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CHAPTER 1

Introduction

Let Sn be the symmetric group on n letters. Studying the representation theory

of the symmetric groups (more generally, the representation theory of any group

or algebra) means understanding how they interact with vector spaces. The main

goal of representation theory is to understand the structure of the irreducible rep-

resentations. The representation theory of Sn over a field k of characteristic zero

was treated around one century ago, in the works of Young, Schur and Frobe-

nius. They found that the irreducible representations, the Specht modules, are

parametrized by partitions λ of n, i.e. weakly decreasing sequences of nonnegative

integers λ = (λ1, . . . , λk) that sum to n. It has also be known for a long time that

there are several ways of constructing these Specht modules, some of which are of

combinatorial nature while other rely on geometrical or other methods. Similarly,

the dimension of the Specht module S(λ) associated with λ can be expressed in

different ways.

The situation becomes much more difficult when k is assumed to be a field

of characteristic p, for example the finite field Fp. Although the Specht module

construction still works in this setting, S(λ) is no longer irreducible in general.

Still the S(λ) are useful object in characteristic p as well. Indeed, it is known that

the irreducible representations D(λ) are parametrized by the socalled p-regular

partitions λ of n, i.e. those λ that do not contain p equal λi. For each such λ,

one obtains D(λ) as the unique irreducible quotient of S(λ). On the other hand,

in spite of this very concrete realization of D(λ) the basic problem of determining

the dimension of D(λ) is still unsolved. Indeed, this is considered by many as the

main unsolved problem of representation theory in positive characteristic and has

been at the center of much research activity over the last 30 years.
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2 CHAPTER 1. Introduction

A main conjecture in this setting is the James/Lusztig conjecture stating that

for n < p2 one should have

[S(λ) : D(µ)] = dλ,µ(1)

where [S(λ) : D(µ)] denotes composition factor multiplicity and dλ,µ(1) the eval-

uation at 1 of a certain parabolic Kazhdan-Lusztig polynomial dλ,µ(q) ∈ Z[q]. It

is calculated most efficiently using the LLT-algorithm. All evidence known so far,

computational as well as theoretical, supports this conjecture, but a proof is still

missing.

The appearance of polynomials in the conjecture might indicate that the group

algebra FpSn may be a graded algebra. To be precise, it indicates the existence

of an isomorphism of algebras ϕ : FpSn → Rn where Rn =
⊕

iRn,i is a graded

algebra.

Such an isomorphism ϕ has been constructed by Brundan and Kleshchev in a

recent important paper. The algebra Rn turns out to be a cyclotomic version of

an algebra introduced by Khovanov-Lauda and Rouquier. It is given by generators

{e(i)|i ∈ Fnp} ∪ {y1, . . . , yn} ∪ {ψ1, . . . , ψn−1}

and a long list of relations between them. Brundan and Kleshchev obtain ϕ by

constructing concrete elements in FpSn satisfying these relations and checking that

the associated map induces an isomorphism. This involves lengthy calculations,

but still their proof works even for cyclotomic Hecke algebras with the parameter

q specialized at an e’th root of unity. It should here be noted that the resulting

gradings are far from being ’visible’ to the naked eye and depend heavily on p or

the multiplicative order of q in the Hecke algebra setting.

The goal of this thesis is to study the graded representation theory of certain

quotients of the cyclotomic Hecke algebras of level 1 and 2, which admitting nice

diagrammatical presentations, the Temperley-Lieb algebra T ln(q) and the blob

algebra, respectively. The first was introduced by Temperley and Lieb in [33] as

complex associative algebras that arose in their study of transfer matrix approaches

to (planar) lattice models. But has since turned out to be related to many topics

of mathematics as well, including knot theory, operator theory, algebraic combi-

natorics and algebraic Lie theory. For instance, these algebras were subsequently

rediscovered by Jones in [15] who used them to define what is now known as the
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Jones polynomial in knot theory. As of today, it is an object well known to a gen-

eral audience in physics as well as mathematics and at the same time it remains at

the center of a big number of research articles being published each year in both

areas.

Our main emphasis lies on a two-parameter generalization bn(q,m) of the

Temperley-Lieb algebra that was introduced by P. Martin and H. Saleur in [22], as

a way of introducing periodicity in the physical model defining T ln(q). An impor-

tant feature of both T ln(q) and bn(q,m) is the fact that they are diagram algebras,

that is they have bases parameterized by certain planar diagrams, such that the

multiplications are given by concatenation of these diagrams. In the case of T ln(q)

these diagrams are the socalled bridges or Temperley-Lieb diagrams, in the case of

bn(q,m) the diagrams are certain marked Temperley-Lieb diagrams and for this

reason bn(q,m) was called the blob algebra in [22].

We are interested in the non-semisimple representation theory of T ln(q) and

bn(q,m), which is the case where q is specialized at a root of unity. The T ln(q)-case

is connected via Schur-Weyl duality to the representation theory of the quantum

group associated with SL2. The bn(q,m)-case is more intriguing and has received

quite a lot of attention over the last decade. It has been shown to share a sur-

prisingly number of properties with objects that normally arise in Lie theory. In

particular, it was shown in [24] that the decomposition numbers are given by eval-

uations at 1 of certain Kazhdan-Lusztig polynomials associated with an infinite

dihedral Weyl group.

The fact that the decomposition numbers for bn(q,m) come from polynomials

(as in the group algebra of the symmetric group case) gives a first indication of

the existence of a Z-graded structure on bn(q,m) and on its standard modules, and

indeed a main goal of our thesis is to construct such a graded structure on bn(q,m).

A main input to our thesis comes from the seminal work of Brundan and

Kleshchev that constructs isomorphisms between cyclotomic Hecke algebras and

Khovanov-Lauda-Rouquier (KLR) algebras (of type A), [3]. Since the KLR al-

gebras are Z-graded, the various Hecke algebras become Z-graded in this way as

well. On the other hand, bn(q,m) is known to be a quotient of the cyclotomic

Hecke algebra Hn(q,Q) of type G(2, 1, n), and our basic idea is now to exploit this

quotient construction.

A big step towards our goal is taken already in Chapter 4 of our thesis, where



4 CHAPTER 1. Introduction

we show that the ideal Jn ⊂ Hn(q,Q), defining bn(q,m), is homogeneous, thus

making bn(q,m) a Z-graded algebra. This result relies on a realization of Jn due to

P. Martin and D. Woodcock in [23], in terms of certain explicitly given idempotents

that turn our to be well behaved with respect to the KLR-relations.

On the other hand, this does not immediately imply a Z-grading on the standard

modules for bn(q,m) and indeed a major part of our thesis is dedicated to this point.

An important ingredient to this comes from the recent paper by Hu and Mathas,

[14], that introduces the concept of a graded cellular algebra and shows that the

cyclotomic Hecke algebras are graded cellular with respect to the Z-grading given

by Brundan and Kleshchev’s work. We then achieve our goal in the Chapter 5 by

showing that bn(q,m) is a graded cellular algebra.

A main difficulty in applying [14], is due to the fact that the cell structure on

Hn(q,Q) considered in [14] is related to the dominance order on bipartitions, which

is known to be incompatible with the natural order for the category of bn(q,m)-

modules, see [30] and [31]. We overcome this problem by showing that bn(q,m)

is an algebra endowed with a family of Jucys-Murphy elements, in the sense of

Mathas [26], with respect to a natural order that we introduce in Chapter 3. This

involves delicate arguments involving the diagram basis for bn(q,m).

It should be mentioned that our results are also valid in the Temperley-Lieb

algebra case where the relevant Hecke algebra Hn(q) this time is of type A, and

even in this case our results seem to be new. On the other hand, in the Temperley-

Lieb algebra case there is actually a simpler way to show that the ideal of Hn(q)

defining T ln(q) is graded. It is based on certain properties of Murphy’s standard

basis that were proved by M. Härterich in [13].

Let us sketch the layout of the thesis. In Chapter 2 we introduce the main

objects of our study, the Temperley-Lieb and the blob algebra. We also define the

cyclotomic Hecke algebras of level 1 and 2, and recall the relevant results from

the literature involving them. In Chapter 3 we recall the diagrammatic realization

of the Temperley-Lieb algebra and the blob algebra. We also setup all of the

combinatorics which we will need to understand the representation theory of T ln(q)

and bn. Specifically, we define partitions, bipartitions, Young diagrams, tableaux,

bitableaux and the Bratteli diagram. We use this combinatorics to parameterizing

the diagrammatic basis of T ln(q) and bn. The set of all of two-columns standard

tableaux shall be ordered by dominance, whereas the set of all one-line standard
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bitableaux shall be ordered in a non-conventional way. We end this chapter by

relating these two orders.

In Chapter 4 we introduce the basic notions of graded representation theory.

Our main emphasis will be the concept of graded cellular algebra, this concept plays

a central role in the remainder of this thesis. Actually, all algebras considered in

this thesis are graded cellular algebras. At the end of this chapter we show that

the T ln(q) and bn are Z-graded algebras. In Chapter 5 we show that the images

in bn of the Jucys-Murphy elements of Hn(q,Q) make the blob algebra into an

algebra with a family of Jucys-Murphy elements, in the sense of Mathas [26]. As

we explain in the beginning of that Section 5.1, this is quite surprising. Using this

we prove that the blob algebra is a graded cellular algebra. The analogous result

for T ln(q) follows in a simpler way. We end this chapter by giving two examples

that illustrate our results. Finally, in Chapter 6 we find the graded decomposition

numbers for the blob algebra. In order to obtain these numbers, we first need

to understand the degree function on the set of all one-line standard bitableaux

defined in Chapter 5 to make the blob algebra a graded cellular algebra. We shall

give a characterization of the degree function in terms of the Bratteli diagram.

With this at hand, we can prove the existence of a family of positively graded

cellular subalgebras of bn. Then, we reduce the problem of finding the graded

decomposition numbers for bn to the problem of finding the graded decomposition

numbers for the positive graded cellular algebras mentioned above.





CHAPTER 2

Preliminaries

In this chapter we fix the notation that shall be used throughout the thesis. We

introduce the algebras to be studied, the Temperley-Lieb algebra, the blob algebra,

the corresponding Hecke and Khovanov-Lauda-Rouquier algebras and recall the

relevant results from the literature involving them. The important diagrammatic

realizations of the Temperley-Lieb algebra and the blob algebra shall be postponed

to the forthcoming Chapter 3.

Throughout the thesis the ground field shall be the complex field C although some

of our results hold in greater generality. For q ∈ C× and an integer k we define

[k] = [k]q := qk−1 + qk−3 + . . .+ q−k+1 ∈ C

the usual Gaussian coefficient. All our algebras are associative and unital.

2.1 The Temperley-Lieb algebra, the blob algebra, the Hecke

algebras

Definition 2.1.1. Let q ∈ C×. The Temperley-Lieb algebra T ln(q) is the C-

algebra on the generators U1, ..., Un−1 subject to the relations

U2
i = −[2]Ui if 1 ≤ i ≤ n− 1

UiUjUi = Ui if |i− j| = 1

UiUj = UjUi if |i− j| > 1.

The main object of the thesis is the blob algebra, introduced in [22] by P.

Martin and H. Saleur as a generalization of the Temperley-Lieb algebra. It is

usually defined in terms of a basis of blobbed Temperley-Lieb diagrams and their

7
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compositions, from which it derives its name. Such that for the Temperley-Lieb

algebra, the blob algebra can be defined as an algebra with generators and relations.

Let ye be an invertible element of C.

Definition 2.1.2. The blob algebra bn = bn(q, ye) is the C-algebra on the gener-

ators e, U1, ..., Un−1 subject to the relations

U2
i = −[2]Ui if 1 ≤ i ≤ n− 1

UiUjUi = Ui if |i− j| = 1

UiUj = UjUi if |i− j| > 1

U1eU1 = yeU1

e2 = e

Uie = eUi if 2 ≤ i ≤ n− 1.

Assume that [m] 6= 0. The parametrization of bn through ye = −[m−1]
[m] includes

the non-semisimple cases, see [24, Section 2]. Under this choice of ye we denote

bn(q, ye) by bn(m) and replace e by the rescaled generator U0 := −[m]e. When we

are working with bn(m) we always assume that q is a l-th root of unity.

The Temperley-Lieb algebra and the blob algebra were introduced from moti-

vations in statistical mechanics. An important feature, that we postpone to the

next chapter, is that they both have diagrammatic realizations by planar diagrams.

Another significant feature of these algebras is that T ln(q) and bn(m) can be re-

alized as quotients of Hecke algebras of type A and B, respectively. This explains

why the blob algebra is sometimes referred as the Temperley-Lieb algebra of type

B.

We next define the related Hecke algebras.

Definition 2.1.3. Let q ∈ C and assume that q 6= 0, 1. The Hecke algebra Hn(q)

of type An−1 is the C-algebra with generators T1, . . . , Tn−1, subject to the relations

(Ti − q)(Ti + 1) = 0 for 1 ≤ i ≤ n− 1 (2.1.1)

TiTi+1Ti = Ti+1TiTi+1 for 1 ≤ i ≤ n− 2 (2.1.2)

TiTj = TjTi for |i− j| > 1 (2.1.3)

It follows easily from the relations that Tr is an invertible element in Hn(q),

with T−1
r = q−1(Tr − q + 1). We may then define elements L1, . . . , Ln ∈ Hn(q) by

L1 := 1 and recursively Lr+1 = q−1TrLrTr for all admissible r. They are the first

examples of Jucys-Murphy elements that play an important role in our thesis.
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Definition 2.1.4. Let q, λ1, λ2 ∈ C and suppose that q 6= 0, 1. The cyclotomic

Hecke algebra Hn(q;λ1, λ2) of type G(2, 1, n) is the C-algebra with generators

L1, . . . , Ln, T1, . . . , Tn−1 and relations

(L1 − λ1)(L1 − λ2) = 0, LrLs = LsLr,

(Tr + 1)(Tr − q) = 0, TrLr = Lr+1(Tr − q + 1),

TsTs+1Ts = Ts+1TsTs+1,

TrLs = LsTr, if |r − s| > 1,

TrTs = TsTr, if s 6= r, r + 1

for all admissible r, s.

Once again, Tr is invertible with T−1
r = q−1(Tr−q+1). From this one gets that

Lr+1 = q−1TrLrTr. Moreover, it follows from the relations that f(L1, . . . , Ln) is a

central element of Hn(q;λ1, λ2) for f(x1, . . . , xn) a symmetric polynomial. These

Li are also called Jucys-Murphy elements.

We now explain the relations mentioned above between the algebras that we

have defined.

Theorem 2.1.5. The are surjections Φ1 and Φ2 given by

Φ1 : Hn(q2) −→ T ln(q), Ti 7→ qUi + q2

Φ2 : Hn(q2) −→ T ln(q), Ti 7→ −qUi − 1.

The kernel of Φ1 is the ideal generated by

q−6T1T2T1 − q−4T1T2 − q−4T2T1 + q−2T1 + q−2T2 − 1

and the kernel of Φ2 is the ideal generated by

T1T2T1 + T1T2 + T2T1 + T1 + T2 + 1.

Proof: This is well known. �

There are two, not obviously equivalent, ways to generalize this Theorem to the

blob algebra case. One is given in [12], but for our purposes it is more convenient to

work with the second one, that appears in [23]. Set Q := qm and define Hn(m) =

Hn(q2;Q,Q−1). Assume

q4 6= 1, Q 6= Q−1, Q 6= q2Q−1, Q−1 6= q2Q. (2.1.4)
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With the above conditions, one can define elements E1, E2 ∈ H2(m) by the formulas

E1 =
(T1 − q2)(L1 −Q−1)(L2 −Q−1)

(1 + q2)(Q−Q−1)(Q−1 − q−2Q)

E2 =
(T1 − q2)(L1 −Q)(L2 −Q)

(1 + q2)(Q−1 −Q)(Q− q−2Q−1)
.

The factors of E1 and E2 commute with each other. Using this and L2 = q−2T1L1T1,

one finds that they verify the following equations

(T1 + 1)E1 = 0, (T1 + 1)E2 = 0, (2.1.5)

(L1 −Q)E1 = 0, (L1 −Q−1)E2 = 0, (2.1.6)

(L2 −Qq−2)E1 = 0, (L2 −Q−1q−2)E2 = 0 (2.1.7)

and from this it follows that E1 and E2 are idempotents associated with irreducible

representations of H2(m) of dimension one. Note that E1 and E2 are the unique

idempotents satisfying (2.1.5) and (2.1.6). They are denoted e−1
2 and e−2

2 in [23].

For all n there is a canonical embedding Hn(m) ↪→ Hn+1(m). Using it repeatedly

we consider E1 and E2 as elements of Hn(m) and denote by Jn the ideal of Hn(m)

generated by them.

Theorem 2.1.6. The map Φ given by

Φ : Hn(m) −→ bn(m)

Ti − q2 7→ qUi

L1 − qm 7→ (q − q−1)U0

induces a C-algebra isomorphism between Hn(m)/Jn and bn(m).

Proof: See [23, Proposition 4.2]. �

We would like to have an integral version of the last result, but want also to avoid

those choices of the parameters that correspond to the conditions (2.1.4). This can

for example be achieved by localizing C[q, q−1, Q,Q−1] conveniently. To be precise,

we choose for R the localization of the Laurent polynomial ring C[q, q−1, Q,Q−1]

at S, defined as the multiplicatively closed subset of C[q, q−1, Q,Q−1] generated

by the polynomials 1, q4 − 1, Q − Q−1, Q − Q−1q2 and Q−1 − Qq2. For integers

l and m we denote by m the ideal 〈q − e2πi/l, Q − qm〉 of R. Then we have that

either m = R or else m is a maximal ideal in R. In the last case we define O := Rm

and get that O is a discrete valuation ring with maximal ideal m, quotient field

K := C(q,Q) and residue field O/m = C containing the l’th root of unity q.
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Throughout the thesis we assume that O,K and C are chosen as above, and

furthermore, in order to simplify notation, that l is odd. In the next section we

recall the Z-grading on Hn(q2) and Hn(m) given by Brundan and Kleshchev in [3].

Note that since l is assumed to be odd, the condition from loc. cit. that qm be

a power of q2, or equivalently, that the congruence 2k ≡ m mod l be solvable, is

always fulfilled.

We now define bOn (m) as the O-algebra on generators e, U1, ..., Un−1 subject to

the same relations as for bn. Then bOn (m) is free over O as can be seen using the

results of the appendix of [7], note that they are valid over any commutative ring.

The rational blob algebra bKn (m) is defined the same way, and we have base changes

isomorphisms bOn (m)⊗O C = bn(m) and bOn (m)⊗O K = bKn (m). Finally we define

HOn (m) as the O-algebra on generators L1, . . . , Ln, T1, . . . , Tn−1 subject to the

same relations as for Hn(m), but using parameters λ1 = Q and λ2 = Q−1. Simi-

larly, we define HKn (m) and we have base changes isomorphisms as above.

Theorem 2.1.7. There is a surjection Φ : HOn (m) −→ bOn (m).

Proof: The argument given in [23, Proposition 4.2] involves checking blob relations

and therefore gives a surjection HOn (m) −→ bOn (m), as claimed. �

2.2 The Khovanov-Lauda-Rouquier algebra

Recall that the quantum characteristic of an element q of a field F is the smallest

positive integer j such that 1 + q + . . .+ qj−1 = 0, setting j = 0 if no such integer

exists. With our choice of q ∈ C the quantum characteristic is l. Recall that we

assume that l is odd. Note that without loss of generality we can assume that

0 ≤ m < l. We set I = Z/lZ and refer to In as the residue sequences of length n.

Note that in order to apply [3], we should actually use the quantum characteristic

of q2 in the definition of I, but since l is assumed to be odd, the two definitions

coincide. In the following H refers to either Hn(q2) or Hn(m) (with q ∈ C chosen

as above). Let M be a finite dimensional H-module. By [17, Lemma 7.1.2] the

eigenvalues of each Lr on M are of the form q2i for i ∈ I. So M decomposes as

the direct sum M =
⊕
i∈InMi of its generalized weight spaces

Mi := {v ∈M | (Lr − q2ir )kv = 0 for r = 1, . . . , n and k � 0}.

In particular, taking M to be the regular left module H, we obtain a system

{e(i) | i ∈ In} of mutually orthogonal idempotents in H such that e(i)M = Mi
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for each M as above.

We can now define nilpotent elements y1, . . . , yn ∈ H via the formula

yr =
∑
i∈In

(1− q−2irLr)e(i). (2.2.1)

For 1 ≤ r < n and i ∈ In, Brundan and Kleshchev define in [3] certain formal

power series, Pr(i), Qr(i) ∈ C[[yr, yr+1]], such that Qr(i) has non-zero constant

term, see [3, (4.27) and (4.36)] for the explicit formulas. Since each yr is nilpotent

in H, we can consider Pr(i) and Qr(i) as elements of H, with Qr(i) invertible. We

then set

ψr =
∑
i∈In

(Tr + Pr(i))Qr(i)
−1e(i). (2.2.2)

The main theorem in [3] gives a presentation of H in terms of the elements

{ψ1, · · · , ψn−1} ∪ {y1, · · · , yn} ∪ {e(i) | i ∈ In}

and a series of relations between them that we describe shortly. An important

point of these relations is that they are homogeneous with respect to a nontrivial

Z-grading on H. To describe the Z-grading it is convenient to introduce the matrix

(aij)i,j∈I , given by

aij =


2

0

−1

if i = j

if i 6= j ± 1

if i = j ± 1.

With this at hand, we are now able to state [3, Main Theorem]. The Theorem holds

in greater generality than shown here, namely for all cyclotomic Hecke algebras,

including the degenerate algebras, but for our purpose the following version is

enough.

Theorem 2.2.1. The algebra H is isomorphic to a cyclotomic Khovanov-Lauda-

Rouquier algebra of type A. To be precise, it is isomorphic to the C-algebra gener-

ated by

{ψ1, · · · , ψn−1} ∪ {y1, · · · , yn} ∪ {e(i) | i ∈ In}
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subject to the following relations for i, j ∈ In and all admissible r, s

y1e(i) = 0 if i1 =

 ±k mod l

0 mod l

if H = Hn(m)

if H = Hn(q2)
(2.2.3)

e(i) = 0 if i1 6=

 ±k mod l

0 mod l

if H = Hn(m)

if H = Hn(q2)
(2.2.4)

e(i)e(j) = δi,je(i), (2.2.5)∑
i∈In

e(i) = 1, (2.2.6)

yre(i) = e(i)yr, (2.2.7)

ψre(i) = e(sri)ψr, (2.2.8)

yrys = ysyr, (2.2.9)

ψrys = ysψr, if s 6= r, r + 1 (2.2.10)

ψrψs = ψsψr, if |s− r| > 1 (2.2.11)

ψryr+1e(i) =

 (yrψr + 1)e(i)

yrψre(i)

if ir = ir+1

if ir 6= ir+1

(2.2.12)

yr+1ψre(i) =

 (ψryr + 1)e(i)

ψryre(i)

if ir = ir+1

if ir 6= ir+1

(2.2.13)

ψ2
re(i) =


0

e(i)

(yr+1 − yr)e(i)
(yr − yr+1)e(i)

if ir = ir+1

if ir 6= ir+1 ± 1

if ir+1 = ir + 1

if ir+1 = ir − 1

(2.2.14)

ψrψr+1ψre(i) =


(ψr+1ψrψr+1 + 1)e(i)

(ψr+1ψrψr+1 − 1)e(i)

(ψr+1ψrψr+1)e(i)

if ir+2 = ir = ir+1 − 1

if ir+2 = ir = ir+1 + 1

otherwise

(2.2.15)

where sr := (r, r+ 1) is the simple transposition acting in In by permutation of the

coordinates r, r + 1 and k ∈ Z such that 2k ≡ m mod l. The isomorphism maps

each of the generators to the element of H that has the same name. The conditions

deg e(i) = 0, deg yr = 2, deg ψse(i) = −ais,is+1

for 1 ≤ r ≤ n, 1 ≤ s ≤ n − 1 and i ∈ In define a unique Z-grading on H with

degree function deg.
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Following [14] we shall refer to the e(i) as the KLR-idempotents. In the follow-

ing, all statements involving a grading on H refer to the above Theorem. Note that

although the elements Lr and Tr are not homogeneous in H, they can be expressed

in terms of homogeneous generators in the following way, see equations (4.42) and

(4.43) of [3]:

Lr =
∑
i∈In

q2ir (1− yr)e(i) (2.2.16)

Tr =
∑
i∈In

(ψrQr(i)− Pr(i))e(i). (2.2.17)



CHAPTER 3

Diagrams algebras and combinatorics of tableaux

In this chapter, we recall the realization of the Temperley-Lieb algebra and the blob

algebra by planar diagrams. We index the diagrammatical basis of the Temperley-

Lieb algebra by pairs of two-columns standard tableaux of the same shape. Sim-

ilarly, we index the diagrammatical basis of the blob algebra by pairs of one-line

standard bitableaux of same shape. Next, we remark the bijection between one-

line standard bitableaux and walks on the Bratelli diagram. The set of all of

two-columns standard tableaux shall be ordered by dominance, whereas the set of

all one-line standard bitableaux shall be ordered in a non-conventional way. We

end this chapter by relating these two orders.

3.1 Diagram basis for T ln(q)

We first recall the diagrammatic realization of the Temperley-Lieb algebra T ln(q),

first given by L. Kauffman, in which the basis elements are drawn as “(n, n)-

bridges” or simply “Temperley-Lieb diagrams”. An (n, n)-bridge consists of n

points, also called points or nodes, on each of two parallel edges, the “top” resp.

“bottom” lines, that are joined pairwise by n non-intersecting lines between the

two lines. Figure 3.1 shows two examples.

1 ··· ··· n

1=

1 ··· ··· ni i+1

Ui =

Figure 3.1: Diagrammatic generators of T ln(q).

The set of all (n, n)-bridges is denoted by T(n). We define a multiplication on

15
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CT(n) by identifying the bottom of the first diagram with the top of the second,

and replacing every closed loop that may arise by a factor −[2] (see Figure 3.2).

= −[2]

Figure 3.2: Composition in T l7(q)

With this definition CT(n) becomes a C-algebra where the one-element is the di-

agram denoted by 1 in Figure 3.1 . The diagrammatic realization of the Temperley-

Lieb algebra refers to the isomorphism of C-algebras f : T ln → CT(n), given by

f(Ui) = Ui where the second Ui is the diagram of Figure 3.1. Using the above

isomorphism, we can consider the set T(n) as a C-basis of T ln(q). We refer to this

basis as the diagrammatical basis for T ln(q).

Our next goal is to index the diagrammatical basis for T ln(q) by pairs of two-

columns standard tableaux of the same shape. First, we recall some basic com-

binatorial notions related to partitions and tableaux. Let n be a positive integer.

A(n integer) partition of n is a sequence λ = (λ1, λ2, . . .) of non-negative integers

such that |λ| :=
∑
i λi = n and λi ≥ λi+1 for all i ≥ 1. The Young diagram of λ is

the set

[λ] = {(i, j) ∈ N× N | 1 ≤ j ≤ λi and i ≥ 1}.

The elements of it are called nodes or entries. It is useful to think of [λ] as an

array of boxes in the plane, with the indices following matrix conventions. Thus

the box with label (i, j) belongs to the i’th row and j’th column. For example if

λ = (4, 3, 2, 1) then the associated Young diagram is shown in Figure 3.3. If λ is a

partition of n we denote by λ′ the partition of n obtained from λ by interchanging

its rows and columns. A two-column partition of n is a partition λ of n such that

λi ≤ 2 for all i ≥ 1. The set of all partitions of n is denoted Par(n) and the set

of two-column partitions of n is denoted by Par2(n). A λ-tableau is a bijection

τ : [λ]→ {1, . . . , n}. We say that τ has shape λ and write Shape(τ) = λ. We think

of it as a labeling of the diagram of λ, and in this way we can talk of the rows and

columns of a tableau. We say that τ is row (resp. column) standard if the entries of
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τ increase from left (resp. top) to right (resp. bottom) in each row (resp. column).

τ is standard if it is row standard and column standard. The set of all standard

λ-tableau is denoted by Std(λ) and the union of all Std(λ) is denoted Std(n).

Figure 3.3: Young diagram for λ = (4, 3, 2, 1).

Given a node A = (i, j), the (l-)residue of A is defined to be

res(A) := j − i mod l (3.1.1)

For τ ∈ Std(n) and 1 ≤ k ≤ n, define the residue of τ at k as rτ (k) := res(A)

where A is the node occupied by k in the standard tableau τ .

Example 3.1.1. Figure 3.4 shows the residue diagram for λ = (4, 3, 2, 1) when

the quantum characteristic is l = 3.

0
2
1
0

1
0
2

2
1

0

Figure 3.4: Residue diagram for λ = (4, 3, 2, 1) and l = 3.

Assume that λ, µ ∈ Par(n). We say that λ dominates µ and write λ D µ if

j∑
i=1

λi ≥
j∑
i=1

µi

for all j ≥ 1. Then Par(n) becomes a partially ordered set via D. It can be

extended to Std(n) as follows. For σ, τ ∈ Std(n), we say that σ dominates τ and

write σ D τ if Shape(σ|k) D Shape(τ|k), for k = 1, . . . , n, where σ|k and τ|k are the

tableaux obtained from σ and τ by removing the entries greater than k.

Let τλ be the unique standard λ-tableau such that τλ D τ for all τ ∈ Std(λ).

In τλ the numbers 1, 2, . . . , n are filled in increasingly along the rows from top

to bottom. The symmetric group Sn acts on the left on the set of λ-tableaux

permuting the entries.

For τ ∈ Std(λ), we denote by d(τ) the permutation of Sn that satisfies τ =

d(τ)τλ.
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Example 3.1.2. If λ = (4, 3, 2, 1), then Figure 3.5 shows the maximal tableau τλ

in Std(λ).

1
5
8
10

2
6
9

3
7

4

Figure 3.5: The tableau τλ for λ = (4, 3, 2, 1).

Let us now recall the bijection between (n, n)-bridges and pairs of two-column

standard tableaux of the same shape. Let β be an element of T(n). We say that

a line of β is vertical if it travels from top to bottom, otherwise we say that it is

horizontal. Suppose now that β has exactly v vertical lines and set h = n−v
2 . The

associated pair of standard (h + v, h)′-tableaux (τtop(β), τbot(β)) is then given by

the following rules:

1. k is in the second column of τtop(β) (τbot(β)) if and only if the k-th point is

a right endpoint of a horizontal line in the top (bottom) edge.

2. the numbers increase along the columns of τtop(β) and τbot(β).

For λ ∈ Par2(n) and σ, τ ∈ Std(λ), we denote by βστ the unique (n, n)-bridge such

that τtop(βστ ) = σ and τbot(βστ ) = τ .

3.2 Diagram basis for bn

We aim at generalizing the above results to the case of the blob algebra. For this

we first recall the concepts of bipartitions and bitableaux. We provide them with

structures of partially ordered sets, in a non-conventional way.

A bipartition of n is a pair λ = (λ(1), λ(2)) of usual (integer) partitions such

that n = |λ(1)|+ |λ(2)|. By the Young diagram of a bipartition λ we mean the set

[λ] = {(r, c, d) ∈ N× N× {1, 2} | 1 ≤ c ≤ λ(k)
r }.

Its elements are called entries or nodes. We can visualize [λ] as a pair of usual Young

diagrams called the components of [λ]. Thus for j = 1, 2, the j’th component of

[λ] is {(r, c, d) ∈ [λ] | d = j}. A one-line bipartition of n is a bipartition λ of n such

that λ
(d)
r = 0 for all r ≥ 2 and d = 1, 2. Thus, a node A = (r, c, d) ∈ [λ] for some
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one-line bipartition only if r = 1. The set of all one-line bipartitions of n is denoted

Bip1(n). For λ a bipartition, a λ-bitableau is a bijection t : [λ]→ {1, . . . , n}. We

say that t has shape λ and write Shape(t) = λ. A λ-bitableau t is called standard if

the entries of t increase from left to right in each component. The set of all standard

λ-bitableaux is denoted by Std(λ) and the union
⋃
λ Std(λ) with λ running over

all bipartitions of n is denoted by Std(n). Given a node A = (1, c, d) the residue

of A is defined to be

res(A) =

 c− 1 + k, if d = 1

c− 1− k, if d = 2
(3.2.1)

where k ∈ Z such that 2k ≡ m mod l. For t ∈ Std(n) and 1 ≤ j ≤ n, define the

residue of t at j, as rt(j) := res(A) where A is the node occupied by j in t.

Example 3.2.1. Figure 3.6 shows the residue diagram for λ = ((5), (6)) when the

quantum characteristic is l = 5 and m = 2.

1 2 3 4 0 , 4 0 1 2 3 4

Figure 3.6: Residue diagram for λ = ((5), (6)), m = 2 and l = 5.

There are several ways of endowing Bip1(n) with an order structure, the most

well known being dominance order, but we shall need a different order on Bip1(n)

that we now explain. Let Λn be the set {−n,−n + 2, . . . , n − 2, n}. Then the

following definition makes Λn into a totally ordered set with order relation �.

Definition 3.2.2. Suppose λ, µ ∈ Λn. We then define µ � λ if either |µ| < |λ|, or

if |µ| = |λ| and µ ≤ λ.

On the other hand, the map f given by

f : Bip1(n)→ Λn, ((a), (b))→ a− b

is a bijection and so we can define a total order � on Bip1(n) as follows.

Definition 3.2.3. Suppose λ,µ ∈ Bip1(n). Then we define λ � µ iff f(λ) � f(µ).

For t ∈ Std(λ) let t|k be the bitableau obtained from t by removing the entries

greater than k. We extend the order � to the set of all λ-standard bitableaux as

follows.
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Definition 3.2.4. Suppose that λ ∈ Bip1(n) and s, t ∈ Std(λ). We define s � t if

Shape(s|k) � Shape(t|k) for all k = 1, . . . , n.

Note that this is only a partial order on Std(λ). Let tλ be the unique standard

λ-bitableau such that tλ � t for all t ∈ Std(λ). For λ = ((a), (b)), set c = min{a, b}.
Then in tλ the numbers 1, 2, . . . , n are located increasingly along the rows according

to the following rules:

1. even numbers less than or equal to 2c are placed in the first component.

2. odd numbers less than 2c are placed in the second component.

3. numbers greater than 2c are placed in the remaining boxes.

Example 3.2.5. Figure 3.7 shows the maximal bitableaux with respect to � for

λ = ((8), (3)) and µ = ((3), (8)).

2 4 6 7 8 9 10 11 , 1 3 5tλ =

2 4 6 , 1 3 5 7 8 9 10 11tµ =

Figure 3.7: Maximal bitableaux with respect to the order �.

Definition 3.2.6. Suppose that λ ∈ Bip1(n) and let t ∈ Std(λ). Define a sequence

of integers inductively by the rules t(0) = 0 and for 1 ≤ j ≤ n

t(j) = t(j − 1)± 1

where the + (−) sign is used if j is in the first (second) component of t.

Using this sequence we can now describe the order �.

Lemma 3.2.7. If s, t ∈ Std(λ), then s � t if and only if |s(j)| ≤ |t(j)|, for all

1 ≤ j ≤ n, and if |s(j)| = |t(j)| then s(j) ≤ t(j).

Proof: Note that for all t ∈ Std(λ) and 1 ≤ j ≤ n, we have t(j) = f(Shape(t|j)).
Therefore, the result is a direct consequence of Definition 3.2.4. �

As is the case for the Temperley-Lieb algebra, the blob algebra has a diagram-

matic realization that we now explain. A “blob diagram on n points”, or just a



3.2. Diagram basis for bn 21

blob diagram when no confusion arises, is an (n, n)-bridge with possible decora-

tions of “blobs” on certain of its lines. The blobs appear subject to the following

conditions. Each line is decorated with at most one blob; no line to the right of the

leftmost vertical line may be decorated; and to the left of it, only the outermost line

in any nested formation of loop lines can be decorated. The set of blob diagrams

on n points is denoted B(n). Figure 3.8 shows an example of a blob diagram on 11

points with a blob on all lines that accept decoration.

.

• •
•

• •

Figure 3.8: A blob diagram in B(11)

Similar to the Temperley-Lieb case, there is now a multiplication on CB(n),

defined using a concatenation procedure. This may give rise to internal loops and

multiple blobs on certain lines. We then impose the rules on the multiplication

that any diagram with multiple blobs on one or several lines is considered equal

to the same diagram with a single blob on those lines, and any internal loop is

removed from the diagram multiplying by ye, if the loop is decorated, otherwise by

−(q + q−1). The realization of bn(m) is now the isomorphism f : bn(m)→ CB(n),

mapping Ui and e to the diagrams Ui and e, given in Figure 3.1 and 3.9.

1 ··· ··· n

•e =

Figure 3.9: Blob generator e.

Our next goal is to establish a bijection between the set of blob diagrams and

the set of pairs of one-line standard bitableaux of same shape. Let m be a blob

diagram. Given a horizontal line l, in either edge, we put l = (a, b) where a is the

left endpoint and b is the right endpoint. Let l1 = (a1, b1) and l2 = (a2, b2) be

horizontal lines on the same edge. We say that l1 covers l2 if a1 < a2 < b2 < b1.

We also say that the leftmost vertical line (if any) covers all lines to the right of it.

Now, we say that a node is covered if the line to which it belongs is decorated or
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the line to which it belongs is covered by a decorated line. If a node is not covered,

we call it uncovered.

Definition 3.2.8. Let m be a blob diagram. Suppose that m has exactly v vertical

lines and h = n−v
2 horizontal lines on each edge.

• If v ≥ 0 and the leftmost vertical line is not decorated or there is no vertical

lines then we associate to m a pair of λ-bitableaux, ttop(m) and tbot(m), with

λ = ((h+ v), (h)) by the following rules

1. k is in the second component of ttop(m) (tbot(m)) if and only if: either k

is uncovered and it is the right endpoint of a horizontal line on the top

(bottom) edge, or it is covered and it is the left endpoint of a horizontal

line on the top (bottom) edge

2. the numbers increase along rows.

• If v > 0 and the leftmost vertical line is decorated then we associate to m

a pair of λ-bitableaux, ttop(m) and tbot(m), with λ = ((h), (h + v)) by the

following rules

1. k is in the first component of ttop(m) (tbot(m)) if and only if: either it

is uncovered and it is the left endpoint of a horizontal line on the top

(bottom) edge or it is covered and it is the right endpoint of a horizontal

line on the top (bottom) edge

2. the numbers increase along rows.

We view these rules as a generalization of the bijection between T(n) and

Par2(n), with the two components of the bitableau replacing the two columns

of the element of Par2(n) and with the presence of a cover reversing the roles of

left and right.

For λ ∈ Bip1(n) and s, t ∈ Std(λ), we let mst denote the unique blob diagram

such that ttop(mst) = s and tbot(mst) = t.

Remark 3.2.9. For all t ∈ Std(λ) and 1 ≤ j ≤ n, we have

(i) If t(j) < 0 then the node k is covered in the top edge of mttλ .

(ii) If the node k is covered in the top edge of mttλ then t(j) ≤ 0.

Example 3.2.10. Let m be the blob diagram in Figure 3.8 then
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3 4 7 9 10 , 1 2 5 6 8 11ttop(m) =

2 4 7 10 11 , 1 3 5 6 8 9tbot(m) =

Figure 3.10: The pair of bitableaux associated with m.

3.3 Walks on the Bratteli diagram

We now explain how the Bratteli diagram for bn(m) provides a useful interpretation

of the order� on Std(λ). Let Btop(n) (resp. Bbot(n)) denote the set of upper (lower)

halves of blob diagrams. To be more precise, Btop(n) (resp. Bbot(n)) consists of

all blob diagrams on n points with the information on the bottom (top) points of

the vertical lines omitted. Thus Btop(n) (resp. Bbot(n)) is in bijection with Std(n)

via m 7→ ttop(m) (resp. m 7→ tbot(m)) and so Btop(n) and Bbot(n) are in bijection

with each other. On the diagrammatic level, the bijection can be visualized as a

reflection through a horizontal axis.

Recall that the Bratteli diagram for bn(m) gives an enumeration of Btop(n)

through a Pascal triangle pattern, see [23]. To be precise, for λ ∈ Λn the Bratteli

diagram associates with the point (λ, n) of the plane the set Btop(n, λ), defined

as those diagrams from Btop(n) that have exactly |λ| vertical lines, where the

leftmost vertical line is decorated iff λ is negative. Set bn,λ := |Btop(n, λ)| with

the convention that Btop(n, λ) := ∅ if λ /∈ Λn. Then there is a bijection between

Btop(n, λ) and Btop(n−1, λ+1)∪Btop(n−1, λ−1), as we explain shortly. The Pascal

triangle formula bn,λ = bn−1,λ+1 + bn−1,λ−1 is a consequence of this bijection.

For λ ∈ Λn \ {0} define λ+ ∈ Λn+1 by λ+ := λ± 1 where the sign is positive iff

λ > 0. Similarly, for λ ∈ Λn \ {0} define λ− := λ± 1 where the sign is positive iff

λ < 0. Finally, if λ = 0 ∈ Λn define λ+ := 1 and λ− := −1. With these definitions

we have for any λ ∈ Λn that λ− � λ+ in Λn+1. In other words, the map λ 7→ λ−

moves λ closer to the central axis of the Bratteli diagram consisting of the points

{(0, k), k = 0, 1 . . .}, whereas λ 7→ λ+ takes λ away from the central axis.

The above mentioned bijection is now induced by injective maps

f+
n,λ : Btop(n− 1, λ)→ Btop(n, λ+), f−n,λ : Btop(n− 1, λ)→ Btop(n, λ−) (3.3.1)
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0−1−2−3−4 1 2 3 4

•

•

•

•
•
•
•

•
•
•

•

•

•

•
• •

•
•

•

••

Figure 3.11: Bratteli diagram

that can be described concretely as follows. If m ∈ Btop(n−1, λ) then f+
n,λ adds an

undecorated vertical line on the right hand side of m. If λ 6= 0 then f−n,λ joins the

rightmost vertical line of m with the new n’st point of the (top) edge whereas f+
n,0

adds a decorated vertical line on the right hand side of m. Finally, by convention

f+
1,0 (resp. f−1,0) maps the empty diagram to the unique diagram of Btop(1, 1) (resp.

Btop(1,−1)).

For us the main point of this construction is that any element of m ∈ Btop(n)

can be written uniquely as

m = fσnn,λn . . . f
σ1
1,0 ∅ where σk ∈ {+,−} for k = 1, . . . , n. (3.3.2)

In other words, the sequence of signs {σk}k=1,...,n uniquely determines m and hence

Btop(n) is in bijection with walks on the Bratteli diagram, starting with the empty

partition in position (0, 0) and at the k’th step, where the walk is situated in (k, λk),

going inwards or outwards according to the value of σk. We denote by W (m) the
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walk associated with m ∈ Btop(n).

Let us now return to the order � on Std(λ) introduced above. Suppose that

s ∈ Std(λ) for λ ∈ Bip1(n). Then s also gives rise to a walk, denoted w(s), on the

points of the Bratteli diagram. It starts in (0, 0) and for k = 0, 1, . . . , n − 1 goes

from (k, j) to (k + 1, j − 1) if k + 1 is located in the second component of s and

to (k + 1, j + 1) if k + 1 is located in the first component of s. In other words, at

the k’th step the walk w(s) is situated in (k, s(k)) where {s(k) | k = 0, 1, . . . , n} is

the sequence of integers associated with s as in Definition 3.2.6. With this walk

realization of the bitableaux, we can visualize the order �. Indeed, let s, t ∈ Std(λ).

Then s � t iff at each step of the two walks w(s) is either strictly closer than w(t)

to the central vertical axis of the Bratteli diagram or they are at the same distance

from the central axis and w(s) is located (weakly) to the left of w(t).

Let us now explain the relationship between the two walks. We denote by s the

bijection Btop(n)→ Std(n), m 7→ ttop(m), mentioned above.

Lemma 3.3.1. Let m ∈ Btop(n). Then we have W (m) = w(s(m)).

Proof: This is a consequence of Remark 3.2.9 and the definitions. �

There is a natural surjective map π : B(n)→ T(n), which sends a blob diagram

m to the (n, n)-bridge obtained by deleting all decorations in m. On the other

hand, T(n) is in bijection with pairs of two-column standard tableaux of the same

shape and B(n) is in bijection with pairs of one-line standard bitableaux of the

same shape by Definition 3.2.8, and so our next goal is to describe the above map

π in terms of one-line bitableaux and two-column tableaux. For this we make a

couple of definitions.

Definition 3.3.2. Suppose that λ = ((a), (b)) ∈ Bip1(n) and let t ∈ Std(λ). Set

µ1 = max{a, b} and µ2 = min{a, b}. Let µ be the two-column partition of n given

by µ = (µ1, µ2)′. Then we define τt as the unique µ-standard tableau that satisfies

k is in the second column of τt if and only if |t(k)| < |t(k − 1)|.

We claim that τt defined in this way is a standard tableau. For this we use that

a node k of the blob diagram given by mst is a right endpoint in the top (resp.

bottom) edge if and only if |s(k)| < |s(k−1)| (resp. |t(k)| < |t(k−1)|), as can easily

be seen by analyzing Definition 3.2.8. In other words, τs and τt can be described

as the unique two-column tableaux that satisfy π(mst) = βτsτt , where π is the map

defined above, and our claim follows.
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For s ∈ Std(λ) we let |w(s)| denote the walk on the Bratteli diagram that at the

k’th step is located in the point (k, |s(k)|). The two components of its associated

bitableau are then the conjugates of the columns of τs, as follows from the above.

Definition 3.3.3. For λ ∈ Bip1(n) and s, t ∈ Std(λ), we write s ∼ t if τs = τt.

Thus s ∼ t if and only if |s(k)| = |t(k)| for all 1 ≤ k ≤ n.

We give a couple of Lemmas related to these definitions.

Lemma 3.3.4. Suppose that λ ∈ Bip1(n) and let s, t ∈ Std(λ). Then, τs D τt if

and only if |s(k)| ≤ |t(k)| for all 1 ≤ k ≤ n. In particular, if s � t then τs D τt.

Proof: Notice that

Shape(τs|k) =

(
k + |s(k)|

2
,
k − |s(k)|

2

)′

Shape(τt|k) =

(
k + |t(k)|

2
,
k − |t(k)|

2

)′
for all 1 ≤ k ≤ n. Using the property of the usual dominance order that µ D ν ⇐⇒
ν′ D µ′ we deduce that τs D τt if and only if |s(k)| ≤ |t(k)| for all 1 ≤ k ≤ n, which

is the first claim of the Lemma. The second claim follows now from Lemma 3.2.7.

�

Using the natural embedding ι : T(n) → B(n) we obtain a walk description

of the elements of T(n) as well. Under this description, T(n) corresponds to the

walks on the Bratteli diagram for bn(m) that always stay in the positive half of the

Bratteli diagram, including the central vertical axis.

The left action of Sn on tableaux generalizes to an action of Sn on bitableaux.

Using it we have the following Lemma.

Lemma 3.3.5. Suppose that λ ∈ Bip1(n) and let s, t ∈ Std(λ). Suppose moreover

that s � t, that sks = t for some sk ∈ Sn and that s � t. Then skτs = τt and

τs B τt.

Proof: Note first that by the assumptions we have s(j) = t(j) for all j 6= k. Let

us first assume that s(k + 1) ≥ 1. Then s(k) ≥ 0 since s(j) changes by ±1 when

j is increased by 1. But similarly t(k) ≥ 0 and then we must have t(k) = s(k) + 2

since s � t. Since k and k + 1 are located in different components in s and in t,

this gives us the equalities

s(k − 1) = t(k − 1) = s(k) + 1 = t(k)− 1 = s(k + 1) = t(k + 1)
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from which we get by Definition 3.3.2 that k (resp. k + 1) is located in second

(resp. first) column of τs whereas k (resp. k + 1) is placed in first (resp. second)

column of τt. Since j is located in the same column of τs and τt for j 6= k, k + 1

we now conclude that skτs = τt and τs B τt, as needed.

The case s(k + 1) ≤ −1 is treated similarly and so the only remaining case is

s(k + 1) = 0. Then t(k + 1) = s(k − 1) = t(k − 1) = 0. Moreover since s � t we

have s(k) = −1 and t(k) = 1. But this implies that s ∼ t, finishing the proof. �

Definition 3.3.6. Suppose that λ ∈ Bip1(n) and that s, t ∈ Std(λ). Then we

say that “s has a hook at position k” if s(k − 1) = s(k + 1) = s(k) ± 1 where

1 ≤ k ≤ n − 1. Moreover we say that “t is obtained from s by making a hook at

position k smaller” if s(j) = t(j) for j 6= k, s(k) = t(k)± 2 and s � t.

The last condition can also be written as sks = t and s � t. Geometrically, if t

is obtained from s by making a hook at position k smaller then t is obtained from

s by either replacing a configuration of three consecutive points in w(t) forming a

“〈” by a configuration “〉” at these three points, or reversely, depending on which

side of the Bratteli diagram the configuration is located.

Lemma 3.3.7. For t ∈ Std(λ) we define d(t) as the element of Sn that satisfies

t = d(t)tλ. Then d(t) can be written as product of simple transpositions d(t) =

siksik−1
. . . si1 such that sij . . . si1 t

λ is standard and such that sijsij−1
. . . si1 t

λ ≺
sij−1 . . . si1 t

λ for all 1 ≤ j ≤ k.

Proof: This can be seen via the walk realization of Std(λ). Indeed the walk w(tλ)

first zigzags on and off the central vertical line of the Bratteli diagram, using the

sign − an even number of times, and then finishes using the sign + repeatedly, if

λ is located in the positive half, or using once the sign − followed by the sign +

repeatedly, if λ is located in the negative half.

This walk can be converted into w(t) through a series of k walks, say, where

at each step the new walk is obtained from the previous one by making a hook

at position j smaller, for some j. At tableau level, each of these transformations

is given by the action of a simple transposition sj . The Lemma follows from this.

�

Example 3.3.8. We illustrate the above Lemma. Let λ = ((4), (2)) ∈ Bip1(6)

and
t = 1 2 3 6 , 4 5
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Then, we have d(t) = s3s4s2s3s1. Now, define the bitableaux t0, t1, t2, t3, t4 and t5

as follows:
t0 = tλ = 2 4 5 6 , 1 3

t1 = s1t0 = 1 4 5 6 , 2 3

t2 = s3t1 = 1 3 5 6 , 2 4

t3 = s2t2 = 1 2 5 6 , 3 4

t4 = s4t3 = 1 2 4 6 , 3 5

t5 = s3t4 = 1 2 3 6 , 4 5

It is straightforward to check that tλ = t0 � t1 � t2 � t3 � t4 � t5 = t. The figures

above show how the walk w(tλ) is converted into w(t).

w(t0) w(t1)

•
• •
• ••
• •• •

•• •• •
• •• •• •

•• •• • ••

���
???

���
???

??????

•
• •
• ••
• •• •

•• •• •
• •• •• •

•• •• • ••

???

���
���
???

??????

w(t2) w(t3)

•
• •
• ••
• •• •

•• •• •
• •• •• •

•• •• • ••

???

���
???

���

??????

•
• •
• ••
• •• •

•• •• •
• •• •• •

•• •• • ••

??????

������

??????

w(t4) w(t5)

•
• •
• ••
• •• •

•• •• •
• •• •• •

•• •• • ••

??????

���
???

���
???

•
• •
• ••
• •• •

•• •• •
• •• •• •

•• •• • ••

?????????

������
???

Remark 3.3.9. Although we do not need it directly, we note that l(d(t)) = k and

that the expression d(t) = siksik−1
. . . si1 is reduced.



CHAPTER 4

Graded representation theory

In this chapter we introduce the basic notions of graded representation theory. Our

main emphasis will be the concept of graded cellular algebra, this concept plays

a central role in the remainder of this thesis. At the end of this chapter we show

that the T ln(q) and bn(m) are Z-graded algebras.

4.1 Basic definitions

From now on we adopt the convention that all modules considered are left mod-

ules, unless otherwise specified. Fix an integral domain R. A graded R-module

is a R-module M which has a direct sum decomposition M =
⊕

k∈ZMk. For

k ∈ Z, if m ∈Mk we say that m is an homogeneous element of degree k and we set

deg(m) = k. If M is a graded R-module denote by M to the ungraded R-module

obtained by forgetting the grading on M . For any z ∈ Z and graded R-module

M =
⊕

k∈ZMk, let M〈z〉 be the graded R-module obtained by shifting the grading

on M up by z, thus M〈z〉k = Mk−z for all k ∈ Z. A graded R-algebra is an unital

associative R-algebra A which is graded as R-module such that AkAl ⊂ Ak+l, for

all (k, l) ∈ Z2, where A =
⊕

k∈ZAk is the direct sum decomposition in homoge-

neous components given by the grading on A. A graded A-module is a graded

R-module M =
⊕

k∈ZMk such that M is an A-module and AkMl ⊂Mk+l, for all

(k, l) ∈ Z2.

A graded R-module M =
⊕

kMk is positively graded if Mk = 0 whenever k < 0.

That is, all of the homogeneous elements of M have non-negative degree. Suppose

that A is a R-algebra positively graded and that M =
⊕

kMk is a finite dimen-

29
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sional graded A-module. For each j ∈ Z let GjM =
⊕

k≥jMk. Since A is positively

graded GjM is a graded A-submodule of M . Let a be maximal and z be minimal

such that GaM = M and GzM = 0, respectively. Then the grading filtration of M

is the filtration

0 = GzM ≤ Gz−1M ≤ . . .GaM = M (4.1.1)

Let t be an indeterminate over Z. Let M be a finite dimensional graded A-

module and let M =
⊕

k∈ZMk its direct sum decomposition in homogeneous

components, define its graded dimension by an explicit Laurent polynomial

dimt(M) :=
∑
k∈Z

(dimMk)tk ∈ Z[t, t−1] (4.1.2)

For a simple graded A-module L let [M : L〈k〉] be the multiplicity of the simple

module L〈k〉 as a graded composition factor of M for k ∈ Z. Then, we can define

the graded decomposition number as

[M : L]t :=
∑
k∈Z

[M : L〈k〉]tk ∈ Z[t, t−1] (4.1.3)

We finish this section by relating the graded decomposition numbers of A and

some graded subalgebras of A. Let e ∈ A be a homogeneous idempotent and let

Ae denote the subalgebra eAe of A. Then Ae is a graded subalgebra of A and the

inclusion i : Ae ↪→ A is a homogeneous map of degree zero. We write mod − A
(resp. mod − Ae) for the category of finite dimensional left A-modules (resp. Ae-

modules). We define the functor f : mod−A→ mod−Ae, where for V ∈ mod−A,

fV is the subspace eV of V regarded as Ae-module.

Theorem 4.1.1. Let L and V graded A-modules. Assume that L is simple and

that eL 6= 0. Then,

[V : L]t = [eV : eL]t (4.1.4)

where the left (resp. right) side of (4.1.4) correspond to the graded decomposition

number for A-modules (resp. Ae-modules).

Proof: First, we note that a non-zero homogeneous idempotent must have degree

zero. Hence, eV is a graded module, where for a homogeneous element v ∈ V with

ev 6= 0 we have deg(v) = deg(ev). The same is true for eL. Therefore, (4.1.4)

follows exactly as in the ungraded case [10, Appendix A1]. �
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4.2 Graded cellular algebras

All algebras studied in this thesis are graded cellular algebras so we briefly recall the

definition and some properties of these algebras. Actually, the claim that bn(m) is

a graded cellular algebra is the main result in this thesis. Graded cellular algebras

was introduced by J. Hu and A. Mathas in [14], following and extending ideas of

J. Graham and G. Lehrer [11].

Definition 4.2.1. Let A be graded R-algebra which is free of finite rank over R.

A graded cell datum for A is a quadruple (Λ, T, C,deg), where (Λ,�) is the weight

poset, T (λ) is a finite set for λ ∈ Λ, and

C :
∐
λ∈Λ T (λ)× T (λ) → A deg :

∐
λ∈Λ T (λ)→ Z

(s, t) → cλst

are two functions such that C is injective and

(a) For λ ∈ Λ and s, t ∈ T (λ), cλst is a homogeneous element of A of degree

deg cλst = deg(s) + deg(t).

(b) The set {cλst | s, t ∈ T (λ) for λ ∈ Λ} is a R-basis of A.

(c) The R-linear map ∗ : A → A determined by (cλst)
∗ = cλst, for all λ ∈ Λ and all

s, t ∈ T (λ), is an algebra anti-automorphism of A

(d) If s, t ∈ T (λ), for some λ ∈ Λ, and a ∈ A then there exist scalars rus(a) ∈ R
such that

acλst ≡
∑

u∈T (λ)

rus(a)cλut mod Aλ

where Aλ is the R-submodule of A spanned by {cµab | µ � λ; a, b ∈ T (µ)}

The set {cλst | s, t ∈ T (λ) for λ ∈ Λ} is a graded cellular basis for A. If A has a

graded cellular basis we say that A is a graded cellular algebra.

If we omit the axiom (a) in the definition of graded cellular algebra, then we re-

cover the original definition of cellular algebras given by J. Graham and G. Lehrer.

A R-algebra satisfying the axioms (b),(c) and (d) is called cellular algebra.

Fix a graded cell datum (Λ, T, C,deg) for A. For λ ∈ Λ the graded cell module

C(λ) is the R-module with basis {cλs | s ∈ T (λ)} and A-action given by
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acλs =
∑

u∈T (λ)

rus(a)cλu (4.2.1)

where the scalars rus(a) ∈ R are the same scalars appearing in Definition 4.2.1

(d). Note that the scalars rus(a) not depend on t, consequently the cell modules

are well defined. The cell modules C(λ) are equipped with a homogeneous bilinear

form 〈 ·, · 〉λ of degree zero determined by

cλasc
λ
tb ≡ 〈cλs , cλt 〉λcλab mod Aλ (4.2.2)

for all a, b, s, t ∈ T (λ). The radical of this form

rad C(λ) = {x ∈ C(λ) | 〈x, y〉λ = 0 for all y ∈ C(λ)}

is a graded A-submodule of C(λ) so that D(λ) = C(λ)/rad C(λ) is a graded A-

module. (See [25, Proposition 2.9] and [14, Lemma 2.7]).

Let Λ0 = {λ ∈ Λ | D(λ) 6= 0}. The next theorems classifies the simple graded

A-modules over a field and describe the respective graded decomposition numbers.

Theorem 4.2.2. ([14, Theorem 2.10]) Suppose that R is a field. Then

{D(λ)〈k〉 | λ ∈ Λ0 and k ∈ Z}

is a complete set of pairwise non-isomorphic simple graded A-modules.

Theorem 4.2.3. Suppose that λ ∈ Λ and µ ∈ Λ0. Then

(a) [C(λ) : D(µ)]t ∈ N[t, t−1];

(b) [C(λ) : D(µ)]t=1 = [C(λ) : D(µ)];

(c) [C(µ) : D(µ)]t = 1 and [C(λ) : D(µ)]t 6= 0 only if λ � µ.

(d) dimt C(λ) =
∑
λ≥µ[C(λ) : D(µ)]t dimtD(µ).

Proof: Claims (a), (b) and (c) are [14, Lemma 2.13]. Part (d) is a direct conse-

quence of the definitions. �

It is straightforward to check that a graded cellular algebra is positively graded

if and only if deg(s) ≥ 0 for all s ∈ T (λ) and λ ∈ Λ. Consequently, if A is positively

graded then so is each cell module of A.
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4.3 Grading T ln(q) and bn(m)

In this section we show that the Temperley-Lieb algebra T ln(q) and the blob al-

gebra bn(m) are Z-graded algebras. We do this by proving that the kernels of

the surjections given in Theorem 2.1.6 and Theorem 2.1.5 are graded ideals. In

the T ln(q)-case we rely on certain properties of Murphy’s standard basis that are

proved in [13]. These properties are missing in the bn(m)-case and so our argument

is somewhat different in that case. We need the following theorem.

Theorem 4.3.1. Let A be a Z-graded algebra. Assume that I is an ideal of A

generated by homogeneous elements, then it is graded. Consequently, the quotient

algebra A/I is a Z-graded algebra with the grading induced from the one on A.

Proof: See [6, Theorem 1.3]. �

4.3.1 Grading T ln(q)

Let us briefly recall Murphy’s standard basis for the Hecke algebra Hn(q2). For

w = si1 . . . sik a reduced expression of w ∈ Sn we define Tw := Ti1 . . . Tik . Then

{Tw|w ∈ Sn} is a basis for Hn(q). For λ ∈ Par(n) we let Sλ ≤ Sn denote the row

stabilizer of τλ under the left action of Sn on tableaux and define

xλ :=
∑
w∈Sλ

Tw

We let ∗ denote the anti-automorphism of Hn determined by T ∗i = Ti for all

1 ≤ i < n and define for σ, τ ∈ Std(λ)

xτσ = T ∗d(τ)xλTd(σ).

Then {xτσ}, with τ and σ running over standard tableaux of the same shape, is

Murphy’s standard basis for Hn(q), see [29, Theorem 4.17].

We set In := ker Φ2 where Φ2 : Hn(q2) −→ T ln(q) is the second surjection given

in Theorem 2.1.5. Then In is an ideal of Hn(q2) and we have Hn(q2)/In = T ln(q).

We can now state our first Theorem.

Theorem 4.3.2. In is a graded ideal of Hn(q2). Hence T ln(q) is a Z-graded

algebra, with the grading induced from the one on Hn(q2), via Theorem 2.2.1.

Proof: We first note that by the results of Härterich, [13, Theorem 4], we know

that In is spanned (over C!) by those {xτσ} for which the underlying shape has
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strictly more than two columns, that is Shape(τ),Shape(σ) /∈ Par2(n). In other

words, {xτσ |σ, τ ∈ Std(λ), λ ∈ Par(n) \ Par2(n)} is a basis for In.

On the other hand, in [14] J. Hu and A. Mathas construct a basis {ψτσ} for

Hn(q2), such that each ψτσ is a homogeneous element of Hn(q2); here (τ, σ) is

running over the same set as for the standard basis. They furthermore show in [14,

Lemma 5.4] that for each pair (τ, σ) like this, there is a non-zero scalar c ∈ C such

that

ψτσ = cxτσ +
∑

(υ,ς)B(τ,σ)

rυςxυς (4.3.1)

where rυς ∈ C and where (υ, ς) B (τ, σ) means that υ D τ , ς D σ, and (υ, ς) 6=
(τ, σ). But this shows that also the {ψτσ} such that Shape(τ), Shape(σ) /∈ Par2(n),

are a basis for In. From this we get, via Theorem 4.3.1 that In is a graded ideal

as claimed. �

Remark 4.3.3. There is a version of the Theorem involving the homomorphism

Φ1. For this, in the proof one should replace {ψτσ} by the dual basis {ψ′τσ} of [14].

Remark 4.3.4. In spite of the important role of the Temperley-Lieb algebra in

recent categorification theory, see eg. [32], the above graded structure has not been

mentioned before in the literature, to the best of our knowledge. Our grading is

also not immediately comparable with the supergrading used in [34].

4.3.2 Grading bn(m)

Let us now turn to the blob algebra. In order to treat that case we need the

following Theorem. Note that the congruence 2k ≡ m mod l can always be solved

because we have assumed that l is odd

Theorem 4.3.5. Let k ∈ Z such that 2k ≡ m mod l. Then, the elements E1, E2 ∈
Hn(m) are homogeneous of degree zero. More precisely, they can be written as a

sum of homogeneous elements of degree zero as follows

E1 =
∑
i

e(i) E2 =
∑
j

e(j)

where the left sum runs over all i ∈ In such that i1 = k and i2 = k − 1, and the

right sum runs over all j ∈ In such that j1 = −k and j2 = −k − 1.

Proof: We only prove the result for E1, the result for E2 is proved similarly.

In [5, Section 4.4], Brundan, Kleshchev and Wang note that under the embed-

ding Hn(m) ↪→ Hn+1(m) one has e(i) 7→
∑
i∈I e(i, i), and so it is enough to prove
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the case n = 2, that is that E1 = e(k, k−1) holds. Using the uniqueness statement

for E1, in order to prove this, it is enough to show that e(k, k − 1) verifies the

equations (2.1.5) and (2.1.6), since it is clearly an idempotent.

Note first that y1 = 0 as it follows by combining the relations (2.2.3), (2.2.4)

and (2.2.6). Put now j = (k, k − 1). Multiplying (2.2.16) by e(j) for n = 2 and

r = 1, we get L1e(j) = q2ke(j), or equivalently L1e(j) = qme(j). Hence (2.1.6)

holds.

To show (2.1.5) we first recall from [14, Lemma 4.1(c)] that in general e(i) 6= 0

iff i ∈ In is a residue sequence coming from a standard bi-tableau of a bipartition

of n. Combining this fact with the standing conditions on q given in (2.1.4), we

deduce e(s1j) = 0 and hence ψ1e(j) = 0 by (2.2.8). Multiplying this equation on

the left by ψ1 and using (2.2.14) we obtain y2e(j) = 0.

Now, recall that by definition P1(j) and Q1(j) are power series in y1 and y2.

Furthermore, in this particular case we have that the constant coefficient of P1(j)

is 1 and so (2.2.17) gives (T1 + 1)e(j) = 0 as needed. �

We are now in position to establish the main objective of this section, namely

to provide a graded structure on bn(m). In the forthcoming Section 5.2, we refine

this graded structure on bn(m) to a graded cellular basis structure.

Corollary 4.3.6. The kernel of the surjection Φ : Hn(m) −→ bn(m) from Theorem

2.1.6 is a graded ideal. Hence, the algebra bn(m) has a presentation with generators

{ψ1, . . . , ψn−1} ∪ {y1, . . . , yn} ∪ {e(i) | i ∈ In}

subject to the same relations as in Theorem 2.2.1, with the additional relation

e(i) = 0

whenever i1 = k and i2 = k − 1, or i1 = −k and i2 = −k − 1. These relations

are homogeneous with respect to the degree function defined in Definition 2.2.1.

Therefore, bn(m) can be provided with the structure of a Z-graded algebra such that

Φ is a homogeneous homomorphism.

Proof: The result follows by direct application of Theorems 2.1.6, 4.3.5 and 4.3.1.

�

Remark 4.3.7. We can also give an homogeneous presentation for T ln(q) as fol-

lows. First, note that for λ = (3) ∈ Par(3) we have

xλ = T1T2T1 + T1T2 + T2T1 + T1 + T2 + 1
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On the other hand, by [14, Corollary 4.16] if q is not a cubic root of unity then we

have inH3(q2) that xλ = ce(0, 1, 2), where c ∈ C×. Therefore, in order to obtain an

homogeneous presentation of T ln(q) we impose in the homogeneous presentation

of Hn(q2) the additional relation

e(i) = 0 if i1 = 0, i2 = 1 and i3 = 2.

If q is a cubic root of unity, again using [14, Corollary 4.16], we impose the addi-

tional relation

e(i)y3 = 0 if i1 = 0, i2 = 1 and i3 = 2

in the homogeneous presentation of Hn(q2) to obtain an homogeneous presentation

of T ln(q).

We end this chapter by expressing the generator e ∈ bn(m) in terms of homo-

geneous generators. We remark that in general the elements Ui ∈ bn(m), i ≥ 1 are

not homogeneous in bn(m).

Lemma 4.3.8. Let k ∈ Z such that 2k ≡ m mod l. Then, the element e ∈
bn(m) is homogeneous of degree zero. More precisely, it can be written as a sum of

homogeneous elements of degree zero as follows

e =
∑
i∈In
i1=−k

e(i) (4.3.2)

Proof: The claim follows by combining Theorem 2.1.6, (2.2.16) and U0 = −[m]e.

�
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Graded cellular basis for T ln(q) and bn(m)

The main goal in this thesis is to study graded representation theory of the Temperley-

Lieb algebra and the blob algebra, that is, to understand the structure of the graded

simple modules of these algebras. It is known that all of the simple modules over

finite dimensional Z-graded algebras can be graded in a unique way up to degree

shift. Thus, in studying the graded simple modules we do not lose information

about the simple modules, but actually gain additional insight into the structure

of the ungraded irreducible modules. In this chapter we construct Z-gradings on

the cell and simple modules of T ln(q) and bn(m).

5.1 Jucys-Murphy elements on bn(m)

In Corollary 4.3.6, we gave a new (homogeneous) presentation for bn(m), while

in Chapter 3 we described the diagrammatical basis for the blob algebra. Unfor-

tunately, it seems nontrivial to express the homogeneous generators in terms of

the diagram basis of bn(m). However, it turns out that a graded cellular basis for

bn(m) can be constructed from a precise description of the KLR idempotents in

bn(m). Inspired by the work of J. Hu and A. Mathas [14], we shall obtain in this

chapter an expression for them building on the results from [26]. A key point for

this is to make bn(m) fit into the general setting of an algebra with Jucys-Murphy

(JM) elements.

The first example of a family of JM elements was given by Jucys [16] and, inde-

pendently, by Murphy [27] for the group algebra of the symmetric group. A cellular

algebra with Jucys-Murphy elements, is essentially, a cellular algebra equipped with

a family of commuting elements which acts on the cellular basis (when it is suitable

37
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ordered) via upper triangular matrices.

It provides an abstract setting for carrying out much of Murphy’s theory for

Young’s seminormal form. The axiomatization of this concept was given by A.

Mathas in [26].

Let A be a cellular algebra with cellular basis

C = {cλst | λ ∈ Λ; s, t ∈ T (λ)}

as in Definition 4.2.1. Assume furthermore that each T (λ) is a poset with respect

to an order <λ, or just < for simplicity. The following definition is taken from [26].

Definition 5.1.1. A family of Jucys-Murphy elements for A is a set {L1, . . . , Lk}
of commuting elements of A together with a set of scalars,

{cs(i) ∈ R | s ∈ T (λ), λ ∈ Λ and 1 ≤ i ≤ k}

such that for i = 1, . . . , k we have L∗i = Li and, for all λ ∈ Λ and s, t ∈ Λ,

Lic
λ
st ≡ cs(i)cλst +

∑
v>s

rsvc
λ
vt mod Aλ

for some rsv ∈ R (which depends on i). We call cs(i) the content of s at i.

The purpose of this section is now to apply this definition to bn(m). By the

above definition, in order to apply the results from [26] we must to first find a cellu-

lar basis for bn(m) and then choose an appropriate set of Jucys-Murphy elements.

Actually, the diagrammatical basis of bn(m) is a cellular basis. We now recall the

various elements of this cellular structure.

According to the notation introduced in Definition 4.2.1 we take Λ = Bip1(n),

ordered by �. Set T (λ) = Std(λ), for all λ ∈ Bip1(n). Given s, t ∈ T (λ) define

cλst = mst. We remark that the diagrammatical basis B(n) is also cellular for bOn (m)

and bKn (m), since B(n) is a free basis for both algebras. For λ ∈ Λ, let bλn(m) be

the ideal of bn(m) spanned by the set

{mst | s, t ∈ Std(µ) ; µ � λ}.

In the cases of bOn (m) and bKn (m) we write bO,λn (m) and bK,λn (m) for the ideals.

Similarly, the diagrammatical basis for the Temperley-Lieb algebra is cellular

[11, Example 1.4]. In this case, the cellular structure is given by Λ = Par2(n),
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ordered by dominance. T (λ) = Std(λ) for all λ ∈ Λ, and for σ, τ ∈ T (λ) we set

cλστ = βστ .

Since we are assuming that q+ q−1 6= 0 we get that the bilinear forms 〈·, ·〉λ are

all nonzero, in the Temperley-Lieb case as well as the blob algebra case. From this

we get from remark (3.10) of [11] that both algebras are quasi-hereditary and that

the cell modules are standard modules in the sense of quasi-hereditary algebras.

We return to the aim of finding a family of Jucys-Murphy elements for bn(m).

By Theorem 2.1.6 we have a homomorphism from Hn(m) onto bn(m), it maps the

elements Lk ∈ Hn(m) to

(Uk−1 + q) . . . (U1 + q)((q − q−1)U0 + qm)(U1 + q) . . . (Uk−1 + q) ∈ bn(m).

We shall use the same notation Lk for this element of bn(m). It satisfies the

following commutation rules with the Ui

LkUi =UiLk if k 6= i, i+ 1 (5.1.1)

(Uk + q−1)Lk+1 =Lk(Uk + q) for 1 ≤ k < n. (5.1.2)

Lk+1(Uk + q−1) =(Uk + q)Lk for 1 ≤ k < n. (5.1.3)

It is known that the Lk are a family of JM-elements for Hn(m) with respect to

the cellular basis used for example in [14], in which <λ is the dominance order on

bitableaux. One might now hope that the set {L1, . . . Ln} is also a family of JM-

elements for bn(m). That this should be the case is not at all obvious. Indeed, the

concept of a family of JM-elements depends heavily on the underlying cellular basis

and a cellular algebra may in general be endowed with several, completely different,

cellular bases with different orders. For example the conjectures of Bonnafé, Geck,

Iancu and Lam in [2], indicate that Lusztig’s theory of cells for unequal parameters

should give rise to a cellular basis on Hn(m) for each choice of a weight function

on the Coxeter group of type B, in dependence of a parameter r. In this setting

only the asymptotic case r > n corresponds to the dominance order on T (λ). On

the contrary, in [31] it is shown that the cell structure on bn(m) corresponds to the

other extreme case r = 0 under restriction to Bip1(n).

We shall show that in fact {L1, . . . Ln} do form a family of JM-elements for

bn(m) where the poset structure T (λ) = Std(λ) is the one defined above. Even

more, using the surjection HOn (m) −→ bOn (m) given in Theorem 2.1.7, we define

elements {L1, . . . , Ln} of bOn (m) using the same formula as before and we show that
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these form a family of JM-elements for bOn (m) with respect to {mst}, considered as

elements of bOn (m).

Definition 5.1.2. Suppose that λ ∈ Bip1(n) and let t ∈ Std(λ). Let j be an

integer with 1 ≤ j ≤ n. Define the content of t at k to be the scalar given by

ct(j) =

 q2(c−1)Q if d = 1

q2(c−1)Q−1 if d = 2

where (1, c, d) is the unique node in [λ] such that t(1, c, d) = j. In other words,

ct(k) is an element of either O,C(q,Q) or C, depending on the context. In the C

case, note that ct(j) = q2rt(j).

Lemma 5.1.3. Suppose that λ ∈ Bip1(n) and let k be an integer with 1 ≤ k ≤ n.

Then we have the identity

Lkmtλtλ ≡ ctλ(k)mtλtλ mod bλn(m)

Similar statements hold over bOn (m) and bKn (m) .

Proof: Using the description of tλ given after Definition 3.2.4 together with

Definition 3.2.8 we find that the diagram corresponding to mtλtλ is one of the

diagrams that appear in Figure 5.1. But then the statement of the Lemma is

equation (25) of [7, Lemma 7.1]. (Note that there is an error in equation (25) as

presented in loc. cit. As a matter of fact, to get the correct expressions one should

subtract 2 from all appearing exponents of x since the relation between Li and L′i

introduced two pages earlier should be corrected the same way).

�

•

•

•

•

. . .

•

•

. . .

1 2 3 4 2h n

•

λ=((h),(h+v)) λ=((h+v),(h))

•

•

•

•

. . .

•

•

. . .

1 2 3 4 2h n

Figure 5.1: The blob diagram mtλtλ .

Our proof that the {Lk} form a family of JM-elements shall be a downwards

induction over the partial order � with the preceding Lemma providing the induc-

tion basis. To obtain the inductive step we need to understand the relationship
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between the action of Ui and � and hence we would like to have a formula for the

action of Uk in terms of walks on the Bratteli diagram. In general there is no such

simple formula. On the other hand, there is one situation where the action of Uk

is particularly easy to visualize.

Lemma 5.1.4. Suppose that λ ∈ Bip1(n) and s, t ∈ Std(λ). Assume moreover

that sks = t for the simple transposition sk and that s � t or equivalently, that w(t)

is obtained from w(s) by making a hook at position k smaller. Then the following

relation holds in bn(m)

Ukmstλ =

 mttλ if s � t

yemttλ if s ∼ t.

Similar formulas hold over O,K and in the Temperley-Lieb algebra (corresponding

to s � t).

Proof: This is an immediate consequence of the definition of the maps fσn,k. �

The next three Lemmas are preparations for Lemma 5.1.8.

Lemma 5.1.5. Suppose that λ ∈ Par2(n) and σ, τ, u ∈ Std(λ). Suppose moreover

that u . σ . τ and that skσ = τ for some k. Let v ∈ Std(λ) be chosen such

that Ukβutλ = rβvtλ mod T lλ for some scalar r ∈ C (such v always exists by

the diagrammatical realization of the Temperley-Lieb algebra and its cell modules).

Then, if r is nonzero we have that v . τ .

Proof: We identify σ, τ and u with their walks w(σ), w(τ) and w(u) on the Bratteli

diagram for T ln, and also with their corresponding sign sequences. Then the sign

sequences for σ and τ are the same except at the k’th and k+ 1’st positions where

the sequence for σ has −,+ whereas the sequence for τ has +,−. On the other

hand, for u all four possibilities of signs may occur at these positions, apriori, and

so we proceed by a case by case analysis.

The first case to analyze is the case where the signs for u are +,− at these

positions. In this case we get v = u (and r := −[2]), and so the claim of the

Lemma follows from the assumptions. The next case is the one where the signs are

+,+ at positions k and k + 1. On the diagrammatic level we have three options

for the top edge of βuτλ , illustrated in Figure 5.2.

In the subcase (a), the signs for u at positions k, k+ 1, a and b are +,+,− and

−, respectively. For v the signs in these positions are +,−,+ and −, whereas the
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k k+1 a b

(a)

k k+1 a

(b)

k k+1

(c)

Figure 5.2: Top edge of βuτλ

signs for v and u agree at all other positions. The claim follows from this. The

subcase (b) is treated similarly. Finally, in the subcase (c) we have r = 0, contrary

to the assumptions.

The third case is the one where the signs for u are −,+ at the positions k, k+1.

In that case, at the diagrammatic level, k is connected to a point a < k whereas

k + 1 is either connected to b > k + 1 or it is the upper endpoint of a vertical line.

In both cases, we find that the sign sequence for v is the same as the one for u,

except at positions k, k + 1 where it becomes +,−. But by the assumptions, u

differs from σ in at least one position and the result follows in this case as well.

Note that this is the only case in which u B v.

The last case is the one where the signs for u at the positions k, k+ 1 are −,−.

In this case, k is connected to a and k + 1 to b and b < a < k < k + 1. Moreover

the signs for u at these positions are +,+,−,−. But then the signs for v at these

positions are +,−,+,− whereas the signs for v and u agree at all other positions.

The claim follows from this. �

Lemma 5.1.6. Suppose that µ ∈ Par2(n). Let σ, τ ∈ Std(µ). Assume that

Ukβστµ ≡ αβττµ mod TLµn, with α 6= 0 and 1 ≤ k < n. Then, τ D σ, or

σ B τ and skσ = τ .

Proof: The result follows by a case by case analysis, similar to that given in the

proof of the previous Lemma. �

Lemma 5.1.7. Let λ ∈ Bip1(n) and u ∈ Std(λ). Assume that Ukmutλ ≡ αmvtλ

mod bλn(m), for α ∈ C and v ∈ Std(λ) (such v always exists by the diagrammatic

realization of bn(m)). Suppose moreover that α is nonzero and that the node j

is covered in the top edge of mutλ , but uncovered in the top edge of mvtλ . Then

|u(j)| = |v(j)| 6= 0 if and only if j = k. Similar statements hold over O and K.

Proof: In order for the action of Uk to transform a covered node j in the top edge

of mutλ to an uncovered node in the top edge of mvtλ , the diagram of mutλ must
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be one of those shown in the below Figure 5.3 with the position of j shown in each

case. Using this classification, the Lemma follows from Definition 3.2.8. �

k k+1 a

•

k ≤ j < a

•
k k+1

k ≤ j ≤ k + 1

•

k k+1a

a < j ≤ k + 1

•

k k+1 a

k ≤ j < a

Figure 5.3: Possibilities for mutλ

We can now finally prove the property of the order � that makes our induction

work. It is a generalization to the blob algebra case of Lemma 5.1.5, and in fact

we shall deduce it from that Lemma.

Lemma 5.1.8. Suppose that λ = ((a), (b)) ∈ Bip1(n) and s, t, u ∈ Std(λ). Suppose

furthermore that sks = t and that u � s � t. Let v ∈ Std(λ) be chosen such that

Ukmutλ = rmvtλ mod bλn(m) for some scalar r ∈ C. Then, if r is nonzero we have

that v � t. Similar statements are valid for bOn (m) and bKn (m).

Proof: Set µ1 = max{a, b}, µ2 = min{a, b} and let µ = (µ1, µ2)′. Then µ ∈
Par2(n) and in the Temperley-Lieb algebra we have that

Ukβτuτµ = α1βτvτµ mod T lµ

where τu, τv are as in Definition 3.3.2 and α1 6= 0; indeed α1 = −[2] if α = −[2] or if

α = ye, and α1 = 1 if α = 1. Moreover, by Lemma 3.3.4 we have that τu D τs D τt.

Case 1 (τu . τs . τt). In this case we have by Lemma 3.3.5 that skτs = τt and then

Lemma 5.1.5 gives that τv . τt. Now by Lemma 3.2.7, in order to prove that v � t

it is enough to show that

|v(j)| = |t(j)| implies v(j) ≤ t(j). (5.1.4)

Hence, assume that |v(j)| = |t(j)|, but t(j) < 0 and v(j) > 0 for some 1 ≤ j ≤ n.

We now split this case into two subcases according to Lemma 5.1.6, that is, τv D τu

or, τu B τv and skτu = τv. First, we assume that τv D τu. Then we get from

u � s � t and Lemma 3.2.7 that u(j) = s(j) = t(j) and so we get u(j) < 0,

v(j) > 0 and |u(j)| = |v(j)|. From this we conclude via Lemma 5.1.7 that j = k,

hence that s(k) = t(k), which is impossible because sks = t.

So we can assume that τu B τv and skτu = τv. Note that in this setting we

have |u(j)| = |v(j)| if j 6= k and |u(k)| + 2 = |v(k)|. Since sks = t, τs 6= τt and
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t < 0 we also have that s(j) = t(j) if j 6= k and s(k) + 2 = t(k) ≤ −2. Then we

get from Lemma 5.1.7 that j = k. By t(k) ≤ −2 we obtain that v(k) ≥ 2 since

|t(k)| = |v(k)|. Then v(k + 1) ≥ 1 since the sequence of integers changes by ±1

when k is increased by 1. But |v(k + 1)| = |u(k + 1)| and u(k + 1) < 0, so we can

use the Lemma 5.1.7 again to obtain a contradiction. This completes the proof in

Case 1.

Case 2 (τu D τs = τt). By the assumptions t is obtained from s by making a hook

at position k smaller. Moreover, since τs = τt this hook is located on the central

vertical axis of the Bratteli diagram, that is t(k−1) = s(k−1) = t(k+1) = s(k+1) =

0. But then, since u � s, we have necessarily that u(k−1) = u(k+1) = 0, u(k) = −1

which implies via Lemma 5.1.4 that v is obtained from u by making a hook at

position k smaller. Hence we get v � t as claimed.

Case 3 (τu = τs D τt). By the hypothesis in this case we have τv = τt. Recall that

at the Bratteli diagram level this implies that at each step the walks w(t) and w(v)

are either equal or mirror images under the reflection through the central vertical

axis of the Bratteli diagram. So, in order to prove the Lemma in this case we must

prove that whenever the path w(t) is on the negative side of the Bratteli diagram,

the path w(v) is also on the negative part. In terms of the sequence of integers the

last condition is equivalent to

t(j) < 0 implies v(j) < 0 (5.1.5)

for all 1 ≤ j ≤ n. Suppose by contradiction that (5.1.5) is not true for some

1 ≤ j ≤ n. Therefore, t(j) < 0 < v(j) for some 1 ≤ j ≤ n. Using the fact that

s(j) = t(j), for all j 6= k, τu = τs and τv = τt, we can conclude via Remark 3.2.9

and Lemma 5.1.7 that j = k. Hence, at step k the walk w(t) (resp. w(v)) is on

the negative side of Bratteli diagram and (5.1.5) is true for all j 6= k. This implies

that t(k − 1) = t(k + 1) = 0 and t(k) = −1. But this is impossible because s � t

and sks = t. This completes the proof of the Lemma. �

We are now in position to prove the triangularity property for {L1, . . . , Ln}. It

follows from it that the set {L1, . . . , Ln} is a family of JM-elements for the blob

algebra with respect to the order �.

Theorem 5.1.9. Suppose that λ ∈ Bip1(n) and s, t ∈ Std(λ). Then

Lkmst = cs(k)mst +
∑

u∈Std(λ)
u�s

aumut mod bλn(m)
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for some scalars au. A similar statements holds for bOn (m) and bKn (m).

Proof: By the cellularity of the diagram basis, the statement of the Lemma is

independent of t. We proceed by induction on the order �. The induction basis

s = tλ is provided by Lemma 5.1.3. Assume now that s 6= tλ. Then we can find i

and s′ such that s′ � s and sis
′ = s. By the inductive hypothesis the Theorem is

valid for s′. We first assume that s � s′ and k 6= i, i + 1. Using Lemma 5.1.4 and

the commutation rule (5.1.1) we then get

Lkmst = LkUims′t = UiLkms′t = cs′(k)mst +
∑

u∈Std(λ)
u�s′

auUimut mod bλn(m).

On the other hand, by the previous Lemma the sum is a linear combination of

elements of the form mut where u � s and since cs(k) = cs′(k) we are done in this

case.

If s ∼ s′ and k 6= i, i+ 1 we find similarly

Lkmst = y−1
e LkUims′t = y−1

e UiLkms′t = cs′(k)mst+
∑

u∈Std(λ)
u�s′

y−1
e auUimut mod bλn(m)

and may conclude the same way as before. We next treat the case s � s′ and i = k

where we find, using the commutation rule (5.1.2) that

Lkmst = LkUkms′t = Lk(Uk + q − q)ms′t = (Uk + q−1)Lk+1ms′t − qLkms′t.

By the inductive hypothesis, Lkms′t and Lk+1ms′t are linear combination of ele-

ments of the form mut where u � s and hence we find, using the inductive hypothesis

and Lemma 5.1.4 once more, that Lkmst is equal to

UkLk+1ms′t = cs′(k + 1)mst +
∑

u∈Std(λ)
u�s′

auUkmut mod bλn(m).

But cs(k) = cs′(k + 1) and we may conclude this case using the previous Lemma

as before. The remaining cases are treated similarly. �

5.2 Graded cellular basis for T ln(q) and bn(m)

In this section we obtain our main results showing that bn(m) is a graded cellular

algebra. Our methods are inspired by the ones used by Hu and Mathas in [14,

Section 4 and 5], who construct a graded cellular basis {ψst} for the cyclotomic
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Hecke algebra, in terms of the Khovanov-Lauda-Rouquier generators. But unfor-

tunately is not possible to use their results directly. In fact, the homomorphism

Φ : Hn(m) −→ bn(m) may easily map linearly independent elements to linearly

dependent elements. Moreover, due to the incompatibility between the dominance

order used for {ψst} and the order � for bn(m), we do not know how to find a basis

for ker Φ consisting of elements from {ψst}, and so in general it seems intractable

to determine which are the subsets of {ψst} that stay independent under Φ.

Our solution to this problem is indirect. It is based on an alternative realization

of the KLR-idempotents e(i) which is possible in the setting of an algebra with

JM-elements, see Lemma 4.2 of [26]. It also plays a key role in [14] in the setting

of cyclotomic Hecke algebras. To explain it we first setup the relevant notation.

We fix O and m as above. Recall that K = C(q,Q) and bKn (m) = bOn (m)⊗OK.

Over K the contents from Definition 5.1.2 trivially verify the separation criterion

of [26] and so bKn (m) is semisimple. Hence we can apply [26] to the algebras bn(m),

bOn (m) and bKn (m). We repeat the necessary definitions in our setting.

Definition 5.2.1. Suppose that λ ∈ Bip1(n) and s, t ∈ Std(λ). Then we define

Ft :=

n∏
k=1

∏
s∈Std(n)
cs(k)6=ct(k)

Lk − cs(k)

ct(k)− cs(k)
∈ bKn (m)

and set fst = FsmstFt.

We extend the order � to pairs of bitableaux of the same shape by declaring

(u, v) � (s, t) if u, v ∈ Std(λ) and s, t ∈ Std(µ), and if either µ � λ or µ = λ and

u � s and v � t. Then we get that

fst = mst +
∑

(u,v)�(s,t)

ruvmuv (5.2.1)

for some ruv ∈ K and hence

{fst | s, t ∈ Std(λ),λ ∈ Bip1(n)}

is a basis for bKn (m), the seminormal basis. Moreover, by [26, Theorem 3.7], for

t ∈ Std(λ) there exists a non-zero scalar γt ∈ K such that

fttftt = γtftt (5.2.2)

Let ≈ be the equivalence relation on Std(n) given by s ≈ t if rs(k) = rs(k)

for k = 1, 2, . . . , n. The equivalence classes for ≈ are parametrized by residue
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sequences In of length n; for i ∈ In we denote by Std(i) the corresponding class.

Any tableau s gives rise to a residue sequence that is denoted is. Then we have

s ∈ Std(is) but in general Std(i) may be empty, of course. For each i ∈ In we

define idempotents eb(i) ∈ bKn (m) by

eb(i) :=
∑

s∈Std(i)

1

γs
fss.

Then it follows from [26] that actually eb(i) ∈ bOn and so we may reduce eb(i)

modulo m to obtain idempotents of bn(m) that we denote the same way eb(i).

The next result plays a key role in [14] in the setting of cyclotomic Hecke

algebras.

Lemma 5.2.2. For i = (i1, i2, . . . , in) ∈ In let

bn(m)(i) := {v ∈ bn(m) | (Lr − q2ir )kv = 0 for r = 1, . . . , n and k � 0}

be the generalized weight space for the action of Li ∈ bn(m). Then we have

bn(m)(i) = eb(i)bn(m).

Proof: The proof of Proposition 4.8 of [14] carries over. �

Lemma 5.2.3. Let Φ : Hn(m) −→ bn(m) be as above and let i ∈ In. Then

Φ(e(i)) = eb(i). In particular, eb(i) is a homogeneous element of bn(m) of degree

0.

Proof: Since Φ is surjective and maps the JM-elements of Hn(m) to the JM-

elements of bn(m), we have Φ(Hn(m)(i)) = bn(m)(i). But then

eb(i)bn(m) = bn(m)(i) = Φ(Hn(m)(i)) = Φ(e(i)Hn(m)) = Φ(e(i))bn(m).

Moreover, Φ(e(i)) lies in the subalgebra of bn(m) generated by the JM-elements

since e(i) has the corresponding property, and so Φ(e(i)) = eb(i) as claimed. On

the other hand, by Corollary 4.3.6 we know that Φ is homogeneous and so the

second claim holds as well. �

We next define elements ψbi , y
b
i of bn(m) by ψbi := Φ(ψi) and ybi := Φ(yi). As

is the case for eb(i), these elements are homogeneous of the same degree as their

Hecke algebra counterparts. We are now in position to give the key definition of

this section.
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Definition 5.2.4. Suppose that λ ∈ Bip1(n) and s, t ∈ Std(λ). Let d(s) =

si1 . . . sik and d(t) = sj1 . . . sjl be reduced expressions for d(s) and d(t), chosen

as in Lemma 3.3.7. Then we define

ψbst := ψbi1 . . . ψ
b
ik
eb(iλ)ψbjl . . . ψ

b
j1 ∈ bn(m).

Note that although our ψbst look much like the elements ψst introduced in [14],

this resemblance is only formal and in general there is no obvious connection be-

tween the two families of elements, due to the differences between the tableaux.

Note also that in our definition there is no y factor, contrary to the [14] situation.

Finally, note that our ψbst can be shown to be independent of the choices of reduced

expressions as above, this is also contrary to the situation in [14].

Our next result is parallel to Theorem 4.14 of [14], but has no y term. This

’missing’ y is the reason why there is no y factor in Definition 5.2.4.

Theorem 5.2.5. Suppose that λ = ((a), (b)) ∈ Bip1(n). Then there exists a

nonzero scalar r ∈ C× such that

eb(iλ) ≡ rmtλtλ mod bλn(m).

Proof: We begin by determining γtλ . For this we use (5.2.1) and (5.2.2) and find

γtλftλtλ = ftλtλftλtλ

≡ mtλtλmtλtλ mod bK,λn (m)

≡ (ye)
cmtλtλ mod bK,λn (m)

≡ (ye)
cftλtλ mod bK,λn (m)

where c = min{a, b} and where mtλtλmtλtλ can be conveniently found via the

diagrammatic realization of mtλtλ in Figure 5.1. From this we deduce that γtλ =

(ye)
c.

On the other hand, for s ∈ Std(iλ) with s 6= tλ, we get by combining the

description of tλ given just after Definition 3.2.4 with the standing conditions on

the parameters (2.1.4) that Shape(s) � λ. But then (5.2.1) and the definition of

e(iλ) imply

e(iλ) ≡ 1

(ye)c
mtλtλ mod bK,λn (m). (5.2.3)

Since e(iλ) and 1
(ye)c

mtλtλ both belong to bO,λn (m), we can now replace bK,λn (m)

by bO,λn (m) in (5.2.3). From this the proof is obtained by reducing modulo m. �
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We can now prove that the elements from Definition 5.2.4 form a basis for

bn(m).

Theorem 5.2.6. Suppose that λ ∈ Bip1(n) and s, t ∈ Std(λ). Then there are

scalars r ∈ C× and ruv ∈ C such that

ψbst = rmst +
∑

(u,v)�(s,t)

ruvmuv.

Hence {ψbst | s, t ∈ Std(λ) for λ ∈ Bip1(n)} is a basis for bn(m).

Proof: For d(s) = si1 . . . sik a reduced expression for d(s) as above we consider

first ψbi1 . . . ψ
b
ik
eb(iλ). Using (2.2.2) and the commutation rules (2.2.10), (2.2.12)

and (2.2.13) between the yi and ψj , we get that it can be expressed as a linear

combination of elements of the form Φ(Tij1 . . . Tijr fj1,...,jr (y1, . . . , yn)e(iλ)) where

(ij1 , . . . , ijr ) is a subsequence of (i1, . . . , ik) and where fj1,...,jr (y1, . . . , yn) is a poly-

nomial in the yi. But Φ(Ti) = qUi+q
2 and hence this can also be written as a linear

combination of elements of the form Uij1 . . . Uijr gj1,...,jr (y
b
1, . . . , y

b
n)eb(iλ)) where

(ij1 , . . . , ijr ) is a subsequence of (i1, . . . , ik) and gj1,...,jr (y
b
1, . . . , y

b
n) is a polynomial

in the ybi . But from (2.2.1) and the previous Theorem this is a linear combination

of elements of the form Uij1 . . . Uijrmtλtλ mod bλn(m).

Going through the above argument once more, we get that the coefficient of

Ui1 . . . Uikmtλtλ in ψbi1 . . . ψ
b
ik
eb(iλ) is nonzero, in fact it is essentially the product of

the constant terms of the polynomials Q appearing in (2.2.2). But Lemma 5.1.4 im-

plies, by the choice of reduced expression for d(s) = si1 . . . sik , that Ui1 . . . Uikmtλtλ =

ylemstλ for some l ∈ Z≥0 and then Lemma 5.1.8 implies that

Uij1 . . . Uijrmtλtλ = rmutλ mod bλn(m)

for some scalar r ∈ C and some u such that u � s. Summing up, this proves the

Theorem in the case where t = tλ.

To prove the general case, we first note that the same argument as above, only

acting on the right instead of on the left, proves the Theorem in the case where

s = tλ. The general case then follows by multiplying the two versions together and

using cellularity. �

Remark 5.2.7. It follows from the Theorem that the subalgebra of bn(m) gener-

ated by the eb(i) and the ψbi is equal to bn(m) itself.
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To establish our main theorem we must define a degree function on the set of

all one-line standard bitableaux. Let λ ∈ Bip1(n) and t ∈ Std(λ). Then we define

the degree of t as

deg t := degψbttλ . (5.2.4)

We can now prove our main result, namely to construct a graded cellular basis for

bn(m). Given our previous work, we can essentially follow the argument of [14,

Theorem 5.8], just making the corresponding changes in notation. We sketch the

argument because this is the main theorem of the thesis.

Theorem 5.2.8. The blob algebra bn(m) is a graded cellular algebra with graded

cellular basis {ψbst | s, t ∈ Std(λ) for λ ∈ Bip1(n)}.

Proof: First of all it follows from the triangularity property of Theorem 5.2.6 that

{ψbst | s, t ∈ Std(λ) for λ ∈ Bip1(n)}

is a cellular basis for bn(m), since {mst | s, t ∈ Std(λ) for λ ∈ Bip1(n)} is it.

Moreover, by the definitions, ψbst is a homogeneous elements of bn(m) of degree

degψbst = deg s + deg t.

Using Corollary 4.3.6 one sees that there is a unique anti-automorphism ∗ of bn(m)

that fixes the generators ψbi , y
b
j and eb(i). Then by the definition it is clear that

(ψbst)
∗ = ψbts and so the anti-automorphism induced by the basis {ψbst} coincides

with ∗. The Theorem is proved. �

Since bn(m) is a graded cellular algebra with graded cellular basis {ψbst} we

can define graded cell and simple bn(m)-modules which we denote by ∆(λ) and

L(λ), respectively, with λ ∈ Bip1(n). Therefore, we have obtained the main goal

in this chapter for the bn(m)-case. The graded cell module, ∆(λ), has a C-basis

{ψbt | t ∈ Std(λ)} where the bn(m)-action comes from (4.2.1).

By Theorem 5.2.6 the cell modules induced by the graded cellular bases agree

with the cell modules induced by the diagram bases {mst}, that is the standard

modules for bn(m). The following result gives a formula for the graded dimension

of ∆(λ).

Corollary 5.2.9. Let λ ∈ Bip1(n). Then

dimt ∆(λ) =
∑

t∈Std(λ)

tdeg(t) (5.2.5)
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Proof: The result is a direct consequence of the definitions and Theorem 5.2.8.

�

For completeness, we give the analogous Theorem for the Temperley-Lieb al-

gebra. This proof relies here on Theorem 4.3.2 and the compatibility of Murphy’s

standard basis with the diagram basis, as proved in [13], and could have been

given earlier in the thesis. Let Φ2 : Hn(q2) −→ T ln(q) be as above and define

ψTlst := Φ2(ψst) for s, t ∈ Std(n) where ψst is the graded cellular basis for Hn(q2)

introduced by Hu and Mathas and Shape(s) = Shape(t) ∈ Par2(n).

Theorem 5.2.10. The Temperley-Lieb algebra T ln(q) is a graded cellular algebra

with graded cellular basis {ψTlst } and degree function defined as above.

Proof: According to Theorem 9 of [13], the diagram basis for T ln(q) is upper

triangularily related to the standard basis, with respect to the dominance order.

But ψst is also upper triangularily related to the standard basis with respect to

the dominance order, as already mentioned above, and hence the Theorem follows.

�

5.3 Examples

In this section we illustrate our results on two examples.

Example 5.3.1. Our first example is T l3(q), with q chosen to be a primitive cubic

root of unity, that is e = 3. This is a non-semisimple algebra and so we expect the

grading to be nontrivial. Using the homogeneous basis for ψTlst for T l3(q), we aim

at determining a homogeneous basis for T l3(q), in terms of the diagrams. Define

first

σ = 1 2
3

τ = 1 3
2

Then σ and τ are the only tableaux of shape (2, 1). The only other possible shape

in Par2(3) is λ = (1, 1, 1) whose only standard tableau is tλ. Hence we get that

T l3(q) has dimension five with homogeneous basis consisting of the elements

ψTlss , ψ
Tl
st , ψ

Tl
ts , ψ

Tl
tt , ψ

Tl
tλtλ .

The residue sequences for σ and τ are iσ = (0, 1, 2) and iτ = (0, 2, 1) and

the degrees are deg(σ) = 0 and deg(τ) = 1. (See [14, (3.8) and Definition 4.7]).

Therefore, using the orthogonality of the KLR-idempotents, we have

ψTlστψ
Tl
σσ = ψTlσσψ

Tl
τσ = 0, (5.3.1)
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see [14, Lemma 5.2]. Now by the triangular expansion property mentioned in the

above Theorem 5.2.8 there exists c ∈ C× such that

ψTlσσ = c = cU1

and hence U1 is homogeneous of degree 0. Using the triangular expansion property

of Theorem 5.2.8 once again, there are scalars c1, c2 ∈ C with c1 6= 0 such that

ψTlστ = c1 + c2

Multiplying this equality on the right by ψTlσσ = cU1, and using equation (5.3.1),

we get that c1 = [2]c2. Hence the element

A := [2] +

is a scalar multiple of ψTlστ and homogeneous of degree 1. Similarly we obtain that

the element

B := [2] +

is a scalar multiple of ψTlτσ and homogeneous of degree 1.

Now, σ is the maximal tableau of shape (2, 1) and so we have ψTlτσψ
Tl
στ = ψTlττ .

From this we obtain that ψTlττ is a scalar multiple of

C = +[2] +[2] +

which is a homogeneous element of degree 2.

The last homogeneous basis element can now be determined by expanding ψTltλtλ

in the diagram basis. On the other hand, since the unity 1 is always homogeneous

of degree 0 and since it is linearly independent of A,B,C and U1, we use it. All in

all, the set {1, U1, A,B,C} is a homogeneous bases for T l3(q). In particular, T l3(q)

is a positively graded algebra and F1 := spanC{A,B,C} and F2 := spanC{C} are

ideals in T l3(q). In general, T ln(q) is not positively graded.

Example 5.3.2. We now describe a homogeneous basis for b3 = b3(q, ye) in terms

of blob diagrams, with q a primitive quintic root of unity and ye = − [1]
[2] , so in this

case l = 5 and m = 2. First, we list all elements in Std(3), with their respective

residues sequences and degrees.
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Bi-partitions Bitableaux Res. Sequence Degree

tλ= ( 2 , )1 3 iλ = (4, 1, 0) 0

λ = ((1), (2)) s =( 3 , )1 2 is = (4, 0, 1) 1

t = ( 1 , )2 3 it = (1, 4, 0) 0

tµ = ( 2 3 , )1 iµ = (4, 1, 2) 0

µ = ((2), (1)) v =( 1 3 , )2 iv = (1, 4, 2) 0

u =( 1 2 , )3 iu = (1, 2, 4) 0

ν = ((0), (3)) tν = (∅, )1 2 3 iν = (4, 0, 1) 0

κ = ((3), (0)) tκ = ( ,∅)1 2 3 iκ = (1, 2, 3) 0

In order to obtain a diagrammatic homogeneous basis for b3 we need the fol-

lowing lemma.

Lemma 5.3.3. Let λ ∈ Bip1(n) and s, t ∈ Std(λ). Then, we have

eψbste =

 ψbst, if 1 is located in the second component of s and t;

0, otherwise.

Proof: The claim is a direct consequence of the definition of ψbst, the orthogonality

of the KLR-idempotents and Lemma 4.3.8. �

Using the triangularity property given in Lemma 5.2.6, the orthogonality of the

KLR-idempotents and the previous Lemma 5.3.3, we can obtain a homogeneous

basis for b3 in terms of diagrams arguing as in the previous example. We omit such

arguments for brevity, since dimC(b3) = 20.

Atλtλ = ••
• Atλt = •• Attλ = • • Att = •

Atλs = ye
••









− •

• • Ats = ye









• − ••

Astλ = ye ••
4444444

− • •
•

Ast = ye
4444444

• − • •

Ass = y2
e • −ye

4444444

•• −ye








•• +

•
• •
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Atµtµ = •
•

Atµv =
•

Avtµ = • Avv =

Atµu =
•









− •









• Avu =









−









•

Autµ = •

4444444
− • 4444444

• Auv =
4444444

−
4444444

•

Auu = − • Atν tν = • Atκtκ =

The set {Aab | a, b ∈ Std(λ) , λ ∈ Bip1(n)} is a homogeneous basis for b3

with deg(Aab) = deg(a) + deg(b). We remark that the elements Aab in general

not coincide with the elements ψbab. Just like in the case of the Temperley-Lieb

algebra, in general the blob algebra is not positively graded .



CHAPTER 6

Graded decomposition number for bn(m)

In the previous Chapter we have constructed a graded cellular basis {ψbst} for

bn(m). The existence of this basis allows define graded cell and simple bn(m)-

modules which we have denoted by ∆(λ) and L(λ), respectively, for λ ∈ Bip1(n).

The graded dimension of the graded cell modules ∆(λ) has been computed in

Corollary 5.2.9. In this Chapter, we want to calculate the graded dimension of the

graded simple modules L(λ). The graded dimensions of graded cell and simple

modules are related to the graded decomposition numbers, [∆(µ) : L(λ)]t, via

equation (iv) in Theorem 4.2.3. Since the graded dimension of the graded cell

modules for bn is known from Corollary 5.2.9, the problem of finding the graded

dimensions of the irreducible bn-modules is equivalent to the problem of finding

the graded decomposition numbers for bn. The main goal in this chapter is then

to find [∆(µ) : L(λ)]t for all µ,λ ∈ Bip1(n). We shall refer to these polynomials

as graded decomposition numbers for bn(m).

In the ungraded setting, the decomposition numbers for bn were determined in

[24] and [31] by using algebraic methods. Our approach is essentially combinato-

rial, and therefore different from those used in the ungraded case. A main point of

our approach is the existence of a family of positively graded cellular subalgebras

bn(m,λ) of bn, with λ a one-line bipartition of total degree n. The graded de-

compositions numbers for bn and bn(m,λ) are closely related and hence we reduce

the main problem in this chapter to calculate the graded decomposition numbers

for bn(m,λ). Now, since bn(m,λ) is a positively graded algebra we can define a

filtration induced by the grading on bn(m,λ) for each cell bn(m,λ)-module. This

filtration together with a counting argument is sufficient to determine the graded

55
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decomposition numbers for bn(m,λ) (and therefore for bn).

6.1 Degree function

In this section we study the degree function on Std(n) defined in (5.2.4). We remark

that in general this function does not coincide with the degree function defined [5,

(3.5)], the main reason for this is that we do not work with the dominance order

on Std(n) and both degree functions depend heavily on the order considered on

Std(n). First we give an interpretation of the degree function in terms of addable

and removable nodes, similar to the one given in [14, Definition 4.7] for standard

tableaux using the dominance order. Finally, we give a formula for the degree

function depending on walks and walls on the Bratteli diagram.

Let λ ∈ Bip1(n). The node α = (1, c, d) is called an addable node of λ if α 6∈ λ
and λ∪{α} is the diagram of a one-line bipartition of n+1. Similarly, ρ ∈ λ is called

a removable node of λ if λ\{ρ} is the diagram of a one-line bipartition of n − 1.

Note that any one-line bipartition has exactly two addable nodes. Furthermore, a

one-line bipartition may have one or two removable nodes.

Given two nodes α = (1, c1, d1) and β = (1, c2, d2) then α is said to be below β

if c1 > c2, or c1 = c2, d1 = 1 and d2 = 2. The concept of to be below could have

been defined in terms of tλ. In fact, given two nodes α and β choose a bipartition

λ such that α, β ∈ [λ]. Then, the node α is below β if and only if tλ(α) > tλ(β).

Using the dominance order there is a similar interpretation of the concept of to be

below introduced in [14, Section 4]. But since tλ does not coincide with the unique

maximal bitableau for the dominance order, the two concepts do not coincide in

general.

Let t ∈ Std(λ). For k = 1, . . . , n let At(k) be the set of all addable nodes of the

bipartition Shape(tk) which are below of t−1(k). Similarly, let Rt(k) be the set of

all removable nodes of the bipartition Shape(tk) which are below of t−1(k). Now

define the sets Amt (k) and Rmt (k) by

Amt (k) = {α ∈ At(k) | res(α) = rt(k)}

Rmt (k) = {ρ ∈ Rt(k) | res(ρ) = rt(k)}

It is easy to check that the sets Amt (k) and Rmt (k) are empty or contain a single
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node, for all t ∈ Std(λ) and 1 ≤ k ≤ n. Let g be the function defined by

g : Std(n) → Z

t →
∑n
k=1 (|Amt (k)| − |Rmt (k)|)

Using the above notation we can now give a characterization of the degree

function. We need the following Lemma.

Lemma 6.1.1. Let λ ∈ Bip1(n) and s, t ∈ Std(λ). Assume that s � t and srs = t.

Then

g(t)− g(s) = deg(ψbre
b(is))

Proof: First note that Ams (k) = Amt (k) and Rms (k) = Rmt (k), for all k 6= r, r + 1,

since srs = t. Hence

g(t)− g(s) =

r+1∑
k=r

(|Amt (k)| − |Rmt (k)|)−
r+1∑
k=r

(|Ams (k)| − |Rms (k)|)

Set e(is) = (i1, . . . , ir, ir+1, . . . , in). We remark that ij = rs(j). The numbers

involved in the above sums depends on ir − ir+1 modulo l, so we split the proof in

four cases according to the followings options:

ir − ir+1 ≡


−1 mod l

0 mod l

1 mod l

otherwise.

(6.1.1)

We consider the first case, the remaining three cases follow in a similar way. Thus

we assume that ir − ir+1 ≡ −1 mod l. Note that the node occupied by r in t

is below the node occupied by r + 1 in t since s � t. In this setting, the values

involved in the sums are

|Ams (r)| = 0 |Ams (r + 1)| = 0 |Rms (r)| = 1 |Rms (r + 1)| = 0

|Amt (r)| = 0 |Amt (r + 1)| = 0 |Rmt (r)| = 0 |Rmt (r + 1)| = 0

Therefore g(t)− g(s) = 1 = deg(ψbre
b(is)), completing the proof in this case. �

Example 6.1.2. Assume that l = 5 and m = 2. Let λ = ((5), (1)) ∈ Bip1(6) and

s, t ∈ Std(λ) given by

s = ( 1 2 3 4 6 , 5 ) t = ( 1 2 3 4 5 , 6 )
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Note that s � t, s5s = t and e(is) = (1, 2, 3, 4, 4, 0). We also have Rms (5) =

{s−1(4)}, Rms (j) = ∅ for j 6= 5 and Ams (j) = Rmt (j) = Amt (j) = ∅ for all 1 ≤ j ≤ 6.

Thus g(s) = −1 and g(t) = 0. Therefore, g(t)− g(s) = 1 = degψb5e
b(is).

Corollary 6.1.3. Let λ ∈ Bip1(n) and t ∈ Std(λ). Then g(t) = deg(t).

Proof: By Lemma 3.3.7 there is a sequence of one-line standard bitableaux

t = t0 ≺ t1 ≺ . . . ≺ tk−1 ≺ tk = tλ

such that sij tj−1 = tj for 1 ≤ j ≤ k and d(t) = si1 . . . sik is a reduced expression

for d(t). Now using the above Lemma 6.1.1 and the fact that g(tλ) = 0 we have

g(t) =

k∑
j=1

(g(tj−1)− g(tj)) =

k∑
j=1

deg(ψbije
b(itj )) = deg(ψbi1 . . . ψ

b
ik
eb(iλ)) = deg(t)

�

Recall from Chapter 3 that for any t ∈ Std(n) we have associated a walk on

the Bratteli diagram w(t). The walk w(t) at the j-th step is situated in (j, t(j)),

where {t(j)|j = 0, 1, ..., n} is the sequence of integers associated to t in Definition

3.2.6. In this chapter we describe a walk as a sequence of weights. More precisely,

for t ∈ Std(n) we write w(t) = (w(t)0, w(t)1, . . . , w(t)n), where w(t)j = t(j) for all

0 ≤ j ≤ n. We refer to this notation as the weight sequence of w(t). With this at

hand, we can give a formula for the residues in terms of the weight sequence. In

fact, a routine analysis of (3.2.1) reveals that

2rt(j) ≡ j − 2 + (w(t)j − w(t)j−1)(w(t)j +m) mod l (6.1.2)

Since l is assumed to be odd the above formula determines uniquely the residue

sequence. In the next lemma we will use the above sequence to determine when

Amt (j) and Rmt (j) are non-empty. Recall that these sets have a single element or

are empty.

Lemma 6.1.4. Let t ∈ Std(n). Consider the walk w(t) = (w(t)0, w(t)1, . . . , w(t)n)

determined in Definition ?? written as a sequence of weights. Define the sets

A1
t = {1 ≤ j ≤ n | w(t)j < 0, w(t)j−1 ≡ −m mod l, w(t)j ≡ −m+ 1 mod l}

A2
t = {1 ≤ j ≤ n | w(t)j > 0, w(t)j−1 ≡ −m mod l, w(t)j ≡ −m− 1 mod l}

R1
t = {1 ≤ j ≤ n | w(t)j < 0, w(t)j−1 ≡ −m− 1 mod l, w(t)j ≡ −m mod l}

R2
t = {1 ≤ j ≤ n | w(t)j > 0, w(t)j−1 ≡ −m+ 1 mod l, w(t)j ≡ −m mod l}

Define also the sets At = A1
t ∪A2

t and Rt = R1
t ∪R2

t . Then we have
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(i) j ∈ At if and only if |Amt (j)| = 1

(ii) j ∈ Rt if and only if |Rmt (j)| = 1

Proof: We only prove (i), the result (ii) is proved similarly. Recall that |Amt (j)| = 0

or 1, for all t ∈ Std(n) and 1 ≤ j ≤ n. Suppose that j ∈ At, then j ∈ A1
t or j ∈ A2

t .

Assume that j ∈ A1
t , the case j ∈ A2

t is treated similarly. By definition of A1
t we

have

w(t)j < 0, w(t)j−1 ≡ −m mod l, w(t)j ≡ −m+ 1 mod l

Recall that for any one-line bipartition there is two addable nodes, one in each

component. Let N1 and N2 the addable nodes to Shape(tj−1) in the first and

second component, respectively. By w(t)j−1 ≡ −m mod l and (6.1.2), the nodes

N1 and N2 have the same residue. On the other hand, w(t)j ≡ −m + 1 mod l

implies that N1 = t−1(j). Hence, the node N2 is addable to Shape(tj) with the

same residue of N1. Finally, note that N2 is below N1 since w(t)j < 0. Therefore,

N2 ∈ Amt (j). Consequently, |Amt (j)| = 1.

Conversely, suppose that |Amt (j)| = 1. Let N be the unique node in Amt (j).

Define M to be the node occupied by j in t. Then, N and M have the same residue

and N is below M . Set N = (1, c1, d1) and M = (1, c2, d2). Using the conditions

on the parameters q and m given in (2.1.4), one can check that two nodes with the

same residue can not be located in the same column . Hence, c2 6= c1. Since N is

below M we actually have c2 > c1. Note also that N and M can not be located

in the same component. Hence, d1 6= d2. Assume that d2 = 1, thus d1 = 2. Then,

the fact that N and M have the same residue is equivalent to

c2 − c1 ≡ −m mod l (6.1.3)

On the other hand, recall that for any 1 ≤ i ≤ n the weight w(t)i is equal to

the number of nodes in the first component of Shape(t|i) minus the number of

nodes in the second component of Shape(t|i). Therefore, it is easy to note that

w(t)j−1 = c2 − c1 and w(t)j = c2 − c1 + 1. Then, by (6.1.3) and c2 > c1 we obtain

w(t)j−1 ≡ −m mod l; w(t)j ≡ −m+ 1 mod l and w(t)j > 0.

This proves that j ∈ A1
t ⊂ At. If d2 = 2 then arguing similarly we get that

j ∈ A2
t ⊂ At, completing the proof. �
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Corollary 6.1.5. Let t ∈ Std(n). Let At and Rt the sets defined in the above

Lemma. Then

deg(t) = |At| − |Rt| (6.1.4)

Proof: This is a direct consequence of Corollary 6.1.3 and Lemma 6.1.4. �

Bratteli diagram

We are now in position to give a graphical interpretation on the Bratteli diagram

of the degree function. For this we need to draw walls in the Bratteli diagram.

This means drawing vertical lines in each weight, λ, such that λ ≡ −m mod l, as

shown in Figure 6.1 for the case l = 5 and m = 2.
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Figure 6.1: Walls in the Bratteli diagram for l = 5 and m = 2.

Then, for t ∈ Std(n), |At| (resp. |Rt|) is the number of edges in the walk w(t)

such that the initial (resp. final) vertex is on a wall and the final vertex is closer

than the initial vertex to the central axis of the Bratteli diagram. For example, let

t be the bitableau associated with the walk in Figure 6.1, then At = {5, 10} and

Rt = {4}, consequently deg(t) = 1. It is also easy to check that |Atλ | = |Rtλ | = 0

for all λ ∈ Bip1(n), so deg(tλ) = 0.

The walls drawn on the Bratteli diagram define an alcove structure on R, where

the alcoves are the connected components of non-walls elements. We can thus refer

to the alcove or wall in which a given weight lies. Note that by the conditions on

the parameters (2.1.4), the weight λ = 0 always belongs to an alcove, that is, it

is not on a wall. We refer to the alcove in which λ = 0 lies as the fundamental

alcove. Let W be the infinite dihedral group on two generators s− and s+, that

is W = 〈s−, s+|s2
− = s2

+ = 1〉. The alcove structure defines an action of W on
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R, by mapping s− (resp. s+) to the reflection in the left (resp. right) wall of the

fundamental alcove. Since the walls were drawn on integral weights, the subset Z

of R is clearly invariant under this action. Therefore, we can restrict the action of

W to Z. Let ∼ be the equivalence relation on Z determined by this action. Figure

6.2 shows the orbit of 0 under this action for l = 5 and m = 2. In this case, we

have · · · ∼ −10 ∼ −4 ∼ 0 ∼ 6 ∼ 10 ∼ · · · .

· · ·· · ·
$$ ����$$

0−4−10 6 10−7 −2 3 8

Figure 6.2: The orbit of 0 under the action of W on R, for l = 5 and m = 2.

For a weight λ ∈ Λn we denote by On(λ) the set of all µ ∈ Λn such that µ ∼ λ.

Define Mn(λ) to be the set

Mn(λ) = {µ ∈ On(λ) | there exist s ≈ tλ with Shape(s) = µ} (6.1.5)

Given a walk on the Bratteli diagram we say that a subset of consecutive edges

is a wall to wall step if these edges form a straight line between two walls of the same

alcove. A wall to wall step can be classified into three different types according to

whether it crosses the fundamental alcove, it goes away from the central axis or it

approaches the central axis. We denote by F , O and I to these types, respectively.

For s ∈ Std(n), we also define integers ns(F ), ns(I) and ns(O) as the number of

occurrences in w(s) of wall to wall steps of type F , I and O, respectively. The

following lemma is the first step in order to give an easy formula for the degree of

s ∈ Std(n) such that s ≈ tλ, for some λ ∈ Bip1(n). Recall that s ≈ t if and only if

rs(j) = rt(j), for all 1 ≤ j ≤ n.

Lemma 6.1.6. Let λ ∈ Bip1(n). A walk w(s) for s ∈ Std(n) satisfies s ≈ tλ if

and only if the following conditions hold:

(a) First, w(s) and w(tλ) must matches from level 0 to the first contact of w(tλ)

with a wall of the fundamental alcove.

(b) Next, w(s) makes wall to wall steps (as many as the number of alcoves between

λ and 0) of any type.

(c) Finally, w(s) is completed with a straight line to the level n in either direction.
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Proof: First, recall from (6.1.2) that for any s ∈ Std(n) the residue can be

expressed in terms of the weight sequence of w(s). Assume that s ≈ tλ and

suppose that we know the weights w(s)0, w(s)1, . . . , w(s)j−1 of the weight sequence

of w(s). Recall that w(s)j = w(s)j−1±1, so w(s)j has only two options. Therefore,

if w(t)j−1 6≡ −m mod l (equivalently, if w(t)j−1 is not on a wall) only one option

is acceptable to w(s)j because by replacing in (6.1.2) we get two different values for

rs(j). But rs(j) is a known value, actually rs(j) = rtλ(j). Instead, if w(t)j−1 ≡ −m
mod l (equivalently, if w(t)j−1 is on a wall) both options for w(t)j are acceptable to

w(s)j because by replacing in (6.1.2) we get the same value for rs(j). The lemma

follows then by the description of w(tλ) as the walk that first zigzags on and off

the central vertical axis of the Bratteli diagram, and then finishes with a straight

line to the weight λ at level n. �

Remark 6.1.7. A walk as in the above lemma need not have parts (b) and (c).

For example, if λ is located in the fundamental alcove, on one of its walls or in one

of the two alcoves adjacent to the fundamental alcove a walk w(s) with s ≈ tλ it

does not have part (b). On the other hand, if λ is located on a wall a walk w(s)

with s ≈ tλ it does not have part (c). According to the above lemma, we split any

walk w(s) with s ≈ tλ in three parts (a), (b) and (c).
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Figure 6.3: Walks w(t) with it = iλ for λ = ((0), (13)).

Figure 6.3 shows all walks on the Bratteli diagram, w(t), with t ≈ tλ, where

λ = ((0), (13)) ∈ Bip1(13). In terms of the description given in the above lemma,

for all walks in the figure, we have that part (a) goes from level 0 to level 2, part

(b) goes from level 2 to level 12, and part (c) goes from level 12 to level 13. Hence,
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in this case M13(λ) = {−13,−11,−3,−1, 7, 9}.

Theorem 6.1.8. Let λ ∈ Bip1(n) and s ∈ Std(n). Suppose that s ≈ tλ. Then,

(a) If s ∈ Std(λ) then s = tλ;

(b) If part (c) of w(s) points towards the central axis then deg(s) = ns(F ) + 1;

(c) If part (c) of w(s) points away from the central axis then deg(s) = ns(F ).

Proof: Statement (a) says that the unique s ∈ Std(λ) with s ≈ tλ is tλ, and this

is clear from the Lemma 6.1.6. Now, via Corollary 6.1.5, we can conclude that the

part (a) of w(s) has degree zero, in part (b) the degree is ns(F ), and part (c) has

degree 1 or 0 according to whether the final straight line points towards the central

axis of the Bratteli diagram or not. This proves (b) and (c). �

6.2 Graded decomposition numbers

In this section we obtain the main result in this chapter, the graded decomposition

numbers for bn(m). For λ ∈ Bip1(n), denote by bn(m,λ) to be the subalgebra

eb(iλ)bn(m)eb(iλ) of bn(m). The basic strategy for finding the graded decomposi-

tion numbers for bn(m) is to exploit Theorem 4.1.1 on this subalgebra. We moreover

need the known fact that the (ungraded) decomposition numbers of bn(m) are 0

or 1 (See for instance [31, Theorem 5.5]).

Remark 6.2.1. If we assume that the graded decomposition numbers for bn,

[∆(µ) : L(λ)]t, are polynomials with constant coefficient equal to zero (for λ 6= µ)

then we could obtain these numbers using analogous methods to those used by

Kleshchev and Nash in [18], without using the prior knowledge about the ungraded

decomposition numbers for bn mentioned in the last paragraph. The additional

hypothesis on the graded decomposition numbers can be proved by brute force

calculations over the homogeneous presentation for bn. However, for the sake of

readability, we prefer the presentation as it stands.

Theorem 6.2.2. For λ ∈ Bip1(n), we have that bn(m,λ) is a positively graded

cellular algebra with weight poset (Mn(λ),�), T (µ) = Std(µ) ∩ Std(iλ) for µ ∈
Mn(λ), graded cellular basis

{ψbst | s, t ∈ Std(µ) ∩ Std(iλ) for µ ∈Mn(λ)} (6.2.1)

and degree function as (5.2.4).
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Proof: By Theorem 5.2.8 and the orthogonality of the KLR-idempotents, eb(i),

we have that bn(m,λ) has a C-basis consisting of all elements ψbst such that

is = it = iλ (6.2.2)

Thus, bn(m,λ) is a positively Z-graded algebra since all bitableaux satisfying the

condition (6.2.2) have non-negative degree by Theorem 6.1.8. All claims about the

cellularity of bn(m,λ) follow from the cellularity of bn(m) and the definition of

Mn(λ). �

Now that {ψbst | s, t ∈ Std(µ) ∩ Std(iλ) for µ ∈ Mn(λ)} is known to be a

graded cellular basis for bn(m,λ) we can define graded cell and simple modules

which we denote by ∆λ(µ) and Lλ(µ) respectively, for µ ∈ M(λ). Note that

eb(iλ)∆(µ) = ∆λ(µ) and eb(iλ)L(µ) = Lλ(µ). We can also define graded de-

composition numbers for bn(m,λ). Graded decomposition numbers of bn(m) and

bn(m,λ) are related via equation (4.1.4).

Lemma 6.2.3. Let λ ∈ Bip1(n). If µ 6∈Mn(λ) then [∆(µ) : L(λ)]t = 0.

Proof: First, recall that for any ν ∈ Bip1(n) the cell bn-module ∆(ν) has a C-basis

{ψbs | s ∈ Std(ν)} and that by the orthogonality of the KLR-idempotents, eb(i),

these act on this basis according to the rule

eb(i)ψbs =

 ψbs, if is = i

0, if is 6= i
(6.2.3)

Now, if µ 6∈Mn(λ) then for all s ∈ Std(µ) we have is 6= iλ, thus

eb(iλ)∆(µ) = ∆λ(µ) = 0

By the description given in Lemma 6.1.6 for all walks w(s) with is = iλ (and

therefore for all µ ∈ Mn(λ)), it is straightforward to check that λ is a minimal

element of Mn(λ). Furthermore, Theorem 6.1.8(a) implies that tλ is the unique

standard bitableau in Std(λ) with residue sequence equal to iλ. Hence

eb(iλ)∆(λ) = ∆λ(λ) = Lλ(λ) = SpanC{ψbtλ}

Therefore, by (4.1.4) we have

[∆(µ) : L(λ)]t = [∆λ(µ) : Lλ(λ)]t = 0

completing the proof of the lemma. �
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6.2.1 The non-wall case.

If λ ∈ Bip1(n) belongs to the fundamental alcove it is straightforward to check

that Mn(λ) = {λ}. Hence, by Lemma 6.2.3 the module L(λ) only appears as a

graded composition factor in ∆(λ), and in this case by Theorem 4.2.3(c) [∆(λ) :

L(λ)]t = 1. Therefore, we fix λ ∈ Bip1(n) that does not belong to the fundamental

alcove. Furthermore, for the rest of this subsection we also assume that λ is not on

a wall of the Bratteli diagram. The other case will be treated in the forthcoming

subsection.

Since bn(m,λ) is a positively graded cellular algebra ∆λ(µ) is also positively

graded, for all µ ∈ Mn(λ). Then dimt ∆λ(µ) ∈ Z[t], for all µ ∈ Mn(λ). Again

by the positive grading on bn(m,λ) we can define the grading filtration for each

∆λ(µ). In order to know the dimensions of the quotients that appear in this

grading filtration it is enough with to know the coefficients of dimt ∆λ(µ). This is

our next goal. We derive the graded decomposition number for bn from this. For

λ ∈ Bip1(n) define the number κ(λ) as the number of alcoves between λ and 0.

Lemma 6.2.4. Let λ ∈ Bip1(n). Then |Mn(λ)| = 2(κ(λ) + 1).

Proof: Since λ is not on a wall, there is in each alcove a unique representative

for the orbit of λ. So, if λ is located in the positive (resp. negative) side of the

Bratteli diagram then to the right (resp. left) of the (resp. left) right wall of

the fundamental alcove there is exactly κ(λ) + 1 elements in Mn(λ). Reflecting

these elements through the right (resp. left) wall of the fundamental alcove we

can get all the elements in Mn(λ) to the left (resp. right) of such wall. Hence,

|Mn(λ)| = 2(κ(λ) + 1). �

In order to give a precise description of dimt(∆λ(µ)), for µ ∈Mn(λ), we need

to index the set Mn(λ). Set λ1 = λ. Assume that λ is located in the negative

(resp. positive) side of the Bratteli diagram. For 1 ≤ i < |Mn(λ)| and i odd, define

λi+1 as the rightmost (resp. leftmost) weight in Mn(λ)\{λj}ij=1. On the other

hand, if 1 ≤ i < |Mn(λ)| and i even then we define λi+1 as the leftmost (resp.

rightmost) weight in Mn(λ)\{λj}ij=1.

Example 6.2.5. Figure 6.4 shows an example of the indexation for Mn(λ), where

λ = −19, l = 5 and m = 2. Note that the maximal element in Mn(λ), λ8, belongs

to the fundamental alcove. This fact is true in general, that is, the maximal element

in Mn(λ) is the representative in the orbit of λ that belongs to the fundamental
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alcove. Note also that for the example we have λi � λj if and only if i ≤ j. This

fact is not true in general.

1 5 11 15−5−9−15−19

λ1 λ2λ3 λ4λ5 λ6λ7 λ8

−7 −2 3 8 13−12−17

Figure 6.4: The indexation of Mn(λ) for λ = −19, l = 5 and m = 2.

Lemma 6.2.6. Let λ ∈ Bip1(n) and λ4j+1 ∈Mn(λ). For 0 ≤ i ≤ j, define

Dj
i = {s ∈ Std(λ4j+1) | s ≈ tλ and deg(s) = 2i} (6.2.4)

Then, all s ∈ Std(λ4j+1) with s ≈ tλ belong to some Dj
i and |Dj

i | = |Std(µi)|,
where µji is the two-column partition of κ(λ) given by

µji = (κ(λ)− j + i, j − i)′ (6.2.5)

Proof: Let λ4j+1 ∈ Mn(λ). Let s ∈ Std(λ4j+1) with s ≈ tλ. According to

Lemma 6.1.6 we can split the walk w(s) in three parts (a), (b) and (c). Now, by

a routine analysis of the indexation given for Mn(λ), it is clear that λ4j+1 and λ

are on the same side (positive or negative) of the Bratteli diagram (actually, all

weights in Mn(λ) with odd subscript are on the same side), λ4j+1 does not belong

to the fundamental alcove, and λ4j+1 is located 2j alcoves closer than λ to the

fundamental alcove.

Furthermore, part (c) of w(s) always points away from the central axis of Brat-

teli diagram (actually, this line coincide for all s under the above conditions).

Thus, Theorem 6.1.8(c) implies that deg(s) = ns(F ), where we recall that ns(F )

was defined as the number of occurrences in w(s) of wall to wall steps of type F

(similarly, we have defined the integers ns(I) and ns(O)). Note also that ns(F )

is even, because λ4j+1 and λ are on the same side of the Bratteli diagram, and

for s ∈ Std(λ4j+1) we have 0 ≤ ns(F ) ≤ 2j because λ4j+1 is located 2j al-

coves closer than λ of the fundamental alcove. Consequently, deg(s) is even and

0 ≤ deg(s) ≤ 2j. This proves the first claim of the Lemma.

Let 0 ≤ i ≤ j and assume that s ∈ Dj
i . By the above paragraph, we can replace

the condition deg(s) = 2i in the definition of Dj
i by ns(F ) = 2i. Parts (a) and (c) of

w(s) are fixed, and part (b) (and therefore, the entire walk w(s)) is determined by

a sequence of wall to wall steps. More conveniently, we can describe the walk w(s)

as an ordered word in the alphabet with three letters {F, I,O} in the obvious way.
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For example, for λ = ((2), (20)) ∈ Bip1(22), l = 5, and m = 2 we have that the

bitableau described in Figure 6.5 as a walk on the Bratteli diagram is in Std(λ5),

where λ5 = ((7), (15)) and in terms of ordered words on {F, I,O} correspond to

FFO.
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Figure 6.5: A walk corresponding to FFO.

We now associate to s a two-column standard tableau of shape µji as follows:

for w(s) described as a ordered word in {F,O, I}, the tableau associated to s

is determined by placing on the second column the entries corresponding to the

positions at which the letter I appears in the respective ordered word. Therefore,

the shape of the two-column partition associated to s is (ns(F ) + ns(O), ns(I))′.

In order to check that the above assignment is well defined first note that at the

first k positions of the ordered word associated to w(s) the number of occurrences

of the letter O is greater or equal than the number of occurrences of the letter I,

this shows that the two-column tableau assigned to s is standard. Next, recall that

κ(λ) is the number the alcoves between λ and 0, so by Lemma 6.1.6(b) we have

κ(λ) = ns(F ) + ns(O) + ns(I) = 2i+ ns(O) + ns(I) (6.2.6)

On the other hand, since λ4j+1 is located 2j alcoves closer than λ to the funda-

mental alcove we have

κ(λ) = 2j + ns(O)− ns(I) (6.2.7)

Combining (6.2.6) and (6.2.7) we obtain ns(I) = j − i. This proves that the

two-column tableau associated to w(s) has actually shape µji . Therefore, the as-
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signment is well defined. Finally, for any two-column standard tableau of shape µji

is straightforward to check that one can recover a walk w(s) with s ∈ Dj
i . Hence,

the above assignment is a bijection and |Dj
i | = |Std(µji )|, completing the proof of

the Lemma. �

Theorem 6.2.7. Let λ ∈ Bip1(n) and assume that κ(λ) ≥ 1. The graded dimen-

sion of ∆λ(λi), for λi ∈Mn(λ), is completely determined by the formulas:

(a) dimt(∆λ(λ4j+1)) =
∑j
i=0 cit

2i

(b) dimt(∆λ(λ4j+2)) = tdimt(∆λ(λ4j+1))

(c) dimt(∆λ(λ4j+3)) = tdimt(∆λ(λ4j+1))

(d) dimt(∆λ(λ4j+4)) = t2 dimt(∆λ(λ4j+1))

where ci = |Std(µji )| and µji is the two-column partition of κ(λ) defined in (6.2.5).

Proof: By Theorem 6.2.2 we have

dimt(∆λ(λi)) =
∑

s∈Std(λi)

is=iλ

tdeg(s) (6.2.8)

Hence, part (a) in the Theorem follows immediately from Lemma 6.2.6. Now, we

prove (b). Assume that λ is located on the negative (resp. positive) side of the

Bratteli diagram. Then, by the indexing on Mn(λ), the weight λ4j+2 is obtained

from λ4j+1 by reflection about the left (resp. right) wall of the fundamental alcove

(See Example 6.2.5). Next, define the sets

A = {s ∈ Std(λ4j+1) | s ≈ tλ} B = {s̃ ∈ Std(λ4j+2) | s̃ ≈ tλ}

For s ∈ A we associate an element s̃ ∈ B in the following way: Let l be the level

at which the walk w(s) intersects the left (resp. right) wall of the fundamental

alcove for the last time. Then the walks w(s̃) and w(s) match from level 0 to level

l, and then from level l to level n, w(s̃) is obtained from w(s) by reflection about

the left (resp. right) wall of the fundamental alcove. It is clear that this process

is reversible, so it defines a bijection between A and B, and via Theorem 6.1.8 we

can conclude that deg(s̃) = deg(s) + 1. Consequently, by (6.2.8) we have

tdimt(∆λ(λ4j+1)) = t
∑
s∈A

tdeg(s) =
∑
s∈A

tdeg(s)+1 =
∑
s̃∈B

tdeg(s̃) = dimt(∆λ(λ4j+2))

proving (b). Parts (c) and (d), follow in a similar way. �
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Corollary 6.2.8. Let λ ∈ Bip1(n) and suppose that κ(λ) ≥ 1. For r = 1, 2, 3, 4

and λ4j+r ∈Mn(λ) we have

dimC(∆λ(λ4j+r)) =

j∑
i=0

|Std(µji )| (6.2.9)

where µji is the two-column partition of k(λ) defined in (6.2.5).

Proof: This follows immediately by putting t = 1 in the above Theorem. �

Corollary 6.2.9. Let λ ∈ Bip1(n) with κ(λ) ≥ 1. Then, Lλ(λk) 6= 0 if and only

if k = 4j + 1. Furthermore,

dimC Lλ(λ4j+1) = dimt Lλ(λ4j+1) = |Std(µj0)| (6.2.10)

where dimC Lλ(λ4j+1) is viewed as polynomial over t in the natural way.

Proof: Since bn(m,λ) is a positively graded cellular algebra the modules Lλ(λk)

are pure of degree zero. Therefore, dimC Lλ(λ4j+1) = dimt Lλ(λ4j+1) and using

Theorem 6.2.7 we can also conclude that

dimC(Lλ(λk)) ≤ dimt ∆λ(λk)t=0 =

 |Std(µj0)| if k = 4j + 1

0 otherwise.
(6.2.11)

Thus, Lλ(λk) 6= 0 only if k = 4j + 1. On the other hand, recall that for bn(m)

it is known that the (ungraded) decomposition numbers are 0 or 1. By putting

t = 1 in (4.1.4) this is also true for bn(m,λ). Now note that λ|Mn(λ)| is in the

fundamental alcove, so this is the maximal element in Mn(λ) with respect to the

order �. Hence, by (6.2.9) and (6.2.11)

dimC∆λ(λ|Mn(λ)|) ≤
∑

λ4j+1∈Mn(λ)

dimCLλ(λ4j+1)

≤
∑

λ4j+1∈Mn(λ)

|Std(µj0)|

≤
∑

µ∈Par2(κ(λ))

|Std(µ)|

= dimC∆λ(λ|Mn(λ)|)

Therefore, the inequalities become equalities and dimC(Lλ(λ4j+1)) = |Std(µj0)|.
Thus Lλ(λk) 6= 0 if k = 4j + 1. �

Remark 6.2.10. Assume that κ(λ) ≥ 1 and κ(λ) 6= 2. Then, we have

|Std(µj0)|

 = 1, if j = 0

> 1, if j 6= 0
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Thus, under the above conditions on κ(λ), the algebra bn(m,λ) has a unique (up

to degree shift) one-dimensional graded simple module. This module is Lλ(λ4j+1)

when j = 0, that is, Lλ(λ1) = Lλ(λ) since λ1 = λ. If κ(λ) = 2 then by Lemma

6.2.4 we have |Mn(λ)| = 6. Hence, by the above Corollary bn(m,λ) has two (up

degree shift) non-isomorphic simple modules Lλ(λ1) and Lλ(λ5), both of dimension

one.

We are now able to prove the main theorem in this chapter for the non-wall case,

to provide the graded decomposition numbers for the blob algebra. Surprisingly,

it was more difficult to determine the graded decomposition numbers for the case

κ(λ) = 2 than for the general case. This difficulty lies in the fact that for κ(λ) =

2 there is two one-dimensional simple module for bn(m,λ), as explained in the

previous remark.

Theorem 6.2.11. Let λ ∈ Bip1(n). For λk ∈Mn(λ) we have

[∆(λk) : L(λ)]t =


t2j , if k = 4j + 1;

t2j+1, if k = 4j + 2;

t2j+1, if k = 4j + 3;

t2j+2, if k = 4j + 4.

(6.2.12)

Proof: By Remark 6.2.10 we know that dimt Lλ(λ) = 1 so Theorem 4.1.4 implies

[∆(λk) : L(λ)]t = [∆λ(λk) : Lλ(λ)]t

Therefore, we prove the theorem for the graded decomposition numbers of bn(m,λ),

[∆λ(λk) : Lλ(λ)]t. On the other hand, Theorem 4.2.3(d) relates the graded di-

mension of cell and simple modules with the graded decomposition numbers via

the formula

dimt ∆λ(λk) =
∑
λj�λk

[∆λ(λk) : Lλ(λj)]t dimt Lλ(λj) (6.2.13)

Assume that κ(λ) = 0, then λ is located in one of the two alcoves adjacent to the

fundamental alcove, and |Mn(λ)| = 2 by Theorem 6.2.4. Write Mn(λ) = {λ1,λ2}.
Then, λ1 = λ and λ2 is in the fundamental alcove. Combining Lemma 6.1.6 and

Theorem 6.1.8 we have

dimt ∆λ(λ2) = t (6.2.14)

Since bn(m,λ) is a positively graded cellular algebra the modules Lλ(λk), k = 1, 2

are pure of degree zero. Then, Lλ(λ2) = 0 by (6.2.14). By Theorem 4.2.3 we know
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that [∆λ(λ) : Lλ(λ)]t = 1 and for k = 2 equation (6.2.13) becomes t = [∆λ(λ2) :

Lλ(λ)]t, proving the Theorem for the case κ(λ) = 0.

Now we suppose that κ(λ) = 2. By Lemma 6.2.4 we get |Mn(λ)| = 6. In this

setting, we have the following three possibilities for the order � on Mn(λ)

λ1 ≺ λ2 ≺ λ3 ≺ λ4 ≺ λ5 ≺ λ6

λ1 ≺ λ3 ≺ λ2 ≺ λ4 ≺ λ5 ≺ λ6

λ1 ≺ λ2 ≺ λ3 ≺ λ5 ≺ λ4 ≺ λ6

In this three cases, the theorem follows by a case to case analysis, we only prove

the lemma for the (most interesting) last case. Figure 6.6 shows an example of this

case for λ = (0, 16), l = 5 and m = 2. In this figure are also drawn all walks w(s)

with s ≈ tλ.
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Figure 6.6: An example of the case when κ(λ) = 2.

By Corollary 6.2.9, the modules Lλ(λ1) and Lλ(λ5) are the unique (up de-

gree shift) graded simple (non-zero) modules for bn(m,λ), furthermore by Remark

6.2.10 these modules are one dimensional and pure of degree zero. Now, Theorem

6.2.7 implies

dimt ∆λ(λ1) = 1; dimt ∆λ(λ2) = t; dimt ∆λ(λ3) = t;

dimt ∆λ(λ4) = t2; dimt ∆λ(λ5) = t2 + 1; dimt ∆λ(λ6) = t3 + t.

By Theorem 4.2.3 we have [∆λ(λ) : Lλ(λ)]t = 1. As in the previous case we

analyze equation (6.2.13) for the different values of k. For k = 2, 3 equation
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(6.2.13) becomes

t = [∆λ(λ2) : Lλ(λ)]t and t = [∆λ(λ3) : Lλ(λ)]t

Next, if k = 4 then equation (6.2.13) becomes

t2 = [∆λ(λ4) : Lλ(λ5)]t + [∆λ(λ4) : Lλ(λ)]t

but it is straightforward to check that λ4 6∈ Mn(λ5), hence by Lemma 6.2.3 we

have [∆λ(λ4) : Lλ(λ5)]t = 0, thus t2 = [∆λ(λ4) : Lλ(λ5)]t. Now, for k = 5 we

have

t2 + 1 = [∆λ(λ5) : Lλ(λ5)]t + [∆λ(λ5) : Lλ(λ)]t

but by Theorem 4.2.3(c) we have [∆λ(λ5) : Lλ(λ5)]t = 1, so [∆λ(λ5) : Lλ(λ5)]t =

t2. Finally, for k = 6 equation (6.2.13) becomes

t3 + t = [∆λ(λ6) : Lλ(λ5)]t + [∆λ(λ6) : Lλ(λ)]t

It is not hard to note that κ(λ5) = 0 and that Mn(λ5) = {λ5,λ6}, so we know

by the first case analyzed in this proof that [∆λ(λ6) : Lλ(λ5)]t = t. Consequently,

[∆λ(λ6) : Lλ(λ)]t = t3. This completes the proof of the Theorem for the case

κ(λ) = 2.

Now we can assume that κ(λ) 6= 0, 2. By Remark 6.2.10, Lλ(λ) is the unique

(up to degree shift) one-dimensional graded simple module for bn(m,λ). Recall

that bn(m,λ) is a positively graded cellular algebra, so we can consider the grading

filtration for ∆λ(λk), λk ∈ Mn(λ). Now, by Theorem 6.2.7 and Remark 6.2.10

dimt ∆λ(λk) ∈ Z[t] is a monic polynomial with the non-leading coefficients greater

than 1. Thus, in the grading filtration of ∆λ(λk) there is a unique quotient of

dimension one. This quotient is pure of degree deg(dimt ∆λ(λk)) (where here deg

denotes the polynomial degree) and must be isomorphic (in the ungraded setting)

to Lλ(λ). Since Lλ(λ) is pure of degree zero, if the grading filtration for ∆λ(λk)

is a graded composition series we have

[∆λ(λk) : Lλ(λ)]t = tdeg(dimt ∆λ(λk)) (6.2.15)

If the grading filtration for ∆λ(λk) is not a graded composition series we can

always add graded bn(m,λ)-submodules of ∆λ(λk) to the grading filtration in order

to obtain a graded composition series. In a graded composition series obtained

in this way we can also have only one graded composition factor of dimension



6.2. Graded decomposition numbers 73

one. Otherwise we obtain via Theorem 4.1.4 that the blob algebra bn(m) has a

(ungraded) decomposition number greater than one. Therefore, (6.2.15) is still

valid even if the grading filtration is not a graded composition series. Finally, from

Theorem 6.2.7 we know that

deg(dimt(∆λ(λk))) =


2j, if k = 4j + 1;

2j + 1, if k = 4j + 2;

2j + 1, if k = 4j + 3;

2j + 2, if k = 4j + 4.

(6.2.16)

Now the Theorem follows by combining (6.2.15) and (6.2.16). �

The formula given in the previous theorem for the graded decomposition num-

bers for bn is not entirely clear. We want to obtain a formula that reflects the

alcove geometry on R. For λ ∈ Bip1(n) define nλ ∈ N as the number of walls

between λ and 0. Then, it is straightforward to check that we can rewrite (6.2.12)

as

[∆(µ) : L(λ)]t =

 tnλ−nµ , if µ ∈Mn(λ)

0, otherwise.
(6.2.17)

Remark 6.2.12. We stress the importance that has in our method the fact that

bn(m) admits a family of positively graded subalgebras. We expect that the graded

decomposition numbers of related graded algebras, that admit positively graded

subalgebras, can be calculated by mimicking our approach.

6.2.2 The wall case.

In the previous subsection we determine the graded decomposition numbers for

bn(m), [∆(µ) : L(λ)]t, when λ is not on a wall. In this subsection we consider

the wall case, that is we assume that λ is on a wall. For brevity, the results

shall be presented without proof since the same series of arguments used in the

non-wall case work here with minimal changes. If λ is on one of the walls of the

fundamental alcove we have Mn(λ) = {λ} so by Theorem 4.2.3 and Lemma 6.2.3

we obtain [∆(µ) : L(λ)]t = δµλ, where δµλ is a Kronecker delta. So we can assume

that λ is not a wall of the fundamental alcove. As in the non-wall case, define κ(λ)

as the number of alcoves between λ and 0. Similarly, we index Mn(λ) and define

two-column partitions of κ(λ), µji , by the same rules used for the non-wall case.

The following theorems correspond to Theorem 6.2.7 and Theorem 6.2.11 in the

non-wall case.
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Theorem 6.2.13. Let λ ∈ Bip1(n). The graded dimension of ∆λ(λk), for λk ∈
Mn(λ), is completely determined by the formulas:

(a) dimt(∆λ(λ2j+1)) =
∑j
i=0 cit

2i

(b) dimt(∆λ(λ2j+2)) = tdimt(∆λ(λ2j+1))

where ci = |Std(µji )|.

Theorem 6.2.14. Let λ ∈ Bip1(n). For λk ∈Mn(λ) we have

[∆(λk) : L(λ)]t = tk−1
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