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RESUMEN

En esta tesis vamos a estudiar dos tipos de polinomios en N variables con

simetŕıa prescrita: los polinomios de Jack con simetŕıa prescrita y los polinomios

de Macdonald con simetŕıa prescrita.

Los polinomios de Jack con simetŕıa prescrita, se obtienen de los polinomios

de Jack no simétricos (indexados por composiciones formadas por dos parti-

ciones) mediante una antisimetrización o simetrización con respecto a dos con-

juntos disjuntos de variables. Mostraremos las propiedades que caracterizan estos

polinomios, tales como: triangularidad en ciertas bases monomiales y su unicidad

como funciones propias de operadores diferenciales de tipo Calogero-Sutherland.

Además, mostraremos algunos resultados obtenidos sobre las propiedades de

agrupación bajo la especialización del parámetro alpha de estos polinomios, las

cuales corresponden a la factorización que resulta tras considerar un conjunto de

variables e igualarlas a un parámetro adicional.

Similarmente, los polinomios de Macdonald con simetŕıa prescrita, se ob-

tienen de los polinomios de Macdonald no simétricos, mediante un proceso de

t-antisimetrización o t-simetrización con respecto a dos conjuntos disjuntos de

variables. Los polinomios de Macdonald son una generalización de los poli-

nomios de Jack y es por esto que algunas propiedades de los polinomios de

Jack con simetŕıa prescrita se obtienen como consecuencia de propiedades de los

Macdonald con simetŕıa prescrita. En el último caṕıtulo mostraremos algunos

resultados obtenidos sobre las propiedades de agrupación bajo la especialización

de los parámetros q y t de estos polinomios, las cuales están basadas en las

condiciones de ceros de los polinomios de Macdonald no simétricos.





CHAPTER 1

Introduction

This thesis is mainly concerned with two families of orthogonal polynomials in N

variables: the Jack polynomials with prescribed symmetry and the Macdonald

polynomials with prescribed symmetry.

In this introduction, we define these mathematical objects and explain why

they are so important to mathematical physics. We pay particular attention to

new algebraic properties of the Jack and Macdonald polynomials with prescribed

symmetry, known as clustering properties, that were obtained in the course of

the doctorate.

1.1 Quantum Sutherland system

We study properties of polynomials in many variables that provide the wave func-

tions for the Sutherland model with exchange term, which is a famous quantum

mechanical many-body problem in mathematical physics. This model describes

the evolution of N particles interacting on the unit circle.

To be more explicit, let φj ∈ T = [0, 2π) be the variable that describes the

position of the jth particle in the system. Let also the operator Ki,j act on

any multivariate function of φ1, . . . , φN by interchanging the variables φi and

φj . Finally, suppose that g is some positive real number. Then, the Sutherland

model, with coupling constant g and exchange terms Ki,j , is defined via the

following Schrodinger operator acting on L2(TN ) [59, 12]:

H = −
N∑
i=1

∂2

∂φ2
i

+
1

2

∑
i 6=j

1

sin2(
φi−φj

2 )
g(g −Ki,j) . (1.1.1)

1
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When acting on symmetric functions, the operators Ki,j can be replaced by

the identity and the standard Sutherland model is recovered [64]. The latter is

intimately related to Random Matrix Theory [33]. For Ki,j 6= 1, the operator H

was used for describing systems of particles with spin (see for instance [42, 60]).

Up to a multiplicative constant, there is a unique eigenfunction Ψ0 of H with

minimal eigenvalue E0 [41]. Explicitly, defining α = g−1 and xj = eiφj , where

i =
√
−1, we have

Ψ0 =
∏

1≤i<j≤N
|xi − xj |1/α, E0 =

N(N2 − 1)

12α2
. (1.1.2)

The operator H admits eigenfunctions of the form Ψ(x) = Ψ0(x)P (x), where

P (x) is a polynomial eigenfunction of the operator D = Ψ−1
0 ◦ (H − E0) ◦ Ψ0,

that is,

D =
N∑
i=1

(
xi

∂

∂xi

)2

+
2

α

∑
1≤i<j≤N

xixj
xi − xj

(
∂

∂xi
− ∂

∂xj

)

− 2

α

∑
1≤i<j≤N

xixj
(xi − xj)2

(1−Ki,j) +
N − 1

α

N∑
i=1

xi
∂

∂xi
. (1.1.3)

1.2 Symmetric Jack polynomials and their clustering

Let S{1,...,N} denote the ring of symmetric polynomials in N variables with

coefficients in the field of rational functions in the formal parameter α, denoted

by C(α). Any homogeneous element of degree n in S{1,...,N} can be indexed by a

partition of n, which is sequence λ = (λ1, . . . , λN ) such that λ1 ≥ . . . ≥ λN ≥ 0

and λ1 + . . . + λN = n. In general, we only write the non-zero elements of the

partition. Partitions are often sorted with the help of the following partial order,

called the dominance order:

λ ≥ µ ⇐⇒
k∑
i=1

λi ≥
k∑
i=1

µi, ∀ k,

where it is assumed that both partitions have the same degree n. A convenient

way to write a symmetric polynomial consists in giving its linear expansion in

the basis of monomial symmetric functions {mλ}λ, where

mλ = xλ1
1 · · ·x

λN
N + distinct permutations.
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Since Stanley’s seminal work [62], we know that the symmetric Jack polyno-

mial associated to the partition λ, denoted Pλ = Pλ(x;α), is the unique sym-

metric eigenfunction of (1.1.3) that is monic and triangular in the monomial

basis, where the triangularity is taken with respect to the dominance ordering.

In symbols, Pλ is the unique element of S{1,...,N} that satisfies the following two

properties:

(A1) Pλ = mλ +
∑
µ<λ

cλ,µ(α)mµ ,

(A2) DPλ = ελ(α)Pλ ,

where ελ(α) is the eigenvalue and will be given later in Lemma 2.1.1.

It is worth stressing that uniqueness of the polynomial satisfying (A1) and

(A2) remains valid if we suppose that α is a positive real or an irrational (see

Section 2.1). However, when α is a negative rational number, the uniqueness

is generally lost, and moreover the polynomials could have poles in this case.

Nevertheless, Feigin, Jimbo, Miwa, and Mukhin [31] showed that for k and r− 1

positive integers with gcd(k + 1, r − 1) = 1, and for a given partition λ =

(λ1, . . . , λN ) satisfying

λi − λi+k ≥ r ∀ 1 ≤ i ≤ N − k (1.2.1)

the Jack polynomial indexed by the partition λ is not only regular at certain

negative fractional values of α but also exhibits remarkable vanishing properties

when some variables coincide. Those partitions were called (k, r,N)-admissible

partitions.

Proposition 4.1 in [31] states that if λ is (k, r,N)-admissible and α is equal

to

αk,r = −k + 1

r − 1
, (1.2.2)

then Pλ(x;α) is regular and vanishes when k + 1 variables coincide, that is,

Pλ(x;αk,r)|xN−k=...=xN = 0. Bernevig and Haldane [13] later used the above van-

ishing property for modelling fractional quantum Hall states with Jack polynomi-

als. They moreover conjectured that the Jack polynomials indexed by (k, r,N)-

admissible partitions satisfy the following clustering property, which gives a more

precise statement about how the polynomials vanish.
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In general, we say that a symmetric polynomial P admits a cluster of size

k and order r (k, r ∈ Z+), if it vanishes to order at least r when k + 1 of the

variables are equal, that is,

P (x1, . . . , xN−k,

k times︷ ︸︸ ︷
z . . . , z) =

N−k∏
j=1

(xj − z)rQ(x1, . . . , xN−k, z) (1.2.3)

for some polynomial Q in N − k + 1 variables.

Baratta and Forrester [8] proved that the Jack polynomials (along with other

symmetric polynomials such as Hermite and Laguerre) indexed with (1, r,N)-

admissible partitions satisfy equation (1.2.3) at α1,r. The same authors also

proved clustering properties for k > 1 in the case of partitions associated to

translationally invariant Jack polynomials [37]. Very recently, Berkesch, Griffeth,

and Sam proved the general k ≥ 1 clustering property for Jack polynomials [11].

Their method was based on the representation theory of the rational Cherednik

algebra. In fact, reference [11] also contains the proof for more general vanishing

properties in the case of many clusters, some of them having been conjectured

earlier in [13] .

1.3 Jack polynomials with prescribed symmetry

The operator D has polynomial eigenfunctions of different symmetry classes.

As we have mentioned above, the symmetric Jack polynomials Pλ(x;α) are

eigenfunctions of D, as well the non-symmetric Jack polynomials, which were

introduced by Opdam [58]. The non-symmetric Jack polynomials, denoted by

Eη(x;α), where η is a composition, can be defined as the common eigenfunctions

of the commuting set {ξj}Nj=1, where each ξj is a first order differential operator,

often called a Cherednik operator (see eq. (2.3.1)).

However, as first shown by Baker and Forrester [4], one can use the latter

polynomials to construct orthogonal eigenfunctions of D whose symmetry prop-

erty interpolates between the completely symmetric Jack polynomials, Pλ(x;α),

and the completely antisymmetric ones, sometimes denoted by Sλ(x;α). In other

words, there exist eigenfunctions that are symmetric in some given subsets of

{x1, . . . , xN} and antisymmetric in other subsets, all subsets of variables being
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mutually disjoint. Such eigenfunctions are called Jack polynomials with pre-

scribed symmetry and were considered in [4, 43, 27, 1, 34]. In this thesis, we

study systematically the Jack polynomials with prescribed symmetry for two

sets of variables.

Before given the precise definition of the Jack polynomials with prescribed

symmetry, let us introduce some more notation. For a given setK = {k1, . . . , kM}
⊆ {1, . . . , N}, let AsymK and SymK respectively denote the antisymmetrization

and the symmetrization operators with respect to the variables xk1 , . . . , xkM . If

f(x) is an element of V = C(α)[x1, . . . , xN ], then SymKf(x) belongs to SK ,

the submodule of V whose elements are polynomials symmetric in xk1 , . . . , xkM .

Similarly, AsymKf(x) belongs to AK , the submodule of polynomials antisym-

metric in xk1 , . . . , xkM .

So, for a given positive integer m ≤ N , set I = {1, . . . ,m} and J = {m +

1, . . . , N}. 1 Let λ = (λ1, . . . , λm) and µ = (µ1, . . . , µN−m) be partitions.

The monic Jack polynomial with prescribed symmetry of type antisymmetric-

symmetric (AS for short) and indexed by the ordered set

Λ = (λ1, . . . , λm;µ1, . . . , µN−m)

is defined as follows:

PAS
Λ (x;α) = cAS

Λ AsymISymJEη(x;α),

where η is a composition equal to (λm, . . . , λ1, µN−m, . . . , µ1) while the normal-

ization factor cAS
Λ is such that the coefficient of xλ1

1 · · ·xλmm xµ1
m+1 · · ·x

µN−m
N in

PAS
Λ (x;α) is equal to one. Other types of Jack polynomials are defined similarly:

PAA
Λ (x;α) = cAA

Λ AsymIAsymJEη(x;α),

P SA
Λ (x;α) = cSA

Λ SymIAsymJEη(x;α),

P SS
Λ (x;α) = cSS

Λ SymISymJEη(x;α) .

The coefficients cΛ will be given in equations (2.4.12)–(2.4.15).

1The above definition could be obviously generalized by considering I = {i1, . . . , im} and

J = {j1, . . . , jN−m} as two general disjoint sets such that I ∪ J = {1, . . . , N}. However, this

would make the presentation more intricate. One easily goes from one definition to the other

by permuting the variables.



6 CHAPTER 1. Introduction

The above polynomials belong to AI ⊗ SJ , AI ⊗ AJ , SI ⊗ AJ , SI ⊗ SJ

respectively, which are all vector spaces over C(α). These spaces are spanned

by monomials, denoted by mΛ, each of them being indexed by an ordered pair

of partitions Λ = (λ1, . . . , λm;µ1, . . . , µN−m). Analogously to the Jack poly-

nomials with prescribed symmetry, the monomials are defined by the action of

AsymK and SymK , where K is either I or J , on the non-symmetric monomial

xλ1
1 · · ·xλmm xµ1

m+1 · · ·x
µN−m
N . See Section 2.4 for more details.

The case AS is very special since the polynomials PAS
Λ (x;α) can be used to

solve the supersymmetric Sutherland model [22], which is a generalization of the

model (1.1.1), and that moreover involves Grassmann variables. In this context,

the indexing set Λ = (λ1, . . . , λm;µ1, . . . , µN−m) is called a superpartition – while

that in [19] it could be called an overpartition – where λ = (λ1, . . . , λm) is also

strictly decreasing. The correct diagrammatic representation of superpartitions,

first given in [24], proved to be very useful. It allowed, for instance, the derivation

of a very simple evaluation formula for PAS
Λ (x;α) [25], which in turn lead to the

first results regarding the clustering properties of these polynomials [26]. We

adopt here a slightly more general point of view for superpartitions.

For us, a superpartition is an ordered set of positive integers

Λ = (Λ1, . . . ,Λm; Λm+1, . . . ,ΛN ).

We say that Λ has bi-degree (n|m), if it satisfies the following conditions:

Λ1 ≥ · · · ≥ Λm ≥ 0 Λm+1 ≥ · · · ≥ ΛN ≥ 0

N∑
i=1

Λi = n.

1.4 Non-symmetric Macdonald polynomials and Macdonald

polynomials with prescribed symmetry

The non-symmetric Macdonald polynomials were introduced two decades ago by

Opdam [58], Macdonald [54] and Cherednik [17] in the context of the study of

Affine Hecke algebras and orthogonal polynomials.

We denote the monic non-symmetric Macdonald polynomial indexed by the

composition η = (η1, . . . , ηN ) ∈ NN0 as Eη(x; q, t), where x = x1, . . . , xN are
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the variables, and q and t are formal parameters. The non-symmetric Macdon-

ald polynomials are considered the q-generalization of the non-symmetric Jack

polynomials, due to the fact that they can be recovered from the non-symmetric

Macdonald polynomials through the specialization q = tα whit t→ 1, i.e.

Eη(x; q, t)|q=tα −→ Eη(x;α), when t→ 1.

The non-symmetric Macdonald polynomials were extensively studied in sev-

eral articles, including [6, 35, 55, 56]. On the contrary, their clustering properties

were only studied in [8], [28] and [39].

The Macdonald polynomials with prescribed symmetry were introduced re-

cently by Baker, Dunkl and Forrester [1]. These polynomials were later studied

by Baratta in [7] and [9] (Doctoral Thesis).

By using the Demazure-Lusztig operators, we generalize the symmetriza-

tion and anti-simmetrization operators to new operators, called t-symmetrization

and t-antisymmetrization. Acting with the operators t-symmetrization and t-

antisymme-

trization on disjoint subsets of variables on non-symmetric Macdonald polyno-

mials, we build the Macdonald polynomials with prescribed symmetry. The

construction method of the Macdonald polynomials with prescribed symmetry

is thus similar to that of the Jack polynomials with prescribed symmetry. In

fact, both families of polynomials can be characterized as eigenfunctions of gen-

eralizations of the CSM.

Particular families of Macdonald polynomials with prescribed symmetry are:

the symmetric Macdonald polynomial (they are obtained through a process of t-

symmetrization on non-symmetric Macdonald polynomials), and the t-antisymme-

tric Macdonald polynomial (obtained through a process of t-antisymmetrization

on non-symmetric Macdonald polynomials).

In this thesis, we restrict our study to two sets of variables. For a given

positive integer m ≤ N , set I = {1, . . . ,m} and J = {m+1, . . . , N}. Let also λ =

(λ1, . . . , λm) and µ = (µ1, . . . , µN−m) be partitions. For us, the monic Macdonald

polynomial with prescribed symmetry of type t-antisymmetric - t-symmetric
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(denoted AS) and indexed by the ordered set Λ = (λ1, . . . , λm;µ1, . . . , µN−m) is

defined as

PAS
Λ (x; q, t) = cAS

Λ U−I U+
J Eη(x; q, t),

where η is a composition equal to (λ1, . . . , λm, µ1, . . . , µN−m), cAS
Λ is the factor

of normalization and

U+
I =

∑
σ∈Sm

Tσ, U−J =
∑

σ∈SN−m

(
−1

t

)l(σ)

Tσ. (1.4.1)

Other types of Macdonald polynomials are defined similarly:

PAA
Λ (x; q, t) = cAA

Λ U−I U−J Eη(x; q, t),

P SA
Λ (x; q, t) = cSA

Λ U+
I U−J Eη(x; q, t),

P SS
Λ (x; q, t) = cSS

Λ U+
I U+

J Eη(x; q, t)

with

U−I =
∑
σ∈Sm

(
−1

t

)l(σ)

Tσ and U+
J =

∑
σ∈SN−m

Tσ. (1.4.2)

The AS case is special, because it can be also obtained from Macdonald super-

polynomials (see [15]).

Baker, Dunkl and Forrester showed that the Macdonald polynomials with

prescribed symmetry can be expressed as a linear combination of non-symmetric

Macdonald polynomials. They gave the explicit formula for each one of the fam-

ilies of polynomials mentioned in the preceding paragraph. They proved their

formulas for the cases AA and SA (see [1, Corollary 1]). Moreover, they proved

a clustering property of the Macdonald polynomials with prescribed of type AS,

which will be recalled in Proposition 5.3.10. Baratta conjetured a generalization

of this property and proved a particular case: that of the Macdonald polyno-

mial with prescribed symmetry whose indexing composition is formed by the

concatenation of the partition (0, . . . , 0) and δ a staircase partition (see [7]).

1.5 Main results

Our first aim in this thesis is to give a very simple characterization of Jack poly-

nomials with prescribed symmetry that generalizes Properties (A1) and (A2).
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To this end, we use the differential operators of Sekiguchi type:

S∗(u) =

N∏
i=1

(u+ ξi) and S~(u, v) =

m∏
i=1

(u+ ξi + α)

N∏
i=m+1

(v + ξi), (1.5.1)

where u and v are formal parameters. We often set v = u, since this case leads

to simpler eigenvalues. It is a simple exercise to show that the symmetric Jack

polynomial Pλ(x;α) is an eigenfunction of S∗(u), with eigenvalue

ελ(α, u) =

N∏
i=1

(u+ αλi − i+ 1). (1.5.2)

The same polynomial cannot be an eigenfunction of S~(u, v), since the latter

does not preserve S{1,...,N}. In fact, S∗ and S~ together preserve the spaces

AI ⊗SJ , AI ⊗AJ , SI ⊗AJ , and SI ⊗SJ . They moreover serve as generating

series for the conserved quantities of the Sutherland model with exchange terms:

S∗(u) =
N∑
d=0

uN−dHd, S~(u, v) =
m∑
d=0

N−m∑
d′=0

um−dvN−m−d
′Id,d′ ,

where all the operators Hd and Id,d′ commute among themselves and preserve

the spaces mentioned above. They are given by

Hd =
N∑
i=1

ξi
d, Id,d′ =

m∑
i=1

ξi
d

N∑
i=m+1

ξi
d′ .

Amongst them, the most important are

H = H2 =
N∑
i=1

ξi
2, I = I1 =

m∑
i=1

ξi .

A simple computation shows that the operator D introduced in (1.1.3) is

related to the operators H1 and H2 via

H2 + (N − 1)H1 = α2D +
N(N − 1)(2N − 1)

6
.

For a generic α, the differential operators H and I allow us to characterize

the Jack polynomial with prescribed symmetry in a unique way. This can be

achieved proving that Jack polynomials with prescribed symmetry are monic
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and triangular with respect to the natural generalization of the monomial basis

(where the triangularity is taken with respect to the dominance ordering of

superpartitions), and also that they are eigenfunctions of the operators H and

I simultaneously. This result is proved in Theorem 2.4.10 (see 2.4).

Our second aim is to prove clustering properties for Jack polynomials with

prescribed symmetry. This properties hold only for negative fractional values

of α. However, as is shown in Theorem 2.4.10, considering these values of α

is not sufficient to get clustering properties, so we also have to restrict the set

of possible polynomials to those that are indexed by admissible superpartitions

(see definition 1.2.1).

Despite the difficulties mentioned above, we prove the uniqueness and the

regularity of the Jack polynomials with prescribed symmetry under the special-

ization α = αk,r. These properties are given in Proposition 3.3.4 and Theorem

3.4.4 respectively.

For the non-symmetric Jack polynomials indexed by special compositions

formed by the concatenation of two partitions, we get similar results about the

uniqueness under the specialization α = αk,r with k = 1 and r even. These

results dependent on the admisibility condition satisfied by the indexing com-

position (see Theorems 3.5.2 and 3.5.3). The combination of these facts with

Definition 1.3 allow us to prove the general clustering property in case k = 1 for

Jack polynomials with prescribed symmetry. For the AS case, this property was

first conjectured in [26]. More specifically (see Proposition 4.2.6), we prove that

for a (1, r,N)-admissible superpartition and r ∈ Z even,

PΛ(x;α1,r) =
∏
i,j∈K
i<j

(xi − xj)rQ(x),

where the set K depends on the type of symmetry considered, AS, SS, or SA

respectively. While for the symmetry type AA,

PΛ(x;α1,r) =
∏

1≤i<j≤N
(xi − xj)r−1Q(x).

However, we have not been able to prove the following natural generalization

of the above result: All Jack polynomials with prescribed symmetry, indexed
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by (k, r,N)-admissible superpartitions, admit a cluster of size k and order r at

α = αk,r. Nevertheless, following an idea of Baratta and Forrester [8], we know

that if a polynomial is invariant under translation and satisfies basic factorization

and stability properties (see Lemma 2.4.4 and Proposition 2.4.6 ), then the poly-

nomial can admit clusters of size k > 1. In the last part of Chapter 4.3 we turn

our attention to the translationally invariant Jack polynomials with prescribed

symmetry. Exploiting a result obtained in the context of the supersymmetric

Sutherland model, only valid for the AS case, we find all strict and admissible

superpartitions that lead to invariant polynomials (see Theorem 4.3.13).

Finally, Theorem 4.3.13 allows us to prove the k > 1 clustering property for

translationally invariant Jack polynomials of type AS. This clustering property

say that if PAS
Λ is invariant under translation, then

PAS
Λ (x1, . . . , xN−k,

k times︷ ︸︸ ︷
z . . . , z;αk,r) =

N−k∏
j=m+1

(xj − z)rQ(x1, . . . , xN−k, z)

for some polynomial Q (see Proposition 4.4.1).

Our third aim is to prove some algebraic properties of the Macdonald poly-

nomials with prescribed symmetry, such as stability, regularity and clustering

properties. To this end, we prove the result given in [1] according to which the

Macdonald polynomials with prescribed symmetry can be expressed as a linear

combination of non-symmetric Macdonald polynomials (see Proposition 5.2.3).

These formulas allow us easily prove the regularity of each family of Macdonald

polynomials with prescribed symmetry at the specialization qr−1tk+1 = 1 (see

Proposition 5.2.5).

Finally, we show some clustering properties for Macdonald polynomials with

prescribed symmetry. We show these properties for Macdonald polynomials

indexed by admissible superpartitions and specialized at qr−1tk+1 = 1 with k and

r positive integers and gcd(k + 1, r− 1) = 1. Indeed, as explained in Subsection

5.3.3 and remark 5.3.13, it is not sufficient to consider only this specialization

of the parameters, so we have to require an admisibility condition. In Theorems

5.3.6 and 5.3.9, we show that if k = 1 and if the superpartitions are weakly

(k, r,N)-admissible for symmetry of type AS and AA or moderately (k, r,N)-

admissible for symmetry of type SS and SA, then the corresponding Macdonald
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admit clusters of order r.

However, for the case k > 1, we show that if we restrict the polynomials

to those indexed by moderately (k, r,N)-admissible superpartitions, then these

polynomials admit a cluster of size k and order r−1 at qr−1tk+1 = 1 (see Proposi-

tion 5.3.14). As a direct consequence, we establish a ”weak clustering property”

for the Jack case: if Λ is any moderately (k, r,N)-admissible superpartition,

then the Jack polynomial with prescribed symmetry PΛ(x;αk,r) vanishes to or-

der r−1 when k+1 variables among xm+1, . . . , xN coincide. We believe that for

the Macdonald polynomials with prescribed symmetry (considering moderately

admissible superpartitions), the vanishing order of the polynomials should be

improved to reach r rather than r − 1. We intend to prove this claim by using

arguments from Representation Theory (in a similar way to the non-symmetric

Jack polynomials, see [11]) or getting a characterization of the translationally

invariant Macdonald polynomials with prescribed symmetry.

Other subjects of study closely related to the clustering properties studied

here are the multiwheel conditions for non-symmetric Macdonald polynomials.

We expect that these conditions can be generalized to the case of polynomials

with prescribed symmetry, through the expansion of the Macdonald polynomials

with prescribed symmetry in terms of non-symmetric Macdonald polynomials.





CHAPTER 2

Preliminaries

In this chapter we give the definitions of compositions, partitions and super-

partitions and some quantities associated to their diagrams. Also, we provide

basic properties related to the order of partitions and superpartitions, which are

required to characterize the Jack polynomials with prescribed symmetry.

The polynomials with prescribed symmetry studied in this chapter are called

Jack polynomials with prescribed symmetry and were introduced by Baker,

Dunkl and Forrester in [1]. However, the notation here used to define these

polynomials, like the concept of superpartition and the order for superparti-

tions, were introduced in [22]. The algebraic properties of the Jack polynomials

with prescribed symmetry (stability and regularity) are based on the properties

of the non-symmetric Jack polynomials, which were given in [47]. Most of the

results contained in this chapter have been published for the first time in [20,

Section 2].

2.1 Compositions, partitions, and superpartitions

A composition is an ordered tuple η = (η1, . . . , ηN ) of non-negative integers. We

define the degree of η as

n = |η| :=
N∑
i=1

ηi

and we say also that η is a composition of the integer n. The length of a

composition is defined as the maximum i such that ηi > 0, and it is denoted

by `(η). To each composition is associated a diagram that contains `(η) rows.

The highest row, which is considered as the first one, contains η1 boxes, the

14
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second row, which is just below the first one, contains η2 boxes, and so on, all

boxes being left justified. The box located in the ith row and jth column of this

diagram is called a cell and is denoted by (i, j). Given a cell s = (i, j) in the

diagram associated to η, we let

aη(s) = ηi − j lη(s) = #{k < i|j ≤ ηk + 1 ≤ ηi}+ #{k > i|j ≤ ηk ≤ ηi}

a′η(s) = j − 1 l′η(s) = #{k < i|ηk ≥ ηi}+ #{k > i|ηk > ηi} (2.1.1)

For example, for the composition η = (6, 1, 4, 4, 2, 3) and the box s = (4, 2) in

the diagram

η =

• • • • • •
?
• • • •
s

? ?
? ? ?

we have aη(s) = 2, a′η(s) = 1, lη(s) = 3 y l′η(s) = 2.

In particular, a partition λ = (λ1, . . . , λN ) of n is a composition of n whose

elements are decreasing: λ1 ≥ · · · ≥ λN ≥ 0. The number of non-zero elements

in a partition λ is called the length and it is usually denoted by ` or `(λ). To

each partition is associated a diagram that contains ` rows. The diagrams of

partitions are defined as the same diagrams for compositions. Given a partition

λ, its conjugate λ′ is obtained by reflecting λ’s diagram in the main diagonal.

For instance, for λ = (5, 3, 3, 1) the diagrams of λ and λ′ are given by

λ = λ′ =

Given a cell s = (i, j) in the diagram associated to λ, we set

aλ(s) = λi − j a′λ(s) = j − 1 lλ(s) = λ′j − i l′λ(s) = i− 1.

For example, for the partition λ = (8, 6, 4, 3, 3, 3, 1) and the box s = (2, 3) we
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have the diagram

l′λ(s) = 1

?
a′λ(s) = 2 ? ? s ? ? ? a′λ(s) = 3

?
?
?
?

lλ(s) = 4

The quantities aλ(s), a′λ(s), lλ(s), l′λ(s) are respectively called the arm-length,

arm-colength, leg-length and leg-colength of s in λ’s diagram.

For two partitions we write µ ⊆ λ if µi ≤ λi for all i (i.e. the diagram of µ

is contained in the diagram of λ). If µ ⊆ λ we have a skew diagram λ/µ which

consists of those boxes of λ which are not in µ. A skew diagram is said to be a

vertical m-strip if λ/µ consists of m boxes, all of which are in distinct rows. For

example, given λ = (5, 3, 3, 1) and µ = (4, 3, 2, 1) then λ/µ is a vertical 2-strip.

Diagrammatically we have

λ = µ = =⇒ λ/µ = =

The first ordering we define on partitions is the lexicographic ordering l. The

lexicographic ordering compares partitions of the same degree and is defined by

µ l λ if the first non-vanishing difference λi − µi is positive. The lexicographic

ordering is a total ordering, meaning that all partitions of a fixed degree are

comparable. For example, the partitions of degree 4 are ordered as

(4, 0, 0, 0), (3, 1, 0, 0), (2, 2, 0, 0), (2, 1, 1, 0), (1, 1, 1, 1).

The second ordering we define on partitions is the dominance order >. The

dominance ordering compares partitions of the same degree and is defined by

λ ≥ µ ⇐⇒
k∑
i=1

λi ≥
k∑
i=1

µi, ∀ k.
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The dominance order is just a partial order, in fact the first incomparable

partitions have degree 6: (4, 1, 1) and (3, 3, 0). However, generalizing this order,

we can compare compositions of the same degree. First, we note that to each

composition η corresponds a unique partition η+, which is obtained from η by

reordering the elements of η in decreasing order:

η+ = (η+
1 , . . . , η

+
N ) ⇐⇒ η+

i = ησ(i) for some σ ∈ SN such that η+
1 ≥ . . . ≥ η

+
N .

The above comments allows to define the dominance order between compo-

sitions of the same degree, as follows:

η � µ ⇐⇒ η+ > µ+ or η+ = µ+ and
k∑
i=1

ηi ≥
k∑
i=1

µi ∀ k,

where it is also assumed that η 6= µ.

The following result will be used later in the proof of some propositions and

lemmas and it was first stated without proof in Stanley’s article [62] for α a

formal parameter.

Lemma 2.1.1. For any partition λ, let

b(λ) =
∑̀
i=1

(i− 1)λi and ελ(α) = αb(λ′)− b(λ).

Suppose that α is generic. Then,

λ > µ =⇒ ελ(α) 6= εµ(α).

Proof. Let us first define the lowering operators as follows:

Li,j(. . . , λi, . . . , λj , . . .) =

(. . . , λi − 1, . . . , λj + 1, . . .) if i < j and λi − λj > 1

(. . . , λi, . . . , λj , . . .) otherwise.

(2.1.2)

Note that in general, if λ is a partition, then Li,jλ is a composition. However,

from [53, Result (1.16)], one easily deduces that

µ < λ ⇐⇒ µ = Lik,jk ◦ · · · ◦ Li1,j1λ (2.1.3)
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for some sequence ((i1, j1), . . . , (ik, jk)) such that Lik′ ,jk′ ◦· · ·◦Li1,j1λ is a partition

for all 1 ≤ k′ ≤ k. Now, let us suppose that λ̄ = Li,jλ is a partition for some

i < j. Then, b(λ̄) − b(λ) = j − i > 0. This last result together with equation

(2.1.3) prove the following:

µ < λ =⇒ b(µ) > b(λ).

Moreover, it is well known [53, Result (1.11)], λ > µ if and only if µ′ > λ′.

Consequently,

ελ(α)− εµ(α) = α
(
b(λ′)− b(µ′)

)
+ b(µ)− b(λ) = αp+ q,

where p and q are positive integers. Therefore, ελ(α)− εµ(α) = 0 only if α is a

negative rational, and the lemma follows.

Definition 2.1.2 (Superpartitions and diagrams). The ordered set

Λ = (Λ1, . . . ,Λm; Λm+1, . . . ,ΛN ) of integers is a superpartition Λ of bi-degree

(n|m) if it satisfies the following conditions:

Λ1 ≥ · · · ≥ Λm ≥ 0 Λm+1 ≥ · · · ≥ ΛN ≥ 0

N∑
i=1

Λi = n.

If (Λ1, . . . ,Λm) is moreover strictly decreasing, then Λ is called a strict super-

partition. Equivalently, we can write the superpartition Λ as a pair of partitions

(Λ~,Λ∗) such that

Λ~ = (Λ1+1, . . . ,Λm+1,Λm+1, . . . ,ΛN )+, Λ∗ = (Λ1, . . . ,Λm,Λm+1, . . . ,ΛN )+,

where + indicates the operation that reorder the elements of a composition in

decreasing order. The diagram of Λ is obtained from that of Λ~ by replacing the

boxes belonging to the skew diagram Λ~/Λ∗ by circles.

For instance, the ordered set Λ = (4, 3, 0; 4) is a strict superpartitions of bi-

degree (11|3). It can be written as a pair (Λ~,Λ∗), where Λ~ = (4 + 1, 3 + 1, 0 +

1, 4)+ = (5, 4, 4, 1) and Λ∗ = (4, 4, 3, 0). The diagram associated to Λ is obtained
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as follows:

Λ~ = Λ∗ =

=⇒ Λ~/Λ∗ = =⇒ Λ =

k
kk

The dominance order for superpartitions is defined as follows

Λ > Ω ⇐⇒ Λ∗ > Ω∗ or Λ∗ = Ω∗ and Λ~ > Ω~.

For example, we consider Ω = (5, 3, 1; 2) and Γ = (3, 1, 0; 5, 2) superpartitions

of the same bi-degree. The associated diagrams are respectively

Ω =

kk
k and Γ =

k
kk

One easily verifies that Ω > Γ, while Λ as above is comparable with neither Ω

nor Γ.

As we will see in the present and the following chapters we will use properties

of the non-symmetric Jack polynomials to prove properties and conjectures about

the Jack polynomials with prescribed symmetry. To this end we introduce below

a way to compare compositions and superpartitions.

Let γ = (γ1, . . . , γN ) be a composition of n. Fix a positive integer m ≤ N .

We define now the map ϕm which associate to any composition γ a superpartition

Γ as follows

ϕm(γ) = (Γ∗,Γ~), Γ∗ = (γ1, . . . , γN )+, Γ~ = (γ1+1, . . . , γm+1, γm+1, . . . , γN )+.

In other words, ϕm maps the composition γ to the superpartition Γ = (Γ∗,Γ~)

of bi-degree (n|m), which as mentioned before, it is given by

Γ =
(
(γ1, . . . , γm)+; (γm+1, . . . , γN )+

)
.
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Lemma 2.1.3. Let Λ = ϕm(λ) and Γ = ϕm(γ), where λ and γ are compositions

of the same degree. If λ � γ, then Λ > Γ.

Proof. There are two possible cases.

(1) Suppose that λ+ > γ+. Then, obviously, Λ∗ > Γ∗.

(2) Suppose that (i) λ+ = γ+ and (ii)
∑k

i=1 λi ≥
∑k

i=1 γi, ∀ k. Equation (i)

implies that Λ∗ = Γ∗. Equation (ii) implies that γ is a permutation of λ

that can be written as

γ = sil,jl ◦ · · · ◦ si1,j1λ,

where each si,j is a transposition such that

si,j(. . . λi, . . . , λj , . . .) =

(. . . λj , . . . , λi, . . .) if i < j and λi > λj

(. . . λi, . . . , λj , . . .) otherwise.

(2.1.4)

Now, if 1 ≤ i < j ≤ m or m + 1 ≤ i < j ≤ N , then ϕm(si,jλ) = Λ.

This means that si,j induces, via the map ϕm, a nontrivial action on the

superpartition Λ only if i ∈ I = {1, . . . ,m} and j ∈ J = {m + 1, . . . , N}.
To be more explicit, let i′ and j′ be such that ϕm maps λi to Λi′ and λj

to Λj′ , respectively. Then,

ϕm(si,jλ) = ŝi′,j′ϕm(λ) = ŝi′,j′Λ,

where ŝi′,j′Λ is equal to(
(Λ1, . . . ,Λj′ , . . . ,Λm)+; (Λm+1, . . . ,Λi′ , . . . ,ΛN )+

)
whenever if i′ ∈ I, j′ ∈ J and Λi′ > Λj′ , while ŝi′,j′Λ = Λ otherwise.

Therefore, Λ∗ = Γ∗ and

Γ = ϕm(γ) = ϕm(sil,jl ◦ · · · ◦ si1,j1λ) = si′l,j
′
l
◦ · · · ◦ si′1,j′1Λ,

which implies that Γ~ < Λ~, as required.
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Lemma 2.1.4. For any superpartition Λ, let

εΛ =
∑

s∈Λ~/Λ∗

(
αa′Λ~(s)− l′Λ~(s)

)
.

Suppose that α is generic. Then,

Λ∗ = Ω∗ and Λ~ > Ω~ =⇒ εΛ(α) 6= εΩ(α).

Proof. Let Ω be a superpartition be such that Ω∗ = Λ∗ and Ω~ = Li,jΛ
~ for

some i < j, where Li,j is the lowering operator defined in equation (2.1.2). Note

that this assumption makes sense only if Λ∗i > Λ∗j . Then, the diagram of Ω~

differs from that of Λ~ only in the rows i and j, so that∑
s∈Λ~/Λ∗

a′Λ~(s)−
∑

s∈Ω~/Ω∗

a′Ω~(s) = Λ∗i − Λ∗j > 0,

and ∑
s∈Λ~/Λ∗

l′Λ~(s)−
∑

s∈Ω~/Ω∗

l′Ω~(s) = i− j < 0.

Finally, recalling equation (2.1.3), we find that

εΛ(α)− εΩ(α) = αp+ q, where p, q ∈ Z+.

Clearly, if α is not a negative rational, then εΛ(α)− εΩ(α) 6= 0, as required.

2.2 Symmetric polynomials

In this section we consider the polynomial ring Q [x1, . . . , xN ] over Q in the

variables x1, . . . , xN with the natural action of the symmetric group SN over

polynomials, given by

Ki,jf(x1, . . . , xi, . . . , xj , . . . , xN ) = f(x1, . . . , xj , . . . , xi, . . . , xN ) (2.2.1)

for f(x1, . . . , xi, . . . , xj , . . . , xN ) ∈ Q [x1, . . . , xN ] and Ki,j ∈ SN the permutation

that exchanges i and j. In particular we will use the shorthand notation for

transpositions: Ki = Ki,i+1.

A polynomial is called symmetric if it is invariant under the action of any

permutation, i.e.

Kif(x) = f(x) for all i = 1, . . . , N − 1.



22 CHAPTER 2. Preliminaries

It is well known that any symmetric polynomial can be expressed as a linear

combination of the elementary symmetric functions, which are denoted by eλ :=

eλ1 . . . eλN for λ = (λ1, . . . , λN ) a partition, and where

er(x) =
∑

1≤i1<...<ir≤N
xi1 . . . xir .

Another important basis consists in the monomial symmetric functions, de-

noted by mλ, where for a given partition λ = (λ1, . . . , λN ),

mλ(x) = xλ1
1 · · ·x

λN
N + distinct permutations.

Other classes of symmetric polynomials associated to the partition λ =

(λ1, . . . , λN ) are the complete symmetric function

hλ(x) = hλ1 . . . hλN ,

where

hr(x) =
∑

1≤i1≤...≤ir≤N
xi1 . . . xir ,

as well as the power sum

pλ(x) := pλ1 . . . pλN ,

where

pr(x) =

N∑
i=1

xri .

Example 2.2.1. For the partition λ = (3, 1, 0) with the number of variables N =

3 fixed, we show below the corresponding element in each of the basis mentioned

above:

e(3,1,0)(x1, x2, x3) = e3(x1, x2, x3) · e1(x1, x2, x3) · e0(x1, x2, x3)

= x1x2x3 · (x1 + x2 + x3) · 1

= x2
1x2x3 + x1x

2
2x3 + x1x2x

2
3

while

m(3,1,0)(x1, x2, x3) = x3
1x2 + x1x

3
2 + x3

1x3 + x1x
3
3 + x3

2x3 + x2x
3
3
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and

h(3,1,0)(x1, x2, x3) = h3(x1, x2, x3) · h1(x1, x2, x3) · h0(x1, x2, x3)

= (x3
1+x3

2+x3
3+x2

1x2+x1x
2
2+x2

1x3+x1x
2
3+x2

2x3+x2x
2
3+x1x2x3)·(x1+x2+x3)·1

= (x3
1+x3

2+x3
3+x2

1x2+x1x
2
2+x2

1x3+x1x
2
3+x2

2x3+x2x
2
3+x1x2x3)·(x1+x2+x3)

and

p(3,1,0)(x1, x2, x3) = p3(x1, x2, x3) · p1(x1, x2, x3) · p0(x1, x2, x3)

= (x3
1 + x3

2 + x3
3) · (x1 + x2 + x3) · 1

= x4
1 + x3

1x2 + x3
1x3 + x1x

3
2 + x4

2 + x3
2x3 + x1x

3
3 + x2x

3
3 + x4

3.

One special type of symmetric polynomials are the symmetric Jack polyno-

mials. They can be defined in various ways: by using combinatorial formulas

in terms of certain generalized tableaux (see [47]), by symmetrizing the non-

symmetric Jack polynomials or as an orthogonal family of functions which is

compatible with the canonical filtration of the ring of symmetric functions. How-

ever, as we have mentioned in the introduction, the most natural way for us is

to characterize them as triangular eigenfunctions of the differential operator D

given by (1.1.3). They are uniquely determined by the properties of being monic

and triangular in the monomial basis, where the triangularity is taken with re-

spect to the dominance ordering. Thus Pλ is the unique element of S{1,...,N}

that satisfies the following two properties:

(A1) Pλ = mλ +
∑
µ<λ

cλ,µ(α)mµ ,

(A2) DPλ = ελ(α)Pλ ,

where ελ(α) is the eigenvalue given in Lemma 2.1.1.

For instance,

P(2) = m(2) +
2

α+ 1
m(1,1)

and if N = 3, then

P(2)(x1, x2, x3;α) = x2
1 + x2

2 + x2
3 +

2

α+ 1
(x1x2 + x1x3 + x2x3)
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and

P(3) = m(3) +
3

2α+ 1
m(2,1) +

6

(2α+ 1)(α+ 1)
m(1,1,1)

and if N = 3, then

P(3)(x1, x2, x3;α) = x3
1 + x3

2 + x3
3 +

6

(2α+ 1)(α+ 1)
x1x2x3

+
3

2α+ 1
(x2

1x2 + x1x
2
2 + x2

1x3 + x1x
2
3 + x2

2x3 + x2x
2
3).

Remark 2.2.2. More examples of symmetric Jack polynomials will be given in

the first part of the table in Appendix B.

2.3 Non-symmetric Jack polynomials

We introduce the counterpart of the symmetric Jack polynomials, the non-

symmetric Jack polynomials. After their definition, we recall their stability

property, which will be used in the next section to prove the stability property

of the Jack polynomials with prescribed symmetry. At the end of this section

we prove that the non-symmetric Jack polynomials are eigenfunctions of the

Sekiguchi operators.

As we have mentioned earlier, there are many ways to define the non-symmetric

Jack polynomials [58] (see also [47]). However, the most natural way for us

is to characterize them as triangular eigenfunctions of commuting difference-

differential operators, first introduced in physics in [12], and later generalized to

general root systems by Cherednik. We define these operators as follows:

ξj = αxj∂xj +
∑
i<j

xj
xj − xi

(1−Kij) +
∑
i>j

xi
xj − xi

(1−Kij)− (j − 1), (2.3.1)

where the operators Ki,j were given in (2.2.1).

Let η be a composition and let α be formal parameter or a non-zero com-

plex number not equal to a negative rational. Then, the non-symmetric Jack

polynomial Eη(x;α) is the unique polynomial satisfying

(A1’) Eη(x;α) = xη +
∑
ν≺η

cη,νx
ν , cη,ν ∈ C(α),

(A2’) ξjEη = ηjEη ∀j = 1, . . . , N,
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where the eigenvalues are given by

ηj = αηj −#{i < j|ηi ≥ ηj} −#{i > j|ηi > ηj}. (2.3.2)

One important property of the non-symmetric Jack polynomials is their sta-

bility with respect to the number of variables (see [47, Corollary 3.3]). To be

more precise, let η = (η1, . . . , ηN ) and η− = (η1, . . . , ηN−1) be compositions.

Then,

Eη(x1, . . . , xN )
∣∣
xN=0

=

0 if ηN > 0,

Eη−(x1, . . . , xN−1) if ηN = 0.
(2.3.3)

Remark 2.3.1. The recursion formula for non-symmetric Jack polynomials will

be given in Appendix A.

We now prove a closely related property that will help us to establish the

stability of the Jack polynomials with prescribed symmetry.

Lemma 2.3.2. Let λ = (λ1, . . . , λm) and µ = (µm+1, . . . , µN−1) be partitions.

Let also

η = (λm, . . . , λ1, 0, µN−1, . . . , µm+1) and η− = (λm, . . . , λ1, µN−1, . . . , µm+1).

Finally assume that µm+1 > 0. Then,

Eη(x1, . . . , xm, xN , xm+1, . . . , xN−1)
∣∣
xN=0

= Eη−(x1, . . . , xm, xm+1, . . . , xN−1).

Proof. We first remark that

Eη(x1, . . . , xm, xN , xm+1, . . . , xN−1)

= KN−1 . . .Km+1Eη(x1, . . . , xm, xm+1, . . . , xN−1, xN ).

Now, the action of the symmetric group on the non-symmetric Jack polynomials

is (see [4, Eq. (2.21)])

KiEη =


1
δi,η

Eη + (1− 1
δ2
i,η

)EKi(η), ηi > ηi+1

Eη, ηi = ηi+1

1
δi,η

Eη + EKi(η), ηi < ηi+1

(2.3.4)
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where δi,η = ηi − ηi+1. In our case, given that we are using a composition in

increasing order, we can use successively the third line of (2.3.4) and we get

Eη(x1, . . . , xm, xN , xm+1, . . . , xN−1) = EKN−1...Km+1(η)(x1, . . . , xN )

+
∑
γ

cλ,γEγ(x1, . . . , xN ).

In the last equation, the sum is taken over the compositions γ of the form

γ = (λm, . . . , λ1, ω(0, µN−1, . . . , µm+1)),

where ω is a permutation of the composition formed by a strict subsequence

of the transpositions KN−1, . . . ,Km+1 and the coefficients cλ,γ are obtained as

products of 1/δi,j . The important point here is that for any such γ, we have

γN 6= 0. Moreover,

KN−1 . . .Km+1(η) = (λm, . . . , λ1, µN−1, . . . , µm+1, 0).

Then, applying the stability property (2.3.3), we find Eγ(x1, . . . , xN )
∣∣
xN=0

= 0

and EKN−1...Km+1(η)(x1, . . . , xN )
∣∣
xN=0

= Eη−(x1, . . . , xN−1), which completes

the proof.

Lemma 2.3.3. Let γ = (γ1, . . . , γN ) be a composition and let us fix a positive

integer m with m ≤ N . Then, Eγ(x;α) is an eigenfunction of the operators

S∗(u) and S~(u, v) defined in (1.5.1). Moreover, let Γ = ϕm(γ) be the associated

superpartition to γ. Then,

S∗(u)Eγ = εΓ∗(α, u)Eγ S~(u, u)Eγ = εΓ~(α, u)Eγ ,

where the eigenvalue ελ(α, u) is defined in (1.5.2).

Proof. The fact that the non-symmetric Jack polynomials are eigenfunctions of

the Sekiguchi operators immediately follows from ξiEγ = γ̄iEγ . Explicitly,

S∗(u)Eγ =
N∏
i=1

(u+ γ̄i)Eγ , S~(u, v)Eγ =
m∏
i=1

(u+ γ̄i + α)
N∏

i=m+1

(v + γ̄i)Eγ .

In order to express the eigenvalues in terms of partitions rather than compo-

sitions, we need to consider permutations on words with N symbols. Amongst all
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the permutations w such that γ = w(γ+), there exists a unique one, denoted by

wγ , of minimal length. Equivalently, wγ is the smallest element of SN satisfying

γwγ(i) = γ+
i for each i = 1, . . . , N. (2.3.5)

Now, let δ− = (0, 1, . . . , N − 1). As is well known, the eigenvalue γ̄i is equal to

the ith element of the composition (αγ − wγδ−), which means that

γ̄i = αγ+

w−1
γ (i)

− δ−
w−1
γ (i)

or equivalently

γ̄w(i) = αγ+
i − (i− 1).

In our case, γ+ = Γ∗, so that

N∏
i=1

(u+ γ̄i) =

N∏
i=1

(u+ αΓ∗i − i+ 1),

which is the first expected eigenvalue. For the second Sekiguchi operator, we

note that the shifted composition (γ1 + 1, . . . , γm + 1, γm+1, . . . , γN ) is equal to

wγ(Γ~). Consequently,

m∏
i=1

(u+ γ̄i + α)
N∏

i=m+1

(u+ γ̄i) =
N∏
i=1

(u+ αΓ~
i − i+ 1),

and the lemma follows.

2.4 Jack polynomials with prescribed symmetry

All along this section we introduce different types of polynomials with prescribed

symmetry (monomial polynomials and Jack polynomials). Also for generic α we

prove the regularity and triangularity properties independent the type of sym-

metry of the Jack polynomials. Moreover, we show the stability property for

each family of Jack polynomials with prescribed symmetry and we give a char-

acterization of the Jack polynomials with prescribed symmetry as eigenfunctions

of the Sekiguchi operators (Theorem 2.4.10).

For any subset K of {1, . . . , N}, let SK denote the subgroup of the permuta-

tion group of {1, . . . , N} that leaves the complement of K invariant. The anti-
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symmetrization and symmetrization operators for K are defined as follows:

AsymKf(x) =
∑
σ∈SK

(−1)σf(xσ(1), . . . , xσ(N)) and (2.4.1)

SymKf(x) =
∑
σ∈SK

f(xσ(1), . . . , xσ(N)). (2.4.2)

for any pair (i, j) of elements of K, we have

Ki,j AsymKf(x) = −AsymKf(x) and Ki,j SymKf(x) = SymKf(x).

Notice that in the following paragraphs, the set K will be either I = {1, . . . ,m}
or J = {m+ 1, . . . , N}.

The vector space AI ⊗SJ |n consists of all polynomials of total degree n that

are antisymmetric with respect to the set of variables {x1, . . . , xm}, and sym-

metric with respect to {xm+1, . . . , xN}. This space is spanned by all polynomials

of the form AsymISymJx
η, where η runs over all compositions of n. However,

by considering the symmetry of the polynomials, we see that AI ⊗SJ |n is also

spanned by the following set of linearly independent polynomials:

{mAS
Λ |Λ is a strict superpartition of bi-degree (n|m)},

where the monomial mAS
Λ is defined as

mAS
Λ (x) = aλ(x1, . . . , xm)mµ(xm+1, . . . , xN ),

λ = (Λ1, . . . ,Λm), µ = (Λm+1, . . . ,ΛN ).

We recall that in the last equation, aλ and mµ denote the antisymmetric and

symmetric monomial functions respectively.

Similarly, the following sets provide bases for the vector spaces AI ⊗ AJ |n,

SI ⊗AJ |n , SI ⊗SJ |n,

{mAA
Λ |Λ is a strict superpartition of bi-degree (n|m) such that Λm+1 > · · · > ΛN},

(2.4.3)

{mSA
Λ |Λ is a superpartition of bi-degree (n|m) such that Λm+1 > · · · > ΛN},

(2.4.4)

{mSS
Λ |Λ is a superpartition of bi-degree (n|m)}, (2.4.5)
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where

mAA
Λ (x) = aλ(x1, . . . , xm)aµ(xm+1, . . . , xN ), (2.4.6)

mSA
Λ (x) = mλ(x1, . . . , xm)aµ(xm+1, . . . , xN ), (2.4.7)

mSS
Λ (x) = mλ(x1, . . . , xm)mµ(xm+1, . . . , xN ). (2.4.8)

(2.4.9)

Example 2.4.1. Monomials polynomials with prescribed symmetry.

λ aλ µ mµ mAS
Λ

(1, 0) x1 − x2 (1, 1) x3x4 (x1 − x2)x3x4

(1, 0) x1 − x2 (2, 1) x2
3x4 + x3x

2
4 (x1 − x2)(x2

3x4 + x3x
2
4)

(2, 0) x2
1 − x2

2 (2, 0) x2
3 + x2

4 (x2
1 − x2

2)(x2
3 + x2

4)

λ aλ µ aµ mAA
Λ

(1, 0) x1 − x2 (1, 1) 0 0

(1, 0) x1 − x2 (2, 1) x2
3x4 − x3x

2
4 (x1 − x2)(x2

3x4 − x3x
2
4)

(2, 0) x2
1 − x2

2 (2, 0) x2
3 − x2

4 (x2
1 − x2

2)(x2
3 − x2

4)

λ mλ µ aµ mSA
Λ

(1, 0) x1 + x2 (1, 1) 0 0

(1, 0) x1 + x2 (2, 1) x2
3x4 − x3x

2
4 (x1 + x2)(x2

3x4 − x3x
2
4)

(2, 0) x2
1 + x2

2 (2, 0) x2
3 − x2

4 (x2
1 + x2

2)(x2
3 − x2

4)

λ mλ µ mµ mSS
Λ

(1, 0) x1 + x2 (1, 1) x3x4 (x1 + x2)x3x4

(1, 0) x1 + x2 (2, 1) x2
3x4 + x3x

2
4 (x1 + x2)(x2

3x4 + x3x
2
4)

(2, 0) x2
1 + x2

2 (2, 0) x2
3 + x2

4 (x2
1 + x2

2)(x2
3 + x2

4)

We recall that the Jack polynomials with prescribed symmetry AS, AA, SA,

SS have been introduced in Definition 1.3. They are indexed by a superpartition

Λ = (Λ1, . . . ,Λm; Λm+1, . . . ,ΛN ) and are defined as follows:

PΛ(x;α) = cΛOI,JEη, (2.4.10)



30 CHAPTER 2. Preliminaries

where OI,J stands for the appropriate composition of antisymmetrization and/or

symmetrization operators, and

η = (Λm, . . . ,Λ1,ΛN , . . . ,Λm+1). (2.4.11)

Moreover, the coefficient cΛ is chosen such that the polynomial PΛ is monic,

i.e., the coefficient of mΛ in PΛ is exactly one. Since, our definition is such that

only the non-symmetric monomial OI,Jxη contributes to the coefficient of mΛ ,

it is an easy exercise to extract the normalization coefficient:

cAS
Λ =

(−1)m(m−1)/2

fµ
, (2.4.12)

cAA
Λ = (−1)m(m−1)/2(−1)(N−m)(N−m−1)/2, (2.4.13)

cSA
Λ =

(−1)(N−m)(N−m−1)/2

fλ
, (2.4.14)

cSS
Λ =

1

fλfµ
, (2.4.15)

where λ = (Λ1, . . . ,Λm), µ = (Λm+1, . . . ,ΛN ), fλ =
∏
i nλ(i)! and nλ(i) is the

multiplicity of i in λ.

As an example, the following polynomial

PAS
(1;2,0,0) = mAS

(1;2,0,0) +
1

α+ 1
mAS

(0;2,1,0) +
2

α+ 1
mAS

(1;1,1,0) +
6

(α+ 2)(α+ 1)
mAS

(0;1,1,1)

shows us the triangular structure of the Jack polynomials with prescribed sym-

metry with respect to prescribed monomials, and the existence of singularities

for some negative values of α. These properties, that immediately follow from

their Definition (2.4.10), will be proved in general for Jack polynomials with

prescribed symmetry independently of the type of symmetry.

Remark 2.4.2. More examples of Jack polynomials will be given in Appendix

B.
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Lemma 2.4.3 (Regularity for generic α). PΛ(x;α) is singular only if α is zero

or a negative rational.

Proof. All the dependence upon α comes from the non-symmetric Jack polyno-

mials, so it is sufficient to consider the possible singularities of the latter. Let us

now recall a fundamental result of Knop and Sahi [47]: There is a vη(α) ∈ N[α]

such that all the coefficients in vη(α)Eη(x;α) belong to N[α]. Thus, the only

singularities of Eη(x;α) are poles, which can occurs only at α = 0 or for some

α ∈ Q−.

Lemma 2.4.4 (Simple product). For any superpartition

Λ = (Λ1, . . . ,Λm; Λm+1, . . . ,ΛN ),

let

Λ+ = (Λ1 + 1, . . . ,Λm + 1; Λm+1 + 1, . . . ,ΛN + 1).

Then,

x1 · · ·xN PΛ(x;α) = PΛ+(x;α).

Proof. By using the known property of non-symmetric Jack polynomials,

x1 · · ·xNEη(x;α) = E(η1+1,...,ηN+1)(x;α), the definition given in 2.4.10 and the

fact that x1 · · ·xN commutes with any OI,J , we conclude that

x1 · · ·xN PΛ(x;α) = cΛOI,JE(η1+1,...,ηN+1)(x;α) =
cΛ

cΛ+

PΛ+(x;α).

Finally, one easily verifies from equations (2.4.12)–(2.4.15), that cΛ = cΛ+ .

Proposition 2.4.5 (Triangularity). PΛ = mΛ +
∑

Γ<Λ cΛ,ΓmΓ.

Proof. By definition, PΛ = cΛOI,JEη, where η is given by (2.4.11) and Eη = xη+∑
ν≺η cη,νx

ν . We already know that cΛ guarantees the monocity, i.e., cΛOI,Jxη =

mΛ. It remains to check that if ν ≺ η, then OI,Jxν is proportional to mΩ for

some Ω < Λ. Now, OI,Jxν is proportional to mΩ, where Ω = ϕm(ν). Moreover,

we know from Lemma 2.1.3 that ν ≺ η, then ϕm(ν) < ϕm(λ). This completes

the proof.
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Proposition 2.4.6 (Stability for types AS and SS). Let

Λ = (Λ1, . . . ,Λm; Λm+1, . . . ,ΛN ) be a superparttion and let

Λ− = (Λ1, . . . ,Λm; Λm+1, . . . ,ΛN−1). Then, the Jack polynomial with prescribed

symmetry AS or SS satisfies

PΛ(x1, . . . , xN ;α)
∣∣
xN=0

=

0, ΛN > 0,

PΛ−(x1, . . . , xN−1;α), ΛN = 0.

Proof. The cases AS and SS being similar, we only give the proof for AS.

Let λ = (Λ1, . . . ,Λm), µ = (Λm+1, . . . ,ΛN ), λ− = (Λm, . . . ,Λ1),

µ− = (ΛN , . . . ,Λm+1). Let also η = (λ−, µ−) and η− = (λ−, µ−−), where µ−− =

(ΛN−1, . . . ,Λm+1). By definition,

PASΛ (x) =
(−1)m(m−1)/2

fµ
AsymISymJEη(x;α).

The symmetrization operator can be decomposed as

SymJ = SymJ−(1+Km+1,N+Km+2,N+. . .+KN−1,N ), J− = {m+1, . . . , N−1}.

It is more convenient to rewrite the transpositions on the LHS in terms of the

elementary transpositions:

Ki,N = KiKi+1 . . .KN−2KN−1KN−2 . . .Ki+1Ki

By making use of the stability property (2.3.3) and the action of the symmetric

group on the non-symmetric Jack polynomials given in (2.3.4), we then find that

KN−1KN−2 . . .Ki+1KiEη
∣∣
xN=0

=

0, ηi > 0,

Eη−(x1, . . . , xN−1), ηi = 0.

Thus, SymJEη (x1, . . . , xN )
∣∣
xN=0

= 0 when ΛN > 0, while

SymJEη (x1, . . . , xN )
∣∣
xN=0

= SymJ−

( ∑
i∈{m+1,...,N−1}

µ−i =0

KiKi+1 . . .KN−2

)
Eη−(x1, . . . , xN−1)

= nµ(0) SymJ−Eη−(x1, . . . , xN−1)

when ΛN = 0, and the proposition follows.
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Proposition 2.4.7 (Stability for types SA and SS). Let

Λ = (Λ1, . . . ,Λm; Λm+1, . . . ,ΛN ) be a superpartition and let

Λ− = (Λ1, . . . ,Λm−1; Λm+1, . . . ,ΛN ). Then, the Jack polynomial with prescribed

symmetry SA or SS satisfies

PΛ(x1, . . . , xm, . . . , xN ;α)
∣∣
xm=0

=

0, Λm > 0,

PΛ−(x1, . . . , xm−1, xm+1, . . . , xN ;α), Λm = 0.

Proof. The cases SA and SS are almost identical, so we only prove the first. Be-

low, we essentially follow the method used for proving Proposition 2.4.6, except

that we use Lemma 2.3.2 rather than equation (2.3.3).

Let λ = (Λ1, . . . ,Λm), µ = (Λm+1, . . . ,ΛN ), λ− = (Λm, . . . ,Λ1),

µ− = (ΛN , . . . ,Λm+1). Let also η = (λ−, µ−) and η− = (λ−, µ−−), where

µ−− = (ΛN−1, . . . ,Λm+1). By definition,

PSAΛ (x) =
(−1)(N−m)(N−m−1)/2

fλ
SymIAsymJEη(x;α)

Notice that SymI and AsymJ commute. The symmetrization operator can be

decomposed as

SymI = SymI−(1 +K1,m +K2,m + . . .+Km−1,m),

where I− = {1, . . . ,m− 1} and

Ki,m = KiKi+1 . . .Km−2Km−1Km−2 . . .Ki+1Ki

Now, recalling (2.3.4) and the second stability property for the non-symmetric

Jack polynomials, given in Lemma 2.3.2, we conclude that

Km−1Km−2 . . .Ki+1KiEη
∣∣
xm=0

=

0, ηi > 0,

Eη−(x1, . . . , xN−1), ηi = 0.

Thus, SymIEη (x1, . . . , xN )
∣∣
xm=0

= 0 when Λm > 0, while

SymIEη (x1, . . . , xN )
∣∣
xm=0

= SymI−

( ∑
i∈{1,...,m−1}

λ−i =0

KiKi+1 . . .Km−2

)
Eη−(x1, . . . , xm−1, xm+1, . . . , xN )

= nλ(0) SymI−Eη−(x1, . . . , xm−1, xm+1, . . . , xN ),

when Λm = 0, and the proposition follows.
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The next proposition relates Jack polynomials with prescribed symmetry of

different bi-degrees. It uses two basic operations on superpartitions. The first

one is the removal of a column:

C(Λ1, . . . ,Λm; Λm+1, . . . ,ΛN ) = (Λ1 − 1, . . . ,Λm − 1; Λm+1 − 1, . . . ,ΛN − 1)

if Λi > 0 ∀ 1 ≤ i ≤ N.

The second one is the removal of a circle:

C̃(Λ1, . . . ,Λm; Λm+1, . . . ,ΛN ) = (Λ1, . . . ,Λm−1; Λm+1, . . . ,ΛN ) if Λm = 0.

The operators C and C̃ are illustrated in Figure 2.1

Figure 2.1: Operators C and C̃

C

kk
k =

kk
k and C̃

kk
k =

kk

Proposition 2.4.8 (Removal of a column or a circle). Let

Λ = (Λ1, . . . ,Λm; Λm+1, . . . ,ΛN )

be a superpartition and let

PΛ(x1, . . . , xm, . . . , xN ;α)

be the associated Jack polynomial with prescribed symmetry AA, AS, SA,or SS.

If Λi > 0 for all 1 ≤ i ≤ N , then

PΛ(x1, . . . , xm, . . . , xN ;α) = (x1 · · ·xN )PCΛ(x1, . . . , xm, . . . , xN ;α).

If Λm = 0, then

PΛ(x1, . . . , xm, . . . , xN ;α)
∣∣∣
xm=0

= εmPC̃Λ(x1, . . . , xm−1, xm+1, . . . , xN ;α),

where εm = (−1)m(m−1)/2 for types AA and AS, while εm = 1 for types SA and

SS.
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Proof. The removal of a column follows immediately from Lemma 2.4.4. For

types SA and SS, the removal of a circle follows from the stability property given

in Proposition 2.4.7.

It remains to prove the removal of a circle for types AA and AS. Only the

AS case is detailed below. Let λ = (Λ1, . . . ,Λm), µ = (Λm+1, . . . ,ΛN ), λ− =

(Λm, . . . ,Λ1), µ− = (ΛN , . . . ,Λm+1). Let also η = (λ−, µ−) and η− = (λ−−, µ
−),

where λ−− = (Λm−1, . . . ,Λ1). By definition,

PASΛ (x) =
(−1)(m)(m−1)/2

fµ
AsymISymJEη(x;α)

As mentioned before AsymI and SymJ commute. The symmetrization operator

can be decomposed as

AsymI = AsymI−(1−K1,m −K2,m − . . .−Km−1,m),

where I− = {1, . . . ,m− 1} and

Ki,m = KiKi+1 . . .Km−2Km−1Km−2 . . .Ki+1Ki.

Now, recalling equation (2.3.4) and the second stability property for the non-

symmetric Jack polynomials, given in Lemma 2.3.2, we conclude that

Km−1Km−2 . . .Ki+1KiEη
∣∣
xm=0

=

0, ηi > 0,

Eη−(x1, . . . , xN−1), ηi = 0.

From the previous line, we can see that the only nonzero contribution comes

from the permutation Km−1Km−2 . . .K2K1. Thus

AsymIEη (x1, . . . , xN )
∣∣
xm=0

= AsymI−(K1K2 . . .Km−2Eη−(x1, . . . , xm−1, xm+1, . . . , xN ))

= (−1)m−2AsymI−Eη−(x1, . . . , xm−1, xm+1, . . . , xN )

and the proposition follows.

The next proposition shows that just as the non-symmetric Jack polynomials

are eigenfunctions of the Sekiguchi operators, also the Jack polynomials with

prescribed symmetry are eigenfunctions of the Sekiguchi operators.
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Proposition 2.4.9 (Eigenfunctions). Let Λ be a superpartition of bidegree (n|m).

The Jack polynomial with prescribed symmetry, PΛ = PΛ(x;α), is an eigenfunc-

tion of the Sekiguchi operators S∗(u) and S~(u, v) defined in equation (1.5.1).

Moreover,

S∗(u)PΛ = εΛ∗(α, u)PΛ S~(u, u)PΛ = εΛ~(α, u)PΛ,

where the eigenvalues are given by equation (1.5.2).

Proof. This lemma immediate follows from the following three basic facts:

(1) PΛ is proportional to OI,JEλ for any composition λ such that Λ = ϕm(λ);

(2) The operators S∗ and S~ commute with OI,J .

(3) By virtue of Lemma 2.3.3, Eλ is an eigenfunction of S∗(u) and S~(u, v).

Moreover, if ϕm(λ) = Λ, then S∗(u)Eλ = εΛ∗(α, u)Eλ and S~(u, u)Eλ =

εΛ~(α, u)Eλ.

Theorem 2.4.10 (Uniqueness at generic α). Let Λ be a superpartition of bi-

degree (n|m). Suppose that α is a formal parameter or a complex number that is

neither zero nor a negative rational. Then, the Jack polynomial with prescribed

symmetry PΛ is the unique polynomial satisfying

(B1) PΛ = mΛ +
∑
Γ<Λ

cΛ,ΓmΓ , cΛ,Γ ∈ C(α);

(B2) HPΛ = dΛ PΛ and I PΛ = eΛ PΛ.

for some cΛ,Γ, dΛ, eΛ ∈ C(α). Moreover, the eigenvalues dΛ and eΛ can be com-

puted explicitly, they will be given in equations (2.4.17) and (2.4.18) respectively.

Proof. We want to prove that the Jack polynomials with prescribed symmetry

are the unique unitriangular eigenfunctions of H =
∑N

i=1 ξ
2
i and I =

∑m
i=1 ξi.

However, according to Propositions 2.4.5 and 2.4.9, we already know that the

Jack polynomial with prescribed symmetry PΛ satisfies

(B1) PΛ = mΛ +
∑
Γ<Λ

cΛ,ΓmΓ;

(B2) HPΛ = dΛ PΛ and I PΛ = eΛ PΛ.
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Thus, it remains to prove that there is no other polynomial that satisfies (B1)

and (B2).

First, we need to determine precisely the eigenvalues dΛ and eΛ. We recall

that mΛ is proportional to OI,Jxη, where η = (Λm, . . . ,Λ1,ΛN , . . . ,Λm+1). Now,

as is well known (e.g., see conditions (A1’) and (A2’) in Section 2.2),

ξix
η = η̄ix

η +
∑
γ≺η

fη,γx
γ .

Then, for any polynomial g such that g(ξ1, . . . , ξN ) commutes with OI,J , we have

g(ξ1, . . . , ξN )mΛ ∝ OI,Jg(ξ1, . . . , ξN )xη

= OI,J

(
g(η̄1, . . . , η̄N )xη +

∑
γ≺η

f ′η,γx
γ

)
∝ g(η̄1, . . . , η̄N )mΛ +

∑
Γ<Λ

f ′′Λ,ΩmΩ.

(2.4.16)

Consequently, a triangular polynomial QΛ = mΛ +
∑

Γ<Λ c
′
Λ,ΓmΓ, can be an

eigenfunction of g(ξ1, . . . , ξN ) only if its eigenvalue is equal to g(η̄1, . . . , η̄N ). In

our case, Q is an eigenfunction of H and I, with respective eigenvalues dΛ and

eΛ, only if

dΛ =
N∑
i=1

η̄2
i and eΛ =

m∑
i=1

η̄i.

Now, as explained in Lemma 2.3.3,
∑N

i=1 η̄
2
i =

∑n
i=1

(
αΛ∗i − (i− 1)

)2
. By com-

paring the latter equation with the explicit expression for the quantity εΛ(α),

introduced in Lemma 2.1.1, we get

dΛ = 2α εΛ∗(α) + α2|Λ∗|+ N(N − 1)(2N − 1)

6
. (2.4.17)

Returning to the second eigenvalue, we note that because

η = (Λm, . . . ,Λ1,ΛN , . . . ,Λm+1), we can write

m∑
i=1

η̄i =

m∑
i

(αΛi −#{j |Λj ≥ Λi}) .

From the comparison of the latter expression with the quantity εΛ(α), given in

Lemma 2.1.4, we then conclude that

eΛ = εΛ(α). (2.4.18)
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Second, we suppose that there is another QΛ = mΛ +
∑

Γ<Λ c
′
Λ,ΓmΓ such

that (i) PΛ−QΛ 6= 0, (ii) HQΛ = dΛQΛ, and (iii) I QΛ = eΛQΛ. Condition (i)

implies that there is superpartition Ω such that Ω < Λ and

PΛ −QΛ = aΩmΩ +
∑
Γ<Λ
Γ<tΩ

aΩ,ΓmΓ,

where <t denotes some total order compatible with the dominance order. The

substitution of the last equation into conditions (ii) and (iii) then leads to

H
(
aΩmΩ +

∑
Γ<Λ
Γ<tΩ

aΩ,ΓmΓ

)
= dΛ

(
aΩmΩ +

∑
Γ<Λ
Γ<tΩ

aΩ,ΓmΓ

)
(2.4.19)

I
(
aΩmΩ +

∑
Γ<Λ
Γ<tΩ

aΩ,ΓmΓ

)
= eΛ

(
aΩmΩ +

∑
Γ<Λ
Γ<tΩ

aΩ,ΓmΓ

)
. (2.4.20)

However, according to equation (2.4.16), we have HmΩ = dΛmΛ + . . . and

ImΩ = eΛmΛ + . . ., where the ellipsis . . . stand for linear combinations of mono-

mial indexed by superpartitions strictly smaller than Ω in the dominance order.

Consequently, equations (2.4.19) and (2.4.20) can be rewritten as

dΩ aΩmΩ + independent terms = dΛ aΩmΩ + independent terms,

eΩ aΩmΩ + independent terms = eΛ aΩmΩ + independent terms,

which is possible only if

dΛ = dΩ and eΛ = eΩ

On the one hand, using Lemma 2.1.1 and Λ > Ω, we conclude that the first

equality is possible only if Λ∗ = Ω∗. On the other hand, Lemma 2.1.4 and Λ > Ω

imply that, the second equality is possible only if Λ∗ > Ω∗. We thus have a

contradiction. Therefore, there is no polynomial QΛ satisfying (i), (ii), and (iii).

We have proved the uniqueness of the polynomial satisfying (B1) and (B2).





CHAPTER 3

Regularity and uniqueness properties at α = −(k + 1)/(r − 1)

As mentioned in the Introduction, regularity and uniqueness are not obvious at

all if α is a negative rational. Here we find sufficient conditions that allow to pre-

serve these two properties. We indeed prove that if α = −(k+1)/(r−1) and Λ is

(k, r,N)-admissible, then the associated Jack polynomial with prescribed sym-

metry is regular and can be characterized as the unique triangular eigenfunction

to differential operator of Sekiguchi type. Similar results hold for a particular

family of non-symmetric Jack polynomials indexed by compositions formed by

the concatenation of two partitions and with an admissibility condition. We use

them at the end of the section to prove the clustering properties for k = 1 of

the Jack polynomials with prescribed symmetry. This chapter is based on [20,

Section 3].

3.1 More on admissible superpartitions

In this subsection we enunciate some lemmas related to the superpartition’s ad-

missibility condition, which are necessary to simplify the proofs of the regularity

and uniqueness propositions.

Lemma 3.1.1. Let Λ be a weakly (k, r,N)-admissible and strict superpartition.

Then both Λ∗ and Λ~ are (k + 1, r,N)-admissible.

Proof. According to the weak admissibility condition, we have Λ~
i+1−Λ∗i+1+k ≥ r,

so that Λ∗i −Λ∗i+1+k ≥ Λ∗i+1−Λ∗i+1+k ≥ r−1. Now, the equality Λ∗i+1−Λ∗i+1+k =

r − 1 holds if and only if Λ~
i+1 = Λ∗i+1 + 1. However, in the latter case, Λ∗i ≥

Λ~
i+1 > Λ∗i+1. We therefore have Λ∗i − Λ∗i+k+1 ≥ r.

40
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Similarly, we have Λ~
i − Λ~

i+k ≥ r − 1. The equality Λ~
i − Λ~

i+k = r − 1

occurs if and only if Λ~
i+k = Λ∗i+k + 1, but in this case, Λ~

i+k > Λ∗i+k > Λ~
i+k+1.

Therefore, Λ~
i − Λ~

i+k+1 ≥ r.

Lemma 3.1.2. If Λ is (k, r,N)-admissible, then

Λ~
i+1 − Λ∗i+ρ(k+1) ≥ ρr, 1 ≤ i ≤ N − ρ(k + 1), ρ ∈ Z+, (3.1.1)

or equivalently,

Λ~
i−ρ(k+1) − Λ∗i−1 ≥ ρr, ρ(k + 1) ≤ i− 1 ≤ N, ρ ∈ Z+. (3.1.2)

In particular, if Λ is moderately (k, r,N)-admissible, then equations (3.1.1) and

(3.1.2) hold.

Proof. The moderately and strongly admissible cases are trivial. We thus sup-

pose that Λ is strict and weakly (k, r,N)-admissible. Firstly, note that the case

ρ = 1 corresponds to Λ~
i+1 − Λ∗i+k+1 ≥ r, which is an immediate consequence of

weak admissibility condition. Secondly, suppose that Eq. (3.1.1) is true for some

ρ ≥ 1. Then,

Λ~
i+1 − Λ∗i+(ρ+1)(k+1) = Λ~

i+1 − Λ∗i+ρ(k+1) + Λ∗i+ρ(k+1) − Λ∗i+(ρ+1)(k+1)

≥ ρr + Λ∗i+ρ(k+1) − Λ∗i+(ρ+1)(k+1).

However, according to the previous lemma, Λ∗i+ρ(k+1) − Λ∗i+(ρ+1)(k+1) ≥ r. Con-

sequently,

Λ~
i+1 − Λ∗i+(ρ+1)(k+1) ≥ ρr + r,

and the lemma follows by induction.

3.2 Regularity for non-symmetric Jack polynomials

To begin this subsection, we would like to illustrate the importance of the regu-

larity property when α specialized. For this, let us write explicitly the first non

trivial non-symmetric Jack polynomial, namely

E(1,0)(x1, x2;α) = x1 +
x2

α+ 1
.
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We can see from this example that already by considering a minimal degree,

such polynomials can have singularities when α is specialized.

However, as mentioned above, we need to find sufficient conditions on the

composition’s shape that allow us to specialize to a particular α. For this purpose

it is necessary to introduce some notation. Given a cell s = (i, j) in the diagram

associated to η a composition, we set

dη(s) = α(aη(s) + 1) + lη(s) + l′η(s) + 1

where aη(s), lη(s) and l′η(s) were given in eq. (2.1.1). According to the results

given in [47], we know that
(∏

s∈η dη(s)
)
Eη belongs to N[α, x1, . . . , xN ]. Then,

if we want to show that Eη(x;α) has no poles at α = αk,r, is sufficient to prove

that ∏
s∈η

dη(s) 6= 0 if α = αk,r.

Hence, to demonstrate that some non-symmetric Jack polynomials have no

poles, we use the relationship between η and its associated superpartition to get

an expression of dη in terms of Λ (the associated superpartition) and then we

impose an admissibility condition over Λ to get the regularity’s result.

In what follows, λ+ = (λ+
1 , . . . , λ

+
m) and µ+ = (µ+

1 , . . . , µ
+
N−m) denote parti-

tions. This notation is used in order to avoid confusion between partitions and

compositions. Moreover, the composition obtained by the concatenation of λ+

and µ+, which is (λ+
1 , . . . , λ

+
m, µ

+
1 , . . . , µ

+
N−m), will be denoted by

η = (λ+, µ+). (3.2.1)

Lemma 3.2.1. Let η be as in (3.2.1) and let Λ = ϕm(η) be its associated super-

partition. Moreover, let BF(Λ) be the set of cells belonging simultaneously to a

bosonic row (without circle) and a fermionic column (with circle). Then,

∏
s∈η

dη(s) =
∏

s′∈BF(Λ)

(α(aΛ∗(s
′)+1)+lΛ~(s′)+1)

∏
s′∈Λ∗/BF(Λ)

(α(aΛ∗(s
′)+1)+lΛ∗(s

′)+1)
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Proof. Given a cell s = (i, j) in η, let s′ = (i′, j) be the associated cell in Λ. We

want to express dη(s) as a function of the arm-length and leg-length of the cell s′

in Λ. For each cell s = (i, j) in η, we have aη(s) = aΛ∗(s
′), while we can rewrite

lη(s) + l′η(s) as

lη(s) + l′η(s) = #{k = 1, . . . , i− 1|j = ηk + 1}

+ #{k = 1, . . . , i− 1|j ≤ ηk ≤ ηi − 1}+ #{k = i+ 1, . . . , N |j ≤ ηk ≤ ηi}.
(3.2.2)

The two last terms can be easily expressed lη(s) + l′η(s) with the help of the

leg-length of the cell s′:

#{k = 1, . . . , i− 1|j ≤ ηk ≤ ηi− 1}+ #{k = i+ 1, . . . , N |j ≤ ηk ≤ ηi} = lΛ∗(s
′).

(3.2.3)

However, for the first term, we have to distinguish two cases:

(i) If s = (i, j) is such that j = ηk + 1 for some 1 ≤ k ≤ i− 1, then it is clear

that s′ ∈ BF (Λ). Moreover,

#{k = 1, . . . , i− 1|j = ηk + 1} = #{k = 1, . . . ,m|j = λk + 1}.

Since #{k = 1, . . . ,m|j = λk+1} counts the number of circles that appear

in the column j in Λ –more specifically, in the leg-length of the cell s′– we

conclude that lη(s) + l′η(s) = lΛ~(s′). Thus,

dη(s) = α(aΛ∗(s
′) + 1) + lΛ~(s′) + 1. (3.2.4)

(ii) If s = (i, j) is such that j 6= ηk + 1 for each k = 1, . . . , i− 1, then it is clear

that s′ ∈ Λ∗/BF(Λ) and also lη(s) + l′η(s) = lΛ∗(s
′). Hence, we conclude

that

dη(s) = α(aΛ∗(s
′) + 1) + lΛ∗(s

′) + 1. (3.2.5)

The substitution of equations (3.2.3)–(3.2.5) into (3.2.2) completes the proof.

Lemma 3.2.2. Let η be as in (3.2.1) and let Λ = ϕm(η) be its associated super-

partition. If Λ is strict and weakly (k, r,N)-admissible or moderately (k, r,N)-

admissible, then Eη(x;α) does not have poles at α = αk,r.
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Proof. As we have mentioned earlier (see [47]), to prove that Eη(x;α) has no

poles at α = αk,r, it is sufficient to show that
∏
s∈η dη(s) 6= 0 if α = αk,r.

Let us suppose that
∏
s∈η dη(s) = 0 when α = αk,r. From the equality

obtained in Corollary 3.2.1, we have
∏
s∈η dη(s) = 0 iff∏

s∈BF(Λ)

(α(aΛ∗(s)+1)+lΛ~(s)+1) = 0 or
∏

s∈Λ∗/BF(Λ)

(α(aΛ∗(s)+1)+lΛ∗(s)+1) = 0.

Now, this is possible iff there exists a cell s ∈ BF(Λ) such that α(aΛ∗(s) + 1) +

lΛ~(s) + 1 = 0 or if there exists a cell s ∈ Λ∗/BF(Λ) such that α(aΛ∗(s) + 1) +

lΛ∗(s) + 1 = 0.

First, we suppose that s = (i, j) ∈ BF(Λ). Now α(aΛ∗(s)+1)+ lΛ~(s)+1 = 0

iff there exists a ρ ∈ Z+ such that aΛ∗(s)+1 = ρ(r−1) and lΛ~(s)+1 = ρ(k+1).

Using both relations and expressing them in terms of the components of Λ, we

get

Λ∗i − Λ~
i+ρ(k+1)−1 + 1 = ρ(r − 1).

Moreover, we have by hypothesis, Λ∗i = Λ~
i (bosonic row), so that the previous

line can be rewritten as

ρ(r − 1)− 1 = Λ~
i − Λ~

i+ρ(k+1)−1.

However, by using Lemma 3.1.2, we also get

Λ~
i − Λ~

i+ρ(k+1)−1 ≥ ρr − 1,

which contradicts the previous equality.

Second, we suppose that there is a cell s = (i, j) ∈ Λ∗/BF(Λ) such that

α(aΛ∗(s)+1)+ lΛ∗(s)+1 = 0. This is possible iff there exists a ρ ∈ Z+ such that

aΛ∗(s) + 1 = ρ(r − 1) and lΛ∗(s) + 1 = ρ(k + 1). As in the previous case, using

both relations and expressing them in terms of the components of Λ, we obtain

ρ(r − 1)− 1 ≥ Λ∗i − Λ∗i+ρ(k+1)−1 ≥ ρr − 1

which is in contradiction with the admissibility condition of Λ (see Lemma 3.1.2).

Therefore, whenever α = αk,r and Λ is (k, r,N)-admissible, we have∏
s∈η dη(s) 6= 0, as expected.

Remark 3.2.3. The set BF will be illustrated diagrammatically in Appendix C.
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3.3 Regularity for Jack polynomials with prescribed symmetry

We recall that λ+ = (λ+
1 , . . . , λ

+
m) and µ+ = (µ+

1 , . . . , µ
+
N−m) are partitions.

Similarly, λ− = (λ+
m, . . . , λ

+
1 ) and µ− = (µ+

N−m, . . . , µ
+
1 ) denote compositions

whose elements are written in increasing order. The concatenation of λ− and

µ− is given by

(λ−, µ−) = (λ+
m, . . . , λ

+
1 , µ

+
N−m, . . . , µ

+
1 ).

As shown below, the regularity for Jack polynomials with prescribed symme-

try cannot be established directly using Definition 1.3. Indeed, a non-symmetric

Jack polynomials indexed by a composition η of the form (λ−, µ−) is in general

singular at α = αk,r, even if η is associated to an admissible superpartition, as

we will see in the following example. Given k = 1, r = 2 and N = 3, we consider

the compositions η+ = (2, 1, 0) and η− = (0, 1, 2), so we have the polynomials:

E(2,1,0)(x1, x2, x3;α) = x2
1x2 +

1

α+ 1
x1x

2
2 +

1

α+ 1
x2

1x3 +
1

(α+ 1)2
x1x

2
3

+
1

(α+ 1)2
x2

2x3 +
α2 + 2α+ 2

2(α+ 1)3
x2x

2
3 +

(α+ 2)(2α+ 3)

2(α+ 1)3
x1x2x3

E(0,1,2)(x1, x2, x3;α) = x2x
2
3 +

1

α+ 2
x1x2x3

and we see that if we specialize α = −(k + 1)/(r − 1) = −2 the polynomial Eη−

has a singularity, while that Eη+ has no singularities at α = −2. We thus need to

use another normalization for the Jack polynomials with prescribed symmetry,

which we state in the following proposition.

Proposition 3.3.1. Let η = (λ+, µ+) and Λ = ϕm(η). Suppose that α is

generic. Then

PAS
Λ (x;α) =

cAS
Λ

CAS
Λ

AsymISymJEη , P SS
Λ (x;α) =

cSS
Λ

CSS
Λ

SymISymJEη ,

P SA
Λ (x;α) =

cSA
Λ

CSA
Λ

SymIAsymJEη , PAA
Λ (x;α) =

cAA
Λ

CAA
Λ

AsymIAsymJEη ,
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where

CAS
Λ = (−1)m(m−1)/2

∏
s∈FF∗(Λ)

αaΛ~(s) + lΛ~(s)− 1

αaΛ~(s) + lΛ~(s)

×
∏

s=(i,j)∈BRDB

0≤γ≤#{t>i|Λ~
t −Λ∗t =0, Λ∗t =i}−1

αaΛ∗(s) + lΛ∗(s)− γ + 1

αaΛ∗(s) + lΛ∗(s)− γ
,

CSS
Λ =

∏
s=(i,j)∈FF∗(Λ)

0≤γ≤#{t>i|Λ~
t −Λ∗t =1, Λ~

t =i}−1

αaΛ~(s) + lΛ~(s)− γ + 1

αaΛ~(s) + lΛ~(s)− γ

×
∏

s=(i,j) BRDB

0≤γ′≤#{t>i|Λ~
t −Λ∗t =0, Λ∗t =i}−1

αaΛ∗(s) + lΛ∗(s)− γ′ + 1

αaΛ∗(s) + lΛ∗(s)− γ′
,

CSA
Λ = (−1)(N−m)(N−m−1)/2

∏
s=(i,j)∈FF∗(Λ)

0≤γ≤#{t>i|Λ~
t −Λ∗t =1, Λ~

t =i}−1

αaΛ~(s) + lΛ~(s)− γ + 1

αaΛ~(s) + lΛ~(s)− γ

×
∏

s∈BRDB

αaΛ∗(s) + lΛ∗(s)− 1

αaΛ∗(s) + lΛ∗(s)
,

CAA
Λ = (−1)m(m−1)/2(−1)(N−m)(N−m−1)/2

∏
s∈FF∗(Λ)

αaΛ~(s) + lΛ~(s)− 1

αaΛ~(s) + lΛ~(s)

×
∏

s∈BRDB

αaΛ∗(s) + lΛ∗(s)− 1

αaΛ∗(s) + lΛ∗(s)
.

Notice that FF(Λ) denotes the set of cells belonging to a fermionic row and

a fermionic column, while FF∗(Λ) = FF(Λ) \ {s|s ∈ Λ~/Λ∗}. The set BRDB

contains all cells (i, j) such that i is a bosonic row, j is the length of some other

bosonic row i′ satisfying Λ∗i > Λ∗i′.

Sketch of proof. Let η− = (λ−, µ−). The proof consists in calculating the con-

stant of proportionality CΛ such that

OI,JEη = CΛOI,JEη− .

Our method follows general arguments that are independent of the symmetry

type of the polynomials, so we give the general idea of the proof only for the

polynomials of type AS.

We first note that we can recover η from η− through the following sequence

of transpositions:

η = τ2 . . . τm−1τmωm+2 . . . ωN (η−)
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where τr = Kr−1Kr−2 . . .K1 and ωr = Kr−1Kr−2 . . .Km+1, except that in ωr,

we do not consider transpositions Ki such that µi = µi+1. Thus, we have

Eη = Eτ2...τm−1τmωm+2...ωN (η−)

Now, given that we are considering η− a composition in increasing order, we can

use successively the third line of (2.3.4). This yields an expression of the form

Eτ2...τm−1τmωm+2...ωN (η−) = O′IO′JωNEη− ,

where the operators O′I and O′J are such that

AsymIO′I = C ′I , SymJO′I = O′ISymJ , SymJO′J = C ′J , AsymIO′J = O′JAsymJ .

The coefficients C ′I and C ′J are obtained by considering all possible combinations

of differences of eigenvalues Λi −Λj with i < j, i, j ∈ {1, . . . ,m} and Λi 6= Λj or

i, j ∈ {m+ 1, . . . , N} and Λi 6= Λj . More specifically,

C ′I = (−1)m(m−1)/2
∏

i<j,Λi 6=Λj

i,j∈{1,...,m}

(
1− 1

Λi − Λj

)

while

C ′J =
∏

i<j,Λi 6=Λj

i,j∈{m+1,...,N}

(
1 +

1

Λi − Λj

)

Rewriting the product C ′I · C ′J in a more compact form finally gives the desired

expression for CAS
Λ .

Remark 3.3.2. The sets FF and BRDB will be illustrated diagrammatically in

Appendix C.

Lemma 3.3.3. Let η = (λ+, µ+) and Λ = ϕm(η).

(i) If Λ is strict and weakly (k, r,N)-admissible, then CAS
Λ has neither zeros nor

singularities at α = αk,r.

(ii) If Λ is moderately (k, r,N)-admissible, then CSS
Λ has neither zeros nor sin-

gularities at α = αk,r.

(iii) If Λ is moderately (k, r,N)-admissible, then CSA
Λ has neither zeros nor sin-

gularities at α = αk,r.

(iv) If Λ is strict and weakly (k, r,N)-admissible, then CAA
Λ has neither zeros nor

singularities at α = αk,r.
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Sketch of proof. This follows almost immediately from the explicit formulas for

the coefficient CΛ given in the last proposition. All cases are similar. The only

noticeable differences are the type of admissibility for each symmetry type and

the additional parameter γ, which can be controlled with admissibility condition.

Once again, we restrict our demonstration to symmetry type AS.

Consider CAS
Λ and suppose that it has singularities or poles at α = αk,r. This

happens iff there exists a cell s ∈ FF∗ such that αaΛ~(s) + lΛ~(s) = 0 or a cell

s ∈ BRDB such that αaΛ∗(s) + lΛ∗(s) − γ = 0 for some 0 ≤ γ ≤ #{t > i|Λ∗t =

Λ∗i }.
First, assume that s = (i, j) ∈ FF∗. Note that αaΛ~(s) + lΛ~(s) = 0 iff there

exists a positive integer ρ such that aΛ~(s) = ρ(r − 1) and lΛ~(s) = ρ(k + 1).

Using these two relations and expressing them in terms of the components of Λ,

we find

Λ~
i − Λ~

i+ρ(k+1) = ρ(r − 1). (3.3.1)

Now, the weak admissibility condition and Lemma 3.1.1 imply that

ρ(r − 1) = Λ~
i − Λ~

i+ρ(k+1) ≥ ρr. (3.3.2)

Equations (3.3.1) and (3.3.2) are contradictory. Hence, the first factor of CAS
Λ

does not have singularities.

Now, assume s ∈ BRDB. Following a similar argument, we conclude that

the second factor has no singularity.

In the same way, one can show that CΛ has no zero.

Proposition 3.3.4 (Regularity). Let Λ be a (k, r,N)-admissible superpartition.

Then, PΛ(x1, . . . , xN ;α) is regular at α = αk,r.

Proof. Let η = (λ+, µ+) and Λ = ϕm(η). According to Proposition 3.3.1, for

any symmetry type, there are coefficients cΛ and CΛ such that

PΛ(x;α) =
cΛ

CΛ
OI,JEη(x;α)

The coefficient cΛ is independent of α, so it is trivially regular α = αk,r. Given

that Λ is admissible, Lemma 3.3.3 implies that C−1
Λ is also regular at α = αk,r.
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Finally, by Lemma 3.2.2, the non-symmetric Jack polynomial Eη(x;α) is regular

at α = αk,r. Therefore, limit

lim
α→αk,r

cΛ

CΛ
OI,JEη(x;α)

is well defined and the proposition follows.

3.4 Uniqueness for Jack polynomials with prescribed symmetry

Uniqueness of the triangular eigenfunctions of the Sekiguchi operators is a non

trivial property when α is not generic. This is due to the high degeneracy

of the eigenvalues. Non-symmetric Jack polynomials may have poles only for

non-generic values of α, and when poles occur, then there is non-uniqueness.

Indeed, following the result of Lemma 2.4 in [31], one easily sees that if the

non-symmetric Jack polynomial Eη has a pole at some given value of α0, then

there exits a composition ν ≺ η such that εη+(α0, u) = εν+(α0, u). On the other

hand, for non-generic values of α, non-uniqueness may be observed even for

regular polynomials. As a basic example, consider the compositions η = (2, 0)

and ν = (1, 1), which satisfy η � ν. One can verify that Eη(x1, x2;α) and

Eν(x1, x2;α) are regular at α = 0. Nevertheless these polynomials share the same

eigenvalues, i.e., ηj |α=0 = νj |α=0 for j = 1, 2. Hence, at α = 0, any polynomial

of the form Eη(x1, x2;α)+aEν(x1, x2;α) satisfies the conditions (A1’) and (A2’)

of Section 2.2, so uniqueness is lost. This motivates us look for a uniqueness

criterion like eigenfunctions of the Sekiguchi operators for some specialization of

α.

In order to simplify the proofs of the following theorems, we enunciate some

lemmas related to different types of admissible superpartitions.

Lemma 3.4.1. Let Λ be weakly (k, r,N)-admissible and strict. Suppose that for

some σ ∈ SN , the superpartition Γ satisfies

Γ∗i = Λ∗σ(i) +
r − 1

k + 1
(σ(i)− i),

Then,

Λ∗i < Γ∗i =⇒ σ(i) < i , Λ∗i = Γ∗i =⇒ σ(i) = i , Λ∗i > Γ∗i =⇒ σ(i) > i.
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Moreover,

σ(i) =

i− k − 1 if Λ∗i < Γ∗i and Λ∗i−1 ≥ Γ∗i−1

i+ k + 1 if Λ∗i > Γ∗i and Λ∗i+1 ≤ Γ∗i+1.

Proof. Obviously, the equality Γ∗i = Λ∗σ(i) + r−1
k+1(σ(i) − i) holds only if there is

ρ ∈ Z such that σ(i) = i+ ρ(k + 1).

First, we assume that Λ∗i = Γ∗i . Then, Λ∗i = Λ∗i±ρ(k+1) ± ρ(r − 1) for some

ρ ≥ 0. Lemma 3.1.1 implies however that Λ∗i − Λ∗i+ρ(k+1) ≥ ρr and Λ∗i−ρ(k+1) −
Λ∗i ≥ ρr. Combining the last relations, we get ρ(r−1) ≥ ρr, which implies ρ = 0.

Consequently, Λ∗i = Γ∗i only if σ(i) = i.

Next, we assume that Λ∗i > Γ∗i . We have three possible cases:

1. σ(i) = i. This implies that Λ∗i = Γ∗i , which contradicts our assumption.

2. σ(i) = i − ρ(k + 1) for some positive integer ρ. We then have Λ∗i >

Λ∗i−ρ(k+1)−ρ(r−1). However, according to Lemma 3.1.2 ,we have Λ~
i−ρ(k+1)−

Λ∗i ≥ ρr, so that Λ∗i−ρ(k+1) − Λ∗i ≥ ρr − 1. Combining these equations, we

get ρ(r − 1) > ρr − 1, which contradicts the fact that ρ ≥ 1.

3. σ(i) = i + ρ(k + 1) for some positive integer ρ. In this case, we do not

obtain a contradiction. Hence, σ(i) > i.

Similar arguments can be used to prove that if Λ∗i < Γ∗i , then σ(i) < i.

To prove the second part of proposition, we suppose that Λ∗i > Γ∗i while

Λ∗i+1 ≤ Γ∗i+1. Now, we know that Γ∗i+1 ≤ Γ∗i , where Γ∗i+1 = Λ∗i+1 + δ for some

δ ≥ 0, and Γ∗i = Λ∗i+ρ(k+1) + ρ(r − 1) for some ρ ∈ Z+. Combining these

inequalities, we get Λ∗i+1 + δ ≤ Λ∗i+ρ(k+1) + ρ(r − 1). However, Λ∗i+1 = Λ~
i+1 − ε

where ε = 0, 1. Thus, Λ~
i+1 − Λ∗i+ρ(k+1) ≤ ρ(r − 1) − δ + ε. By making use of

Lemma 3.1.2, we get ρr ≤ ρ(r − 1)− δ + ε, which implies that ε = 1, δ = 0 and

ρ = 1. Therefore, Λ∗i > Γ∗i and Λ∗i+1 ≤ Γ∗i+1 imply σ(i) = i − k − 1. The case

where Λ∗i < Γ∗i and Λ∗i+1 ≥ Γ∗i+1 is proved analogously.

Lemma 3.4.2. Let Λ be moderately or strongly (k, r,N)-admissible. Suppose

that for some ω ∈ SN , the superpartition Γ satisfies

Γ~
i = Λ~

ω(i) +
r − 1

k + 1
(ω(i)− i),
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Then,

Λ~
i < Γ~

i =⇒ ω(i) < i , Λ~
i = Γ~

i =⇒ ω(i) = i , Λ~
i > Γ~

i =⇒ ω(i) > i.

Moreover,

ω(i) =

i− k − 1 if Λ~
i < Γ~

i and Λ∗i−1 ≥ Γ∗i−1

i+ k + 1 if Λ~
i > Γ~

i and Λ∗i+1 ≤ Γ∗i+1.

Proof. One essentially follows the same steps as in the proof of Lemma 3.4.1.

Lemma 3.4.3. Let Λ be a (k, r,N)-admissible superpartition and let Γ satisfy

Γ∗i = Λ∗σ(i) +
r − 1

k + 1
(σ(i)− i), Γ~

i = Λ~
ω(i) +

r − 1

k + 1
(ω(i)− i)

for some σ, ω ∈ SN . Then, σ = ω.

Proof. The cases for which Λ is a strict and weakly (k, r,N)-admissible super-

partition or for which Λ is strongly (k, r,N)-admissible superpartition are almost

identical, so we only prove the first. We deduce from the hypothesis that σ(i) ≡ i
mod (k + 1) and ω(i) ≡ i mod (k + 1), so that ω(i) = σ(i) + t(k + 1) for some

t ∈ Z.

First, we suppose that σ(i) < ω(i), which implies that ω(i) = σ(i) + t(k+ 1)

for some t ∈ Z+. Then,

Γ~
i − Γ∗i = Λ~

σ(i)+t(k+1) − Λ∗σ(i) + t(r − 1).

By Lemma 3.1.1, we know that Λ∗ is (k+ 1, r,N)-admissible, which means that

Λ∗σ(i) − Λ∗σ(i)+t(k+1) ≥ tr and Λ∗σ(i) − Λ~
σ(i)+t(k+1) ≥ tr − 1. Combining the

inequalities previously obtained, we get

0 ≤ Γ~
i − Γ∗i ≤ 1− tr + t(r − 1) = 1− t.

This inequality is possible only if t = 1. We have thus shown that

(i) Γ~
i = Γ∗i (ii) ω(i) = σ(i) + k + 1 (iii) Λ∗σ(i) − Λ~

ω(i) = r − 1.

Note that if Λ~
σ(i) = Λ∗σ(i), then Λ~

σ(i) − Λ~
σ(i)+k+1 = r − 1 ≥ r, which is a

contradiction. Similarly, one gets a contradiction by supposing Λ~
ω(i) = Λ∗ω(i).

Thus, we also have

(iv) Λ~
σ(i) = Λ∗σ(i) + 1 (v) Λ~

ω(i) = Λ∗ω(i) + 1.
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Second, we suppose that σ(i) > ω(i), which implies that σ(i) = ω(i)+t(k+1)

for some t ∈ Z+. Then

Γ~
i − Γ∗i = Λ~

ω(i) − Λ∗ω(i)+t(k+1) − t(r − 1).

By Lemma 3.1.2 we know that Λ~
ω(i) − Λ∗ω(i)+t(k+1) ≥ tr, so that

1 ≥ Γ~
i − Γ∗i ≥ tr − t(r − 1) = t.

The latter inequality holds only if t = 1. We have thus proved that

(vi) Γ~
i = Γ∗i + 1 (vii) σ(i) = ω(i) + k + 1 (viii) Λ~

ω(i) − Λ∗σ(i) = r.

Moreover, we deduce from (vi) and the admissibility condition, that

(ix) Λ~
ω(i) = Λ∗ω(i) (x) Λ~

σ(i) = Λ∗σ(i).

Now, assume that σ and ω do not coincide. Then, there exists a positive

integer i such that ω(i) > σ(i), which by virtue of the above discussion, implies

that ω(i) = σ(i)+k+1. Let j be such that ω(i) = σ(i)+k+1 = σ(j). Obviously,

i 6= j and σ(j) 6= ω(j). Then, according to conclusions (ii) and (vii) above, only

cases can occur: ω(j) = σ(i) + k + 1± (k + 1).

• Suppose that ω(j) = σ(i) + 2(k + 1) and let j2 be such that σ(j2) =

σ(i)+2(k+1), so that j2 6= j. Then, conclusions (ii) and (vii) above imply

that ω(j2) = σ(i) + 2(k + 1) ± (k + 1). However, only the case ω(j2) =

σ(i)+3(k+1) is possible, since the equality ω(j2) = σ(i)+k+1 implies the

contradiction j2 = i. Similarly, if j3 is such that σ(j3) = σ(i) + 3(k + 1),

then ω(j3) = σ(i) + 4(k + 1). Continuing in this way, one eventually finds

a positive integer ` < N such that ω(`) > N , which clearly contradicts the

fact that ω is a permutation of {1, . . . , N}.

• Suppose that ω(j) = σ(i). Recall that by definition, σ(j) = σ(i) + k + 1.

Hence, ω(j) = σ(j) − k − 1 < σ(j). Conclusion (viii) above then implies

that Λ~
ω(j) − Λ∗σ(j) = r, which is equivalent to Λ~

σ(i) − Λ∗ω(i) = r. However,

conclusion (iv) implies that Λ~
σ(i) = Λ∗σ(i) + 1. Combination of the last two

equations finally leads to

r − 1 = Λ∗σ(i) − Λ∗ω(i) = Λ∗σ(i) − Λ∗σ(i)+k+1.

This equation contradicts Lemma 3.1.1.
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Therefore, the permutations σ and ω must coincide, as required.

Theorem 3.4.4 (Uniqueness at α = αk,r). Let Λ be a (k, r,N)-admissible su-

perpartition of bi-degree (n|m). Assume moreover that α = αk,r. Then, the

Jack polynomial with prescribed symmetry, here denoted by PΛ, is the unique

polynomial satisfying:

1. PΛ = mΛ +
∑
Γ<Λ

cΛ,ΓmΓ, cΛ,Γ ∈ C,

2. S∗(u)
∣∣
α=αk,r

PΛ = εΛ∗(αk,r, u)PΛ and S~(u, u)
∣∣
α=αk,r

PΛ = εΛ~(αk,r, u)PΛ.

Proof. Proceeding as in Theorem 2.4.10, we know that there are more than one

polynomials satisfying (1) and (2) only if we can find a superpartition of type

T, say Γ, such that Λ > Γ, εΓ∗(α, u) = εΛ∗(α, u), and εΓ~(α, u) = εΛ~(α, u).

Consequently, in order to prove the uniqueness, it is sufficient to show that if

Γ < Λ, then εΓ∗(α, u) 6= εΛ∗(α, u) or εΓ~(α, u) 6= εΛ~(α, u).

Let us assume that we are given a superpartition Γ < Λ such that εΓ∗(α, u) =

εΛ∗(α, u) and εΓ~(α, u) = εΛ~(α, u). Obviously, the last two equality holds if

and only if there are σ, ω ∈ SN such that

Γ∗i = Λ∗σ(i) +
r − 1

k + 1
(σ(i)− i), Γ~

i = Λ~
ω(i) +

r − 1

k + 1
(ω(i)− i) ∀ i. (3.4.1)

According to Lemma 3.4.3, equation (3.4.1) holds only if σ = ω. Now, we

recall that by hypothesis, either Γ∗ < Λ∗ or Γ∗ = Λ∗ and Γ~ < Λ~. Only the

former case is nontrivial. Indeed, Lemma 3.4.1 implies that if Λ∗i = Γ∗i for all

i, then σ is the identity, and so is ω. In short, whenever equation (3.4.1) and

Γ∗ = Λ∗ hold, we have Γ~ = Λ~, which is in contradiction with Γ~ < Λ~. Thus,

we must assume that Γ∗ < Λ∗, which implies that there exist integers j > 1 and

ε > 0 such that

Γ∗j = Λ∗j + ε and Γ∗i ≤ Λ∗i , ∀ i < j . (3.4.2)

As a consequence of (3.4.1) and Lemma 3.4.3, there is a permutation σ such that

σ(j) 6= j,

Γ∗j = Λ∗σ(j) +
r − 1

k + 1
(σ(j)− j), Γ~

j = Λ~
σ(j) +

r − 1

k + 1
(σ(j)− j), (3.4.3)

which is possible only if σ(j) = j mod (k + 1).
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1. If σ(j) = j + ρ(k + 1) for some positive integer ρ, then Γ∗j = Λ∗j + ε =

Λ∗j+ρ(k+1)+ρ(r−1). However, the latter equation contradicts the hypothesis

ε > 0 and Lemma 3.1.2, according to which Λ∗j − Λ∗j+ρ(k+1) ≥ ρr − 1.

2. If σ(j) = j − ρ(k + 1) for some positive integer ρ, then Γ∗j = Λ∗j−ρ(k+1) −
ρ(r−1). Moreover, we know that Γ∗j−1 = Λ∗j−1−δ, for some δ ≥ 0, and that

Γ∗j−1 ≥ Γ∗j . Combining these equations, we get ρ(r − 1) ≥ δ + Λ∗j−ρ(k+1) −
Λ∗j−1. But by definition, Λ∗j−ρ(k+1) = Λ~

j−ρ(k+1) − ε̃, where ε̃ = 0, 1. The

use of Lemma 3.1.2 then leads to ρ(r−1) ≥ δ+ρr− ε̃. Hence δ = 0, ε̃ = 1,

and ρ = 1. In short, we have shown that

Γ∗j = Λ∗j−k−1 − r + 1, Γ~
j = Λ~

j−k−1 − r + 1, Γ∗j−1 = Λ∗j−1,

Γ~
j−1 = Λ~

j−1, Λ~
j−k−1 = Λ∗j−k−1 + 1.

Now, if Λ is strict and weakly (k, r;N)-admissible, then Γ~
j = Γ∗j + 1

implies Γ∗j−1 = Λ∗j−1 ≥ Γ~
j . Combining the previous equations, we get

Λ∗j−1 ≥ Λ~
j−k−1−r+1, which contradicts the weak admissibility condition.

On the other hand, if Λ is strongly (k, r;N)-admissible, then Γ~
j−1 =

Λ~
j−1 ≥ Γ~

j implies Λ~
j−1 ≥ Λ~

j−k−1 − r + 1, which contradicts the strong

admissibility condition.

Therefore, whenever Λ is (k, r,N)-admissible, we cannot find a superpartition

Γ < Λ such that εΓ∗(α, u) = εΛ∗(α, u) and εΓ~(α, u) = εΛ~(α, u).

3.5 Uniqueness for non-symmetric Jack polynomials

Motivated by the uniqueness result of the Jack polynomials with prescribed

symmetry, we have tried to get a similar result for non-symmetric Jack poly-

nomials. However, we only have obtained a characterization for non-symmetric

Jack polynomials indexed for compositions of the type (3.2.1) and such that if

Λ is its associated superpartition, then Λ is (1, r,N)-admissible. Moreover, we

have had to set a difference between the type of admissibility of the associated

superpartition and the special form of the composition.
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Definition 3.5.1. Let λ = (λ1, . . . , λN ) be a composition and let Λ = ϕm(λ) be

its associated superpartition. We say that λ is weakly, moderately, or strongly

(k, r,N |m)-admissible if and only if Λ is weakly, moderately, or strongly (k, r,N)-

admissible respectively.

Theorem 3.5.2 (Uniqueness for k = 1: weak admissibility). Let

λ = (η1, . . . , ηm, µ1, . . . , µN−m) be a composition formed by the concatenation

of the partitions η = (η1, . . . , ηm) and µ = (µ1, . . . , µN−m). Assume that λ is

weakly (1, r,N |m)-admissible and η is strictly decreasing. Assume moreover that

α = α1,r. Then, the non-symmetric Jack polynomial Eλ is the unique polynomial

satisfying:

1. Eλ = xλ +
∑
γ≺λ

cλ,γx
γ , cλ,γ ∈ C,

2. ξiEλ = λ̄iEλ ∀ 1 ≤ i ≤ N ,

where the λ̄i’s denote the eigenvalues introduced in (A2’) and (2.3.2).

Proof. There are more than one polynomials satisfying (1) and (2) only if there

are compositions γ such that γ ≺ λ and (γ̄1, . . . , γ̄N ) = (λ̄1, . . . , λ̄N ). We can thus

establish the uniqueness by showing show that the latter equality is impossible.

Our task will be simplified by working with the associated superpartitions

Λ = ϕm(λ), Γ = ϕm(γ).

We indeed know that Γ < Λ whenever γ ≺ λ. Moreover, according to Lemma

2.3.3, the equality (γ̄1, . . . , γ̄N ) = (λ̄1, . . . , λ̄N ) holds only if εΓ∗(α, u) = εΛ∗(α, u),

and εΓ~(α, u) = εΛ~(α, u).

Let us now assume that we are given a superpartition Γ such that εΓ∗(α, u) =

εΛ∗(α, u) and εΓ~(α, u) = εΛ~(α, u). The last two equalities hold if and only if

there are permutations σ and ω such that

Γ∗i = Λ∗σ(i) +
r − 1

2
(σ(i)− i), Γ~

i = Λ~
ω(i) +

r − 1

2
(ω(i)− i) ∀ i. (3.5.1)

We recall that by hypothesis, Λ is strict and (1, r,N)-admissible and Γ < Λ,

which means that either Γ∗ < Λ∗ or Γ∗ = Λ∗ and Γ~ < Λ~.
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The simplest case is when Γ∗ = Λ∗ and Γ~ < Λ~. Indeed, Γ∗i = Λ∗i for

all i implies σ = id, while Lemma 3.4.3 yields σ = ω, so that ω = id and

Γ~ = Λ~. This contradicts the assumption Λ 6= Γ. Thus, the equations Γ∗ = Λ∗,

Γ~ < Λ~, εΓ∗(α, u) = εΛ∗(α, u), and εΓ~(α, u) = εΛ~(α, u) cannot be satisfied

simultaneously if Λ is strict and (1, r,N)-admissible.

We now assume that Γ∗ < Λ∗. This condition implies that there exists an

integer j > 1 such that

Γ∗j > Λ∗j and Γ∗i ≤ Λ∗i , ∀ i < j .

According to Lemma 3.4.1, satisfying the first equality in (3.5.1) is possible only

if σ(j) = j − 2. Thus

Γ∗j = Λ∗j−2 − r + 1

Now, Λ~
j−2 = Λ∗j−2 + ε for some 0 ≤ ε ≤ 1, and Γ∗j = Λ∗j−1 − δ for some δ ≥ 0.

Hence,

ε+ r = Λ~
j−2 − Λ∗j−1 + δ + 1,

which is compatible with the admissibility only if ε = 1 and δ = 0. Combining

all the previous results, we get

(i) Γ∗j = Λ∗j−2−r+1 (ii) Γ∗j = Γ∗j−1 = Λ∗j−1 (iii) Λ~
j−2 = Λ∗j−2+1

By making use of Lemma 3.4.1 together with Λ∗j−2 ≥ Γ∗j−2 and (ii), we also

conclude that either σ(j − 2) = j − 2 or σ(j − 2) = j. The first case is obviously

impossible since it contradicts σ(j) = j − 2. The second case implies Γ∗j−2 =

Λ∗j + r−1. Lemma 3.4.3 and (i) imply that Γ~
j = Λ~

j−2− r+ 1. Then, combining

this equation with (iii), we get

(iv) Γ~
j = Γ∗j + 1.

Moreover, Lemma 3.4.3 and (ii) imply that Γ~
j−1 = Λ~

j−1. From this and result

(iv), we get Γ~
j−1 = Γ∗j−1 + 1, i.e. the row j − 1 in Γ also contains a circle.

Combining Γ∗j−2 ≥ Γ∗j−1, the admissibility condition and Γ∗j−2 = Λ∗j + r − 1

we obtain Γ∗j−2 = Γ∗j−1. Finally, Lemma 3.4.3 and the last equation yields

Γ~
j−2 = Γ∗j−2 + 1. Consequently,

(v) Γ∗j−2 = Γ∗j−1 = Γ∗j (vi) Λ∗j−2 = Λ∗j−1 + r − 1 = Λ∗j + 2(r − 1).
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Let us recapitulate what we have obtained so far. We have shown that there

exist compositions λ and γ as in the statement of the theorem such that their as-

sociated superpartitions Λ = ϕm(λ) and Γ = ϕm(γ) satisfy εΓ∗(α, u) = εΛ∗(α, u)

and εΓ~(α, u) = εΛ~(α, u). However, this occurs only if the equations (i) to (vi)

are also satisfied. We will now make use of this information to prove that the

equality (γ̄1, . . . , γ̄N ) = (λ̄1, . . . , λ̄N ) is incompatible with the admissibility of λ.

Before doing so, we need to recall how relate the eigenvalues λ̄i and γ̄i to the

elements of the superpartitions Λ and Γ. Let wγ be the smallest permutation

such that γ = wγ(γ+) = wγ(Γ∗). Then, γ̄i is equal to the ith element of the

composition (αγ − wγδ−). More explicitly, γ̄i = (wγ(αΓ∗ − δ−))i or equivalently,

γ̄wγ(i) = αΓ∗i − (i − 1). Similarly, there is a minimal permutation wλ such that

λ = wλ(Λ∗), so that λ̄wλ(i) = αΛ∗i − (i− 1). We stress that in our case Λ∗ 6= Γ∗,

which implies that wλ 6= wγ .

Now, let j be the largest integer such that Γ∗j > Λ∗j and Γ∗j−1 ≤ Λ∗j−1. Let

also l = wγ(j). Then, according to the above discussion,

γ̄l = αΓ∗j − (j + 1).

From (i) and (vi) above, we deduce that the last equation can be rewritten as

γ̄l = α(Λ∗j + r − 1)− (j − 1). (3.5.2)

Moreover, let j′ be defined as w−1
λ (l). This implies that

λ̄l = αΛ∗j′ − (j′ − 1). (3.5.3)

Combining equations (3.5.2) and (3.5.3), we get

λ̄l − γ̄l = α(Λ∗j′ − Λ∗j − r + 1) + j − j′. (3.5.4)

We are going to use the last equation and prove λ̄l − γ̄l 6= 0. Three cases must

be analyzed separately:

(1) λl = Λ∗j . Then, λ̄l − γ̄l = −α(r − 1), which is clearly different from 0.

(2) λl < Λ∗j . Then, Λ∗j′ < Λ∗j and j′ > j. By the admissibility condition, we

have Λ∗j −Λ∗j′ ≥ ρ(r−1), where ρ = j′−j. Thereby, Λ∗j −Λ∗j′ = ρ(r−1)+δ

for some δ ≥ 0. Now,

λ̄l − γ̄l = −α((ρ+ 1)(r − 1) + δ)− ρ.
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Substituting α = α1,r = −2/(r − 1) into the last equation, we wee that

it is equal to zero if and only if 2((ρ + 1)(r − 1) + δ) = ρ(r − 1). This is

impossible.

(3) λl > Λ∗j . Then, Λ∗j′ > Λ∗j and j′ < j. Let ρ = j − j′. The admissibility

condition implies that Λ∗j′−Λ∗j ≥ ρ(r−1). Thereby, Λ∗j′−Λ∗j = ρ(r−1)+δ

for some δ ≥ 0. Thus,

λ̄l − γ̄l = α((ρ− 1)(r − 1) + δ) + ρ.

The last equation is zero when α = α1,r = −2/(r − 1) if and only if 2((ρ−
1)(r− 1) + δ) = ρ(r− 1), which is equivalent to (ρ− 2)(r− 1) + 2δ = 0. It

is clear that if ρ > 2, we have λ̄l 6= γ̄l. Therefore we have only to analyze

the cases for which ρ = 1 and ρ = 2.

On the one hand, if ρ = 1, then j′ = j − 1 and Λ∗j′ = Λ∗j−1. Substituting

the last equality and (vi) into (3.5.4), we get λ̄l − γ̄l = 1.

On other hand, if ρ = 2, then j′ = j− 2 and Λ∗j′ = Λ∗j−2. Using once again

(vi) and (3.5.4), we find

λ̄l − γ̄l = α(r − 1) + 2.

Replacing α by α1,r = − 2
r−1 into the last equation, we get λ̄l−γ̄l = 0. Thus,

we have not reached the desired conclusion yet. However, given that in the

present case, we have λl−1 > λl = Λ∗j−2 and γl−1 = γl = Γ∗j = Γ∗j−1 = Γ∗j−2,

we know that w−1
λ (l−1) = ̄ < j−2, so that Λ∗ > Λ∗j−2. Let ρ := j−2− .

The admissibility condition then gives Λ∗ − Λ∗j−2 ≥ ρ(r − 1), which is

equivalent to Λ∗ = Λ∗j−2 + ρ(r − 1) + ε for some ε ≥ 0. Then

λ̄l−1 − γ̄l−1 = α(Λ∗j−2 + ρ(r − 1) + ε)− (− 1)− αΓ∗j−1 + (j − 2)

= α(Λ∗j−2 + ρ(r − 1) + ε)− α(Λ∗j−2 − (r − 1)) + ρ+ 1

= α((ρ+ 1)(r − 1) + ε) + ρ+ 1

Finally, the substitution of α = α1,r = −2/(r − 1) into the last equation

implies that λ̄l−1 = γ̄l−1 iff 2(ρ+ 1)(r − 1) + 2ε = (ρ+ 1)(r − 1), which is

impossible.
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We have thus shown that there could exist compositions, λ and γ, such that

Λ is (1, r,N)-admissible, Γ∗ < Λ∗ and εΓ∗(α, u) = εΛ∗(α, u). However, when it

happens, we also have (λ̄1, . . . , λ̄N ) 6= (γ̄1, . . . , γ̄N ) and the theorem follows.

Looking at the proof of the previous Theorem ”Uniqueness for k = 1” for

the case of weak admissibility, we remark that it is not enough to consider

the associated superpartition to the composition. In fact, by fixing k = 1,

r = 2 and N = 3, we see that Λ = (2, 1, 0; ∅) is weakly (1, 2, 3)-admissible

and moreover by considering Γ = (1, 1, 1; ∅), we can check that Γ satisfies the

conditions given in the preceding proof: Γ∗ < Λ∗, εΓ∗(−2, u) = εΛ∗(−2, u) and

εΓ~(−2, u) = εΛ~(−2, u). Indeed:

εΛ∗(−2, u) = (u− 4)(u− 3)(u− 2) and εΛ~(−2, u) = (u− 6)(u− 5)(u− 4)

εΓ∗(−2, u) = (u− 2)(u− 3)(u− 4) and εΓ~(−2, u) = (u− 4)(u− 5)(u− 6).

We can check also that the eigenvalues associated to E(2,1,0)(x;−2) and

E(1,1,1)(x;−2) are the same as sets, but if they are considered as tuples, then

they are different.

Let us remark that the preceding comment was the main difficult in the

proof of the Theorem. However, for the moderate admissibility case, the proof

is easier than the weak admissibility case, due to the conditions imposed over

the components of the compositions by the admissibility condition.

Theorem 3.5.3 (Uniqueness for k = 1: moderate admissibility). Let

λ = (η1, . . . , ηm, µ1, . . . , µN−m) be a composition formed by the concatenation

of the partitions η = (η1, . . . , ηm) and µ = (µ1, . . . , µN−m). Assume that λ is

moderately (1, r,N |m)-admissible. Assume moreover that α = α1,r. Then, the

non-symmetric Jack polynomial Eλ is the unique polynomial satisfying:

1. Eλ = xλ +
∑
γ≺λ

cλ,γx
γ , cλ,γ ∈ C,

2. ξiEλ = λ̄iEλ ∀ 1 ≤ i ≤ N ,

where the λ̄i’s denote the eigenvalues introduced in (A2’) and (2.3.2).

Proof. We proceed as in Theorem 3.5.2. We start by introducing the associated

superpartitions Λ = ϕm(λ) and Γ = ϕm(γ). We then assume that we are given
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a superpartition Γ such that εΓ∗(α, u) = εΛ∗(α, u) and εΓ~(α, u) = εΛ~(α, u),

which is possible if and only if equation (3.5.1) is satisfied for some σ, ω ∈ SN .

We recall that by hypothesis, Λ is moderately (1, r,N)-admissible and Γ < Λ,

which means that either Γ∗ < Λ∗ or Γ∗ = Λ∗ and Γ~ < Λ~.

First, we assume that Γ∗ = Λ∗ and Γ~ < Λ~. This obviously implies that

Γ∗i = Λ∗i for all i, but also that there exists an integer j > 1 such that

Γ∗j = Λ∗j = Λ~
j , Γ~

j = Λ~
j + 1 and Γ~

i = Λ~
i − δi, δi = 0, 1 ∀ i < j .

By making use of Lemma 3.4.2, Λ~
j < Γ~

j and Γ∗j−1 = Λ∗j−1, we conclude that

ω(j) = j − 2. This implies Γ~
j = Λ~

j−2 − r + 1 and Γ~
j = Λ~

j + 1, so we get

Λ~
j−2 − Λ~

j = r, which is in contradiction with the admissibility.

Second, we assume that Γ∗ < Λ∗, which implies that there exists a j > 1

such that

Γ∗j > Λ∗j and Γ∗i ≤ Λ∗i , ∀ i < j .

According to Lemma 3.4.1, the first equality in (3.5.1) is possible when i = j

only if σ(j) = j − 2. Thus

Γ∗j = Λ∗j−2 − r + 1

Now Λ~
j−2 = Λ∗j−2 + ε for some 0 ≤ ε ≤ 1, and Γ∗j = Λ∗j−1 − δ for some δ ≥ 0.

Hence,

ε+ r = Λ~
j−2 − Λ∗j−1 + δ + 1,

which is compatible with the admissibility only if ε = 1 and δ = 0. Combining

all the previous results, we get

(i) Γ∗j = Λ∗j−2 − r + 1 (ii) Γ∗j = Γ∗j−1 = Λ∗j−1

(iii) Λ~
j−2 = Λ∗j−2 + 1 (iv) Λ~

j−1 = Λ∗j−1 .

We now turn our attention to second equality in (3.5.1) when i = j. By assump-

tion we know that Γ∗j > Λ∗j , so that Γ~
j ≥ Λ~

j . By making use of Lemma 3.4.2,

we get the following two options:

1. If Γ~
j = Λ~

j , then ω(j) = j. However by assumption Γ∗j = Λ∗j + ε which

implies Γ~
j = Λ~

j = Λ∗j + 1 and Γ∗j = Λ∗j + 1, and then Γ~
j = Γ∗j . Now, as

Γ∗j = Λ~
j−2− r we get Λ~

j−2− r = Λ~
j , which is clearly a contradiction with

the admissibility.
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2. If Γ~
j > Λ~

j , then ω(j) < j. Now, from Γ~
j > Λ~

j and (ii), we know using

Lemma 3.4.2, that ω(j) = j − 2, i.e. Γ~
j = Λ~

j−2 − r + 1. Thus, the row j

in Γ contains a circle. This in turn implies that Γ~
j−1 = Γ∗j−1 + 1, and also

that the row j − 1 in Γ contains a circle.

So far, considering the row j, we have obtained

(v) Γ~
j = Γ∗j + 1 (vi) Γ~

j−1 = Γ∗j−1 + 1.

Now, considering (ii), (iv) and (vi), we obtain Γ~
j−1 > Λ~

j−1. Moreover,

from Γ∗j−2 ≤ Λ∗j−2 and Lemma 3.4.2, we get ω(j − 1) = j − 3 and Γ~
j−1 =

Λ~
j−3 − r + 1. However, (ii), (iv), and (vi) imply that Γ~

j−1 = Λ~
j−1 + 1.

Combining these equations, we conclude that Λ~
j−3 − Λ~

j−1 = r. This

violates our assumptions, because the moderate admissibility condition

implies that Λ~
j−3 − Λ~

j−1 ≥ 2r.

We have shown that whenever Λ > Γ and Λ is moderately (1,r,N)-admissible,

then (λ̄1, . . . , λ̄N ) 6= (γ̄1, . . . , γ̄N ), and the proof is complete.





CHAPTER 4

Clustering properties

In this chapter we study the clustering properties of Jack polynomials with pre-

scribed symmetry. To this end, we consider two cases individually: k = 1 and

k > 1. In the first case, we get for each family of Jack polynomials with pre-

scribed symmetry a factorization, where the expected degree is reached. For

k > 1, we establish the clustering properties by following a strategy developed

by Baratta and Forrester in reference [8], according to which if a symmetric poly-

nomial is translationally invariant then it almost automatically admits clusters.

We first generalize results of Luque and Jolicoeur about translationally invari-

ant Jack polynomials [37] by finding the necessary and sufficient conditions that

make the Jack polynomials with prescribed symmetry are invariant under trans-

lation. We then generalize the above-mentioned result of Baratta and Forrester

and get clustering properties for Jack polynomials with prescribed symmetry of

type AS and translation invariance. Most of the results contained in this chapter

have been published for the first time in [20, Section 4].

4.1 Definition clustering property

To start this chapter we remind the definition of the clustering property.

Given f(x1, x2, . . . , xN ) a symmetric polynomial in N variables, we say that

f admits a clustering of size k and order r if:

• f(

k︷ ︸︸ ︷
z, . . . , z, xk+1, . . . , xN ) 6= 0

• f(

k+1︷ ︸︸ ︷
z, . . . , z, xk+2, . . . , xN ) = 0

63
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and moreover f vanishes with order r when k + 1 variables are identified; i.e.

f(

k︷ ︸︸ ︷
z, . . . , z, xk+1, . . . , xN ) ∝

N∏
i=k+1

(z − xi)r.

For instance,

f(x1, x2, x3) = −4x2
2x

2
3 + x3

2x3 + x2x
3
3 − 4x2

2x
2
1 − 4x2

1x
2
3 + x3

1x2 + x3
1x3 + x1x

3
2

+ x1x
3
3 + 2x2

1x2x3 + 2x1x
2
2x3 + 2x1x2x

2
3

is a symmetric polynomial in three variables. Now, w.l.g if we specialize the last

two variables, we get 2z(x1−z)3, and it is clear that f vanishes with order 3 when

3 variables are identified, and therefore we can say that f admits a clustering of

size 2 and order 3.

4.2 Clustering properties for k = 1

We start this section by generalizing the clustering property given in [8, Propo-

sition 2]. This property shows the explicit factorization of the non-symmetric

Jack polynomials indexed by (1, r,N)-admissible partitions at the specialization

α = −2/(r − 1) (with r even). We generalize this result by considering non-

symmetric Jack polynomials indexed by particular compositions formed by the

concatenation of two partitions and such that the associated superpartitions to

the compositions are (1, r,N)-admissible. We then use these results and prove

clustering properties for each family of Jack polynomials with prescribed sym-

metry.

Before stating our results we must find a way to add a superpartition with

a partition, which will first be specified formally in the following definition and

then will be illustrated in terms of diagrams.

Definition 4.2.1. Let Λ be a superpartition and let λ be a partition. We formally

define the superpartition Λ +λ = (Ω∗,Ω~) where Ω∗ = Λ∗+λ and Ω~ = Λ~ +λ.

In terms of the diagrams, it is interpreted as the associated superpartition to the

diagram obtained by adding the diagrams of Λ and λ.
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Let us illustrate this definition by computing Λ+λ when Λ = (5, 3, 1, 0; 4, 2, 1)

and λ = (6, 5, 4, 3, 2, 1, 0). Obviously, we have

Λ =

k
k

k
k

⇒ Λ∗ = and Λ~ =

Then,

Λ∗ + λ =

and Λ~ + λ =

Thus, the diagram obtained by adding the diagrams associated to Λ and λ is

given by

Λ + λ =

k
k

k
k

which is equivalent to say that Λ + λ = (11, 7, 3, 0; 9, 5, 2).

Proposition 4.2.2. Let r be even and positive. Let also κ = (λ+, µ+), where

λ+ is a partition with m parts while µ+ is a strictly decreasing partition with

N −m parts. Then

Eκ+(r−1)δ′(x1, . . . , xN ;−2/(r−1)) ∝
∏

1≤i<j≤N
(xi−xj)r−1Eκ(x1, . . . , xN ; 2/(r−1)).

In the above equation, δ′ = ωκ(δ), where δ = (N − 1, N − 2, . . . , 1, 0) and ωκ is

the smallest permutation such that κ = ωκ(κ+).
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Proof. In what follows, we set Λ = ϕm(κ) and use the shorthand notation

∆N =
∏

1≤i<j≤N (xi − xj).
First, we consider the action of ξj on the polynomial ∆

(r−1)
N Eκ(x; 2/(r − 1)):

ξj(∆
(r−1)
N Eκ(x; 2/(r − 1))) = α(r − 1)∆

(r−1)
N

N∑
i=1,i 6=j

xj
xj − xi

Eκ(x; 2/(r − 1))

+ α∆
(r−1)
N xj∂xjEκ(x; 2/(r − 1)) + ∆

(r−1)
N

∑
i<j

xj
xj − xi

(1 +Kij)Eκ(x; 2/(r − 1))

+ ∆
(r−1)
N

∑
i>j

xi
xj − xi

(1 +Kij)Eκ(x; 2/(r− 1))− (j− 1)∆
(r−1)
N Eκ(x; 2/(r− 1)).

Second, we restrict ξj by imposing α = −2/(r − 1), which gives

ξj |α=−2/(r−1)(∆
(r−1)
N Eκ(x; 2/(r − 1))) = − 2

r − 1
∆

(r−1)
N xj∂xjEκ(x; 2/(r − 1))

−∆
(r−1)
N

N∑
i=1,i 6=j

xj
xj − xi

(1−Kij)Eκ(x; 2/(r−1))−∆
(r−1)
N

∑
i>j

KijEκ(x; 2/(r−1))

− (N − 1)∆
(r−1)
N Eκ(x; 2/(r − 1)).

By reordering the terms, we also get

ξj |α=−2/(r−1)(∆
(r−1)
N Eκ(x; 2/(r − 1)))

= −∆
(r−1)
N

(
ξj |α=2/(r−1) + 2(N − 1)

)
Eκ(x; 2/(r − 1)).

Now, the use of (A2’), allows us to write

ξj |α=−2/(r−1)(∆
(r−1)
N Eκ(x; 2/(r − 1)))

= −
(
κj |α=2/(r−1) + 2(N − 1)

)
∆

(r−1)
N Eκ(x; 2/(r − 1)). (4.2.1)

We have proved that (∆
(r−1)
N Eκ(x; 2/(r−1))) is an eigenfunction of ξj |α=−2/(r−1)

for each j. The eigenvalue can be reorganized as follows. On the one hand, we

know from equation (2.3.2) that the eigenvalues associated to Eκ(x; 2/(r − 1))

restricted to α = 2/(r − 1) are given by

κj |α=2/(r−1) =
2

r − 1
κj −#{i < j|κi ≥ κj} −#{i > j|κi > κj}.

Now, given κj in κ, we know that to κj corresponds a cell in diagram of κ and

moreover, this cell has an associated cell s in diagram of Λ. Then, we can express
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the eigenvalues κj in terms of arm-colength and leg-colength of cell s in Λ. Given

that

a′Λ∗(s) = κj − 1 and l′Λ∗(s) = #{i < j|κi ≥ κj}+ #{i > j|κi > κj},

we can rewrite the eigenvalue as

κj |α=2/(r−1) =
2

r − 1
(a′Λ∗(s) + 1)− l′Λ∗(s). (4.2.2)

On the other hand, from equation (2.3.2) and considering the composition κ +

(r − 1)δ′, we have

(κ+ (r − 1)δ′)j = α(κj + (r− 1)δ′j)−#{i < j|κi + (r− 1)δ′i ≥ κj + (r− 1)δ′j}

−#{i > j|κi + (r − 1)δ′i > κj + (r − 1)δ′j}.

However, we can simplify this expression if we rewrite the eigenvalue in terms of

Λ′ := Λ + (r− 1)δ the associated superpartition to κ+ (r− 1)δ′. The same way

as before, given (κ+ (r − 1)δ′)j in the composition κ+ (r − 1)δ′, we know that

to (κ+ (r − 1)δ′)j corresponds a cell in diagram of κ+ (r − 1)δ′ and moreover,

this cell has a cell s′ associated in diagram of Λ′. So, we have

a′Λ′∗(s
′) = κj − 1 + (r − 1)δ′j

l′Λ′∗(s
′) = #{i < j|κi + (r − 1)δ′i ≥ κj + (r − 1)δ′j}

+ #{i > j|κi + (r − 1)δ′i > κj + (r − 1)δ′j}

Hence,

(κ+ (r − 1)δ′)j |α=−2/(r−1) = − 2

(r − 1)
(a′Λ′∗(s

′) + 1)− l′Λ′∗(s′). (4.2.3)

Now, comparing the arm-colenght and leg-colenght of Λ and Λ′, we get

a′Λ′∗(s
′) = a′Λ∗(s) +N − l′Λ′∗(s)− 1 and l′Λ′∗(s

′) = l′Λ∗(s) (4.2.4)

Hence, by combining the equations (4.2.1), (4.2.2), (4.2.3) and (4.2.4), we con-

clude that

Eκ+(r−1)δ′(x;−2/(r − 1)) and ∆r−1
N Eκ(x; 2/(r − 1))

have the same eigenvalues for each ξj with j = 1, . . . , N .
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In brief, we have proved that (∆
(r−1)
N Eκ(x; 2/(r−1))) as the same eigenvalues

than Eκ+(r−1)δ′(x;−2/(r − 1)). Little work also shows that both polynomials

exhibit triangular with dominant term xκ+(r−1)δ′ . Moreover, because of the form

of κ, the composition κ + (r − 1)δ′ is weakly (1, r,N |m)-admissible. Therefore,

we can make use of Theorem 3.5.2 and conclude that

Eκ+(r−1)δ′(x1, . . . , xN ;−2/(r−1)) ∝
∏

1≤i<j≤N
(xi−xj)r−1Eκ(x1, . . . , xN ; 2/(r−1)),

i.e., the polynomials are equal up to a multiplicative numerical factor.

Example 4.2.3. Given r = 4, N = 3 and κ = (2, 2, 1), we have δ = (2, 1, 0),

thus δ′ = (2, 1, 0) and κ + 3δ′ = (8, 5, 1). According to the last proposition we

have the following factorization:

E(8,5,1)(x1, x2, x3;−2/3) =
1

5
x1x2x2(x1 − x2)3(x1 − x3)3(x2 − x3)3

× (5x1x2 + 3x1x3 + 3x2x3)

= (x1 − x2)3(x1 − x3)3(x2 − x3)3E(2,2,1)(x1, x2, x3; 2/3)

and for r = 2, N = 4 and κ = (2, 2, 3, 1), we have δ = (3, 2, 1, 0), thus δ′ =

(2, 1, 3, 0) and κ+ δ′ = (4, 3, 6, 1). So, using again Proposition 4.2.2, we have:

E(4,3,6,1)(x1, x2, x3, x4;−2) =
1

21
x1x2x3x4

∏
1≤i<j≤4

(xi − xj)

× (21x1x2x
2
3 + 8x1x2x3x4 + 3x1x2x

2
4 + 7x1x

2
3x4 + x1x3x

2
4 + 7x2x

2
3x4 + x2x3x

2
4)

=
∏

1≤i<j≤4

(xi − xj)E(2,2,3,1)(x1, x2, x3, x4; 2).

We will present more examples in Appendix D.

Corollary 4.2.4. Let r > 0 even and let λ a partition with `(λ) ≤ N . Then

Eλ+(r−1)δN (x1, . . . , xN ;−2/(r−1)) =
∏

1≤i<j≤N
(xi−xj)r−1Eλ(x1, . . . , xN ; 2/(r−1)).
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Remark 4.2.5. As mentioned above, the clustering property corresponding to

Corollary 4.2.4 was first obtained in [8, Proposition 2]. The proof given in this

reference uses the characterization of the non-symmetric Jack polynomials as

the unique polynomials satisfying (A1’) and (A2’). However, the problem of the

validity of this characterization at α = αk,r was not addressed by the authors.

Our result about the regularity and uniqueness given in Proposition 3.2.2 and

Theorem 3.5.2 respectively, now firmly establishes the proof proposed in [8].

Before stating the clustering properties for the polynomials with prescribed,

we recall two useful formulas. For this, let

I = {i1, i2, . . . , in}, J = {j1, j2, . . . , jm},

∆I =
∏
i,j∈I
i<j

(xi − xj), ∆J =
∏
i,j∈J
i<j

(xi − xj).

Then, obviously,

SymI

(
∆If(x1, . . . , xN )

)
= ∆IAsymI

(
f(x1, . . . , xN )

)
,

AsymJ

(
∆Jf(x1, . . . , xN )

)
= ∆JSymJ

(
f(x1, . . . , xN )

)
.

(4.2.5)

In the following proposition we study the general clustering property for k = 1

for each type of Jack polynomials with prescribed symmetry, getting the natural

generalization of the clustering property for symmetric and antisymmetric Jack

polynomials, which have been proved in [13] in the context of fractional quantum

Hall states.

Proposition 4.2.6 (Clustering k = 1). Let r be positive and even. Let also Λ

be a superpartition of bi-degree (n|m) with `(Λ) ≤ N .

(i) If Λ is strict and weakly (1, r,N)-admissible, then

PAS
Λ (x1, . . . , xN ;−2/(r − 1)) =

∏
m+1≤i<j≤N

(xi − xj)rQ(x1, . . . , xN ).

(ii) If Λ is moderately (1, r,N)-admissible, then

P SS
Λ (x1, . . . , xN ;−2/(r − 1))

=
∏

1≤i<j≤m
(xi − xj)r

∏
m+1≤i<j≤N

(xi − xj)rQ(x1, . . . , xN ).
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(iii) If Λ is moderately (1, r,N)-admissible and it is such that Λm+1 > . . . > ΛN ,

then

P SA
Λ (x1, . . . , xN ;−2/(r − 1)) =

∏
1≤i<j≤m

(xi − xj)rQ(x1, . . . , xN ).

(iv) If Λ is strict and weakly (1, r,N)-admissible, and it is such that

Λm+1 > . . . > ΛN , then

PAA
Λ (x1, . . . , xN ;−2/(r − 1)) =

∏
1≤i<j≤N

(xi − xj)r−1Q(x1, . . . , xN ).

In the above equations, Q(x1, . . . , xN ) denotes some polynomial, which varies

from one symmetry type to another.

Proof. Once again, all cases are similar, so we only provide the demonstration

for the symmetry type AS, which corresponds to (i) above.

As before, we set I = {1, . . . ,m} and J = {m + 1, . . . , N}. According to

Definition 1.3 and Proposition 3.3.1, there is a composition η, obtained by the

concatenation of two partitions, such that

PAS
Λ (x1, . . . , xN ;α) ∝ AsymISymJ(Eη(x1, . . . , xN ;α)).

Given that Λ is (1, r,N)-admissible, then η has the form κ+ (r− 1)δ′ where κ =

(λ+, µ+) is the composition obtained from η after subtraction of the composition

(r − 1)δ′. Moreover, since Λ is strict and weakly (1, r,N)-admissible, we know

that κ is such that µ+ is strictly decreasing. Thus,

PAS
Λ (x1, . . . , xN ;−2/(r− 1)) ∝ AsymISymJ(Eκ+(r−1)δ′(x1, . . . , xN ;−2/(r− 1))).

(4.2.6)

Now, by Proposition 4.2.2, we also have

Eκ+(r−1)δ′(x1, . . . , xN ;−2/(r−1)) ∝
∏

1≤i<j≤N
(xi−xj)r−1Eκ(x1, . . . , xN ; 2/(r−1)).

(4.2.7)

The substitution of (4.2.7) into (4.2.6), followed by the use of (4.2.5), leads to

PAS
Λ (x1, . . . , xN ;−2/(r − 1)) ∝

(∆J)(r−1)(∆I)
(r−1)SymI

 m∏
i=1

N∏
j=m+1

(xi − xj)(r−1)AsymJEκ(x1, . . . , xN ; 2/(r − 1))
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Now, we know that AsymJEκ(x1, . . . , xN ; 2/(r−1)) is antisymmetric with respect

to the set of variables indexed by J , so we can factorize the antisymmetric factor∏
m+1≤i<j≤N (xi − xj). Exploiting once again (4.2.5), we finally obtain

PAS
Λ (x1, . . . , xN ;−2/(r − 1)) ∝

∏
m+1≤i<j≤N

(xi − xj)rQ(x1, . . . , xN ),

where

Q(x1, . . . , xN ) =
∏

1≤i<j≤m
(xi − xj)r−1

m∏
i=1

N∏
j=m+1

(xi − xj)(r−1)

× SymI

(
AsymJEκ(x1, . . . , xN ; 2/(r − 1))∏

m+1≤i<j≤N (xi − xj)

)
. (4.2.8)

Remark 4.2.7. The case (i) was first conjectured in [26] in the context of sym-

metric polynomials in superspace. All other cases are new.

Corollary 4.2.8. Let α = − 2
r−1 and let r be positive and even. Moreover, for

any positive integer ρ, let

ρδN =
(
ρ(N − 1), ρ(N − 2), . . . , ρ, 0

)
.

Then, the antisymmetric Jack polynomial satisfies

S(r−1)δN (x1, . . . , xN ;α) =
∏

1≤i<j≤N
(xi − xj)(r−1),

while the symmetric Jack polynomial satisfies

PrδN (x1, . . . , xN ;α) =
∏

1≤i<j≤N
(xi − xj)r.

Proof. We recall that if `(λ) = N , then

Sλ(x;α) = PAS
(λ;∅)(x;α) and Pλ(x, α) = PAS

(∅; λ)(x, α).

The first result then follows from Proposition 4.2.6 and equation (4.2.8) for the

case with m = N and κ = ∅. The second result also follows from Proposition

4.2.6 and equation (4.2.8), but this time, with m = 0 and κ = δN .
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Example 4.2.9. In this example we show different clustering properties, by

considering first a symmetric Jack polynomial, then second an antisymmetric

Jack polynomial and finally a Jack polynomial with prescribed symmetry of type

AS and other of type SS.

• For k = 1, r = 2, N = 3 and λ = (4, 2, 0), since that λ is weakly (1, 2, 3)-

admissible, we have

P(4,2,0)(x1, x2, x3;−2) = (x1 − x2)2(x1 − x3)2(x2 − x3)2

• for k = 1, r = 4, N = 3 and λ = (6, 3, 0), since that λ is weakly (1, 4, 3)-

admissible, we have

S(6,3,0)(x1, x2, x3;−2/3) = (x1 − x2)3(x1 − x3)3(x2 − x3)3

• for k = 1, r = 2, N = 3 and Λ = (0; 4, 2), since that Λ is weakly (1, 2, 3)-

admissible,

PAS
(0;4,2)(x1, x2, x3;−2) = x2x3(x1 − x2)(x1 − x3)(x2 − x3)2

• for k = 1, r = 2, N = 4 and Λ = (5, 3; 2, 0), since that Λ is moderately

(1, 2, 4)-admissible,

P SS
(5,3;2,0)(x1, x2, x3, x4;−2) =

1

7
(x1 − x2)2(x3 − x4)2(x1 − x3)(x1 − x4)

× (x2 − x3)(x2 − x4)(7x1x2 + x3x4).

The examples above illustrate that the order r is reached in the symmetric

part of the polynomial.

Now, to motivate the content of the next section, we show that there are

similar clusterings when k > 1. For example, by taking k = 2, r = 3, N = 4

and λ = (4, 3, 0, 0) (notice that λ is weakly (2, 3, 4)-admissible), we have the

symmetric Jack polynomial

P(4,3,0,0)(z, z, x3, x4;−3/2) = (2z + x3 + x4)(z − x4)3(z − x3)3

and if k = 2, r = 3, N = 5 and Λ = (2, 0; 5, 3, 0) (notice that Λ is weakly

(2, 3, 5)-admissible), we have the Jack polynomial of type AS:

PAS
(2,0;5,3,0)(x1, x2, x3, z, z;−3/2) = 2z(x1−x2)(x1−2x3+x2)(x1−z)2(x2−z)2(x3−z)3
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and we can see that after the identification of k-variables of the symmetric part,

the order r is reached in the symmetric part of the polynomial.

4.3 Translation invariance

In this section, we first generalize the work of Luque and Jolicoeur about trans-

lationally invariant Jack polynomials [37]. We indeed find the necessary and

sufficient conditions that guaranties the translational invariance of the Jack poly-

nomial with prescribed symmetry of type AS. To be more precise, let

PΛ = PAS
Λ (x1, . . . , xN ;α), (4.3.1)

and suppose that

α = αk,r, (4.3.2)

Λ is a strict and weakly (k, r,N)-admissible superpartition. (4.3.3)

Then, as was stated in Theorem 4.3.13, PΛ is invariant under translation if

and only if conditions (C1) and (C2) are satisfied. The latter conditions concern

the corners in the diagram of Λ. The proof relies on combinatorial formulas

obtained in [26] that generalize Lassalle’s results [51, 52] about the action of the

operator

L+ =

N∑
i=1

∂

∂xi
(4.3.4)

on symmetric Jack polynomials. We now apply the result about the translation-

ally invariant polynomials to prove that certain Jack polynomials with prescribed

symmetry AS admit clusters of size k and order r.

4.3.1 Generators of translation

The action of L+ on a Jack polynomial with prescribed symmetry AS, PAS
Λ (x;α),

is in general very complicated. However it can be decomposed in terms of two

basic operators, Q# and Q2. Their respective action on PAS
Λ (x;α) can be trans-

lated into simple transformations of the diagram of Λ, namely the removal of a

circle and the conversion of a box into a circle.
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Now, let I = {1, . . . ,m}, I+ = {1, . . . ,m + 1}, I− = {1, . . . ,m − 1},
J = {m + 1, . . . , N}, J+ = {m, . . . , N}, and J− = {m + 2, . . . , N}. We define

Q# and Q2 on AI ⊗SJ : For 1 ≤ m ≤ N ,

Q# : AI ⊗SJ −→ AI− ⊗SJ+ ; f 7−→ (1 +
N∑

i=m+1

Ki,m)f ,

while for 0 ≤ m ≤ N − 1,

Q2 : AI ⊗SJ −→ AI+ ⊗SJ− ; f 7−→ (1−
m∑
i=1

Ki,m+1) ◦ ∂f

∂xm+1
.

Notice that for the extreme case m = 0, we set Q# = 0. Similarly, for m = N ,

we set Q2 = 0.

Lemma 4.3.1. On the space AI ⊗SJ , we have Q# ◦Q2 +Q2 ◦Q# = L+.

Proof. Let f be an element of AI ⊗ SJ , which means that f is a polynomial

in the variables x1, . . . , xN that is antisymmetric with respect to x1, . . . , xm and

symmetric with respect to xm+1, . . . , xN . We must show that

(Q# ◦Q2)(f) + (Q2 ◦Q#)(f) =

N∑
i=1

∂f

∂xi
. (4.3.5)

On the one hand,

(Q# ◦Q2)(f) =
∂f

∂xm+1
−

m∑
i=1

Ki,m+1
∂f

∂xm+1

+

N∑
j=m+2

Kj,m+1
∂f

∂xm+1
−

N∑
j=m+2

Kj,m+1

m∑
i=1

Ki,m+1
∂f

∂xm+1
. (4.3.6)

However, the symmetry properties of f imply

N∑
j=m+2

Kj,m+1
∂f

∂xm+1
=

N∑
j=m+2

∂f

∂xj

and

N∑
j=m+2

Kj,m+1

m∑
i=1

Ki,m+1
∂f

∂xm+1
=

m∑
i=1

N∑
j=m+2

∂

∂xi
(Ki,jf). (4.3.7)

By substituting the last equalities into (4.3.6), we obtain

(Q# ◦Q2)(f) =
∂f

∂xm+1
+

N∑
j=m+2

∂f

∂xj
−

m∑
i=1

N∑
j=m+1

∂

∂xi
(Ki,jf). (4.3.8)
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On the other hand,

(Q2 ◦Q#)(f) =
∂f

∂xm
+

N∑
j=m+1

∂

∂xm
(Kj,mf)

−
m−1∑
i=1

Ki,m
∂f

∂xm
−
m−1∑
i=1

Ki,m
∂

∂xm

 N∑
j=m+1

Kj,mf

 . (4.3.9)

Once again, the symmetry properties of f allow to simplify this equation. Indeed,

m−1∑
i=1

Ki,m
∂f

∂xm
= −

m−1∑
i=1

∂f

∂xi

and

m−1∑
i=1

Ki,m
∂

∂xm

 N∑
j=m+1

Kj,mf

 = −
m−1∑
i=1

N∑
j=m+1

∂

∂xi
(Ki,jf).

Then,

(Q2 ◦Q#)(f) =
∂f

∂xm
+
m−1∑
i=1

∂f

∂xi
+

m∑
i=1

N∑
j=m+1

∂

∂xi
(Ki,jf). (4.3.10)

We finally sum equations (4.3.8) and (4.3.10). This yields equation (4.3.5),

as expected.

The explicit action of Q# and Q2 on the polynomial PAS
Λ (x;α) can be read off

from Proposition 9 of [26] and we state it explicitely below in Proposition 4.3.2.

Indeed, this proposition is concerned with the action of differential operators –

related to the super-Virasoro algebra– on the Jack superpolynomials, denoted by

PΛ(x; θ;α), which contain Grassmann variables θ1, . . . , θN . Among the operators

studied in [26], there are

Q⊥ =
∑
i

∂

∂θi
and q =

∑
i

θi
∂

∂xi
.

Now, a Jack superpolynomial of degree m in the variables θi, can be decomposed

as follows [22]:

PΛ(x; θ;α) =
∑

1≤j1<...<jm≤N
θj1 · · · θjmf j1,...,jm(x;α),

where f j1,...,jm(x;α) belongs to the space A{j1,...,jm} ⊗S{1,...,N}\{j1,...,jm} and is

an eigenfunction of the operator D defined in (1.1.3). This means in particular
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that f1,...,m(x;α) is exactly equal to our PAS
Λ (x;α). It is then an easy exercise to

show that the formula for the action of Q⊥ on PΛ(x; θ;α) provides the formula for

the action of Q# on PAS
Λ (x;α). Similarly, qPΛ(x; θ;α) is related to Q2P

AS
Λ (x;α).

Notice that the formulas obtained in [26] are given in terms of the following

upper and lower-hook lengths:

h
(α)
Λ (s) = lΛ~(s) + α(aΛ∗(s) + 1)

h(Λ)
α (s) = lΛ∗(s) + 1 + α(aΛ~(s))

(4.3.11)

Proposition 4.3.2. [26] The action of the operators Q# and Q2 on the Jack

polynomial with prescribed symmetry PΛ = PAS
Λ (x;α) is

Q#(PΛ) =
∑

Ω

(−1)#Ω◦

 ∏
s∈rowΩ◦

h
(Ω)
α (s)

h
(Λ)
α (s)

 (N + 1− i+ α(j − 1))PΩ (4.3.12)

Q2(PΛ) =
∑

Ω

(−1)#Ω◦

 ∏
s∈rowΩ◦

h
(α)
Λ (s)

h
(α)
Ω (s)

PΩ (4.3.13)

where the sum is taken in (4.3.12) over all Ω′s obtained by removing a circle

from Λ; while the sum in (4.3.13) is taken over all Ω′s obtained by converting

a box of Λ into a circle. Also, in each case Λ and Ω differ in exactly one cell

which we call the marked cell and whose position is denoted in the formulas by

(i, j). The symbol #Ω◦ stands for the number of circles in Ω above the marked

cell. The symbol rowΩ◦ stands for the row of Ω and Λ to the left of the marked

cell.

Example 4.3.3. Given Λ = (4, 3; 2, 2), through the action of Q2 on PΛ we obtain

one Jack polynomial with prescribed symmetry indexed by the superpartition Ω,

Λ =

ii Q2−→ Ω =

ii
i

and then, acting with Q# on PΩ we obtain a lineal combination of Jack

polynomials with prescribed symmetry indexed by the superpartitions Γ,
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Ω =

yi
i

Q#−→ Γ1 =
i

i Ω =

iy
i

Q#−→ Γ2 =

i
i

Ω =

ii
y

Q#−→ Γ3 =

ii
.

But if we act first with Q# on PΛ we obtain a lineal combination of two Jack

polynomials with prescribed symmetry indexed by the superpartitions Ω,

Λ =

yi Q#−→ Ω′1 =
i

Λ =

iy Q#−→ Ω′2 =

i

and then acting with Q2 on each PΩ we obtain a new lineal combination of Jack

polynomials with prescribed symmetry indexed by the superpartitions Γ,

Ω′1 =
i Q2−→ Γ′1 =

i
i Ω′2 =

i
Q2−→ Γ′2 =

i
i

Ω′2 =

i
Q2−→ Γ′3 =

ii
Algebraically we have

Q#(Q2PΛ) = dΩ,Γ1cΛ,ΩPΓ1 + dΩ,Γ2cΛ,ΩPΓ2 + dΩ,Γ3cΛ,ΩPΓ3

Q2(Q#PΛ) = dΩ′1,Γ
′
1
cΛ,Ω′1

PΓ′1
+ dΩ′2,Γ

′
2
cΛ,Ω′2

PΓ′2
+ dΩ′2,Γ

′
3
cΛ,Ω′2

PΓ′3
.

where the coefficients c and d are obtained from the product of hooks specified in

4.3.12 and 4.3.13.

Remark 4.3.4. Let Λ be a superpartition such that in the corresponding dia-

gram, all corners are boxes. Then, in equation (4.3.12), we cannot remove any

circle from the diagram of Λ and we are forced to conclude that Q#PΛ = 0. This
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is coherent with the fact that in such case, PAS
Λ (x;α) is a symmetric polynomial

and according with our convention, Q#f = 0 for all f ∈ S{1,...,N}.

Similarly, if Λ is a superpartition such that in its diagram, all corners are

circles, then we cannot transform a box in the diagram of Λ into a circle. This

is coherent with our convention. Indeed, in such case, PAS
Λ (x;α) is an antisym-

metric polynomial and we have set Q2f = 0 for all f ∈ A{1,...,N}.

4.3.2 General invariance

In this section we determine whether a Jack polynomial with prescribed symme-

try is translationally invariant by looking at the shape of the diagram associated

to the indexing superpartition. We pay a special attention to the corners in the

diagram.

Definition 4.3.5. Let D be the diagram associated to the superpartition Λ. The

cell (i, j) ∈ D is a corner if (i + 1, j) /∈ D and (i, j + 1) /∈ D. We say that the

corner (i, j) is an outer corner if the row i− 1 and the column j− 1 do not have

corners. We also define a corner (i, j) to be an inner corner if the row i− 1 and

the column j − 1 have corners. A corner that neither outer nor inner is called

a bordering corner. Note that in the above definitions, it is assumed that each

point of the form (0, j) or (i, 0) is a corner.

Example 4.3.6. In the following diagram we specify the corners and corner’s

type (outer c., inner c. or bordering c.). { inner c.

{ outer c.
inner c.

bordering c.

Lemma 4.3.7. Let D′ be the diagram obtained by removing the corner (i, j)

from diagram D, which contains c corners. Then, the number of corners in D′

is:

• c− 1 if (i, j) is an inner corner;
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• c if (i, j) is a bordering corner;

• c+ 1 if (i, j) is an outer corner.

Proof. This follows immediately from the above definitions.

Lemma 4.3.8. Assume (4.3.1), (4.3.2), and (4.3.3). Then, Q2(PΛ) = 0 if and

only if Λ is such that all the corners in its diagram are circles.

Proof. According to Proposition 4.3.2, Q2(PΛ) vanishes if and only if each corner

of Λ is either a circle or a box located at (i, j′) such that for some j < j′, we

have

h
(αk,r)
Λ (i, j) = lΛ~(i, j) + αk,r(aΛ∗(i, j) + 1) = 0

Now, h
(αk,r)
Λ (i, j) = 0 only if for some positive integer k̄, we have aΛ∗(i, j) +

1 = k̄(r − 1) and lΛ~(i, j) = (k + 1)k̄. This implies

Λ~
i − Λ∗i+k̄(k+1) ≤ k̄r − k̄. (4.3.14)

On the other hand, Lemma 3.1.2 implies that Λ~
i+1 − Λ∗

i+k̄(k+1)
≥ k̄r. More-

over, Λ~
i ≥ Λ~

i+1, so that Λ~
i − Λ∗

i+k̄(k+1)
≥ k̄r. This inequality contradicts

(4.3.14).

Therefore, if Λ is a (k, r,N)-admissible superpartition, Q2(PΛ) vanishes if

and only if all the corners in Λ are circles.

The conditions for the vanishing of the action of Q# on a Jack polynomial

with prescribed symmetry are more involved. They require a finer characteriza-

tion of the different types of hooks formed from the corners of the diagrams.

Definition 4.3.9. Let D be the diagram associated to the superpartition Λ. Let

(i, j) ∈ D be a circled corner. We say that (i, j) is the upper corner of a hook of

type:

a) Ck,r if the box (i, j− r) ∈ D and it satisfies lΛ∗(i, j− r) = lΛ~(i, j− r) = k;

b) C̃k,r if the box (i, j − r) ∈ D and it satisfies lΛ∗(i, j − r) = k together with

lΛ~(i, j − r) = k + 1.
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Similarly, when (i, j) ∈ D is a boxed corner, we say (i, j) is the upper corner of

a hook of type:

c) Bk,r if the box (i, j− r) ∈ D and it satisfies lΛ∗(i, j− r) = lΛ~(i, j− r) = k.

d) B̃k,r if the box (i, j − r) ∈ D and it satisfies lΛ∗(i, j − r) = k together with

lΛ~(i, j − r) = k + 1.

The hooks are illustrated in Figure 4.1.

Let us consider a concrete example. For this we fix k = 4, r = 3 and N = 18

and we consider the following (4, 3, 18)-admissible superpartition:

i?

i?
?

?

i
Each cell marked with a star is the upper corner of one of the four types of hooks.

The first one, located at the position (1, 11), is the upper corner of a hook of

type C̃4,3. The second, located at the position (6, 8), belongs to a hook of type

C4,3. Similarly, the third and the fourth corners, are the upper corners of hooks

of type B̃4,3 and B4,3, respectively.
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Lemma 4.3.10. Assume (4.3.1), (4.3.2), and (4.3.3). Then, Q#(PΛ) = 0 if

and only if each corner in the diagram of Λ is either:

(i) a box;

(ii) a circle and the upper corner of a hook of type Ck,r or C̃k,r;

(iii) a circle with coordinates (i, j) such that i = N + 1 − k̄(k + 1) and j =

k̄(r − 1) + 1 for some positive integer k̄.

Note that there is at most one corner (i, j) satisfying the criterion (iii).

Proof. According to Proposition 4.3.2, Q#(PΛ) = 0 iff, each corner (i, j) satisfies

at least one of the following criteria:

1. the cell (i, j) is a box;

2. the cell (i, j) is a circle and there is a j′ < j such that h
(Ω)
α (i, j′) = 0, where

h
(Ω)
α (i, j′) = lΩ∗(i, j

′) + 1 + αk,r(aΩ~(i, j′)) and Ω is the diagram obtained

from Λ by removing the circle in (i, j) ;

3. the cell (i, j) is a circle and it is such that N + 1− i+ αk,r(j − 1) = 0.

The first criterion being trivial, we turn to the second. Obviously, h
(Ω)
α (i, j′) = 0

iff there exists a positive integer k̄ such that aΩ~(i, j′) = k̄(r−1) and lΩ∗(i, j
′) =

k̄(k+1)−1. The first condition is equivalent to j−j′ = k̄(r−1)−1. The second

is equivalent to say that Λ∗
i+k̄(k+1)−1

≥ j′ and that the cell (i+k̄k+k̄, j′) is empty

or a circle. Suppose further that k̄ = 1. Then, we have shown that h
(Ω)
α (i, j′) = 0

iff j′ = j − r + 2, Λ∗i+k ≥ j′ and Λ∗i+k+1 < j′ (i.e., Λ~
i+k+1 < j′ or Λ~

i+k+1 = j′ ),

this corresponds to the two hooks given above. Now, suposse k̄ = 2. On the one

hand, we have Λ∗i+2k+1 ≥ j′ = j − 2(r − 1) + 1 = Λ~
i − 2(r − 1) + 1, i.e,

Λ~
i − Λ∗i+2k+1 ≤ 2r − 3. (4.3.15)

On the other hand, the admissibility requires Λ~
i −Λ∗i+k ≥ r and Λ∗i+k−Λ∗i+2k ≥

r − 1. Then,

Λ~
i − Λ∗i+2k+1 ≥ Λ~

i − Λ∗i+2k ≥ 2r − 1. (4.3.16)

Inequalities (4.3.15) and (4.3.16) are contradictory, so we conclude that k̄ cannot

be equal to 2. In the same way, one easily shows that k̄ cannot be greater than

2.
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Now consider the third criterion. As N + 1 − i > 0, the factor N + 1 −
i + αk,r(j − 1) vanishes iff j = k̄(r − 1) + 1 and N = i + k̄(k + 1) − 1, for

some positive integer k̄. Now suppose there is another corner (i′, j′) such that

N + 1− i′ + αk,r(j
′ − 1). Then, j′ = k̄′(r − 1) + 1 y N = i′ + k̄′(k + 1)− 1, for

some positive integer k̄′. Without loss of generality, we can assume i < i′, which

implies j > j′, i.e. k̄ > k̄′. Let n = k̄ − k̄′. Then, j − j′ = Λ~
i − Λ~

i′ = n(r − 1),

which implies Λ~
i −Λ∗i′ = n(r−1)+1. Using N = i+k̄(k+1)−1 = i′+k̄′(k+1)−1,

we get i′ = i+ n(k + 1). Also, Λ~
i − Λ∗i+n(k+1) > Λ~

i − Λ∗i+nk, thus

Λ~
i − Λ∗i+nk ≤ n(r − 1). (4.3.17)

However, by using the admissibility and the fact that

Λ~
i −Λ∗i+nk = Λ~

i −Λ∗i+k+Λ∗i+k−Λ∗i+2k+Λ∗i+2k+. . .+Λ∗i+(n−1)k−Λ∗i+nk, (4.3.18)

one easily shows that

Λ~
i − Λ∗i+nk ≥ r + (n− 1)(r − 1) = nr − n+ 1. (4.3.19)

Obviously, equations (4.3.17) and (4.3.19) are contradictory. Therefore no more

than one corner is such that N + 1− i+ αk,r(j − 1) = 0.

Corollary 4.3.11. Assume (4.3.1), (4.3.2), and (4.3.3). Suppose moreover that

the last corner in Λ’s diagram is a circle. Let (`, j) the coordinates of the last

corner. Then, Q#(PΛ) = 0 only if N = `+ k and j = r.

Proof. According to the previous proposition, as (`, j) cannot be the upper corner

of a hook, Q#(PΛ) = 0 only if the condition (iii) is met for the corner (`, j). This

means that Q#(PΛ) = 0 only if ` = N + 1 − k̄(k + 1) and j = k̄(r − 1) + 1 for

some positive integer k̄. Now, the admissibility condition requires ` + k ≥ N ,

i.e.,

N + 1− k̄(k + 1) + k ≥ N.

This is true iff k̄ = 1. Thus, Q#(PΛ) = 0 only if ` = N − k and j = r.

Proposition 4.3.12. Assume (4.3.1), (4.3.2), and (4.3.3). Then, PΛ is invari-

ant under translation if and only if Q2(Q#PΛ) = 0 and Q#(Q2PΛ) = 0.
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Proof. Clearly, PΛ is translationally invariant iff L+(PΛ) = 0. Moreover, we

know from Lemma 4.3.1 that L+(PΛ) = Q2(Q#PΛ) + Q#(Q2PΛ). Thus, if

Q2(Q#P ) = 0 and Q#(Q2P ) = 0 then L+P = 0.

It remains to show that if L+P = 0, then Q2(Q#PΛ) = 0 and Q#(Q2PΛ) =

0. In fact, we are going to prove the contrapositive: if Q2(Q#PΛ) 6= 0 or

Q#(Q2PΛ) 6= 0 then L+P 6= 0. However, if Q2(Q#PΛ) 6= 0 and Q#(Q2PΛ) =

0, or if Q2(Q#PΛ) = 0 and Q#(Q2PΛ) 6= 0, then automatically L+PΛ 6= 0.

Consequently, we need to prove the following statement:

Q2(Q#PΛ) 6= 0 and Q#(Q2PΛ) 6= 0 =⇒ Q2Q#(PΛ) +Q#Q2(PΛ) 6= 0.

(4.3.20)

We assume that Q2(Q#PΛ) 6= 0 and Q#(Q2PΛ) 6= 0. Then, Q#PΛ 6= 0 and

Q2PΛ 6= 0. According to Lemma 4.3.10, the first equation implies that there is

at least one circle in the diagram of Λ that does not satisfy the conditions (ii)

and (iii). Let (i, j) denote the position of such a circle. Moreover, according to

Lemma 4.3.8, the second equation implies that there must be at least one boxed

corner in the diagram of Λ. Let (̄i, j̄) be its position.

Let Υ be the superpartition obtained from Λ by removing the circle (i, j)

and by converting a box (̄i, j̄) into a circle. There is only one way to get PΥ by

acting with Q2Q# on PΛ by acting with Q#Q2 on PΛ. Thus, it is enough to

verify that the coefficients of the polynomial PΥ in the expansions of Q2(Q#PΛ)

and Q#Q2(PΛ) are not the same (up to a sign).

Let Ω1 be the superpartition obtained from Λ by removing the circle in

(i, j). Clearly, the coefficient of PΥ in Q2(Q#PΛ) is equal to the product of two

coefficients: cΛ,Ω1 , the coefficient of PΩ1 in Q#(PΛ), and bΩ1,Υ, the coefficient of

PΥ in Q2(PΩ1). Similarly, if Ω2 denotes the superpartition obtained from Λ by

converting the box (̄i, j̄) into a circle, then the the coefficient of PΥ in Q#(Q2PΛ)

is the product of the two following coefficients: bΛ,Ω2 , the coefficient of PΩ2 in

Q2PΛ, and cΩ2,Υ, the coefficient of PΥ in Q#(PΩ2). In short,

Q2Q#(PΛ) = cΛ,Ω1 bΩ1,Υ PΥ + . . . (4.3.21)

Q#Q2(PΛ) = bΛ,Ω2 cΩ2,Υ PΥ + . . . (4.3.22)

where . . . indicates terms linearly independent from PΥ. We recall that the

coefficients b and c can be read off the equations in Proposition 4.3.2.
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Now, we need to distinguish two cases: (1) the box is located above the circle

in the diagram of Λ, which means ī < i, and (2) the box is located under the

circle in the diagram of Λ, which means ī > i.

Suppose first that the box is located above the circle, i.e., ī < i. Obviously,

bΛ,Ω2 is not zero. Moreover, cΩ2,Υ is equal to cΛ,Ω1 . This can be understood as

follows. These coefficients depend only on N , the coordinates of the marked cell,

which are (i, j) in both cases, and on ratios of hook-lengths for the cells in the

row to the left of the marked cell. Given that the marked cell is below the cell

(̄i, j̄), the hook-lengths involved in the coefficients are not affected by any prior

transformation Λ → Ω2, so the coefficients are equal. The situation is not so

simple for bΛ,Ω2 and bΩ1,Υ, so explicit formulas for these coefficients are required.

Up to a sign, they are

dΛ,Ω2 =

 ∏
1≤l≤j̄−1

h
(α)
Λ (̄i, l)

h
(α)
Ω2 (̄i, l)

 , dΩ1,Υ =

 ∏
1≤l≤j̄−1

h
(α)
Ω1 (̄i, l)

h
(α)
Υ (̄i, l)

 (4.3.23)

It is important to note that

h
(α)
Λ (̄i, l) = h

(α)
Ω1 (̄i, l) ∀ 1 ≤ l ≤ j̄ − 1, l 6= j

and for l = j we have

h
(α)
Λ (̄i, j) = (i− ī) + α(j̄ − j + 1)

h
(α)
Ω1 (̄i, j) = (i− ī− 1) + α(j̄ − j + 1)

(4.3.24)

Also, for l 6= j,

h
(α)
Ω2 (̄i, l) = h

(α)
Υ (̄i, l) ∀ 1 ≤ l ≤ j̄ − 1,

while for l = j,

h
(α)
Ω2 (̄i, j) = (i− ī) + α(j̄ − j)

h
(α)
Υ (̄i, j) = (i− ī− 1) + α(j̄ − j).

(4.3.25)

After having made basic calculations, we see that the coefficients bΛ,Ω2 and bΩ1,Υ

are equal iff α = 0. We thus conclude conclude that bΛ,Ω2 6= ±bΩ1,Υ, which in

turn implies that cΛ,Ω1 bΩ1,Υ ± bΛ,Ω2 cΩ2,Υ 6= 0.

The second case, for which the square is located under the circle in the Λ

diagram, is very similar to the case just analyzed. The only difference for the
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second case is that bΛ,Ω2 = ±bΩ1,Υ and cΩ2,Υ 6= ±cΛ,Ω1 . Nevertheless, this implies

once again that cΛ,Ω1 bΩ1,Υ ± bΛ,Ω2 cΩ2,Υ 6= 0.

In conclusion, we have proved equation (4.3.20) and the proposition follows.

For instance, fixing k = 2, r = 3, N = 5 and n ≤ 10 we get 18 admissible

superpartitions:

(4, 2; 3, 0, 0), (4, 3, 2; 0, 0), (4, 2, 0; 3, 0), (4, 3, 2, 0; 0), (2; 5, 3, 0, 0), (5, 2; 3, 0, 0),

(3, 2; 5, 0, 0), (2, 0; 5, 3, 0), (4, 2; 4, 0, 0), (5, 3, 2; 0, 0), (5, 2, 0; 3, 0), (3, 2, 0; 5, 0),

(4, 2, 0; 4, 0), (4, 3, 2; 1, 0), (5, 3, 2, 0; 0), (4, 3, 2, 1; 0), (4, 3, 2, 0; 1), (4, 3, 2, 1, 0; ∅)

which 6 indexed Jack polynomials invariant under translation:

(2; 5, 3, 0, 0), (4, 2; 3, 0, 0), (4, 2, 0; 3, 0), (4, 3, 2; 0, 0), (4, 3, 2, 0; 0), (4, 3, 2, 1, 0; ∅).

In the following theorem we give the necessary and sufficient conditions that

characterize the Jack polynomials with prescribed symmetry which are invariant

under translation.

Theorem 4.3.13 (Translation invariance). Let Λ be a strict and weakly (k, r,N)-

admissible superpartition. Then, the Jack polynomial with prescribed symmetry

PAS
Λ (x;αk,r) is invariant under translation if and only if one of the following two

conditions is satisfied:

(C1) all corners (circles or boxes) of Λ are located at the upper corner of a hook

of type Bk,r, B̃k,l, Ck,r, or C̃k,l, except for one corner, which must be located

at the point (N − k, r);

(C2) all corners of Λ are circles such that if they are not interior, they are

located at the upper corner of a hook of type Ck,r or C̃k,l, except for at

most one non-interior corner (i, j), which is such that i = N +1− k̄(k+1)

y j = k̄(r − 1) + 1 for some k̄.

Types of hooks are given in Figure 4.1. Interior and non-interior corners are

defined in Definition 4.3.5.
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Figure 4.1: Types of hooks. From left to right, Ck,r, C̃k,r, Bk,r and B̃k,r
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Proof. In what follows, PΛ = PΛ(x1, . . . , xN ;αk,r), where Λ is as in (4.3.3). We

suppose moreover that the diagram of Λ contains exactly m circles.

According to Proposition 4.3.12, PΛ is invariant under translation iff it be-

longs simultaneously to the kernel of Q2 ◦Q# and that of Q# ◦Q2.

Consider first Q2◦Q#(PΛ) = 0. It is clear that Q2◦Q#(PΛ) = 0 iff Q#(PΛ) =

0 or, according to lemma 4.3.8, Q#(PΛ) generates Jack polynomials indexed by

superpartitions whose corners are all circles. On the one hand, Q#(PΛ) = 0 iff

Λ belongs to the set B formed by all superpartitions satisfying conditions (i),(ii)

and (iii) of Lemma 4.3.10. On the other hand, Q#(PΛ) 6= 0 and Q2 ◦Q#(PΛ) =

0 iff each corner of Λ is a circle such that if we delete it, we obtain a new

superpartition whose corners are all circles, except possibly some that satisfy

the conditions ii) or iii) of Lemma 4.3.10 (by assumption not all circles of Λ

satisfy these conditions). We call C the set of all such superpartitions. Now, by

Lemma 4.3.7, the elimination of a circle does not create a corner with box iff the

circle is an inner corner. Then, C is given by the set of all superpartitions whose

corners are all inner circles except possibly some that satisfy the conditions ii)

or iii). It is interesting to note that the only superpartition having only circled

inner corners is the staircase δm = (m− 1,m− 2, . . . , 1, 0; ∅), which is (k, r,N)-

admissible if N ≤ k, or N > k and k ≥ r − 1. Therefore, Q2 ◦Q#(PΛ) = 0 iff Λ

belongs to the set B, or the set C.

So far, we have shown that Q2 ◦ Q#(PΛ) = 0 iff Λ ∈ B ∪ C. It remains to

determine the subset A ⊂ B∪C such that Λ ∈ A =⇒ L+(PΛ) = 0. The simplest

case is Λ ∈ C. Indeed, since all corners of Λ are circles, we automatically have

Q2(PΛ) = 0, which implies Q# ◦Q2(PΛ) = 0 and L+(PΛ) = 0.
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We now suppose that Λ ∈ B. We want to determine the necessary and

sufficient criteria for Q#◦Q2(PΛ) = 0. On the one hand, we know thatQ2(PΛ) =

0 iff all corners of Λ are circles. Therefore, Q2(PΛ) = 0 and Λ ∈ B iff all corners

are circles that satisfy conditions (ii) and (iii) of Lemma 4.3.10. Now, if Λ ∈ B
and has at least one boxed corner in (i, j), then Q2(PΛ) does not vanish and

generates PΩ, where Ω is the superpartition obtained from Λ by converting the

box (i, j) into a circle. Now, Q#(PΩ) vanishes iff all corners of Ω satisfy any of

the three conditions of Lemma 4.3.10. Since by hypothesis Λ already complies

with these conditions, Q#(PΩ) = 0 iff (i, j) in Ω is the upper corner of the hook

Ck,r or C̃k,r, or it is such that i = N + 1 − k̄(k + 1) and j = k̄(r − 1) + 1 for

some positive integer k̄ (what is possible only once). Applying this result to each

boxed corner of Λ, we get Q#(Q2(PΛ)) = 0 iff each boxed corner of Λ is the

upper corner of a hook Bk,r or B̃k,r, or it is such that i = N + 1− k̄(k + 1) and

j = k̄(r − 1) + 1 for some positive integer k̄.

Finally, let (`, j′) the coordinates of the last corner Λ ∈ B. Obviously, if

there is a circle in (`, j′), this circle also corresponds to the last corner of any

superpartition Ω indexing the Jack polynomials generated byQ2(PΛ). According

to Corollary 4.3.11, we know that Q# ◦Q2(PΛ) = 0 only if ` = N − k and j = r.

On the other hand, if the last corner Λ is a box, it is known that Q2(PΛ)

generates a PΩ such that the last corner of Ω is a circle, so we have once again

that Q# ◦Q2(PΛ) = 0 only if ` = N − k and j = r.

In summary, Q2 ◦Q#(PΛ) = 0 and Q# ◦Q2(PΛ) = 0 iff: 1) all corners of Λ

are circles, which are inner corners, except possibly for some circles that satisfy

the conditions (ii) and (iii) of Lemma 4.3.10; or 2) the last corner of Λ is located

in (N −k, r) and all other corners of Λ are the upper corners of hooks type Bk,r,

B̃k,r, Ck,r or C̃k,r.

4.3.3 Special cases of invariance

The previous theorem clearly shows that for n, m, k, r, and N , the number

of ways to construct superpartitions that lead to invariant polynomials could

be enormous. In general such superpartitions do not have a explicit and com-

pact form. There are two notable exceptions however: (1) when we are dealing

with conventional partitions (no circle in the diagrams), which was studied by
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Jolicoeur and Luque (see [37]), and (2) when the maximal length N of the su-

perpartition is bounded as N ≤ 2k. Below, we derive in a simple way one of

their results, in the following corollary to 4.3.13. For the second case, we identify

three simple forms of superpartitions associated with invariant polynomials.

Corollary 4.3.14. Let Pλ = Pλ(x1, . . . , xN ;αk,r), where λ is a (k, r,N)-admissible

partition. The polynomial Pλ is invariant under translation if and only if

λ =
(
((β + 1)r)l, (βr)k, . . . , rk

)
,

where 0 < β, 0 ≤ l ≤ k, and N = k(β + 1) + l.

Proof. As a consequence of Theorem 4.3.13, we have that Pλ is invariant under

translation iff the last corner of λ’s diagram is located at position (N −k, r) and

all remaining corners are upper corners of hooks Bk,r. Thus, Pλ is invariant iff

λ = (((β + 1)r)l, (βr)k, . . . , rk) with 0 < β. The admissibility condition requires

0 ≤ l ≤ k. Finally, the condition on the position for the last corner imposes

N = k(β + 1) + l.

Corollary 4.3.15. Assume (4.3.1), (4.3.2), and (4.3.3). Suppose moreover that

Λ’s diagram contains m circles and that N ≤ 2k. Then, PΛ is invariant under

translation if and only if Λ has one of the following forms:

(F1) Λ = (∅; rN−k);

(F2) Λ = (m − 1,m − 2, . . . , 1, 0; ∅), where m ≤ N ≤ k or N − 1 ≥ k ≥
N −m+ r − 1

(F3) Λ = (r + f − 1, r + f − 2, . . . , r − 1, g − 1, g − 2, . . . , 1, 0; rN−k−m) where

m = f + g + 1, 0 ≤ f ≤ N − k − 1, 0 ≤ g ≤ min(k, r − 1) and

f ≥ g +N − 2k − 1.

These forms are respectively illustrated in Figures 4.2, 4.4, 4.5 below.

Proof. Let us start with the sufficient condition. According to Theorem 4.3.13,

if Λ is of the form (F1), (F2) or (F3), then PΛ is invariant under translation.

Indeed, (F1) trivially satisfies (C1); the only corners in (F2) are inner circles, so



4.3. Translation invariance 89

(F2) satisfies (C2); in (F3), all corners are inner circles, except one circle located

at (N − k, r), so it satisfies (C2) with k̄ = 1.

We now tackle the non-trivial part of the demonstration, which is the nec-

essary condition. For this, let (`, j) be the last corner of the Λ diagram. There

are two obvious cases, depending on whether (`, j) is an inner corner or not.

First, we suppose that (`, j) is a bordering corner or an outer corner. Ac-

cording to Theorem 4.3.13, PΛ is invariant under translation only if N + 1− `+

αk,r(j − 1) = 0, where αk,r = −(k + 1)/(r − 1). Since N + 1 − ` > 0, we must

assume that j − 1 = j̄(r− 1), where j̄ is a positive integer. Then, the invariance

condition requires N = ` + j̄(k + 1) − 1. However, by hypothesis, N ≤ 2k, so

j̄ = 1 (i.e., j = r). Therefore, the invariance condition and N ≤ 2k impose j = r

and ` = N − k ≤ k, which is compatible with the admissibility. Now, let (i, `′)

be the first corner of Λ diagram. Once again, two cases are possible:

1. (i, `′) is a box. Suppose (i, `′) 6= (`, j). According to Theorem 4.3.13, PΛ

can be invariant only if we can form a hook Bk,r or B̃k,r whose respective

lengths are either k+ 1 or k+ 2, which is impossible because ` ≤ k. Then,

the only possible squared corner is the last corner. Thus, the invariance

and admissibility conditions impose that the diagram is made of N − k
rows with r boxes, corresponding to the first form of the proposition.

2. (i, `′) is a circle. Referring again to Theorem 4.3.13 and recalling that

` ≤ k, we see that PΛ is invariant under translation only if (i, `′) = (`, j)

or if (i, `′) is a inner circled corner. The first condition imposes Λ = (r −
1; rN−k−1). The second imposes that only criterion (C2) can be considered,

so all remaining corners must be circled inner corners. Consequently, Λ =

(r+m− 2, r+m− 3, . . . , r, r− 1; rN−k−m) for some 1 ≤ m ≤ N − k. This

is illustrated in Figure 4.3

Second, we suppose that (`, j) is an inner corner. This implies that j = 1 and

as a consequence, criterion (C1) of Theorem 4.3.13 cannot be satisfied. Thus, the

only option is that the last corner is a circle and criterion (C2) must be satisfied:

all other corners must be inner circles, except for at most one corner, which can

be a bordering or outer circle, located at (̄ı, ̄), and such that ı̄ = N+1− k̄(k+1)
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Figure 4.2: Form (F1)
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Figure 4.3: Form (F3) with g = 0
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and ̄ = k̄(r−1)+1 for some positive integer k̄. However, we know that ı̄ < ` ≤ 2k,

so that k̄ = 1. In short, if (`, j) is an inner corner, then all corners are inner

circles, except for at most one non-inner corner, which could be a circle located

at (N − k, r). If all corners are inner ones, without exception, then the only

possible superpartition is

Λ = (m− 1,m− 2, . . . , 1, 0; ∅), m ≤ N,

which is the form (F2) illustrated in Figure 4.4. Finally, if there is one exceptional

corner, then all possibles superpartitions can be written as

Λ = (r + f − 1, r + f − 2, . . . , r, r − 1, g − 1, g − 2, . . . , 0; rN−k−f ),

where

f + g + 1 = m, g < r, g ≤ k, f < N − k.
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This is the last possible form and it is illustrated in Figure 4.5. Note that the

admissibility imposes some additional restrictions on the forms (F2) and (F3).

The form (F2) is admissible whenever N ≤ k, while for N > k, it is admissible

if N + r−m− 1 ≤ k. In the case of (F3) (see Figure 4.5), the admissibility also

requires f ≥ g +N − 2k − 1.

Figure 4.4: Form (F2)
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Figure 4.5: Form (F3)
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We have demonstrated that only three forms of admissible superpartitions

lead to invariant polynomials when N ≤ 2k.
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4.4 The clustering condition for k > 1

Baratta and Forrester have shown that if symmetric Jack polynomials are also

invariant under translation, then they almost automatically admit clusters [8].

In what follows, we generalize their approach to the case of Jack polynomials

with prescribed symmetry.

Proposition 4.4.1. Let PΛ(x1, . . . , xN ;αk,r) be a Jack polynomial with pre-

scribed symmetry AS, where Λ is as in (4.3.3) and of bi-degree (n|m) and such

that N ≥ k +m+ 1. Suppose moreover that Λ is such that PΛ(x1, . . . , xN ;αk,r)

is translationally invariant.

(i) If `(Λ) > N − k then

PΛ(x1, . . . , xN ;αk,r)
∣∣∣
xN−k+1=...=xN=z

= 0 .

(ii) If `(Λ) = N − k then

PΛ(x1, . . . , xN ;αk,r)
∣∣∣
xN−k+1=...=xN=z

=
N−k∏
i=m+1

(xi − z)rQ(x1, . . . , xN−k, z)

for some polynomial Q of degree n− (N − k −m)r.

Proof. From the admissibility condition, we know that PΛ(x;αk,r) is well defined.

Moreover, the condition N ≥ k +m+ 1 ensures that the specialization of the k

variables takes place in the set of variables in which PΛ is symmetric. In other

words, if α is not a negative rational nor zero, then

PΛ(x;α)
∣∣∣
xN−k+1=...=xN=z

6= 0 .

Thus, property (i) is not trivial. However, if we suppose that PΛ(x;αk,r) is

translationally invariant, then

PΛ(x1, . . . , xN ;αk,r)
∣∣∣
xN−k+1=...=xN=z

= PΛ(x1 − z, . . . , xN−k − z, 0, . . . , 0;αk,r)

(4.4.1)

Now, by the stability property given in Lemma 2.4.6, the last equality can rewrit-

ten as

PΛ(x1, . . . , xN ;αk,r)
∣∣∣
xN−k+1=...=xN=z

= PΛ(x1 − z, . . . , xN−k − z;αk,r). (4.4.2)

From this point, two cases are possible:



4.4. The clustering condition for k > 1 93

(i) If `(Λ) > N − k, Lemma 2.4.6 also implies that the RHS of (4.4.2) is zero,

as expected.

(ii) If `(Λ) = N − k, then the RHS of (4.4.2) is not zero. From the triangu-

larity property of the Jack polynomials with prescribed symmetry in the

monomial basis, we can write

PΛ(x1 − z, . . . , xN−k − z;αk,r) = mΛ(x1 − z, . . . , xN−k − z)

+
∑
Γ<Λ

cΛ,ΓmΓ(x1 − z, . . . , xN−k − z).

Moreover, according to Theorem 4.3.13 and Lemma 4.3.11, the last corner

in Λ′s diagram is located at (N−k, r). This fact, together with `(Γ) = N−k
and N ≥ k +m+ 1, impose that

ΛN−k ≥ r and ΓN−k ≥ r for all Γ < Λ.

Hence,
∏N−k
i=m+1(xi − z)r divides mΓ for each mΓ such that Γ < Λ. This

finally implies that
∏N−k
i=m+1(xi−z)r divides PΛ(x1−z, . . . , xN−k−z;αk,r),

and the proposition follows.

The last proposition establishes the clustering properties conjectured in [26]

in the case of translationally invariant polynomials. The next proposition shows

that in this case, it is also possible to get more explicit clustering properties

involving only Jack polynomials and not some indeterminate polynomials Q as

before. Note that in some instances, we only form cluster of order r − 1. We

stress that this is not in contradiction with the previous proposition. Indeed,

more variables could be collected to get order r, but this factorization would not

allow us to write explicit formulas in terms of Jack polynomials with prescribed

symmetry.

To illustrate what was mentioned in the last paragraph, we consider the

following examples, by taking k = 3, r = 2, N = 7, and αk,r = −4. It can be

checked that:
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• if Λ = (2, 1, 0; 2, 2, 0, 0), then PΛ(x;αk,r) is translationally invariant and

moreover

PΛ(x1, x2, . . . , x7;αk,r)|x5=x6=x7=z = 0

while

PΛ(x1, x2, . . . , x7;αk,r)|x3=x6=x7=z = (x1−z)(x2−z)(x4−z)2(x5−z)2(x1−x2)

=
∏

1≤i≤5
i 6=3

(xi − z) · (x1 − x2)(x4 − z)(x5 − z)

=
∏

1≤i≤5
i 6=3

(xi − z) · PΛ̃
(x1 − z, x2 − z, x4 − z, x5 − z)

where Λ̃ = (1, 0; 1, 1).

• Now, if Λ = (1; 3, 2, 2, 0, 0, 0), then PΛ(x;αk,r) is translationally invariant

and moreover

PΛ(x1, x2, . . . , x7;αk,r)|x5=x6=x7=z

= −(x1 − z)(x2 − z)2(x3 − z)2(x4 − z)2(3x1 − x2 − x3 − x4)

=
∏

1≤i≤4

(xi − z) · (x2 − z)(x3 − z)(x4 − z)(3x1 − x2 − x3 − x4)

=
∏

1≤i≤4

(xi − z) · PΛ̃
(x1 − z, x2 − z, x3 − z, x4 − z)

where Λ̃ = (0; 2, 1, 1).

Proposition 4.4.2. Let PΛ(x1, . . . , xN ) be a Jack polynomial with prescribed

symmetry AS at α = αk,r, where Λ = (Λ1, . . . ,Λm; Λm+1, . . . ,ΛN ) is as in (4.3.3)

and of length ` ≤ N . Suppose that the partition (Λm+1, . . . ,ΛN ) contains f0 parts

equal to 0. Suppose moreover that Λ is such that ΛN−f0 = r and PΛ(x, . . . , xN )

is translationally invariant.

(i) If Λm ≥ r or m = 0, then

PΛ(x, . . . , xN )
∣∣∣
xN−f0+1=...=xN=z

=

N−f0∏
i=1

(xi − z)r · PΛ−r`(x1 − z, . . . , xN−f0 − z).
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(ii) If Λm = r − 1, then

PΛ(x1, . . . , xN )
∣∣∣
xN−f0+1=...=xN=z

=

N−f0∏
i=1

(xi−z)r−1·PΛ−(r−1)`(x1−z, . . . , xN−f0−z).

(iii) If Λm = 0, then

PΛ(x1, . . . , xN )
∣∣∣
xm=xN−f0+1=...=xN=z

=
∏

1≤i≤N−f0
i 6=m

(xi − z)v · PΛ̃
(x1 − z, . . . , xm−1 − z, xm+1 − z, . . . , xN−f0 − z)

where

v = min(r,Λm−1), Λ̃ = C̃Λ−v(`−1), and C̃Λ = (Λ1, . . . ,Λm−1; Λm+1, . . . ,ΛN ).

Proof. Proceeding as in the proof of the previous proposition, we use the trans-

lation invariance and the stability of the Jack polynomials with prescribed sym-

metry, and find

PΛ(x1, . . . , xN )
∣∣∣
xN−f0+1=...=xN=z

= PΛ(x1 − z, . . . , xN−f0 − z). (4.4.3)

(i) If ΛN−f0 = r and m = 0 or m > 0 and Λm ≥ r, then we can decompose the

superpartition Λ as

Λ = Λ̃ + r`,

where Λ̃ is some other superpartition, which could be empty, and r` denotes the

partition (r, . . . , r) of length `. This allows us to use Lemma 2.4.4 and factorize

the RHS of (4.4.3). This yields, as expected,

PΛ(x1, . . . , xN )
∣∣∣
xN−f0+1=...=xN=z

=

N−f0∏
i=1

(xi − z)r · PΛ̃
(x1 − z, . . . , xN−f0 − z).

(ii) If ΛN−f0 = r and Λm = r − 1, then Λ can be decomposed as

Λ = Λ̃ + (r − 1)`,

where, this time, Λ̃ is a non-empty superpartition of length ` and such that

Λ̃m = 0. Using once again Lemma 2.4.4, we can factorize RHS of (4.4.3) and

get the desired result:

PΛ(x1, . . . , xN )
∣∣∣
xN−f0+1=...=xN=z

=

N−f0∏
i=1

(xi− z)r−1 ·P (α)

Λ̃
(x1− z, . . . , xN−f0 − z).
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(iii) Finally, we suppose ΛN−f0 = r, Λm = 0, and v = min(r,Λm−1). In equation

(4.4.3), we set xm = z. This yields

PΛ(x1, . . . , xN )
∣∣∣
xm=xN−f0+1=...=xN=z

= PΛ(x1 − z, . . . , xm−1 − z, 0, xm+1 − z, . . . , xN−f0 − z).

According to Lemma 2.4.8, the RHS of the last equation can be simplify as

follows

PΛ(x1, . . . , xN )
∣∣∣
xm=xN−f0+1=...=xN=z

= P
C̃Λ

(x1 − z, . . . , xm−1 − z, xm+1 − z, . . . , xN−f0 − z). (4.4.4)

Now, we can decompose C̃Λ as

C̃Λ = Λ̃ + v`−1,

for some superpartition Λ̃ whose length is smaller or equal to `− 1 . This allows

us to exploit Lemma 2.4.4 and rewrite the RHS of (4.4.4) as

m−1∏
i=1

(xi−z)v ·
N−f0∏
i=m+1

(xi−z)v ·P (α)

Λ̃
(x1−z, . . . , xm−1−z, xm+1−z, . . . , xN−f0−z),

which is the desired result.

Let us consider a non-trivial example in relation with the last proposition.

We choose k = 2, r = 3 and N = 8. Let Λ = (8, 7, 5; 6, 3, 3), i.e.

Λ =

kk
k

Clearly PΛ(x;−3/2) is translationally invariant. Proposition 4.4.2 then yields

PΛ(x1, . . . , x8;−3/2)
∣∣∣
x7=x8=z

=
6∏
i=4

(xi − z)3P
(−3/2)

Λ̃
(x1 − z, . . . , x6 − z)

where Λ̃ = (5, 4, 2; 3), i.e.,

Λ̃ =

kk
k
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Moreover, P
Λ̃

(x;−3/2) is also translationally invariant in Ñ = N − k = 6

variables, so that

P
Λ̃

(x1 − z, . . . , x6 − z;−3/2) = P
Λ̃

(x1, . . . , x6;−3/2).

Therefore,

PΛ(x1, . . . , x8;−3/2)
∣∣∣
x7=x8=z

=
6∏
i=4

(xi − z)3P
Λ̃

(x1, . . . , x6;−3/2).

The last example is very special because it involves a pair of superpartitions

satisfying the following bi-invariance property: Λ and Λ̃ = Λ − r` are such

that both PΛ(x1, . . . , xN ;αk,r) and PΛ̃(x1, . . . , xN−k;αk,r) are invariant under

translation. In fact, one can check that the diagrams given below define a large

family of pairs of superpartitions satisfying this bi-invariance property. By using

Theorem 4.3.13 we find sufficient conditions over Λ and Λ̃ that allow preserve the

translation invariance of PΛ(x1, . . . , xN ;αk,r) and PΛ̃(x1, . . . , xN−k;αk,r). These

diagrams are shown below.

Figure 4.6: From left to right, the diagrams of Λ and Λ̃.
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CHAPTER 5

Macdonald polynomials with prescribed symmetry

In this final chapter we study the Macdonald polynomials with prescribed sym-

metry. Most of the results in this chapter are based on the fact that the

Macdonald polynomials with prescribed symmetry can be expressed as a lin-

ear combination of non-symmetric Macdonald polynomials (see [1]). Following

the scheme of the Jack polynomials with prescribed symmetry, we prove their

stability and regularity properties. Also, since the Macdonald polynomials with

prescribed symmetry are defined from the non-symmetric Macdonald polynomi-

als, we use vanishing conditions for non-symmetric Macdonald polynomials (see

[39]) to prove clustering properties for Macdonald polynomials with prescribed

symmetry.

The results presented in this chapter about the Macdonald polynomials with

prescribed symmetry have not yet been published.

5.1 Non-symmetric Macdonald Polynomials

In this section, we introduce the non-symmetric Macdonald polynomials, which

are a q-generalization of the non-symmetric Jack polynomials. After their defi-

nition, we recall their stability property, which will be used in the next section

to prove the stability property of the Macdonald polynomial with symmetry AS

or SS.

The non-symmetric Macdonald polynomials, like the non-symmetric Jack

polynomials, can be defined in various ways. One way is to characterize them as

triangular eigenfunctions of the Cherednik operators, through a combinatorial

99
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formula (see [35]) and the other way is through a recursive formula (see [3]).

In order to show the recursive formula, we introduce new operators. These

operators are the q-analogous of the Dunkl operators, which were considered to

define the non-symmetric Jack polynomials.

Let us first remark that the action of the q-shift operators, denoted by τi, on

the function f in N -variables is given by

τif(x1, . . . , xi, . . . , xN ) = f(x1, . . . , qxi, . . . , xN ), i = 1, . . . , N.

We need also to consider the Demazure-Lustig operators defined by

Ti = t+
txi − xi+1

xi − xi+1
(si − 1), i = 1, . . . , N − 1

T0 = t+
qtxN − x1

qxN − x1
(s0 − 1)

where si ∈ SN is the transposition that exchanges i and i+ 1, which acts on the

functions of N variables, through

sif(x1, . . . , xi−1, xi, xi+1, . . . , xN ) = f(x1, . . . , xi−1, xi+1, xi, . . . , xN ), 1 ≤ i ≤ N−1

(5.1.1)

and where s0 = s1Nτ1τ
−1
N , with s1N such that s1Nf(x1, . . . , xN ) = f(xN , . . . , x1).

Also, we must define the ω operator,

ω := sN−1 . . . s2s1τ1.

The above operators, Ti (0 ≤ i ≤ N − 1) and ω satisfy the relations

(Ti − t)(Ti + 1) = 0

TiTi+1Ti = Ti+1TiTi+1

TiTj = TjTi if |i− j| ≥ 2

ωTi = Ti−1ω.

We can check that from the first relation, we get the identity T−1
i = t−1 − 1 +

t−1Ti. Moreover, the operators Ti (0 ≤ i ≤ N − 1) and ω generate the affine

Hecke algebra.

In order to give the recursive definition, we must still introduce a new opera-

tor. It is the q-analogue of the raising operator Φ introduced by Knop and Sahi
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in [47], and it is defined by

Φq = xNT
−1
N−1 . . . T

−1
2 T−1

1 .

It is sufficient to consider Φq and Ti operators to get the non-symmetric

Macdonald polynomials. Baker and Forrester proved in [3, Corollary 4.2] that

the operator Φq acts on non-symmetric Macdonald polynomials in the following

manner

ΦqEη(x; q, t) = t−#{ηi≥η1}EΦη(x; q, t) (5.1.2)

where Φη := (η2, η3, . . . , ηN , η1 + 1) (Φ is called the raising operator).

One important result in the theory of the non-symmetric Macdonald poly-

nomials is the explicit action of the operator Ti (∀1 ≤ i < N − 1) on Eη. It was

shown in [56] that this action is given by

TiEη =


t−1

1−δ−1
i,η

Eη + tEsi(η), ηi < ηi+1

tEη, ηi = ηi+1

t−1
1−δ−1

i,η

Eη +
(1−tδi,η)(1−t−1δi,η)

(1−δi,η)2 Esi(η), ηi > ηi+1,

(5.1.3)

where δi,η = ηi/ηi+1 and by abuse of notation, the operator that acts on com-

positions, called the switching operator is also denoted by si, and it is given

by

siη = (η1, . . . , ηi−1, ηi+1, ηi, . . . , ηN ), i = 1, . . . , N − 1.

.

Remark 5.1.1. It is clear that all compositions can be recursively generated

from the composition (0, . . . , 0), by using si, the switching operator, and Φ the

raising operator. Then, we can get the explicit expression for any non-symmetric

Macdonald polynomial, using (5.1.2) and (5.1.3).

Examples of non-symmetric Macdonald polynomials will be given in Appendix

F.

As we have mentioned earlier, there are many ways to define the non-symmetric

Macdonald polynomials. However, one of the most natural ways for us is to char-

acterize them as triangular eigenfunctions of the q-analogues Dunkl operators.
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These operators are defined as follows:

Yi := t−N+iTi . . . TN−1ωT
−1
1 . . . T−1

i−1, i = 1, . . . , N.

Let η be a composition and let q and t be formal parameters. Then, the non-

symmetric Macdonald polynomial Eη(x; q, t) is the unique polynomial satisfying

Eη(x; q, t) = xη +
∑
ν≺η

bηνx
ν , bην ∈ C(q, t)

YiEη(x; q, t) = ηiEη(x; q, t) 1 ≤ i ≤ N

where

ηi = qηit−l
′
η(i) and l′η(i) = #{k < i|ηk ≥ ηi}+ #{k > i|ηk > ηi}.

5.2 Macdonald polynomials with prescribed symmetry

All along this section, we introduce the Macdonald polynomials with prescribed

symmetry, which are built from the non-symmetric Macdonald polynomials by

acting with the t-antisymmetrization and/or t-symmetrization operators defined

on disjoint subsets of variables. Then, for each family of Macdonald polynomials

with prescribed symmetry, we get a linear expansion in terms of non-symmetric

Macdonald polynomials with explicit coefficients. Also, we show the stability

property for two special families and the regularity property for each family of

Macdonald polynomial with prescribed symmetry.

Before providing the precise definition of this type of polynomials, let us clar-

ify what is meant by t-anti-symmetrization and t-symmetrization. A polynomial

f is said t-antisymmetric with respect to xi and xi+1 if Tif(x) = −f(x), it is

t-symmetric with respect to the xi and xi+1 if Tif(x) = tf(x). From this, we

conclude that the t-symmetrization and t-anti-symmetrization operators are

U+ =
∑
σ∈SN

Tσ, and U− =
∑
σ∈SN

(
−1

t

)l(σ)

Tσ,

respectively. Let SN denote the symmetric group acting on N -symbols. Note

that if σ = sil(σ)
. . . si1 where si are transposition operators as (5.1.1), then Tσ

denotes the sequence of operators Til(σ)
. . . Ti1 .
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The above t-symmetrization and t-antisymmetrization operators are closely

related to the standard symmetrization and antisymmetrization operators, which

are respectively defined as

S =
∑
σ∈SN

σ and A =
∑
σ∈SN

(−1)`(σ)σ.

Indeed, one can show that for any polynomial f (see for instance [55]),

U+f(x) =
A(∆t−1f(x))

∆(x)
= S

(
∆t−1(x)

∆(x)
f(x)

)
(5.2.1)

and

U−f(x) =
∆t(x)

∆(x)
Af(x), (5.2.2)

where

∆t(x) :=
∏

1≤i<j≤N
(xi − t−1xj) and ∆(x) :=

∏
1≤i<j≤N

(xi − xj).

Definition 5.2.1. For a given positive integer m ≤ N , set I = {1, . . . ,m}
and J = {m + 1, . . . , N}. Let λ = (λ1, . . . , λm) and µ = (µ1, . . . , µN−m) be

partitions. The monic Macdonald polynomial with prescribed symmetry of type

t-antisymmetric- t-symmetric (denoted AS) and indexed by the ordered set Λ =

(λ1, . . . , λm;µ1, . . . , µN−m) is defined as follows

PAS
Λ (x; q, t) = cAS

Λ U−I U+
J Eη(x; q, t), (5.2.3)

where η is a composition equal to (λ1, . . . , λm, µ1, . . . , µN−m) while the normal-

ization factor cAS
Λ is such that the coefficient of xλ1

1 · · ·xλmm xµ1
m+1 · · ·x

µN−m
N in

PAS
Λ (x; q, t) is equal to one. Other types of Macdonald polynomials are defined

similarly:

PAA
Λ (x; q, t) = cAA

Λ U−I U−J Eη(x; q, t),

P SA
Λ (x; q, t) = cSA

Λ U+
I U−J Eη(x; q, t),

P SS
Λ (x; q, t) = cSS

Λ U+
I U+

J Eη(x; q, t) .

We will introduce a new quantity associated to the composition’s diagram.
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Definition 5.2.2. For η a given composition, we denote

dη := dη(q, t) =
∏
s∈η

(1− qaη(s)+1tlη(s)+1)

d′η := dη(q, t) =
∏
s∈η

(1− qaη(s)+1tlη(s))

where aη and lη were given in (2.1.1).

In what follows, let

λ+ = (λ1, . . . , λm) and µ+ = (µm+1, . . . , µN )

denote partitions. As mentioned in previous chapters, we denote the composition

obtained by the concatenation of λ+ and µ+ as follows:

η = (λ+, µ+) (5.2.4)

Also, a permutation of this composition means

ω(η) = γ (5.2.5)

where ω = σ × σ′ with σ ∈ Sm and σ′ ∈ SN−m.

Proposition 5.2.3. Let η = (λ+, µ+) be a composition as in (5.2.4) and let Λ

be its associated superpartition, i.e., ϕm(η) = (Λ∗,Λ~). Then

PΛ(x; q, t) =
∑

γ=ω(η)

ĉηγEγ(x; q, t) (5.2.6)

where ω = σ × σ′ and σ ∈ Sm, σ′ ∈ SN−m. With

i) ĉηη = 1 and ĉηγ =
(−1
t

)`(σ) d′ηdγ
d′

(λ+,σ′(µ+))
d(λ+,σ′(µ+))

if PΛ is the type AS.

ii) ĉηη = 1 and ĉηγ =
(−1
t

)`(σ)+`(σ′) dγ
dη

if PΛ is the type AA.

iii) ĉηη = 1 and ĉηγ =
(−1
t

)`(σ′) d′ηdγ
d′

(σ(λ+),µ+)
d(σ(λ+),µ+)

if PΛ is the type SA.

iv) ĉηη = 1 y ĉηγ =
d′η
d′γ

if PΛ is the type SS.
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Proof. Cases ii) and iii) were proved in [1] (see Corollary 1). Since all cases can

be proved in a similar way, we only give the proof for the case i).

First note that we can write∑
γ=ω(η)

ĉηγEγ(x; q, t) =
∑
γ=ω(η)

γi≤γi+1

χi,i+1(ĉηγEγ(x; q, t) + ĉηsi(γ)Esi(γ)(x; q, t)) (5.2.7)

where χi,i+1 = 1
2 if γi = γi+1 and χi,i+1 = 1 if γi < γi+1.

If we consider i ∈ I, we just have the possibility γi < γi+1. In this case, we

have, on the one hand,

TiPΛ(x; q, t) = −PΛ(x; q, t)

and, on the other hand,

Ti(ĉηγEγ + ĉηsi(γ)Esi(γ)) = ĉηγTiEγ + ĉηsi(γ)TiEsi(γ).

Now, by using the first and third line of relation (5.1.3), and then ordering the

terms, we obtain

Ti(ĉηγEγ+ĉηsi(γ)Esi(γ)) =

(
ĉηγ

t− 1

1− δ−1
i,η

+ ĉηsi(γ)

(1− tδi,si(γ))(1− t−1δi,si(γ))

(1− δi,si(γ))2

)
Eγ

+

(
ĉηγt+ ĉηsi(γ)

t− 1

1− δ−1
i,si(γ)

)
Esi(γ) (5.2.8)

then, by comparing the coefficients and using that γi < γi+1, we get the equality

δi,si(γ) = δ−1
i,γ , which implies

ĉηγ
ĉηsi(γ)

=
−(t− δi,γ)

t(1− δi,γ)
∀i ∈ I. (5.2.9)

Since γi < γi+1 we can use equation (19) of [7] to rewrite (5.2.9) and thus

ĉηγ
ĉηsi(γ)

=
−1

t

dγ
dsi(γ)

. (5.2.10)

Now, by noting that λ+ = σ−1(γ) = si1 . . . si`(σ)
(γ) for some si ∈ Sm, and

applying (5.2.10) repeatedly, we obtain

ĉηγ
ĉη (λ+,σ′(µ+))

=

(
−1

t

)`(σ) dγ
d(λ+,σ′(µ+))

. (5.2.11)
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On the other hand, we know that TjPΛ(x; q, t) = tPΛ(x; q, t) if j ∈ J . Note

that if γj = γj+1 then TjEγ = tEγ holds true due to the second line of (5.1.3).

Hence, we consider the case γj < γj+1. In this case we have the expansion given

in (5.2.8), and by using the above arguments, we get

ĉηγ
ĉηsj(γ)

=
(tδj,γ − 1)

t(δj,γ − 1)
∀j ∈ J. (5.2.12)

Since γj < γj+1 we can use equation (19) of [7] to rewrite (5.2.12) and thus

ĉηγ
ĉηsj(γ)

=
d′sj(γ)

d′γ
. (5.2.13)

Once again, by nothing that µ+ = σ′ −1(γ) = sj1 . . . sj`(σ′)(γ) for some sj ∈
SN−m, and applying (5.2.13) repeatedly, we obtain

ĉη (λ+,σ′(µ+))

ĉηη
= ĉη (λ+,σ′(µ+)) =

d′η
d′

(λ+,σ′(µ+))

. (5.2.14)

Finally, equations (5.2.11) and (5.2.14) imply the result.

We prove the stability property for the Macdonald polynomials with pre-

scribed symmetry of type AS and SS, by making use of the stability property of

the non-symmetric Macdonald polynomials with respect to the number of vari-

ables (see [55, equation (3.2)]). To be more precise, let η = (η1, . . . , ηN ) and

η− = (η1, . . . , ηN−1) be compositions. Then,

Eη(x1, . . . , xN−1, 0; q, t) =

Eη−(x1, . . . , xN−1; q, t), if ηN = 0,

0 if ηN > 0.
(5.2.15)

Proposition 5.2.4 (Stability for types AS and SS). Let

Λ = (Λ1, . . . ,Λm; Λm+1, . . . ,ΛN ) be a superpartition and let

Λ− = (Λ1, . . . ,Λm; Λm+1, . . . ,ΛN−1). Then, the Macdonald polynomial with pre-

scribed symmetry AS or SS satisfies

PΛ(x1, . . . , xN ; q, t)|xN=0 =

PΛ−(x1, . . . , xN−1; q, t), if ΛN = 0

0, if ΛN > 0.
(5.2.16)
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Proof. The cases AS and SS being similar, we only give the proof for AS.

We denote η = (λ, µ) to the composition formed by the concatenation of

the partitions λ = (Λ1, . . . ,Λm) and µ = (Λm+1, . . . ,ΛN ). Notice that η is a

composition like (5.2.4) and its associated superpartition is Λ. Now, Proposition

(5.2.6) allows to obtain the expansion of a Macdonald with prescribed symmetry

in terms of the non-symmetric Macdonald polynomials. Then, if we evaluate

xN = 0 we have

PΛ(x1, . . . , xN−1, 0; q, t) =
∑

γ=ω(η)

ĉηγEγ(x1, . . . , xN−1, 0; q, t) (5.2.17)

where ω = σ × σ′ and σ ∈ Sm, σ′ ∈ SN−m.

By making use of the stability property of non-symmetric Macdonald poly-

nomials (see equation (5.2.15)), we conclude that in the above equality, the only

summands that are not zero are those whose composition has the form γ =

(ω̄(η−), 0), where η− = (λ, µ−, 0) = (Λ1, . . . ,Λm,Λm+1, . . . ,ΛN−1, 0), ω̄ = σ × σ̄
with σ ∈ Sm, and σ̄ ∈ SN−m−1. Furthermore, it is verified that for each γ we

have
d′(η−,0)d(ω̄(η−),0)

d′(λ,σ̄(µ−),0)d(λ,σ̄(µ−),0)
=

d′(η−)d(ω̄(η−))

d′(λ,σ̄(µ−))d(λ,σ̄(µ−))
.

Thus, we can rewrite the equality (5.2.17) as follows

PΛ(x1, . . . , xN−1, 0; q, t) =
∑

γ−=ω̄(η−)

ĉηγ−Eγ−(x1, . . . , xN−1; q, t),

and the proposition follows.

As mentioned in the Introduction, the regularity is not obvious for all possible

specializations of q and t. Nevertheless, we give a sufficient condition that allows

to preserve this property. This result is used at the end of the chapter to prove

the clustering properties for k = 1 of the Macdonald polynomials with prescribed

symmetry.

Proposition 5.2.5 (Regularity at qr−1 = t−(k+1)). Let Λ be a (k, r,N)-admissible

superpartition. Then, PΛ(x; q, t) is regular under the specialization tk+1qr−1 = 1.

Proof. The proof follows from Proposition 5.2.3 and the explicit formulas for

the coefficients given in (5.2.6). All cases are similar. The only differences are
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the type of admissibility for each symmetry type and the explicit formula of the

coefficients. Hence, we restrict our proof to the symmetry type AS.

Let η = (λ+, µ+) be the associated composition to Λ, i.e., ϕm(η) = Λ.

According to Proposition (5.2.3), we have

PΛ(x; q, t) =
∑

γ=ω(η)

ĉηγEγ(x; q, t). (5.2.18)

Then, if we wish to prove that PΛ(x; q, t) is regular under the specialization

tk+1qr−1 = 1, it is sufficient to prove that for each γ = ω(η) the summand

ĉηγEγ(x; q, t) has not pole at tk+1qr−1 = 1.

Let ξλ :=
∏
s∈λ(1−qa(s)+1tl(s)+1)Eλ. By Corollary (5.2) of [46] we know that

ξλ =
∑

µ cλµx
µ where cλµ ∈ Z[q, t]. Now, since in the expansion (5.2.18) each

non-symmetric Macdonald polynomial Eγ(x; q, t) is multiplied by its respective

coefficient dγ , and this implies dγEγ(x; q, t) ∈ Z[q, t][x].

Then, to prove that PΛ(x; q, t) is regular, we just have to show for each compo-

sition γ in the expansion (5.2.18) the coefficients d′η, d
′
(λ+,σ′(µ+)) and d(λ+,σ′(µ+))

are not zero.

We proceed in two main steps. First, following the idea used in Lemma 3.2.1,

we obtain the expression of d′η in terms of the associated superpartition to η:

d′η(q, t) =
∏

s∈BF (Λ)

(1− qaΛ∗ (s)+1tlΛ~ (s))
∏

s∈Λ∗/BF (Λ)

(1− qaΛ∗ (s)+1tlΛ∗ (s)).

Now, the observation of (5.3.2) infers that d′η(q, t) = 0 iff there exist a ρ ∈ Z+

satisfying one of the two following conditions:

i) For some s ∈ BF (Λ), we have aΛ∗(s) + 1 = ρ(r− 1) and lΛ~(s) = ρ(k+ 1).

Using both relations and expressing them in terms of the components of

Λ, we get

Λ∗i − Λ~
i+ρ(k+1) ≤ ρ(r − 1)− 1.

As we assume that s belongs to some bosonic row, then Λ∗i = Λ~
i . Thus,

the last equality can be rewritten as

ρ(r − 1)− 1 ≥ Λ~
i − Λ~

i+ρ(k+1).

However, Lemma 3.1.2 implies that Λ~
i − Λ~

i+ρ(k+1) ≥ Λ~
i − Λ~

i+ρ(k+1)−1 ≥
ρr. Hence, ρ(r − 1)− 1 ≥ Λ~

i − Λ~
i+ρ(k+1) ≥ ρr , which is a contradiction.



5.2. Macdonald polynomials with prescribed symmetry 109

ii) For some s ∈ Λ∗/BF (Λ) we have aΛ∗(s)+1 = ρ(r−1) and lΛ∗(s) = ρ(k+1).

Using both relations and expressing them in terms of the components of

Λ, we get

ρ(r − 1)− 1 ≥ Λ∗i − Λ∗i+ρ(k+1)

and since Λ~
i ≤ Λ∗i + 1 we can rewrite the last equality as

ρ(r − 1) ≥ Λ~
i − Λ∗i+ρ(k+1).

But we know that Λ~
i − Λ∗i+ρ(k+1) ≥ Λ~

i − Λ∗i+ρ(k+1)−1. By Lemma 3.1.2,

we have Λ~
i − Λ∗i+ρ(k+1)−1 ≥ ρr, obtaining a contradiction.

Therefore, whenever we have the specialization tk+1qr−1 = 1 and Λ is a weakly

(k, r,N) admissible superpartition, we conclude that d′η(q, t) 6= 0. Following a

similar argument, we conclude that dη(q, t) 6= 0.

Second, we must show that the coefficients d′(λ+,σ′(µ+)) and d(λ+,σ′(µ+)) are

not zero. We introduce a new parameter δ taking the values 0 or 1, in order

to consider both cases, d′(λ+,σ′(µ+)) and d(λ+,σ′(µ+)) simultaneously. We analyze

separately two possible cases:

i) s′ is a cell such that s′ belongs to a fermionic row. In this case, we have

that d′(λ+,σ′(µ+))(s
′) = d′η(s

′) (analogously d(λ+,σ′(µ+))(s
′) = dη(s

′)). Then,

by using the result obtained in first step, we conclude d′(λ+,σ′(µ+))(s
′) 6= 0

and d(λ+,σ′(µ+))(s
′) 6= 0, as expected.

ii) s′ belongs to a bosonic row. Suppose first that s′ = (i′, j′) is such that

j′ > 1. Let s ∈ Λ the associated cell to s′. Then, we have l(λ+,σ′(µ+))(s
′) =

lΛ∗(s)− ε for some ε ≥ 0 and where s = (i, j′− 1). Thus, d′(λ+,σ′(µ+))(s
′) =

0 (respectively d(λ+,σ′(µ+))(s
′) = 0) iff aΛ∗(s) + 1 = ρ(r − 1) and

lΛ∗(s) + δ − ε = ρ(k + 1) (considering δ = 0 for the product d′ and δ = 1

for d). We can rewrite the above relations as follows

Λ∗i − Λ∗i+ρ(k+1)+ε−δ ≤ ρ(r − 1).

Moreover, we have by assumption, Λ~
i = Λ∗i (bosonic row), so that the

previous line can be rewritten as

Λ~
i − Λ∗i+ρ(k+1)+ε−δ ≤ ρ(r − 1)
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but, obviously we have that Λ~
i −Λ∗i+ρ(k+1)+ε−δ ≥ Λ~

i −Λ∗i+ρ(k+1)−δ. Com-

bining these equations, we get ρ(r − 1) ≥ Λ~
i − Λ∗i+ρ(k+1)−δ, which is a

contradiction with the admissibility condition of Λ (see Lemma 3.1.2).

Finally, we must consider the cells s′ = (i′, 1) such that s′ belong to a

bosonic row. Once again, we let s ∈ Λ be the cell associated to s′. Let also

α = #{k < i|ηk = 0} and β = #{k > i|ηk = 0}. Then,

l(λ+,σ′(µ+))(s
′) = lΛ∗(s) + α and N = i+ lΛ∗(s) + α+ β. (5.2.19)

However, we know that d′(λ+,σ′(µ+)) = 0 (d(λ+,σ′(µ+)) = 0) iff there exist

ρ ∈ Z+ such that

a(λ+,σ′(µ+))(s
′) + 1 = ρ(r − 1) and l(λ+,σ′(µ+))(s

′) + δ = ρ(k + 1).

(5.2.20)

On the one hand, combining the conditions given in (5.2.20) and the as-

sumption s′ = (i′, 1), we get Λ∗i = ρ(r − 1). And on the other hand,

combining (5.2.19) and (5.2.20) we obtain i = N − ρ(k+ 1) + δ− β. Thus,

Λ∗i ≥ Λ∗N−ρ(k+1)+δ. However, by Lemma 3.1.2 we have Λ~
N−ρ(k+1)+δ−Λ∗N ≥

ρr, which implies Λ∗N−ρ(k+1)+δ ≥ ρr − 1. We have therefore shown that

ρ(r − 1) = Λ∗i ≥ Λ∗N−ρ(k+1)+δ ≥ ρr − 1, concluding that the only possible

case is ρ = 1. Now, if ρ = 1, we have Λ~
i = Λ∗i = r−1 with i ≤ N−k, which

is clearly in contradiction with the admissibility condition of Λ. Therefore,

we conclude that d′(λ+,σ′(µ+)) and d(λ+,σ′(µ+)) are not zero, as expected.

From the first and second steps, we conclude that the coefficient
d′η

d′
(λ+,σ′(µ+))

d(λ+,σ′(µ+))

has no zeros or poles at the specialization tk+1qr−1 = 1 when Λ is a weakly

(k, r,N) admissible superpartition. Hence the proposition follows.

5.3 Clustering properties

In this section we study briefly the clustering properties of the Macdonald poly-

nomials with prescribed symmetry. To this end, we consider two cases: k = 1

and k > 1. In the first case, we get the desired result, i.e. we obtain a factor-

ization where the degree expected is reached. However, for the case k > 1, we
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conjecture the general cluster property, but we can only show that the degree

reached is the degree expected minus 1.

All results of this section are based on the results of Kasatani (see [39]), which

deal with vanishing conditions for non-symmetric Macdonald polynomials, and

which are enunciated in the following subsection.

5.3.1 Zeros of the non-symmetric Macdonald polynomials

In this subsection, we summary some results of Kasatani [39], which are relevant

for our work.

We assume the specialization of the parameters at tk+1qr−1 = 1 for 1 ≤
k ≤ n − 1 and r ≥ 2. Also, we introduce a new parameter u and we specialize

according to the new notation. Let M be the greatest common divisor of (k +

1, r − 1) and ω an M -th primitive root of the unity and ω1 ∈ C such that

ω
(r−1)/M
1 = ω. For the new indeterminate u, we consider the specialization

t = u
r−1
M , q = ω1u

− k+1
M (5.3.1)

such that t
k+1
M q

r−1
M = ω and tk+1qr−1 = 1.

Remark 5.3.1. Given a, b ∈ Z we have

qatb = 1 iff a = (r − 1)s, and b = (k + 1)s for some s ∈ Z. (5.3.2)

Definition 5.3.2 (Wheel condition). A polynomial f satisfies the (k, r,N) wheel

condition whenever

f(x1, . . . , xN ) = 0 if xia+1 = xiatq
sa (1 ≤ a ≤ k) (5.3.3)

for all non-negative integers i1, . . . , ik+1, s1, . . . , sk such that

all ia are distinct,

k∑
a=1

sa ≤ r − 2, and ia < ia+1 if sa = 0.

We denote by I
(k,r)
N the space of polynomials satisfying the wheel condition (5.3.3).
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Definition 5.3.3 (Admissible compositions). The composition λ ∈ NN0 is (k, r,N)-

admissible if

λia−λia+k
≥ r or λia−λia+k

= r−1 and ia < ia+k (1 ≤ a ≤ n−k), (5.3.4)

where the indices (i1, . . . , in) = ω · (1, . . . , n) are so chosen that ω is the shortest

element of SN such that λ = ω · λ+. We define the set B
(k,r)
N as the set of all

compositions λ that satisfy (5.3.4).

Theorem 5.3.4. [39, Theorem (3.11)] For any λ ∈ B(k,r)
N , the non-symmetric

Macdonald polynomial Eλ has no pole at (5.3.1). Moreover, a basis of the ideal

I
(k,r)
N is given by {Eλ|λ ∈ B

(k,r)
N } specialized at (5.3.1).

5.3.2 Clustering properties for k = 1

We start this subsection by showing the explicit factorization of the non-symmetric

Macdonald polynomial indexed by a staircase partition at the specialization

qr−1 = t−2 (with r even). Then, we show the general cluster when k = 1

and when the polynomial is indexed by an (1, r,N)-admissible superpartition.

This result is proved for each family of Macdonald polynomials with prescribed

symmetry (AS, AA, SA and SS). And, in particular for the Macdonald polyno-

mial with prescribed symmetry of type AS, we get explicit formulas for special

staircases superpartitions.

Corollary 5.3.5. Let k = 1, r be positive and even and denote α1,r = − 2
r−1 .

Then

E(r−1)δN (x1, . . . , xN ; t−2/(r−1), t) =
∏

1≤i<j≤N

∏
0≤s≤r−2

(xi − t−sα1,r−1xj). (5.3.5)

Proof. It is clear that the partition (r−1)δN belongs to Kasatani’s set B(1,r), so

by using Theorem 5.3.4 we get that E(r−1)δN (x1, . . . , xN ; t−2/(r−1), t) is divisible

by the product of the factors on the right side of equation (5.3.5). Then, by

comparing the degree of both polynomials we get the result.

Theorem 5.3.6. Let k = 1, r be positive and even and denote α1,r = − 2
r−1 .

Let also Λ be a superpartition of bi-degree (n|m) with `(Λ) ≤ N . If Λ is strict

and weakly (1, r,N)-admissible, then
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i)

PAS
Λ (x1, . . . , xN ; t−2/(r−1), t) =

∏
1≤i<j≤N

∏
0≤s≤r−2

(xi − t−sα1,r−1xj)

×
∏

m+1≤i<j≤N
(xi − txj)Q(x)

ii) PAA
Λ (x1, . . . , xN ; t−2/(r−1), t) =

∏
1≤i<j≤N

∏
0≤s≤r−2(xi−t−sα1,r−1xj)Q(x).

In the above equations, Q(x1, . . . , xN ) denotes some polynomial, which varies

from one symmetry type to another.

Proof. The cases AS and AA being similar, we only give the proof for AS. More-

over, during this proof we write PΛ instead of PAS
Λ and let I := {1, . . . ,m} and

J := {m+ 1, . . . , N}.
Let η be the associated composition to Λ, i.e., ϕm(η) = Λ. We can prove eas-

ily that if Λ is weakly (1, r,N)-admissible, then η belongs to B(1,r). This implies

that Eη(x; q, t)|q=t−2/(r−1) is divisible by
∏

1≤i<j≤N
∏

0≤s≤r−2(xi − t−sα1,r−1xj).

Thus, there exists a polynomial f(x) in C(t)[x] such that

Eη(x; q, t)|q=t−2/(r−1) =
∏

1≤i<j≤N

∏
0≤s≤r−2

(xi − t−sα1,r−1xj)f(x1, . . . , xN ).

Now, since PΛ(x1, . . . , xN ; t−2/(r−1), t) = U−I U
+
J Eη(x; q, t)|q=t−2/(r−1) , we get

PΛ(x1, . . . , xN ; t−2/(r−1), t)

= U−I U
+
J

 ∏
1≤i<j≤N

∏
0≤s≤r−2

(xi − t−sα1,r−1xj)f(x1, . . . , xN )


= U−I

 ∏
1≤i<j≤m

∏
0≤s≤r−2

(xi − t−sα1,r−1xj)

× U+
J

 m∏
i=1

N∏
j=m+1

∏
0≤s≤r−2

(xi − t−sα1,r−1xj)

×
∏

m+1≤i<j≤N

∏
0≤s≤r−2

(xi − t−sα1,r−1xj)f(x1, . . . , xN )

 . (5.3.6)
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However, formula (5.2.1) allows to express U+
J in terms of the symmetrization

operator acting on the last N −m variables, and so we have

U+
J

 m∏
i=1

N∏
j=m+1

∏
0≤s≤r−2

(xi − t−sα1,r−1xj)

×
∏

m+1≤i<j≤N

∏
0≤s≤r−2

(xi − t−sα1,r−1xj)f(x1, . . . , xN )


= SJ

 m∏
i=1

N∏
j=m+1

∏
0≤s≤r−2

(xi − t−sα1,r−1xj)

×
∏

m+1≤i<j≤N

∏
0≤s≤r−2

(xi − t−sα1,r−1xj)f(x1, . . . , xN )
∏

m+1≤i<j≤N

(xi − txj)
(xi − xj)

 .

Thus, if we extract the symmetric factors of the last equality and we replace in

equation (5.3.6), we obtain

PΛ(x1, . . . , xN ; t−2/(r−1), t)

= U−I

 ∏
1≤i<j≤m

∏
0≤s≤r−2

(xi − t−sα1,r−1xj)
m∏
i=1

N∏
j=m+1

∏
0≤s≤r−2

(xi − t−sα1,r−1xj)

×
∏

m+1≤i<j≤N

∏
0≤s≤r−2

(xi − t−sα1,r−1xj)
∏

m+1≤i<j≤N
(xi − txj)

×SJ

 ∏
m+1≤i<j≤N

(xi − xj)−1f(x1, . . . , xN )

 . (5.3.7)

Now, formula (5.2.2) allows to express U−I in terms of the symmetrization oper-

ator acting in the first m variables, so we have

U−I

 ∏
1≤i<j≤m

∏
0≤s≤r−2

(xi − t−sα1,r−1xj)

m∏
i=1

N∏
j=m+1

∏
0≤s≤r−2

(xi − t−sα1,r−1xj)


=

∏
1≤i<j≤m

(xi − t−1xj) SI

 ∏
1≤i<j≤m

∏
0≤s≤r−2

(xi − t−sα1,r−1xj)

×
m∏
i=1

N∏
j=m+1

∏
0≤s≤r−2

(xi − t−sα1,r−1xj)
∏

1≤i<j≤m
(xi − xj)−1

 .
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Once again, if we extract the symmetric factors of the last equality and we

replace in equation (5.3.7), we obtain

PΛ(x1, . . . , xN ; t−2/(r−1), t)

=
∏

1≤i<j≤N

∏
0≤s≤r−2

(xi − t−sα1,r−1xj)
∏

m+1≤i<j≤N
(xi − txj)

× SI

 ∏
1≤i<j≤m

(xi − t−1xj)

(xi − xj)
SJ

 ∏
m+1≤i<j≤N

(xi − xj)−1f(x1, . . . , xN )


and the proposition follows.

Corollary 5.3.7. Let k = 1, r be positive and even and denote α1,r = − 2
r−1 .

Then

P((r−1)δN ;∅)(x1, . . . , xN ; t−2/(r−1), t) =
∏

1≤i<j≤N

∏
0≤s≤r−2

(xi − t−sα1,r−1xj).

Proof. We have by definition that P(λ;∅)(x1, . . . , xN ; q, t) = U−1,...,NEλ(x1, . . . , xN ; q, t).

Then, by using Corollary 5.3.5 and noting that the product of the factors in

equation (5.3.5) is t-antisymmetric, we get the result.

Corollary 5.3.8. Let Λ = (δm; 0N−m) be a superpartition. Then,

P(δm;0N−m)(x1, . . . , xN ; q, t) =
∏

1≤i<j≤m
(xi − t−1xj).

Theorem 5.3.9. Let k = 1, r be positive and even and denote α1,r = − 2
r−1 . Let

also Λ be a superpartition of bi-degree (n|m) with `(Λ) ≤ N . If Λ is moderately

(1, r,N)-admissible, then

i)

P SA
Λ (x1, . . . , xN ; t−2/(r−1), t) =

∏
1≤i<j≤N

∏
0≤s≤r−2

(xi − t−sα1,r−1xj)

×
∏

1≤i<j≤m
(xi − txj)Q(x)
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ii)

P SS
Λ (x1, . . . , xN ; t−2/(r−1), t) =

∏
1≤i<j≤N

∏
0≤s≤r−2

(xi − t−sα1,r−1xj)

×
∏

1≤i<j≤m
(xi − txj)

∏
m+1≤i<j≤N

(xi − txj)Q(x).

In the above equations, Q(x1, . . . , xN ) denotes some polynomial, which varies

from one symmetry type to another.

In the following proposition, we recall the special clustering property given

in [1, Proposition 2] and furthermore we enunciate this result for the Macdonald

polynomial with prescribed symmetry of type AA.

Proposition 5.3.10. Let Λ = (δm;µ) be a superpartition and µ a partition such

that µ1 ≤ m− 1. Then,

i) PAS
(δm;µ)(x1, . . . , xN ; q, t) =

∏
1≤i<j≤m(xi − t−1xj)P

AS
(∅;µ)(xm+1, . . . , xN ; qt, t)

ii) PAA
(δm;µ)(x1, . . . , xN ; q, t) =

∏
1≤i<j≤m(xi − t−1xj)P

AA
(∅;µ)(xm+1, . . . , xN ; qt, t)

Proof. The case i) was proved in [1] and the proof of case ii) is similar to the

proof for case i).

Corollary 5.3.11. Let Λ = (δm;µ) be a superpartition and µ a partition such

that µ1 ≤ m− 1. Then,

P(δm;µ)(x1, . . . , xN ;α) =
∏

1≤i<j≤m
(xi − xj)P(∅;µ)(xm+1, . . . , xN ;α+ 1)

where PΛ(x;α) denotes the Jack polynomial with prescribed symmetry of type AS.

5.3.3 Clusterings properties for k ≥ 1

In this subsection we get a criterion that allows to determine when a composition

as in (5.2.4) and any permutation of this composition (see (5.2.5)) belongs to

Kasatani’s set B(k,r), for a given k and r. This result is of fundamental impor-

tance to prove the general k > 1 clustering property for Macdonald polynomials

with prescribed symmetry.
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Proposition 5.3.12. Let η = (λ+, µ+) be a composition as in (5.2.4) and let

Λ be its associated superpartition, i.e., ϕm(η) = (Λ∗,Λ~). If Λ is moderately

(k, r,N)-admissible, then η belongs to B(k,r) and moreover, for any γ obtained

by a permutation of η as in (5.2.5), we have that γ also belongs to B(k,r).

Proof. First, we show that η belongs to B(k,r) using that Λ is its associated

superpartition. By definition η belongs to B(k,r) if and only if for all i =

1, . . . , N − k, we have ηia − ηia+k
≥ r or ηia − ηia+k

= r − 1 if ia < ia+k.

The indexes are determined as follows: (i1, . . . , in) = ω · (1, . . . , n) where ω is

the shortest element in Sn such that η = ω · η+ and where η+ is the associated

partition to η. Now, since Λ∗ = η+, we can rewrite the conditions above: η

belongs to B(k,r) iff for all i = 1, . . . , N − k, we have Λ∗i − Λ∗i+k ≥ r or

Λ∗i − Λ∗i+k = r − 1 if l < j, where ϕ(ηl) = Λ∗i and ϕ(ηj) = Λ∗i+k.

Fix i ∈ {1, . . . , N − k}. We analyze two cases:

i) Λ~
i+k = Λ∗i+k + 1. By hypothesis we know that Λ is moderately (k, r,N)-

admissible, i.e., Λ~
i − Λ~

i+k ≥ r, for all 1 ≤ i ≤ N − k, but since Λ~
i+k =

Λ∗i+k + 1, we get Λ~
i − Λ∗i+k ≥ r + 1, which implies Λ∗i − Λ∗i+k ≥ r. Thus,

we conclude that η belongs to B(k,r). Furthermore, for any γ obtained

by a permutation of η as in (5.2.5), we have that γ and η have the same

associated superpartition. Hence, we conclude that γ also belongs to B(k,r).

ii) Λ~
i+k = Λ∗i+k. By hypothesis we have that Λ~

i − Λ~
i+k ≥ r, for all 1 ≤ i ≤

N − k, but since Λ~
i+k = Λ∗i+k, we get Λ~

i − Λ∗i+k ≥ r. Now, we have to

analyze two possible cases: Λ~
i = Λ∗i and Λ~

i = Λ∗i + 1.

If Λ~
i = Λ∗i we get Λ∗i − Λ∗i+k ≥ r, so we conclude η ∈ B(k,r). Following

the same argument given in case i) we conclude that γ also belongs to

B(k,r). On the other hand, if Λ~
i = Λ∗i + 1 we get Λ∗i − Λ∗i+k ≥ r − 1.

However, by the assumption Λ~
i+k = Λ∗i+k we know that Λ∗i+k = ϕ(ηj) for

some j ∈ {m + 1, . . . , N}, while to require Λ~
i = Λ∗i + 1, we know that

Λ∗i = ϕ(ηl) for some l ∈ {1, . . . ,m}. So, we have ηl − ηj ≥ r − 1 with

l < j, which implies η ∈ B(k,r). Following the argument that η and γ

have the same associated superpartition and using the definition of the

permutation γ (see (5.2.5)), we obtain that Λ∗i = ϕ(γ′l) and Λ∗i+k = ϕ(γ′j)

for some l′ ∈ {1, . . . ,m} and j′ ∈ {m+ 1, . . . , N}. Thus, we conclude that

γ ∈ B(k,r).
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Remark 5.3.13. Let η = (λ+, µ+) be a composition as in (5.2.4) and Λ its asso-

ciated superpartition. We can prove easily that if Λ is weakly (k, r,N)-admissible,

then η belongs to B(k,r). However, it is not true that for any composition γ ob-

tained by a permutation of η as in (5.2.5), γ belongs to B(k,r).

For example, by taking k = 1, r = 2, N = 2 and η = (1, 0), we see that

(1, 0; ∅) is weakly (1, 2, 2)-admissible and η = (1, 0) ∈ B(1,2), i.e., Eη(x1, x2; t−2, t)

is divisible by tx1 − x2. However, γ = (0, 1) /∈ B(1,2) and we can check that

Eη(x1, x2; t−2, t) = x2, so it is not divisible by tx1 − x2. Despite the above, the

Macdonald polynomial with prescribed symmetry P(1,0;∅) satisfies the clustering

property P(1,0;∅)(x1, x2; t−2, t) = tx1−x2
t .

Proposition 5.3.14. Let k > 1 and r be positive integers with gcd(k + 1, r −
1) = 1, α = −(k + 1)/(r − 1) and let Λ = (Λ1, . . . ,Λm; Λm+1, . . . ,ΛN ) be a

superpartition of bi-degree (n|m) and such that N ≥ k+m+1. If Λ is moderately

(k, r,N)-admissible, then PΛ(x; q, t) vanishes at

qr−1tk+1 = 1 and xia+1 = xiat
1+αsa , 1 ≤ a ≤ k, ia ≥ m+ 1

for all non-negative integers i1, . . . , ik+1, s1, . . . , sk such that

all ia are distinct,

k∑
a=1

sa ≤ r − 2, and ia < ia+1 if sa = 0.

Proof. Let η = (Λ1, . . . ,Λm,Λm+1, . . . ,ΛN ) be the associated composition to Λ.

According to Proposition (5.2.18), we have

PΛ(x; q, t) =
∑

γ=ω(η)

ĉηγEγ(x; q, t) (5.3.8)

for ω = σ × σ′ and σ ∈ Sm, σ′ ∈ SN−m. By the argument used in the proof

of Proposition 5.2.5, we know that if Λ is moderately (k, r,N)-admissible, then

each summand ĉηγEγ(x; q, t) has no poles at the specialization qr−1tk+1 = 1.
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Furthermore, Proposition 5.3.12 establishes that each γ = ω(η) in (5.3.8)

belongs to B(k,r), and thus each one of the summands Eγ(x; q, t) vanishes when

qr−1tk+1 = 1 and

xia+1 = xiat
1+αsa , 1 ≤ a ≤ k, ia ≥ m+ 1, s1 + . . .+ sk ≤ r − 2,

and the proposition follows.

Corollary 5.3.15 (Clustering property). Let Λ be a moderately (k, r,N)-admissi-

ble superpartition of bi-degree (n|m) and such that N ≥ k + m + 1. Assume

α = −(k + 1)/(r − 1). Then the Jack polynomial with prescribed symmetry of

type AS or SS satisfies the following clustering property:

PΛ(x1, . . . , xN−k,

k times︷ ︸︸ ︷
z . . . , z;α) =

N−k∏
j=m+1

(xj − z)r−1Q(x1, . . . , xN−k, z)

for some polynomial Q in N − k + 1 variables.

Proof. Let PΛ(x; q, t) be the Macdonald polynomial with prescribed symmetry.

According to Proposition 5.2.3, we have

PΛ(x; q, t) =
∑

γ=ω(η)

ĉηγEγ(x; q, t) (5.3.9)

and moreover, by Proposition 5.2.5, we know that if Λ is a moderately (k, r,N)-

admissible superpartition, then PΛ(x; q, t) is regular under the specialization q =

tα, where α = −(k + 1)/(r − 1). Since the non-symmetric Jack polynomials

can be recovered from the non-symmetric Macdonald polynomials through the

specialization q = tα when t→ 1 and each term in the last expansion is regular

at this specialization, then we can specialize term to term. So,

PΛ(x; q, t)|q=tα −→ PΛ(x;α) when t→ 1.

On the other hand, by Proposition 5.3.14, we know that if Λ is moderately

(k, r,N)-admissible, then PΛ(x; q, t) vanishes at q = tα for α = −(k + 1)/(r− 1)

and

xia+1 = xiat
1+αsa , 1 ≤ a ≤ k, ia ≥ m+ 1, s1 + . . .+ sk ≤ r − 2.
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In particular, if the variables xN−k+1, . . . , xN are specialized as

xN−k+i = t1+αsixN−k+i−1, 2 ≤ i ≤ k

the polynomial PΛ(x; tα, t) is divisible by

k∏
i=1

(xN−k+i − ti+α(s1+...+si)xN−k), for all s1 + . . .+ sk ≤ r − 2

so, when we specialize these k-variables as z, the polynomial

PΛ(x1, . . . , xN−k,

k times︷ ︸︸ ︷
z . . . , z;α)

is divisible by

k∏
i=1

(z − ti+α(s1+...+si)xN−k), for all s1 + . . .+ sk ≤ r − 2.

In the limit t → 1 the last product simplifies to (z − xN−k)
r−1. Now, since

the polynomial PΛ(x;α) is symmetric in the last N − m variables, then the

polynomial PΛ(x1, . . . , xN−k,

k times︷ ︸︸ ︷
z . . . , z;α) is divisible by

∏N−k
j=m+1(z − xj)r−1, i.e,

the result is independent of the specialized variables, and the corollary follows.





APPENDIX A

Recursive formula for non-symmetric Jack polynomials

In [47], Knop and Sahi defined the creation operators for the non-symmetric

Jack polynomials: Φ := xnsn−1sn−2 . . . s1, where si is the transposition that

exchanges xi and xi+1. They proved the following result (see [47, Corollary

4.2]):

Let λ ∈ Nn with λn 6= 0 and λ∗ := (λn− 1, λ1, . . . , λn−1), then Eλ = Φ(Eλ∗).

The polynomials given below were generated by using the previous result and

[4, Eq. (2.21)].

Table A.1: Non-symmetric Jack polynomials of degree n ≤ 2.

Composition Non-symmetric Jack polynomial

η Eη(x;α)

(0, 0, 0) 1

(0, 0, 1) x3

(0, 1, 0) x2 + 1
α+2x3

(1, 0, 0) x1 + 1
α+1x2 + 1

α+1x3

(0, 1, 1) x2x3

(1, 0, 1) x1x3 + 1
α+2x2x3

(1, 1, 0) x1x2 + 1
α+1x1x3 + 1

α+1x2x3

(0, 0, 2) x2
3 + 1

α+1x1x3 + 1
α+1x2x3

(0, 2, 0) x2
2 + 1

2(α+1)x
2
3 + 1

α+1x1x2 + 1
2(α+1)2x1x3 + 2α+3

2(α+1)2x2x3

(2, 0, 0) x2
1 + 1

2α+1x
2
2 + 1

2α+1x
2
3 + 2

2α+1x1x2 + 2
2α+1x1x3 + 2

(2α+1)(α+1)x2x3
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APPENDIX B

Triangularity of Jack polynomials with prescribed

symmetry

In this appendix, we provide tables that exemplify the triangular decomposition

of the Jack polynomials with prescribed symmetry in the monomials basis.

Table B.1: Jack polynomials with symmetry AS and degree n ≤ 3

Superpartition Jack polynomial of type AS

Λ PΛ(x;α)

(0) m(0)

(1) m(1)

(1, 1) m(1,1)

(2) m(2) + 2
α+1m(1,1)

(1, 1, 1) m(1,1,1)

(2, 1) m(2,1) + 6
α+2m(1,1,1)

(3) m(3) + 3
2α+1m(2,1) + 6

(α+1)(2α+1)m(1,1,1)
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Superpartition Jack polynomial of type AS

Λ PΛ(x;α)

(0; 0) m(0;0)

(0; 1) m(0;1)

(1; 0) m(1;0) + 1
α+1m(0;1)

(0; 1, 1) m(0;1,1)

(1; 1) m(1;1) + 2
α+2m(0;1,1)

(0; 2) m(0;2) + 2
α+1m(0;1,1) + 1

α+1m(1;1)

(2; 0) m(2;0) + 1
2α+1m(0;2) + 2

(α+1)(2α+1)m(0;1,1) + 2
2α+1m(1;1)

(0; 1, 1, 1) m(0;1,1,1)

(1; 1, 1) m(1;1,1) + 3
α+3m(0;1,1,1)

(0; 2, 1) m(0;2,1) + 6
α+2m(0;1,1,1) + 2

α+2m(1;1,1)

(1; 2) m(1;2) + 1
α+1m(0;2,1) + 6

(α+1)(α+2)m(0;1,1,1) + 2
α+1m(1;1,1)

(2; 1) m(2;1) + (α+2)
2(α+1)2m(0;2,1) + 3

(α+1)2m(0;1,1,1) + 1
α+1m(1;2) + (2α+3)

(α+1)2m(1;1,1)

(0; 3) m(0;3) + 3
2α+1m(0;2,1) + 6

(α+1)(2α+1)m(0;1,1,1) + 2
2α+1m(1;2) + 4

(α+1)(2α+1)m(1;1,1)

+ 1
2α+1m(2;1)

(3; 0) m(3;0) + 1
3α+1m(0;3) + 3

(2α+1)(3α+1)m(0;2,1) + 6
(2α+1)(3α+1)(α+1)m(0;1,1,1)

+ 3(α+1)
(2α+1)(3α+1)m(1;2) + 6

(2α+1)(3α+1)m(1;1,1) + 3
3α+1m(2;1)

(1, 0; 0) m(1,0;0)

(1, 0; 1) m(1,0;1)

(2, 0; 0) m(2,0;0) + 1
α+1m(1,0;1)

(1, 0; 1, 1) m(1,0;1,1)

(1, 0; 2) m(1,0;2) + 2
α+2m(1,0;1,1)

(2, 0; 1) m(2,0;1) + 1
α+1m(1,0;2) + 2

α+1m(1,0;1,1)

(2, 1; 0) m(2,1;0) + −α
2(α+1)2m(1,0;2) + 1

(α+1)2m(1,0;1,1) + 1
α+1m(2,0;1)

(3, 0; 0) m(3,0;0) + 1
2α+1m(1,0;2) + 2

(α+1)(2α+1)m(1,0;1,1) + 2
2α+1m(2,0;1) + 1

2α+1m(2,1;0)

(2, 1, 0; 0) m(2,1,0;0)



APPENDIX C

Sets of cells associated to superpartitions

In this appendix we illustrate the sets associated to the diagram of a superpar-

tition introduced in Chapter 3. Let us consider the diagram

Λ =

k
k

k

Below, we have marked the cells belonging to BF(Λ), the set of cells belonging

simultaneously to a bosonic row (without circle) and a fermionic column (with

circle):

BF(Λ) =

i
i

i =⇒ Λ∗/BF(Λ) =

y
y

y

In the diagrams below, we have marked the cells belonging to FF(Λ), the set

of cells belonging to a fermionic row and a fermionic column, while FF∗(Λ) =

FF(Λ) \ {s|s ∈ Λ~/Λ∗},

125



126 CHAPTER C. Sets of cells associated to superpartitions

FF(Λ) =

y
y

y =⇒ FF∗(Λ) =

i
i

i
Finally, we have marked the cells belonging to the set BRDB that contains

all cells (i, j) such that i is a bosonic row and j is the length of some other

bosonic row i′ satisfying Λ∗i > Λ∗i′

BRDB(Λ) =

i
i

i



APPENDIX D

Clustering for non-symmetric Jack polynomials

In this appendix, we provide basic examples that illustrate how clusters are

formed in non-symmetric Jack polynomials.

For r = 2, m = 1 and N = 3

κ δ κ+ (r − 1)δ′ Eκ+(r−1)δ′(x; 2/r − 1) Eκ(x; 2/r − 1)

(1, 2, 0) (2, 1, 0) (2, 4, 0) -
∏

1≤i<j≤3

(xi − xj)Eκ(x; 2)
1

18
(18x1x

2
2 + 7x1x2x3 + 3x1x

2
3 + 6x3x

2
2 + x2x

2
3)

(0, 2, 0) (2, 1, 0) (1, 4, 0) -
∏

1≤i<j≤3

(xi − xj)Eκ(x; 2)
1

18
(6x1x2 + x1x3 + 18x2

2 + 7x2x3 + 3x2
3)

For r = 2, m = 2 and N = 4

κ δ κ+ (r − 1)δ′ Eκ+(r−1)δ′(x; 2/r − 1) Eκ(x; 2/r − 1)

(1, 1, 2, 0) (3, 2, 1, 0) (3, 2, 5, 0)
∏

1≤i<j≤4

(xi − xj)Eκ(x; 2)
1

21
(21x1x2x

2
3 + 8x1x2x3x4 + 3x1x

2
4x2 + 7x4x

2
3x1

+x1x3x
2
4 + 7x2x

2
3x4 + x2x3x

2
4)

(1, 0, 2, 0) (3, 2, 1, 0) (3, 1, 5, 0)
∏

1≤i<j≤4

(xi − xj)Eκ(x; 2)
1

21
(x1x4x2 + 7x1x2x3 + 3x1x

2
4 + 8x4x3x1 + 21x1x

2
3

+7x2x
2
3 + 4x2x3x4 + x2

4x2 + 7x4x
2
3 + x3x

2
4)
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For r = 2, m = 3 and N = 5

κ δ κ+ (r − 1)δ′ Eκ+(r−1)δ′(x; 2/r − 1) Eκ(x; 2/r − 1)

(1, 1, 1, 2, 0) (4, 3, 2, 1, 0) (4, 3, 2, 6, 0) −
∏

1≤i<j≤5

(xi − xj)Eκ(x; 2)
1

24
(24x2x1x3x

2
4 + 8x2x1x

2
4x5 + 3x2x1x3x

2
5

+8x1x3x
2
4x5 + 8x2x3x

2
4x5 + 9x2x1x3x4x5

+x2x4x3x
2
5 + x4x1x3x

2
5 + x2x1x4x

2
5)

(1, 1, 0, 2, 0) (4, 3, 2, 1, 0) (4, 3, 1, 6, 0) −
∏

1≤i<j≤5

(xi − xj)Eκ(x; 2)
1

48
(16x1x2x3x4 + 2x1x3x2x5 + 18x1x4x2x5

+6x1x
2
5x2 + 16x1x3x

2
4 + 48x1x

2
4x2 + 2x1x3x

2
5

+16x1x
2
4x5 + 2x4x1x

2
5 + 9x1x3x5x4 + x3x4x

2
5

+8x3x
2
4x5 + 16x2x3x

2
4 + 2x2x3x

2
5 + 16x2x

2
4x5

+2x2x4x
2
5 + 9x2x3x4x5)



APPENDIX E

Examples of admissible and invariant superpartitions

In this appendix, for the triplet (k, r,N) given below, we display all smallest

possible (k, r,N)-admissible superpartitions that lead to Jack polynomials with

prescribed symmetry AS that are translationally invariant and, as a consequence,

admit clusters of size k and order r. The word “smallest” refers to the least

number of boxes in the corresponding diagrams.

Let (k, r,N) = (4, 3, 15). Suppose first that the number m of circle is zero.

Then, according to Corollary 4.3.14, the smallest possible partition that is

(k, r,N)−admissible and indexes an invariant polynomial is λ = (93, 64, 34). For

higher values of m, one obtains the smallest superpartitions by deleting some

squared corners in λ and adding circles while keeping conditions C1 and C2

satisfied. All smallest superpartitions for (k, r,N) = (4, 3, 15) are given below.

f
f

f

f
f

f
f

f

f

f

f
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f ff
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f

f
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f
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f
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f
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APPENDIX F

Recursive formula for non-symmetric Macdonald

polynomials

The non-symmetric Macdonald polynomials can be generated recursively. For

instance, with the help of [3, Corollary 4.2], we can easily obtain the explicit

expansions given in the following table.

Table F.1: Non-symmetric Macdonald polynomials of degree n ≤ 2

Composition Non-symmetric Macdonald polynomial

η Eη(x; q, t)

(0, 0, 0) 1

(0, 0, 1) x3

(0, 1, 0) x2 + tq(t−1)
−1+t2q

x3

(1, 0, 0) x1 + q(t−1)
−1+tqx2 + q(t−1)

−1+tqx3

(0, 1, 1) x2x3

(1, 0, 1) x1x3 + tq(t−1)
−1+t2q

x2x3

(1, 1, 0) x1x2 + q(t−1)
−1+tqx1x3 + q(t−1)

−1+tqx2x3

(0, 0, 2) x2
3 + t−1

−1+tqx1x3 + t−1
−1+tqx2x3

(0, 2, 0) x2
2 + (t−1)tq2

t2q2−1
x2

3 + t−1
−1+tqx1x2 + (t−1)2tq2

(−1+tq)2(tq+1)
x1x3 + q(t−1)(t2q+t2q2−tq−1)

(−1+tq)2(tq+1)
x2x3

(2, 0, 0) x2
1 + (t−1)q2

−1+tq2x
2
2 + (t−1)q2

−1+tq2x
2
3 + q(t−1)(q+1)

−1+tq2 x1x2 + q(t−1)(q+1)
−1+tq2 x1x3 + q2(t−1)2(q+1)

(−1+tq2)(−1+tq)
x2x3
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APPENDIX G

Expansion of Macdonald polynomials with prescribed

symmetry in terms of non-symmetric Macdonald polynomials

The formula that allows to write down explicitly the Macdonald polynomials

with prescribed symmetry of type AS as a linear combination of non-symmetric

Macdonald polynomials is given in (5.2.6). The examples given below were

generated with the help of this formula.

Table G.1: Macdonald polynomials with prescribed symmetry AS of degree n ≤ 3

and N = 3

Superpartition Macdonald polynomial with prescribed symmetry

Λ PΛ(x; q, t)

(0, 0, 0) E(0,0,0)

(1, 0, 0) E(1,0,0) + 1−q
1−tqE(0,1,0) + 1−q

1−t2qE(0,0,1)

(1, 1, 0) E(1,1,0) + 1−q
1−tqE(1,0,1) + 1−q

1−t2qE(0,1,1)

(2, 0, 0) E(2,0,0) + 1−q2

1−tq2E(0,2,0) + 1−q2

1−t2q2E(0,0,2)

(1, 1, 1) E(1,1,1)

(2, 1, 0) E(2,1,0)+
1−q
1−tqE(2,0,1)+

1−q
1−tqE(1,2,0)+

(1−q)(1−tq2)
(1−tq)(1−t2q2)

E(1,0,2)+
(1−q)(1−tq2)

(1−tq)(1−t2q2)
E(0,2,1)

+ (1−q)2(1−tq2)
(1−tq)2(1−t2q2)

E(0,1,2)

(3, 0, 0) E(3,0,0) + 1−q3

1−tq3E(0,3,0) + 1−q3

1−t2q3E(0,0,3)
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Superpartition Macdonald polynomial with prescribed symmetry

Λ PΛ(x; q, t)

(0; 0, 0) E(0,0,0)

(0; 1, 0) E(0,1,0) + 1−tq
1−t2qE(0,0,1)

(1; 0, 0) E(1,0,0)

(0; 1, 1) E(0,1,1)

(1; 1, 0) E(1,1,0) + 1−q
1−tqE(1,0,1)

(0; 2, 0) E(0,2,0) + 1−tq2

1−t2q2E(0,0,2)

(2; 0, 0) E(2,0,0)

(0; 1, 1, 1) E(0,1,1,1)

(1; 1, 1) E(1,1,1)

(0; 2, 1) E(0,2,1) + 1−q
1−tqE(0,1,2)

(1; 2, 0) E(1,2,0) + 1−tq2

1−t2q2E(1,0,2)

(2; 1, 0) E(2,1,0) + 1−q
1−tqE(2,0,1)

(0; 3, 0) E(0,3,0) + 1−tq3

1−t2q3E(0,0,3)

(3; 0, 0) E(3,0,0)

(1, 0; 0) E(1,0,0) − 1−t2q
t(1−tq)E(0,1,0)

(1, 0; 1) E(1,0,1) − 1−t3q
t(1−t2q)E(0,1,1)

(2, 0; 0) E(2,0,0) − 1−t2q2

t(1−tq2)
E(0,2,0)

(1, 0; 1, 1) E(1,0,1,1) − 1−t4q
t(1−t3q)E(0,1,1,1)

(1, 0; 2) E(1,0,2) − 1−t2q
t(1−tq)E(0,1,2)

(2, 0; 1) E(2,0,1) − 1−t3q2

t(1−t2q2)
E(0,2,1)

(2, 1; 0) E(2,1,0) − 1−t2q
t(1−tq)E(1,2,0)

(3, 0; 0) E(3,0,0) − 1−t2q3

t(1−tq3)
E(0,3,0)

(2, 1, 0; 0) E(2,1,0,0) − 1−t2q
t(1−tq)E(2,0,1,0) − 1−t2q

t(1−tq)E(1,2,0,0) + (1−t2q)(1−t3q2)
t2(1−tq)(1−t2q2)

E(1,0,2,0)

+ (1−t2q)(1−t3q2)
t2(1−tq)(1−t2q2)

E(0,2,1,0) −
(1−t2q)2(1−t3q2)
t3(1−tq)2(1−t2q2)

E(0,1,2,0)
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