn.

3.6. Operadic homology for As2-algebras. The operadic homology for
As2 was studied by Y. Zhang in [41]. We give an explicit realization of
this chain-complex by means of a bicomplex, which is defined by Hochschild
complexes induced by the two associative products defined in a compatible
associative algebra.

Let us recall some facts about non-unital Hochschild complex. Given a
non-unital associative algebra (A, ·) and a right A-moduleM , the Hochschild
complex of A with coefficients in M is given by:

C∗(A,M) : · · · → M ⊗A⊗n → M ⊗A⊗(n−1) → · · · → M.

Denoting an element of M ⊗ A⊗n by (a0, a1, . . . , an), the differential d is
given by

d(a0, . . . , an) :=

n−1∑

i=0

(−1)i(a0, . . . , ai · ai+1, . . . , an).

Defining di(a0, . . . , an) = (a0, . . . , aiai+1, . . . , an), for 0 ≤ i ≤ n − 1, we can
express the boundary d as:

d =
n−1∑

i=0

(−1)idi.

The homology groups are denoted by H∗(A,M). If A is a free associative
algebra, that is, A = T (W ) for some vector space W , then H0(A,M) =
M/MA and Hn(A,M) = 0, for n ≥ 1( see for instance [23]).

In particular, if M = A, the Hochschilds complex is denoted by C∗(A)
and the homology groups by H∗(A).

This chain complex defines the operadic homology of associative algebras
(see 2.5.8).The differential is described by the formula

d(a1, . . . , an) :=

n−1∑

i=1

(−1)i+1(a1, . . . , aiai+1, . . . , an).
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Consider now a compatible associative algebra (A, ·, ◦). By definition, its
operadic chain complex is given by

· · · → CAs2

n (A) → CAs2

(n−1)(A) → · · · → CAs2

1 (A),

where CAs2

n (A) := (As2)!(n)∨ ⊗Sn A⊗n, whose differential d is described in
2.5.8. Since the Koszul dual of the operad As2 is given by 2As and, in the
symmetric framework,

(∗) 2As(n) = K[Sn]⊕ · · · ⊕K[Sn]

is the direct sum of n-copies K[Sn], the regular representation of Sn, we get

CAs2

n (A) = (As2)!(n)∨ ⊗Sn A⊗n

= (sgnn ⊗ (K[Sn]⊕ · · · ⊕K[Sn]))⊗Sn A⊗n

= (sgnn ⊗A⊗n)⊕ · · · ⊕ (sgnn ⊗A⊗n)
= A⊗n ⊕ · · · ⊕A⊗n.

We can reorganize the chain-complex CAs2

∗ (A) as a bicomplex. Explicitly,
we have:

3.6.1. Proposition. Let (A, ·, ◦) be a compatible associative algebra. The
Hochschild differentials d·, d◦, induce a bi-complex:

A⊗3 A⊗4 A⊗5

A⊗2 A⊗3 A⊗4

A A⊗2 A⊗3

❄

d·

❄

d·

❄

d·

❄

d·

❄

d·

✛d◦

❄

d·

✛d◦ ✛ d◦

❄

d·

✛d◦

❄

d·

❄

d·

✛d◦ ✛ d◦

✛ d◦ ✛d◦ ✛ d◦

Proof. We must prove that d◦d· + d·d◦ = 0. Using the characterization of
the Hochschild boundary, we have that

d·d◦ =
∑

i,j

(−1)i+j+2dj· d
i
◦,
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where the sum runs all the pairs (i, j), with 1 ≤ i ≤ n−1 and 1 ≤ j ≤ n−2.
Analogously,

d◦d· =
∑

i,j

(−1)i+j+2dj◦d
i
· ,

with 1 ≤ i ≤ n− 1 and 1 ≤ j ≤ n− 2.
A direct compute shows that:

(1) dj◦d
1
· = d1· d

j+1
◦ , if 1 < j ≤ n− 2.

(2) dj◦d
i
· = di−1

· dj◦, if 3 ≤ i ≤ n− 1 and 1 ≤ j ≤ i− 2.

(3) dj◦d
i
· = di·d

j+1
◦ , if 3 ≤ i ≤ n− 3 and i+ 2 ≤ j ≤ n− 2.

On the other hand, the compatibility condition between the products ·
and ◦ implies that

di·d
i
◦ + di◦d

i
· = di◦d

i+1
· + di·d

i+1
◦ .

All these facts together imply that d◦d· + d·d◦ = 0. �

Note that the total complex of the bicomplex described in 3.6.1, is the op-
eradic chain complex of a compatible associative algebra A because CAs2

n (A)
is the direct sum of n-copies of A⊗n and the operadic differential can be
identified with the differential d = d· + d◦. In particular, since the operad
As2 is a Koszul operad, if A = As2(V ) is the free compatible associative

algebra over V , the complex CAs2

∗ (A) is acyclic. We give a direct proof of
this fact without to use the Koszulity of As2.

3.6.2. Proposition. Let A = As2(V ) be the free compatible associative al-
gebra over the vector space V . The chain complex

· · · → CAs2

n (A) → CAs2

(n−1)(A) → · · · → CAs2

1 (A)

is acyclic.

Proof. For the proof, we use the description of the free compatible associa-
tive algebra A = As2(V ) given in 3.2 and the results obtained in Section 5.
By Theorem 4.2.14, A is free as associative algebra over the free N -algebra
N(V )(described in 4.2.13) for both products. For each p ≥ 1, we have that,
in the bicomplex, the pth column correspond to the chain complex

Cp
∗ (A) : · · · → A⊗(n+1) → An → · · · → A⊗p,

where A⊗p is in degree 1 and the differential is d·. We denote the homology
groups of this complex by Hp

∗ (A). Since the groups of homology are the
same that in C∗(A), for n > p, and the associative algebra (A, ·) is free over
N(V ), we have that Cp

∗ (A) is acyclic and that

Hp
1 (A) = A⊗p/Imd· = A⊗(p−1) ⊗N(V ).

Denoting Kp := Hp
1 (A) = A⊗(p−1) ⊗ W , we get a well defined chain

complex

· · · → Kp+1 → Kp → · · · → K1,
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whose differential is induced by horizontal differential d◦(see for instance
[23], 1.0.11). Since in the bicomplex the columns are acyclic, we have that

Hn(K∗, d◦) = HAs2

n (A), for all n ≥ 1 (see [23], Proposition 1.0.12). So, as

Kp = A⊗(p−1) ⊗ N (V ) and the differential is induced by the Hochschild
differential d◦, (K∗, d◦) is the Hochschild complex of (A, ◦) with coefficients
in N (V ). Since (A, ◦) is free over N (V ), the complex (K∗, d◦) is acyclic and

H1(K∗, d◦) = N (V )/N (V )A = V.

Therefore, HAs2

1 (A) = V and HAs2

n (A) = 0 for n > 1, which ends the
proof. �

4. Compatible infinitesimal bialgebras

In this section, we introduce compatible infinitesimal bialgebras, which
uses the notion of unital infinitesimal bialgebra introduced in Section 2. To
work in the more general context, we do not assume the existence of unity.
So, an infinitesimal bialgebra is an associative algebra (H, ·) equipped with
a coassociative coproduct ∆ : H −→ H ⊗H satisfying

∆(x · y) = x(1) ⊗ (x(2) · y) + (x · y(1))⊗ y(2) + x⊗ y,

for x, y ∈ H, with ∆(x) = x(1) ⊗ x(2) and ∆(y) = y(1) ⊗ y(2) for x, y ∈ H.

In this context, an element x ∈ H is called primitive when ∆(x) = 0.

4.0.1. Definition. A compatible infinitesimal bialgebra over K is an asso-
ciative compatible algebra (H, ·, ◦) equipped with a coassociative coproduct
∆ : H −→ H ⊗H such that (H, ·,∆) and (H, ◦,∆) are both unital infini-
tesimal bialgebras.

4.0.2. Lemma. The notion of compatible infinitesimal bialgebra is well-
defined.

Proof. A direct computation shows that:

(1) ∆((x · y) ◦ z) = x(1) ⊗ (x(2) · y) ◦ z + x · y(1) ⊗ y(2) ◦ z + x⊗ (y ◦ z)
+(x · y) ◦ z(1) ⊗ z(2) + (x · y)⊗ z,

(2) ∆((x ◦ y) · z) = x(1) ⊗ (x(2) ◦ y) · z + x ◦ y(1) ⊗ y(2) · z + x⊗ (y · z)
+(x ◦ y) · z(1) ⊗ z(2) + (x ◦ y)⊗ z,

(3) ∆(x · (y ◦ z)) = x(1) ⊗ x(2) · (y ◦ z) + x · y(1) ⊗ y(2) ◦ z + x⊗ (y ◦ z)
+x · (y ◦ z(1))⊗ z(2) + (x · y)⊗ z,

(4) ∆(x ◦ (y · z)) = x(1) ⊗ x(2) ◦ (y · z) + x ◦ y(1) ⊗ y(2) · z + x⊗ (y · z)
+x ◦ (y · z(1))⊗ z(2) + (x ◦ y)⊗ z.

Using the compatibility condition between the products · and ◦, we get that:

(1) x(1)⊗(x(2)·y)◦z+x(1)⊗(x(2)◦y)·z = x(1)⊗x(2)·(y◦z)+x(1)⊗x(2)◦(y·z),
(2) (x·y)◦z(1)⊗z(2)+(x◦y)·z(1)⊗z(2) = x·(y◦z(1))⊗z(2)+x◦(y·z(1))⊗z(2),

which implies that

∆((x · y) ◦ z + (x ◦ y) · z) = ∆(x · (y ◦ z) + x ◦ (y · z)).

�
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4.0.3. Proposition. Let V be a vector space, the free associative compatible
algebra As2(V) has a natural structure of compatible infinitesimal bialgebra.

Proof. The coproduct ∆ : As2(V ) → As2(V )⊗ As2(V ) is defined by induc-
tion on the degree of a tree t in As2(V ).

For t = a ∈ X, its image is ∆(t) = 0. When |t| > 1, we consider two
cases:

(1) for t = t′ ◦ a, with a ∈ X, we define

∆(t) = t′(1) ⊗ t′(1) ◦ a+ t′ ⊗ a.

(2) for t = t′ · t′′ with |t′| < |t| and |t′′| < |t|, we have that

∆(t) = t′(1) ⊗ t′(2) · t
′′ + t′ · t′′(1) ⊗ t′′(2) + t′ ⊗ t′′.

Lemma 4.0.2 and the inductive hypothesis, state that ∆ is well defined.
Note that if ∆(t) = t(1) ⊗ t(2) then |t(1)| < |t| and |t(2)| < |t|.

To see that ∆ is coassociative, we proceed by induction on degree of t.
Let t be a tree. For |t| = 1 the result is immediate.
For |t| > 1, we consider two case:

First, if t is an irreducible tree, then t = t′ ◦ a, with a ∈ X. So, we have
that:

(∆ ⊗ Id)∆(t) = (∆⊗ Id)(t′(1) ⊗ t′(2) ◦ a+ t′ ⊗ a)

= ∆(t′(1))⊗ t′(2) ◦ a+∆(t′)⊗ a

= t′(1)(1) ⊗ t′(1)(2) ⊗ t′(2) ◦ a+ t′(1) ⊗ t′(2) ⊗ a.

Applying the recursive hypothesis to t′, we write

(∆⊗ Id)∆(t) = t′(1) ⊗ t′(2) ⊗ t′(3) ◦ a+ t′(1) ⊗ t′(2) ⊗ a.

On the other hand, using a similar argument to computer (Id⊗∆)∆(t),
we have that

(Id⊗∆)∆(t) = (Id⊗∆)(t′(1) ⊗ t′(2) ◦ a+ t′ ⊗ a

= t′(1) ⊗∆(t′(2) ◦ a) + t′ ⊗∆(a)

= t′(1) ⊗ t′(2)(1) ⊗ t′(2)(2) ◦ a+ t′(1) ⊗ t′(2) ⊗ a

= t′(1) ⊗ t′(2) ⊗ t′(3) ◦ a+ t′(1) ⊗ t′(2) ⊗ a,

which gives the expected result.
Second, if t is reducible tree, then t = t′ · t′′, with |t′| < |t| and |t′′| < |t|.

Applying the recursive hypothesis to t′ and t′′, we have that

(∆⊗ Id)∆(t) = (∆⊗ Id)(t′(1) ⊗ t′(2) · t
′′ + t′ · t′′(1) ⊗ t′′(2) + t′ ⊗ t′′)

= t′(1)(1) ⊗ t′(1)(2) ⊗ t′(2) · t
′′ + t′(1) ⊗ t′(2) · t

′′
(1) ⊗ t′′(2)

+t′ · t′′(1)(1) ⊗ t′′(1)(2) ⊗ t′′(2) + t′ ⊗ t′′(1) ⊗ t′′(2) + t′(1) ⊗ t′(2) ⊗ t′′

= t′(1) ⊗ t′(2) ⊗ t′(3) · t
′′ + t′(1) ⊗ t′(2) · t

′′
(1) ⊗ t′′(2)

+t′ · t′′(1) ⊗ t′′(2) ⊗ t′′(3) + t′ ⊗ t′′(1) ⊗ t′′(2) + t′(1) ⊗ t′(2) ⊗ t′′
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and,

(Id⊗∆)∆(t) = (Id⊗∆)(t′(1) ⊗ t′(2) · t
′′ + t′ · t′′(1) ⊗ t′′(2) + t′ ⊗ t′′)

= t′(1) ⊗ t′(2)(1) ⊗ t′(2)(2) · t
′′ + t′(1) ⊗ t′(2) · t

′′
(1) ⊗ t′′(2)

+t′(1) ⊗ t′(2) ⊗ t′′ + t′ · t′′(1) ⊗ t′′(2)(1) ⊗ t′′(2)(2) + t′ ⊗ t′′(2) ⊗ t′′(2)
= t′(1) ⊗ t′(2) ⊗ t′(3) · t

′′ + t′(1) ⊗ t′(2) · t
′′
(1) ⊗ t′′(2)

+t′(1) ⊗ t′(2) ⊗ t′′ + t′ · t′′(1) ⊗ t′′(2) ⊗ t′′(3) + t′ ⊗ t′′(2) ⊗ t′′(2).

So, we conclude that

(∆⊗ Id)∆(t) = (Id⊗∆)∆(t),

which ends the proof.
�

4.1. Formula for the coproduct ∆. We want to give an explicit formula
for the coproduct ∆, for which we previously describe an order on the ver-
tices of a tree.

Given a tree t, we consider the set Vert(t) ordered by the level order, that
is, the vertices of t are ordered by reading the vertices of t from left to right
and from top to bottom. For instance, if t is the tree

t =
c

d e

a

b

,

then Vert(t) is ordered by a < b < c < d < e < root(t).

4.1.1. Notation. Given a tree t and a vertex v ∈ Vert∗(t), we denote by ev

the edge ev =
v

w

of t, with initial vertex w and final vertex v.

4.1.2. Definition. Let A = {v1, . . . , vl} be a ordered subset of Vert∗(t) with
v1 < · · · < vl respect to the level order.

We define tA as the tree of the degree l such that Vert∗(tA) = A, which
is obtained from t by deletions of the vertices that are not in A and by
successive contractions of the edges of which these are the final vertex.

4.1.3. Example. When t is the tree

t =

a d

eb

c

f
, t{a,b,c} =

a

b c .

4.1.4. Proposition. Let t be a tree of degree n, with Vert∗(t) given by the
ordered vertices a1 < · · · < an. The coproduct ∆(t) is given by the formula

∆(t) =

n−1∑

i=1

t{a1,...,ai} ⊗ t{ai+1,...,an}.
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Proof. Let t be a tree of degree n and a1 < · · · < an its vertices, different of
the root, ordered by the level order.

We prove the assertion by induction on n. For n = 1, t = a ∈ V . So,
∆(a) = 0 and the assertion is true.

For n > 1, we consider two cases. First, if t is an irreducible, then
t = t′ ◦ an, where t

′ is a tree of degree (n− 1), with vertices a1, . . . , an−1. In
this case, note that t′ = t{a1,...,an−1} and the vertices a1, . . . , an−1 preserve
the order that they originally had in t. Moreover, if 1 ≤ k ≤ l ≤ n− 1, then
t′{ak,ak+1,...,al}

= t{ak ,ak+1,...,al}.

By definition of coproduct ∆ and by a recursive argument, we have that

∆(t) = ∆(t′ ◦ an)
= ∆(t′) ◦ an + t′ ◦∆(an) + t′ ⊗ an

=

n−2∑

i=1

t′{a1,...,ai} ⊗ t′{ai+1,...,an−1}
◦ an + t′ ⊗ an

=

n−2∑

i=1

t{a1,...,ai} ⊗ t{ai+1,...,an−1} ◦ an + t{a1,...,an−1} ⊗ an

=
n−1∑

i=1

t{a1,...,ai} ⊗ t{ai+1,...,an},

because t{ai+1,...,an−1} ◦ an = t{ai+1,...,an}, for i = 1, . . . , n− 2.

If t is a reducible tree, then we may write t = t′ · t′′, where t′ and t′′ are
trees of degree smaller than n. If t′ is of degree l, then Ver(t′) = {a1, . . . , al}
and Ver(t′′) = {al+1, . . . , al+m}, where n = l +m. Note that the vertices of
t′ and t′′ preserve the order that they had in t. Moreover, t′ = t{a1,...,al} and
t′′ = t{al+1,...,al+m}.

By definition of the coproduct ∆ and by a recursive argument, we obtain
that:

∆(t) = ∆(t′ · t′′)
= ∆(t′) · t′′ + t′ ·∆(t′′) + t′ ⊗ t′′

=
l−1∑

i=1

t′{a1,...,ai} ⊗ t′{ai+1,...,al}
· t′′

+

m−1∑

j=1

t′ · t′′{al+1,...,al+j}
⊗ t′′{al+j+1,...,al+m} + t′ ⊗ t′′

=

l−1∑

i=1

t{a1,...,ai} ⊗ t′{ai+1,...,al}
· t′′

+

m−1∑

j=1

t′ · t′′{al+1,...,al+j}
⊗ t{al+j+1,...,al+m} + t′ ⊗ t′′.
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As t′{ai+1,...,al}
· t′′ = t{ai+1,...,an}, for i = 1, . . . , l − 1, and

t′ · t′′{al+1,...,al+j}
= t{a1,...,al+j}, for j = 1, . . . ,m− 1, we get

∆(t) =
n−1∑

i=1

t{a1,...,ai} ⊗ t{ai+1,...,an},

which ends the proof. �

4.1.5. Example. When t is the tree

t =

a

b

c d

e ,

the coproduct ∆(t) is given by

∆(t) = a ⊗ b

c d

e +
a

b
⊗

c d

e

+
a

b c
⊗

e

d

+

a

b c d ⊗ e .

4.1.6. Remark. Consider HV = As2(V ) with the coproduct ∆ as in Propo-
sition 4.0.3. The triples (HV , ·,∆) and (HV , ◦,∆) are graded infinitesimal
bialgebras, with the natural graduation of HV . In particular, the vector
space V is the component of degree one. By definition, ∆(v) = 0, for all
v ∈ V . So, (H, ·,∆) and (H, ◦,∆) are conilpotent infinitesimal bialgebras.

Applying the result obtained by J.-L. Loday and M. Ronco in [26], The-
orem 2.6 , we obtain that H is isomorphism to T (PrimH).

In particular, the associative algebras (As2(V ), ·) and (As2(V ), ◦) are free
as associative algebras. This result is an alternative proof to that obtained
by Dotsenko in [8], using operad theory .

4.2. Structure theorem for compatible infinitesimal bialgebras. Our
aim is to prove that any conilpotent compatible infinitesimal bialgebra can
be reconstructed from the subspace of its primitive elements.

We introduce the notion ofN -algebra, which describes the algebraic struc-
ture of the subspace of primitive elements of any compatible infinitesimal
bialgebra.
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4.2.1. Definition. A N -algebra is a vector space V equipped with n-ary op-
erations Nn : V ⊗n −→ V , for n ≥ 2, which satisfy the following conditions:

(1)Nn(x1, . . . , N2(xn, xn+1)) =

n−1∑

i=1

Ni+1(x1, . . . , Nn−i+1(xi, . . . , xn), xn+1),

(2) for n ≥ 3
N2(x1, Nn(x2, . . . , xn+1)) = Nn(N2(x1, x2), x3, . . . , xn+1)

−
n∑

i=3

Ni(x1, Nn+2−i(x2, . . . , xn+3−i), xn+3−i+1, . . . , xn+1),

(3) for r, n ≥ 3
Nn(x, y1 . . . , yn−2, Nr(z, t1, . . . , tr−2, w)) =

Nr(Nn(x, y1, . . . , yn−2, z), t1, . . . , tr−2, w)

+

n−2∑

i=1

Nr+i(x, y1, . . . , yi−1, Nn−i(yi, . . . , yn−2, z), t1, . . . , tr−2, w)

−
r−2∑

i=1

Nn+r−i−1(x, y1, . . . , yn−2, Ni+1(z, t1, . . . , ti), ti+1, . . . , tr−2, w),

For instance, the relations in low degrees give:

(1) N2 is an associative product.
(2) N3(x, y,N2(z, t)) = N2(N3(x, y, z), t) +N3(x,N2(y, z), t).
(3) N2(x,N3(y, z, t)) = N3(N2(x, y), z, t) −N3(x,N2(y, z), t).
(4) N3(x, y,N3(z, t, w)) = N3(N3(x, y, z), t, w) + N4(x,N2(y, z), t, w) −

N4(x, y,N2(z, t), w).

4.2.2.Remark. LetN be the algebraic operad ofN -algebras. It is clear that
the operadN is regular. So, the Sn-moduleN (n) is of the formN (n) = Nn⊗
K[Sn] for some vector space Nn, where K[Sn] is the regular representation
of Sn.

4.2.3. Proposition. The dimension of the vector space Nn is equal to the
Catalan number cn−1.

Proof. Denote by |Nn| the dimension of Nn, as a K-vector space. We know
that |Nn| is the dimension of the subspace of homogeneous elements of degree
n of the free N algebra on one generator x. From the Definition 4.2.1, it
is clear that the vector space Nn has a basis formed by all the elements of
type:

Nr(M1(. . .), . . . ,Mr−1(. . .), x),

where each Mi is an element in the basis of Nmi
and m1+· · ·+mr−1 = n−1.

So, we get that

|Nn| =
∑

|Nm1 | · . . . · |Nmr−1 |

where the sum is taken over all the families {mi}1≤i≤r−1 such that m1 +
· · ·+mr−1 = n− 1.
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In particular, |N1| = 1 and, for n > 1, we have that:

|Nn| =
∑

cm1 · . . . · cmr−1

= cn−1,

by a recursive hypothesis, which implies that |N1| = c0 and that the integers
|Nn| are defined by same equation than the Catalan numbers. We may
conclude that |Nn| = cn−1, for n ≥ 1. �

4.2.4. Definition. Given a compatible associative algebra (A, ·, ◦) , the n-
ary operations Nn : A⊗n −→ A on A are defined as follows:

Nn(x1, . . . , xn) = (x1 · . . . · xn−1) ◦ xn − x1 · ((x2 · . . . · xn−1) ◦ xn)

4.2.5. Remark. The operations Nn satisfy the following relations:

(1) N2(x, y) = x ◦ y − x · y.
(2) Nn(x1, . . . , xn) = N3(x1, x2 · . . . · xn−1, xn), for any n ≥ 4.

4.2.6. Proposition. Let (A, ·, ◦) be a compatible associative algebra. For
any family of elements x1, x2, x3, x4, x5 ∈ A we have that:

(1) N2(N2(x1, x2), x3) = N2(x1, N2(x2, x3)),
(2) N3(x1, x2, N2(x3, x4)) = N2(N3(x1, x2, x3), x4) +N3(x1, N2(x2, x3), x4),
(3) N3(x1, x2, N3(x3, x4, x5)) = N3(N3(x1, x2, x3), x4, x5)

+N4(x1, N2(x2, x3), x4, x5)−N4(x1, x2, N2(x3, x4), x5)

Proof. The first relation states that N2 is an associative product, which is
true because N2 is linear combination of the products · and ◦.

Let us prove the second statement. The proof of the other ones is obtained
in an analogous way.

Let us denote the element N2(x, y) as x ∗ y = x ◦ y− x · y. We have that,

N3(x1, x2, N2(x3, x4) = (x1 · x2) ◦ (x3 ∗ x4)− x1 · (x2 ◦ (x3 ∗ x4))
= (x1 · x2) ◦ x3 ◦ x4 − (x1 · x2) ◦ (x3 · x4)

−x1 · (x2 ◦ x3 ◦ x4) + x1 · (x2 ◦ (x3 · x4)).

Applying the compatibility condition between · and ◦, we get:

(1) (x1 ·x3)◦(x3 ·x4) = ((x1 ·x2)◦x3)·x4−x1 ·x2 ·(x3◦x4)+(x1 ·x2 ·x3)◦x4,
(2) x1 ·(x2◦(x3 ·x4)) = x1 ·(x2◦x3)·x4−x1 ·x2 ·(x3◦x4)+x1 ·((x2 ·x3)◦x4).

So, we obtain that

N3(x1, x2, N2(x3, x4) = (x1 · x2) ◦ x3 ◦ x4 − ((x1 · x2) ◦ x3) · x4
−(x1 · x2 · x3) ◦ x4 − x1 · (x2 ◦ x3 ◦ x4)
+x1 · (x2 ◦ x3) · x4 + x1 · ((x2 · x3) ◦ x4).

Regrouping the terms, we get:

N3(x1, x2, N2(x3, x4) = N3(x1, x2, x3) ◦ x4 −N(x1, x2, x2) · x4
+(x1 · (x2 ∗ x3)) ◦ x4 − x1 · ((x2 ∗ x3) ◦ x4

= N2(N3(x1, x2, x3), x4) +N3(x1, N2(x2, x3), x4),

which proves the equality. �
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4.2.7. Lemma. Let (A, ·, ◦) be an compatible associative algebra and let
{Nn}n≥2 be the family of products introduced in Definition 4.2.4. For el-
ements x, y, z ∈ A, we have that:

(1) N2(x · y, z) = N3(x, y, z) + x ·N2(y, z).
(2) N2(x, y · z) = N3(x, y, z) +N2(x, y) · z.

Proof. The formulas are obtained by a straightforward computation, using
the definition of the operations Nns. �

The following result is immediate to prove.

4.2.8. Proposition. Let A be a compatible associative algebra A. For any
family of elements x1, . . . , xn ∈ A, we have that:

(1) N2(x1 · . . . ·xn−1, xn) = Nn(x1, . . . , xn)+x1 ·Nn−1(x2, . . . , xn)+ . . .+
x1 · . . . · xn−2 ·N2(xn−1, xn),

(2) N2(x1, x2 · . . . ·xn) = Nn(x1, . . . , xn)+Nn−1(x1, . . . , xn−1) ·xn+ . . .+
N2(x1, x2) · x3 · . . . · xn,

4.2.9. Theorem. Let (A, ·, ◦) be a compatible associative algebra with n-
ary operations Nn introduced in Definition 4.2.4. The data (A, {Nn}) is a
N -algebra.

Proof. We apply Remark 4.2.5 together with Proposition 4.2.6 and Propo-
sition 4.2.8.

Let us prove the relation (1) of Definition 4.2.1. The proofs of the re-
maining relations follow by similar arguments.

Let A be a compatible associative algebra and consider x1, . . . , xn, xn+1 ∈
A, with n ≥ 3. The equality was proved in Proposition 4.2.6 for n = 3. Let
n > 3, by Remark 4.2.5, we have that :

Nn(x1, x2, . . . , xn−1, N2(xn, xn+1)) = N3(x1, x2 · . . . · xn−1, N2(xn, xn+1)).

So, from Proposition 4.2.6, we obtain that

N3(x1, x2 · . . . · xn−1, N2(xn, xn+1)) = N2(N3(x1, x2 · . . . · xn−1, xn), xn+1)
+N3(x1, N2(x2 · . . . · xn−1, xn), xn+1).

Applying Proposition 4.2.6 and Remark 4.2.5 to the second term, we get:

N3(x1, N2(x2 · . . . · xn−1, xn), xn+1)

=
n−1∑

i=2

N3(x1, x2 · . . . · xi−1 ·Nn−i+1(xi, . . . , xn), xn+1)

=

n−1∑

i=2

Ni+1(x1, x2, . . . , xi−1, Nn−i+1(xi, . . . , xn), xn+1).

To end the proof it suffices to apply Remark 4.2.5 to first term, which
implies that

Nn(x1, . . . , N2(xn, xn+1)) =

n−1∑

i=1

Ni+1(x1, . . . , Nn−i+1(xi, . . . , xn), xn+1).
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�

4.2.10. Theorem. Let H be a compatible infinitesimal bialgebra with coprod-
uct ∆. If the elements x1, . . . , xn in H are primitive, then Nn(x1, . . . , xn)
is primitive, too. Therefore, we have that Prim(H) is a N -subalgebra of
(H, {Nn}).

Proof. The cases n = 2 and n = 3 are obvious.
Suppose that n ≥ 4 and that the elements x1, . . . , xn are primitive ele-

ments in H. Recall that

(∗) Nn(x1, . . . , xn) = N3(x1, x2 · . . . · xn−1, xn)
= (x1 · x2 · . . . · xn−1) ◦ xn − x1 · ((x2 · . . . · xn−1) ◦ xn).

Applying a recursive argument on n ≥ 2, it is immediate to verify that

∆(x1 · . . . · xn) =
n−1∑

i=1

(x1 · . . . · xi)⊗ (xi+1 · . . . · xn).

Applying the formula above to (∗) we obtain that :

∆((x1 · . . . · xn−1) ◦ xn) =

n−2∑

i=1

(x1 · . . . · xi)⊗ ((xi+1 · . . . · xn−1) ◦ xn)

+ (x1 · . . . · xn−1)⊗ xn,

and

∆((x2 · . . . · xr−1) ◦ xr) =

n−2∑

i=1

(x2 · . . . · xi)⊗ ((xi+1 · . . . · xn−1) ◦ xn)

+ (x2 · . . . · xn−1)⊗ xn,

for n ≥ 3.
Therefore, we may conclude that

∆(x1 · ((x2 · . . . · xr−1) ◦ xr)) =
n−2∑

i=2

(x1 · . . . · xi)⊗ ((xi+1 · . . . · xn−1) ◦ xn)

+(x1 · . . . · xn−1)⊗ xn + x1 ⊗ ((x2 · . . . · xn−1) ◦ xn),

and thus ∆(Nn(x1, . . . , xn)) = 0, which ends the proof. �

4.2.11. Remark. Let V be a vector space. Denote by HV the free compat-
ible associative algebra As2(V ) with the compatible infinitesimal bialgebra
structure given in Proposition 4.0.3. By remark 4.1.6, (HV ,∆, ·) is isomor-
phic as bialgebra to T (Prim(HV ). By identifying the product · with the
concatenation product in T (Prim(HV ), we have tha any element x ∈ HV

is written in a unique way as a linear combination of elements of the type
x1 · . . . · xr, where xi ∈ Prim(HV ), for each 1 ≤ i ≤ r.

4.2.12. Lemma. Let V be a vector space and HV the compatible infinitesimal
algebra as in Remark 4.2.11. As N -algebra, Prim(HV ) is generated by V
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Proof. Let NV be the sub-N -algebra of HV generated by V . Since any
element x ∈ V is a primitive element, NV ⊆ Prim(HV ).

Let us see that any element x ∈ HV can written as a linear combination
of elements of the type x1 · . . . · xr, where xi ∈ NV , for each 1 ≤ i ≤ r.
It is sufficient to verify the assertion for any tree t ∈ HV . We prove the
statement by induction on degree of t.

If |t| = 1, then t = a, for some element a in the basis X of HV . Suppose
|t| = n, with n > 1.

If t is a reducible tree, then t = t1 · . . . · tr, where r > 1 and ti is a tree
of degree smaller than n, for each 1 ≤ i ≤ r. By a recursive argument, the
assertion is true for each ti, which implies the result for t.

Now, if t is an irreducible tree, then t = t′ ◦ a, where t′ is a tree of
degree (n − 1) and a is an element in the basis X. Applying a recursive
argument, t′ is a linear combination of elements of the type x1 · . . . · xr,
where x1, . . . , xr ∈ NV , with 1 ≤ r ≤ n − 1. So, t = t′ ◦ a is a linear
combination of elements of the type (x1 · . . . ·xr) ◦a, where x1, . . . , xr ∈ NV ,
with 1 ≤ r ≤ n− 1 and a an element of the basis X.

Now, consider the operation

Nr+1(x1, . . . , xr, a) = (x1 · . . . · xr) ◦ a− x1 · ((x2 · . . . · xr) ◦ a),

applied on the elements x1, . . . , xr, a. We have that

(x1 · . . . · xr) ◦ a = Nr+1(x1, . . . , xr, a) + x1 · ((x2 · . . . · xr) ◦ a).

Applying a recursive argument to x1 and (x2 · . . . ·xr)◦a, in the right side
of the previous equality, we get the result.

By Remark 4.2.11, this implies that Prim(HV ) is generated, as N -algebra
by NV , which implies that it is generated by V . This ends the proof.

�

4.2.13. Proposition. Let V be vector space and let HV be the free associative
compatible algebra As2(V ), spanned by V . The N -algebra Prim(HV ), of
primitive elements of HV , is the free N -algebra on V .

Proof. Note that, by Lemma 4.2.12, as N -algebra, Prim(HV ) is graded and
generated by V . Denote by Prim(HV )n the subspace of homogeneous ele-
ments of degree n of Prim(HV ).

By Proposition 4.2.3, to see that Prim(HV ) is the free N -algebra on V it
suffices to show that the dimension of Prim(HV )n is equal to (dimV )ncn−1.

Let us compute the dimension of Prim(HV )n. Recall from [26] the linear
operator e. Since (HV , ·,∆) is a conilpotent infinitesimal bialgebra, we can
define e : H → H given by

e(x) = x− x(1) · x(2) − x(2) · x(2) · x(3) + · · · ,

where ∆(x) = x(1) ⊗ · · · ⊗ x(n), for all x ∈ HV . Consider the set

Bn = {e(t)|t is an irreducible tree of degree n in HV }.



67

Let us prove that the set Bn is a basis of Prim(HV )n.
From [26], Proposition 2.5, we have that Bn ⊆ e(HV ) = Prim(HV ) and

for any reducible tree t = t1 · . . . · tr,

e(t) = e(t1 · . . . · tr) = 0.

So, e(Irr) = e(HV ) = Prim(HV ), because all element x ∈ HV can be
written as a linear combination of elements in

⋃
n≥1 Irrn.

On the other hand, the same result asserts that, if t is a irreducible tree
of degree n, then

e(t) = t− t(1) · e(t(2)).

So, if t1 and t2 are different irreducible trees in HV , then e(t1) 6= e(t2).
In particular, since the number of irreducible trees of degree n is equal to
(dimV )ncn−1, we have that |Bn| = (dimV )ncn−1.

Let us see that the set Bn is linearly independent. Note that in par-
ticular |Bn| = cn−1. To simplify the notation, denote l = |Bn| and let
{t1, . . . , tl} be the set irreducible trees of degree n in HV . We have that
Bn = {e(t1), . . . , e(tl)}.

Let {α1, . . . , αl} be a family of elements in the field K and suppose that

α1e(t
1) + . . . + αle(t

l) = 0.

Since e(ti) = ti − ti(1) · e(t
i
(2)), for any 1 ≤ i ≤ l, we have that

α1t
1 + . . .+ αlt

l =

l∑

i=1

αi(t
i
(1) · e(t

i
(2))).

But this is possible only if αi = 0, for all 1 ≤ i ≤ l, because the right
side is linear combination of reducible trees. So, Bn is linearly independent
and we may conclude that it is a basis of Prim(HV )n. The dimension of
Prim(HV )n is equal to (dimV )ncn−1, which ends the proof.

�

Proposition 4.2.13 and Proposition 4.1.6 imply the following structure
theorem.

4.2.14. Theorem. Let V be vector space and let N (V ) be the free N -algebra
generated by V . The free associative compatible algebra As2(V ) is isomor-
phic to T c(N (V )).

4.2.15. Remark. Let (A, ·, ◦,∆) be a compatible infinitesimal bialgebra.
Consider x ∗ y = α(x · y) + β(x ◦ y) a linear combination of the products ·
and ◦, where α and β are elements in the field K.

A direct compute shows that

∆(x ∗ y) = x(1) ⊗ x(2) ∗ y + x ∗ y(1) ⊗ y(2) + (α + β)x⊗ y.

In particular, when x∗y = x·y−x◦y, (A, ·, ∗,∆) is a compatible associative
algebra with coalgebra structure satisfying:
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(1) ∆(x · y) = x(1) ⊗ x(2) · y + x · y(1) ⊗ y(2) + x⊗ y,
(2) ∆(x ∗ y) = x(1) ⊗ x(2) ∗ y + x ∗ y(1) ⊗ y(2).

So, ∆ is infinitesimal unitary with respect to the product ·, in the Loday-
Ronco’s sense, and infinitesimal with respect to the product ∗, in the Joni-
Rota’s sense.

This notion of bialgebras is equivalent to the notion of bialgebras that we
have given in Definition 4.0.1.

5. Matching Dialgebras

In this section, we consider a particular case of compatible associative
algebras, the matching dialgebras. In [40], Y. Zhang, Ch. Bai and L. Guo
studied the operad of matching dialgebras. They constructed the free match-
ing dialgebras on a vector space V by defining a matching dialgebra structure
on the double tensor space T (T (V )).

In the same work, the authors proved that the operad of matching dialge-
bras is Koszul and compute the complex which gives the homology groups.

The aim of the present section is to study the notion of bialgebras in
matching dialgebras.

Motivated by the path Hopf algebra P (S) described by A.B. Goncharov in
[16], we introduced bi-matching dialgebras. We show that the Goncharov’s
Hopf algebras is part of a family of bi-matching dialgebras, which can be
constructed from a bialgebra (H, ·,∆)(in the usual sense) and a right semi-
homomorphism R : H → H, which is a coderivation with respect to the
coproduct ∆.

We also develop the notion of compatible infinitesimal bialgebra in a
matching dialgebras. In particular, a free matching dialgebra is a compat-
ible infinitesimal bialgebra, which we obtain another example of a Loday’s
good triple of operads (see [25]).

5.0.1. Definition. A matching dialgebra is a vector space A with two asso-
ciative products · and ◦ such that

(x · y) ◦ z = x · (y ◦ z), (x ◦ y) · z = x ◦ (y · z)

for all x, y, z ∈ A.

We recall from [40] the notion of right semi-homomorphism of algebra.
This type of linear map gives an interesting family of examples of matching

dialgebras.

5.0.2. Definition. Let (A, ·) be an associative algebra. A K-linear map
R : A → A is a right semi-homomorphism if it satisfies the condition

R(x · y) = R(x) · y, for all x, y ∈ A.
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5.0.3. Remark. Note that if (A, ·) is an associative algebra and R : A → A
is a right semi-homomorphism, then (A, ·, ◦) is a matching dialgebra with
the product ◦ : A⊗A → A given by x ◦ y := x ·R(y) (see [40]).

5.0.4. Example. If (A, ·) is an associative algebra and a is an element in
A, then the map R : A → A defined as R(x) := a · x, for x ∈ A, is a right
semi-homomorphism.

In particular, when (A, ·) is a unital associative algebra with unit e ∈ A
and R : A → A is a right semi-homomorphism, then the linear map R is
completely determined by the action of R on the unit e. Indeed, if x ∈ A,
then R(x) = R(e ·x) = R(e) ·x. So, for the case of unital associative algebra
A, any right semi-homomorphism R : A → A is given by R(x) := a ·x, where
a is some element in A.

5.1. The free matching dialgebra. The free matching dialgebra over
a vector space V is a quotient of the free compatible associative algebra
As2(V ). In particular, we may define an explicit compatible infinitesimal
bialgebra structure on the free objects of the category of the matching dial-
gebras.

Given a vector space V , with basis X, let TX
n be the set of planar rooted

trees with (n + 1) vertices, whose non-root vertices are colored by the ele-
ments of X.

In the Subsection 3.2, we define a compatible associative algebra structure

on the vector space spanned
⋃

n≥1

TX
n of colored planar rooted trees, where

X is a basis of V , and proved that As2(V ) is the free compatible associative
algebra over V .

The free matching dialgebra over V may be obtained as the quotient
As2(V ), by the ideal spanned by the elements (x · y) ◦ z = x · (y ◦ z) and
(x ◦ y) · z = x ◦ (y · z) , for x, y and z in V .

We want to find a set of trees which gives a set of representatives of the
classes of As2(V ) modulo these relations.

5.1.1. Examples. In low degree, we identify the trees:

a c

b

bc

≡ c

b

bc

a

because a · (b ◦ c) = (a · b) ◦ c. In degree four, we have that

a b

c

d

b

≡ a

b c

d

b

≡

a b c

d

b

.

In the general case, we have the following result.
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5.1.2. Proposition. Any tree t ∈ TX
n , for n ≥ 1, is equivalent to a tree of

the type
t = t1 · . . . · tr,

where each tk is a tree of the form tk = ak1 ◦ . . . ◦ a
k
nk
, with 1 ≤ k ≤ r and

n1 + . . .+ nr = n.

Proof. For n = 3, the result was proved in 5.1.1. For n > 3, suppose that
the assertion is true for any tree of degree strictly less than n. If t is an
irreducible tree, then t = t′ ◦ a, with |t′| = n− 1 and a an element of degree
one. Applying a recursive argument to t′, we get

t = (t′1 · . . . · t
′
r) ◦ a = t′1 · . . . · (t

′
r ◦ a).

If t is a reducible tree, then t = t′ · t′′, where t′ and t′′ are trees of degree
strictly less than n. So, applying the inductive hypothesis to t′ and t′′, we
obtain the assertion for t, which ends the proof. �

5.1.3. Notation. We denote by DX
n the set of all trees of degree n, described

in Proposition 5.1.2 and by DX the set
⋃

n≥1D
X
n .

For instance, in degree three we have that:

DX
3 = {

bc

b ca , a c

b

bc

, b c

bc

a

,

a

c

bc

b

: a, b, c ∈ X}.

The free matching dialgebras is the vector space As2(V ) =
⊕

n≥1 K[DX
n ],

whose basis is the set DX .
Given two elements t = t1 · . . . · tr and w = w1 · . . . ·ws in DX of degree n

and m, respectively, we have that t ·w is the tree in DX
n+m that is obtained

by identifying the roots of t and w, while that t ◦ w is the tree

t ◦ w = t1 · . . . · tr−1(tr ◦ w1) · w2 . . . · ws,

where tr ◦ w1 is the tree that is obtained by identify the root of tr with the
only leaf of the tree w1.

For instance,

a b

c

d

b

◦ e g

f

bc

=
b

a b

c

d

e

f

g .

5.1.4. Remark. In [40], Y. Zhang, C. Bai and L. Guo defined the free match-
ing dialgebra over the vector space V as the double tensor space T (T (V )).

For a vector space W , T ∗(W ) =
⊕

n≥1

W⊗n denotes the non-unitary tensor

algebra, where the tensor product is denoted by ⊗∗.
Under this notation, the double tensor space is T ∗1(T ∗2(V )). The prod-

ucts · and · are defined as follows:
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For u = u1 ⊗∗1 · · · ⊗∗1 um and v = v1 ⊗∗1 · · · ⊗∗1 vn in T ∗1(T ∗2(V )) with
ui, vj ∈ T ∗2(V ), for 1 ≤ i ≤ m, 1 ≤ j ≤ n, define:

(1) u ·v = u1⊗∗1 · · ·⊗∗1 um⊗∗1 v1⊗∗1 · · ·⊗∗1 vn, the tensor product ⊗∗1 .
(2) u ◦ v = u1 ⊗∗1 · · · ⊗∗1 (um ⊗∗2 v1)⊗∗1 · · · ⊗∗1 vn.

In [40], it is showed that (T ∗1(T ∗2(V )), ·, ◦) is a matching dialgebra, which
is free on the vector space V .

The identification between both versions of the free matching dialgebras
is clear. In our description, the tensors of first type are the trees of the type:

t =

b

an

a1

a2

,

where ai ∈ X, for 1 ≤ i ≤ n, are element in the basis X. In this context, we
will call irreducible tree to the trees of this type.

5.1.5. Remark. For V = K, we identify the free matching dialgebra As2(K)
with the partition algebra

C =
⊕

n≥1

Cn,

where Cn is vector space generated by all the ordered partition of a positive
integer n. We denote by c(n1,...,nl) the ordered partition n = n1 + · · ·+ nl of
n. The products · and ◦ are given respectively by

c(n1,...,nl) · c(m1,...,mk) := c(n1,...,nl,m1,...,mk)

and

c(n1,...,nl) ◦ c(m1,...,mk) := c(n1,...,nl+m1,...,mk).

Since the non-symmetric operad As2 is completely described by the free
matching algebra on V = K, we have that (As2)n = Cn. In particular, the
dimension of (As2)n is 2n.

5.2. Bi-matching dialgebras. We introduce the notion bi-matching dial-
gebras. For this, we requires the following proposition, which shows that
the operad of matching dialgebras is a Hopf operad.

5.2.1. Proposition. If (A, ·, ◦) is a matching dialgebras, then A ⊗ A is a
matching dialgebras with the products defined by:

(1) (a1 ⊗ a2) · (b1 ⊗ b2) = a1 · b1 ⊗ a2 · b2 and
(2) (a1 ⊗ a2) ∗ (b1 ⊗ b2) = a1 · b1 ⊗ a2 ◦ b2 + a1 ◦ b1 ⊗ a2 · b2.

Proof. The proof follows by direct computation. �
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5.2.2. Remark. Note that in Proposition 5.2.1, the associativity of the prod-
uct ∗ requires the compatibility condition between the products · and ◦.

The following notion of bialgebra was originally introduced by A.B. Gon-
charov in [16].

5.2.3. Definition. A bi-matching dialgebra is a matching dialgebra (H, ·, ◦)
equipped with a coassociative coproduct ∆ : H → H ⊗ H such that ∆ is
morphism of matching dialgebras with respect to the matching dialgebra
structure of H ⊗H defined in Proposition 5.2.1.

5.2.4. Proposition. Let (H, ·,∆) be a bialgebra and let R : H → H be a
right semi-homomorphism. If R is a coderivation for the product ·, then

∆(x ◦ y) = ∆(x) ∗∆(y),

for any x, y ∈ H, where x ◦ y = x · R(y) is the product defined in Remark
5.0.3.

Proof. By a straightforward calculation, we get:

∆(x ◦ y) = ∆(x ·R(y))
= ∆(x) ·∆(R(y))
= x(1) ⊗ x(2) · (R(y(1))⊗ y(2) + y(1) ⊗R(y(2)))
= x(1) ·R(y(1))⊗ x(2) · y(2) + x(1) · y(1) ⊗ x(2) ·R(y(2))
= x(1) ◦ y(1) ⊗ x(2) · y(2) + x(1) · y(1) ⊗ x(2) ◦ y(2)
= ∆(x) ∗∆(y),

which proves the formula. �

5.2.5. Example. Consider the Grossman-Larson’s Hopf algebra H = K[T ]
with basis the set of all non-planar rooted trees T described in [17]. Recall
that the tree e with one vertex is the unit for the product defined in H.
Consider the linear map R : H → H such that, for any rooted tree t, R(t)
is the sum of trees obtained from t by attaching one more outgoing edge
and vertex to each vertex of t, which is originally defined on the Connes-
Kreimer’s Hopf algebra in [7].

In [33], Proposition 2.2, F. Panaite showed the linear map R is a right
semi-homomorphism for H. In fact, R(x) = R(e) · x, for all x ∈ H. In
his work F. Panaite showed that R is a coderivation for the coproduct ∆
defined in H. Indeed, since R(e) is a primitive element, we have that

∆(R(x)) = ∆(R(e) · x)
= ∆(R(e)) ·∆(x)
= (R(e)⊗ e+ e⊗R(e)) · x(1) ⊗ x(2)
= R(e) · x(1) ⊗ x(2) + x(1) ⊗R(e) · x(2)
= R(x(1))⊗ x(2) + x(1) ⊗R(x(2)),



73

and R is a coderivation. So, (H, ·, ◦,∆) is a bialgebra, where ◦ is the asso-
ciative product induced by R and the compatibility condition between the
products · and ◦ with the coproduct ∆ is as in Remark 5.2.2.

5.2.6. Remark. The previous result obtained by F. Panaite may be gener-
alized to any bialgebra (H, ·,∆) with unit e ∈ H, that is, if R : H → H is a
right semi-homomorphism and R(e) is a primitive element of H, then R is
a coderivation. The proof is similar to that given in the Example 5.2.5.

5.2.7. Example. Let H = K[X] be the K-algebra of polynomial in one
variable, with the usual product and the coproduct given by:

∆(Xn) :=
n∑

i=0

(
n

i

)
Xn−i ⊗Xi,

with the homomorphism R defined by R(Xn) = Xn+1. As R(1) = X is a
primitive element, we get that R is a coderivation.

5.3. The Goncharov’s Hopf algebra. Let us describe the path algebra
P (S), introduced by A. B. Goncharov in [16], which motivates our notion
of bialgebra, described in Remark 5.2.2.

Let S be a finite set. Denote by P (S) the K-vector space with basis

ps0,...,sn , for n ≥ 1, and sk ∈ S, for k = 0, . . . , n.

The associative product · : P (S)⊗ P (S) → P (S) is defined as follows:

pa,X,b · pc,Y,d =

{
pa,X,Y,d , for b = c,

0 , for b 6= c,

where the letters a, b, c, d denote elements, and X and Y denote sequences,
possibly empty, of elements of the set S. In particular, pa,b = pa,x · px,b, for
x ∈ S, and the unit for this product is the element e =

∑
i∈S pi,i.

The coproduct ∆ : P (S) → P (S)⊗ P (S) is given by:

∆(pa,x1,...,xn,b) =

n∑

k=0

∑

σ∈Sh(k,n−k)

pa,xσ(1),...,xσ(k),b ⊗ pa,xσ(k+1),...,xσ(n),b.

For instance, ∆(pa,b) = pa,b ⊗ pa,b, for a, b ∈ S, and

∆(e) =
∑

i∈S

pi,i ⊗ pi,i 6= e⊗ e.

The linear map R : P (S) → P (S), given by:

R(e) =
∑

i∈S

pi,i,i

is a right semi-homomorphism.
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With the definition above, we get that R(pa,X,b) = pa,a,X,b, for any element
pa,X,b of the basis. So, R induces a new associative product ◦ : P (S) ⊗
P (S) → P (S) by setting x ◦ y = x · R(y), that is:

pX,b ◦ pc,Y =

{
pX,b,Y , for b = c,

0, for b 6= c,

where b, c ∈ S, and X and Y are sequences of elements of S.

5.3.1. Proposition. The right semi-homomorphism R : P (S) → P (S) is a
coderivation.

Proof. Note that for any element i ∈ S, we have that ∆(pi,i,i) = pi,i,i⊗pi,i+
pi,i ⊗ pi,i,i, therefore:

∆(R(e)) =
∑

i∈S

pi,i,i ⊗ pi,i + pi,i ⊗ pi,i,i.

Let x = pa,X,b be an element of the basis of P (S). By definition of the
coproduct ∆, we have that the element ∆(x) is a sum of tensors of type

pa,X′,b ⊗ pa,X′′,b,

where X ′ and X ′′ are (possibly empty) ordered subsequences of X.
Using the Sweedler’ notation, we write

∆(x) = x(1) ⊗ x(2) = pa,X(1),b ⊗ pa,X(2),b.

Computing ∆(R(x)), we obtain that:

∆(R(x)) = ∆(R(e) · x)
= (

∑
i∈S pi,i,i ⊗ pi,i + pi,i ⊗ pi,i,i) · x(1) ⊗ x(2)

= (
∑

i∈S pi,i,i ⊗ pi,i + pi,i ⊗ pi,i,i) · pa,X(1),b ⊗ pa,X(2),b

= pa,a,a · pa,X(1),b ⊗ pa,a · pa,X(2),b + pa,a · pa,X(1),b ⊗ pa,a,a · pa,X(2),b

= pa,a,X(1),b ⊗ pa,X(2),b + pa,X(1),b ⊗ pa,a,X(2),b

= R(x(1))⊗ x(2) + x(1) ⊗R(x(2)),

which ends the proof. �

5.4. Notion of compatible infinitesimal bialgebra in matching di-

algebras. We consider the notion of compatible infinitesimal bialgebra in
matching dialgebras. A direct compute shows that this notion of bialgebra
is well-defined in a matching dialgebra.

Let (A, ◦,∆) be an infinitesimal bialgebra. The product ◦ and the co-
product ∆ may be extended to T (A) =

⊕
n≥1A

⊗n as follows:

(1) (a1 . . . an) ◦ (b1 . . . bm) = a1 . . . an−1(an ◦ b1)b2 . . . bm and

(2) ∆(a1 . . . an) =

n−1∑

i=1

a1 . . . ai−1∆(ai)ai+1 . . . an+

n−1∑

i=1

a1 . . . ai⊗ai+1 . . . an
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If we denoted by · the concatenation product in T (A), then (T (A), ·, ◦) is a
matching dialgebra, and ∆ is infinitesimal for both products.

In particular, consider the free matching dialgebra As2(V ) = T (T (V )).
In this case, A = T (V ) is an infinitesimal bialgebra with the concatenation
product and the deconcatenation coproduct. Identifying the tree a1 ◦ . . .◦an
with a tensor in T (V ) and the product ◦ with the concatenation product,
we get:

∆(a1 ◦ . . . ◦ an) :=
n−1∑

i=1

(a1 ◦ . . . ◦ ai)⊗ (ai+1 ◦ . . . ◦ an).

Thus, extending ∆ to T (T (V )), we have that As2(V ) is a compatible
infinitesimal bialgebra.

The explicit formula for the coproduct ∆ is given by:

∆(t) =

n−1∑

i=1

t{a1,...,ai} ⊗ t{ai+1,...,an},

described in Proposition 4.1.4, which extends the deconcatenation coproduct
of T (V ).

5.4.1. Example. When t is the tree

t =
b

a

b

c

d

e

f ,

the coproduct ∆(t) is given by:

∆(t) =
b

a ⊗
b

b

c

d

e

f +
b

a b ⊗
b

c

d

e

f +
b

a

b

c ⊗
b

d

e

f

+
b

a

b

c

d ⊗
b

e

f +
b

a

b

c

d e ⊗
b

f .

5.4.2. Remark. The primitive part of the compatible infinitesimal bialgebra
As2(V ) is generated by the associative product ∗ given by x∗y = x◦y−x ·y
together with theN -operations of superior degree. By the compatibility con-
ditions defining a matching dialgebras, the N -algebra structure of As2(V )
is reduced only associative product ∗. Thus, we get a good triple of operads
(As,As2,As), in the Loday’s sense (see [25]).
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5.5. As-Com2-operad. Let us consider the matching dialgebras where one
of the associative products is commutative. We denote the associated operad
by As-Com2. The associative product is denoted by ◦ and the commutative
product by ·.

The following lemma is obtained by a straightforward computation, apply-
ing the compatibility condition between the products and the commutativity
of the product ·.

5.5.1. Lemma. If x1, x2, x3 ∈ As-Com2 and σ ∈ S3, then

(xσ(1) ◦ xσ(2)) · xσ(3) = (x1 ◦ x2) · x3 = (xσ(1) · xσ(2)) ◦ xσ(3).

5.5.2. Remark. As an immediate consequence of Lemma 5.5.1, we get that:
if x1, . . . , xn, y ∈ As-Com2, then

(x1 ◦ . . . ◦ xn) · y = (x1 ◦ . . . ◦ xi−1 ◦ y ◦ xi+1 ◦ . . . ◦ xn) · xi,

for all i ∈ {1, . . . , n}.
In this way, if x ∈ As-Com2(n) is a monomial in the variables x1, . . . , xn

of the form x = (xσ(1) ◦ . . . ◦ xσ(i)) · xσ(i+1) · . . . · xσ(n) for some σ ∈ Sn and
1 ≤ i ≤ n− 1, then

x = (x1 ◦ . . . ◦ xi) · xi+1 · . . . · xn.

5.5.3. Proposition. Let x ∈ As-Com2(n) be a monomial constructed with
the elements x1, . . . , xn and the products ◦ and ·, in such a way that ◦ appears
k times, for 0 ≤ k ≤ n− 1:

(1) If 0 ≤ k ≤ n− 2, then x = (x1 ◦ . . . ◦ xk+1) · xk+2 · . . . · xn.
(2) If k = n− 1, then x = xσ(1) ◦ . . . ◦ xσ(n), for some σ ∈ Sn.

Proof. For k = n− 1, the result is immediate.
For 0 ≤ k ≤ n − 2, x can be written as x = y1 · . . . · yn−k, where each yj

is a monomial of the type yj = xi1 ◦ . . . ◦ xil , where {i1, . . . , il} is subset of
{1, . . . , n}.

Applying Lemma 5.5.2, we may permute the products · and ◦, until we
obtain that:

x = (xσ(1) ◦ . . . ◦ xσ(i)) · xσ(i+1) · . . . · xσ(n),

for some σ ∈ Sn. Therefore, we may conclude that

x = (x1 ◦ . . . ◦ xi) · xi+1 · . . . · xn.

�

5.5.4. Remark. Consider n > 1 and a monomial x ∈ As-Com2(n) con-
structed with the elements x1, . . . , xn and the products ◦ and ·, in such a
way that ◦ appears k times, for 0 ≤ k ≤ n− 1. From Proposition 5.5.3,if we
permute the variables or we permute the products · and ◦ in the monomial
x, we obtain the same element. So, the action of symmetric group Sn is
trivial on this element.
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5.5.5. Proposition.

As-Com2(n) = 1n ⊕ · · · ⊕ 1n ⊕K[Sn],

where the sum consist of (n− 1) copies of the trivial representation and one
copy of regular representation of Sn.

Proof. The proof follows from Proposition 5.5.3 and Remark 5.5.4. �

As a consequence of the previous result, we have that the dimension of
As-Com2(n) is (n− 1) + n!.

6. The operad As-Com2

This section is devoted to study the operad of associative compatible
algebras such that one of products is commutative. We denote this operad
by As-Com2. So, As-Com2 is generated by a commutative product · and by
an associative product ◦, which satisfy compatibility condition of Remark
3.0.2.

6.1. Basis for As-Com2. We want to find a basis for As-Com2. In order to
do this, we previously introduce the notion of n-tree.

6.1.1. Definition. Let n be a positive integer. A n-rooted tree, or simply
n-tree, is a non-planar rooted tree t with (n + 1)-vertices, whose vertices
different from the root are colored by the set [n], while the root is not

colored. We denote the set all the n-trees by Tn and by T the union
⋃

n≥1

Tn.

Given a n-tree t, we identify each vertex of t, different of the root, with
the element of the set [n] which colors it. The degree of a vertex a in the
n-tree t, different of the root, is the number of inputs of this vertex and it
is denoted by |a|.

Given X = {a1, . . . , an} a set of n positive integers such that a1 < · · · <
an, a n-tree in the set of vertices X is a non-planar rooted tree t with (n+1)
vertices, whose vertices, which are not the root, are colored by the set X.
Given a n-tree t, we denote by t

X
the n-tree in the set of vertices X such

that the vertex i in t is colored by the element ai in t
X
, for 1 ≤ i ≤ n.

6.1.2. Remark. Since the product · is commutative and the product ◦ is
associative, we identity each n-tree t with a monomial mt in As-Com2(n).
For example:

(x1 · x3) ◦ x2 ≡ = 2

3 1

2

31

≡ (x3 · x1) ◦ x2.
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In particular, for any permutation σ ∈ Sn, we denote by tσ the n-tree,

tσ =

σ(1)

σ(2)

σ(n)

The n-tree tσ is associated to the element xσ(1) ◦ . . . ◦ xσ(n) in As-Com2(n).

6.1.3. Lemma. Let x, y and z be elements of As-Com2, we get obtain that

(x · y) ◦ z = z ◦ (x · y) + (x ◦ z) · y − x · (z ◦ y)− (z ◦ x) · y + x · (y ◦ z).

Proof. The compatibility condition between the products states that :

x ◦ (y · z) = (x ◦ y) · z − x · (y ◦ z) + (x · y) ◦ z

and
x ◦ (z · y) = (x ◦ z) · y − x · (z ◦ y) + (x · z) ◦ y.

While the commutativity of · implies that:

(x · y) ◦ z = (x ◦ z) · y − x · (z ◦ y) + (x · z) ◦ y + x · (y ◦ z)− (x ◦ y) · z.

As (z · x) ◦ y = z ◦ (x · y)− (z ◦ x) · y + z · (x ◦ y), we get that :

(x · y) ◦ z = z ◦ (x · y) + (x ◦ z) · y − x · (z ◦ y)− (z ◦ x) · y + x · (y ◦ z),

which ends the proof. �

6.1.4. Proposition. If x, y1, . . . , yn are elements in As-Com2, then

x ◦ (y1 · . . . · yn) =
n∑

i=1

((x · y1 · . . . · yi−1) ◦ yi) · yi+1 . . . · yn

−
n∑

i=2

x · ((y1 · . . . · yi−1) ◦ yi) · yi+1 · . . . · yn.

Proof. The proof follows by induction on n and by the compatibility condi-
tion between the associative products · and ◦. �

From the previous reduction formula, we have that As-Com2(n) is, as
vector space, generated by Tn.

However, the set Tn is not a basis for As-Com2(n).

6.1.5. Example. Consider the case n = 3. As-Com2(3) is generated by the
elements (x1 · x2) ◦ x3, (x1 · x2) ◦ x3, (x1 · x2) ◦ x3, (xσ(1) ◦ xσ(2)) · xσ(3),
xσ(1) ◦ xσ(2) ◦ xσ(3) and x1 · x2 ◦ x3, where σ ∈ S3.

By Lemma 6.1.3, we have that:

(x1 · x3) ◦ x2 = x2 ◦ (x1 · x3) + (x1 ◦ x2) · x3 − x1 · (x2 ◦ x3)
−(x2 ◦ x1) · x3 + x1 · (x3 ◦ x2)

= (x1 · x2) ◦ x3 − x1 · (x2 ◦ x3) + (x1 ◦ x2) · x3
+x1 · (x3 ◦ x2)− (x1 ◦ x3) · x2.
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In terms of trees, we get

= 3

1 2

2

31

3

1

21 3

2

2

1

3 1 2

3

−++− ,

and

= 3

2 1

1

32

3

2

12 3

1

1

2

3 2 1

3

−++− .

Moreover, it is clear that the element (x1 ·x2) ◦x3 = (x2 ·x1) ◦x3 can not
be reduced. So, the set

{(x1 · x2) ◦ x3, x1 · x2 · x3, (xσ(1) ◦ xσ(2)) · xσ(3), xσ(1) ◦ xσ(2) ◦ xσ(3)},

where σ ∈ S3, is a basis for As-Com2(3). Therefore, the dimension of As-
Com2(3) is equal to 14.

6.1.6. Remark. Via the identification described in Remark 6.1.2, each n-
tree t can be expressed as t = t1 · . . . ·tr, where the root of each ti has exactly

one child and

r∑

i=1

|ti| = n. When r > 1, we say that t is a reducible n-tree.

The tree t is an irreducible n-tree if r = 1, that is, the root of t has only
one child. In such case, if n > 1, t = t′ ◦ a, where a ∈ [n] and t′ is a
(n− 1)-tree in the set of vertices [n] \ {a}.

We denote by Red-T the set of all the reducible n- trees.

6.1.7. Definition. Let X,Y be elements in As-Com2. We say that X is
equivalent to Y if X − Y belongs to K[Red-T]. We denote the previous
relation by X ∼ Y .

6.1.8. Example. In As-Com2(3), we have that

(x1 · x2) ◦ x3 ∼ (xσ(1) · xσ(2)) ◦ xσ(3),

for any permutation σ ∈ S3. More in general, in As-Com2(n), we have that

(xσ(1) · . . . · xσ(n−1)) ◦ xσ(n) ∼ (x1 · . . . · xn−1) ◦ xn,

for any σ ∈ Sn. In fact, if σ(n) = n, then by the commutativity of the
product ·, we get:

(xσ(1) · . . . · xσ(n−1)) ◦ xσ(n) = (x1 · . . . · xn−1) ◦ xn.

Suppose that σ(n) = k, with k 6= n. By commutativity of the product ·,
we may assume that σ(n− 1) = n. By Lemma 6.1.3, we have that

(xσ(1) · . . . · xσ(n−2) · xn) ◦ xk ∼ xk ◦ (xσ(1) · . . . · xσ(n−2) · xn).

Applying the reduction formula 6.1.4 to the element xk ◦ (xσ(1) · . . . ·xσ(n−2) ·
xn) and using the commutativity of ·, we obtain

(xσ(1) · . . . · xσ(n−1)) ◦ xσ(n) ∼ (x1 · . . . · xn−1) ◦ xn.
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6.1.9. Remark. The relation ∼ satisfies the following conditions:

(1) if X ∼ Y , then Y ∼ X,
(2) if X ∼ Y and Y ∼ Z, then X ∼ Z,
(3) if X ∼ Y and Z ∼ T , then X + Z ∼ Y + T ,

for any elements X,Y,Z and T .

Let us describe the method that we will use to construct a basis Bn for
As-Com2(n), using n-trees.

Suppose that we have constructed a basis Bi for As-Com
2(i), which con-

sists of i-trees, for 1 ≤ i ≤ n−1. The reducible n-trees in Bn are constructed
from the irreducible trees present in the basis B1, . . . , Bn−1. Specifically, an

reducible n-tree in the basisBn is given by t = t1
X1

·. . .·tr
Xr

, where [n] =

r⋃

i=1

Xr

is a partition of [n], with r ≥ 2, and ti ∈ B
|Xi|

is an irreducible |Xi|-tree, for
1 ≤ i ≤ r.

The set of n-trees constructed in this way form a linearly independent set
in As-Com2(n). To complete the basis Bn, we consider a linearly indepen-
dent set of irreducible n-tree such that if t is an irreducible n-tree, then t is
equivalent to a linear combination of these trees under the relation ∼ defined
in 6.1.7. Since these elements do not belong to the subspace generated by
the reducible n-trees in Bn, the set Bn is linearly independent.

Moreover, Bn will generate As-Com2(n). In fact, by induction, if t =
t1 ·. . .·tr is a reducible n-tree, then t can be expressed as a linear combination
of n-trees of the type t = t1

X1
· . . . · tr

Xr
, where Xi is the set of vertices of ti

and ti ∈ B
|Xi|

is an irreducible |Xi|-tree, for 1 ≤ i ≤ r.

So, we can generate all the reducible n-trees by mean of elements of Bn.
Now, if t is an irreducible n-tree, then by construction, t is equivalent to
a linear combination of irreducibles n-trees in Bn. So, since each reducible
n-tree is generated by Bn, we have that t is generated by Bn. This shows
that Bn is a basis for As-Com2(n).

6.1.10. Lemma. Let x, y, z and w be elements of As-Com2. We have that

(x · y) ◦ z ◦ w ∼ w ◦ (x · y) ◦ z

.

Proof. Note that, by the compatibility condition, we have:

z ◦ (y · w) ◦ x = ((z ◦ y) · w) ◦ x− (z · (y ◦ w)) ◦ x+ (z · y) ◦ w ◦ x

and

z ◦ (w · y) ◦ x = ((z ◦ w) · y) ◦ x− (z · (w ◦ y)) ◦ x+ (z · w) ◦ y ◦ x.

Therefore, we get that:
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((z ◦ y) · w) ◦ x− (z · (y ◦ w)) ◦ x+ (z · y) ◦ w ◦ x =

((z ◦ w) · y) ◦ x− (z · (w ◦ y)) ◦ x+ (z · w) ◦ y ◦ x.

On the other hand, consider the following equivalences :

• ((z ◦ y) · w) ◦ x ∼ (x · w) ◦ z ◦ y ,
• (z · (y ◦ w)) ◦ x ∼ (x · (y ◦ w)) ◦ z,
• (z · y) ◦ (w ◦ x) ∼ ((w ◦ x) · y) ◦ z,
• ((z ◦ w) · y) ◦ x ∼ (x · y) ◦ z ◦ w,
• (z · (w ◦ y)) ◦ x ∼ (x · (w ◦ y)) ◦ z,
• (z · w) ◦ (y ◦ x) ∼ ((y ◦ x) · w) ◦ z,

they imply that

(x · w) ◦ z ◦ y ∼ (x · y) ◦ z ◦ w − (x · (w ◦ y)) ◦ z
+((y ◦ x) · w) ◦ z + (x · (y ◦ w)) ◦ z − ((w ◦ x) · y) ◦ z.

In a similar way, given that x ◦ (z · w) ◦ y = x ◦ (w · z) ◦ y, we have that:

(x · w) ◦ z ◦ y ∼ (y · w) ◦ x ◦ z − (x · y) ◦ z ◦ w
+(x · (w ◦ y)) ◦ z + (x · y) ◦ w ◦ z − ((x ◦ w) · y) ◦ z.

Using the equivalences above, we obtain

2(x · y) ◦ z ◦ w ∼ (y · w) ◦ x ◦ z + 2(x · (w ◦ y)) ◦ z − ((x ◦ w) · y) ◦ z
+(x · y) ◦ w ◦ z − ((y ◦ x) · w) ◦ z − (x · (y ◦ w)) ◦ z
+((w ◦ x) · y) ◦ z.

But, as

(x · y) ◦ w ◦ z = (x · w) ◦ y ◦ z + ((x ◦ w) · y) ◦ z
+((y ◦ w) · x) ◦ z − ((x ◦ y) · w) ◦ z − ((w ◦ y) · x) ◦ z

and

(y · w) ◦ x ◦ z = (x · w) ◦ y ◦ z + ((y ◦ x) · w) ◦ z
+((w ◦ x) · y) ◦ z − ((w ◦ y) · x) ◦ z − ((x ◦ y) · w) ◦ z,

we may conclude that

2(x · y) ◦ z ◦ w ∼ 2(x · w) ◦ y ◦ z − 2((x ◦ y) · w) ◦ z + 2((w ◦ x) · y) ◦ z.

and, we get the expected result

(x · y) ◦ z ◦ w ∼ ((w ◦ x) · y − w · (x ◦ y) + (w · x) ◦ y) ◦ z
∼ w ◦ (x · y) ◦ z.

�
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6.1.11. Example. In degree 4, we have that:

=
4

1 2

4

21

∼

3

.

3
◦ 3 ◦ 4

1 2

=
3 1 2

◦ ◦ 4

As

.

3 1 2
◦ = 3

1 2

3

1

21 3

2

1

3

2 1 2

3

−++− ,

we obtain that:

∼ 3

1 2

4

21

3

1

21 3

2

1

3

2 1 2

3

−++− .

3 4 4 4 4 4

In a similar way, as (1 · 3) ◦ 4 ◦ 2 ∼ 2 ◦ (1 · 3) ◦ 4, we have that:

∼ 3

1 2

4

31

2 3

1

1

2

3+−

2 4 4 4

.
and, as (2 · 3) ◦ 4 ◦ 1 ∼ 1 ◦ (2 · 3) ◦ 4, we get

∼ 3

1 2

4

32

1 3

2

2

1

3+−

1 4 4 4

.
6.1.12. Definition. A n-tree t is a B-tree whenever it satisfies one of the
following conditions:

(1) t = tσ, for some σ ∈ Sn, or
(2) the vertices of t satisfy the following condition. If a is a vertex of t,

different of the root, such that |a| ≥ 2, then:
(a) all the vertices that are above the vertex a are smaller than a,

and
(b) the direct path from the vertex a to the root is increasing.

6.1.13. Notation. We denote the set B-trees of degree n by Bn.

For example, B3 is the basis for As-Com2(3) described in Example 6.1.5.
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6.1.14. Remark. Suppose that t = t1 · . . . · tr is a tree in Bn. Denote by
X = [n] and by Xi the set vertices of the tree ti, for each i ∈ {1, . . . , r}.

We have that ti is an irreducible B-tree in the set of vertices Xi, for each
i ∈ {1, . . . , r}. So, we can see each B-tree t as a forest of irreducible B-trees.

In particular, for r = 1 and n > 1, we have that t = t′ ◦ a. By the
conditions on the vertices in a B-tree, for a 6= n, necessarily t = tσ, for some
σ ∈ Sn.

On the other hand, if a = n, then t′ ∈ Bn−1. Thus, if t ∈ Bn is an
irreducible n-tree, then t = tσ, for some σ ∈ Sn, or t = t′ ◦ n, for some
t′ ∈ Bn−1.

Moreover, note that, in the second case, if t = t′ ◦ n, then there exists
k ∈ [n] such that t = (s1 ·. . . ·sl)◦k◦(k+1)◦. . .◦n, where k < k+1 < · · · < n
are consecutive integers and s1 · . . . · sl ∈ Bk−1.

6.1.15. Proposition. If t is a n-tree, then t can be reduced to a linear
combination of trees in Bn.

Proof. The proof is by induction on the degree of the tree t.
Let n be the degree of t. If n = 1 or n = 2 the assertion is obvious.
For n = 3, B3 is a basis for As-Com2(3).

Consider n > 3 and suppose the result is true for 1 ≤ r < n. Let t be
an irreducible n-tree. In such case, t = t′ ◦ a, where a ∈ [n] and t′ is a
(n− 1)-tree in the set of vertices [n] \ {a}.
Suppose that t is not a B-tree. So, a 6= n and t 6= tσ, for all σ ∈ Sn. By
inductive hypothesis, t′ can be reduced to a linear combination of B-trees
in the set of vertices [n] \ {a}, whose reduction is derived from the relations
between the products · and ◦.

So, t can be expressed as a linear combination of elements of the type
s◦a, where s is B-tree in the set of vertices [n]\{a}. Let us show that these
elements may be written as a linear combination of elements in Bn.

If s is an irreducible tree, then s = (w1 ·w2)◦w3, where w1 ·w2 is a B-tree
in some subset of [n] \ {a}, and w = a1 ◦ . . . ◦ ak ◦n, with a1 < · · · < ak < n.
By Lemma 6.1.10, we have that

s ◦ a ∼ a ◦ (w1 · w2) ◦ w3 = (a ◦ (w1 · w2) ◦ (a1 ◦ . . . ◦ ak)) ◦ n.

So, s◦a = (a◦(w1·w2)◦(a1◦. . .◦ak))◦n+some linear combination of reducible trees.
Since the monomial a ◦ (w1 · w2) ◦ (a1 ◦ . . . ◦ ak) is a linear combination of
(n− 1)-trees, we apply the inductive hypothesis of this element.

In similar way, we apply the inductive hypothesis to each child of the
reducible trees present in the decomposition of s ◦ a. So, we have that s ◦ a
is linear combination of elements of Bn.

Assume now that s is a reducible tree and write s = s1 · . . . · sl, where
l > 1 and each si is an irreducible B-tree in some subset of [n] \ {a}, with
1 ≤ i ≤ l. By the commutativity of ·, we may assume that n is a vertex of
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sl. By Lemma 6.1.3, we have that:

(s1 · . . . · sl) ◦ a = ((s1 · . . . · sl−1) · sl) ◦ a ∼ a ◦ ((s1 · . . . · sl−1) · sl).

Using the compatibility condition between the products · and ◦, we get

a ◦ ((s1 · . . . · sl−1) · sl) = (a ◦ (s1 · . . . · sl−1)) · sl − a · ((s1 · . . . · sl−1) ◦ sl)

+(a · s1 · . . . · sl−1) ◦ sl.

For the term (a ·s1 · . . . ·sl−1)◦sl, when sl = s′ ◦n, we may apply a recursive
argument.
If sl is of the form sl = a1 ◦ . . . ◦ n ◦ . . . ◦ ak, we apply Lemma 6.1.10, and
afterwards a recursive argument, as in the previous case.

For the other terms, we use a similar recursive argument. Therefore, t is
a linear combination of elements of Bn.

Consider a reducible n-tree t = t1 · . . . · tr, where ti is an irreducible tree,
for 1 ≤ i ≤ r. Applying the result obtained in the previous paragraph to
each ti, we get that t is a linear combination of reducible n-trees in Bn,
which ends the proof.

�

6.1.16. Theorem. The set Bn is a basis for As-Com2(n).

Proof. By Proposition 6.1.15, each n-tree may be written as a linear com-
bination of n-trees in Bn. So, since As-Com2(n) is generated by Tn, Bn

generates As-Com2(n).

Let us show that the set Bn is linearly independent for each positive
integer n. The proof is by induction on n.

The case n = 1 and n = 2 are obvious and in Example 6.1.5 we have
seen that B3 is basis of As-Com2(3). Consider n > 3 and suppose that the
assertion is true for all k < n.

First, let us see that the set of reducible n-trees in Bn is linearly indepen-
dent. Suppose that such set is not linearly independent. In this case, there
exists a reducible n-tree

t = t1 · . . . · tr ∈ Bn,

which is a linear combination of the others elements of Bn. But in this case,
at least one ti must be reducible, for some 1 ≤ i ≤ r, which contradicts our
hypothesis.

By other hand, if Bn−1 = {t1, . . . , tl}, then the set of trees {t1◦n, . . . , tl◦n}
is linearly independent because the set Bn−1 is linearly independent.

By Remark 6.1.14, the set of irreducible n-trees in Bn is described by:

An = {t ◦ n|t ∈ Bn−1} ∪ {t = tσ|σ ∈ Sn, σ(n) 6= n},

we have that An is linearly independent. An element of the last cannot be a
linear combination of reducible n-trees in Bn. So, Bn is linearly independent,
which ends the proof.

�
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6.2. Dimension of As-Com2(n). Let us denote by An the set of the irre-
ducible n-trees in Bn, and by bn and an the number of elements of Bn and
An, respectively .

From Remark 6.1.14, we have that if t ∈ An, then t = tσ, for some σ ∈ Sn,
or t = t′ ◦ n, for some t′ ∈ Bn−1. Let us denote by A1

n and A2
n the subsets

of An given by

A1
n = {t ∈ Tn|t = tσ, for some σ ∈ Sn, σ(n) 6= n}

and

A2
n = {t ∈ Tn|t = t′ ◦ n, t′ ∈ Bn−1}.

The set An is the disjoint union of the sets A1
n and A2

n. So, we get the
equation

(∗) an+1 = bn + n · n!.

Let us denote by A(x) and B(x) the exponential generating functions,
associated to the sequences an and bn, respectively.

As any element of Bn is a forest of B-trees (Remark 6.1.14), we have that

B(x) = eA(x). Thus, the equation (∗) is equivalent, in terms of generating
functions, to

A′(x) = B(x) + C(x),

where B(x) = eA(x) and C(x) =
x

(1− x)2
.

As B′(x) = eA(x)A′(x), we have that

B′(x) = B(x)2 +B(x)C(x).

Given that the sequences associated to exponential generating functions
B(x)2 and B(x)C(x) are, respectively,

dn =

n∑

k=0

(
n

k

)
bkbn−k, en =

n∑

k=0

(
n

k

)
bk(n− k)(n − k)!,

we obtain an explicit recursive formula to determine bn, which is

bn+1 =
n∑

k=0

(
n

k

)
bk[bn−k + (n − k)(n − k)!],

where b0 = 1. In particular, the dimensions of As-Com2(n) in low degree are
given by the sequence 1, 3, 14, 85, 632, 5559, 56444, 649557, 8353352, 118712191.

7. Compatible commutative algebras

In this section, we study the operad generated by two commutative prod-
ucts, which are compatible. The algebras over this operad will be called com-
patible commutative algebras. Following the notation given by Strohmayer
in [37], we denote this operad by Com2.
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7.1. The dual of Com2. Let us compute the Koszul dual operad of Com2.
The operad Com2 is generated by two commutative products, which are de-
noted by · and ◦, respectively, which are compatible. From the compatibility
condition given in Remark 3.0.2 and the commutativity of the products, we
have that:

(x1 · x2) ◦ x3 + (x1 ◦ x2) · x3 = (x1 · x3) ◦ x2 + (x1 ◦ x3) · x2
= (x2 · x3) ◦ x1 + (x2 ◦ x3) · x1.

So, the space of relations is generated by :

µ1 = (x1 · x2) · x3 − x1 · (x2 · x3),
µ2 = (x1 ◦ x2) ◦ x3 − x1 ◦ (x2 ◦ x3),
µ3 = (x1 · x2) ◦ x3 + (x1 ◦ x2) · x3)− (x1 · x3) ◦ x2 − (x1 ◦ x3) · x2),
µ4 = (x1 · x2) ◦ x3 + (x1 ◦ x2) · x3)− (x2 · x3) ◦ x1 − (x2 ◦ x3) · x1).

From the commutativity of the products, the Koszul dual of Com2 is gen-
erated by two Lie brackets ·∨ and ◦∨, which are determined by the products
· and ◦, respectively. To determine the rest of relations, we consider the
natural pairing between the space of relations. Note that it is sufficient to
consider elements of the type (x ·∨ y) ◦∨ z and (x ◦∨ y) ·∨ z.

The inner product with respect to the relations µ3 and µ4 is given, for
each element of the previous type, by:

< (x1 ·∨ x2) ◦∨ x3, µ3 >= 1 , < (x1 ·∨ x2) ◦∨ x3, µ4 >= 1,
< (x1 ·∨ x3) ◦∨ x2, µ3 >= 1 , < (x1 ·∨ x3) ◦∨ x2, µ4 >= 0,
< (x2 ·∨ x3) ◦∨ x1, µ3 >= 0 , < (x3 ·∨ x2) ◦∨ x1, µ4 >= 1,
< (x1 ◦∨ x2) ·∨ x3, µ3 >= 1 , < (x1 ◦∨ x2) ·∨ x3, µ4 >= 1,
< (x1 ◦∨ x3) ·∨ x2, µ3 >= 1 , < (x1 ◦∨ x3) ·∨ x2, µ4 >= 0,
< (x2 ◦∨ x3) ·∨ x1, µ3 >= 0 , < (x3 ◦∨ x2) ·∨ x1, µ4 >= 1.

Therefore, the space of relations for the Koszul dual operad of Com2 is
given by the relations of the Lie brackets ·∨ and ◦∨, together with elements
of the type: (x·∨y)◦∨z−(x◦∨y)·∨z and (x·∨y)◦∨z+(y ·∨z)◦∨x+(z ·∨x)◦∨y.

The Koszul dual of Com2 as an operad generated by two Lie brackets [, ]
and {, } whose relations are given by:

(1) {[x, y], z} = [{x, y}, z].
(2) {[x, y], z} + {[y, z], x} + {[z, x], y} = 0.

7.1.1. Notation. Following the notation of H. Strohmayer, we denote the
Koszul dual of Com2 by 2Lie.

7.1.2. Proposition. 2Lie(n) = Lie(n)⊕· · ·⊕Lie(n), where the sum consists
of n terms.

Proof. Let us denote by L(i, n− i) the subspace of 2Lie(n) of the operations
in n variables with i brackets of type [, ] and (n − i) brackets of type {, },
where i is an integer 0 ≤ i ≤ n− 1.

This subspace is generated by binary trees with i vertices decorated by
the brackets [, ] and (n− i) vertices decorated by the brackets {, }.
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From the relation {[x, y], z} = [{x, y}, z], if we have a tree of the previous
type and we interchange the place of the brackets, the operation obtained
is equivalent to the original one. The previous remark together with the
relation {[x, y], z}+{[y, z], x}+{[z, x], y} = 0 shows that L(i, n−i) = Lie(n)
for each 0 ≤ i ≤ n− 1.

Therefore, as 2Lie(n) =
⊕n−1

i=1 L(i, n− i), we get the expected result. �

As an immediate consequence from the previous proposition, we have the
following corollary .

7.1.3. Corollary. The dimension of 2Lie(n) is equal to n!.

Proof. It is immediate, since the dimension of Lie(n) is equal to (n−1)!. �

7.2. A PBW basis for 2Lie. We want to construct a PBW basis, in the
sense given by E. Hoffbeck in [18], for 2Lie.

To construct this basis, we start by defining an order on the brackets [, ]
and {, }. Using this order, it is easy to choose a basis in the quadratic part
such that it satisfies the conditions required for a PBW basis.

The elements of the basis in superior degree will be determined by the
condition that any subtree generated by internal edge is a element of the
basis in the quadratic part. Finally, we must check that this set is effectively
a basis (for more details, see [18]).

We use the lexicographical order and define [, ] > {, }. If t is a tree, a
vertex of t decorated by black color represents the bracket [, ] while a vertex
decorated by white color represents the bracket {, }.

We check easily that, in the quadratic part, the following set is a basis
and it satisfies the PBW conditions stated in [18]:

b

b

1 2 3

, b

b

1 3 2

,
1 2 3

bc

b ,
1 3 2

bc

b ,
1 2 3

bc

bc ,
1 3 2

bc

bc .

In higher degree, the elements are given by trees of the type:

tσi =

1 σ(2)

bc

bc

bc

bc

σ(i+ 1) σ(i+ 2) σ(n)

,

where 0 ≤ i ≤ n− 1 and σ is any permutation of the set {2, . . . , n}.

It is clear, from the description of operad 2Lie, that this set generates
2Lie(n). Furthermore, as the number of elements is equal to n!, it is a basis
of 2Lie(n).

Applying the result obtained for E. Hoffbeck in [18], Theorem 3.10, we
get as a consequence the following proposition:
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7.2.1. Proposition. The operad 2Lie is Koszul. Therefore, the operad Com2

is Koszul, too.

8. A PBW basis for Com2

E. Hoffbeck has showed that if a quadratic operad P has a PBW basis,
then its Koszul dual operad P ! has a PBW basis, whose quadratic part is
determined by the quadratic part of the PBW basis of P (see [18]). So, since
Com2 is the Koszul dual operad of 2Lie, we can construct an explicit PBW
basis for Com2, using the PBW basis found for 2Lie.

We use the black color to represent the product ·, dual of the bracket [, ],
and the white color to represent the product ◦, dual of the bracket {, }. So,
the quadratic part of the PBW basis is given by:

1 2 3

b

b ,
1 2 3

bc

bc ,

1 2 3
bc

b
,

1 3 2
bc

b
,

1 2 3
bc

b
,

1 2 3

bc

b .

The elements of superior degree will be determined by the condition that
any subtree generated by internal edge is in quadratic part of the basis.

8.0.1. Remark. Given the variables x1, x2, x3, the previous set of trees rep-
resents the set of operations:

{x1·(x2·x3), x1◦(x2◦x3), (x1◦x2)·x3, (x1◦x3)·x2, x1·(x2◦x3), x1◦(x2·x3)}.

Now, since the operad Com2 is a quotient of the operad As2, the quadratic
elements of the basis can be described by means the following planar rooted
trees:

(∗)
bc

2 31
,

3

1

bc

2

,
1 3

bc

2

,
1 2

bc

3

,
1 2

3

bc

,
1

3

bc

2

.

In this context, let us describe the PBW condition on the trees of higher
degree.

Consider n > 3 and let t be a planar rooted tree with n vertices, different
to the root, which are colored by the set [n].

A tree t belongs to the PBW basis if any subtree t′ of t with three vertices,
decorated by set {a1, a2, a3}, with 1 ≤ a1 < a2 < a3 ≤ n, is one of the trees
described in (∗), where the integer j is replaced by the element aj , for
j = 1, 2, 3.

In particular, the vertex of t labelled by n is necessarily a leaf such that
it is more to the right with respect to the other vertices that have the same
origin that n.

Furthermore, the subtree of t that is obtained by removing the vertex
colored by n, is an element of the basis of degree (n− 1).
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From the previous observations, we construct inductively the PBW basis
for Com2(n) as follow.

In degree one, the basis has an only one element, the unique tree with
two vertices, the root and the vertex colored by 1.

Suppose that n > 1 and that we have constructed the basis for Com2(n−
1). An element in the basis of Com2(n) is a tree t, which is obtained from
a tree t′ in the PBW basis of degree (n− 1) by gluing the vertex colored by
n with a vertex of t′ in such a way that the vertex colored by n is on the
right with respect to the other children of the vertex chosen of t′ .

8.0.2. Proposition. The dimension of Com2(n) is equal to n!.

Proof. We prove the result by induction on n. The dimension of Com2(1)
is one.

Suppose that the dimension of Com2(n) is n!. From Remark 8.0.1, we
have that, if t is a tree in the basis of Com2(n),then an element in the basis
of Com2(n + 1) is obtained by gluing a new vertex colored with (n + 1) to
some vertex of t.

So, each tree t in the basis of Com2(n) gives rise to (n + 1) different
elements in the basis of Com2(n+ 1).

Moreover, note that, if t1 and t2 are different trees in the basis of Com2(n),
then all the trees obtained from them are different.

So, the number of trees in the basis of Com2(n+1) is (n+1)n! = (n+1)!,
which concludes the proof. �

8.0.3. Remark. We characterize an element t in the PBW basis of degree
n as a rooted planar tree with n vertices, different to the root, which are
labelled by the set [n], satisfying the following conditions:

(1) Any path of t starting at the root is increasing.
(2) The vertices of t that have a same origin are in increasing order (read

from left to right).

As the product · is commutative, the trees of the PBW basis of Com2

can be seen as non-planar rooted trees. So, if additionally we considerer the
root colored by zero, the elements of PBW basis are known as increasing
Cayley trees or recursive trees. It is known that the number of increasing
trees with (n+ 1) vertices is n! (see, for example, [11]).

8.0.4. Notation. We denote the set of elements of the PBW basis of Com2

with n vertices, different of the root, by In.
A planar rooted tree t with n vertices, different of the root, colored by

a set of n positive integers, a1 < · · · < an, which satisfies the conditions of
Remark 8.0.3, is called an I-tree. In such case, we say that t is of degree n
and we write |t| = n.

Given an I-tree t, we identify the set of vertices of t, different of the
root, with the set of numbers by which decorate them, denoting this set by
Vert(t).
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8.0.5. Remark. Note that if t is an I-tree, then t can be written in a unique
way as t = t1 · . . . · tr, where r ≥ 1 and the root of each ti is I-tree which
has only one child, for each i ∈ {1, . . . , r}.

In this way, we get that |t| =
r∑

i=1

|ti|.

When the root of a I-tree t has a unique child, we say that t is an irre-
ducible I-tree. In such case, the tree t has the form

t =

b

t′

a
,

where a is a positive integer and t′ is an I-tree such that all the vertices of
t′ are bigger than a. Moreover, we have that t = a ◦ t′.

8.0.6. Definition. Let t be a I-tree. We define the index of t as the minimal
element the set Vert(t), which we denote by ind(t).

8.0.7. Remark. Let t be an I-tree. If t is an irreducible tree, then t = a◦ t′,
for some positive integer a and some I-tree t′. So, ind(t) = a.

On the other hand, if t = t1·. . .·tr is a reducible tree, then ind(t) = ind(t1).
In such case, note that ind(t1) < · · · < ind(tr).

Given two I-trees t1 and t2 such that Vert(t1) ∩ Vert(t2) = ∅, we say
t1 < t2 if ind(t1) < ind(t2).

8.1. Algorithm for PBW basis. We want to describe an algorithm that
to allow us express the elements of Com2 in terms of the PBW basis found.
For this, we consider the following reduction formula.

8.1.1. Proposition. Let n be a positive integer with n ≥ 2. If x1, . . . , xn, y
are elements of Com2, then

(x1 · . . . · xn) ◦ y =
n∑

i=1

x1 · . . . · xi−1 · (xi ◦ (xi+1 . . . · xn · y))

−
n−1∑

i=1

x1 · . . . · xi−1 · (xi ◦ (xi+1 . . . · xn)) · y.

Proof. The proof is by induction on n. Consider n = 2 and x1, x2, y ∈ Com2.
From the compatibility condition between the products, we have that

(x1 ◦ x2) · x3 = x1 ◦ (x2 · y) + x1 · (x1 ◦ y)− (x1 · x2) ◦ x3.

Suppose n > 2 and consider x1, x2, . . . , xn, y ∈ Com2. By the compatibil-
ity condition between the products, we have that

(∗) (x1 · x2 · . . . · xn) ◦ y = (x1 · (x2 · . . . · xn)) ◦ y
= x1 ◦ (x2 · . . . · xn · y) + x1 · ((x2 · . . . · xn) ◦ y)

−(x1 ◦ (x2 · . . . · xn)) · y.
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Applying a recursive argument on the second term of the right side, we
obtain that

x1 · ((x2 · . . . · xn) ◦ y) =
n∑

i=2

x1 · x2 · . . . · xi−1 · (xi ◦ (xi+1 . . . · xn · y))

−
n−1∑

i=2

x1 · x2 · . . . · xi−1 · (xi ◦ (xi+1 . . . · xn)) · y.

This together with (∗) imply that

(x1 · . . . · xn) ◦ y =

n∑

i=1

x1 · . . . · xi−1 · (xi ◦ (xi+1 . . . · xn · y))

−
n−1∑

i=1

x1 · . . . · xi−1 · (xi ◦ (xi+1 . . . · xn)) · y,

which ends the proof. �

Consider two I-trees t1 and t2 with Vert(t1) ∩ Vert(t2) = ∅. We want to
determine an algorithm that allow us to express t1 · t2 and t1 ◦ t2 as a linear
combination of I-trees in the set of vertices Vert(t1) ∪Vert(t2).

First, t1 ·t2 is the I-tree obtained from by identifying the roots of t1 and t2,
ordering the children of the root of an increasing way, according to Definition
8.0.6. Note that it is possible because the product · is commutative.

For the product t1 ◦ t2, as ◦ is a commutative product, we may assume
that t1 < t2. To write t1 ◦ t2 as a linear combination of I-trees, we proceed
by induction on the degree of the tree t1.

If t1 is the degree one, then t1 = a, for some positive integer a. In this
case, t1 ◦ t2 is the I-tree obtained to identify the root of t2 with the vertex
a ,

t1 ◦ t2 =

b

t2

a
.

Suppose that |t1| > 1. We write t1 in a unique way as t1 = t11 · . . . · t
r
1,

where r is a positive integer and ti1 are irreducible I-trees, for i ∈ {1, . . . , r},
such that their set of vertices are mutually disjoint.

If r = 1, then t1 = t11 = a ◦ t′1, for some positive integer a and I-tree t′1 of
degree (n− 1). So,

t1 ◦ t2 = (a ◦ t′1) ◦ t2 = a ◦ (t′1 ◦ t2).

Applying a recursive argument, we suppose that (t′1 ◦t2) is a linear combi-
nation of I-trees. Note that each I-tree which appears in the decomposition
of (t′1◦t2) is of index greater than a, so t1◦t2 is linear combination of I-trees.
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Suppose that r > 1. First, we consider t1 = t11 · . . . · t
r
1 such that ind(tr1) <

ind(t2). So, ind(ti1) < ind(t2), for each i ∈ {1, . . . , r}. To write t1 ◦ t2 as
linear combination of I-trees, we apply the formula given in Proposition
8.1.1:

t1 ◦ t2 =
r∑

i=1

t11 · . . . · t
i−1
1 · (ti1 ◦ (t

i+1
1 . . . · tr1 · t2))

−
r−1∑

i=1

t11 · . . . · t
i−1
1 · (ti1 ◦ (t

i+1
1 . . . · tr1)) · t2.

Now, by a recursive argument, in the previous sum, ti1 ◦ (t
i+1
1 . . . · tr1 · t2)

and ti1 ◦ (t
i+1
1 . . . · tr1) can be write as linear combination of I-trees, for each

i ∈ {1, . . . , r}. So, we can express t1 ◦ t2 as a linear combination in terms of
I-trees.

For the general case, consider k ∈ {1, . . . , r} such that tk1 is maximal
element of the set {ti1| ti1 < t2}. Denoting by t′1 and by t′′1 the I-trees given

by t′1 = t11 · . . . · t
i
1 and t′′1 = ti+1

1 · . . . · tr1, we have that t1 = t′1 · t
′′
1 . By the

compatibility condition and the commutativity of the products · and ◦, we
get:

t1 ◦ t2 = (t′1 · t
′′
1) ◦ t2

= t′1 ◦ (t2 · t
′′
1) + t′1 · (t2 ◦ t

′′
1)− (t′1 ◦ t

′′
1) · t2,

where each term of the right side is linear combination of I-trees, using a
recursive argument.

8.1.2. Example. Consider the I-tree t1 given by

t1 =
b

1 n−1 n

,

where n ≥ 2. Let t2 be an I-tree such that ind(t2) > n. We have that

t1 ◦ t2 =
n∑

i=1

n t2i+1

b

i−1 i1

−
n−1∑

i=1

n

t2

i+1

b

i−1 i1

.

8.1.3. Remark. Suppose that t1 is an irreducible I-tree. In such case, there
exists a positive integer l, with l ≤ |t1|, such that

t1 = a1 ◦ . . . ◦ al−1 ◦ al,

where {a1, . . . , al−1} is a set of positive integers and al is a positive integer
or a reducible I-tree with a1 < · · · < al−1 < Ind(al).

Consider an I-tree t2 such that Vert(t1) ∩Vert(t2) = ∅ and t1 < t2.
To compute t1 ◦ t2, we consider k ∈ {1, . . . , l} such that ak is the maximal
element of the set {ai|Ind(ai) < ind(t2)}.
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By the commutativity of ◦, we have that

t1 ◦ t2 = a1 ◦ . . . · ak ◦ (t2 ◦ ak+1 ◦ . . . ◦ al).

8.1.4. Example. Consider the I-trees,

t1 =
b

3 4

1 and t2 =
b

5 6

2 .

To compute t1 ◦ t2, we proceed as follows:

b

3 4

1 ◦
b

5 6

2 =
b

1
◦ (

b

5 6

2 ◦
b

3 4
)

=
b

1
◦ (

b

2
◦ (

b

5 6
◦

b

3 4
))

=

2

1

b

◦ (
b

3 4
◦

b

5 6
)

=

b

4 5 6

3

2

1

+

b

4

5 6

3

2

1

−

b

4

5 63

2

1

.

8.2. Bijection between In and Sn. We want to find an explicit bijection
between In and Sn. To determine it, we consider the usual decomposition
of a permutation σ ∈ Sn as a product of disjoint cycles. We denote a cycle
of the usual way, with the convention that the smallest element is written
more to the right.

For instance, in S4, we denote the cycle

σ =

(
1 2 3 4
3 1 4 2

)
,

by σ = (3421).
If σ = (an · · · a1) is a cycle, we say that the index of σ is a1 and we

write ind(σ) = a1. Furthermore, given a permutation σ in Sn, we write the
decomposition of σ as product of disjoint cycles putting the indices of the
cycles in increasing order. Thus, when we write σ = σ1 · · · σr, we have that
ind(σ1) < · · · < ind(σr).

Under these conventions, we assign to each irreducible I-tree a cycle and
reciprocally.

Consider an irreducible I-tree t of degree n whose set of vertices is given
by X = {a1, . . . , an}, where a1 is the minimal element of X. We assign to
t a cycle on the set X, which we denote by σt, writing the elements of σt
from right to left as we now indicate :
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(1) Start with the smallest vertex of t, a1. We write σt = (· · · a1) and
we discard the vertex a1 in t. We continue with the vertices that are
above a1, reading the vertices of the tree t as follows:

(2) Suppose that a vertex a ∈ X has been written in σt and discarded
in the tree t. We choose the next vertex as follows:
(a) If the vertex a is a leaf, then we continue with the first not

discarded vertex of t, which is on the left of a (looking at the
tree t from the bottom to up). This vertex is written in σt and
discarded in t.

(b) If the vertex a is not a leaf, then we choose between the children
of a, the rightmost vertex. This vertex is written in σt and
discarded in t.

(3) The process ends when all vertices of t haven been discarded.

Reciprocally, let σ = (an · · · a1) be a cycle of large n. We denote by X =
{a1, . . . an} the set of elements of σ. So, by our convention, a1 is minimal
element of X. We refer to the elements of X as vertices and construct
an irreducible I-tree whose set of vertices is X, which we denote by tσ, as
follows:

(1) The first vertex of tσ is a1 and we discard this vertex in σ. To draw
the remaining vertices of tσ, we proceed as follows:

(2) Suppose that an element a of σ has been drawn in tσ and discarded
in σ. To draw the following vertex in tσ, we proceed as follows:
(a) If all the elements of σ, which are on the left to a, have been

marked, then we continue with the smallest element of σ (not
discarded), which is on the right of a. Denote this element
by b and let v be the vertex colored by the discarded element
closest to the right b in σ (seen from left to right). We draw
vertex colored by b on the vertex v in such a way that b is the
rightmost input of v. We discarded b in σ.

(b) If, on the left of a, there are elements of σ that have not been
discarded, then we continue with the smallest of these elements.
We draw this vertex on the vertex a in tσ and is discarded in σ.

(3) The process ends when all the elements of σ haven been discarded.

8.2.1. Example. In degree eight, we have:

b

8

3

5

7

6

4

2

1

7→ (83576421) 7→

b

8

3

5

7

6

4

2

1

.

8.2.2. Remark. (1) Let t be an irreducible I-tree of degree n, with n >
1, and let b be the leftmost leaf of t. Denote by t′ the irreducible
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I-tree, of degree (n − 1), obtained by removing the vertex b of t. If
σt′ = (an−1 · · · a1), then σt = (ban−1 · · · a1).

(2) Let σ = (an · · · a1) be a cycle and let b be a positive integer such
that b 6= ai for all i ∈ {1, . . . , n}, with b > a1. Consider tσ and the
cycle σ′ = (ban · · · a1). The tree tσ′ is obtained from tσ as follows.
Reading σ from left to right, let ak be the first element of σ such
that b > ak. We obtain tσ′ by gluing a vertex decorated by b in the
vertex of tσ decorated by the element ak, in such a way that b is the
leftmost input of the vertex ak. Moreover, the vertex decorated by
b will be the leftmost leaf of the tree tσ′ .

8.2.3. Definition. We define the map Ψ : In → Sn by

Ψ(t) = Ψ(t1 · . . . tr) = σt1 · · · σtr ,

where t = t1 · . . . · tr is the unique decomposition of an I-tree in irreducible
I-trees.

Reciprocally, let Φ : Sn → In be the map

Φ(σ) = Φ(σ1 · · · σr) = tσ1 · · · tσr ,

where σ = σ1 · · · σr is the unique decomposition of the permutation σ dis-
joints in cycles with ind(σ1) < · · · < ind(σr).

We want to see that Ψ is a bijection and Φ is its inverse. We need a
previous lemma.

8.2.4. Lemma. If σ = (an · · · a1) is a cycle, then Ψ(tσ) = σ.

Proof. The result is obtained by induction on the length of the cycle σ. If
the length of the cycle is one, the proof is immediate.

Consider n > 1. Write σ = (anan−1 · · · a1) and consider σ′ the cycle of
length (n−1) given by σ′ = (an−1 · · · a1). By a recursive argument, we have
that Ψ(tσ′) = σ′.

Let ak be the first element of σ such that an > ak. By point (2) in Remark
8.2.2, we have that the irreducible I-tree tσ is obtained by gluing the vertex
decorated by an to the vertex decorated by ak in tσ′ , so that an is the leftmost
input of ak. So, by point (1) in Remark 8.2.2, Ψ(tσ) = (anan−1 · · · a1) = σ,
which ends the proof. �

Applying Lemma 8.2.4, it is immediate to see that:

8.2.5. Proposition. The map Ψ : In → Sn is bijective and Φ : Sn → In is
its inverse.

9. Operadic homology for compatible commutative algebras

Recall that if A is a commutative algebra, the operadic chain-complex
of A is given by Harrison complex CHarr

∗ (A) of A. The Harrison complex
CHarr
∗ (A) is a quotient of the Hochshild complex C∗(A). Explicitly, C

Harr
n (A)

is the quotient of Cn(A) = A⊗n by all the non-trivial signed shuffles, that
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is, by the (p1, . . . , pr)-shuffles for pi ≥ 1, with p1 + · · · + pr = n and r ≥ 2
([22], 13.1.10). For instance,

CHarr

2 (A) = A⊗2/{ non-trivial shuffles} = A⊗2/{a ⊗ b− b⊗ a} = S2(A).

We will show that if (A, ·, ◦) is a compatible commutative algebra, then its
operadic chain-complex is given by the total complex of a bicomplex whose
vertical and horizontal complexes are induced by the Harrison boundary
maps of complexes of (A, ·) and (A, ◦). As the Harrison complex is a quotient
of Hochshild complex, we denote the respective differentials by d∗· and d∗◦ (
see 3.6.1).

9.0.1. Proposition. Let (A, ·, ◦) be a compatible commutative algebra. The
total complex of the bicomplex with vertical differential d∗· and horizontal
differential d∗◦

CHarr

3 (A) CHarr

4 (A) CHarr

5 (A)

CHarr

2 (A) CHarr

3 (A) CHarr

4 (A)

CHarr

1 (A) CHarr

2 (A) CHarr

3 (A)

❄

d∗·

❄

d∗·

❄

d∗·

❄

d∗·

❄

d∗·

✛d∗◦

❄

d∗·

✛d∗◦ ✛ d∗◦

❄

d∗·

✛d∗◦

❄

d∗·

❄

d∗·

✛d∗◦ ✛ d∗◦

✛d∗◦ ✛d∗◦ ✛ d∗◦

is the Com2-operadic complex of A.

Proof. Let us see that its total complex corresponds to the Com2-operadic
complex of A.

The chain complex CCom2

∗ (A) is given by

· · · → CCom2

n (A) → CCom2

(n−1)(A) → · · · → CCom2

1 (A),

where CCom2

n (A) := (Com2)!(n)∨ ⊗Sn A⊗n and whose differential d is de-
scribed in 2.5.8. Since the Koszul dual of the operad Com2 is given by 2Lie
and

(∗) 2Lie(n) = Lie(n)⊕ · · · ⊕ Lie(n)
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is the direct sum of n-copies of Lie(n), we have that

CCom2

n (A) = (Com2)!(n)∨ ⊗Sn A⊗n

= ((Lie(n)⊕ · · · ⊕ Lie(n)) ⊗ (sgnn))⊗Sn A⊗n

= Lie(n)∨ ⊗Sn A⊗n ⊕ · · · ⊕ Lie(n)∨ ⊗Sn A⊗n

= Com!(n)∨ ⊗Sn A⊗n ⊕ · · · ⊕ Com!(n)∨ ⊗Sn A⊗n.

So, CCom2

n (A) is the direct sum of n-copies of CCom
n (A), the operadic chain-

complex associated A as a commutative algebra. Since CCom
∗ (A) is the Har-

rison complex CHarr

∗ (A), we have that CCom2

n (A) is a direct sum of n-copies
of CHarr

n (A),

CCom2

n (A) = CHarr

n (A)⊕ · · · ⊕CHarr

n (A).

In a similar way that for the case As2 in 3.6.1, we can reorganize the
chain-complex CCom2

∗ (A) by means of the bicomplex that we have described,
and identify its differential with the total differential d = d∗· +d∗◦, which ends
the proof. �
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