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CHAPTER 1

INTRODUCTION

Let S, be the symmetric group on n letters. Studying the representation theory
of the symmetric groups (more generally, the representation theory of any group
or algebra) means understanding how they interact with vector spaces. The main
goal of representation theory is to understand the structure of the irreducible rep-
resentations. The representation theory of S, over a field k of characteristic zero
was treated around one century ago, in the works of Young, Schur and Frobe-
nius. They found that the irreducible representations, the Specht modules, are
parametrized by partitions A of n, i.e. weakly decreasing sequences of nonnegative
integers A = (A1,..., Ax) that sum to n. It has also be known for a long time that
there are several ways of constructing these Specht modules, some of which are of
combinatorial nature while other rely on geometrical or other methods. Similarly,
the dimension of the Specht module S(\) associated with A can be expressed in

different ways.

The situation becomes much more difficult when & is assumed to be a field
of characteristic p, for example the finite field F,. Although the Specht module
construction still works in this setting, S(A) is no longer irreducible in general.
Still the S(A) are useful object in characteristic p as well. Indeed, it is known that
the irreducible representations D()\) are parametrized by the socalled p-regular
partitions A of n, i.e. those A that do not contain p equal \;. For each such A,
one obtains D()\) as the unique irreducible quotient of S(A). On the other hand,
in spite of this very concrete realization of D()) the basic problem of determining
the dimension of D()) is still unsolved. Indeed, this is considered by many as the
main unsolved problem of representation theory in positive characteristic and has

been at the center of much research activity over the last 30 years.
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A main conjecture in this setting is the James/Lusztig conjecture stating that

for n < p? one should have

[S(A) = D(w)] = dx,u(1)

where [S(X) : D(p)] denotes composition factor multiplicity and dy (1) the eval-
uation at 1 of a certain parabolic Kazhdan-Lusztig polynomial dy ,(¢) € Z[q]. It
is calculated most efficiently using the LLT-algorithm. All evidence known so far,
computational as well as theoretical, supports this conjecture, but a proof is still

missing.

The appearance of polynomials in the conjecture might indicate that the group
algebra F,S, may be a graded algebra. To be precise, it indicates the existence
of an isomorphism of algebras ¢ : F,S,, = R,, where R,, = @, R,,; is a graded
algebra.

Such an isomorphism ¢ has been constructed by Brundan and Kleshchev in a
recent important paper. The algebra R, turns out to be a cyclotomic version of

an algebra introduced by Khovanov-Lauda and Rouquier. It is given by generators

{e(@i€ FRtU{ys, -y} U{tn,. . thna}

and a long list of relations between them. Brundan and Kleshchev obtain ¢ by
constructing concrete elements in F,, S, satisfying these relations and checking that
the associated map induces an isomorphism. This involves lengthy calculations,
but still their proof works even for cyclotomic Hecke algebras with the parameter
q specialized at an e’th root of unity. It should here be noted that the resulting
gradings are far from being ’visible’ to the naked eye and depend heavily on p or

the multiplicative order of ¢ in the Hecke algebra setting.

The goal of this thesis is to study the graded representation theory of certain
quotients of the cyclotomic Hecke algebras of level 1 and 2, which admitting nice
diagrammatical presentations, the Temperley-Lieb algebra Tl,(q) and the blob
algebra, respectively. The first was introduced by Temperley and Lieb in [33] as
complex associative algebras that arose in their study of transfer matrix approaches
to (planar) lattice models. But has since turned out to be related to many topics
of mathematics as well, including knot theory, operator theory, algebraic combi-
natorics and algebraic Lie theory. For instance, these algebras were subsequently

rediscovered by Jones in [15] who used them to define what is now known as the



Jones polynomial in knot theory. As of today, it is an object well known to a gen-
eral audience in physics as well as mathematics and at the same time it remains at
the center of a big number of research articles being published each year in both

areas.

Our main emphasis lies on a two-parameter generalization b,(q, m) of the
Temperley-Lieb algebra that was introduced by P. Martin and H. Saleur in [22], as
a way of introducing periodicity in the physical model defining T, (¢). An impor-
tant feature of both T, (¢) and b, (g, m) is the fact that they are diagram algebras,
that is they have bases parameterized by certain planar diagrams, such that the
multiplications are given by concatenation of these diagrams. In the case of T',,(q)
these diagrams are the socalled bridges or Temperley-Lieb diagrams, in the case of
bn(g,m) the diagrams are certain marked Temperley-Lieb diagrams and for this

reason b, (g, m) was called the blob algebra in [22].

We are interested in the non-semisimple representation theory of T, (¢g) and
by (g, m), which is the case where ¢ is specialized at a root of unity. The T'l,,(q)-case
is connected via Schur-Weyl duality to the representation theory of the quantum
group associated with SLy. The b, (g, m)-case is more intriguing and has received
quite a lot of attention over the last decade. It has been shown to share a sur-
prisingly number of properties with objects that normally arise in Lie theory. In
particular, it was shown in [24] that the decomposition numbers are given by eval-
uations at 1 of certain Kazhdan-Lusztig polynomials associated with an infinite

dihedral Weyl group.

The fact that the decomposition numbers for b, (g, m) come from polynomials
(as in the group algebra of the symmetric group case) gives a first indication of
the existence of a Z-graded structure on b, (g, m) and on its standard modules, and

indeed a main goal of our thesis is to construct such a graded structure on b, (g, m).

A main input to our thesis comes from the seminal work of Brundan and
Kleshchev that constructs isomorphisms between cyclotomic Hecke algebras and
Khovanov-Lauda-Rouquier (KLR) algebras (of type A), [3]. Since the KLR al-
gebras are Z-graded, the various Hecke algebras become Z-graded in this way as
well. On the other hand, b,(g,m) is known to be a quotient of the cyclotomic
Hecke algebra H,, (¢, Q) of type G(2,1,n), and our basic idea is now to exploit this

quotient construction.

A big step towards our goal is taken already in Chapter 4 of our thesis, where
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we show that the ideal 7, C H,(q, @), defining b, (g, m), is homogeneous, thus
making b,, (¢, m) a Z-graded algebra. This result relies on a realization of 7,, due to
P. Martin and D. Woodcock in [23], in terms of certain explicitly given idempotents

that turn our to be well behaved with respect to the KLR-relations.

On the other hand, this does not immediately imply a Z-grading on the standard
modules for b, (g, m) and indeed a major part of our thesis is dedicated to this point.
An important ingredient to this comes from the recent paper by Hu and Mathas,
[14], that introduces the concept of a graded cellular algebra and shows that the
cyclotomic Hecke algebras are graded cellular with respect to the Z-grading given
by Brundan and Kleshchev’s work. We then achieve our goal in the Chapter 5 by
showing that b, (¢, m) is a graded cellular algebra.

A main difficulty in applying [I4], is due to the fact that the cell structure on
H.(q, Q) considered in [I4] is related to the dominance order on bipartitions, which
is known to be incompatible with the natural order for the category of b, (g, m)-
modules, see [30] and [31]. We overcome this problem by showing that b,(q,m)
is an algebra endowed with a family of Jucys-Murphy elements, in the sense of
Mathas [26], with respect to a natural order that we introduce in Chapter 3. This

involves delicate arguments involving the diagram basis for b, (q, m).

It should be mentioned that our results are also valid in the Temperley-Lieb
algebra case where the relevant Hecke algebra #,,(¢) this time is of type A, and
even in this case our results seem to be new. On the other hand, in the Temperley-
Lieb algebra case there is actually a simpler way to show that the ideal of H,(q)
defining T1,,(q) is graded. It is based on certain properties of Murphy’s standard
basis that were proved by M. Hérterich in [13].

Let us sketch the layout of the thesis. In Chapter 2 we introduce the main
objects of our study, the Temperley-Lieb and the blob algebra. We also define the
cyclotomic Hecke algebras of level 1 and 2, and recall the relevant results from
the literature involving them. In Chapter 3 we recall the diagrammatic realization
of the Temperley-Lieb algebra and the blob algebra. We also setup all of the
combinatorics which we will need to understand the representation theory of T',,(q)
and b,,. Specifically, we define partitions, bipartitions, Young diagrams, tableaux,
bitableaux and the Bratteli diagram. We use this combinatorics to parameterizing
the diagrammatic basis of T, (¢q) and b,,. The set of all of two-columns standard

tableaux shall be ordered by dominance, whereas the set of all one-line standard



bitableaux shall be ordered in a non-conventional way. We end this chapter by

relating these two orders.

In Chapter 4 we introduce the basic notions of graded representation theory.
Our main emphasis will be the concept of graded cellular algebra, this concept plays
a central role in the remainder of this thesis. Actually, all algebras considered in
this thesis are graded cellular algebras. At the end of this chapter we show that
the T'l,(q) and b,, are Z-graded algebras. In Chapter 5 we show that the images
in b, of the Jucys-Murphy elements of H, (¢, Q) make the blob algebra into an
algebra with a family of Jucys-Murphy elements, in the sense of Mathas [26]. As
we explain in the beginning of that Section 5.1, this is quite surprising. Using this
we prove that the blob algebra is a graded cellular algebra. The analogous result
for Tl,,(q) follows in a simpler way. We end this chapter by giving two examples
that illustrate our results. Finally, in Chapter 6 we find the graded decomposition
numbers for the blob algebra. In order to obtain these numbers, we first need
to understand the degree function on the set of all one-line standard bitableaux
defined in Chapter 5 to make the blob algebra a graded cellular algebra. We shall
give a characterization of the degree function in terms of the Bratteli diagram.
With this at hand, we can prove the existence of a family of positively graded
cellular subalgebras of b,. Then, we reduce the problem of finding the graded
decomposition numbers for b,, to the problem of finding the graded decomposition

numbers for the positive graded cellular algebras mentioned above.






CHAPTER 2

PRELIMINARIES

In this chapter we fix the notation that shall be used throughout the thesis. We
introduce the algebras to be studied, the Temperley-Lieb algebra, the blob algebra,
the corresponding Hecke and Khovanov-Lauda-Rouquier algebras and recall the
relevant results from the literature involving them. The important diagrammatic
realizations of the Temperley-Lieb algebra and the blob algebra shall be postponed
to the forthcoming Chapter

Throughout the thesis the ground field shall be the complex field C although some

of our results hold in greater generality. For ¢ € C* and an integer k we define
K] = [klg ="' +¢" P +...+ g eC

the usual Gaussian coefficient. All our algebras are associative and unital.

2.1 THE TEMPERLEY-LIEB ALGEBRA, THE BLOB ALGEBRA, THE HECKE

ALGEBRAS

Definition 2.1.1. Let ¢ € C*. The Temperley-Lieb algebra T1,(q) is the C-

algebra on the generators Uy, ..., U,_1 subject to the relations

U? = —[2)U; if1<i<n-—1
U;U;U; =U; if|i—j]=1
Uin:UjUi if |’L*_]| > 1.

The main object of the thesis is the blob algebra, introduced in [22] by P.
Martin and H. Saleur as a generalization of the Temperley-Lieb algebra. It is

usually defined in terms of a basis of blobbed Temperley-Lieb diagrams and their

7
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compositions, from which it derives its name. Such that for the Temperley-Lieb
algebra, the blob algebra can be defined as an algebra with generators and relations.

Let y. be an invertible element of C.

Definition 2.1.2. The blob algebra b,, = b,,(q,y.) is the C-algebra on the gener-

ators e, Uy, ..., U,_1 subject to the relations

U? = —[2]U; if1<i<n-—1
U;U;U; = U; if|i—jl=1
U;U; = U,U; ifli—j]>1
UrelUr = yeUy
e =e
U,e = elU; if2<i<n-—1.
Assume that [m] # 0. The parametrization of b,, through y. = 7[%]71] includes

the non-semisimple cases, see [24] Section 2]. Under this choice of y. we denote
bn(q,ye) by bp(m) and replace e by the rescaled generator Uy := —[m]e. When we

are working with b, (m) we always assume that ¢ is a I-th root of unity.

The Temperley-Lieb algebra and the blob algebra were introduced from moti-
vations in statistical mechanics. An important feature, that we postpone to the
next chapter, is that they both have diagrammatic realizations by planar diagrams.
Another significant feature of these algebras is that Tl,(q) and b, (m) can be re-
alized as quotients of Hecke algebras of type A and B, respectively. This explains
why the blob algebra is sometimes referred as the Temperley-Lieb algebra of type
B.

We next define the related Hecke algebras.

Definition 2.1.3. Let ¢ € C and assume that ¢ # 0,1. The Hecke algebra H.,(q)
of type A,,_1 is the C-algebra with generators 71, ..., T, _1, subject to the relations

(T; —¢)(T; +1) =0 forl<i<n-1 (2.1.1)
EEJFII-’Z' = Ti+1TiTi+1 for 1 é ) S n—2 (212)
T,T; = T;T; for [i — j] > 1 (2.1.3)

It follows easily from the relations that 7). is an invertible element in H,(q),
with 771 = ¢ (T}, — ¢+ 1). We may then define elements Li,..., L, € H,(q) by
L, :=1 and recursively L, = ¢ T, L, T, for all admissible r. They are the first

examples of Jucys-Murphy elements that play an important role in our thesis.
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Definition 2.1.4. Let g, A1, A2 € C and suppose that ¢ # 0,1. The cyclotomic
Hecke algebra #H,(q; A1, A2) of type G(2,1,n) is the C-algebra with generators
Li,..., Ly, T1,...,T,_1 and relations
(L1 = A1) (L1 = As) =0, L,Ly = LyL,,
(T +1)(T — q) =0, T.Ly = L1 (T — q+ 1),
TsTs11Ts = Ts 1 TsTs 11,
T.Ls = LT, if |r—s| > 1,
T, T, =T,T,, ifs#rr+1

for all admissible r, s.

Once again, T} is invertible with 7.~ = ¢~ (T, —q+1). From this one gets that
L.11 = q T, L,T,. Moreover, it follows from the relations that f(L1,...,L,) is a
central element of H,,(q; A1, \2) for f(x1,...,2,) a symmetric polynomial. These

L; are also called Jucys-Murphy elements.

We now explain the relations mentioned above between the algebras that we

have defined.
Theorem 2.1.5. The are surjections ®1 and ®o given by

1 Hal¢®) — Thiq), Ti — qUit+q®
Oy : Holg®) — Tlu(q), T, — —qU;—1.

The kernel of ®1 is the ideal generated by
¢TI — ¢ TV — ¢ T 4 q T 4 q T — 1
and the kernel of @5 is the ideal generated by
TVILTy + TV + 10T + T + Ty + 1.

Proof: This is well known. O

There are two, not obviously equivalent, ways to generalize this Theorem to the
blob algebra case. One is given in [12], but for our purposes it is more convenient to
work with the second one, that appears in [23]. Set @ := ¢™ and define H,,(m) =
Hn(q%Q,Q71). Assume

¢ #1, Q#Q, Q#¢*Q, Q™ #4¢°Q. (2.1.4)
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With the above conditions, one can define elements E1, Fs € Ha(m) by the formulas
(T > —Q H(L2 - Q1)
(1+¢)(Q-Q )R —¢%Q)

(Ty — ¢*) (L1 — Q)(L2 — Q)
(1+¢)(Q-Q)Q—q2Q71)
The factors of F; and Ey commute with each other. Using this and Ly = ¢~ 2711171,

B =

By =

one finds that they verify the following equations

(Ty + 1)E; =0, (T) +1)Ey = 0, (2.1.5)
(L1 —Q)E1 =0, (Li —Q HEy =0, (2.1.6)
(Ly — Qq?)Ey =0, (Ly—Q ¢ )E, =0 (2.1.7)

and from this it follows that F; and F» are idempotents associated with irreducible
representations of Hs(m) of dimension one. Note that F; and Es are the unique

idempotents satisfying (2.1.5) and (2.1.6). They are denoted e;* and ey ? in [23].

For all n there is a canonical embedding H,,(m) < Hp4+1(m). Using it repeatedly
we consider E; and Es as elements of H,,(m) and denote by J,, the ideal of H,,(m)
generated by them.

Theorem 2.1.6. The map ® given by

o: H,(m) — by(m)
Ti—¢ +w~ qU
Li—q™ — (¢—q "0

induces a C-algebra isomorphism between H,(m)/T, and b,(m).
Proof: See [23| Proposition 4.2]. O

We would like to have an integral version of the last result, but want also to avoid
those choices of the parameters that correspond to the conditions . This can
for example be achieved by localizing Clg, ¢~ !, Q, @] conveniently. To be precise,
we choose for R the localization of the Laurent polynomial ring C[g, ¢!, Q, Q1]
at S, defined as the multiplicatively closed subset of Clg,q !, Q, Q'] generated
by the polynomials 1,¢* — 1,Q — Q7 1, Q — Q '¢% and Q! — Qq¢>. For integers
I and m we denote by m the ideal (g — €>™/!,Q — ¢™) of R. Then we have that
either m = R or else m is a maximal ideal in R. In the last case we define O := R,
and get that O is a discrete valuation ring with maximal ideal m, quotient field

K :=C(q, Q) and residue field O/m = C containing the ’th root of unity q.
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Throughout the thesis we assume that O, K and C are chosen as above, and
furthermore, in order to simplify notation, that [ is odd. In the next section we
recall the Z-grading on H,,(¢?) and H,,(m) given by Brundan and Kleshchev in [3].
Note that since [ is assumed to be odd, the condition from loc. cit. that ¢"™ be
a power of ¢2, or equivalently, that the congruence 2k = m mod [ be solvable, is

always fulfilled.

We now define b9 (m) as the O-algebra on generators e, Uy, ..., U, _1 subject to
the same relations as for b,. Then b9 (m) is free over O as can be seen using the
results of the appendix of [7], note that they are valid over any commutative ring.
The rational blob algebra bX (m) is defined the same way, and we have base changes
isomorphisms b (m) ®o C = b, (m) and b9 (m) ®o K = bX (m). Finally we define

HE (m) as the O-algebra on generators Ly, ..., Ly, T}, ...,T,,_1 subject to the
same relations as for H,(m), but using parameters \; = @ and Ay = Q. Simi-

larly, we define HX (m) and we have base changes isomorphisms as above.
Theorem 2.1.7. There is a surjection ® : HO (m) — b9 (m).

Proof: The argument given in [23 Proposition 4.2] involves checking blob relations

and therefore gives a surjection HE (m) — b9 (m), as claimed. O

2.2 THE KHOVANOV-LAUDA-ROUQUIER ALGEBRA

Recall that the quantum characteristic of an element ¢ of a field F' is the smallest
positive integer j such that 14+ ¢+ ...+ ¢’~! =0, setting j = 0 if no such integer
exists. With our choice of ¢ € C the quantum characteristic is . Recall that we
assume that [ is odd. Note that without loss of generality we can assume that
0 <m <1. WesetI=Z/IZ and refer to I" as the residue sequences of length n.
Note that in order to apply [3], we should actually use the quantum characteristic
of ¢% in the definition of I, but since [ is assumed to be odd, the two definitions

coincide. In the following H refers to either H,(¢?) or H,,(m) (with ¢ € C chosen

as above). Let M be a finite dimensional H-module. By [I7, Lemma 7.1.2] the
eigenvalues of each L, on M are of the form ¢?* for i € I. So M decomposes as

the direct sum M = @ M; of its generalized weight spaces

eln
M;:={veM | (L, —¢*)v=0frr=1,...,nand k> 0}.

In particular, taking M to be the regular left module H, we obtain a system

{e(¢) | ¢ € I™} of mutually orthogonal idempotents in H such that e(s)M = M;
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for each M as above.

We can now define nilpotent elements y1,...,y, € H via the formula

yr =Y (1=q > Ly)e(d). (2.2.1)
ieln
For 1 <r < nand ¢ € I", Brundan and Kleshchev define in [3] certain formal
power series, P,.(¢),Q.(¢) € Cl[yr,yr+1]], such that Q. (¢) has non-zero constant
term, see [3] (4.27) and (4.36)] for the explicit formulas. Since each y, is nilpotent
in H, we can consider P,.(i) and Q,(2) as elements of H, with Q,.() invertible. We
then set

Yr = > (T + Po(4))Qr(i) (i) (2:2.2)

icln

The main theorem in [3] gives a presentation of H in terms of the elements

{1, 1} U{yr, - ,ynt U {e(d) | i€ I}

and a series of relations between them that we describe shortly. An important
point of these relations is that they are homogeneous with respect to a nontrivial

Z-grading on H. To describe the Z-grading it is convenient to introduce the matrix

(@ij)ijer, given by

2 ifi=j
a;j =14 0 ifi£j+1
-1 ifi=75+1.

With this at hand, we are now able to state [3, Main Theorem]. The Theorem holds
in greater generality than shown here, namely for all cyclotomic Hecke algebras,
including the degenerate algebras, but for our purpose the following version is

enough.

Theorem 2.2.1. The algebra H is isomorphic to a cyclotomic Khovanov-Lauda-
Rougquier algebra of type A. To be precise, it is isomorphic to the C-algebra gener-

ated by

{1, 2} U{yn, - ynf Ufe(d) [ i€ 1M}
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subject to the following relations for i,5 € I"™ and all admissible r, s

. o +k mod if H=H,(m)
=0 = 2.2.3
ne(d) v 0 mod! if H= Hn(q2) ( )
. o +k mod if H=H,(m)
=0 2.2.4
e(l) if i1 # 0 mod ! ifH = Hn(q2) ( )
e()e(d) = dije(2) (2.2.5)
> eli) =1, (2.2.6)
icln
yre(z) = e(Dyr, (2.2.7)
Pre(t) = e(sri)tr, (2.2.8)
YrYs = YsYr, (2.2.9)
ql)rys = yswra ZfS 75 r,r+1 (2210)
Yrths = Psthr, if |S - 7”‘ >1 (2211)
. (yrwr + 1)6(1) Zf ir = iT‘Jrl
¢r T = 2.2.12
g’ +1e(z> yrw’f‘e(i) Zf ir 7& ir+1 ( )
. <wryr + 1)6('L> Zf ir = Z.r+1
1V = 2.2.13
Yr+1re(t) brureli Fin iy ( )
0 /Lf ir - ir+1
20y = 19 FirFia 2L 0010
' (Yrt1 — yr)e(d) if i =i +1
(yr — yrs1)e(?) if tpp1 =dp — 1
(¢7+1¢r¢7+1 + 1)6(2) Zf Z'7"-‘,-2 = ir = ir-&-l -1
Vrri1re(d) = ¢ (Yrp1rbri1 — 1)e(d) ifippe =iy =ipp1 +1  (2.2.15)
(Vr41UrYry1)e(2) otherwise

where s, := (r,r+1) is the simple transposition acting in I™ by permutation of the
coordinates r,v + 1 and k € Z such that 2k = m mod [. The isomorphism maps

each of the generators to the element of H that has the same name. The conditions

deg 6(7') =0, deg yr = 2, deg 1/)56(1) = Qi i,y

for1<r<n,1<s<n-—1andiel"” define a unique Z-grading on H with

degree function deg.
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Following [14] we shall refer to the e(¢) as the KLR~idempotents. In the follow-
ing, all statements involving a grading on H refer to the above Theorem. Note that
although the elements L, and T;. are not homogeneous in H, they can be expressed
in terms of homogeneous generators in the following way, see equations (4.42) and

(4.43) of [3]:

Le =Y ¢* (1 —y)e(i) (2.2.16)

icln

T = > (:Qr(i) — Pr(d))e(d). (2.2.17)

icln



CHAPTER 3

DIAGRAMS ALGEBRAS AND COMBINATORICS OF TABLEAUX

In this chapter, we recall the realization of the Temperley-Lieb algebra and the blob
algebra by planar diagrams. We index the diagrammatical basis of the Temperley-
Lieb algebra by pairs of two-columns standard tableaux of the same shape. Sim-
ilarly, we index the diagrammatical basis of the blob algebra by pairs of one-line
standard bitableaux of same shape. Next, we remark the bijection between one-
line standard bitableaux and walks on the Bratelli diagram. The set of all of
two-columns standard tableaux shall be ordered by dominance, whereas the set of
all one-line standard bitableaux shall be ordered in a non-conventional way. We

end this chapter by relating these two orders.

3.1 DIAGRAM BASIS FOR T1,(q)

We first recall the diagrammatic realization of the Temperley-Lieb algebra T, (q),
first given by L. Kauffman, in which the basis elements are drawn as “(n,n)-
bridges” or simply “Temperley-Lieb diagrams”. An (n,n)-bridge consists of n
points, also called points or nodes, on each of two parallel edges, the “top” resp.
“bottom” lines, that are joined pairwise by n non-intersecting lines between the

two lines. Figure [3.1] shows two examples.

1 - eon 1 .- i i1 eom

rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr A e

Figure 3.1: Diagrammatic generators of T, (q).

The set of all (n,n)-bridges is denoted by T(n). We define a multiplication on

15
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CT(n) by identifying the bottom of the first diagram with the top of the second,
and replacing every closed loop that may arise by a factor —[2] (see Figure .

Figure 3.2: Composition in T'l7(q)

With this definition CT(n) becomes a C-algebra where the one-element is the di-
agram denoted by 1 in Figure[3.1]. The diagrammatic realization of the Temperley-
Lieb algebra refers to the isomorphism of C-algebras f : Tl,, — CT(n), given by
f(U;) = U; where the second U; is the diagram of Figure Using the above
isomorphism, we can consider the set T(n) as a C-basis of Tl,,(¢). We refer to this

basis as the diagrammatical basis for T, (gq).

Our next goal is to index the diagrammatical basis for T',,(q) by pairs of two-
columns standard tableaux of the same shape. First, we recall some basic com-
binatorial notions related to partitions and tableaux. Let n be a positive integer.
A(n integer) partition of n is a sequence A = (A1, Ag, . ..) of non-negative integers
such that [A| ==Y, A; =n and A\; > ;41 for all ¢ > 1. The Young diagram of X is
the set

A ={(,j) eNxN|1<j<\ andi>1}.

The elements of it are called nodes or entries. It is useful to think of [A] as an
array of boxes in the plane, with the indices following matrix conventions. Thus
the box with label (7, j) belongs to the i’th row and j’th column. For example if
A= (4,3,2,1) then the associated Young diagram is shown in Figure If Mis a
partition of n we denote by A’ the partition of n obtained from A by interchanging
its rows and columns. A two-column partition of n is a partition A of n such that
A < 2 for all ¢ > 1. The set of all partitions of n is denoted Par(n) and the set
of two-column partitions of n is denoted by Pars(n). A A-tableau is a bijection
7:[A] = {1,...,n}. We say that 7 has shape A and write Shape(r) = A\. We think
of it as a labeling of the diagram of ), and in this way we can talk of the rows and

columns of a tableau. We say that 7 is row (resp. column) standard if the entries of
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T increase from left (resp. top) to right (resp. bottom) in each row (resp. column).
7 is standard if it is row standard and column standard. The set of all standard

A-tableau is denoted by Std(\) and the union of all Std()) is denoted Std(n).

|

Figure 3.3: Young diagram for A\ = (4,3,2,1).

Given a node A = (4,j), the (I-)residue of A is defined to be
res(A) :=j—1¢ mod! (3.1.1)

For 7 € Std(n) and 1 < k < n, define the residue of 7 at k as r,(k) := res(4)

where A is the node occupied by k in the standard tableau 7.

Example 3.1.1. Figure shows the residue diagram for A = (4,3,2,1) when

the quantum characteristic is | = 3.

—_
[\

0]

’o»—uwo
o
=

Figure 3.4: Residue diagram for A = (4,3,2,1) and [ = 3.

Assume that A, 4 € Par(n). We say that A dominates p and write A > p if

J J
Z Ai > Zui
i=1 i=1

for all § > 1. Then Par(n) becomes a partially ordered set via >. It can be
extended to Std(n) as follows. For 0,7 € Std(n), we say that o dominates T and
write o &> 7 if Shape(o), ) > Shape(r), ), for k = 1,...,n, where o|, and 7|, are the

tableaux obtained from ¢ and 7 by removing the entries greater than k.

Let 7* be the unique standard A-tableau such that 7* > 7 for all 7 € Std()).
In 7* the numbers 1,2,...,n are filled in increasingly along the rows from top
to bottom. The symmetric group &, acts on the left on the set of A-tableaux
permuting the entries.

For 7 € Std(\), we denote by d(7) the permutation of &,, that satisfies 7 =
d(r)™.
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Example 3.1.2. If A = (4, 3,2, 1), then Figure shows the maximal tableau 7}
in Std(\).

[\
w

4]

(=)
N

—_
’OOOOTH
©

Figure 3.5: The tableau 7* for A = (4,3,2,1).

Let us now recall the bijection between (n,n)-bridges and pairs of two-column
standard tableaux of the same shape. Let 5 be an element of T(n). We say that
a line of ( is vertical if it travels from top to bottom, otherwise we say that it is

horizontal. Suppose now that  has exactly v vertical lines and set h = *5*=. The

associated pair of standard (h + v, h)’-tableaux (Tyop(83), Tbot(3)) is then given by

the following rules:

1. k is in the second column of 740, (8) (Tvet(8)) if and only if the k-th point is
a right endpoint of a horizontal line in the top (bottom) edge.

2. the numbers increase along the columns of 7., (3) and ¢ (5).

For A € Pary(n) and 0,7 € Std(\), we denote by 3, the unique (n,n)-bridge such
that Tyop(Bor) = 0 and Tpet(Bor) = 7.

3.2 DIAGRAM BASIS FOR b,

We aim at generalizing the above results to the case of the blob algebra. For this
we first recall the concepts of bipartitions and bitableaux. We provide them with

structures of partially ordered sets, in a non-conventional way.

A bipartition of n is a pair A = (A(), A(®)) of usual (integer) partitions such
that n = [A(D| + [\?)|. By the Young diagram of a bipartition A we mean the set

A ={(r,e,d) e Nx Nx {1,2} | 1 <e< AP},

Its elements are called entries or nodes. We can visualize [A] as a pair of usual Young
diagrams called the components of [A]. Thus for j = 1,2, the j’th component of
[Alis {(r,¢,d) € [A]|d = j}. A one-line bipartition of n is a bipartition A of n such
that A = 0 for all » > 2 and d = 1,2. Thus, a node A = (r,e,d) € [A] for some
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one-line bipartition only if » = 1. The set of all one-line bipartitions of n is denoted
Bip,;(n). For A a bipartition, a A-bitableau is a bijection t: [A] = {1,...,n}. We
say that t has shape A and write Shape(t) = A. A A-bitableau t is called standard if
the entries of t increase from left to right in each component. The set of all standard
A-bitableaux is denoted by Std(A) and the union [J, Std(A) with A running over
all bipartitions of n is denoted by Std(n). Given a node A = (1, ¢,d) the residue
of A is defined to be

(A) c—1+k, ifd=1 (3.2.1)
res(A) = 2.
c—1—Fk ifd=2

where k € Z such that 2k = m mod [. For t € Std(n) and 1 < j < n, define the
residue of t at j, as 7¢(j) := res(A4) where A is the node occupied by j in t.

Example 3.2.1. Figure [3.6|shows the residue diagram for A = ((5), (6)) when the

quantum characteristic is [ = 5 and m = 2.

| [T2[30400) , (1[0 112 3]4))
Figure 3.6: Residue diagram for A = ((5), (6)), m = 2 and [ = 5.

There are several ways of endowing Bip;(n) with an order structure, the most
well known being dominance order, but we shall need a different order on Bip,(n)
that we now explain. Let A, be the set {—n,—n + 2,...,n — 2,n}. Then the

following definition makes A,, into a totally ordered set with order relation >.

Definition 3.2.2. Suppose A,y € A,,. We then define o = X if either |u| < |A], or
if |p| =|A] and p < A

On the other hand, the map f given by
[ Bipi(n) = An, ((a), (b)) »a—b
is a bijection and so we can define a total order = on Bip,(n) as follows.
Definition 3.2.3. Suppose A, u € Bip;(n). Then we define A = piff f(A) = f(p).

For t € Std(A) let t), be the bitableau obtained from t by removing the entries
greater than k. We extend the order = to the set of all A-standard bitableaux as

follows.
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Definition 3.2.4. Suppose that A € Bip;(n) and s,t € Std(A). We define s > t if
Shape(s|, ) = Shape(t},) for all k =1,...,n.

Note that this is only a partial order on Std(X). Let t* be the unique standard
A-bitableau such that t* = tfor all t € Std(X). For A = ((a), (b)), set ¢ = min{a, b}.
Then in t* the numbers 1,2, ..., n are located increasingly along the rows according

to the following rules:
1. even numbers less than or equal to 2¢ are placed in the first component.
2. odd numbers less than 2c¢ are placed in the second component.
3. numbers greater than 2c are placed in the remaining boxes.

Example 3.2.5. Figure shows the maximal bitableaux with respect to > for
A=1((8),(3)) and p = ((3),(8)).

P = <’2‘4‘6‘7‘8‘9‘10‘11‘7’1‘3‘5‘)

1\3\5\7\8\9\10\11\)

= (]2\4\6

b

Figure 3.7: Maximal bitableaux with respect to the order >.

Definition 3.2.6. Suppose that A € Bip,(n) and let t € Std(\). Define a sequence
of integers inductively by the rules t(0) = 0 and for 1 < j <n

()=t -1 +1
where the 4+ (—) sign is used if j is in the first (second) component of t.
Using this sequence we can now describe the order .

Lemma 3.2.7. If 5,t € Std(X), then s = t if and only if |s(3)| < |t(5)|, for all
1<j <n, and if |s(j)| = [t(7)] then s(j) < (j).

Proof: Note that for all t € Std(A) and 1 < j < n, we have t(j) = f(Shape(t|,)).

Therefore, the result is a direct consequence of Definition [3.2.4 (]

As is the case for the Temperley-Lieb algebra, the blob algebra has a diagram-

matic realization that we now explain. A “blob diagram on n points”, or just a
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blob diagram when no confusion arises, is an (n,n)-bridge with possible decora-
tions of “blobs” on certain of its lines. The blobs appear subject to the following
conditions. Each line is decorated with at most one blob; no line to the right of the
leftmost vertical line may be decorated; and to the left of it, only the outermost line
in any nested formation of loop lines can be decorated. The set of blob diagrams
on n points is denoted B(n). Figure shows an example of a blob diagram on 11

points with a blob on all lines that accept decoration.
N4 NS 4
7
AA S SN
Figure 3.8: A blob diagram in B(11)

Similar to the Temperley-Lieb case, there is now a multiplication on CB(n),
defined using a concatenation procedure. This may give rise to internal loops and
multiple blobs on certain lines. We then impose the rules on the multiplication
that any diagram with multiple blobs on one or several lines is considered equal
to the same diagram with a single blob on those lines, and any internal loop is
removed from the diagram multiplying by e, if the loop is decorated, otherwise by
—(g+ ¢ 1). The realization of b, (m) is now the isomorphism f : b, (m) — CB(n),
mapping U; and e to the diagrams U; and e, given in Figure and

-

Figure 3.9: Blob generator e.

Our next goal is to establish a bijection between the set of blob diagrams and
the set of pairs of one-line standard bitableaux of same shape. Let m be a blob
diagram. Given a horizontal line [, in either edge, we put [ = (a,b) where a is the
left endpoint and b is the right endpoint. Let I; = (a1,b1) and Iy = (ag,b2) be
horizontal lines on the same edge. We say that l; covers I if a3 < as < by < by.
We also say that the leftmost vertical line (if any) covers all lines to the right of it.

Now, we say that a node is covered if the line to which it belongs is decorated or
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the line to which it belongs is covered by a decorated line. If a node is not covered,

we call it uncovered.

Definition 3.2.8. Let m be a blob diagram. Suppose that m has exactly v vertical

n—v

5+ horizontal lines on each edge.

lines and h =

e If v > 0 and the leftmost vertical line is not decorated or there is no vertical
lines then we associate to m a pair of A-bitableaux, t;op(m) and tpo:(m), with

A= ((h+v),(h)) by the following rules

1. k is in the second component of t;,,(m) (tper(m)) if and only if: either k
is uncovered and it is the right endpoint of a horizontal line on the top
(bottom) edge, or it is covered and it is the left endpoint of a horizontal

line on the top (bottom) edge
2. the numbers increase along rows.
e If v > 0 and the leftmost vertical line is decorated then we associate to m

a pair of A-bitableaux, t;,,(m) and tpo(m), with A = ((h), (h + v)) by the

following rules

1. k is in the first component of t;,p(M) (tpor(m)) if and only if: either it
is uncovered and it is the left endpoint of a horizontal line on the top
(bottom) edge or it is covered and it is the right endpoint of a horizontal

line on the top (bottom) edge

2. the numbers increase along rows.

We view these rules as a generalization of the bijection between T(n) and
Para(n), with the two components of the bitableau replacing the two columns
of the element of Pary(n) and with the presence of a cover reversing the roles of

left and right.

For A € Bip;(n) and s,t € Std(A), we let mq denote the unique blob diagram

such that t;op(Ms¢) =5 and tper(Mmee) =t

Remark 3.2.9. For all t € Std(A) and 1 < j < n, we have

(2) If t(7) < 0 then the node k is covered in the top edge of ma.
(#¢) If the node k is covered in the top edge of myx then t(j) < 0.

Example 3.2.10. Let m be the blob diagram in Figure [3.8] then
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() = <ys\4\7\9\1o\,11\2\5\6\8\11\)

)

ot (m) = <]2\4\7\10\11 1\3\5\6\8\9\)

Figure 3.10: The pair of bitableaux associated with m.

3.3 WALKS ON THE BRATTELI DIAGRAM

We now explain how the Bratteli diagram for b, (m) provides a useful interpretation
of the order = on Std(A). Let B!?(n) (resp. B"*(n)) denote the set of upper (lower)
halves of blob diagrams. To be more precise, B*P(n) (resp. B'*(n)) consists of
all blob diagrams on n points with the information on the bottom (top) points of
the vertical lines omitted. Thus B*P(n) (resp. B***(n)) is in bijection with Std(n)
via m = tyo(m) (resp. m — tyo(m)) and so B!P(n) and B*(n) are in bijection
with each other. On the diagrammatic level, the bijection can be visualized as a

reflection through a horizontal axis.

Recall that the Bratteli diagram for b,(m) gives an enumeration of B'P(n)
through a Pascal triangle pattern, see [23]. To be precise, for A € A,, the Bratteli
diagram associates with the point (\,n) of the plane the set B!°P(n,\), defined
as those diagrams from B!°P(n) that have exactly |A| vertical lines, where the
leftmost vertical line is decorated iff A is negative. Set b, ) := [B*P(n, \)| with
the convention that B*P(n,\) := 0 if A ¢ A,,. Then there is a bijection between
BtP(n, \) and B!P(n—1, \+1)UBP(n—1, A\—1), as we explain shortly. The Pascal

triangle formula b, x = bp—1 241 + bp—1,0—1 is a consequence of this bijection.

For A € A, \ {0} define AT € A,41 by AT := XA+ 1 where the sign is positive iff
A > 0. Similarly, for A € A, \ {0} define A~ := X\ £ 1 where the sign is positive iff
A < 0. Finally, if A = 0 € A,, define AT := 1 and A~ := —1. With these definitions
we have for any A € A,, that A= = AT in A, ;1. In other words, the map A — A~
moves A closer to the central axis of the Bratteli diagram consisting of the points

{(0,k),k =0,1...}, whereas A — AT takes A\ away from the central axis.

The above mentioned bijection is now induced by injective maps

LB (n—1,)) = B (n, A1), Fax: BP(n —1,)\) — BP(n,A\7) (3.3.1)
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Figure 3.11: Bratteli diagram

that can be described concretely as follows. If m € B*P(n— 1, \) then f: 5 adds an
undecorated vertical line on the right hand side of m. If A 7 0 then f,  joins the
rightmost vertical line of m with the new n’st point of the (top) edge whereas f;; o
adds a decorated vertical line on the right hand side of m. Finally, by convention
ffo (resp. fi ) maps the empty diagram to the unique diagram of BP(1,1) (resp.
BoP(1,—1)).

For us the main point of this construction is that any element of m € B!?(n)

can be written uniquely as

m= fon f1o0 where oy € {+,—} for k=1,...,n. (3.3.2)

nAp

In other words, the sequence of signs {0y }x=1,... », uniquely determines m and hence
B°P(n) is in bijection with walks on the Bratteli diagram, starting with the empty
partition in position (0,0) and at the k’th step, where the walk is situated in (k, A),

going inwards or outwards according to the value of o;. We denote by W (m) the
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walk associated with m € BtP(n).

Let us now return to the order > on Std(A) introduced above. Suppose that
s € Std(A) for A € Bip;(n). Then s also gives rise to a walk, denoted w(s), on the
points of the Bratteli diagram. It starts in (0,0) and for K = 0,1,...,n — 1 goes
from (k,j) to (k+ 1,5 — 1) if k 4+ 1 is located in the second component of s and
to (k4 1,7+ 1) if K+ 1 is located in the first component of s. In other words, at
the k’th step the walk w(s) is situated in (k,s(k)) where {s(k) |k =0,1,...,n} is
the sequence of integers associated with s as in Definition [3:2.6] With this walk
realization of the bitableaux, we can visualize the order >. Indeed, let s, t € Std(A).
Then s > t iff at each step of the two walks w(s) is either strictly closer than w(t)
to the central vertical axis of the Bratteli diagram or they are at the same distance

from the central axis and w(s) is located (weakly) to the left of w(t).

Let us now explain the relationship between the two walks. We denote by s the

bijection B'?(n) — Std(n), m — t;,,(m), mentioned above.
Lemma 3.3.1. Let m € B'P(n). Then we have W(m) = w(s(m)).

Proof: This is a consequence of Remark and the definitions. O

There is a natural surjective map 7 : B(n) — T(n), which sends a blob diagram
m to the (n,n)-bridge obtained by deleting all decorations in m. On the other
hand, T(n) is in bijection with pairs of two-column standard tableaux of the same
shape and B(n) is in bijection with pairs of one-line standard bitableaux of the
same shape by Definition [3.2.8] and so our next goal is to describe the above map
7 in terms of one-line bitableaux and two-column tableaux. For this we make a

couple of definitions.

Definition 3.3.2. Suppose that A = ((a), (b)) € Bip;(n) and let t € Std(X). Set
w1 = max{a,b} and po = min{a,b}. Let u be the two-column partition of n given

by p = (p1, p2)’. Then we define ¢ as the unique p-standard tableau that satisfies
k is in the second column of T¢ if and only if |t(k)| < |t(k — 1)].

We claim that 7 defined in this way is a standard tableau. For this we use that
a node k of the blob diagram given by ms¢ is a right endpoint in the top (resp.
bottom) edge if and only if |s(k)| < |s(k—1)| (resp. [t(k)| < [t(k—1)]), as can easily
be seen by analyzing Definition In other words, 75 and 7y can be described
as the unique two-column tableaux that satisfy 7(ms¢) = Br, -, where 7 is the map

defined above, and our claim follows.
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For s € Std(A) we let |w(s)| denote the walk on the Bratteli diagram that at the
k’th step is located in the point (k,|s(k)|). The two components of its associated

bitableau are then the conjugates of the columns of 75, as follows from the above.

Definition 3.3.3. For A € Bip;(n) and s,t € Std(A), we write s ~ tif 7, = 7.
Thus s ~ t if and only if |s(k)| = [t(k)| for all 1 < k < n.

We give a couple of Lemmas related to these definitions.

Lemma 3.3.4. Suppose that XA € Bip,(n) and let s,t € Std(X). Then, 7s > 74 if
and only if |s(k)| < |t(k)| for all 1 < k < mn. In particular, if s = t then 75 > 7¢.

Proof: Notice that

k+s(k)| k— |5(k)>’

Shape(7s|x) = ( 5 , 5

Shape(ri|x) = (k + \;(k)l’ k- 2t(l-:)|>

for all 1 < k < n. Using the property of the usual dominance order that u > v <=
V' > 1/ we deduce that 75 > 7 if and only if |s(k)| < [t(k)| for all 1 < k < n, which
is the first claim of the Lemma. The second claim follows now from Lemma [3.2.7]
O

Using the natural embedding ¢ : T(n) — B(n) we obtain a walk description
of the elements of T(n) as well. Under this description, T(n) corresponds to the
walks on the Bratteli diagram for b, (m) that always stay in the positive half of the

Bratteli diagram, including the central vertical axis.

The left action of &,, on tableaux generalizes to an action of &,, on bitableaux.

Using it we have the following Lemma.

Lemma 3.3.5. Suppose that A € Bip,(n) and let s,t € Std(\). Suppose moreover
that s = t, that sgps = t for some s € &, and that s = t. Then spT7s = T¢ and

Ts D> T¢.

Proof: Note first that by the assumptions we have s(j) = #(j) for all j # k. Let
us first assume that s(k + 1) > 1. Then s(k) > 0 since s(j) changes by +1 when
j is increased by 1. But similarly t(k) > 0 and then we must have t(k) = s(k) + 2
since § > t. Since k and k + 1 are located in different components in s and in ¢,

this gives us the equalities

s(h—1)=tk—1)=s(k)+1=t(k) — 1 =s(k+1) = t(k + 1)
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from which we get by Definition that &k (resp. k + 1) is located in second
(resp. first) column of 75 whereas k (resp. k + 1) is placed in first (resp. second)
column of 7¢. Since j is located in the same column of 75 and 7¢ for j # k, k + 1

we now conclude that sp7; = 7¢ and 75 > 7¢, as needed.

The case s(k + 1) < —1 is treated similarly and so the only remaining case is
s(k+1)=0. Then t(k+ 1) = s(k — 1) = t(k — 1) = 0. Moreover since § > t we
have (k) = —1 and t(k) = 1. But this implies that s ~ t, finishing the proof. [

Definition 3.3.6. Suppose that A € Bip;(n) and that s,t € Std(X). Then we
say that “s has a hook at position k7 if s(k — 1) = s(k + 1) = s(k) £ 1 where
1 <k <n-—1. Moreover we say that “t is obtained from s by making a hook at
position k smaller” if s(j) = t(j) for j # k, s(k) = t(k) £2 and s > t.

The last condition can also be written as sps =t and s > t. Geometrically, if t
is obtained from s by making a hook at position k smaller then t is obtained from
s by either replacing a configuration of three consecutive points in w(t) forming a
“(” by a configuration “)” at these three points, or reversely, depending on which

side of the Bratteli diagram the configuration is located.

Lemma 3.3.7. For t € Std(A\) we define 0(t) as the element of &,, that satisfies
t = 0(t)t*. Then 0(t) can be written as product of simple transpositions d(t) =
such that s;; ...silt’\ is standard and such that s;;s;;_, ...silt)‘ <

SinSip_q -+ Siy

Si; 4 cosy N forall1 < j < k.

Proof: This can be seen via the walk realization of Std(X). Indeed the walk w(t*)
first zigzags on and off the central vertical line of the Bratteli diagram, using the
sign — an even number of times, and then finishes using the sign + repeatedly, if
A is located in the positive half, or using once the sign — followed by the sign +
repeatedly, if A is located in the negative half.

This walk can be converted into w(t) through a series of k walks, say, where
at each step the new walk is obtained from the previous one by making a hook
at position j smaller, for some j. At tableau level, each of these transformations
is given by the action of a simple transposition s;. The Lemma follows from this.
O

Example 3.3.8. We illustrate the above Lemma. Let A = ((4),(2)) € Bip,(6)

and

t=C[1[2]3]6], [4]5])
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Then, we have 0(t) = s3s4528351. Now, define the bitableaux tg, t1, to, t3, t4 and t5

as follows:

to=t"= ([2][4]5]6] [1[3])

to=sito= ([1]4]5]6] [2]3])

=ssti= ([1]3]5]6] [2]4])

t3 = satp (’1‘2‘5‘6‘,’3‘4”

to=ssts = ([1]2]4]6] [3]5])

ts=ssta= ([1]2]3]6] [4]5])

It is straightforward to check that t* =ty > t; > ty = t3 = &4 > t5 = t. The figures

above show how the walk w(t*) is converted into w(t).

w(tz)
w(ty) w(ts)

Remark 3.3.9. Although we do not need it directly, we note that [(d(t)) = k and

that the expression 0(t) = s;, 8i,_, - - - i, is reduced.



CHAPTER 4

GRADED REPRESENTATION THEORY

In this chapter we introduce the basic notions of graded representation theory. Our
main emphasis will be the concept of graded cellular algebra, this concept plays
a central role in the remainder of this thesis. At the end of this chapter we show

that the T, (¢) and b,(m) are Z-graded algebras.

4.1 BASIC DEFINITIONS

From now on we adopt the convention that all modules considered are left mod-
ules, unless otherwise specified. Fix an integral domain R. A graded R-module
is a R-module M which has a direct sum decomposition M = @, , M. For
k € Z, if m € M}, we say that m is an homogeneous element of degree k and we set
deg(m) = k. If M is a graded R-module denote by M to the ungraded R-module
obtained by forgetting the grading on M. For any z € Z and graded R-module
M = @,.c;, My, let M(z) be the graded R-module obtained by shifting the grading
on M up by z, thus M(z)y = My_, for all k € Z. A graded R-algebra is an unital
associative R-algebra A which is graded as R-module such that AxA; C Ak, for
all (k1) € Z?, where A = @.cz Ar is the direct sum decomposition in homoge-
neous components given by the grading on A. A graded A-module is a graded
R-module M = P, ., M}, such that M is an A-module and Ay M; C My, for all
(k,1) € Z2.

A graded R-module M = €, M, is positively graded if M}, = 0 whenever k < 0.
That is, all of the homogeneous elements of M have non-negative degree. Suppose

that A is a R-algebra positively graded and that M = @, M}, is a finite dimen-

29
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sional graded A-module. For each j € Zlet G;M = ®k2j Mj.. Since A is positively
graded G; M is a graded A-submodule of M. Let a be maximal and z be minimal
such that G, M = M and G, M = 0, respectively. Then the grading filtration of M
is the filtration

0=G.M<G..\M<..GM=M (4.1.1)

Let ¢t be an indeterminate over Z. Let M be a finite dimensional graded A-
module and let M = @, , My its direct sum decomposition in homogeneous

components, define its graded dimension by an explicit Laurent polynomial

dimy (M) =Y " (dimMy)t* € Z[t,t™"] (4.1.2)

kEeZ
For a simple graded A-module L let [M : L{k)] be the multiplicity of the simple
module L(k) as a graded composition factor of M for k € Z. Then, we can define

the graded decomposition number as

[M: L]y = > [M: L(k)]t* € Z[t,t 7] (4.1.3)
kez

We finish this section by relating the graded decomposition numbers of A and
some graded subalgebras of A. Let ¢ € A be a homogeneous idempotent and let
A, denote the subalgebra eAe of A. Then A, is a graded subalgebra of A and the
inclusion ¢ : A, — A is a homogeneous map of degree zero. We write mod — A
(resp. mod — A,) for the category of finite dimensional left A-modules (resp. A.-
modules). We define the functor f : mod — A — mod — A., where for V'€ mod — A,

fV is the subspace ¢V of V regarded as A.-module.

Theorem 4.1.1. Let L and V graded A-modules. Assume that L is simple and
that eL # 0. Then,

[V : L]y =[eV :eL)y (4.1.4)

where the left (resp. right) side of correspond to the graded decomposition

number for A-modules (resp. A.-modules).

Proof: First, we note that a non-zero homogeneous idempotent must have degree
zero. Hence, ¢V is a graded module, where for a homogeneous element v € V' with
ev # 0 we have deg(v) = deg(ev). The same is true for eL. Therefore,
follows exactly as in the ungraded case [10, Appendix A1]. O
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4.2 GRADED CELLULAR ALGEBRAS

All algebras studied in this thesis are graded cellular algebras so we briefly recall the
definition and some properties of these algebras. Actually, the claim that b, (m) is
a graded cellular algebra is the main result in this thesis. Graded cellular algebras
was introduced by J. Hu and A. Mathas in [I4], following and extending ideas of
J. Graham and G. Lehrer [I1].

Definition 4.2.1. Let A be graded R-algebra which is free of finite rank over R.
A graded cell datum for A is a quadruple (A, T, C, deg), where (A, >) is the weight
poset, T'()) is a finite set for A € A, and

C:lLeaTO) XTO) — A deg: [[iea TN = Z

(s,t) — ¢\

are two functions such that C' is injective and

(a) For A € A and s,t € T()\), ¢ is a homogeneous element of A of degree
deg ¢ = deg(s) + deg(t).

(b) The set {c | s,t € T()\) for A € A} is a R-basis of A.

(c) The R-linear map * : A — A determined by (c2,)* = ¢, for all A € A and all

sty

s,t € T(A), is an algebra anti-automorphism of A

(d) If s,t € T(N), for some A € A, and a € A then there exist scalars rys(a) € R
such that

ac) = Z rus(a)cy, mod AN
ueT'(\)

where A* is the R-submodule of A spanned by {ck, | u > A;a,b € T(u)}

The set {c | s,t € T()\) for A € A} is a graded cellular basis for A. If A has a

graded cellular basis we say that A is a graded cellular algebra.

If we omit the axiom (a) in the definition of graded cellular algebra, then we re-
cover the original definition of cellular algebras given by J. Graham and G. Lehrer.

A R-algebra satisfying the axioms (b),(c) and (d) is called cellular algebra.

Fix a graded cell datum (A, T, C, deg) for A. For A € A the graded cell module
C()) is the R-module with basis {¢) | s € T(\)} and A-action given by
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ac) = Z Tus (@)ci (4.2.1)

ueT(N)

where the scalars rys(a) € R are the same scalars appearing in Definition
(d). Note that the scalars rys(a) not depend on t, consequently the cell modules
are well defined. The cell modules C(\) are equipped with a homogeneous bilinear

form (-,- ) of degree zero determined by
caschy = (2, e ach, mod AN (4.2.2)
for all a,b,5,t € T(\). The radical of this form
rad C(\) ={z € C(\) | (z,y)» =0 for all y € C(\)}

is a graded A-submodule of C(A) so that D(A) = C'(X\)/rad C(A) is a graded A-
module. (See [25 Proposition 2.9] and [14) Lemma 2.7]).
Let Ag = {\ € A| D()\) # 0}. The next theorems classifies the simple graded

A-modules over a field and describe the respective graded decomposition numbers.
Theorem 4.2.2. ([1], Theorem 2.10]) Suppose that R is a field. Then
{D\)(k) | X€ Ao and k € Z}
18 a complete set of pairwise non-isomorphic simple graded A-modules.
Theorem 4.2.3. Suppose that A € A and pn € Ag. Then
(a) [C(A) - D(w)]e € N[t t71];
(b) [CN) : D()li=1 = [C(N) : D(p)];
(c) [C(u) : D(W)]e =1 and [C(A) : D(w)]¢ # 0 only if A = p.
(d) dim; C(A) = 3255, [C(A) = D(p)]e dimy D(p).

Proof:  Claims (a), (b) and (c) are [14, Lemma 2.13]. Part (d) is a direct conse-
quence of the definitions. O

It is straightforward to check that a graded cellular algebra is positively graded
if and only if deg(s) > 0 for all s € T'(\) and A € A. Consequently, if A is positively

graded then so is each cell module of A.
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4.3  GRADING Tl,(q) AND b, (m)

In this section we show that the Temperley-Lieb algebra T, (¢) and the blob al-
gebra b, (m) are Z-graded algebras. We do this by proving that the kernels of
the surjections given in Theorem and Theorem are graded ideals. In
the T',,(q)-case we rely on certain properties of Murphy’s standard basis that are
proved in [I3]. These properties are missing in the b, (m)-case and so our argument

is somewhat different in that case. We need the following theorem.

Theorem 4.3.1. Let A be a Z-graded algebra. Assume that I is an ideal of A
generated by homogeneous elements, then it is graded. Consequently, the quotient

algebra A/I is a Z-graded algebra with the grading induced from the one on A.

Proof:  See [0, Theorem 1.3]. O

4.3.1 GrADING T1,(q)

Let us briefly recall Murphy’s standard basis for the Hecke algebra H,,(¢?). For
w =8, ...8;, a reduced expression of w € &,, we define T, := T3, ...T;,. Then
{Tw|w € &,} is a basis for H,(q). For A € Par(n) we let &) < &,, denote the row

stabilizer of 7* under the left action of &,, on tableaux and define
Ty ‘= Z Tw
weS )

We let * denote the anti-automorphism of H, determined by T} = T; for all
1 <4 < n and define for o,7 € Std(X)

Tro — T;(T)xATd(U)-

Then {z,}, with 7 and ¢ running over standard tableaux of the same shape, is

Murphy’s standard basis for H,,(q), see [29, Theorem 4.17].

We set Z,, := ker ®5 where @ : H,,(¢?) — Tl,(q) is the second surjection given
in Theorem Then Z,, is an ideal of H,,(¢*) and we have H,,(¢*)/Z, = Tl,(q).

We can now state our first Theorem.

Theorem 4.3.2. T, is a graded ideal of H,(q?). Hence Tl,(q) is a Z-graded
algebra, with the grading induced from the one on H,(q?), via Theorem|2.2.1}

Proof: We first note that by the results of Harterich, [I3, Theorem 4], we know
that Z, is spanned (over C!) by those {z,,} for which the underlying shape has
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strictly more than two columns, that is Shape(7), Shape(c) ¢ Para(n). In other
words, {z:o| 0,7 € Std(A\), A € Par(n) \ Para(n)} is a basis for Z,.

On the other hand, in [14] J. Hu and A. Mathas construct a basis {¢.,} for
Hn(q?), such that each ., is a homogeneous element of H,(¢?); here (7,0) is
running over the same set as for the standard basis. They furthermore show in [I4]
Lemma 5.4] that for each pair (7, o) like this, there is a non-zero scalar ¢ € C such

that
Vro = CTro + Z TocLoe (4.3.1)

(v,6)>(7,0)
where 7, € C and where (v,<) > (7,0) means that v > 7, ¢ > o, and (v,5) #
(7,0). But this shows that also the {t¢;} such that Shape(r), Shape(o) ¢ Pary(n),
are a basis for Z,,. From this we get, via Theorem that Z,, is a graded ideal

as claimed. O

Remark 4.3.3. There is a version of the Theorem involving the homomorphism

®,. For this, in the proof one should replace {1, } by the dual basis {¢.} of [14].

Remark 4.3.4. In spite of the important role of the Temperley-Lieb algebra in
recent categorification theory, see eg. [32], the above graded structure has not been
mentioned before in the literature, to the best of our knowledge. Our grading is

also not immediately comparable with the supergrading used in [34].

4.3.2 GRADING b, (m)

Let us now turn to the blob algebra. In order to treat that case we need the
following Theorem. Note that the congruence 2k = m mod [ can always be solved

because we have assumed that [ is odd

Theorem 4.3.5. Let k € Z such that 2k = m mod [. Then, the elements Fy, E5 €
H,(m) are homogeneous of degree zero. More precisely, they can be written as a
sum of homogeneous elements of degree zero as follows
By =) eli) Ey =) e(j)
i 3
where the left sum runs over all © € I™ such that i1 = k and ic = k — 1, and the

right sum runs over all 3 € I™ such that j1 = —k and jo = —k — 1.

Proof: We only prove the result for E7, the result for Es is proved similarly.
In [5, Section 4.4], Brundan, Kleshchev and Wang note that under the embed-

ding Hp(m) < Hyq1(m) one has e() — >, ., e(4,4), and so it is enough to prove
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the case n = 2, that is that Ey = e(k, k — 1) holds. Using the uniqueness statement
for F4, in order to prove this, it is enough to show that e(k,k — 1) verifies the

equations (2.1.5)) and (2.1.6)), since it is clearly an idempotent.

Note first that y; = 0 as it follows by combining the relations ,
and . Put now j = (k,k — 1). Multiplying by e(j) for n = 2 and
r =1, we get Lie(j) = ¢**e(4), or equivalently Lie(j) = ¢™e(j). Hence
holds.

To show we first recall from [14, Lemma 4.1(c)] that in general e(3) # 0
iff 2 € I™ is a residue sequence coming from a standard bi-tableau of a bipartition
of n. Combining this fact with the standing conditions on ¢ given in , we
deduce e(s15) = 0 and hence ¥1e(j) = 0 by (2.2.8). Multiplying this equation on
the left by ¢; and using we obtain yse(j) = 0.

Now, recall that by definition P;(j) and Q1(j) are power series in y; and ys.

Furthermore, in this particular case we have that the constant coefficient of P;(7)
is 1 and so (2.2.17)) gives (71 + 1)e(4) = 0 as needed. O

We are now in position to establish the main objective of this section, namely
to provide a graded structure on b,(m). In the forthcoming Section we refine

this graded structure on b, (m) to a graded cellular basis structure.

Corollary 4.3.6. The kernel of the surjection ® : H,,(m) — b, (m) from Theorem
is a graded ideal. Hence, the algebra b, (m) has a presentation with generators

{1/}1, “e ,wn_l} U {yl, “e 7yn} U {6(2) | 1€ In}
subject to the same relations as in Theorem[2.2.1), with the additional relation
e(i) =0

whenever i1 = k and io = k — 1, or iy = —k and io = —k — 1. These relations
are homogeneous with respect to the degree function defined in Definition |2.2.1).
Therefore, b, (m) can be provided with the structure of a Z-graded algebra such that

® is a homogeneous homomorphism.

Proof: The result follows by direct application of Theorems [2.1.6] [4.3.5] and [£.3.1]
O

Remark 4.3.7. We can also give an homogeneous presentation for T, (q) as fol-

lows. First, note that for A = (3) € Par(3) we have

Iy = T1T2T1 + T1T2 + T2T1 + T1 + T2 +1
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On the other hand, by [14, Corollary 4.16] if ¢ is not a cubic root of unity then we
have in H3(q?) that z) = ce(0, 1,2), where ¢ € C*. Therefore, in order to obtain an
homogeneous presentation of T, (g) we impose in the homogeneous presentation

of H,(¢?) the additional relation
e(i)=0  ifi; =0,ip =1 and iz = 2.

If ¢ is a cubic root of unity, again using [14, Corollary 4.16], we impose the addi-
tional relation

e(i)ys =0 if iy = 0,4y = 1 and i3 = 2

in the homogeneous presentation of #,,(¢?) to obtain an homogeneous presentation

of Tl,,(q).

We end this chapter by expressing the generator e € b,(m) in terms of homo-
geneous generators. We remark that in general the elements U; € b,,(m), i > 1 are

not homogeneous in b, (m).

Lemma 4.3.8. Let k € Z such that 2k = m mod [. Then, the element e €
bn(m) is homogeneous of degree zero. More precisely, it can be written as a sum of

homogeneous elements of degree zero as follows

e = Z e(4) (4.3.2)

iel™
i1:—

Proof: The claim follows by combining Theorem (2.2.16) and Uy = —[m]e.
0
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GRADED CELLULAR BASIS FOR T1,,(q) AND b, (m)

The main goal in this thesis is to study graded representation theory of the Temperley-
Lieb algebra and the blob algebra, that is, to understand the structure of the graded
simple modules of these algebras. It is known that all of the simple modules over
finite dimensional Z-graded algebras can be graded in a unique way up to degree
shift. Thus, in studying the graded simple modules we do not lose information
about the simple modules, but actually gain additional insight into the structure
of the ungraded irreducible modules. In this chapter we construct Z-gradings on

the cell and simple modules of T1,,(g) and b, (m).

5.1 Jucys-MURPHY ELEMENTS ON b, (m)

In Corollary we gave a new (homogeneous) presentation for b, (m), while
in Chapter [3] we described the diagrammatical basis for the blob algebra. Unfor-
tunately, it seems nontrivial to express the homogeneous generators in terms of
the diagram basis of b,,(m). However, it turns out that a graded cellular basis for
bn(m) can be constructed from a precise description of the KLR idempotents in
by (m). Inspired by the work of J. Hu and A. Mathas [I4], we shall obtain in this
chapter an expression for them building on the results from [26]. A key point for
this is to make b, (m) fit into the general setting of an algebra with Jucys-Murphy
(JM) elements.

The first example of a family of JM elements was given by Jucys [16] and, inde-
pendently, by Murphy [27] for the group algebra of the symmetric group. A cellular
algebra with Jucys-Murphy elements, is essentially, a cellular algebra equipped with

a family of commuting elements which acts on the cellular basis (when it is suitable

37
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ordered) via upper triangular matrices.
It provides an abstract setting for carrying out much of Murphy’s theory for
Young’s seminormal form. The axiomatization of this concept was given by A.

Mathas in [26].

Let A be a cellular algebra with cellular basis
C={cd | eAs teT(\)}

as in Definition Assume furthermore that each T'(\) is a poset with respect

to an order <y, or just < for simplicity. The following definition is taken from [26].

Definition 5.1.1. A family of Jucys-Murphy elements for A is a set {L1,..., L}

of commuting elements of A together with a set of scalars,
{cs(i)) e R|s€T(N), e Aand 1 <i <k}

such that for ¢ =1,...,k we have L7 = L; and, for all A € A and s,t € A,

Lic) = co(i)ed + E TenCpy mod A*

v>s

for some rg, € R (which depends on ). We call ¢,(i) the content of s at .

The purpose of this section is now to apply this definition to b,(m). By the
above definition, in order to apply the results from [26] we must to first find a cellu-
lar basis for b,(m) and then choose an appropriate set of Jucys-Murphy elements.
Actually, the diagrammatical basis of b, (m) is a cellular basis. We now recall the

various elements of this cellular structure.

According to the notation introduced in Definition we take A = Bip,(n),
ordered by >. Set T'(X) = Std(X), for all A € Bip,;(n). Given s,t € T(X) define
¢} = mg. We remark that the diagrammatical basis B(n) is also cellular for b9 (m)
and bX (m), since B(n) is a free basis for both algebras. For A € A, let b} (m) be

the ideal of b, (m) spanned by the set
{mg¢ | 5,t € Std(p) ; p > A}

In the cases of b9 (m) and b% (m) we write b59-*(m) and bX*(m) for the ideals.

Similarly, the diagrammatical basis for the Temperley-Lieb algebra is cellular

[11, Example 1.4]. In this case, the cellular structure is given by A = Pary(n),
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ordered by dominance. T'(A) = Std(A) for all A € A, and for o, 7 € T(\) we set

Cg\"r = ﬁUT'

Since we are assuming that ¢ +¢~! # 0 we get that the bilinear forms (-, -) are
all nonzero, in the Temperley-Lieb case as well as the blob algebra case. From this
we get from remark (3.10) of [1I] that both algebras are quasi-hereditary and that

the cell modules are standard modules in the sense of quasi-hereditary algebras.

We return to the aim of finding a family of Jucys-Murphy elements for b, (m).
By Theorem we have a homomorphism from H,,(m) onto b, (m), it maps the
elements Ly € H,(m) to

(Uk—l + q) - (U1 + q)((q - qil)Uo + qm)(U1 + q) .. (Uk—l + q) S bn(m)

We shall use the same notation Lj for this element of b,(m). It satisfies the

following commutation rules with the U;

LyU; =U; Ly, ifk#d,i+1 (5.1.1)
(Up + ¢ L1 =Lip(Ug +q) for 1 <k < n. (5.1.2)
Liy1(Up + ¢ 1) =(Us + q) Ly, for 1<k <n. (5.1.3)

It is known that the Lj are a family of JM-elements for H,(m) with respect to
the cellular basis used for example in [I4], in which <) is the dominance order on
bitableaux. One might now hope that the set {Ly,...L,} is also a family of JM-
elements for b, (m). That this should be the case is not at all obvious. Indeed, the
concept of a family of JM-elements depends heavily on the underlying cellular basis
and a cellular algebra may in general be endowed with several, completely different,
cellular bases with different orders. For example the conjectures of Bonnafé, Geck,
Tancu and Lam in [2], indicate that Lusztig’s theory of cells for unequal parameters
should give rise to a cellular basis on H,(m) for each choice of a weight function
on the Coxeter group of type B, in dependence of a parameter r. In this setting
only the asymptotic case r > n corresponds to the dominance order on T'(A). On
the contrary, in [31] it is shown that the cell structure on b, (m) corresponds to the

other extreme case r = 0 under restriction to Bip,(n).

We shall show that in fact {Lq,...L,} do form a family of JM-elements for
by (m) where the poset structure T(A) = Std(A) is the one defined above. Even
more, using the surjection HS(m) — b9 (m) given in Theorem we define

elements {Ly,..., L,} of b2 (m) using the same formula as before and we show that



40 CHAPTER 5. GRADED CELLULAR BASIS FOR T1,(q) AND b, (m)

these form a family of JM-elements for b9 (m) with respect to {mg}, considered as

elements of b9 (m).

Definition 5.1.2. Suppose that X € Bip;(n) and let t € Std(\). Let j be an
integer with 1 < j < n. Define the content of t at k to be the scalar given by

VQ if d=1

c(g) =
t qQ(C—I)Q—l Zf d=2

where (1,¢,d) is the unique node in [A] such that t(1,¢,d) = j. In other words,
ci(k) is an element of either O,C(q,Q) or C, depending on the context. In the C

case, note that c((j) = ¢*0).

Lemma 5.1.3. Suppose that A € Bip,(n) and let k be an integer with 1 < k < n.
Then we have the identity

Lkmtxtx = C¢x (k)mtxtx mod bﬁ(m)
Similar statements hold over b (m) and b%(m) .

Proof:  Using the description of t* given after Definition together with
Definition we find that the diagram corresponding to mx is one of the
diagrams that appear in Figure [5.1] But then the statement of the Lemma is
equation (25) of [7, Lemma 7.1]. (Note that there is an error in equation (25) as
presented in loc. cit. As a matter of fact, to get the correct expressions one should
subtract 2 from all appearing exponents of x since the relation between L; and L}

introduced two pages earlier should be corrected the same way).
O

2h n

n

A=((h) (h+v)) A=((h+v),(h))
Figure 5.1: The blob diagram mx .
Our proof that the {L;} form a family of JM-clements shall be a downwards

induction over the partial order > with the preceding Lemma providing the induc-

tion basis. To obtain the inductive step we need to understand the relationship
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between the action of U; and > and hence we would like to have a formula for the
action of Uy in terms of walks on the Bratteli diagram. In general there is no such
simple formula. On the other hand, there is one situation where the action of Uy

is particularly easy to visualize.

Lemma 5.1.4. Suppose that A € Bip,(n) and s,t € Std(\). Assume moreover
that sps = t for the simple transposition sy and that s > t or equivalently, that w(t)
is obtained from w(s) by making a hook at position k smaller. Then the following
relation holds in b, (m)
m if st
Upmyn = w if
yemtt)\ Zf 5~ t.
Similar formulas hold over O, K and in the Temperley-Lieb algebra (corresponding

tos oo t).

Proof:  This is an immediate consequence of the definition of the maps f7,. U

The next three Lemmas are preparations for Lemma [5.1.8]

Lemma 5.1.5. Suppose that A\ € Pary(n) and o,7,u € Std(\). Suppose moreover
that uw> o > 7 and that sxo = T for some k. Let v € Std(\) be chosen such
that UpByx = 7By» mod TI* for some scalar r € C (such v always exists by
the diagrammatical realization of the Temperley-Lieb algebra and its cell modules).

Then, if r is nonzero we have that vi> 7.

Proof: We identify o, 7 and u with their walks w(o), w(7) and w(u) on the Bratteli
diagram for T',, and also with their corresponding sign sequences. Then the sign
sequences for o and 7 are the same except at the k’th and k + 1’st positions where
the sequence for o has —, 4+ whereas the sequence for 7 has +, —. On the other
hand, for u all four possibilities of signs may occur at these positions, apriori, and

so we proceed by a case by case analysis.

The first case to analyze is the case where the signs for u are +,— at these
positions. In this case we get v = u (and r := —[2]), and so the claim of the
Lemma follows from the assumptions. The next case is the one where the signs are
+,+ at positions k£ and k + 1. On the diagrammatic level we have three options
for the top edge of §,,x, illustrated in Figure [5.2

In the subcase (a), the signs for u at positions k, k+ 1, a and b are +,+, — and

—, respectively. For v the signs in these positions are +, —, + and —, whereas the



42 CHAPTER 5. GRADED CELLULAR BASIS FOR T1,(q) AND b, (m)

Figure 5.2: Top edge of B>

signs for v and u agree at all other positions. The claim follows from this. The
subcase (b) is treated similarly. Finally, in the subcase (¢) we have r = 0, contrary

to the assumptions.

The third case is the one where the signs for u are —, 4+ at the positions k, k4 1.
In that case, at the diagrammatic level, k is connected to a point a < k whereas
k 4 1 is either connected to b > k + 1 or it is the upper endpoint of a vertical line.
In both cases, we find that the sign sequence for v is the same as the one for w,
except at positions k,k + 1 where it becomes +,—. But by the assumptions, u
differs from o in at least one position and the result follows in this case as well.

Note that this is the only case in which u > v.

The last case is the one where the signs for u at the positions k, k+ 1 are —, —.
In this case, k is connected to a and K+ 1 toband b < a < k < k+ 1. Moreover
the signs for u at these positions are 4,4+, —, —. But then the signs for v at these
positions are +, —, +, — whereas the signs for v and u agree at all other positions.

The claim follows from this. O

Lemma 5.1.6. Suppose that u € Pary(n). Let o,7 € Std(u). Assume that
UpBorn = aBrre mod TLE, with o # 0 and 1 < k < n. Then, 7 > o, or

o> T and spo =T.

Proof: The result follows by a case by case analysis, similar to that given in the

proof of the previous Lemma. O

Lemma 5.1.7. Let A € Bip;(n) and u € Std(X). Assume that Upymyx = amg
mod b} (m), for a € C and v € Std(X\) (such v always exists by the diagrammatic
realization of by,(m)). Suppose moreover that « is nonzero and that the node j
is covered in the top edge of myn, but uncovered in the top edge of myx. Then

[u(7)| = |o(4)| # 0 if and only if j = k. Similar statements hold over O and K.

Proof: 1In order for the action of Uy to transform a covered node j in the top edge

of my» to an uncovered node in the top edge of myn, the diagram of my» must
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be one of those shown in the below Figure [5.3| with the position of j shown in each

case. Using this classification, the Lemma follows from Definition [3.2.8 (]
k k41 a k k+1 a k k41 k k+1 a
k<j<a E<j<k+1 a<j<k+1 k<ji<a

Figure 5.3: Possibilities for mx

We can now finally prove the property of the order > that makes our induction
work. It is a generalization to the blob algebra case of Lemma [5.1.5] and in fact

we shall deduce it from that Lemma.

Lemma 5.1.8. Suppose that A = ((a), (b)) € Bip,(n) and s, t,u € Std(A). Suppose
furthermore that sps = t and that u > s > t. Let v € Std(X) be chosen such that
Upmyr = rmy mod b (m) for some scalar r € C. Then, if r is nonzero we have

that v = t. Similar statements are valid for b9 (m) and b% (m).

Proof:  Set py = max{a,b}, uo = min{a,b} and let p = (u1,p2)’. Then p €
Pars(n) and in the Temperley-Lieb algebra we have that

Ukﬁru‘rﬂ = Oélﬁ-,—n-,—u mod T

where 7, 7y are as in Definition and oy # 0; indeed oy = —[2] if & = —[2] or if
a =y, and oy = 1 if @ = 1. Moreover, by Lemma [3.3.4 we have that 7, > 75 > 7.

Case 1 (1, >7s>7¢). In this case we have by Lemma that s,7s = 7¢ and then
Lemma [5.1.5] gives that 7, > 7¢. Now by Lemma[3.2.7] in order to prove that v > t

it is enough to show that

[0(j)] = [t(4)] implies v(j) < t(j). (5.1.4)

Hence, assume that |o(j)| = [t(j)], but t(j) < 0 and v(j) > 0 for some 1 < j < n.
We now split this case into two subcases according to Lemma[5.1.6] that is, 7, > 7,
or, 7, > T, and STy, = T,. First, we assume that 7, > 7,,. Then we get from
u > s > t and Lemma that u(j) = s(j) = t(j) and so we get u(j) < 0,
v(j) > 0 and |u(j)| = [0(j)|. From this we conclude via Lemma [5.1.7) that j = k,

hence that s(k) = t(k), which is impossible because sis = t.

So we can assume that 7, > 7, and sy, = 7,. Note that in this setting we

have [u(j)| = |o(j)] if j # k and |Ju(k)| +2 = |o(k)|. Since sxs = t, 75 # 7¢ and
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t < 0 we also have that s(j) = t(j) if j # k and s(k) + 2 = t(k) < —2. Then we
get from Lemma that j = k. By t(k) < —2 we obtain that v(k) > 2 since
[t(k)| = |o(k)|. Then v(k + 1) > 1 since the sequence of integers changes by +1
when k is increased by 1. But |o(k + 1)| = [u(k + 1)| and u(k 4+ 1) < 0, so we can
use the Lemma [5.1.7] again to obtain a contradiction. This completes the proof in

Case 1.

Case 2 (1, > 75 = 7¢). By the assumptions t is obtained from s by making a hook
at position k smaller. Moreover, since 75 = 7¢ this hook is located on the central
vertical axis of the Bratteli diagram, that is t(k—1) = s(k—1) = t(k+1) = s(k+1) =
0. But then, since u > s, we have necessarily that u(k—1) = u(k+1) = 0, u(k) = —1
which implies via Lemma [5.1.4] that v is obtained from u by making a hook at

position k£ smaller. Hence we get v > t as claimed.

Case 3 (1, = 75 ™ 7¢). By the hypothesis in this case we have 7, = 7¢. Recall that
at the Bratteli diagram level this implies that at each step the walks w(t) and w(v)
are either equal or mirror images under the reflection through the central vertical
axis of the Bratteli diagram. So, in order to prove the Lemma in this case we must
prove that whenever the path w(t) is on the negative side of the Bratteli diagram,
the path w(v) is also on the negative part. In terms of the sequence of integers the

last condition is equivalent to
t(7) < 0 implies v(j) < 0 (5.1.5)

for all 1 < 57 < n. Suppose by contradiction that is not true for some
1 < 5 < n. Therefore, t(j) < 0 < v(j) for some 1 < j < n. Using the fact that
s(j) = t(4), for all j #k, 7, = 75 and 7, = 7, we can conclude via Remark
and Lemma [5.1.7) that j = k. Hence, at step k the walk w(t) (resp. w(v)) is on
the negative side of Bratteli diagram and is true for all j # k. This implies
that t(k — 1) = t(k +1) = 0 and t(k) = —1. But this is impossible because s > t

and sis = t. This completes the proof of the Lemma. O

We are now in position to prove the triangularity property for {Lq,...,L,}. It
follows from it that the set {Ly,...,L,} is a family of JM-elements for the blob
algebra with respect to the order .

Theorem 5.1.9. Suppose that A € Bip,(n) and s,t € Std(X). Then

Limge = c(k)mgy + Z ayMy¢ mod b;‘(m)

ueStd(A)
urs
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for some scalars a,. A similar statements holds for bS(m) and bX (m).

Proof: By the cellularity of the diagram basis, the statement of the Lemma is
independent of t. We proceed by induction on the order >. The induction basis
s = t* is provided by Lemma Assume now that s # t*. Then we can find i
and s’ such that s/ = s and s;5' = 5. By the inductive hypothesis the Theorem is
valid for §’. We first assume that s »~ s’ and k # i,7 + 1. Using Lemma and
the commutation rule we then get

Limg = LyUimg = UiLgmgr = ¢or (k)me + > ayUimye mod b)) (m).

ueStd(A)
u>-s’

On the other hand, by the previous Lemma the sum is a linear combination of
elements of the form my¢ where u > s and since ¢;(k) = ¢/ (k) we are done in this

case.

If s ~s and k # 4,i + 1 we find similarly

Limg =y, ' LyUimg =y, ' UiLpmg = co (B)met+ » y. 'ayUimy mod b (m)

ueStd(A)
u>s’

and may conclude the same way as before. We next treat the case s » s’ and i = k

where we find, using the commutation rule ([5.1.2)) that
Lgmge = LipUpmgre = Lip(Ug + ¢ — @)mare = (Up + ¢ ) Lgpamere — gLpmgre.

By the inductive hypothesis, Lyms¢ and Liii1mg ¢ are linear combination of ele-
ments of the form m, where u > s and hence we find, using the inductive hypothesis

and Lemma once more, that Lymg is equal to

UpLpiimg = Cs/(k + 1)m5t + Z a,Ugmye  mod bﬁ(m)

uestd(A)
u>-s’

But ¢s(k) = ¢ (k + 1) and we may conclude this case using the previous Lemma

as before. The remaining cases are treated similarly. O

5.2 GRADED CELLULAR BASIS FOR T1,,(¢) AND b, (m)

In this section we obtain our main results showing that b, (m) is a graded cellular
algebra. Our methods are inspired by the ones used by Hu and Mathas in [I4]

Section 4 and 5], who construct a graded cellular basis {t} for the cyclotomic
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Hecke algebra, in terms of the Khovanov-Lauda-Rouquier generators. But unfor-
tunately is not possible to use their results directly. In fact, the homomorphism
O : H,(m) — b,(m) may easily map linearly independent elements to linearly
dependent elements. Moreover, due to the incompatibility between the dominance
order used for {1} and the order > for b,,(m), we do not know how to find a basis
for ker @ consisting of elements from {ug;}, and so in general it seems intractable

to determine which are the subsets of {15} that stay independent under ®.

Our solution to this problem is indirect. It is based on an alternative realization
of the KLR-idempotents e(¢) which is possible in the setting of an algebra with
JM-elements, see Lemma 4.2 of [26]. It also plays a key role in [14] in the setting

of cyclotomic Hecke algebras. To explain it we first setup the relevant notation.

We fix O and m as above. Recall that K = C(g, Q) and b (m) = b9 (m) @0 K.
Over K the contents from Definition trivially verify the separation criterion
of [26] and so bX (m) is semisimple. Hence we can apply [26] to the algebras b, (m),

b€ (m) and bE (m). We repeat the necessary definitions in our setting.

Definition 5.2.1. Suppose that A € Bip,(n) and s, t € Std(A). Then we define

L Ly — ¢ (k) X
Fy = | I | | —2 b (m
! Ct(k) - cs(k) © " ( )
k=1 seStd(n)

cs(k)#c (k)
and set fst = FsmstFt.

We extend the order > to pairs of bitableaux of the same shape by declaring
(u,0) = (s,t) if u;p € Std(A) and s,t € Std(p), and if either p = A or p = A and
u>s and v > t. Then we get that

foo=mgt D> Ty (5.2.1)
(u,0)>(s,t)

for some 7., € K and hence
{fst | 5,t € Std(X), X € Bip;(n)}

is a basis for bX (m), the seminormal basis. Moreover, by [26, Theorem 3.7], for

t € Std(A) there exists a non-zero scalar v € K such that

feefee = efue (5.2.2)

Let ~ be the equivalence relation on Std(n) given by s = t if r4(k) = rs(k)

for K = 1,2,...,n. The equivalence classes for =~ are parametrized by residue
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sequences I" of length n; for i € I"™ we denote by Std(z) the corresponding class.
Any tableau s gives rise to a residue sequence that is denoted i°. Then we have
s € Std(z°) but in general Std(z) may be empty, of course. For each i € I" we
define idempotents €®(i) € bX (m) by

eb(i) = Z if%.

seStd(d) °

Then it follows from [26] that actually e’(i) € b9 and so we may reduce €®(3)

modulo m to obtain idempotents of b, (m) that we denote the same way €®(4).

The next result plays a key role in [I4] in the setting of cyclotomic Hecke

algebras.
Lemma 5.2.2. For i = (i1,i9,...,i,) € I"™ let
bo(m)(3) := {v € by(m) | (Ly — ®)*v =0 forr=1,...,n and k> 0}

be the generalized weight space for the action of L; € by(m). Then we have
b, (m) (i) = e®(3)b,(m).

Proof:  The proof of Proposition 4.8 of [I4] carries over. O

Lemma 5.2.3. Let ® : Hy,(m) — by(m) be as above and let © € I™. Then
®(e(i)) = €®(3). In particular, e®(3) is a homogeneous element of b,(m) of degree

0.

Proof:  Since ® is surjective and maps the JM-elements of #H,,(m) to the JM-
elements of b, (m), we have ®(H,,(m)(i)) = b,(m)(2). But then

Moreover, ®(e(¢)) lies in the subalgebra of b,(m) generated by the JM-elements
since e() has the corresponding property, and so ®(e()) = €°(i) as claimed. On
the other hand, by Corollary we know that ® is homogeneous and so the

second claim holds as well. O

We next define elements ¥?,y? of b,(m) by ¥? := ®(¢;) and y? = ®(y;). As
is the case for €’(7), these elements are homogeneous of the same degree as their
Hecke algebra counterparts. We are now in position to give the key definition of

this section.
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Definition 5.2.4. Suppose that X € Bip,(n) and s,t € Std(\). Let d(s) =

Siy ... Sy, and (L) = sj,...s; be reduced expressions for d(s) and d(t), chosen

k l

as in Lemma|3.5.1 Then we define
5N
Poo=l .. fkeb(z ) gl gl € by (m).

Note that although our %, look much like the elements 15 introduced in [14],
this resemblance is only formal and in general there is no obvious connection be-
tween the two families of elements, due to the differences between the tableaux.
Note also that in our definition there is no y factor, contrary to the [14] situation.
Finally, note that our 1, can be shown to be independent of the choices of reduced

expressions as above, this is also contrary to the situation in [I4].

Our next result is parallel to Theorem 4.14 of [I4], but has no y term. This

‘missing’ y is the reason why there is no y factor in Definition [5.2.4]

Theorem 5.2.5. Suppose that A = ((a), (b)) € Bip,(n). Then there exists a

nonzero scalar r € C* such that

e’(i*) = rmpaa mod b (m).

Proof: We begin by determining yex. For this we use (5.2.1) and (5.2.2) and find

Yo foer = for foe
= MM mod bf’A(m)

= (Ye)‘mpa mod b (m)

(Ye) frer mod bff’)‘(m)

where ¢ = min{a,b} and where mpxpama can be conveniently found via the

diagrammatic realization of mgax in Figure 5.1} From this we deduce that vy =
(Ye)©.

On the other hand, for s € Std(iA) with s # ¢*, we get by combining the
description of t* given just after Definition with the standing conditions on
the parameters that Shape(s) = A. But then and the definition of
e(#) imply

e(iM) = Lmtxtx mod b5 (m). (5.2.3)
(Ye)*
Since e(i*) and @mtxtx both belong to b9*(m), we can now replace b (m)

by 692 (m) in (5.2.3)). From this the proof is obtained by reducing modulo m. [
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We can now prove that the elements from Definition [5.2.4] form a basis for

b (m).

Theorem 5.2.6. Suppose that A € Bip,(n) and s,t € Std(A). Then there are
scalars r € C* and ry, € C such that

d’gt = TMg + Z TupMyp -
(u,0)(s,t)

Hence {¢% | 5,t € Std(\) for A € Bip,(n)} is a basis for b,(m).

Proof:  For d(s) = s;, ...s;, a reduced expression for d(s) as above we consider
first wg’l ...wfk eb(ik). Using li and the commutation rules ,
and between the y; and v;, we get that it can be expressed as a linear
combination of elements of the form <I>(Tij1 Ty g (U, - ,yn)e(i)‘)) where
(4y,---,1%5,) is a subsequence of (i1, ..., ) and where fj, . (y1,...,Yn) is a poly-
nomial in the y;. But ®(T;) = qU;+¢? and hence this can also be written as a linear
combination of elements of the form Uy, ... U, gj,...;. (48, -, y)eb (i) where
(ij,,--.,1;,) is a subsequence of (i1, ...,ix) and gj,. . (¥%,...,y8) is a polynomial
in the y°. But from and the previous Theorem this is a linear combination

of elements of the form U;; ...U;; mpap mod b (m).

Going through the above argument once more, we get that the coefficient of
Ui, ... Upmpx in g .. 42 e’ (i) is nonzero, in fact it is essentially the product of
the constant terms of the polynomials ) appearing in . But Lemmaim—
plies, by the choice of reduced expression for 9(s) = s;, ... s;,, that U, ... U, mpax =

ylmg for some [ € Zsq and then Lemma implies that

A
U, ... Uy, mpap = rmyea mod by (m)

J1

for some scalar 7 € C and some u such that u > s. Summing up, this proves the

Theorem in the case where t = t*.

To prove the general case, we first note that the same argument as above, only
acting on the right instead of on the left, proves the Theorem in the case where
s = t*. The general case then follows by multiplying the two versions together and

using cellularity. O

Remark 5.2.7. It follows from the Theorem that the subalgebra of b, (m) gener-
ated by the €®(i) and the v is equal to b, (m) itself.
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To establish our main theorem we must define a degree function on the set of
all one-line standard bitableaux. Let A € Bip;(n) and t € Std(X). Then we define
the degree of t as

deg t := deg 1)’ x. (5.2.4)

We can now prove our main result, namely to construct a graded cellular basis for
bn(m). Given our previous work, we can essentially follow the argument of [I4]
Theorem 5.8], just making the corresponding changes in notation. We sketch the

argument because this is the main theorem of the thesis.

Theorem 5.2.8. The blob algebra b, (m) is a graded cellular algebra with graded
cellular basis {1%, | s,t € Std(X) for X € Bip,(n)}.

Proof: First of all it follows from the triangularity property of Theorem that
{42 | s,t € Std(X) for X € Bip,(n)}

is a cellular basis for b,(m), since {mq | §,t € Std(A) for A € Bip,(n)} is it.

Moreover, by the definitions, ¥%; is a homogeneous elements of b, (m) of degree
deg ¥, = degs + degt.

Using Corollary one sees that there is a unique anti-automorphism * of b, (m)
that fixes the generators ¢f,4? and e’(i). Then by the definition it is clear that

(¥b)* = 1P, and so the anti-automorphism induced by the basis {¢%} coincides

with %. The Theorem is proved. (]

Since b,(m) is a graded cellular algebra with graded cellular basis {%} we
can define graded cell and simple b, (m)-modules which we denote by A(A) and
L(\), respectively, with A € Bip;(n). Therefore, we have obtained the main goal
in this chapter for the b,(m)-case. The graded cell module, A(A), has a C-basis
{4? | t € Std(X)} where the b, (m)-action comes from .

By Theorem the cell modules induced by the graded cellular bases agree
with the cell modules induced by the diagram bases {mg}, that is the standard

modules for b,(m). The following result gives a formula for the graded dimension
of A(N).

Corollary 5.2.9. Let A € Bip(n). Then

dimy AA) = ) desl® (5.2.5)
teStd(A)
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Proof:  The result is a direct consequence of the definitions and Theorem [5.2.8]
O

For completeness, we give the analogous Theorem for the Temperley-Lieb al-
gebra. This proof relies here on Theorem and the compatibility of Murphy’s
standard basis with the diagram basis, as proved in [I3], and could have been
given earlier in the thesis. Let @2 : H,(¢*) — Tl,(q) be as above and define

Tl i= ®y(1hy) for s,t € Std(n) where v is the graded cellular basis for H,(q?)
introduced by Hu and Mathas and Shape(s) = Shape(t) € Para(n).

Theorem 5.2.10. The Temperley-Lieb algebra Tl,,(q) is a graded cellular algebra

with graded cellular basis {W1'} and degree function defined as above.

Proof:  According to Theorem 9 of [I3], the diagram basis for T, (q) is upper
triangularily related to the standard basis, with respect to the dominance order.
But ¢ is also upper triangularily related to the standard basis with respect to
the dominance order, as already mentioned above, and hence the Theorem follows.

O

5.3 EXAMPLES

In this section we illustrate our results on two examples.

Example 5.3.1. Our first example is T13(q), with ¢ chosen to be a primitive cubic
root of unity, that is e = 3. This is a non-semisimple algebra and so we expect the
grading to be nontrivial. Using the homogeneous basis for 1/)5Ttl for Tl3(q), we aim
at determining a homogeneous basis for T'l3(g), in terms of the diagrams. Define

first

1]2] E]

3 2
Then o and 7 are the only tableaux of shape (2,1). The only other possible shape

g =

in Pary(3) is A = (1,1,1) whose only standard tableau is t*. Hence we get that

Tl3(q) has dimension five with homogeneous basis consisting of the elements

T 1T Tl )Tl Tl
569 Pt Pis o Pt o Pergrs

The residue sequences for ¢ and 7 are i° = (0,1,2) and 3" = (0,2,1) and
the degrees are deg(o) = 0 and deg(7) = 1. (See [14, (3.8) and Definition 4.7]).
Therefore, using the orthogonality of the KLR-idempotents, we have

or¥os = Yog¥is =0, (5.3.1)

TO
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see [I4, Lemma 5.2]. Now by the triangular expansion property mentioned in the

above Theorem there exists ¢ € C* such that

Tl M
oo = C ;chl

and hence U; is homogeneous of degree 0. Using the triangular expansion property

of Theorem [5.2.8| once again, there are scalars ¢y, co € C with ¢; # 0 such that

+ C2

Waul
Multiplying this equality on the right by ! = cU;, and using equation (5.3.1)),

we get that ¢; = [2]ca. Hence the element

is a scalar multiple of X! and homogeneous of degree 1. Similarly we obtain that

B?ﬂﬂ\\\ +
AN Vol

is a scalar multiple of ¥Z! and homogeneous of degree 1.

the element

Now, ¢ is the maximal tableau of shape (2,1) and so we have XlypTl = ¢T!

TO 70T TT"®

From this we obtain that 17! is a scalar multiple of

C= +[2]: +[2]: S+
which is a homogeneous element of degree 2.

The last homogeneous basis element can now be determined by expanding 1/)51tA
in the diagram basis. On the other hand, since the unity 1 is always homogeneous
of degree 0 and since it is linearly independent of A, B, C and U;, we use it. All in
all, the set {1,U7, A, B, C} is a homogeneous bases for T'l3(q). In particular, Tl3(q)
is a positively graded algebra and F; := spanc{A, B,C} and F; := spanc{C} are
ideals in Tl3(q). In general, T1,(q) is not positively graded.

Example 5.3.2. We now describe a homogeneous basis for b3 = b3(q, y.) in terms
A

(21
case [ = 5 and m = 2. First, we list all elements in Std(3), with their respective

of blob diagrams, with ¢ a primitive quintic root of unity and y. = so in this

residues sequences and degrees.
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Bi-partitions Bitableaux Res. Sequence | Degree
2= (2,03) | *=(4,1,0) 0
A=((1),(2) | s=(B,02) | °=(4,0,1) 1
t=(1,2H) it = (1,4,0) 0
tv = (2B,0) | *=(4,1,2) 0
p=(2),1) | v=(03,2) | *=(1,4,2) 0
u=(012,B) | *=(1,2,4) 0
v=(00),3) | =@0028) | i*=(4,01) 0
k=((3),(0) | t~=(023,0) | " =(1,2,3) 0

In order to obtain a diagrammatic homogeneous basis for b3 we need the fol-

lowing lemma.

Lemma 5.3.3. Let A € Bip;(n) and s,t € Std(\). Then, we have

et = b, if 1 is located in the second component of 5 and t;
=
3 0, otherwise.

Proof: The claim is a direct consequence of the definition of 12, the orthogonality
of the KLR~idempotents and Lemma [4.3.8 O

Using the triangularity property given in Lemma[5.2.6] the orthogonality of the
KLR-idempotents and the previous Lemma we can obtain a homogeneous
basis for b3 in terms of diagrams arguing as in the previous example. We omit such

arguments for brevity, since dime(bs) = 20.
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wela o ta el ]

The set {Aqp | a,0 € Std(A) , A € Bip;(n)} is a homogeneous basis for bs
with deg(Aqp) = deg(a) + deg(b). We remark that the elements Aqp in general
not coincide with the elements wgb. Just like in the case of the Temperley-Lieb

algebra, in general the blob algebra is not positively graded .



CHAPTER 6

GRADED DECOMPOSITION NUMBER FOR b, (m)

In the previous Chapter we have constructed a graded cellular basis {12} for
bn(m). The existence of this basis allows define graded cell and simple b, (m)-
modules which we have denoted by A(A) and L(A), respectively, for A € Bip,(n).
The graded dimension of the graded cell modules A(A) has been computed in
Corollary In this Chapter, we want to calculate the graded dimension of the
graded simple modules L(A). The graded dimensions of graded cell and simple
modules are related to the graded decomposition numbers, [A(u) : L(N)];, via
equation (iv) in Theorem Since the graded dimension of the graded cell
modules for b,, is known from Corollary the problem of finding the graded
dimensions of the irreducible b,-modules is equivalent to the problem of finding
the graded decomposition numbers for b,. The main goal in this chapter is then
to find [A(p) : L(A)]; for all g, A € Bip;(n). We shall refer to these polynomials

as graded decomposition numbers for b, (m).

In the ungraded setting, the decomposition numbers for b,, were determined in
[24] and [31] by using algebraic methods. Our approach is essentially combinato-
rial, and therefore different from those used in the ungraded case. A main point of
our approach is the existence of a family of positively graded cellular subalgebras
bn(m, A) of b, with XA a one-line bipartition of total degree n. The graded de-
compositions numbers for b, and b, (m, A) are closely related and hence we reduce
the main problem in this chapter to calculate the graded decomposition numbers
for b,(m,A). Now, since b,(m, ) is a positively graded algebra we can define a
filtration induced by the grading on b, (m, A) for each cell b, (m, A)-module. This

filtration together with a counting argument is sufficient to determine the graded

95
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decomposition numbers for b, (m,A) (and therefore for b,,).

6.1 DEGREE FUNCTION

In this section we study the degree function on Std(n) defined in (5.2.4). We remark
that in general this function does not coincide with the degree function defined [5]
(3.5)], the main reason for this is that we do not work with the dominance order
on Std(n) and both degree functions depend heavily on the order considered on
Std(n). First we give an interpretation of the degree function in terms of addable
and removable nodes, similar to the one given in [14] Definition 4.7] for standard
tableaux using the dominance order. Finally, we give a formula for the degree

function depending on walks and walls on the Bratteli diagram.

Let X € Bip;(n). The node a = (1, ¢, d) is called an addable node of A if v & A
and AU{a} is the diagram of a one-line bipartition of n+1. Similarly, p € A is called
a removable node of A if A\{p} is the diagram of a one-line bipartition of n — 1.
Note that any one-line bipartition has exactly two addable nodes. Furthermore, a

one-line bipartition may have one or two removable nodes.

Given two nodes a = (1,¢1,dy) and 8 = (1, ¢a,ds) then « is said to be below
if ¢ > ¢, or ¢y = ¢2, dy = 1 and do = 2. The concept of to be below could have
been defined in terms of t*. In fact, given two nodes o and S choose a bipartition
X such that a, 8 € [A]. Then, the node « is below 3 if and only if t*(a) > t*(3).
Using the dominance order there is a similar interpretation of the concept of to be
below introduced in [14, Section 4]. But since t* does not coincide with the unique
maximal bitableau for the dominance order, the two concepts do not coincide in

general.

Let t € Std(A). For k =1,...,nlet A (k) be the set of all addable nodes of the
bipartition Shape(t;) which are below of t~1(k). Similarly, let R(k) be the set of
all removable nodes of the bipartition Shape(t;) which are below of t~1(k). Now
define the sets AP (k) and R{* (k) by

Af (k) = {a € A(k) | res(a) = r(k)}

R (k) = {p € Ry(k) | res(p) = ro(k)}

It is easy to check that the sets A" (k) and R{"(k) are empty or contain a single
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node, for all t € Std(A) and 1 < k <n. Let g be the function defined by
g:Std(n) — Z
t = Yy (AT (R)] = [RY(R))
Using the above notation we can now give a characterization of the degree

function. We need the following Lemma.

Lemma 6.1.1. Let A € Bip,(n) and s,t € Std(X). Assume that s > t and s,5 = t.
Then

9(t) = g(s) = deg(yye’(i%))

Proof:  First note that AT (k) = A7 (k) and RT*(k) = R (k), for all k # r,r + 1,

since s, = t. Hence

r+1 r+1
9(t) = g(s) = > (AT (K)| = [RP(R)) = > (AT (k)| = [RT(R)])
k=r k=r
Set e(®) = (i1,- -y 8psbrg1,---,0n). We remark that i; = r5(j). The numbers

involved in the above sums depends on i, — ¢,11 modulo [, so we split the proof in

four cases according to the followings options:

—1 modl
By — gy = 0 mod! (6.1.1)
1 mod!
otherwise.

We consider the first case, the remaining three cases follow in a similar way. Thus
we assume that 4, — 4,47 = —1 mod [. Note that the node occupied by r in t
is below the node occupied by r + 1 in t since s > t. In this setting, the values

involved in the sums are
AT (M) =0 [AZ(r+1)[=0 [RI(r)]=1 |RI(r+1)[=0

AT (M) =0 [AT(r+ D=0 [R{()[ =0 [R{(r+1D[=0

Therefore g(t) — g(s) = 1 = deg(p%e®(i%)), completing the proof in this case. [

Example 6.1.2. Assume thatl =5 and m = 2. Let A = ((5), (1)) € Bip,(6) and
s,t € Std(A) given by

s = ([1[2]3]4]6], [5]) t= ([1[2[3]4]5], [6])
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Note that s = t, s55 = t and e(¢°) = (1,2,3,4,4,0). We also have RY*(5) =
{s7'(4)}, R (j) = 0 for j # 5 and AT (j) = R{(§) = AP (j) = 0 for all 1 < j <6.
Thus g(s) = —1 and g(t) = 0. Therefore, g(t) — g(s) = 1 = degteb(i®).
Corollary 6.1.3. Let A € Bip;(n) and t € Std(X). Then g(t) = deg(t).

Proof: By Lemma there is a sequence of one-line standard bitableaux

t=tg <t <...<tp_q <t =t

such that sitio1 =t for 1 <j<kando(t)=s,...s; isa reduced expression

for 9(t). Now using the above Lemma and the fact that g(t*) = 0 we have

k k
9(t) = D _(9(tj1) = g(t))) = 3 deg(v,e"(s")) = deg(v, ... w7, e"(i%)) = deg(t)

j=1
O

Recall from Chapter (3| that for any t € Std(n) we have associated a walk on
the Bratteli diagram w(t). The walk w(t) at the j-th step is situated in (7, t(5)),
where {t(j)|7 = 0,1,...,n} is the sequence of integers associated to t in Definition
In this chapter we describe a walk as a sequence of weights. More precisely,
for t € Std(n) we write w(t) = (w(t)o, w(t)1,...,w(t),), where w(t); = t(j) for all
0 < j < mn. We refer to this notation as the weight sequence of w(t). With this at
hand, we can give a formula for the residues in terms of the weight sequence. In

fact, a routine analysis of (3.2.1)) reveals that
2r(j) =7 =2+ (wt); —w(t)j—1)(w(t); +m) modl (6.1.2)

Since [ is assumed to be odd the above formula determines uniquely the residue
sequence. In the next lemma we will use the above sequence to determine when
AP (j) and RY"(j) are non-empty. Recall that these sets have a single element or

are empty.

Lemma 6.1.4. Let t € Std(n). Consider the walk w(t) = (w(t)o, w(¥)1,...,w{t),)

determined in Definition 7?7 written as a sequence of weights. Define the sets
At ={1<ji<n|wt); <0,w(lt)j—1 =-m modl,w(t);=-m+1 modl}
A7 ={1<j<n|wt); >0,wlt)j—1 =-m modl,w(t);=-m—1 modl}
Ry={1<j<n|w(t); <0wt)1=-m—1 modlw(t);=-m mod I}
R={1<j<n|w®);>0,wlt)j-1=-m+1 modl,w(lt);=-m modl}

Define also the sets A¢ = Al U AZ and Ry = R} U R?. Then we have
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() § € Ac if and only if | AP ()] = 1
(ii) j € R if and only if |R7(5)] =1

Proof: We only prove (i), the result (ii) is proved similarly. Recall that |A7*(j)| =0
or 1, for all t € Std(n) and 1 < j < n. Suppose that j € Ay, then j € Al or j € AZ.
Assume that j € A}, the case j € A? is treated similarly. By definition of A{ we

have
w(t); <0, w(t)j—1 = —m mod I, w(t); =—m+1 mod!

Recall that for any one-line bipartition there is two addable nodes, one in each
component. Let N; and N» the addable nodes to Shape(t;_1) in the first and
second component, respectively. By w(t);—1 = —m mod [ and , the nodes
N; and N, have the same residue. On the other hand, w(t); = —m + 1 mod [
implies that N; = t7!(j). Hence, the node N, is addable to Shape(t;) with the
same residue of N. Finally, note that Ny is below N; since w(t); < 0. Therefore,
Ny € A7'(j). Consequently, |A7(j)| = 1.

Conversely, suppose that | A7 (j)] = 1. Let N be the unique node in A7*(j).
Define M to be the node occupied by j in t. Then, N and M have the same residue
and N is below M. Set N = (1,¢1,d1) and M = (1,¢2,dz). Using the conditions
on the parameters ¢ and m given in , one can check that two nodes with the
same residue can not be located in the same column . Hence, ¢y # ¢1. Since N is
below M we actually have co > ¢;. Note also that NV and M can not be located
in the same component. Hence, d; # da. Assume that ds = 1, thus d; = 2. Then,

the fact that N and M have the same residue is equivalent to
¢y —c1 =—-m modl (6.1.3)

On the other hand, recall that for any 1 < ¢ < n the weight w(t); is equal to
the number of nodes in the first component of Shape(t),) minus the number of
nodes in the second component of Shape(t|,). Therefore, it is easy to note that

w(t)j—1 =c2 —c1 and w(t); = ca —c1 + 1. Then, by (6.1.3) and ¢z > ¢1 we obtain

w(t)j—1 =—m mod [; w(t); =—m+1 mod! and w(t); > 0.

This proves that j € A} C A If do = 2 then arguing similarly we get that
j € A? C Ay, completing the proof. O



60 CHAPTER 6. GRADED DECOMPOSITION NUMBER, FOR b, ()

Corollary 6.1.5. Let t € Std(n). Let Ay and Ry the sets defined in the above
Lemma. Then

Proof: This is a direct consequence of Corollary and Lemma O
Bratteli diagram

We are now in position to give a graphical interpretation on the Bratteli diagram
of the degree function. For this we need to draw walls in the Bratteli diagram.
This means drawing vertical lines in each weight, A, such that A = —m mod [, as

shown in Figure [6.1] for the case [ = 5 and m = 2.

weight

—12 -7 -2 3 8 13

Figure 6.1: Walls in the Bratteli diagram for [ =5 and m = 2.

Then, for t € Std(n), |A¢| (resp. |Ry|) is the number of edges in the walk w(t)
such that the initial (resp. final) vertex is on a wall and the final vertex is closer
than the initial vertex to the central axis of the Bratteli diagram. For example, let
t be the bitableau associated with the walk in Figure then A; = {5,10} and
R; = {4}, consequently deg(t) = 1. It is also easy to check that |[Ax| = |Ra| =0
for all A € Bip,(n), so deg(t*) = 0.

The walls drawn on the Bratteli diagram define an alcove structure on R, where
the alcoves are the connected components of non-walls elements. We can thus refer
to the alcove or wall in which a given weight lies. Note that by the conditions on
the parameters 7 the weight A = 0 always belongs to an alcove, that is, it
is not on a wall. We refer to the alcove in which A = 0 lies as the fundamental
alcove. Let W be the infinite dihedral group on two generators s_ and s;, that

is W = (s_,s;|s2 = s2 = 1). The alcove structure defines an action of W on
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R, by mapping s_ (resp. s4) to the reflection in the left (resp. right) wall of the
fundamental alcove. Since the walls were drawn on integral weights, the subset Z
of R is clearly invariant under this action. Therefore, we can restrict the action of
W to Z. Let ~ be the equivalence relation on Z determined by this action. Figure
[6-2) shows the orbit of 0 under this action for [ = 5 and m = 2. In this case, we
have --+ ~ =10~ =4 ~0~6~ 10~ ---.

| I N I S
[ : [ : [ : [ : [

-10 7 4 2 o 3 6 s 10
Figure 6.2: The orbit of 0 under the action of W on R, for [ =5 and m = 2.

For a weight A € A,, we denote by O,,(\) the set of all u € A,, such that p ~ A.
Define M,,(X) to be the set

M, (A) = {p € O,(N\) | there exist 5 ~ t* with Shape(s) = u} (6.1.5)

Given a walk on the Bratteli diagram we say that a subset of consecutive edges
is a wall to wall step if these edges form a straight line between two walls of the same
alcove. A wall to wall step can be classified into three different types according to
whether it crosses the fundamental alcove, it goes away from the central axis or it
approaches the central axis. We denote by F', O and I to these types, respectively.
For s € Std(n), we also define integers ns(F'), ns(I) and ns(O) as the number of
occurrences in w(s) of wall to wall steps of type F', I and O, respectively. The
following lemma is the first step in order to give an easy formula for the degree of
s € Std(n) such that s ~ t*, for some X € Bip, (n). Recall that s ~ t if and only if
rs(j) =r(y), forall 1 <j <n.

Lemma 6.1.6. Let A € Bip;(n). A walk w(s) for s € Std(n) satisfies 5 ~ t* if
and only if the following conditions hold:

(a) First, w(s) and w(t*) must matches from level 0 to the first contact of w(t*)

with a wall of the fundamental alcove.

(b) Next, w(s) makes wall to wall steps (as many as the number of alcoves between

A and 0) of any type.

(c) Finally, w(s) is completed with a straight line to the level n in either direction.
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Proof:  First, recall from that for any s € Std(n) the residue can be
expressed in terms of the weight sequence of w(s). Assume that s ~ t* and
suppose that we know the weights w(s)o, w(s)1,...,w(s);—1 of the weight sequence
of w(s). Recall that w(s),; = w(s);_1%t1, so w(s),; has only two options. Therefore,
if w(t);—1 # —m mod [ (equivalently, if w(t);_1 is not on a wall) only one option
is acceptable to w(s); because by replacing in we get two different values for
r5(j). But r5(j) is a known value, actually r5(j) = 7 (j). Instead, if w(t);—1 = —m
mod [ (equivalently, if w(t);_1 is on a wall) both options for w(t); are acceptable to
w(s); because by replacing in we get the same value for r4(j). The lemma
follows then by the description of w(t}) as the walk that first zigzags on and off
the central vertical axis of the Bratteli diagram, and then finishes with a straight

line to the weight A\ at level n. O

Remark 6.1.7. A walk as in the above lemma need not have parts (b) and (c).
For example, if X is located in the fundamental alcove, on one of its walls or in one
of the two alcoves adjacent to the fundamental alcove a walk w(s) with 5 ~ t* it
does not have part (b). On the other hand, if A is located on a wall a walk w(s)
with 5 & t* it does not have part (c). According to the above lemma, we split any

walk w(s) with 5 ~ t* in three parts (a), (b) and (c).

weight

—12 -7 -2 3 8 13
Figure 6.3: Walks w(t) with ¢* = i* for A = ((0), (13)).

Figure shows all walks on the Bratteli diagram, w(t), with t ~ t*, where
A = ((0),(13)) € Bip;(13). In terms of the description given in the above lemma,
for all walks in the figure, we have that part (a) goes from level 0 to level 2, part

(b) goes from level 2 to level 12, and part (c) goes from level 12 to level 13. Hence,
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in this case My3(A) = {-13,-11,-3,-1,7,9}.

Theorem 6.1.8. Let X € Bip,(n) and 5 € Std(n). Suppose that s ~ t*. Then,
(a) If 5 € Std(\) then s = t*;

(b) If part (c) of w(s) points towards the central azxis then deg(s) = ng(F) + 1;
(c) If part (c) of w(s) points away from the central axis then deg(s) = ns(F).

Proof: Statement (a) says that the unique s € Std(\) with s ~ t* is t*, and this
is clear from the Lemmal6.1.6] Now, via Corollary [6.1.5] we can conclude that the
part (a) of w(s) has degree zero, in part (b) the degree is ng(F'), and part (c) has
degree 1 or 0 according to whether the final straight line points towards the central

axis of the Bratteli diagram or not. This proves (b) and (c). O

6.2 GRADED DECOMPOSITION NUMBERS

In this section we obtain the main result in this chapter, the graded decomposition
numbers for b,(m). For A € Bip,(n), denote by b,(m,A) to be the subalgebra
e?(i*)b,, (m)e?(i*) of b, (m). The basic strategy for finding the graded decomposi-
tion numbers for b, (m) is to exploit Theorem[4.1.1]on this subalgebra. We moreover
need the known fact that the (ungraded) decomposition numbers of b, (m) are 0

or 1 (See for instance [31, Theorem 5.5]).

Remark 6.2.1. If we assume that the graded decomposition numbers for b,,
[A(p) : L(N)]:, are polynomials with constant coefficient equal to zero (for A # p)
then we could obtain these numbers using analogous methods to those used by
Kleshchev and Nash in [18], without using the prior knowledge about the ungraded
decomposition numbers for b, mentioned in the last paragraph. The additional
hypothesis on the graded decomposition numbers can be proved by brute force
calculations over the homogeneous presentation for b,,. However, for the sake of

readability, we prefer the presentation as it stands.

Theorem 6.2.2. For A € Bip,(n), we have that b,(m,\) is a positively graded
cellular algebra with weight poset (M, (\), =), T(u) = Std(p) N Std(i*) for p €
M, (X), graded cellular basis

{92 | s, t € Std(p) N Std(i*) for p € M, (A)} (6.2.1)

and degree function as .
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Proof: By Theorem and the orthogonality of the KLR-idempotents, €’(4),

we have that b, (m, ) has a C-basis consisting of all elements ¥’ such that
PP =i =4 (6.2.2)

Thus, b, (m, ) is a positively Z-graded algebra since all bitableaux satisfying the
condition have non-negative degree by T heorem All claims about the
cellularity of b, (m,A) follow from the cellularity of b,(m) and the definition of
M, (N). O

Now that {9 | s,t € Std(u) N Std(i*) for u € M, (\)} is known to be a
graded cellular basis for b,(m,A) we can define graded cell and simple modules
which we denote by Ax(p) and Lx(u) respectively, for u € M(X). Note that
e’ (iMA(pn) = Ax(p) and e®(i*)L(n) = La(pn). We can also define graded de-
composition numbers for b,(m, A). Graded decomposition numbers of b, (m) and

bn(m, A) are related via equation (4.1.4)).
Lemma 6.2.3. Let A € Bip,(n). If p & My (X) then [A(p) : L(X)]; = 0.

Proof: First, recall that for any v € Bip,(n) the cell b,-module A(v) has a C-basis
{4% | s € Std(v)} and that by the orthogonality of the KLR-idempotents, e”(4),

these act on this basis according to the rule

b fs—
bro b ., ifd° =1

e’( Y. = 6.2.3
(&) 0, ifé®+#i (6:2:3)

Now, if g & M, () then for all s € Std(p) we have ° # >, thus
(i) A(p) = Ax(p) =0

By the description given in Lemma for all walks w(s) with i° = ¢ (and
therefore for all g € M, (X)), it is straightforward to check that A is a minimal
element of M, (). Furthermore, Theorem a) implies that t* is the unique

standard bitableau in Std(\) with residue sequence equal to i*. Hence
e’ (i*)AA) = Ax(A) = La(A) = Spanc {¢{x}
Therefore, by we have
[A(p) : LA = [Ax(p) : Lx(A)]: =0

completing the proof of the lemma. O
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6.2.1 THE NON-WALL CASE.

If A € Bip,(n) belongs to the fundamental alcove it is straightforward to check
that M, (A) = {\}. Hence, by Lemma the module L(A) only appears as a
graded composition factor in A(X), and in this case by Theorem [1.2.3|c) [A(A) :
L(A)]: = 1. Therefore, we fix A € Bip, (n) that does not belong to the fundamental
alcove. Furthermore, for the rest of this subsection we also assume that X is not on
a wall of the Bratteli diagram. The other case will be treated in the forthcoming

subsection.

Since b, (m, A) is a positively graded cellular algebra Ay () is also positively
graded, for all p € M, (X). Then dim; Ax(p) € Z[t], for all p € M,(A). Again
by the positive grading on b, (m, A) we can define the grading filtration for each
Ax(p). In order to know the dimensions of the quotients that appear in this
grading filtration it is enough with to know the coefficients of dim; A (w). This is
our next goal. We derive the graded decomposition number for b,, from this. For

A € Bip,;(n) define the number x(A) as the number of alcoves between A and 0.
Lemma 6.2.4. Let A € Bip;(n). Then |M,(X\)| = 2(k(X) +1).

Proof: Since A is not on a wall, there is in each alcove a unique representative
for the orbit of A. So, if A is located in the positive (resp. negative) side of the
Bratteli diagram then to the right (resp. left) of the (resp. left) right wall of
the fundamental alcove there is exactly x(A) + 1 elements in M, (A). Reflecting
these elements through the right (resp. left) wall of the fundamental alcove we
can get all the elements in M, (\) to the left (resp. right) of such wall. Hence,
[ M, (N)] = 2(k(X) +1). O

In order to give a precise description of dim;(Ax(u)), for pu € M, (X), we need
to index the set My, (A). Set Ay = A. Assume that X is located in the negative
(resp. positive) side of the Bratteli diagram. For 1 <4 < |M,,(A)| and ¢ odd, define
Aiy1 as the rightmost (resp. leftmost) weight in M, (XA)\{A\;}’_;. On the other
hand, if 1 <4 < |M,(A)| and ¢ even then we define A;y; as the leftmost (resp.
rightmost) weight in M, (A)\{X;}i_;.

Example 6.2.5. Figure shows an example of the indexation for M, (), where
A= —19,1 =5 and m = 2. Note that the maximal element in M,,(\), As, belongs
to the fundamental alcove. This fact is true in general, that is, the maximal element

in M, () is the representative in the orbit of A that belongs to the fundamental



66 CHAPTER 6. GRADED DECOMPOSITION NUMBER, FOR b, ()

alcove. Note also that for the example we have A; = X; if and only if 7 < j. This
fact is not true in general.

—19 —17 —15 —12 -9 -7 -5 —2 1 3 5 8 11 13 15

Figure 6.4: The indexation of M, (X) for A= —19,1 =5 and m = 2.

Lemma 6.2.6. Let A € Bip,(n) and Asj11 € Mp(X). For 0 <i < j, define
D! = {5 € Std(Asj11) | s = and deg(s) = 2i} (6.2.4)

Then, all s € Std(Ayjr1) with s =~ * belong to some D’ and |D?| = | Std(u;)],

where ug is the two-column partition of k(A) given by
pl = (k(N) = j+1i,5 — i) (6.2.5)

Proof:  Let Agj11 € Mu(X). Let 5 € Std(Agj41) with 5 ~ t*. According to
Lemma we can split the walk w(s) in three parts (a), (b) and (¢). Now, by
a routine analysis of the indexation given for M, (A), it is clear that Asj41 and A
are on the same side (positive or negative) of the Bratteli diagram (actually, all
weights in M,,(A) with odd subscript are on the same side), Agj41 does not belong
to the fundamental alcove, and A4;41 is located 2j alcoves closer than A to the

fundamental alcove.

Furthermore, part (c¢) of w(s) always points away from the central axis of Brat-
teli diagram (actually, this line coincide for all s under the above conditions).
Thus, Theorem [6.1.8(c) implies that deg(s) = ns(F), where we recall that ng(F)
was defined as the number of occurrences in w(s) of wall to wall steps of type F
(similarly, we have defined the integers ns(I) and n4(O)). Note also that ng(F)
is even, because A4j41 and A are on the same side of the Bratteli diagram, and
for s € Std(A4j41) we have 0 < ng(F) < 2j because Agjy1 is located 2j al-
coves closer than A of the fundamental alcove. Consequently, deg(s) is even and

0 < deg(s) < 2j. This proves the first claim of the Lemma.

Let 0 < ¢ < j and assume that s € D{ . By the above paragraph, we can replace
the condition deg(s) = 2i in the definition of D7 by n,(F) = 2i. Parts (a) and (c) of
w(s) are fixed, and part (b) (and therefore, the entire walk w(s)) is determined by
a sequence of wall to wall steps. More conveniently, we can describe the walk w(s)

as an ordered word in the alphabet with three letters {F, I, O} in the obvious way.
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For example, for A = ((2), (20)) € Bip,(22), I = 5, and m = 2 we have that the
bitableau described in Figure as a walk on the Bratteli diagram is in Std(As),
where A5 = ((7), (15)) and in terms of ordered words on {F,I,O} correspond to
FFO.

Figure 6.5: A walk corresponding to F'FO.

We now associate to s a two-column standard tableau of shape p as follows:
for w(s) described as a ordered word in {F,O,I}, the tableau associated to s
is determined by placing on the second column the entries corresponding to the
positions at which the letter I appears in the respective ordered word. Therefore,

/

the shape of the two-column partition associated to s is (ngs(F) 4+ ns(0), ns(I))’.

In order to check that the above assignment is well defined first note that at the
first k positions of the ordered word associated to w(s) the number of occurrences
of the letter O is greater or equal than the number of occurrences of the letter I,
this shows that the two-column tableau assigned to s is standard. Next, recall that

#(A) is the number the alcoves between A and 0, so by Lemmal6.1.6[b) we have
K(A) = ng(F) + ns(0) + ns(I) = 2i + ng(O) + ns (1) (6.2.6)

On the other hand, since A4;41 is located 2j alcoves closer than A to the funda-
mental alcove we have

K(A) = 2j + ns(0) — o (1) (6.2.7)

Combining (6.2.6) and (6.2.7) we obtain ns(I) = j —i. This proves that the

two-column tableau associated to w(s) has actually shape uz Therefore, the as-
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signment is well defined. Finally, for any two-column standard tableau of shape ug
is straightforward to check that one can recover a walk w(s) with s € Df . Hence,
the above assignment is a bijection and |Df = Std(ug )|, completing the proof of
the Lemma. O

Theorem 6.2.7. Let A € Bip,(n) and assume that k(X) > 1. The graded dimen-
sion of Ax(A;), for A; € My, (N), is completely determined by the formulas:

(@) dimy(Ax(Agjp1)) = ST cit™
(0)  dim(Ax(Agj42)) = tdime(Ax(Agj41))
(¢)  dimi(Ax(Agj43)) = tdime(Ax(Agj41))

(d)  dim(Ax(Agj44)) = ¢* dimy(Ax(Agjt1))
where ¢; = | Std(ul)| and i is the two-column partition of k(X) defined in .

Proof: By Theorem [6.2.2] we have

dimy (Ax(A;) = Y tdes) (6.2.8)

s€Std(A;)
i*=i>

Hence, part (a) in the Theorem follows immediately from Lemma Now, we
prove (b). Assume that A is located on the negative (resp. positive) side of the
Bratteli diagram. Then, by the indexing on M, (X), the weight A4;j;o is obtained
from Ay;41 by reflection about the left (resp. right) wall of the fundamental alcove
(See Example . Next, define the sets

A={s€StdAyjs1) | s~}  B={5€Std(Ayjy2) | 5=~ t*}

For s € A we associate an element § € B in the following way: Let [ be the level
at which the walk w(s) intersects the left (resp. right) wall of the fundamental
alcove for the last time. Then the walks w(§) and w(s) match from level 0 to level
I, and then from level [ to level n, w(§) is obtained from w(s) by reflection about
the left (resp. right) wall of the fundamental alcove. It is clear that this process
is reversible, so it defines a bijection between A and B, and via Theorem we
can conclude that deg(s) = deg(s) + 1. Consequently, by we have

tdimy(Ax(Agjp1)) =t 19080 =) " gdeaet = N " 4deel®) = dim, (Ax(Agj12))

sEA s€EA seB

proving (b). Parts (c) and (d), follow in a similar way. O
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Corollary 6.2.8. Let A € Bip,(n) and suppose that k(A) > 1. Forr =1,2,3,4
and Agjir € My (X) we have
j .
dime(Ax(Agjir)) = > [Std(u])] (6.2.9)
i=0

where ug is the two-column partition of k() defined in .

Proof: This follows immediately by putting ¢ = 1 in the above Theorem. O

Corollary 6.2.9. Let X € Bip,(n) with k(X)) > 1. Then, La(Ag) # 0 if and only
if k =45+ 1. Furthermore,

dime Lx(Agj1) = dimy Lx(Agj1) = | Std ()] (6.2.10)
where dimg LA(/\4J»+1) 18 viewed as polynomial over t in the natural way.

Proof: Since b, (m,A) is a positively graded cellular algebra the modules Lx(Ag)
are pure of degree zero. Therefore, dime Lx(Agj41) = dim¢ Lx(Agj41) and using
Theorem [6.2.7 we can also conclude that

|Std ()| if k=45 +1

dime(La(Ag)) < dimg Ax(Ag)i=0 = .
0 otherwise.

(6.2.11)

Thus, Lx(Ag) # 0 only if K = 45 + 1. On the other hand, recall that for b,(m)
it is known that the (ungraded) decomposition numbers are 0 or 1. By putting
t = 1in (4.1.4) this is also true for b,(m, ). Now note that A5, (x) is in the

fundamental alcove, so this is the maximal element in M, (A) with respect to the

order >=. Hence, by (6.2.9)) and (6.2.11]

dim(cA)‘()\w[n()\”) < Z dimcL)‘()\4j+1)

Xgj+1E€Mn(N)

< Y Istd(g)l

X441 E€EMn(X)

< 3 st

EPary (R(A)
= dimcAx(Ajar, ()
Therefore, the inequalities become equalities and dime(La(Agj11)) = | Std(i)].
Thus La(Ag) # 0 if k = 4j + 1
Remark 6.2.10. Assume that £(A) > 1 and k() # 2. Then, we have

=1, ifj=0

| Std(u)]
M) 1, 40
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Thus, under the above conditions on (), the algebra b, (m, A) has a unique (up
to degree shift) one-dimensional graded simple module. This module is Lx(A4j41)
when j = 0, that is, Lx(A1) = Lxa(A) since Ay = A. If kK(A) = 2 then by Lemma
we have |M,,(A)| = 6. Hence, by the above Corollary b,(m, A) has two (up
degree shift) non-isomorphic simple modules Lx (A1) and Lx(As), both of dimension

one.

We are now able to prove the main theorem in this chapter for the non-wall case,
to provide the graded decomposition numbers for the blob algebra. Surprisingly,
it was more difficult to determine the graded decomposition numbers for the case
k(A) = 2 than for the general case. This difficulty lies in the fact that for k(X)) =
2 there is two one-dimensional simple module for b,(m, ), as explained in the

previous remark.
Theorem 6.2.11. Let X € Bip;(n). For A, € M,,(X\) we have

29, if k=45 +1,
2 k=45 + 2

A LA ={ L TE=A (6.2.12)
I ifk =45+ 3;

2942 if k= 4j + 4.
Proof: By Remark we know that dim; Lx(A) = 1 so Theorem implies
[A(Ag) : LA = [Ax(Ak) : La(N)]e

Therefore, we prove the theorem for the graded decomposition numbers of b, (m, A),
[Ax(Ag) © Lx(A)]¢. On the other hand, Theorem d) relates the graded di-
mension of cell and simple modules with the graded decomposition numbers via

the formula

dimt AA()\k) = Z [A)\(Ak) : L)‘(Aj)}t dimt L)‘(A]) (6213)
A=A

Assume that x(X) = 0, then A is located in one of the two alcoves adjacent to the
fundamental alcove, and |M,,(X)| = 2 by Theorem [6.2.4] Write M, (X) = {A1, Az}
Then, A; = A and Az is in the fundamental alcove. Combining Lemma [6.1.6] and
Theorem [6.1.8 we have

dim; Ax(Ag) =1 (6.2.14)

Since by, (m, A) is a positively graded cellular algebra the modules Ly (Ax), k = 1,2
are pure of degree zero. Then, Ly(A2) = 0 by (6.2.14]). By Theorem we know
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that [Ax(A) : La(A)]: = 1 and for k = 2 equation (6.2.13) becomes t = [Ax(A2) :
Lx(N)]t, proving the Theorem for the case x(A) = 0.

Now we suppose that x(A) = 2. By Lemma we get | M, (A)| = 6. In this
setting, we have the following three possibilities for the order = on M, ()
AL < A2 < A3 < A4 < A5 < Xg
AL < A3 < A2 <A < A5 < Xg
A1 < A2 < A3 < A5 < Ay < Xg
In this three cases, the theorem follows by a case to case analysis, we only prove
the lemma for the (most interesting) last case. Figure shows an example of this

case for A = (0,16), I = 5 and m = 2. In this figure are also drawn all walks w(s)

with s =~ t*.

Figure 6.6: An example of the case when k(\) = 2.

By Corollary the modules Lx(A;) and Lx(As) are the unique (up de-
gree shift) graded simple (non-zero) modules for by, (m, A), furthermore by Remark

these modules are one dimensional and pure of degree zero. Now, Theorem
implies

dim; Ax(A1) =1;  dimp Ax(Ag) =1 dim; Ax(A3) =¢;

dimy Ax(Ag) = 1%, dimy Ax(As) =2 +1;  dimy Ax(Xg) =13 + .
By Theorem we have [Ax(A) : Lx(A)]s = 1. As in the previous case we
analyze equation for the different values of k. For k = 2,3 equation
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becomes
t=[Ax(A2): La(A)] and ¢t =[Ax(A3) : La(N)]¢
Next, if k = 4 then equation becomes
2 = [Ax(X1) : La(As)]e + [Ax(Aa) 1 La(N)]:

but it is straightforward to check that Ay & M, (X5), hence by Lemma we
have [Ax(A4) : La(As)]: = 0, thus 2 = [Ax(Ay) : La(X5)]s. Now, for k = 5 we

have

241 = [Ax(As) : Ia(As)]e + [Aa(Xs) : La(A)]:

but by Theorem c¢) we have [Ax(A5) : La(A5)]t = 1, so [Ax(As5) : La(X5)]: =
t2. Finally, for k = 6 equation (6.2.13)) becomes

3+t =[Ax(X6) : La(As)]e + [Ax(Xg) : Lax(N)]:

It is not hard to note that x(As) = 0 and that M, (Xs) = {5, A¢}, so we know
by the first case analyzed in this proof that [Ax(Xs) : La(As5)]: = t. Consequently,
[Ax(X6) : Lx(N)]¢ = t3. This completes the proof of the Theorem for the case
K(A) = 2.

Now we can assume that x(A) # 0,2. By Remark Lx(A) is the unique
(up to degree shift) one-dimensional graded simple module for b, (m, ). Recall
that by, (m, A) is a positively graded cellular algebra, so we can consider the grading
filtration for Ax(Ax), Ar € Mp(X). Now, by Theorem and Remark
dim; Ax(Ag) € Z]t] is a monic polynomial with the non-leading coefficients greater
than 1. Thus, in the grading filtration of Ax(Ag) there is a unique quotient of
dimension one. This quotient is pure of degree deg(dim; Ax(Ag)) (where here deg
denotes the polynomial degree) and must be isomorphic (in the ungraded setting)
to Lx(X). Since Lx(A) is pure of degree zero, if the grading filtration for Ay (Ay)

is a graded composition series we have
[Ax(Ar) : La(N)], = tdeeldime Ax(Ae) (6.2.15)

If the grading filtration for Ax(Ag) is not a graded composition series we can
always add graded b, (m, X)-submodules of Ay (A) to the grading filtration in order
to obtain a graded composition series. In a graded composition series obtained

in this way we can also have only one graded composition factor of dimension
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one. Otherwise we obtain via Theorem that the blob algebra b, (m) has a
(ungraded) decomposition number greater than one. Therefore, (6.2.15) is still
valid even if the grading filtration is not a graded composition series. Finally, from

Theorem [6.2.7] we know that

2, if k=45 + 1;
2 +1, ifk=4j+2
2j+1, ifk=4j+3;
2j+2, ifk=4j+4.

Now the Theorem follows by combining (6.2.15)) and ((6.2.16|). O

The formula given in the previous theorem for the graded decomposition num-

deg(dim:(Ax(Ag))) = (6.2.16)

bers for b, is not entirely clear. We want to obtain a formula that reflects the
alcove geometry on R. For A € Bip,(n) define ny € N as the number of walls
between A and 0. Then, it is straightforward to check that we can rewrite ((6.2.12))

as
tmx i g€ My (A)
A(s) : LA = , (6.2.17)
0, otherwise.
Remark 6.2.12. We stress the importance that has in our method the fact that
by (m) admits a family of positively graded subalgebras. We expect that the graded

decomposition numbers of related graded algebras, that admit positively graded

subalgebras, can be calculated by mimicking our approach.

6.2.2 THE WALL CASE.

In the previous subsection we determine the graded decomposition numbers for
bn(m), [A(p) : L(N)], when A is not on a wall. In this subsection we consider
the wall case, that is we assume that A is on a wall. For brevity, the results
shall be presented without proof since the same series of arguments used in the
non-wall case work here with minimal changes. If A\ is on one of the walls of the
fundamental alcove we have M, (A) = {A} so by Theorem and Lemma
we obtain [A(p) : L(A)]; = dux, where 0, is a Kronecker delta. So we can assume
that A is not a wall of the fundamental alcove. As in the non-wall case, define k()
as the number of alcoves between A and 0. Similarly, we index M, (A) and define
two-column partitions of k(A), ug, by the same rules used for the non-wall case.
The following theorems correspond to Theorem [6.2.7] and Theorem [6.2.11] in the

non-wall case.
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Theorem 6.2.13. Let A € Bip,(n). The graded dimension of Ax(Ag), for Ay €
M, (N), is completely determined by the formulas:

(@) dim(Ax(Agy41)) = X et

(0)  dim(Ax(Azj42)) = tdimy(Ax(Azj41))
where ¢; = | Std(u])].
Theorem 6.2.14. Let X € Bip,(n). For A, € My, (X) we have

[AR) : LV =571
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