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CHAPTER I

Introduction

1.1 Introduction and definitions

In this thesis a class time-delayed reaction-diffusion equations is investigated:

(1.1) ut(t, x) = uxx(t, x)− f(u(t, x)) +

∫ ∞

0

∫

R
K(s, w)g(u(t− s, x− w))dwds,

where x ∈ R is the spatial variable, t is the time, f, g ∈ C(R+,R+) and the non-

negative K ∈ L1(R+×R) meet some additional natural conditions. These equations,

with appropriate f, g and K, are widely used to model many ecological and biological

processes, where wave phenomena are observed and which depend not only on the

present state but also on some past occurrences (see, e.g. [8, 20, 21, 27, 28, 29, 36, 42,

47, 49]). The nonlinear g is referred to in ecology literature as the birth function and,

for example, the biological interpretation of u is the population density of mature

species. The main goal of this work is to study the existence, uniqueness (up to

translation) and minimal speed of propagation of positive traveling wave solutions

for some equations of the form (1.1), in the case where g is non-monotone.

Aiming to develop a more general theory and motivated by recent studies by C.

Gómez and S. Trofimchuk (see sections III.2 - III.4 which are included here for the

completeness), we propose also renewed version of the Diekmann-Kaper theory (DK

1
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theory for short) of a non-linear convolution equation:

(1.2) ϕ(t) =

∫

X

dµ(τ)

∫

R
K(s, τ)g(ϕ(t− s), τ)ds, t ∈ R,

Our version of DK theory allows to consider new types of models which include e.g.

the nonlocal KPP-Fisher equations (with either symmetric or anisotropic disper-

sal kernel), nonlocal lattice equations and delayed reaction- diffusion equations; to

include the critical case (which corresponds to the slowest wavefronts) into the con-

sideration; to weaken or to remove various restrictions on kernels and nonlinearities,

including the subtangential Lipschitz condition |g(u)− g(v)| ≤ g′(0)|u− v|.

Definition I.1. A travelling wave solution of equation (1.1) is a solution of the form

u(x, t) = φ(x+ct), where c is the wave speed. In the event that (1.1) has two spatially

homogeneous equilibria u1 and u2 ( u(x, t) = u1 and u(x, t) = u2 are constant solution

of (1.1)) with u1 < u2 and the profile φ of the wave satisfies the boundary conditions

φ(−∞) = u1 and φ(+∞) = u2, the travelling wave solution is called a wavefront. If

φ is bounded and satisfies φ(−∞) = u1, is called semi-wavefront.

Example I.2. Consider the logistic equation

(1.3) ut(t, x) = u(t, x)(1− u(t, x)), u ≥ 0, x ∈ R.

We recall that the classical solution u(x, t) = φ(x + ct), is a wavefront for (1.3), if

the profile function φ is positive and satisfies φ(−∞) = 0, φ(+∞) = 1. Note that φ

is solution of equation cφ′(t) = φ(t)(1− φ(t)) (see figure 1.1).

Definition I.3. Equation (1.1) is the monostable type if has only two non-negative

spatially homogeneous equilibria u1 = 0 < u2.
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Figure 1.1: An example of a profile φ of equation (1.3) with c = 2 and φ(0) = 106.

1.2 Results achieved

The results can be grouped into several parts: below we give a brief description

of each of them.

1.2.1 On existence and uniqueness of wavefronts solution for local reaction-diffusion
equations with delay

First, we begin our study by taking in (1.1) f(u) = u and K(s, w) = δ(s−h)δ(w),

with h > 0. Then equation (1.1) reads as

(1.4) ut(t, x) = uxx(t, x)− u(t, x) + g(u(t− h, x)), x ∈ R.

In this case, we suppose that (1.4) is monostable and our main result says that for

every fixed and sufficiently large velocity c, the positive wavefront ( traveling front)

u(t, x) = φ(x+ ct) of (1.4) is unique (modulo translations).

If we take h = 0 in (1.4), we obtain a monostable reaction-diffusion equations

without delay. The problem of existence of travelling fronts for this equation is quite

well understood. In particular, for each such equation we can indicate a positive real
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number c∗ such that, for every c ≥ c∗, it has exactly one travelling front u(x, t) =

φ(x+ct). Furthermore, equation (1.4) does not have any travelling front propagating

at the velocity c < c∗. The profile φ is necessarily a strictly increasing function. See,

for example, Theorem 8.3 (ii), Theorem 8.7 and Theorem 2.39 in [24].

However, the situation will change drastically if we take h > 0. Even at the

present moment, we are far from proving similar results concerning the existence,

uniqueness and geometric properties of wavefronts for delayed equation (1.4). This

despite the fact that the existence of travelling fronts in (1.4) was intensively studied

for some specific subclasses of birth functions. E.g. see [21, 40, 47, 53, 58] and

references wherein. Certainly, the so called monotone case (when g is monotone on

[0, κ]) is the one for which the most information is available. But so far, even for

equations with monotone birth functions very little is known about the number of

positive wavefronts (modulo translations) for an arbitrary fixed c ≥ c∗. In fact, at the

time we started our research there were very few theoretical studies devoted to the

uniqueness problem for equation (1.4) and its non-local extensions. To the best of

our knowledge, the first uniqueness result for a non-local version of equation (1.4) has

been proved by [49], who have extended an integral-equations approach (see [14, 48])

to scalar non-local reaction-diffusion equations with delay. Besides the work by [49],

the uniqueness was established for small delays in [6] and for a family of unimodal

piece-wise linear birth functions (i.e. tent maps) in [52]. Since ’asymmetric’ tent

maps mimic the main features of general unimodal birth functions, we are able to

prove the uniqueness of positive wavefront for delayed equations with the unimodal

birth function satisfying the following assumptions

Assumption I.4. The steady state y1(t) ≡ κ > 0 (respectively y2(t) ≡ 0) of the
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equation

(1.5) y′(t) = −y(t) + g(y(t− h))

is exponentially stable and globally attractive (respectively hyperbolic) (see Definitions

II.4 -II.8).

Assumption I.5. g ∈ C1(R+,R+), p := g′(0) > 1, and g′′(s) exists and is bounded

near 0. We suppose that g has exactly two fixed points 0 and κ > 0. Set ζ2 =

maxs∈[0,κ] g(s), we assume that g(s) > 0 for s ∈ (0, ζ2].

Example I.6. If we consider g(s) = pse−s, s ≥ 0, p > 1 in (1.5), we obtain the

Nicholson’s blowflies equation, where y is the size of an adult population. Is easy to

see that g satisfy assumption I.5 with κ = ln(p) and ζ2 = 1 (see figure 1.2). Moreover,

we will prove in Section 4.9 that the steady states 0 and κ satisfy assumption I.4.

Figure 1.2: g(s) = pse−s, p = 5.

We established the following result developed in Chapter IV (see also [4]):

Theorem I.7. Assume I.4, I.5. Then there exists a unique (modulo translations)

positive wavefront of equation (1.4) for each sufficiently large speed c.
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Notice that the wavefront, whose existence and uniqueness is established in The-

orem I.7, may be non-monotone. For other results concerning the existence, unique-

ness and oscillation properties of a non-monotone wavefront for equation (1.4), see

[53]. We would like to mention also the asymptotic formulas given in Chapter IV:

these formulas explains why the differential equations describing the wave profile is

singular at ε := 1/c = 0 and the solutions admits an asymptotic expansion which

are uniform in small ε. These formulas were generalized and then used in [22] for

the case of multi-dimentional systems of nonlinear reaction-diffusion equations.

1.2.2 Existence of wavefronts solution for non-local reaction-diffusion equations with
delay

Our second goal is to extend some previous results concerning the existence and

uniqueness of wavefronts to non-local situation. We are interested in the particular

case when f(u) = u and K(s, w) = δ(s− h)K(w) with h > 0, equation (1.1) reduces

(1.6) ut(t, x) = uxx(t, x)− u(t, x) +

∫

R
K(x− w)g(u(t− h,w))dw, x ∈ R,

where K satisfies
∫

RK(w)dw = 1,
∫

RK(w)eλwdw ∈ R, for every λ ∈ R. Here,

we establish the existence of a continuous family of fast positive wavefronts u(t, x)

= φ(x + ct) of equation (1.6). We also prove that the fast wavefronts are non-

monotone if g′(κ)heh+1 < −1.

Example I.8. Consider the gaussian kernel Kα = 1√
4πα

e−s
2/4α, α > 0, then

∫
RKα(w)dw = 1 and

∫

R

1√
4πα

e−w
2/4αeλwdw =

eαλ√
4πα

∫

R
e−u

2/4αdu ∈ R, for every λ ∈ R.

Before our research, the problem of existence of wavefronts for equation (1.6) was

considered in [20, 28, 36, 37, 40, 47, 49, 51, 54, 55] by means of different methods. In

the mentioned papers, a typical existence result requires several conditions on g (in
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particular, monotonicity of g|[0,κ] was assumed in [36, 37, 47, 49]) and K (for example,

even/gaussian kernel was considered in [28, 36, 37, 40, 47, 54, 55]). Note that, the

so called non-monotone case (when the restriction g|[0,κ] is not monotone) seems to

be considerably more complicated than the monotone one. Its systematic study has

started very recently in [20, 40, 52] (see also [51] for some further references).

An interesting approach was proposed in [20], where the Lyapunov-Schmidt reduc-

tion was used to study systems of delayed reaction-diffusion equations with non-local

response. In the case of equation (1.6), the approach of [20] requires the existence

of a positive heteroclinic solution ψ of (1.5). Under certain conditions imposed on g

and h, the authors of [20] succeeded to establish the existence of a smooth manifold

M of fast traveling fronts. In some sense, this M is generated by the mentioned

heteroclinic ψ of (1.5). However, the main result of [20] does not answer the question

about the presence of positive wavefront solutions of (1.6) in M when ε := 1/c 6= 0.

We recall here that only non-negative solutions to (1.6) are biologically meaningful.

For establish the existence of positive traveling front solutions of (1.6) we suppose

(I.4) and

Assumption I.9. g ∈ C1(R+,R+), p := g′(0) > 1, and g′′(s) exists and is bounded

near 0. We suppose that g has exactly two fixed points 0 and κ > 0.

Below, we present our main result developed in Chapter V (see also [1]):

Theorem I.10. Assume I.4 and I.9. Then there is c∗ > 0 such that equation (1.6)

has a continuous family of positive wavefronts u(t, x) = φc(x + ct), c > c∗. These

wavefronts are non-monotone if g′(κ)heh+1 < −1. Moreover, φc(s) is oscillating

about κ if g′(κ)heh+1 < −1 and K(s) has a compact support.
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1.2.3 Uniqueness of semi-wavefronts for non-local reaction-diffusion equations

In order to prove the uniqueness we study in [2] the uniqueness of semi-wavefronts

for a class more general of equations. When g is a Lipschitzian function differentiable

at 0 and f is strictly increasing, we prove the uniqueness (up to translations) of

positive semi-wavefront solutions for equation (1.1). The uniqueness result is proved

for all speeds c > c?, where the determination of c? is similar to the determination of

the minimal speed of propagation. We present a new result concerning the uniqueness

(up to translation) of semi-wavefronts for non-local reaction-diffusion equations (1.1).

In the case, when K(s, w) = δ(s − h)K(w) and f(u) = du, equation (1.1) was

analyzed in [29, 36, 42, 47, 49]. If f(u) = βu2, then equation (1.6) reduces to the

model studied in [27].

During the last decade, the existence and uniqueness of the traveling wave so-

lutions u(t, x) = φ(x + ct) for equation (1.1) have been investigated in a series of

papers. Let us mention here [1, 20, 21, 37, 40, 51, 54, 55] where the existence problem

was approached by means of different methods and assuming different conditions on

f , K and g. Remarkably, the aspect of uniqueness appears to be considerably more

complicated than the existence part of the problem. In fact, a very few theoreti-

cal studies have considered this important question. As far as we know, the list of

references includes only several contributions: [4, 6, 19, 49, 52, 55, 59]. It should

be noted that all these publications suggest the following heuristic principle: ”The

existence of semi-wavefronts implies their uniqueness” which was justified for only

the important cases (however, always under strong technical restrictions imposed

on the nonlinearities f, g). In fact, none example of multiple of traveling waves for

equation (1.1) can be found in the literature. In many cases it was possible to prove

the existence of waves while their uniqueness (or non-uniqueness) was left as an open
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problem. For example, it is well known (e.g. see [51]) that equation (1.6) with the

unimodal continuous birth function g has semi-wavefronts for each c ≥ c#, where

(no necessary optimal) speed c# is defined as the minimal value of c for which the

characteristic equation

z2 − cz − d+ p#e
−zch

∫

R
K(w)e−zwdw = 0, with p# = sup

s>0

g(s)

s
,

has at least one positive root. This value of c# is optimal (equivallenty, c# is the

minimal speed of propagation) if p# = g′(0). However, the uniqueness of semi-

wavefronts for (1.6) was proved only in several special cases (listed below) and almost

always assuming that

Assumption I.11. g : R+ → R+ is a Lipschitzian function differentiable at 0:

(1.7) |g(s1)− g(s2)| ≤ L|s1 − s2|, s1, s2 ≥ 0,

for some L > 0, g(0) = 0 and g(s) > 0 if s > 0.

The above mentioned special cases are the following ones:

(i) For monotone g satisfying (I.11) with L = g′(0) and for the Gaussian kernel K,

Thieme and Zhao [49] proved the uniqueness of fronts to (1.6) for each c > c#.

(ii) For a family of non-monotone unimodal piece-wise linear birth functions satisfy-

ing (I.11) with L = g′(0) and when K = δ(w), Trofimchuk et al [52] established

the uniqueness of fronts to (1.6) for each c ≥ c#.

(iii) Following the approach of [49, 15], Wu and Liu [59] proved the uniqueness of

wavefronts to (1.6) when L = g′(0) in (I.11) and K = δ(w), for each c > c#.

(iv) For g satisfying (I.11) with L = g′(0) and even K, the uniqueness of the traveling

wave of (1.6) for each c > c# was proved by Fang and Zhao in [19].
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(v) Also [6] can be applied to (1.6) that proves the uniqueness of fronts in the

particular case when h = 0, K(s) = 1
τ
e−
|s|
τ , g ∈ C4(R), τ is sufficiently small

and c belongs to some specially defined compact interval.

It is worthwhile to mention that the main ideological and technical ingredients in the

proofs of uniqueness in (i), (iii), (iv) are due to the seminal paper [15] by Diekmann

and Kaper. In fact, the uniqueness statement of [59] is a direct consequence of [15,

Theorem 6.4].

In any case, condition L = g′(0) is essential in constructions [15, 19, 49, 59] and

can not be omitted or weakened within the framework of [59]. However, as it was

shown recently in [4] (as part of this thesis), the global Lipschitz condition (I.11)

with L = g′(0) is not necessary to have the uniqueness in (1.6) with h > 0. It was

proved in [4] that each sufficiently fast front solution of (1.6) with K(w) = δ(w) is

unique. In order to establish this, a small parameter ε = 1/c was introduced and the

Lyapunov-Schmidt reduction in a scale of Banach spaces was realized.

Here, the main result extends further the result of [4]. In particular, as a direct

application of Theorem I.16 below, we obtain that semi-wavefront solution of equa-

tion (1.6) with the Lipschitzian birth function g is unique (modulo translation) for

each fixed c > c∗, where (no necessary optimal) speed c∗ is defined as the minimal

value of c for which the characteristic equation

z2 − cz − d+ p∗e
−zch

∫

R
K(w)e−zwdw = 0,

with p∗ = ess sups>0 |g′(s)| has at least one positive root. Clearly, p# ≤ p∗ so that

c∗ ≥ c#. In the particular case when g is differentiable on R+ and |g′(s)| ≤ g′(0), s ≥

0, we get c∗ = c# in complete accordance with [19, 49, 52, 59].

Let us list now the additional conditions imposed on f,K and define the critical
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velocity c?:

Assumption I.12. f ∈ C1(R+,R+) is strictly increasing, f(0) = 0 and f ′(0) <

g′(0).

Assumption I.13. For every λ, µ ∈ R the non-negative K ∈ L1(R+ × R)

∫ ∞

0

∫

R
K(s, w)eµs+λwdwds is finite and

∫ ∞

0

∫

R
K(s, w)dwds = 1.

Assumption I.14. There are Q, ε > 0 and θ ∈ (0, 1) such that g′(s) exists on [0, ε]

and

|g′(s)− g′(0)|+
∣∣∣f(s)

s
− f ′(0)

∣∣∣ ≤ Qsθ, s ∈ (0, ε].

Definition I.15. The speed c? := c?(L, infs≥0 f
′(s)) > 0 is defined as the minimal

value of c for which the characteristic equation

(1.8) χL(z, c) := z2 − cz − inf
s≥0

f ′(s) + L

∫ ∞

0

∫

R
K(s, w)e−z(cs+w)dwds = 0.

has at least one positive root. The speed c∗ is defined similarly from the equation

(1.9) χ0(z, c) := z2 − cz − f ′(0) + g′(0)

∫ ∞

0

∫

R
K(s, w)e−z(cs+w)dwds = 0.

Now, we are ready to state our main result developed in Chapter VI (see also [2]).

Let λ1(c) < λ∞(c) be the positive roots of associated characteristic equation to (1.6).

Theorem I.16. Assume I.11 - I.14. Then for each fixed c > c?, equation (1.6) has

at most one (modulo translation) positive semi-wavefront solution u(t, x) = φ(x+ct).

Furthermore, φ(t − t0) = exp(λ1(c)t) + exp((λ1(c) + δ)t)o(1) as t → −∞ for some

δ > 0 small and t0 ∈ R.

1.2.4 Upper and lower bounds for the minimal speed of propagation

We give constructive upper and lower bounds for the minimal speed of propagation

of traveling waves for equation (1.6) with K even. It is known [55] that for various
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systems modeled by equation (1.6), the minimal wave speed c∗ coincides with the

spreading speed. Therefore, it is important to study the effects caused by the delay

and other parameters (depending on specific models) on c∗, cf. [36, 44, 47, 53, 55].

Another aspect of the problem concerns easily calculable upper and lower bounds

for c∗. In particular, in the recent work [57], Wu et al. give several nice estimations

for c∗ when Kα(s) = 1√
4πα

e−s
2/4α and α ≤ h. However, the approach of [57] depends

heavily on the condition α ≤ h and on the special form of K which is the fundamental

solution of the heat equation. In the present work, we use a completely different

idea to estimate the minimal speed for general kernels and without imposing any

restriction on h. We note that this construction of upper and lower bounds for the

minimal speed can be applied to speed c?.

1.2.5 General theory

Finally, we present an abstract setting for our problem. It allows generalization of

the Diekmann-Kaper theory of a nonlinear convolution equation. Using our frame-

work we prove the uniqueness of semi-wavefronts to a broad family of monostable

equations.

For better understanding of our exposition, we include here several results ob-

tained by C. Gómez and S. Trofimchuk. These results are presented in sections

III.2-III.4 and form a part of our joint paper [3].

1.3 Organization of the thesis

The thesis is organized as follows: Chapter II contains the basic definitions and

preliminaries results obtained for a scalar delay differential equations. Chapter III

is where we prove the uniqueness of semi-wavefronts to a broad family of monos-

table equations which can be written as a nonlinear convolution equation. Chapter
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IV contains studies of the solution of a reaction-diffusion equation with local delay

(1.4). Following [21], we realize the Lyapunov-Schmidt reduction in a scale of Banach

spaces and we obtain an alternative proof of the existence of positive wavefronts, see

Theorem IV.12. In Chapter IV, we show that there exists exactly one wavefront for

each fixed fast speed, this wavefront may be non-monotone. Chapter V is where the

existence of positive fast wavefronts of the reaction-diffusion equation with non-local

delay (1.6) is proven. In addition, in Chapter V, we obtain that this wavefront may

to oscillate about the positive equilibrium. In Chapter VI we analyzed the unique-

ness the semi-wavefronts solution of (1.1). Chapter VII is devoted to the estimation

the minimal speed of propagation of positive traveling wave solutions of (1.6).



CHAPTER II

Preliminaries

2.1 Introduction

Suppose h ≥ 0 is a given real number, R+ is an 1-dimensional linear vector space

over the reals with norm | · | and C := C([−h, 0],R+) is the Banach space of con-

tinuous functions mapping the interval [−h, 0] into R+ with the topology of uniform

convergence. We designate the norm of an element φ ∈ C by |φ| = sup−h≤s≤0 |φ(s)|.

If σ ∈ R, τ ≥ 0 and y ∈ C([−σ − h, σ + τ ],R+), then for any t ∈ [σ, σ + τ ], we let

yt ∈ C be define by yt(θ) = y(t+ θ), −h ≤ θ ≤ 0.

Now, consider the scalar functional equation defined by

(2.1) y′(t) = −y(t) + f(yt), y ≥ 0,

where f : C([−h, 0],R+)→ R+ is a continuous functional which takes closed bounded

sets into bounded subsets of R+. Below, we give some definitions and results obtain-

ing the existence and properties of heteroclinic solutions of (2.1).

Definition II.1. Suppose that (2.1) is the monostable type, with non-negative equi-

librium u1 < u2. Then a heteroclinic solution of (2.1) is a solution φ(t) such that

converges to u1 as t→ −∞ and to u2 as t→ +∞.

Definition II.2. A function y is said to be a solution of equation (2.1) on [σ−h, σ+τ ]

if y ∈ C([σ − h, σ + τ ],R+) and y(t) satisfies (2.1) for all t ∈ [σ, σ + τ ]. For given

14
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σ ∈ R, φ ∈ C, we say that y(σ, φ) is a solution of equation (2.1) with initial value

φ at σ if there is τ > 0 such that y(σ, φ) is solution of (2.1) on [σ − h, σ + τ ] and

yσ(t) = φ(t) for all −h ≤ t ≤ 0.

Definition II.3. If y is a solution of equation (2.1) on [σ− h, a), a > σ, we say that

ŷ is a continuation of y if there is a b > a such that ŷ is defined on [σ − h, b) and

coincides with y on [σ − h, a). For more details see [31, Chapter 2].

Definition II.4. Suppose that (2.1) is of the monostable type. Then the positive

steady state u2 of (2.1) is exponentially stable if there are k, γ, δ > 0 constant such

that if φ(t) is solution of the equation (2.1) with |φ(t0)− u2| < δ, then |φ(t)− u2| <

ke−γt for all t > t0.

Definition II.5. Suppose that (2.1) is the monostable type. Then the positive

steady state u2 of (2.1) is globally attractive if all solutions φ(t) of the equation (2.1)

converges to u2 as t→ +∞.

2.2 Heteroclinic solutions of scalar delay differential equation

In this section we start by showing an existence result of heteroclinic solution

of equation (2.1) obtained in [21, Section 2]. We suppose that equation (2.1) has

exactly two steady states y1(t) ≡ 0 and y2(t) ≡ κ.

Lemma II.6. Let f : C([−h, 0],R+) → R+ be a continuous functional which takes

closed bounded sets into bounded subsets of R+. Assume further that every nonneg-

ative solution of (2.1) admits a unique extension on the right semi-axis. If f(0) = 0

and f(κ) = κ > 0 and y2(t) ≡ κ attracts every solution of (2.1) with nonnegative

and nontrivial initial function, then there exists a positive complete (that is defined

over R) solution ψ of (2.1) such that ψ(−∞) = 0 and ψ(+∞) = κ.
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Proof: See [21, Theorem 5]. �

Lemma II.7. Suppose that p > 1 and h > 0. Then the characteristic equation

(2.2) z = −1 + p exp(−zh), z ∈ C

has only one real root 0 < λ < p− 1. Moreover, all roots λ ∈ R, λj ∈ C, j = 2, 3, . . .

of (2.2) are simple and we can enumerate them in such a way that λ > <λ2 = <λ3 ≥

. . .

Proof: Set H(z) = z + 1 and G(z) = p exp(−zh), z ∈ R. Observe that H(0) =

1 < G(0) and G is a decreasing function and is strictly convex. Hence, there exists

a unique λ > 0 such that H(λ) = G(λ). Since λ = −1 + p exp(−λh) we have

λ > −1 + p.

Now let ψ(z) = z + 1 − p exp(−zh), z ∈ C. Since ψ is analytic, then the set of

zeros of ψ is numerable and since ψ′(λj) = 1 + hp exp(−λjh) 6= 0 for all λj ∈ C root

of (2.2), all roots λ, λj, j = 2, 3, . . . of (2.2) are simple. Finally, from the inequality

<λj + 1 < p exp(−<λjh) we get that these roots we can enumerate them in such a

way that λ > <λ2 = <λ3 ≥ . . . . �

Everywhere in the sequel, λj stands for a root of (2.2). Notice that we write λ instead

of λ1.

Definition II.8. The trivial equilibrium of (2.1) is called hyperbolic if the roots of

the characteristic equation (2.2), have nonzero real parts.

Now, we give a uniqueness result of heteroclinic solution of equation (2.1) for

f(φ) = g(φ(−h)).

Lemma II.9. Assume I.4, I.9 and let λ be as in Lemma II.7. Then (1.5) has a

unique (modulo translations) positive heteroclinic solution ψ. Moreover, ψ(t− t0) =
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exp(λt) + O(exp((2λ − δ)t)), t → −∞ and ψ′(t − t0) = λ exp(λt) + O(exp((2λ −

δ)t)), t→ −∞, for each δ > 0 and some t0 ∈ R.

Proof: See [21, Lemma 8]. �

2.3 Uniform permanence of wavefront

Definition II.10. Equation (1.5) is said to be uniformly persistent if there exists a

positive number m such that lim inf
t→+∞

y(t) ≥ m for every solution y 6≡ 0 of (1.5).

In this section we give a result obtained in [38] showing that the equation (1.5) is

uniformly persistent under hypothesis I.9.

Notation II.11. Suppose that g satisfies I.9. Set ζ2 = maxs∈[0,κ] g(s), we assume

that g(s) > 0 for s ∈ (0, ζ2]. Set A := sup{a ∈ (0, κ/2] : g′(s) > 0, s ∈ [0, a)}.

Observation II.12. It should be observed that assumption I.9 implies the existence

of a positive ζ1 ≤ min{g(ζ2),A} such that g(ζ1) = mins∈[ζ1,ζ2] g(s). Notice that

g([ζ1, ζ2]) ⊆ [ζ1, ζ2]. Without restricting the generality, we may also suppose that

sups≥0 g(s) ≤ ζ2 (see figure 2.1).

The following lemma shows the uniform permanence of wavefront of (1.5). The

proof is given in [38, Theorem 3.6(a)] and [53, Lemma 4.3].

Lemma II.13. Assume I.9. If y 6≡ 0 is a non negative bounded solution of equation

(1.5), then

ζ1 ≤ lim inf
t→+∞

y(t) ≤ lim sup
t→+∞

y(t) ≤ ζ2.
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κA ζ2

ζ2

Figure 2.1: An example of birth function g

2.4 Small solutions for equations

Definition II.14. A small solution y at t = −∞ is a solution for some equation, by

example of equation (2.1), such that

lim
t→−∞

ekty(t) = 0 for all k ∈ R.

Small solutions that are not identically zero are called nontrivial.

We need the following lemma in Chapter VI:

Lemma II.15. If y is a non trivial solution of the linear asymptotically autonomous

homogeneous equation

y′(t) = −y(t) + p(t)y(t− h), p(−∞) = p > 1,

where P ∈ C(R,R), then y is not a nontrivial small solution.

Proof: See [21, Lemma 8]. �
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2.5 Asymptotic behavior of solutions for linear equations with delay

We consider the homogeneous equation

(2.3) y′(t) + y(t) + py(t− h) = 0,

and the characteristic equation associated given by ξ(λ) := λ+ 1 + pe−hλ = 0.

Definition II.16. Let λ be such that ξ(λ) = 0. We say that the function z ∈ C(R,R)

is an eigensolutions of (2.3) corresponding to λ, if z(t) = eλtp(t), where p(t) is any

polynomial, and z satisfies equation (2.3) (see [41]).

Lemma II.17. Let y : R→ R be a solution of equation

(2.4) y′(t) + y(t) + py(t− h) = f(t),

for some f : R → R, and p ∈ R. Assume for some real number a < b that y(t) =

O(e−at) and f(t) = O(e−bt), t→ +∞. Then for every δ > 0, we have that

y = z(t) +O(e−(b−δ)t), t→ +∞,

where z is an eigensolution of (2.4) associated to the roots λj of (2.2) such that

λj ∈ {−b < <λj ≤ −a}

Proof: See [41, Proposition 7.1]. �

2.6 Oscillations of the linear scalar delay equations

Definition II.18. Let φ be a continuous function defined on R. The function φ is

said to oscillate about ρ ∈ R, if for every t > t0 there exists a point t1 > t such that

φ(t1) = ρ, for some t0 fix (see figure 2.6).

The first aim in this section is to show a fundamental result for the oscillation of

all solutions of equation

(2.5) y′(t) + y(t) + qy(t− h) = 0, q ∈ R.
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Lemma II.19. Assume that h > 0, q ∈ R and let y : R → R be a solution of

equation (2.6). Then the following statements are equivalent

1. Every solution of equation (2.6) oscillates.

2. The characteristic equation z + 1 + qe−zh = 0, z ∈ C, has not real roots.

Proof: See [30, Theorem 2.1.1.]. �
20 Trofimchuk, Tkachenko and Trofimchuk

Figure 1. Non-monotone wavefront for Eq. (32).

= eλ1h

(
ελ1h + ε+ (εν − 1)h +

h

ν
(e−νh − 1)

)
≥ eλ1h (ελ1h + ε) > 0.

Hence q = −Q(ν)/P (ν) is determined uniquely and y(t) is given by (29).

Example. Partially, the above technique works even when a < −1. Consider

x′′(t)− x′(t)− x(t) + g(x(t− 1)) = 0, (32)

with continuous

g(x) =





2x, for x ∈ [0, 1];

−4x + 6, if x ∈ [1, 1.4];

is positive decreasing when x > 1.4.

Eq. (32) has two non-negative equilibria x1 ≡ 0 and x2 ≡ 1.2.

It is easy to see that the characteristic equation z2− z− 1 + g′(0) exp(−z) = 0

has two positive real roots, and that the roots λ = (1−
√

5)/2 and µ = (1+
√

5)/2

of the equation z2 − z − 1 = 0 satisfy the condition

µ− λ

µe−λ − λe−µ
= 0.715... >

Γ2 + Γ

Γ2 + 1
= 0.705..., where Γ := g′(κ) = −4.

Therefore, the existence of non-monotone travelling front in (32) is guaranteed

by [21, Theorem 1.1]. Then we use the Laplace transform to find and picture the

non-monotone wavefront, see Fig. 1.

Figure 2.2: Oscillating wave solutions, see [52].

Now we show a sufficient condition for the oscillation of all solution of the linear

differential equation with asymptotically constant coefficients:

(2.6) y′(t) + y(t) +Q(t)y(t− h) = 0,

where Q ∈ C(R,R+) such that limt→+∞Q(t) = q.

Lemma II.20. Assume that h > 0 and q ∈ R. If every solution of the limiting

equation

y′(t) + y(t) + qy(t− h) = 0.

oscillates, then every solution of equation (2.6) also oscillates.
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Proof: See [30, Theorem 2.4.1.]. �



CHAPTER III

General theory

3.1 Introduction

The main goal of this chapter is to develop a variant of the fundamental Diekmann-

Kaper theory (DK theory for short) of a nonlinear convolution equation [15] for the

scalar integral equation

ϕ(t) =

∫

X

dµ(τ)

∫

R
K(s, τ)g(ϕ(t− s), τ)ds, t ∈ R,

in the case when the nonlinearity g is of the monostable type and the averaging kernel

K can be asymmetric in the first variable. Here (X,µ) will denote a measure space

with finite measure µ, K(s, τ) ≥ 0 will be integrable on R×X with
∫

RK(s, τ)ds >

0, τ ∈ X, while measurable g : R+ ×X → R+, g(0, τ) ≡ 0, will be continuous in φ

for every fixed τ ∈ X. In the case when X is just a single point (i.e. #X = 1) and

µ(X) = 1, equation (1.2) coincides with the nonlinear convolution equation from

[15].

There are various motivations to study the above equation, mainly from the theory

of traveling waves for nonlinear models (e.g. reaction-diffusion equations with delayed

response [4, 49, 51, 55], equations with non-local dispersal [12, 9, 13, 34], lattice

systems [18] etc). It should be noted that only a few of these models take the simplest

form with #X = 1 of (1.2). But even when sometimes they can be written down as

22
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equation (1.2) with #X > 1, the lack of a general theory obligates to repeat, at least

partially, some ideas and constructions from the seminal work [15]. Hence, the first

goal of this paper is to show that the ideology of [15] can be extended to include much

broader class of equations than it was initially expected. We are making here the

first step to create such a general extension. The further generalizations of (1.2) can

be undertaken to include some other interesting applications (for example, equations

with distributed delays as in [18, 19]). We would like to mention here [25] where

a criterion of the existence and uniqueness of monotone fronts in the KPP-Fisher

delayed reaction-diffusion equation was established within the framework of another

extension of DK theory. Nevertheless, we do not pursue this direction in our current

work.

In a biological context, ϕ is the size of an adult population, so we consider only

non-negative solutions of (1.2). Due to the possible applications, it is convenient

to call bounded non-negative continuous solution ϕ : R → R+ a semi-wavefront to

equation (1.2) if ϕ(−∞) = 0 or ϕ(+∞) = 0 [24]. We observe however that it suffices

to consider only the situation when ϕ(−∞) = 0, since the case ϕ(+∞) = 0 can be

easily transformed to the first one via the change of variables ζ(t) = ϕ(−t), which

sends (1.2) into

ζ(t) =

∫

X

dµ(τ)

∫

R
K1(s, τ)g(ζ(t− s), τ)ds, t ∈ R,

with K1(s, τ) = K(−s, τ). We would like to emphasize that semi-wavefronts are

generally non-monotone, see [21]. On the other hand, it is well known that the

monotonicity of waves is very helpful for analyzing their properties. For instance,

wave uniqueness sometimes is established only within a subclass of monotone waves,

e.g. cf. [13, 25, 55]. In a similar line, we mention here that some wave properties (e.g.

uniqueness) in monostable dynamics in general does not hold without assumption of
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their non-negativity, see [4, 20].

Actually the uniqueness aspect will be central in our research, where we fully

agree with Chen and Guo [10, p. 126] in that ”it seems that uniqueness of traveling

waves for discrete monostable dynamics is largely open”. So as in [15], after assuming

the existence of a non-trivial semi-wavefront to (1.2), we will study its asymptotic

behavior at infinity that sometimes will allow us to conclude about its uniqueness (up

to a translation, observe that our equation is translation invariant). Here, similarly

to other works using asymptotic expansions at infinity, we will work with the first

positive eigenvalue of the linearization of (1.2) at zero, thus our analysis also excludes

from the consideration so called ”pushed” fronts [16, 24]). Similarly to [15], the

existence of semi-wavefronts to (1.2) is not studied here.

As a by product of this strategy elaborated by Diekmann and Kaper, we are

able to establish a non-existence result as well as asymptotic properties of the kernel

K which proved to satisfy exponential convergence estimates (Mollison’s condition

[13]). Here the fulfillment of the Mollison’s condition means that the characteristic

function

(3.1) χ(z) = 1−
∫

X

g′(0, τ)dµ(τ)

∫

R
K(s, τ)e−zsds,

is well defined for all z from some maximal non-degenerate interval J (which can be

open, closed, half-closed, finite or infinite). One of the crucial results of the paper

says that, under rather mild assumptions on g,K the presence of a semi-wavefront

ϕ, ϕ(−∞) = 0, guarantees the existence of a minimal positive root λl to (3.1).

Next, as it is well known the DK uniqueness theorem does not apply to the critical

(minimal) fronts when χ(λl) = χ′(λl) = 0. To overcome this difficulty in the case

of a nonlocal analogue of the KPP-Fisher equation (and in the case of its discrete
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counterpart as well)

(3.2) ut = J ∗ u− u+ g(u), x ∈ R, g(0) = g(1) = 0, f > 0 on (0, 1),

Carr and Chmaj in their influential paper [9] achieved an important extension of the

DK theory. Assuming that J is even, compactly supported and that g′(s) ≤ g′(0), s ∈

(0, 1), g(s) = g′(0)s+O(s2), s→ 0+, they showed that the minimal wavefront ϕ(x+

c0t) to (3.2) with profile 0 ≤ ϕ(s) ≤ 1, s ∈ R, is unique up to translation. Carr and

Chmaj’s work has motivated the second goal of our research: to get an improvement

of the DK theory that includes the critical case. Theorem III.23 below gives such an

extension for general model (1.2). In special case of equation (3.2) our result requires

less assumptions on J and f than [15] does. In particular, J can be asymmetric and

non compactly supported, see Section 6.1 for more details. This agrees with the

initial idea of Kolmogorov, Petrovsky and Piskunov [34] who interpreted J(x)dx as

the probability that an individual passes a distance lying between x and x+ dx. By

Theorem III.23, the continuous birth function f is supposed to be differentiable at

0, with g(s) = g′(0)s+O(s1+α), s→ 0+, for some α > 0, and to meet the obligatory

[9, 15, 18, 49] subtangetial Lipcshitz condition of the DK uniqueness theorem:

(3.3) |g(s)− g(t)| ≤ g′(0)|t− s|, s, t ≥ 0.

The necessity of condition (3.3) could be considered as a weak point of the DK

theory, cf. [4, 10, 13, 24] For instance, as it was established recently by Coville,

Dávila and Mart́ınez [13], neither (3.3) nor g′(s) ≤ g′(0), s ∈ (0, 1), is necessary to

prove the uniqueness of non-stationary monotone traveling fronts to (3.2). Instead

of that, it was supposed in [13] that generally asymmetric J ∈ C1(R) is compactly

supported with J(a) > 0, J(b) > 0 for some a < 0 < b, while g ∈ C1(R) has to

satisfy g′(0)g′(1) < 0, g(s) ≤ g′(0)s, s ≥ 0, and g ∈ C1,α near 0. The proof in



26

[13] follows ideas of [12] and is mainly based on the sliding methods proposed by

Berestycki and Nirenberg (see [12, 13] for a nice state-of-art overview about (3.2) as

well as for the further references). The above discussion explains our third goal in

this thesis: to weaken various convergence and smoothness conditions of DK theory,

and especially condition (3.3). The related improvements can be found in Theorems

III.23 and III.28. In the latter theorem, we remove condition (3.3) by assuming

a little more smoothness for g and exploiting the absence of zeros for χ(z) in the

vertical strip λl < <z < λr (see Lemma III.12). Incidentally, Theorems III.28 justifies

the following principle for monostable equations which seems to be rather general:

”fast positive semi-wavefronts are unique (modulo translation)”. In the last section

of this chapter, we apply this principle to reaction-diffusion equations with delayed

Mackey-Glass type nonlinearities to improve the uniqueness result of [4].

Finally, we observe that our approach to equation (1.2) differs from the methods

used by Diekmann-Kaper and Carr-Chmaj in many key points. Even if the logical

sequence of results here basically is the same as in [15], our proofs, starting from

the deduction of Mollison’s condition, are essentially different. In particular, we use

neither the Titchmarsh theory of Fourier integrals [15, 18] nor the powerful Ikehara

Tauberian theorem [9, 13, 55] in order to obtain necessary asymptotic expansions

of solutions. We have found more convenient for our purpose the use of a suitable

L2−variant of the bootstrap argument (as this one described by Mallet-Paret in [41,

p. 9-10]).

The main uniqueness results of this chapter are stated as Theorems III.23, III.28.

We apply them to nonlocal integro-differential equations (Section 6.1), nonlocal lat-

tice systems (Section 6.2), nonlocal (Section 6.3) and local (Section 6.4) reaction-

diffusion equations with discrete delays. We would like also mention here a short
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proof of Theorem III.2 (concerning the Mollison’s condition) and Theorem III.9 (pro-

viding a non-existence result).

3.2 Mollison’s condition and the exponential rate of convergence

In this section, we consider general equation convolution type

(3.4) ϕ(t) =

∫

X

dµ(τ)

∫

R
K(s, τ)g(ϕ(t− s), t− s, τ)ds,

where measurable g : R × R × X → R+ is continuous in the first two variables for

every fixed τ ∈ X. We will suppose additionally that, for some measurable p(τ) ≥ 0

and δ > 0, s̄ ≤ 0, it holds

(3.5) g(v, s, τ) ≥ p(τ)v, v ∈ (0, δ), s ≤ s̄, τ ∈ X.

Example III.1. If we consider g(v, s, τ) = pve−v, v ≥ 0, p > 1, is easy to see that g

satisfy assumption (3.5) with p(τ) = 1 and δ > 0 small.

First, we present a simple proof of the necessity of the following Mollison’s con-

dition (cf. [13]) for the existence of the semi-wavefronts:

∫

R

∫

X

K(s, τ)p(τ)dµ(τ)e−szds is finite for some z ∈ R \ {0}.(3.6)

Theorem III.2. Let continuous ϕ : R → [0,+∞) satisfy (3.4) and suppose that

ϕ(−∞) = 0 and ϕ(t) 6≡ 0, t ≤ t′ for each fixed t′. If (3.5) holds and

(3.7)

∫

X

∫

R
K(s, τ)p(τ)dsdµ(τ) ∈ (1,∞),

then
∫ 0

−∞ ϕ(s)e−sx̄ds and
∫

R

∫
X
K(s, τ)p(τ)dµ(τ)e−sx̄ds are convergent for an appro-

priate x̄ > 0. Furthermore, suppK ∩ (R+ ×X) 6= ∅.

Remark III.3. Looking for heteroclinic solutions of the simple logistic equation x′ =

−βx+x(1 +β−x) with β > 0, we obtain an example of (1.2) where suppK ∩ (R−×

X) = ∅ under conditions of the above theorem.
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Proof: Since the support of K generally is unbounded, we will truncate K by

choosing integer N such that

κ :=

∫

X

∫ N

−N
K(s, τ)p(τ)dsdµ(τ) > 1, and 0 ≤ ϕ(t) < δ, t < s̄−N.

Integrating equation (3.4) between t′ and t < s̄−N , we find that

∫ t

t′
ϕ(v)dv ≥

∫

X

dµ(τ)

∫ N

−N
K(s, τ)

∫ t

t′
g(ϕ(v − s), v − s, τ)dvds

≥
∫

X

p(τ)dµ(τ)

∫ N

−N
K(s, τ)

∫ t

t′
ϕ(v − s)dvds

=

∫

X

p(τ)dµ(τ)

∫ N

−N
K(s, τ)(

∫ t′

t′−s
+

∫ t

t′
+

∫ t−s

t

)ϕ(v)dvds,

from which

∫ t

t′
ϕ(v)dv ≤

2δ
∫
X

∫ N
−N |s|K(s, τ)p(τ)dsdµ(τ)

∫
X

∫ N
−N K(s, τ)p(τ)dsdµ(τ)− 1

, t′ < t < s̄−N.

Hence, the increasing function

(3.8) ψ(t) =

∫ t

−∞
ϕ(s)ds

is well defined for all t ∈ R and

ψ(t) ≥
∫

X

p(τ)dµ(τ)

∫ N

−N
K(s, τ)ψ(t− s)ds ≥ κψ(t−N), t < s̄−N.

Consider h(t) = ψ(t)e−γt where κ = eγN , cf. [9]. For all t < s̄−N we have

h(t−N) = ψ(t−N)e−γ(t−N) ≤ 1

κ
ψ(t)e−γteγN = h(t)

and γ = N lnκ > 0. Hence supt≤0 h(t) < ∞ and ψ(t) = O(eγt), t → −∞. After

taking x̄ ∈ (0, γ) and integrating by parts, we obtain

∫ t

−∞
ϕ(s)e−x̄sds = ψ(t)e−x̄t + x̄

∫ t

−∞
ψ(s)e−x̄sds
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that proves the first statement of the theorem. Finally,

e−x̄tψ(t) =

∫

X

dµ(τ)

∫

R
e−x̄sK(s, τ)e−x̄(t−s)ψ1(t− s, τ)ds,

where ψ1(u, τ) :=
∫ u
−∞ g(ϕ(s), s, τ)ds ≥ p(τ)

∫ u
−∞ ϕ(s)ds, u ≤ s̄−N. The latter yields

∫ s̄−N

−∞
e−x̄vψ(v)dv =

∫

X

dµ(τ)

∫

R
e−x̄sK(s, τ)

∫ s̄−N

−∞
e−x̄(v−s)ψ1(v − s, τ)dvds ≥

∫

X

p(τ)dµ(τ)

∫ 0

−∞
e−x̄sK(s, τ)ds

∫ s̄−N

−∞
e−x̄vψ(v)dv,

where

(3.9) K−(x̄) :=

∫

X

p(τ)dµ(τ)

∫ 0

−∞
e−x̄sK(s, τ)ds ≤ 1, (note that ψ(s) > 0, s ∈ R),

so that

K−(0) =

∫

X

p(τ)dµ(τ)

∫ 0

−∞
K(s, τ)ds ≤ 1 <

∫

X

p(τ)dµ(τ)

∫

R
K(s, τ)ds,

which completes the proof of the theorem. �

Remark III.4. Suppose that |g(ϕ(s), s, τ)| ≤ C where C does not depend on s, τ .

Then

|ϕ(t+ h)− ϕ(t)| ≤ C

∫

R
|Ka(s+ h)−Ka(s)|ds

since Ka(s) :=
∫
X
K(s, τ)dµ(τ) ∈ L1(R) and the translation is continuous in L1(R)

[17, Example 5.4]. Thus ϕ(t) is uniformly continuous on R. It is easy to see that the

convergence of the integral
∫ 0

−∞ ϕ(s)ds <∞ combined with the uniform continuity of

ϕ gives ϕ(−∞) = 0. In this way,
∫ 0

−∞ ϕ(s)ds <∞ implies that
∫ 0

−∞ e
−xsϕ(s)ds <∞

for small positive x.

Remark III.5. The non-negativity of g is an important restriction of the Theorem

III.2. This assumption, for instance, does not hold for non-monotone solutions of

the KPP-Fisher equation. However, it can be easily checked that this condition can

be omitted in the case of K having bounded support (uniformly in τ ∈ X).
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Now, let ϕ,K, g, x̄ be as in Theorem III.2. Set

Φ(z) =

∫

R
e−zsϕ(s)ds, K(z) =

∫

R

∫

X

K(s, τ)p(τ)dµ(τ)e−szds,

and denote the maximal open vertical strips of convergence for these two integrals

as σφ < <z < γφ and σK < <z < γK , respectively. Evidently, σφ, σK ≤ 0 and

γφ, γK ≥ x̄ > 0. Since ϕ,K are both non-negative, by [56, Theorem 5b, p. 58],

γφ, γK , σφ, σK are singular points of Φ(z),K(z) (whenever they are finite). A simple

inspection of the proof of Theorem III.2 suggests the following

Lemma III.6. Assume ϕ, g,K are as in Theorem III.2. Then σK ≤ σφ < γφ ≤ γK.

Furthermore, K(γφ) is always a finite number.

Proof: For all z ∈ (0, γφ), t ≤ 0, we have

ψ(t) =

∫ t

−∞
(ϕ(s)e−zs)ezsds ≤ ezt

∫ 0

−∞
ϕ(s)e−zsds,

so that
∫ 0

−∞ ψ(s)e−z
′sds <∞ for each z′ ∈ (0, γφ) and, due to (3.9), we get

K−(z) :=

∫

X

p(τ)dµ(τ)

∫ 0

−∞
e−zsK(s, τ)ds ≤ 1

for all z ∈ (0, γφ). Hence, using the Beppo Levi monotone convergence theorem, we

obtain that K−(γφ) ≤ 1. As a consequence, K(γφ) is finite and γK ≥ γφ. �

Corollary III.7. Assume that

lim
z→γK−

∫

R

∫

X

K(s, τ)p(τ)dµ(τ)e−szds = +∞.

Then γφ is a finite number and γφ < γK.

3.3 Abscissas of convergence

In this section, we consider the abscissas of convergence for the bilateral Laplace

transforms of K and bounded non-negative ϕ satisfying ϕ(−∞) = 0, ϕ(t) 6≡ 0, t ≤ t′
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for each fixed t′, and solving our main equation

(3.10) ϕ(t) =

∫

X

dµ(τ)

∫

R
K(s, τ)g(ϕ(t− s), τ)ds.

Now we are supposing that the continuous g(·, τ) : R+ → R+ is differentiable at 0

with g′(0+, τ) > 0 for each fixed τ . Then the non-negative functions

λ+
δ (τ) := sup

u∈(0,δ)

g(u, τ)

u
, λ−δ (τ) := inf

u∈(0,δ)

g(u, τ)

u
, δ > 0, τ ∈ X,

are well defined, measurable, monotone in δ and pointwise converging:

lim
δ→0+

λ±δ (τ) = g′(0+, τ).

The characteristic function χ associated with the variational equation along the

trivial steady state of (3.10) is defined by

χ(z) := 1−
∫

R

∫

X

K(s, τ)g′(0+, τ)dµ(τ)e−szds.

It is supposed to take a negative value at z = 0: χ(0) < 0.

Example III.8. Consider X = {τ1}, µ(X) = 1 and g(v, τ1) = pve−v, v ≥ 0, p > 1.

Since g′(0+, τ1) = p is easy to see that χ(0) = 1− p < 0

Since condition (3.5) is obviously satisfied with p(τ) = λ−δ (τ) and

lim
δ→0+

∫

R

∫

X

K(s, τ)λ−δ (τ)dµ(τ)ds =

∫

R

∫

X

K(s, τ)g′(0+, τ)dµ(τ)ds > 1

by the monotone convergence theorem, all results of Section 2 hold true for equation

(3.10). Furthermore, we have the following

Theorem III.9. Assume χ(0) < 0. Let ϕ : R → [0,+∞) be a semi-wavefront to

equation (3.10). If ϕ(−∞) = 0 and ϕ(t) 6≡ 0, t ≤ t′ for each fixed t′, then χ(z) has

a zero on (0, γK ] ⊂ R ∪ {+∞}.
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Remark III.10. 1) If ϕ(+∞) = 0 then a similar statement can be proved. Namely, in

such a case χ(z) has a zero on [σK , 0). 2) It should be noted that Theorem III.9 also

provides a non-existence result: if χ(x) < 0 for all x ∈ (0, γK ] then equation (3.10)

does not have any semi-wavefront vanishing at −∞.

Proof: For real positive z ∈ (0, γφ) we consider the integrals

Φ(z) =

∫

R

e−zsϕ(s)ds,G(z, τ) :=

∫

R

e−zsg(ϕ(s), τ)ds,K(z, τ) :=

∫

R

e−zsK(s, τ)ds.

Since ϕ is non-negative and bounded, and since g′(0+, τ) > 0 exists, the convergence

of G(z, τ) (for positive z) is equivalent to the convergence of Φ(z). Applying the

bilateral Laplace transform to equation (3.10), we obtain that

(3.11) Φ(z) =

∫

X

K(z, τ)G(z, τ)dµ(τ).

Obviously, K,G,Φ are positive at each real point of the convergence.

Let us prove that χ(z) has a zero on (0, γK ]. First, we suppose that Φ(γφ−) =

limz→γφ−Φ(z) =∞. In such a case, we claim that

lim
z→γφ−

G(z, τ)

Φ(z)
= g′(0, τ).

Indeed, let Tδ be the rightmost non-positive number such that ϕ(s) ≤ δ for s ≤ Tδ.

Then

λ−δ

∫ Tδ

−∞
e−zsϕ(s)ds ≤

∫ Tδ

−∞
e−zsg(ϕ(s), τ)ds ≤ λ+

δ

∫ Tδ

−∞
e−zsϕ(s)ds,

∫ +∞

Tδ

e−zs(g(ϕ(s), τ) + ϕ(s))ds ≤ sups∈R(g(ϕ(s), τ) + ϕ(s))

z
e−γφTδ .

As a consequence, for each positive δ > 0,

λ−δ ≤ lim inf
z→γφ−

G(z, τ)

Φ(z)
≤ lim sup

z→γφ−

G(z, τ)

Φ(z)
≤ λ+

δ ,
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that proves our claim.

Now, by using the Fatou lemma as z → γφ− in

∫

X

K(z, τ)
G(z, τ)

Φ(z)
dµ(τ) = 1,

we obtain

1− χ(γφ) =

∫

X

K(γφ, τ)g′(0, τ)dµ(τ) ≤ 1.

Therefore χ(γφ) ≥ 0, and since χ(0) < 0 we obtained the required assertion.

Hence, we have to consider only the situation when Φ(γφ) = limz→γφ−Φ(z) > 0 is

finite. Since ϕ(t) 6≡ 0, t ≤ t′ for each fixed t′, in such a case γφ <∞. Due to Lemma

III.6, the value K(γφ) is also finite. Set

ζ(t) := ϕ(t)e−γt, K1(s, τ) := e−γsK(s, τ), where γ := γφ.

Then, for t < Tδ −N , we have from (3.10) that
∫ t
−∞ ζ(v)dv =

∫ t

−∞
ϕ(v)e−γvdv ≥

∫

X

dµ(τ)

∫ N

−N
K1(s, τ)

∫ t

−∞
g(ϕ(v − s), τ)e−γ(v−s)dvds ≥

∫

X

dµ(τ)

∫ N

−N
λ−δ (τ)K1(s, τ)

∫ t

−∞
ζ(v − s)dvds ≥

(

∫

X

dµ(τ)

∫ N

−N
λ−δ (τ)K1(s, τ)ds)

∫ t−N

−∞
ζ(v)dv.

Suppose now on the contrary that the characteristic equation

χ(z) := 1−
∫

R

∫

X

K(s, τ)g′(0+, τ)dµ(τ)e−szds = 0

has not real roots on [0, γφ]. Then χ(0) < 0 implies χ(γ) < 0. As a consequence, in

virtue of the monotone convergence theorem,

lim
δ→0+,N→+∞

∫

X

dµ(τ)

∫ N

−N
λ−δ (τ)K1(s, τ)ds = 1− χ(γ) > 1.

Hence, for some appropriate δ,N > 0, increasing function ξ(t) =
∫ t
−∞ ζ(s)ds satisfies

ξ(t) ≥ κδξ(t−N), t < Tδ −N with κδ > 1. Arguing now as in the proof of Theorem
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III.2 below (3.8) we conclude that the integral
∫ t
−∞ ζ(s)e−zs converges for all small

positive z, contradicting to the definition of γφ. �

Remark III.11. It is clear that χ(z) is concave on (σK , γK), where χ′′(z) < 0. Since

χ(0) is negative, χ can have at most two real zeros, and they must be of the same

sign. We will denote them (if they exist) by λl ≤ λr. Under assumption of the

existence of a semi-wavefront ϕ vanishing at −∞, χ has at least one positive root

λl. Finally, it is clear that χ is analytical in the vertical strip <z ∈ (0, γK).

Notation At this stage, it is convenient to introduce the following notation:

λrK =





λr, if λr exists,

γK , otherwise.

Lemma III.12. Equation χ(z) = 0 does not have roots in the open strip Σ := <z ∈

(λl, λrK). Furthermore, the only possible zeros on the boundary Σ are λl, λr.

Proof: Observe that if χ(z0) = 0 for some z0 ∈ Σ, then χ(<z0) > 0 since χ is

concave, χ(λl) = 0 and <z0 ∈ (λl,min{λr, γK}). On the other hand,

1 = |
∫

R

∫

X

K(s, τ)g′(0+, τ)dµ(τ)e−sz0ds| ≤
∫

R

∫

X

K(s, τ)g′(0+, τ)dµ(τ)e−s<z0ds

and therefore χ(<z0) ≤ 0, a contradiction. Now, if χ(λl + iω) = 0 for some ω 6= 0

then similarly

1 = χ(λl + iω) = |χ(λl + iω)| ≤ χ(λl) = 1,

so that
∫

R

∫

X

K(s, τ)g′(0+, τ)dµ(τ)e−sλl(1− cosωs)ds = 0.

Thus K(s, τ)(1−cosωs) = 0 for almost all τ ∈ X, so that K(s, τ) = 0 a.e. on X×R,

a contradiction. �
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3.4 A bootstrap argument

The main purpose of this section is to prove several auxiliary statements needed in

the studies of the asymptotic behavior of solutions ϕ(t) at t = −∞. Usually proofs of

the uniqueness are based on the derivation of appropriate asymptotic formulas with

one or two leading terms (at t = −∞ as in [9, 15, 18, 55] or at t = +∞ as in [25]). As

we have mention in the introductory section, our approach is based on an asymptotic

integration technique often used in the theory of functional differential equations, e.g.

see [32], [41, Proposition 7.1] or [22]. Thus, we use neither the Titchmarsh theory

of Fourier integrals [50] nor the powerful Ikehara Tauberian theorem [9, 15]. First

we will apply our methods to get an asymptotic formula for the integral ψ(t) :=

∫ t
−∞ ϕ(s)ds. Since ψ ∈ C1(R) is strictly increasing and positive, this function is

somewhat easier to treat than the solution ϕ(t).

Everywhere in the sequel, we continue assuming all conditions of Section 3 on

ϕ,K, g, χ. We also will use the following hypotheses:

Assumption III.13. γφ < γK and, for some measurable C(τ) > 0 and α, σ ∈ (0, 1],

|g′(0, τ)− g(u, τ)

u
| ≤ C(τ)uα, u ∈ (0, σ),

(3.12) ζ(x) :=

∫

X×R
C(τ)K(s, τ)e−sxdsdµ < +∞, x ∈ (0, γK).

Example III.14. Consider X = {τ1}, µ(X) = 1 and g(v, τ1) = pve−v, v ≥ 0, p > 1.

Since g′′(0+, τ1) exists and is bounded, we have that |g′(0, τ)u − g(u, τ)| ≤ Cu2 for

all small u ≥ 0 and C > 0. Moreover, if we choose the heat kernel Kα(s, τ) =

(4πα)−1/2 exp (−s2/(4α)), then we obtain that ζ(x) = Ce4α2x2
.

Assumption III.15 (ECρ). For every x ∈ (0, ρ), ρ ≤ γφ, there exists some positive
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Cx such that

(3.13) 0 ≤ ϕ(t) ≤ Cxe
xt, t ≤ 0.

There are several situations when the fulfillment of Assumption III.15(ECρ) can

be easily checked:

Lemma III.16. Condition III.15 is satisfied in either of the following two cases:

(i) ϕ ∈ C1(R) and the integral
∫

R e
−xsϕ′(s)ds converges absolutely for all x ∈ (0, ρ);

(ii) (cf. [15]) ρ < γφ and there exist measurable d1, d2, d1d2 ∈ L1(X), such that

0 ≤ K(s, τ) ≤ d1(τ)eρs, s ∈ R, τ ∈ X,

(3.14) |g(u, τ)| ≤ d2(τ)u, u ≥ 0.

Proof: (i) For each x ∈ (0, ρ) we have that

ϕ(t) =

∫ t

−∞
ϕ′(s)ds =

∫ t

−∞
exsϕ′(s)e−xsds ≤ ext

∫ t

−∞
e−xs|ϕ′(s)|ds =: Cxe

xt.

(ii) Since ρ < γφ, the integral
∫

R e
−xsϕ(s)ds converges for all x ∈ (0, ρ]. If x ∈

(0, ρ], t ≤ 0, then

ϕ(t)e−xt ≤ ϕ(t)e−ρt =

∫

X

dµ(τ)

∫

R
K(s, τ)e−ρse−ρ(t−s)g(ϕ(t− s), τ)ds ≤

C :=

∫

X

d1(τ)d2(τ)dµ(τ)

∫

R
e−ρsϕ(s)ds, t ∈ R. �

The following simple propositions will be used several times in the sequel:

Lemma III.17. Assume that h(s)e−sx ∈ L1(R) for all x ∈ [a, b]. Then

H(x, y) :=

∫

R
h(s)e−sx−isyds, y ∈ R

is uniformly (with respect to y ∈ R) continuous on [a, b].
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Proof: Take an arbitrary ε > 0 and let N > 0 be such that

∫

R\[−N,N ]

|h(s)|e−sxds < 0.5ε, x ∈ [a, b].

Since et is uniformly continuous on compact sets, there exists δ > 0 such that |x1 −

x2| ≤ δ, s ∈ [−N,N ] implies |e−x1s − e−x2s| < 0.5ε/|h|1. But then

|H(x1, y)−H(x2, y)| ≤ 0.5ε+

∫ N

−N
|h(s)||e−x1s − e−x2s|ds < ε, y ∈ R. �

Corollary III.18. With h as in Lemma III.17, we have that limy→∞H(x, y) = 0

uniformly on x ∈ [a, b].

Proof: Due to Lemma III.17, for each ε > 0 there exists a finite sequence a :=

x0 < x1 < x2 < · · · < xm =: b possessing the following property: for each x there

is xj such that |H(xj, y) − H(x, y)| < 0.5ε uniformly on y. Now, due to Riemann-

Lebesgue lemma, limy→∞H(xj, y) = 0 for every j. Therefore, for all j and some

M > 0, we have that |H(xj, y)| < 0.5ε if |y| ≥M . This implies that

|H(x, y)| ≤ |H(xj, y)−H(x, y)|+ |H(xj, y)| < ε, |y| ≥M,x ∈ [a, b],

and the corollary is proved. �

As we know, the property ϕ(−∞) = 0 implies the exponential decay ψ(t) = O(ezt)

at −∞ for each z ∈ (0, γφ). It is clear also that ψ(t) = O(t) as t→ +∞. Hence, for

each fixed z ∈ (0, γφ), we can integrate equation (3.10) twice, to find that Ψ(z) :=

∫
R e
−zvψ(v)dv satisfies

Ψ(z) =

∫

X

dµ(τ)

∫

R
K(s, τ)e−zs

∫

R
e−z(v−s)

∫ v−s

−∞
g(ϕ(u), τ)dudvds =

∫

X

dµ(τ)

∫

R
K(s, τ)e−zs

∫

R
e−zv

∫ v

−∞
g(ϕ(u), τ)dudvds =

(∫

X

dµ(τ)

∫

R
K(s, τ)g′(0, τ)e−zsds

)∫

R
e−zvψ(v)dv +R(z), where
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R(z) :=

∫

X

dµ(τ)

∫

R
K(s, τ)e−zsds

∫

R
e−zv

∫ v

−∞
(g(ϕ(u), τ)− g′(0, τ)ϕ(u))dudv.

Therefore χ(z)Ψ(z) = R(z). Set now

G(z, τ) :=

∫

R
e−zvG(v, τ)dv, G(v, τ) :=

∫ v

−∞
(g(ϕ(u), τ)− g′(0, τ)ϕ(u))du.

Lemma III.19. Assume (3.14), III.13 and III.15(EC2ε) for some small 2ε ∈ (0, γK−

γφ). Then given a, b ∈ (0, γφ + αε) there exists ρ > 0 depending on ϕ, a, b such that

|G(z, τ)| ≤ ρ(τ)/|z| := ρ(C(τ) + d2(τ) + g′(0, τ))/|z|, <z ∈ [a, b] ⊂ (0, γφ + αε).

Proof: For x := <z ∈ (0, γφ + αε), v ≤ 0, we have

e−xv|G(v, τ)| ≤ e−xvC(τ)

∫ v

−∞
(ϕ(u))1+αdu ≤ e−xvCα

ε C(τ)ψ(v)eαεv,

so that e−x·|G(·, τ)| ∈ L1(R) ∩ L2(R). After integrating by parts, we obtain

∫ N

−N
e−zvG(v, τ)dv =

G(−N, τ)ezN −G(N, τ)e−zN

z
+

+
1

z

∫ N

−N
e−zu(g(ϕ(u), τ)− g′(0, τ)ϕ(u))du.

This yields

|
∫

R
e−zvG(v, τ)dv| = 1

|z| |
∫

R
e−zu(g(ϕ(u), τ)− g′(0, τ)ϕ(u))du| ≤

1

|z|


Cα

ε C(τ)

0∫

−∞

e−(<z−αε)uϕ(u)du+ |ϕ|∞(g′(0, τ) + d2(τ))

+∞∫

0

e−<zudu


 . �

Corollary III.20. In addition, assume that
∫

R×X K(s, τ)ρ(τ)e−sxdµds converges for

all x ∈ (0, γK). Then χ(γφ) = 0 and, for appropriate ε1 > 0, m ∈ R and k ∈ {0, 1},

and continuous r ∈ L2(R),

ψ(t+m) = (a− t)keγφt + e(γφ+ε)tr(t), t ∈ R.
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Proof: Set z := x+ iy. For a fixed 0 < x < γφ + αε we have

|R(z)| = |
∫

X

G(z, τ)

∫

R
K(s, τ)e−zsdsdµ| ≤ 1

|z|

∫

X

ρ(τ)

∫

R
K(s, τ)e−xsdsdµ,

so that R(z) is regular in the strip 0 < <z < γφ + αε. Thus we can deduce from

Ψ(z) = R(z)/χ(z) that γφ = γψ (e.g. see [15, Lemma 4.4], the definition of γψ is

similar to that of γφ) must be a positive zero of χ(z) and Ψ(γφ) = ∞. It is clear

that R(x + i·) is also bounded and square integrable on R (for each fixed x). Take

now γ′, γ′′ such that 0 < γ′ < γφ < γ′′ < γφ + αε. Then we may shift the path of

integration in the inversion formula for the Laplace transform (e.g. see [41, p. 10])

to obtain

ψ(t) =
1

2πi

∫ γ′+i∞

γ′−i∞
eztΨ(z)dz = −Resz=γφ

eztR(z)

χ(z)
+
eγ
′′t

2πi

{∫ +∞

−∞
eista1(s)ds

}
,

where the first term is different from 0 and a1(s) = R(γ′′ + is)/χ(γ′′ + is) is square

integrable on R. Here we recall that, by Corollary III.18, limy→∞ χ(x + iy) = 1

uniformly on x ∈ [γ′, γ′′]. Since χ′′(x) > 0, x ∈ (0, γK) , for some m ∈ R we get

ψ(t+m) = (a− t)keγφt + eγ
′′tr(t). �

It should be noted here that depending on the geometric properties of g, the value

of γφ can be minimal (the case of a pulled semi-wavefront [16, 24]) or maximal (the

case of a pushed semi-wavefront [16, 24] ) positive root of χ(z) = 0. Observe that,

due to the monotonicity of ψ, we can also use here the Ikehara Tauberian theorem

[9]. However it gives a slightly different result.

Lemma III.21. Assume all conditions of Lemma III.19 excepting γφ < γK. If

1− χ1(x0) :=

∫

R

∫

X

K(s, τ)d2(τ)dµ(τ)e−sx0ds ≤ 1,

for some x0 ∈ (0, γK), then γφ coincides with the minimal positive zero λl of χ(z).
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Proof:Since d2(τ) ≥ g′(0, τ), we obtain that x0 ∈ [λl, λrK ] and λl < γK . Case I:

γφ < γK . Then, by Corollary III.20, we have χ(γφ) = 0 so that γφ ∈ {λl, λr}.

Suppose that γφ > λl, this implies x0 ≤ γφ = λr. We have

Ψ(z) =

(∫

X

dµ(τ)

∫

R
K(s, τ)d2(τ)e−zsds

)∫

R
e−zvψ(v)dv +R1(z), where

R1(z) :=

∫

X

dµ(τ)

∫

R
K(s, τ)e−zsds

∫

R
e−zv

∫ v

−∞
(g(ϕ(u), τ)− d2(τ)ϕ(u))dudv,

or, in a shorter form,

(3.15) χ1(z)Ψ(z) = R1(z).

It is clear that x0 = γφ = λr > λl implies immediately that g′(0, τ) = d2(τ) a.e. on

X and that χ1(z) = χ(z), R(z) = R1(z). As we have seen in the proof of Corollary

III.20, this guarantees that R1(x0) is a finite number. Of course, R1(x0) is also well

defined if x0 < γφ. Now, it is clear that R1(x0) ≤ 0 because of g(u, τ) ≤ d2(τ)u, u ≥

0. We claim that, in fact, R1(x0) < 0. Indeed, otherwise g(u, τ) = d2(τ)u, u ≥ 0, for

almost all τ ∈ X that yields d2(τ) = g′(0, τ) andR1(z) ≡ 0 leading to a contradiction:

Ψ(z) ≡ 0 and ψ(t) ≡ 0.

Now, from R1(x0) < 0,Ψ(x0) > 0, χ1(x0) ≥ 0, we deduce that Ψ must have a pole

at x0 = γφ < γK . But then χ1(γφ) = χ(γφ) implies χ1(z) ≡ χ(z), R(z) = R1(z).

Hence, λl < λr = x0 < γK and γφ = x0 is a simple pole of Ψ. Therefore we can

proceed as in the proof of Corollary III.20 taking 0 < γ′ < γφ = λr < γ′′ < γφ + αε

to obtain

ψ(t) =
1

2πi

∫ γ′+i∞

γ′−i∞
eztΨ(z)dz = −Resz=λr

eztR(z)

χ(z)
+ eγ

′′tr1(t) =

= Aeγφt + eγ
′′tr1(t), where A := −R(λr)

χ′(λr)
< 0, r1 ∈ L2(R),
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contradicting to the positivity of ψ.

Case II: γφ = γK . Since x0 < γK = γφ and R1(x0) < 0, we similarly deduce from

(3.15) that x0 is a singular point of Ψ(z), a contradiction. �

3.5 The uniqueness theorems

To prove our uniqueness results we will need more strong property of ϕ than

the merely convergence of
∫

R e
−zsϕ(s)ds for all <z ∈ (0, γφ) (even combined, as

in Section 4, with Assumption III.15(ECε) for some small ε > 0). This property,

assumed everywhere in the sequel, is Assumption III.15(ECγφ). The nonlinearity g

is supposed to satisfy the Assumption III.13

The following assertion is crucial for extension of DK theory on the critical case

χ(λl) = χ′(λl) = 0.

Lemma III.22. Suppose that, for some a, b > δ > 0, continuous v : R → [0, 1)

satisfies v(t) = 1 +O(eat), t→ −∞, v(t) = O(e−bt), t→ +∞, and

v(t) ≤
∫

R
N(s)v(t− s)ds,

where measurable N(s) ≥ 0, s ∈ R, is such that

∫

R
N(s)ds = 1,

∫

R
sN(s)ds = 0,

∫

R
N(s)exsds <∞, for all |x| ≤ δ.

Then v(t) ≡ 0.

Proof: First we observe that, without restricting the generality, we may assume

that v ∈ C2(R) with the finite norm |v|C2 := sups∈R,j=0,1 |v(j)(s)|. Indeed, if we set

w(t) :=

∫ t+1

t

v(s)ds, t ∈ R,

then w ∈ C1(R) has the same properties as v, |w′(t)| < 1, t ∈ R, while v(t) ≡ 0

if and only if w(t) ≡ 0. For instance, if v(t) ≤ ce−bt for t ≥ t0, b > 0, then
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w(t) ≤ ce−bt
∫ 1

0
e−bsds ≤ ce−bt, t ≥ t0. Furthermore, w′(t) = v(t + 1)− v(t) behaves

as O(eat) at −∞ and as O(e−bt) at +∞.

Applying the same procedure to w once more, we obtain the desired smoothness

property of v with v′(t), v′′(t) satisfying

(3.16) v′(t), v′′(t) = O(eat), t→ −∞, v′(t), v′′(t) = O(e−bt), t→ +∞.

In any case, the bilateral Laplace transform V (z) of v(t) is well defined in the vertical

strip −b < <z < 0.

Set now

f(t) :=

∫

R
N(s)v(t− s)ds− v(t) ≥ 0,

It follows from this definition that 0 ≤ f(t) ≤ 1 − v(t) and therefore f(t) =

O(eat), t → −∞. Additionally, using (3.16), we obtain, for j = 0, 1, 2 and some

positive C,C ′ > 0,

∫

R
N(s)|v(j)(t− s)|ds ≤ C

∫

R
N(s)e±δ(t−s)ds = Ce±δt

∫

R
N(s)e∓δsds =: C ′e±δt.

Thus we can conclude that the Laplace transform F (z) of C2-smooth function

f(t), |f |C2 <∞, is well defined in the strip −δ < <z < δ, where we have

|F (z)| ≤ Cpq
|z|2 , p ≤ <z ≤ q, p, q ∈ (−δ, δ).

Hence, we can apply the Laplace transform to the equation

v(t) + f(t) =

∫

R
N(s)v(t− s)ds,

to obtain that

V (z) =
F (z)

N (z)− 1
, −δ < <z < 0,



43

where the Laplace transform N (z) :=
∫

R e
−zsN(s)ds of N is an analytical function

in the strip |<z| < δ. Observe also that

N (0) = 1, N ′(0) = 0, N ′′(0) =

∫

R
s2N(s)ds > 0.

Now, since V (z) is analytical in the strip Π := {−δ < <z < 0}, the function

F (z)/(N (z)− 1) has the same property in Π. On the other hand, for an appropriate

δ′ ∈ (0, δ) the quotient F (z)/(N (z) − 1) defines a meromorphic function in Π′ :=

{−δ < <z < δ′}, with a unique singularity (double pole) at z = 0. Note that Lemma

III.12 is used at this stage. Since the Laplace transform V of v ∈ C2(R) is integrable

along each vertical line inside of Π, we may apply the inversion formula to get, for

arbitrarily fixed c ∈ (−δ, 0), r ∈ (0, δ′),

v(t) =
1

2πi

∫ c+i·∞

c−i·∞

eztF (z)

N (z)− 1
dz = Resz=0

eztF (z)

N (z)− 1
+

1

2πi

∫ r+i·∞

r−i·∞

eztF (z)

N (z)− 1
dz.

Next, observe that if f(t) ≡ 0 then also F (z) ≡ 0 so that v(t) ≡ 0. Therefore the

only case of the interest is when f(s′) > 0 at some s′ ∈ R that implies F (0) > 0.

Now, in such a case, we have that

|
∫ r+i·∞

r−i·∞

eztF (z)

N (z)− 1
dz| ≤ c0e

rt

∫

R

ds

r2 + s2
≤ c1e

rt, t ∈ R,

while a direct calculation shows that

Resz=0
eztF (z)

N (z)− 1
=

2F (0)

N ′′(0)
t+

F ′(0)

N ′′(0)
− 2F (0)N ′′′(0)

3(N ′′(0))2
=: At+B, A > 0.

In consequence, as t→ −∞,

v(t) = At+B +O(ert), with A, r > 0,

which contradicts to the boundary condition v(−∞) = 1. �

Now we are ready to prove our first uniqueness result:
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Theorem III.23. Assume III.15 (ECγφ) excepting γφ < γK as well as Assumption

III.13 and suppose further that χ(γK−) 6= 0,

(3.17) |g(u, τ)− g(v, τ)| ≤ g′(0, τ)|u− v|, u, v ≥ 0.

(3.18)

∫

X

dµ

∫

R
K(s, τ)g′(0, τ)ds ∈ (1,+∞) (equivalently, χ(0) < 0).

Then equation (3.10) has at most one bounded positive solution ϕ, ϕ(−∞) = 0.

Furthermore, γφ coincides with the minimal positive zero λl of χ(z) and such a

solution (if exists) has the following representation:

ϕ(t+m) = (a− t)keλlt + e(λl+δ)tr(t), with continuous r ∈ L2(R),

for some appropriate m ∈ R, δ > 0. Here k = 0 [respectively, k = 1] if λl is a simple

[respectively, double] root of χ(z) = 0.

Remark III.24. By Lemma III.21, the above assumptions exclude the existence of

pushed semi-wavefronts, the same lemma also guarantees that γφ = λl and conse-

quently γφ < γK . Theorem III.23 holds also when χ(γK−) = 0 but χ′(γK−) < 0.

Proof: Step I: Asymptotic behavior at −∞. It is clear that equation (3.10) can

be written as the linear inhomogeneous equation

(3.19) ϕ(t) =

∫

X

dµ

∫

R
K(s, τ)g′(0, τ)ϕ(t− s)ds+D(t), t ∈ R,

where all integrals are converging and

D(t) :=

∫

X

dµ

∫

R
K(s, τ)(g(ϕ(t− s), τ)− g′(0, τ)ϕ(t− s))ds ≤ 0, t ∈ R.

Take C(τ), σ, ζ(x) as in Assumption III.13 . Observe that without restricting the

generality, we can assume in Assumption III.13 that (1 +α)γφ < γK . Since equation
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(3.10) is translation invariant, we can suppose that ϕ(t) < σ for t ≤ 0. Applying the

bilateral Laplace transform to (3.19), we obtain that

χ(z)Φ(z) = D(z).

We claim that, due to conditions III.13 and III.15( ECγφ), function D is regular in

the strip P = {z : <z ∈ (0, (1 + α)γφ)}. Indeed, we have

D(x+ iy) =

∫

R

e−iyt[e−xtD(t)]dt.

Given x := <z ∈ (0, (1 + α)γφ), we will choose x′ sufficiently close from the left to

γφ to satisfy −x+ (1 + α)x′ > 0. Then

|e−xtD(t)| ≤ e−xt
[∫

X

C(τ)dµ

∫ +∞

t

K(s, τ)C1+α
x′ e(1+α)x′(t−s)ds+

+2|ϕ|∞
∫

X

g′(0, τ)dµ

∫ t

−∞
K(s, τ)ds

]
≤

e−xt
[
e(1+α)x′tC1+α

x′ ζ((1 + α)x′) + 2|ϕ|∞
∫

X

g′(0, τ)dµ

∫ t

−∞
K(s, τ)ds

]
=:

e−xt
[
e(1+α)x′tA1 + 2|ϕ|∞

∫

X

g′(0, τ)dµ

∫ t

−∞
K(s, τ)e−(1+α)x′se(1+α)x′sds

]
≤

e(−x+(1+α)x′)t [A1 + 2|ϕ|∞(1− χ((1 + α)x′))] =: A2e
(−x+(1+α)x′)t, t ∈ R.

Since clearly D(t) is bounded on R, the above calculation shows that e−xtD(t)

belongs to Lk(R), for each k ∈ [1,∞] once x ∈ (0, (1 + α)γφ). As a consequence, for

each such fixed x the function dx(y) = D(x+ i · y) is bounded and square integrable

on R.

By our assumptions, χ(z) is also regular in the domain P, while

Φ(z) =
D(z)

χ(z)
,

is regular in <z ∈ (0, γφ) and meromorphic in P. In virtue of Lemma III.12, we

can suppose that Φ(z) has a unique singular point γφ in P which is either simple or

double pole.
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Now, for some x′′ ∈ (0, γφ), using the inversion theorem for the Fourier transform,

we obtain that for an appropriate sequence of integers Nj → +∞

ϕ(t) =
1

2πi
lim

j→+∞

∫ x′′+iNj

x′′−iNj

eztD(z)

χ(z)
dz

almost everywhere on R, e.g. see [41, p. 9-10]. Next, if x ∈ (γφ, (1 + αγφ)) then

∫ x′′+iN

x′′−iN

eztD(z)dz

χ(z)
=

(∫ x+iN

x−iN
+

∫ x−iN

x′′−iN
−
∫ x+iN

x′′+iN

)
eztD(z)dz

χ(z)
− 2πiResz=γφ

eztD(z)

χ(z)
.

Since, by Corollary III.18,

lim
j→+∞

max
z∈[x′′±iNj ,x±iNj ]

(|D(z)|+ |1− χ(z)|) = 0,

we conclude that, for each fixed t ∈ R

lim
j→+∞

∫ x±iNj

x′′±iNj

eztD(z)

χ(z)
dz = 0.

Therefore

ϕ(t) = −Resz=γφ
eztD(z)

χ(z)
+
ext

2π

∫

R

eiytdx(y)

χ(x+ iy)
dy.

It should be noted here that D(γφ) < 0 since otherwiseD(t) ≡ 0 implying χ(z)Φ(z) =

D(z) ≡ 0 so that Φ(z) ≡ 0, a contradiction. Since

Resz=γφ
eztD(z)

χ(z)
=
eγφtD(γφ)

χ′(γφ)
, if λl < λr,

Resz=γφ
eztD(z)

χ(z)
=

2eγφt

χ′′(γφ)

(
tD(γφ) + D′(γφ)−D(γφ)

χ′′′(γφ)

3χ′′(γφ)

)
, if λl = λr,

we get the desired representation.

Step II: Uniqueness. By the contrary, suppose that ϕ1, ϕ2 are two essentially

different solutions of (3.10) in the sense that ϕ1(t) 6∈ {ϕ2(t + s), s ∈ R}. Due to

Step I we can suppose that ϕ1, ϕ2 have the same main parts of their asymptotic

representations:

ϕj(t) = (aj − t)keγφt + e(γφ+δ)trj(t), rj ∈ L2(R).
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Therefore ω(t) := ϕ2(t) − ϕ1(t) = e(γφ+δ)tr(t), t ∈ R, r ∈ L2(R), in the case of

λl < λr and ω(t) = (a2 − a1)eγφt + e(γφ+δ)tr(t), t ∈ R, r ∈ L2(R), in the case of

λl = λr. Set

w(t) :=

∫ t

t−1

|ω(s)|ds,

it is clear that w ∈ C1(R) is bounded and has bounded derivative on R, in fact,

0 < |w′|∞, |w|∞ ≤ max{|ϕ1|∞, |ϕ2|∞}. Furthermore, if λl < λr then

w(t) = |
∫ t

t−1

e(γφ+δ)sr(s)ds| ≤ e(γφ+δ)t

∫ t

t−1

|r(s)|ds ≤ e(γφ+δ)t

√∫ t

t−1

r2(s)ds,

so that w(t) = e(γφ+δ)to(1) at t = −∞. Now, if λl = λr, we know that

ω(t) = aeγφt + e(γφ+δ)tr(t),

where we can suppose that a ≥ 0. Therefore

−e(γφ+δ)t|r(t)| ≤ |ω(t)| − aeγφt ≤ e(γφ+δ)t|r(t)|,

so that, in view of the above estimation of w(t), we get

|ω(t)| = aeγφt + e(γφ+δ)tr1(t), with |r1(t)| ≤ |r(t)|,

w(t) =

∫ t

t−1

|ω(s)|ds =
a(1− e−γφ)

γφ
eγφt + e(γφ+δ)to(1), t→ −∞.

We have the following:

ω(t) =

∫

X

dµ(τ)

∫

R
K(s, τ)(g(ϕ2(t− s), τ)− g(ϕ1(t− s), τ))ds,

|ω(t)| ≤
∫

X

g′(0, τ)dµ(τ)

∫

R
K(s, τ)|ω(t− s)|ds,

∫ t

t−1

|ω(u)|du ≤
∫

X

g′(0, τ)dµ(τ)

∫

R
K(s, τ)

∫ t

t−1

|ω(u− s)|duds,

and, finally,

(3.20) w(t) ≤
∫

X

g′(0, τ)dµ(τ)

∫

R
K(s, τ)w(t− s)ds.
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Case I (noncritical). If χ′(λl) 6= 0, then χ(γ′) > 0 for some γ′ ∈ (γφ, γφ + δ). After

multiplying the both sides of (3.20) by e−γ
′t and setting v(t) := w(t)e−γ

′t, we find

that

v(t) ≤
∫

R

(∫

X

g′(0, τ)K(s, τ)e−γ
′sdµ(τ)

)
v(t− s)ds.

Since v(t) ≥ 0 and v(±∞) = 0, there exists a finite tm such that

v(tm) = |v|∞ = max
s∈R

v(s).

But then v(tm) ≤
(∫

X
g′(0, τ)dµ(τ)

∫
RK(s, τ)e−γ

′sds
)
v(tm), forcing 0 = v(tm) ≡

v(t) ≡ w(t) in view of χ(γ′) > 0.

Case II (critical). Now, if λl = λr, we set v(t) := w(t)e−γφt, to conclude analo-

gously that v(−∞) = a(1− e−γφ)/γφ, v(+∞) = 0,

v(t) ≤
∫

R

(∫

X

g′(0, τ)K(s, τ)e−γφsdµ(τ)

)
v(t− s)ds.

Since in the sequel we will work only with the last linear inequality, we can assume

that 0 ≤ v(t) ≤ 1 = sups∈R v(s) for all t ∈ R. If v(t̂) = 1 for some finite rightmost t̂,

then

1 = v(t̂) ≤
∫

R

(∫

X

g′(0, τ)K(s, τ)e−γφsdµ(τ)

)
v(t̂− s)ds =:

∫

R
N(s)v(t̂− s)ds ≤

∫

X

g′(0, τ)dµ(τ)

∫

R
K(s, τ)e−γφsds = 1,

which implies that N(s)v(t̂ − s) = N(s) a.e. and v(t̂ − s) = 1 for all s such that

N(s) > 0. Now, since
∫

RN(s)ds = 1,
∫

R sN(s)ds = 0, there is a subset of R− of

positive measure where N(s) > 0. This means that t̂ does not possesses the property

to be the rightmost point where v(t̂) = 1, a contradiction. Thus we have to analyze

only the case when a > 0 and 0 ≤ v(t) < 1 = v(−∞). It is easy to check that in

such a case, v(t) and N meet all the conditions of Lemma III.22. In particular, since
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γφ < γK , there exists δ > 0 such that

∫

R
N(s)exsds = 1− χ(γφ − x) <∞ for all |x| < δ.

Hence, v(t) ≡ 0, a contradiction. �

Next, we will consider the situation when the subtangential Lipschitz condition

of Theorem III.23 is not satisfied. In such a case, we still are able to prove the

uniqueness under somewhat stronger hypotheses:

Assumption III.25. Either one of the following conditions holds

|g(u, τ)− g(v, τ)− g′(0, τ)(u− v)| ≤ C(τ)|u− v|1+α, u, v ∈ (0, σ),

|g′(u, τ)− g′(0, τ)| ≤ C(τ)uα, u ∈ (0, σ), (i.e. g ∈ C1,α[0, σ]),

for some α, σ ∈ (0, 1] and measurable C(τ) > 0 satisfying (3.12). Furthermore, there

exist some positive ε̂ ∈ (0, γφ) and measurable d1(τ) such that

0 ≤ K(s, τ) ≤ d1(τ)eε̂s, s ∈ R.

Example III.26. If g(v, τ) = pve−v, v ≥ 0, p > 1 andKα(s, τ) = (4πα)−1/2e(−s2/(4α)),

is easy to see that g and Kα satisfy assumption III.25.

Assumption III.27. Either one of the following two assumptions is satisfied:

(i) Each solution of (3.10) is C1-smooth and if ϕ1, ϕ2 ∈ C1(R) satisfy (3.10)

and the integral
∫

R e
−zs(ϕ2(s) − ϕ1(s))ds converges absolutely then the integral

∫
R e
−zs(ϕ′2(s)− ϕ′1(s))ds also converges absolutely.

(ii) There exists δ0 > 0 such that, for each x ∈ (λrK − δ0, λrK), it holds

0 ≤ K(s, τ) ≤ d2,x(τ)exs, s ∈ R,

for some µ−measurable d2,x(τ).
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Theorem III.28. Suppose that

|g(u, τ)− g(v, τ)| ≤ λ(τ)|u− v|, u, v ≥ 0, τ ∈ X,

for some µ-measurable λ such that µ{τ : λ(τ) > g′(0, τ)} > 0 and function

χ1(z) = 1−
∫

R

∫

X

K(s, τ)λ(τ)dµ(τ)e−szds

is well defined on [0, λrK). If, in addition, Assumptions III.25, III.27, (3.12) hold

with λdj ∈ L1(X), j = 1, 2, χ(0) < 0 and χ1(m) ≥ 0 for some m ∈ (0, λrK), then

equation (3.10) has at most one bounded positive solution ϕ, ϕ(−∞) = 0. Finally,

γφ coincides with the minimal simple positive zero λl of χ(z) and such a solution (if

exists) has the following asymptotic representation:

ϕ(t+m) = eλlt + e(λl+δ)tr(t), with continuous r ∈ L2(R),

for some appropriate m ∈ R, δ > 0.

Proof: It should be noted first that, due to Lemma III.16, the assumptions of

the theorem guarantee the fulfillment of the hypotheses III.13 and III.15( ECγφ).

Furthermore, all arguments of Step I in the proof of Theorem III.23 can be repeated

(with a unique change in the estimation of e−xtD(t) where g′(0, τ) should be replaced

with λ(τ)). Evidently, λl < λr so that by Lemma III.21 each pair ϕ1, ϕ2 of solutions

of (3.10) can be supposed to have the same main parts of their asymptotic repre-

sentations: ϕj(t) = eλlt + e(λl+δ)trj(t), rj ∈ L2(R). The further proof is divided in

several steps.

Step I. Again, we consider bounded function ω(t) := ϕ2(t)− ϕ1(t) = e(λl+δ)tr(t),

t ∈ R, r ∈ L2(R). If <z ∈ (0, λl + δ), then
∫

R e
−zsω(s)ds converges absolutely and

from condition III.27(i) we have

|ω(t)| = |
∫ t

−∞
ω′(s)ds| = |

∫ t

−∞
exsω′(s)e−xsds| ≤ ext

∫

R
e−xs|ω′(s)|ds =: Cxe

xt,



51

for all x ∈ (0, λl + δ) and t ∈ R. Similarly, we obtain from III.25, III.27(ii) that

|ω(t)| = |
∫

X

dµ

∫

R
K(s, τ)

(
g(ϕ1(t− s), τ)− g(ϕ2(t− s), τ)

)
ds ≤

ext
∫

X

λ(τ)dµ

∫

R
K(s, τ)e−xse−x(t−s)|ω(t− s)|ds ≤

ext
∫

X

λ(τ)(d1(τ) + d2,λl+δ(τ))dµ

∫

R
e−xs|ω(s)|ds, x ∈ (ε̂, λl + δ), t ∈ R.

In any of these cases, for any x ∈ (ε̂, λl + δ) there exists an appropriate Cx > 0 such

that |ω(t)| ≤ Cxe
xt, t ∈ R. Set

Γ = sup{x ≥ λl| ∃Cx : |ω(t)| ≤ Cxe
xt, t ∈ R},

we claim that Γ ≥ λrK . Indeed, arguing on the contrary, suppose that Γ < λrK and

let x0 ∈ (ε̂,Γ), α > 0, γ0 ∈ (ε̂, λl) be such that {x0(1 + α), x0 + αγ0} ⊂ (Γ, λrK). We

will denote as x∗ the minimal of these two numbers. We have that

(3.21) ω(t) =

∫

X

dµ

∫

R
K(s, τ)g′(0, τ)ω(t− s)ds+ E(t), t ∈ R,

with bounded

E(t) :=

∫

X

dµ

∫

R
K(s, τ)

(
g(ϕ1(t− s), τ)− g(ϕ2(t− s), τ)− g′(0, τ)ω(t− s)

)
ds.

Now, depending of assumptions chosen in Assumption III.25 , we have either

|g(ϕ1(s), τ)− g(ϕ2(s), τ)− g′(0, τ)ω(s)| ≤ C(τ)|ω(s)|1+α ≤

C(τ) min{Cx0e
x0(1+α)s, (|ϕ1|∞ + |ϕ2|∞)1+α} ≤ k1C(τ)ex∗s, s ∈ R,

or

|g(ϕ1(s), τ)− g(ϕ2(s), τ)− g′(0, τ)ω(s)| ≤ C(τ)|ω(s)|(|ϕ1(s)|+ |ϕ2(s)|)α ≤

k2C(τ) min{Cx0e
(x0+αγ0)s, (|ϕ1|∞ + |ϕ2|∞)1+α} ≤ k3C(τ)ex∗s, s ∈ R,
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where ki depend on x0 and |ϕj|∞ only. Hence,

|E(t)| ≤ 4ex∗t max{|ϕ1|∞, |ϕ2|∞}
∫

X

λ(τ)dµ

∫ t

−∞
K(s, τ)e−x∗sds

+ kex∗t
∫

X

C(τ)dµ

∫ +∞

t

K(s, τ)e−x∗sds ≤

ex∗t
(

4 max{|ϕ1|∞, |ϕ2|∞}(1− χ1(x∗)) + kζ(x∗)
)

=: Aex∗t, t ∈ R.

Therefore e−xtE(t) belongs to Lk(R), for each k ∈ [1,∞] once x ∈ (ε̂, x∗). Using

Lemma III.12, we can repeat now the arguments of Step I of Theorem III.23 (below

the estimation of |e−xtD(t)|) to conclude that ω(t) = extrx(t) t ∈ R, rx ∈ L2(R),

for each x ∈ (λl, x∗). This implies the absolute convergence of
∫

R e
−xsω(s)ds for

every x ∈ (λl, x∗). But as we have seen at the beginning of Step I, this yields

|ω(s)| ≤ Bxe
xs, s ∈ R, x ∈ (λl, x

∗) for appropriate Bx. Therefore Γ ≥ x∗ > Γ, a

contradiction. In this way, we have proved that

(3.22) |ω(s)| ≤ Bxe
xs, s ∈ R, x ∈ (ε̂,min{λr, γK}).

Step II. Suppose that χ1(m) > 0 for some m ∈ (0, λrK), it is clear that m > λl

and
∫

R

∫

X

K(s, τ)λ(τ)dµ(τ)e−smds < 1.

We now define ω̄(t) := |ω(t)|e−mt ≥ 0, t ∈ R. By (3.22), we obtain that ω̄(±∞) = 0

and ω̄(tm) = maxs∈R ω̄(s) > 0 for some tm ∈ R. Since

ω(t) =

∫

X

dµ(τ)

∫

R
K(s, τ)(g(ϕ2(t− s), τ)− g(ϕ1(t− s), τ))ds,

we have

ω̄(tm) = |ω(tm)|e−mtm ≤
∫

X

λ(τ)dµ(τ)

∫

R
K(s, τ)e−ms|ω(tm − s)|e−m(tm−s)ds

≤ ω̄(tm)

∫

X

λ(τ)dµ(τ)

∫

R
K(s, τ)e−msds < ω̄(tm),
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a contradiction. Hence, ω̄(τ) = 0 and the uniqueness follows.

Step III. Suppose now that χ1(m) = maxs∈(0,λrK) χ(s) = 0. Then additionally

χ′1(m) = 0. Furthermore, ω̄(t) := |ω(t)|e−mt ≥ 0, t ∈ R has the same properties as

in Step II: ω̄(±∞) = 0, ω(tm) = maxs∈R ω̄(s) > 0 for some tm ∈ R and

ω̄(t) ≤
∫

R

(∫

X

K(s, τ)λ(τ)e−msdµ(τ)

)
ω̄(t− s)ds.

Here, we can assume that 0 ≤ ω̄(t) ≤ 1 for all t ∈ R. If ω̄(t̂) = 1 for some finite

rightmost t̂, then

1 ≤
∫

R
Nλ(s)ω̄(t̂− s)ds ≤

∫

R
Nλ(s)ds = 1,

where Nλ(s) :=
∫
X
K(s, τ)λ(τ)e−msdµ(τ). This implies that Nλ(s)ω̄(t̂− s) = Nλ(s)

a.e. and ω̄(t̂ − s) = 1 for all s such that Nλ(s) > 0. Now, since
∫

RNλ(s)ds =

1,
∫

R sNλ(s)ds = 0, there is a subset of R− of positive measure where Nλ(s) > 0.

This means that t̂ does not possesses the property to be the rightmost point where

ω̄(t̂) = 1, a contradiction. In consequence, ω̄(t) ≡ 0 that proves the uniqueness. �

3.6 Applications

In this section, Theorems III.23 and III.28 are applied to various models which can

be written as (3.4). This allows to improve or complement the uniqueness results in

[4, 9, 13, 15, 18, 49]. Everywhere in this section we assume that continuos g : R+ →

R+ is differentiable at 0 with g′(0) > 0.

3.6.1 Nonlocal integro-differential equations

Consider the equation

(3.23) ut = J ∗ u− u+ g(u),

where J ≥ 0,
∫

R Jds > 0. Let γ# denote an extended positive real number such that

∫
R J(s)e−zsds is convergent when z ∈ [0, γ#) and is divergent when z > γ#. As it
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can be easily deduced from Theorem III.2, the existence of such γ# is automatically

assured by the existence of positive semi-wavefronts u(t, x) = φ(x+ ct), φ(−∞) = 0

to (3.4). Traveling wave profile φ must solve

(3.24) cφ′ = J ∗ φ− φ+ g(φ).

We assume that g, g(0) = 0, is a non-negative locally Lipschitzian function, in order

to replace usual condition (3.3) with more weak requirement

(3.25) g′(s) ≤ g′(0) a.e. on R+,

we will realize the following trick. Set gβ(s) = g(s) + βs for some positive β. We

claim that β can be chosen in such a way that gβ satisfies the Lipschitz condition

with a constant β + g′(0). First observe that our proof of uniqueness compares two

different solutions φ1, φ2. Since they are uniformly bounded by some positive M > 0,

we can restrict our attention to a finite interval [0,M ] where g is obviously globally

Lipschitzian. This means there exists β > 0 such that g′(0) ≥ g′(s) ≥ −2β − g′(0)

almost everywhere on [0,M ] and, in consequence, we get the necessary estimation

−g′(0)− β ≤ g′β(s) = β + g′(s) ≤ β + g′(0) a.e. on R+.

Hence, instead of (3.24) we will consider

(3.26) cφ′ = J ∗ φ− (1 + β)φ+ gβ(φ).

Let us suppose that c > 0 (the case c < 0 is similar). Since φ is non-negative bounded

solution, it should satisfy

φ(t) =
1

c

∫ t

−∞
e−(t−s)(1+β)/c

(
J ∗ φ(s) + gβ(φ(s))

)
ds

=
1

c

∫ +∞

0

e−s(1+β)/c
(
J ∗ φ(t− s) + gβ(φ(t− s))

)
ds

= k ∗ (J ∗ φ)(t) + k ∗ gβ(φ)(t) = (k ∗ J) ∗ φ(t) + k ∗ gβ(φ)(t),(3.27)
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where k(s) = c−1e−s(1+β)/c, s ≥ 0 and k = 0 if s < 0. Thus, equation (3.27) can be

written as (3.4), with X = {τ1, τ2} and

K(s, τ) =





k ∗ J(s), τ = τ1

k(s), τ = τ2

, g(s, τ) =





s, τ = τ1

gβ(s), τ = τ2

.

Finally, independently on the sign of c, we find that

χ(z, c) = 1−
∫

R
K(s, τ1)e−zsds− (g′(0) + β)

∫

R
K(s, τ2)e−zsds =

1− 1

1 + β + cz

∫

R
J(s)e−zsds− g′(0) + β

1 + β + cz
=:

χ̃(z, c)

1 + β + cz
.

Let c∗ be the minimal value of c for which

χ̃(z, c) := 1− g′(0) + cz −
∫

R
J(s)e−szds

has at least one positive zero. It is easy to see that

c∗ = inf
z>0

1

z

{
−1 + g′(0) +

∫

R
J(s)e−szds

}

can be positive, negative (in these cases inf can be replaced with min) or zero. By

Theorem III.9, c ≥ c∗ for each admissible wave speed c. The next result is a direct

consequence of Theorem III.23.

Theorem III.29. Suppose (3.25) together with 1−
∫

R J(s)ds < g′(0) and

(3.28) |g(u)− g′(0)u| ≤ Cu1+α, u, v ∈ (0, σ) for some α, σ ∈ (0, 1],

Then equation (3.24) has at most one bounded positive solution ϕ, ϕ(−∞) = 0, for

each c 6= 0 (if χ̃(γ#−, c∗) 6= 0) or for each c 6= 0, c∗ (if χ̃(γ#−, c∗) = 0).

Proof: Suppose that c > 0 (the case c < 0 is similar). We only have to check the

assumptions III.15(ECγφ), III.13 except γφ(c) < γK(c), χ(0, c) < 0 and χ(γK−, c) 6=

0 of Theorem III.23.



56

Step I. It is clear that g(·, τ) satisfies (3.17), where g′(0, τ1) = 1, g′(0, τ2) =

g′(0) + β. Moreover, we have |g(u, τ) − g′(0, τ)u| ≤ C(τ)u1+α, u, v ∈ (0, σ), where

C(τ) = 0 if τ = τ1 and C(τ) = C if τ = τ2.

Step II. For each z > −1+β
c

we have
∫

R k(s)e−zsds = 1
1+β+cz

< +∞ so that

γK(c) = γ# because of
∫

R k ∗J(s)e−zsds =
∫

R J(s)e−zsds/(1 +β+ cz). (Observe here

that γK(c) = min{γ#,−(1 + β)/c} if c < 0. However, if γK(c) = −(1 + β)/c then

χ(γK(c), c) =∞ so that γφ(c) < γK(c) due to Corollary III.7).

Step III. If ϕ solves (3.24), then ϕ ∈ C1(R) and for each 0 < z < γφ we obtain

c

∫

R
e−zs|ϕ′(s)|ds ≤

∫

R
e−zsJ ∗ ϕ(s)ds+

∫

R
e−zsϕ(s)ds+

∫

R
e−zsg(ϕ(s))ds ≤

(

∫

R
e−zsJ(s)ds+ 1 + g′(0))

∫

R
e−zsϕ(s)ds < +∞.

Thus, by Lemma III.16, condition III.15(ECγφ) is satisfied.

Step IV. We have χ(0, c) = (1 −
∫

R J(s)ds − g′(0))/(1 + β) < 0. Now, if γ# <

+∞, then χ̃(γ#−, c∗) 6= 0 implies that χ(γ#−, c∗) 6= 0 and γφ(c∗) = λl(c∗) < γ#.

Since χ(z, c) is strictly increasing in c for each fixed z > 0, function λl(c) is strictly

decreasing. Hence γφ(c) = λl(c) < γ# for each c ≥ c∗. Similar considerations shows

that γφ(c) < γ# for each c > c∗ if χ(γ#−, c∗) = 0. Finally, in the case γ# = +∞ we

have that χ(+∞, c) ∈ {1,−∞} 63 0, so that χ(γK−, c) 6= 0 holds automatically. �

Remark III.30. Our approach allows to remove several restrictions on J and g as-

sumed in Carr and Chmaj uniqueness result [9, Theorem 2.1]. In the cited work

g is supposed to satisfy (3.3) and J to be an even compactly supported function

with
∫

R Jds = 1. These properties were essential in the proof of Theorem 2.1 in [9]

even if (3.3) was not mentioned explicitly there. Similarly, conditions J ∈ C1(R),

J(a) > 0, J(b) > 0 for some a < 0 < b, and of J compactly supported were used in

[13]. Nevertheless, Coville et al. have used g(u)/u ≤ g′(0), u > 0, instead of more
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restrictive g′(u) ≤ g′(0), u > 0. They also established non-uniqueness of stationary

traveling fronts (c = 0). Next, Schumacher [45], using completely different approach,

established uniqueness of regular and non-critical semi-wavefronts to equation (3.23)

for general J and g satisfying (3.25). In fact, it seems that the latter conditions was

proposed in [45]. The trick allowing to weaken the Lipschitz restriction (3.3) is due

to Thieme and Zhao [49] (up to our knowledge at least). However, usually it was

applied under reversed inequality f ′(s) ≥ f ′(0) to the second (damping) term of

equation, e.g. see also [19] and Section 6.3 for further generalizations. Here we show

that this trick shows to be useful also in the case of birth functions.

3.6.2 Nonlocal lattice equations

Now we consider semi-wavefronts wj(t) = u(j + ct), u(−∞) = 0, of the nonlocal

lattice equation

dwj(t)

dt
= D[wj+k(t)− wj(t)]− dwj(t) +

∑

k∈Z

β(j − k)g(wk(t− r)), j ∈ Z,

where β(k) ≥ 0 with
∑

k∈Z β(k) = 1. Let γ# denote an extended positive real

number such that
∑

k∈Z β(k)e−zk is convergent when z ∈ [0, γ#) and is divergent

when z > γ#. As it can be easily deduced from Theorem III.2, the existence of such

γ# is automatically assured by the existence of positive semi-wavefronts wj(t) =

u(j + ct), u(−∞) = 0 to the above lattice equation. The wave profile u satisfies

(3.29) cu′(x) = D[u(x+ 1) + u(x− 1)− 2u(x)]− du(x) +
∑

k∈Z

β(k)g(u(x− k− cr)).
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Again we take c > 0 for simplicity. Since u is bounded, from (3.29) we get

u(t) =
1

c

∫ t

−∞
e−

2D+d
c

(t−s)
[
Du(s+ 1) +Du(s− 1) +

∑

k∈Z

β(k)g(u(s− k − cr))
]
ds

=
D

c

∫ t+1

−∞
e−

2D+d
c

(t−s+1)u(s)ds+
D

c

∫ t−1

−∞
e−

2D+d
c

(t−s−1)u(s)ds+

+
∑

k∈Z

β(k)

c

∫ t−k−cr

−∞
e−

2D+d
c

(t−s−k−cr)g(u(s))ds.

=
D

c
e−

2D+d
c

∫ +∞

−1

e−
2D+d
c

su(t− s)ds+
D

c
e

2D+d
c

∫ +∞

1

e−
2D+d
c

su(t− s)ds

+
∑

k∈Z

β(k)

c
e

2D+d
c

(k+cr)

∫ +∞

k+cr

e−
2D+d
c

sg(u(t− s))ds

= (H1 +H2) ∗ u(t) +
∑

k∈Z

β(k)Hk
3 ∗ g(u)(t),

(3.30)

where

H1(t) =





D
c
e−

2D+d
c

(t+1), t ≥ −1

0, t < −1

, H2(t) =





D
c
e−

2D+d
c

(t−1), t ≥ 1

0, t < 1

,

Hk
3 (t) =





1
c
e−

2D+d
c

(t−k−cr), t ≥ k + cr

0, t < k + cr

.

Thus (3.30) can be written as (3.4), with X = {τ1, τ2} and

K(s, τ) =





H1(s) +H2(s), τ = τ1

∑
k∈Z β(k)Hk

3 , τ = τ2

, g(s, τ) =





s, τ = τ1

g(s), τ = τ2

.

Next, χ(z, c) = 1−
∫

RK(s, τ1)e−szds− g′(0)
∫

RK(s, τ2)e−szds =

1− 2D cosh(z)

2D + d+ cz
− g′(0)e−crz

2D + d+ cz

∑

k∈Z

β(k)e−kz =:
χ̃(z, c)

2D + d+ cz
.

Let c∗ be the minimal value of c for which

χ̃(z, c) := d+ 2D + cz −D(ez + e−z)− g′(0)e−crz
∑

k∈Z

β(k)e−kz
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has at least one positive zero. It is easily seen that c∗ is well defined and is finite.

By Theorem III.9, c ≥ c∗ for each admissible wave speed c.

After these transformations, we can apply our uniqueness results to (3.29).

Theorem III.31. Suppose that g satisfies (3.3), (3.28) and g′(0) > d. Then equation

(3.29) has at most one bounded positive solution u, u(−∞) = 0, for each c 6= 0 (if

χ̃(γ#−, c∗) 6= 0) or for each c 6= 0, c∗ (if χ̃(γ#−, c∗) = 0).

Proof: Step I. Obviously, g(·, τ) meets (3.3) with g′(0, τ1) = 1 and g′(0, τ2) =

g′(0). Moreover, we have |g(u, τ) − g′(0, τ)u| ≤ C(τ)u1+α, u, v ∈ (0, σ), where

C(τ1) = 0 and C(τ2) = C.

Step II. If 0 < z < γ#, we get

∫

X

∫

R
K(s, τ)e−zsds =

∫

R
(H1(s) +H2(s))e−zsds+

∫

R

∑

k∈Z

β(k)Hk
3 e
−zsds

=
D

c

(∫ +∞

−1

e−
2D+d
c

(s+1)−zsds+

∫ +∞

1

e−
2D+d
c

(s−1)−zsds

)

+
1

c

∑

k∈Z

β(k)

∫ +∞

k+cr

e−
2D+d
c

(s−k−cr)−zsds

=
D

2D + d+ cz
(ez + e−z) +

e−cr

2D + d+ cz

∑

k∈Z

β(k)e−kz.

Therefore γK = γ# (if c > 0) and γK = min{γ#,−(2D + d)/c} (if c < 0).

Step III. If u solves (3.29) with c > 0, then for each 0 < z < γφ we obtain

c

∫

R
|u′(s)|e−zsds ≤ D

∫

R
|u(s+ 1) + u(s− 1)− 2u(s)|e−zsds+ d

∫

R
u(s)e−zsds

+
∑

k∈Z

β(k)

∫

R
g(u(s− k − cr))e−zsds ≤ D

∫

R
|u(s+ 1) + u(s− 1)− 2u(s)|e−zsds+

d

∫

R
u(s)e−zsds+ g′(0)

∑

k∈Z

β(k)

∫

R
u(s− k − cr)e−zsds

= D

∫

R
|u(s+ 1) + u(s− 1)− 2u(s)|e−zsds+ d

∫

R
u(s)e−zsds

+ g′(0)e−zr
∑

k∈Z

β(k)e−zk
∫

R
u(w)e−zwdw < +∞.
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Thus, by Lemma III.16, condition III.15(ECγφ) is satisfied.

Step IV . We have χ(0, c) = (d − g′(0))/(2D + d) < 0. The proof of γφ(c) < γ#

is the same as in Step IV of the previous section and is omitted. �

Remark III.32. Our approach allows to improve the uniqueness results of [18, Theo-

rem 3.1], where additional conditions β(k) = β(−k) and χ(γK−) = −∞ are assumed.

Moreover, [18, Theorem 3.1] does not establish the uniqueness of the minimal waves.

3.6.3 Nonlocal reaction-diffusion equation

Here, we consider positive semi-wavefronts solutions u(t, x) = φ(x+ ct) satisfying

φ(−∞) = 0, for non-local delayed reaction-diffusion equations

ut(t, x) = uxx(t, x)− f(u(t, x)) +

∫

R
k(w)g(u(t− h, x− w))dw, h > 0(3.31)

where f ∈ C(R+,R+) and non-negative and generally asymmetric k ∈ L1(R). The

reader is referred to [51] for further details concerning wave solutions in the presence

of asymmetric non-local interaction. Let γ# denote an extended positive real number

such that
∫

R k(s)e−zsds is convergent when z ∈ [0, γ#) and is divergent when z >

γ#. As it can be easily deduced from Theorem III.2, the existence of such γ# is

automatically assured by the existence of positive semi-wavefronts u(t, x) = φ(x +

ct), φ(−∞) = 0 to (3.31). Is clear that the profile φ must satisfy

(3.32) y′′(t)− cy′(t)− f(y(t)) +

∫

R
k(w)g (y(t− ch− w)) dw = 0, s ∈ R.

Equation (3.32) can be written as

y′′(t)− cy′(t)− βy(t) + fβ(y(t)) +

∫

R
k(w)g(y(t− ch− w))dw = 0, t ∈ R,

where fβ(s) = βs− f(s) for some β > 0.

Being φ a positive bounded function, it should satisfy the integral equation

φ(t) =
1

σ(c)

(∫ t

−∞
eν(t−s)G(φ(s− ch))ds+

∫ +∞

t

eµ(t−s)G(φ(s− ch))ds

)
,(3.33)
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where σ(c) =
√
c2 + 4β, ν < 0 < µ are the roots of z2 − cz − β = 0 and

G(φ(t)) :=

∫

R
k(w)g(φ(t− w))dw + fβ(φ(t)) = k ∗ g(φ)(t) + fβ(φ(t)).

Thus, we can to write (3.33) as

φ(t) = (K ∗ k) ∗ g(φ)(t) +K ∗ fβ(φ)(t),(3.34)

where

K(s) =





1
σ(c)

eν(s−ch), s ≥ ch

1
σ(c)

eµ(s−ch), s < ch

.

Hence, we see that (3.31) can be written as (3.4), with X = {τ1, τ2} and

K(s, τ) =





(K ∗ k)(s), τ = τ1

K, τ = τ2

, g(s, τ) =





g(s), τ = τ1

fβ(s), τ = τ2

.

Now, we have to check the assumptions of Theorem III.23. Here we are assuming

that g satisfies (3.3).

Step I. Suppose that f ∈ C1(R+,R+) is strictly increasing and f(0) = 0. We

claim that, without restricting the generality, we may assume that β is such that

fβ satisfies the Lipschitz condition with a constant β − infs≥0 f
′(s). First observe

that our proof of uniqueness compares two different solutions φ1, φ2. Since they

are uniformly bounded by some positive M > 0, we can restrict our attention to a

finite interval [0,M ] where f is obviously Lipschitzian. Now, since f is continuously

differentiable on [0,M ] and f(0) = 0, we can choose β > infs≥0 f
′(s) such that

fβ(s) = βs− f(s) ≥ 0 for all s ∈ [0,M ] and

max
s∈[0,M ]

f ′(s) ≤ 2β − inf
s≥0

f ′(s).

Take s1 < s2 in [0,M ], then f(s2) − f(s1) = f ′(s0)(s2 − s1) for some s0 ∈ [s1, s2].
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Thus

fβ(s2)− fβ(s1)

s2 − s1

= β − f(s2)− f(s1)

s2 − s1

= β − f ′(s0) ≤ β − inf
s≥0

f ′(s),

fβ(s2)− fβ(s1)

s2 − s1

≥ β −
(

2β − inf
s≥0

f ′(s)
)

= −β + inf
s≥0

f ′(s).

Therefore

∣∣∣∣
fβ(s2)− fβ(s1)

s2 − s1

∣∣∣∣ ≤
(
β − inf

s≥0
f ′(s)

)
, s1, s2 ∈ [0,M ],

so that we can assume that g(·, τ) meets (3.3) with g′(0, τ1) = g′(0) and g′(0, τ2) =

β − infs≥0 f
′(s). Note here that if f ′(0) ≤ f ′(v) for all v ≥ 0, as in [49], then

β − infs≥0 f
′(s) = β − f ′(0).

Step II. Now, we suppose that g, f ∈ C1,α in some neighborhood of 0. Since |f ′β(0)−

f ′β(u)| = |f ′(0) − f ′(u)|, we see that |g′(u, τ) − g′(0, τ)u)| ≤ C(τ)uα, u ∈ (0, σ), for

same C(τ) > 0 and σ small.

Step III. Note that if ν < z < µ, then

∫

R
K(w)e−zwdw =

−1

z2 − cz − β <∞,
∫

R
K ∗ kh(w)e−zwdw =

∫

R
K(u)e−zudu

∫

R
kh(s)e

−zsds =
−e−zch

z2 − cz − β

∫

R
k(s)e−zsds < +∞.

Thus, γK = min{µ, γ#} so that γφ < µ.

Observe that

χ1(z, c) = 1− g′(0)

∫

R
K(s, τ1)e−szds− (β − inf

s≥0
f ′(s))

∫

R
K(s, τ2)e−szds =

1− β − infs≥0 f
′(s)

β + cz − z2
− g′(0)e−zch

β + cz − z2

∫

R
k(s)e−zsds =:

χ̃1(z)

β + cz − z2
.

We see that γK = min{µ, γ#} so that γφ < µ. Let c? be the minimal value of c for

which

χ̃1(z, c) := cz − z2 + inf
s≥0

f ′(s)− g′(0)e−zch
∫

R
k(s)e−zsds

has at least one positive zero. This value is finite, well defined and does not depend

on β. We will write c∗ instead of c? in the special case when f ′(0) ≤ f ′(v) for all



63

v ≥ 0. In such a case, we have f ′(0) = infs≥0 f
′(s) and therefore χ1 = χ. By

Theorem III.9, c ≥ c∗ for each admissible wave speed c.

Step IV. So we will take some x ∈ (0, γφ) and φ1, φ2 ∈ C1(R) satisfy (3.32).

Let W be given by W := |φ1 − φ2| and suppose that the integral
∫

R e
−xuW (u)du

converges. Then, from (3.33) we have

|φ′1(u)− φ′2(u)| ≤ σ(c)−1
(
|ν|

u∫

−∞

eν(u−s)|(Gφ1)(s)− (Gφ2)(s)|ds

+ µ

+∞∫

u

eµ(u−s)|(Gφ1)(s)− (Gφ2)(s)|ds
)

≤ σ(c)−1


|ν|

+∞∫

0

eνmF (u−m)dm+ µ

0∫

−∞

eµmF (u−m)dm


 ,

where F (s) =
(
g′(0)

∫
R kh(w)W (s−w)dw+(β− infs≥0 f

′(s))W (s)
)

. In consequence,

∫
R e
−xu|φ′1(u)− φ′2(u)|du ≤

−2β − cx
σ(c)(x2 − cx− β)

∫

R
e−xuW (u)du

(
g′(0)

∫

R
kh(w)e−xwdw + β − inf

s≥0
f ′(s)

)

is finite and
∫

R e
−xs(φ′1(s)− φ′2(s))ds converges absolutely for each x ∈ (0, γφ).

We are ready to state the main result of this subsection.

Theorem III.33. Suppose g satisfies (3.3), f ∈ C1(R+,R+) is strictly increasing,

and g, f ∈ C1,α in some neighborhood of 0, and g(0) = f(0) = 0, g′(0) > f ′(0). Then

equation (3.31) has at most one positive semi-wavefront u(t, x) = φ(x+ct), φ(−∞) =

0, for each c ≥ c? (if χ̃(γ#−, c?) 6= 0) or for each c > c? (if χ̃(γ#−, c?) = 0).

Proof: Observe that βχ(0, c) = f ′(0) − g′(0) < 0, and χ1(γ#−, c?) 6= 0 if

χ̃1(γ#−, c?) 6= 0. First let c ≥ c? > c∗, then χ1(x, c) < χ(x, c) so that χ1(m, c) = 0

for some m ∈ (0, λrK ]. It is clear that m = λrK if and only if m = γ#. Since

χ1(z, c) is strictly increasing in c for each fixed positive z, this implies that c = c?
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and χ1(γ#−, c?) = 0. Consequently, m ∈ (0, λrK) for each c ≥ c? (if χ̃(γ#−, c?) 6= 0)

or for each c > c? (if χ̃(γ#−, c?) = 0).

Next, if c? = c∗ then χ1 = χ and the inequality χ(γ#−, c∗) 6= 0 guarantees that

λl(c∗) = γφ(c∗) < γ# for c = c∗. If c > c∗ then we have again λl(c) = γφ(c) <

λl(c∗) < γ# because λl(c) is monotone decreasing in c.

Next, we claim that for each x ∈ (0, γK) and some dj(x) it holds

K(s, τj) ≤ dj(x)exs, s ∈ R.

Indeed, since γK ≤ µ and K(s) ≤ exs

σ(c)
, s ∈ R, for all 0 < x ≤ µ, we get that

K(t, τ1) =

∫ +∞

−∞
K(s)kh(t− s)ds ≤

1

σ(c)

∫ +∞

−∞
exsk(t− s− ch)ds

≤ e−chx

σ(c)

[ ∫ +∞

−∞
e−xuk(u)du

]
ext

Since λrK ≤ γK = min{γ#, µ}, the exponential estimations of K in III.25 and

III.27(ii) are verified. This observation completes the proof of the theorem. �

Remark III.34. Our approach allows to improve [49, Theorem 4.3], where the unique-

ness was established under assumption that either f(s) = βu or g(s) = βu and K

is the Gaussian kernel. Moreover, [49, Theorem 4.3] does not consider the minimal

waves.

3.6.4 Uniqueness of fast traveling fronts in delayed reaction-diffusion equations

Finally, we consider positive semi-wavefronts u(t, x) = φ(x+ ct), φ(∞) = 0, to

ut(t, x) = uxx(t, x)− u(t, x) + g(u(t− h, x)), x ∈ R,

where g ∈ C1,α([0, σ]) is a Lipschitzian function with constant L which is greater

than g′(0). Profile φ must satisfy the delay differential equation

(3.35) φ′′(t)− cφ′(t)− φ(t) + g(φ(t− hc)) = 0, t ∈ R.



65

Similarly to Section 3.6.3, we find that φ satisfies

φ(t) = K ∗ g(φ)(t), K(s) =





1
σ(c)

eν(s−ch), s ≥ ch

1
σ(c)

eµ(s−ch), s < ch

,

which is exactly the form considered in DK theory (formally, we set X = {τ},

K(s, τ) = K and g(s, τ) = g(s)). Nevertheless, since L > g′(0), Diekmann-Kaper

uniqueness theorem does not apply to (3.35).

In order to use Theorem III.28, we realize some elementary computations. First,

note that

χ1(z, c) = 1− L
∫

R
K(s)e−szds = 1− Le−zch

1 + cz − z2
.

is defined on (ν, µ). Thus, γK = µ and since limz→µ−
∫

RK(s)e−szds = +∞ we obtain

γφ < γK . Note also that χ(0, c) = 1 − g′(0) and the exponential estimations of K

in III.25, III.27(ii) are also obviously verified. Hence, we only need to verify the

Assumptions III.27(i) and χ1(m, c) ≥ 0 for some m > 0.

Step I. Assume that ϕ1, ϕ2 ∈ C1(R) satisfy (3.35) and, in addition, that the integral

∫
R e
−zs(ϕ2(s)− ϕ1(s))ds converges absolutely. Then, for each ν < z < γφ,

∫

R
e−zs|ϕ′2(s)− ϕ′1(s)|ds ≤ Le−zch

σ(c)

(
|ν|
∫ +∞

0

e(ν−z)udu

+µ

∫ 0

−∞
e(µ−z)udu

)∫

R
e−zs|ϕ2(s)− ϕ1(s))|ds <∞.

Step II. Finally, define c? as as the minimal value of c for which the equation z2 −

cz − 1 + Le−chz = 0 has at least one positive root. This value is well defined and

positive. It is easy to see that, for each c > c? there exists m > 0 close to λl from

the right and such that χ1(m, c) > 0.

We are ready present our result concerning the uniqueness in (3.35):

Theorem III.35. Suppose that |g(s) − g(t)| ≤ L|t − s|, s, t ≥ 0 and that g ∈ C1,α
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in some neighborhood of 0 with g′(0+) > 1. Then, for every c > c? equation (3.35)

has at most one bounded positive solution φ vanishing at −∞.

Remark III.36. Theorem III.35 gives another proof of the uniqueness result in [4,

Theorem 1.1] where was additionally assumed that g ∈ C1(R+,R+) and that g′′(0+)

in finite. Moreover, we give here a reasonably good lower bound c? for the ’unique-

ness’ speeds. Observe that if L = g′(0), then c? coincides with the minimal speed of

propagation c∗.



CHAPTER IV

Existence and uniqueness of fast travelling fronts in
reaction-diffusion equation with local delay

4.1 Introduction

In this chapter, we consider the time-delayed reaction-diffusion equation (1.4). We

will suppose that −s + g(s) is of the monostable type. Thus equation (1.4) has

exactly two non-negative equilibria u1 ≡ 0, u2 ≡ κ > 0. If u(x, t) = φ(x + ct) is

a wavefront (or a travelling front) of (1.4), then after scaling such a profile φ is a

positive heteroclinic solution of the delay differential equation

(4.1) ε2φ′′(t)− φ′(t)− φ(t) + g(φ(t− h)) = 0, ε := 1/c > 0, t ∈ R.

In this chapter, we follow the approach of [20] to prove the uniqueness (up to

translations) of positive wavefront for a given fast speed c. In the case of (1.4), this

approach essentially relies on the fact that, in ’good’ spaces and with suitable g′(0),

g′(κ), the linear operator (Ly)(t) = y′(t) + y(t)− g′(ψ(t− h))y(t− h) is a surjective

Fredholm operator. Here ψ is a heteroclinic solution of equation (4.1) considered

with ε = 0. In consequence, the Lyapunov-Schmidt reduction can be used to prove

the existence of a smooth family of travelling fronts in some neighborhood of ψ. As

it was shown in [21] this family contains positive solutions as well. However, an

important and natural question about the number of the positive wavefronts has not

67
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been answered in the past.

4.2 Spaces and Operators

In this section we assume I.4 and I.5. Let ψ be the positive heteroclinic solution

from Lemma II.9.

Notation IV.1. For a fixed µ ≥ 0, we set #{λj : µ < <λj} := d(µ), where λj is a

root of equation (2.2).

Notation IV.2. Let y ∈ C(R,R). For a fixed µ ≥ 0, we will consider the seminorms

‖y‖+ = supR+
|y(s)| and ‖y‖−µ = supR− e

−µs|y(s)|, and the following Banach space

Cµ(R) = {y ∈ C(R,R) : ‖y‖−µ <∞, y(−∞) = 0, and y(+∞) is finite},

equipped with the norm |y|µ = max{‖y‖+, ‖y‖−µ }.

Definition IV.3. We define the following operators:

1. The integral operator N : Cµ(R)→ Cµ(R), such that

(N y)(t) =

∫ t

−∞
e−(t−s)q(s)y(s− h)ds,

where q(s) := g′(ψ(s− h)).

2. The Nemytskii operator G : Cµ(R)→ Cµ(R), where (Gy)(t) = g(y(t)).

3. The integral operators I, Iε, I+
ε , I−ε : Cµ(R) → Cµ(R), where I = I−0 , I+

0 = 0,

Iε = σ−1(ε)(I+
ε + I−ε ), σ(ε) :=

√
1 + 4ε2, and

(I+
ε y)(t) =

∫ +∞

t

e
(1+σ(ε))(t−s)

2ε2 y(s− h)ds, (I−ε y)(t) =

∫ t

−∞
e
−2(t−s)
1+σ(ε) y(s− h)ds.

Observation IV.4. Since g′(t) = p+O(t), t→ 0, and ψ(t) = O(exp(λt)), t→ −∞,

we obtain that

q(t) = p+ ε(t), ε(t) = O(exp(λt)), t→ −∞; and q(−∞) = p > 1, q(∞) = g′(κ).
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Observe that I±ε ,N are well defined: e.g. (N y)(+∞) = g′(κ)y(+∞) and, for t ≤ h,

|(N y)(t)| ≤
∫ t

−∞
e−(t−s)|q(s)|‖y‖−µ eµ(s−h)ds ≤ ‖y‖

−
µ supt≤h |q(t)|

1 + µ
eµ(t−h).

Lemma IV.5. Operator families I±ε : (−1/
√
µ, 1/

√
µ) → L(Cµ(R)), µ ≥ 0, are

continuous in the operator norm. In particular, Iε → I as ε→ 0.

Proof: The proof of lemma will be divided into three steps. Step I. We first

establish that ‖I−ε − I−ε0‖ → 0 as ε → ε0 6= 0. Fix y ∈ Cµ(R), then |y(t)| ≤ ‖y‖eνt

and ν = 0, µ, for all t ∈ R. Hence,

|(I−ε y − I−ε0y)(t)| ≤
∫ t

−∞

∣∣∣e
−2(t−s)
1+σ(ε) − e

−2(t−s)
1+σ(ε0)

∣∣∣ |y(s− h)|ds

≤
∫ t

−∞

∣∣∣e
−2(t−s)
1+σ(ε) − e

−2(t−s)
1+σ(ε0)

∣∣∣ ‖y‖eν(s−h)ds ≤ 1

2
‖y‖eν(t−h)|σ(ε)− σ(ε0)|, ν = 0, µ.

As a consequence, ‖I−ε − I−ε0‖ ≤ 0.5|σ(ε)− σ(ε0)|.

Step II. Now, we prove that I+
ε → I+

ε0
uniformly as ε→ ε0 6= 0. An easy computa-

tion shows that for each y ∈ Cµ(R) and t ∈ R

|(I+
ε y − I+

ε0
y)(t)| ≤ ‖y‖

∫ +∞

t

∣∣∣e
(1+σ(ε))(t−s)

2ε2 − e
(1+σ(ε0))(t−s)

2ε20

∣∣∣ds ≤ 2‖y‖|ε2 − ε2
0|.

Next, if |ε|, |ε0| <
√

1
2µ

, then

|(I+
ε y − I+

ε0
y)(t)| ≤ ‖y‖

∫ +∞

t

∣∣∣e
(1+σ(ε))(t−s)

2ε2 − e
(1+σ(ε0))(t−s)

2ε20

∣∣∣eµ(s−h)ds

≤ 4‖y‖eµ(t−h)|ε2 − ε2
0|.

Consequently, we get ‖I+
ε − I+

ε0
‖ ≤ 4|ε2 − ε2

0|.

Step III. Finally, using the similar arguments, we can see that I+
ε → 0 and I−ε → I

uniformly as ε→ 0. In consequence, ‖Iε − I‖ → 0 as ε→ 0. �

Lemma IV.6. If I.4 holds and µ 6∈ {<λj}, µ ≥ 0, then I −N : Cµ(R)→ Cµ(R) is

a surjective Fredholm operator and dim Ker (I −N ) = d(µ).
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Proof: First, we establish that I −N is an epimorphism. Take some f ∈ Cµ(R)

and consider the following integral equation

y(t)−
∫ t

−∞
e−(t−s)q(s)y(s− h)ds = f(t).

If we set z(t) = y(t)− f(t), this equation is transformed into

z(t)−
∫ t

−∞
e−(t−s)q(s)(z(s− h) + f(s− h))ds = 0.

Hence, in order to establish the surjectivity of I−N , it suffices to prove the existence

of Cµ(R)-solution of the equation

(4.2) z′(t) = −z(t) + q(t)z(t− h) + q(t)f(t− h).

First, notice that all solutions of (4.2) are bounded on the positive semi-axis R+

due to the boundedness of q(t)f(t − h) and the exponential stability of the homo-

geneous ω-limit equation z′(t) = −z(t) + g′(κ)z(t − h). Here we use the persistence

of exponential stability under small bounded perturbations (e.g. see [11, Section

5.2]) and the fact that q(+∞) = g′(κ). Furthermore, since every solution z of (4.2)

satisfies z′(t) = −z(t) + g′(κ)z(t − h) + g′(κ)f(+∞) + ε(t) with ε(+∞) = 0, we

get z(+∞) = f(+∞)g′(κ)(1 − g′(κ))−1. Next, by effecting the change of variables

z(t) = exp(µt)v(t) to equation (4.2), we get a linear inhomogeneous equation of the

form

(4.3) v′(t) = −(1 + µ)v(t) + [p exp(−µh) + ε1(t)]v(t− h) + ε2,µ(t),

where ε1(−∞) = ε2,0(−∞) = 0 and ε2,µ(t) = O(1), µ > 0, at t = −∞. Since

the α-limit equation v′(t) = −(1 + µ)v(t) + p exp(−µh)v(t − h), µ 6∈ {<λj}, to the

homogeneous part of (4.3) is hyperbolic, due to the above mentioned persistence of

the property of exponential dichotomy, we again conclude that equation (4.3) also
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has an exponential dichotomy on R−. Thus (4.3) has a solution v∗µ which is bounded

on R− (while v∗0(−∞) = 0) so that z∗(t) = exp(µt)v∗µ(t) = O(exp(µt)), t→ −∞, is

a Cµ(R)-solution of equation (4.2).

Next we prove that dim Ker(I − N ) = #{λj : µ < <λj}. It is clear that

φj ∈ Ker(I −N ) if and only if φj is a Cµ(R)−solution of the equation

(4.4) y′(t) = −y(t) + q(t)y(t− h).

We already have seen that every solution of (4.4) satisfies y(+∞) = 0, thus we

only have to show that there exist solutions φj with ‖φj‖−µ < ∞. In fact, we will

prove that for each <λj > µ and δ ∈ (0, min
<λj>0, λ><λi>0

{<λj, λ − <λi}) there is

φj(t) = eλjt + eσtvj(t) ∈ Ker(I − N ), with σ = λ + δ, vj(t) = O(1), t → −∞. Set

q(t) = p+ ε(t), then vj(t) can be chosen as a bounded solution of the equation

(4.5) y′(t) + (1 + σ)y(t)− (p+ ε(t))e−σhy(t− h) = e−λjh+(λj−σ)tε(t).

Since e−λjh+(λj−σ)tε(t) = O(e(<λj−δ)t) at −∞, we get the following α-limit form of

(4.5)

y′(t) + (1 + σ)y(t)− pe−σhy(t− h) = 0.

This autonomous equation is exponentially stable since its characteristic equation

z + λ+ δ = −1 + pe−(z+λ+δ)h

has roots zj = λj − λ − δ with <zj = <λj − λ − δ < 0. Thus (4.5) has a unique

solution vj bounded in R−. Is clear that d(µ) solutions {φj} are linearly independent,

we claim that, in fact, system {φj} generates Ker(I −N ). By way of contradiction,

suppose that ϕ ∈ Ker(I −N )− < φj >.

As ϕ solves the equation

y′(t) = −y(t) + py(t− h) +O(exp((λ+ µ)t)), t→ −∞,
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we get (e.g. see [41, Proposition 7.1])

ϕ(t) = z(t) +O(exp ((λ+ µ− δ)t)), t→ −∞,

where z(t) is the eigensolution corresponding to the eigenvalues ζ with µ ≤ <ζ <

λ+ µ. In this way,

(4.6) ϕ(t) = C exp (λt) +

d(µ)∑

j=2

Cj exp (λjt) +O(exp ((λ+ µ− δ)t)), t→ −∞.

Now take

w(t) = C(exp (λt) + exp (σt)v1(t)) +

d(µ)∑

j=2

Cj(exp (λjt) + exp (σt)vj(t)) ∈< φj > .

Since exp (σt)vj(t) = O(exp (λ+ δ)t), t→ −∞, we can write

w(t) = C exp (λt) +

d(µ)∑

j=2

Cj exp (λjt) +O(exp ((λ+ δ)t)), t→ −∞.

Thus r(t) := ϕ(t)− w(t) satisfies r(t) = O(exp (λ− δ)t), t→ −∞, and solves

(4.7) y′(t) = −y(t) + py(t− h) +O(exp ((2λ− δ)t)), t→ −∞.

Applying Proposition 7.1 from [41] we conclude that

r(t) = z(t) +O(exp ((2λ− δ − δ/2)t)), t→ −∞,

where z(t) is the eigensolution corresponding to the eigenvalues ζ such that λ− δ ≤

<ζ < 2λ− δ and in consequence z(t) = C1e
λt, for some C1. Hence,

ϕ(t) = w(t) + r(t) = C ′ exp (λt) +

d(µ)∑

j=2

Cj exp (λjt) +O(exp ((λ+ δ)t)), t→ −∞,

for small δ > 0. The latter formula improves (4.6), and if we take

w1(t) = C ′(exp (λt) + exp (σt)v1(t)) +

d(µ)∑

j=2

Cj(exp (λjt) + exp (σt)vj(t)) ∈< φj >,
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then r1(t) = ϕ(t)− w1(t) = O(exp (λ+ δ)t), t→ −∞. Since r1(t) satisfies

y′(t) = −y(t) + py(t− h) +O(exp ((2λ+ δ)t)), t→ −∞,

we can proceed as before to get r1(t) = z1(t) + O(exp (2λ+ δ − δ/2)t), t → −∞,

where z1(t) is the eigensolution corresponding to the eigenvalues ζ such that λ+ δ ≤

ζ < 2λ + δ. Thus z1(t) = 0 and r1(t) = O(exp (2λ+ δ − δ/2)t), t→ −∞. Iterating

this procedure (and subtracting δ/2k from the exponent 2λ + δ on the step k),

we can conclude that r1(t) = O(exp (kλt)), t → −∞, k ≥ 2. This means that

r is a small solution of (4.4). However, equation (4.4) cannot have solutions with

superexponential decay at −∞ and thus r(t) = 0. This implies that ϕ ∈< φj >, a

contradiction. �

Throughout the rest of the chapter, we will suppose that the C1-smooth function

g is defined and bounded on the whole real axis R. This assumption does not

restrict the generality of our framework, since it suffices to take any smooth and

bounded extension on R− of the nonlinearity g described in (I.5). Notice that,

since there exists finite g′(0), we have g(s) = sγ(s) for a bounded γ ∈ C(R). Set

γ0 = sups∈R |γ(s)|. As it can be easily checked, |Gy|µ ≤ γ0|y|µ so that actually G is

well-defined. Furthermore, we have the following lemma:

Lemma IV.7. Assume that g ∈ C1(R). Then G is Fréchet continuously differen-

tiable on Cµ(R) with differential G ′(y0) : y(·)→ g′(y0(·))y(·).

Proof:We have that |G ′(y)u|µ = |g′(y(·))u(·)|µ ≤ sups∈R |g′(y(s))||u|µ. By the

Taylor formula, g(v) − g(v0) − g′(v0)(v − v0) = (g′(θ) − g′(v0))(v − v0), θ ∈ [v, v0].

Fix some y0 ∈ Cµ(R). Since functions in Cµ(R) are bounded and g′ is uniformly

continuous on bounded sets of R, for any given δ > 0 there is σ > 0 such that

for |y − y0|µ < σ we have that |Gy − Gy0 − g′(y0(·))(y − y0)|µ ≤ δ|y − y0|µ and
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‖G ′(y)− G ′(y0)‖L(Cµ(R)) < δ. �

4.3 Lyapunov-Schmidt reduction

Being a bounded solution of equation (4.1), each travelling wave should satisfy

(4.8) φ(t) =
1

σ(ε)
(

t∫

−∞

e
−2(t−s)
1+σ(ε) g(φ(s− h))ds+

+∞∫

t

e
(1+σ(ε))(t−s)

2ε2 g(φ(s− h))ds),

For Cµ(R)-solutions, this equation takes the form φ = (Iε ◦ G)φ.

Theorem IV.8. Assume I.5, I.4. Let ψ be the positive heteroclinic from Lemma II.6.

Then for every µ 6= <λj, µ ∈ [0, λ), there are open balls Eµ = (−εµ, εµ), Vµ ⊂ Rd(µ),

and continuous family of heteroclinics ψε,v : Eµ×Vµ → Cµ(R) of equation (4.1) such

that ψ0,0 = ψ. For each ε̃ ∈ Eµ, the subset {ψε̃,v : v ∈ Vµ} ⊂ Cµ(R) is a C1−manifold

of dimension d(µ). Moreover, there exists a Cµ(R)−neighborhood U of ψ and ε1 > 0

such that every solution ψε ∈ U , |ε| < ε1, of equation (4.1) satisfies ψε = ψε,v for

some v ∈ Vµ. Finally, given a closed subinterval S ⊂ [0, λ) \ {<λj}, we can choose

open sets Eµ,Vµ to be constant on S.

Proof: Set Rµ = (−1/
√
µ, 1/

√
µ) and then define F : Rµ × Cµ(R) → Cµ(R) by

F (ε, φ) = ψ + φ− (Iε ◦ G)(ψ + φ). We have that F (0, 0) = 0. Furthermore, Lemmas

IV.5 and IV.7 imply that F ∈ C(Rµ × Cµ(R), Cµ(R)) and Fφ(ε, φ) is continuous in

a neighborhood of (0, 0). Set

L := Fφ(0, 0) = I −N , V := KerL, r(ε, φ) := F (ε, φ)− Lφ.

Then rφ(0, 0) = Fφ(0, 0) − L = 0. By Lemma IV.6, we have that dimV < ∞ and

that L is surjective. Thus V has a topological complement W in Cµ(R) so that

Cµ(R) = V ⊕W and any φ ∈ Cµ(R) can be written in the form φ = v + w, v ∈ V

and w ∈ W . Recalling that Lv = 0 we get F (ε, φ) = Lw+ r(ε, v+w). This suggests
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the following definition:

Φ(ε, v, w) := L|Ww + r(ε, v + w),

where Φw(0, 0, 0) = L|W is the restriction of L to W . Is clear that Φ ∈ C(Rµ × V ×

W,Cµ(R)) and Φw(ε, v, w) = L|W + rφ(ε, v + w) is continuous in a neighborhood of

(0, 0, 0). Since L|W : W → Cµ(R) is bijective we have that (L|W )−1 is continuous

from Cµ(R) to W . As a consequence, we can apply the Implicit Function Theorem

(e.g. see [7, Theorem 2.3(i)]) to

Φ(ε, v, w) = L|Ww + r(ε, v + w) = 0, Φ(0, 0, 0) = 0.

In this way, we find neighborhoods of 0, Eµ ⊂ Rµ, Vµ ⊂ V and Wµ ⊂ W and a

continuous map γ ∈ C1
v (Eµ×Vµ,Wµ), such that Φ(ε, v, γ(ε, v)) = 0 for all (ε, v) ∈ Eµ×

Vµ. Moreover, without restricting the generality, we can suppose that Φ(ε, v, w) = 0

with (ε, v, w) ∈ Eµ × Vµ ×Wµ implies w = γ(ε, v) (e.g. see [7, Theorem 2.3(ii)]).

Hence, the continuous family ψε,v = ψ + v + γ(ε, v) : Eµ × Vµ → Cµ(R) contains

all solutions of equation (4.1) from small neighborhoods of ψ, with ψ0,0 = ψ. Since

γv(0, 0) = 0 and γv(ε, v) is continuous for each fixed ε ∈ Eµ, we conclude that

{ψε,v : v ∈ Vµ} ⊂ Cµ(R) is a C1−smooth manifold of dimension d(µ). Notice that

(4.8) implies that g(ψε,v(+∞)) = ψε,v(+∞). Thus ψε,v(+∞) = ψ0,0(+∞) = κ, so

that {ψε,v} are heteroclinic solutions of (4.1).

Finally, the last conclusion of the theorem follows from the simple observations

that (a) the sets Eµ,Vµ,Wµ are non-increasing in µ and (b) the function d(t) is

piece-wise constant, with discontinuities at {<λj} ∩ [0, λ). �
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4.4 Characteristic equation

Lemma IV.9. Let {λα(ε), α ∈ A }, where N ∪ {∞} ⊂ A , denote the (countable)

set of roots to the equation

(4.9) ε2z2 − z − 1 + p exp(−zh) = 0.

If p > 1, h > 0, ε ∈ (0, 1/(2
√
p− 1)) then (4.9) has exactly two real roots λ1(ε), λ∞(ε)

such that

0 < λ < λ1(ε) < 2(p− 1) < ε−2 − 2(p− 1) < λ∞(ε) < ε−2 + 1.

Moreover:

(i) there exists an interval O = O(p, h) 3 0 such that, for every ε ∈ O, all roots

λα(ε), α ∈ A of (4.9) are simple and the functions λα : O → C are continuous;

(ii) we can enumerate λj(ε), j ∈ N, in such a way that there exists limε→0+ λj(ε) =

λj for each j ∈ N, where λj ∈ C are the roots of (2.2), with λ1 = λ;

(iii) for all sufficiently small ε, every vertical strip ξ ≤ <z ≤ 2(p− 1) contains only

a finite set of m(ξ) roots (if ξ 6∈ {<λj, j ∈ N}, then m(ξ) does not depend on

ε) λ1(ε), . . . , λm(ξ)(ε) to (4.9), while the half-plane <z > 2(p− 1) contains only

the root λ∞(ε).

Proof: See [21, Lemma 13]. �

4.5 Asymptotic formulae of solutions

Notation IV.10. Throughout this section, we denote by β, γ, η, b, C, Cj, C∗, . . .

some positive constants that are independent of the parameters ε ∈ Λj := (−εj, εj), v ∈

Ω, where 1 > ε0 > ε1 > · · · > ε∗ > 0, and Ω ⊂ Rq. We also assume that h > 0, p > 1.
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Lemma IV.11. Let continuous yε,v(·), fε,v(·) : Λ0 × Ω× R→ R satisfy

(4.10) ε2y′′(t) + y′(t)− y(t) + py(t+ h) = fε,v(t), t ∈ R.

Suppose further that sup
t≤0

[|yε,v(t)|+ |fε,v(t)|] ≤ C, |yε,v(t)| ≤ Ce−γt, t ≥ 0, and that

|fε,v(t)| ≤ Ce−bt, t ≥ 0, (ε, v) ∈ Λ0 × Ω. Then, given σ ∈ (0, b), it holds

yε,v(t) = zε,v(t) + wε,v(t), t ∈ R,

where, with some continuous and bounded Bj : (−ε∗, ε∗)× Ω→ C,

zε,v(t) =
∑

γ≤<λj(ε)<b−σ
Bj(ε, v)e−λj(ε)t

is a finite sum of eigensolutions of (4.10) associated to the roots λj(ε) ∈ {γ ≤

<λj(ε) < b− σ} of (4.9) and |wε,v(t)| ≤ C∗e−(b−σ)t, t ≥ 0, (ε, v) ∈ (−ε∗, ε∗)× Ω.

Proof: Applying the Laplace transform L to equation (4.10), we obtain

χ(z, ε)ỹε,v(z) = f̃ε,v(z) + rε,v(z),

where χ(z, ε) = ε2z2 + z − 1 + p exp(zh), ỹε,v = L{yε,v}, f̃ε,v = L{fε,v}, and

rε,v(z) = ε2(y′ε,v(0) + zyε,v(0)) + yε,v(0) + pezh
∫ h

0

e−zuyε,v(u)du.

Since yε,ve
γt is bounded, ỹε,v is holomorphic in the open half-plane {<z > −γ}.

Similarly, f̃ε,v is holomorphic in {<z > −b}. Since rε,v is an entire function, the

function

Hε,v(z) := (f̃ε,v(z) + rε,v(z))/χ(z, ε)

is meromorphic in <z > −b, with only finitely many poles there.

Step I. We claim that there are σ′ ∈ (0, σ), ε1 > 0, such that |Hε,v(z)| ≤ C1/|z|, if

<z = −b+σ′, (ε, v) ∈ Λ1×Ω. Indeed, take σ′ ∈ (0, σ) such that the line <z = −b+σ′

does not contain any eigenvalue −λj(ε), ε ∈ Λ1, and 1− b+ σ′ 6= 0. We have

|f̃ε,v(z)| ≤
∫ +∞

0

e−<zt|fε,v(t)|dt ≤ C

∫ +∞

0

e−<zte−btdt ≤ C

σ′
, <z ≥ −b+ σ′;
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|rε,v(z)| ≤ ε2(|y′ε,v(0)|+ |z||yε,v(0)|) + |yε,v(0)|+ pe<zh
∫ h

0

e−<zu|yε,v(u)|du.

As a bounded solution of (4.10), yε,v should satisfy, for all t ∈ R,

(4.11) yε,v(t) =
1√

1 + 4ε2

(∫ t

−∞
eλ̄(t−s)Gε,v(s)ds+

∫ +∞

t

eµ̄(t−s)Gε,v(s)ds

)
,

where λ̄ < 0 < µ̄ are the roots of ε2z2 + z−1 = 0 and Gε,v(t) := pyε,v(t+h)−fε,v(t).

Differentiating (4.11), we obtain

(4.12) y′ε,v(t) =
1√

1 + 4ε2

(
λ̄

∫ t

−∞
eλ̄(t−s)Gε,v(s)ds+ µ̄

∫ +∞

t

eµ̄(t−s)Gε,v(s)ds

)
,

so that

|y′ε,v(0)| ≤ µ̄√
1 + 4ε2

∫ +∞

0

e−µ̄s|Gε,v(s)|ds+
|λ̄|√

1 + 4ε2

∫ 0

−∞
e−λ̄s|Gε,v(s)|ds ≤

(p+ 1)C

(∫ +∞

0

µ̄e−µ̄sds+ |λ̄|
∫ 0

−∞
e−λ̄sds

)
= 2C(p+ 1).

Fix k > −b+ σ′ and consider the vertical strip Σk := {−b+ σ′ ≤ <z ≤ k}, then

pe<zh
∫ h

0

|e−zuyε,v(u)|du ≤ Cpekh
∫ h

0

ebudu := C3, z ∈ Σk,

so that |rε,v(z)| ≤ C4(1 + ε2|z|), z ∈ Σk.

Set b(z) = −1 + pezh, then |b(z)| ≤ 1 + pekh := β, z ∈ Σk, and

|z||Hε,v(z)| ≤ C5(|z|+ ε2|z|2)

|ε2z2 + z + b(z)| , z ∈ Σk.(4.13)

Now, set y0 = ηβ for some η > 2 satisfying η2 ≥ 2β−1
√
η2β2 + b2 and ηβ > b − σ′.

For all z such that <z = −b+ σ′, and |=z| ≥ y0, we have

|εz2 + z| = |z||ε2z + 1| ≥ y0|ε2z + 1| ≥ y2
0√

y2
0 + (b− σ′)2

≥ 2β.

Thus |ε2z2 + z + b(z)| ≥ |ε2z2 + z| − |b(z)| ≥ |ε2z2 + z| − β ≥ |ε2z2 + z|/2, so that

(4.14)
(|z|+ ε2|z|2)

|ε2z2 + z + b(z)| ≤ 2
1 + ε2|z|
|ε2z + 1| ≤ η + sup

<z=−b+σ′

2|ε2z|
|ε2z + 1| ≤ 2η,
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for all |=z| ≥ y0, <z = −b+ σ′ and ε ∈ Λ1.

Finally, for all (z, ε) ∈ {z : <z = −b+ σ′, |=z| ≤ y0} × Λ1, we have that

|z|+ ε|z|2
|εz2 + z + b(z)| ≤ C6.

Combining this inequality with (4.13), (4.14), we prove the main assertion of Step I.

Step II. Taking k > 0, in virtue of (4.13) we can use the inversion formula

(4.15) yε,v(t) =
1

2πi

∫ k+∞i

k−∞i
eztỹε,v(z)dz =

1

2πi

∫ k+∞i

k−∞i
eztHε,v(z)dz, t ≥ 0.

By Lemma IV.9, Hε,v(z) has only finitely many poles in the strip −b < <z ≤ −γ.

Also, Hε,v(z) → 0 uniformly in the strip −b + σ′ ≤ <z ≤ k, as |=z| → ∞, and

Hε,v(−b + σ′ + i·) ∈ L2. Thus, we may shift the path of integration in (4.15) to the

left, to the line <z = −b+ σ′, and obtain yε,v(t) = zε,v(t) + wε,v(t), where

zε,v(t) =
∑

γ≤<λj(ε)<b−σ′
Res−λj(ε)e

ztHε,v(z), wε,v(t) =
1

2πi

−b+σ′+∞·i∫

−b+σ′−∞·i

eztHε,v(z)dz.

By Lemma IV.9, the roots of equation χ(z, ε) = 0 are simple for all small ε. Hence

zε,v(t) =
∑

γ≤<λj(ε)<b−σ′
e−λj(ε)tBj(ε, v), with Bj(ε, v) =

f̃ε,v(−λj(ε)) + rε,v(−λj(ε))
χ′(−λj(ε), ε)

.

It is easy to check that Bj(ε, v) is continuous on its domain of definition (observe

here that the continuity of y′ε,v(0) follows from (4.12)). Take j such that −b + σ′ <

−<λj(ε) ≤ −γ, then |rε,v(−λj(ε))| ≤ C4(ε2|λj(ε)|+ 1) ≤ C4(max
j,ε
|λj(ε)|+ 1) := C7.

In addition, if ε→ 0 then

0 < |χ′(−λj(ε), ε)| = | − 2ε2λj(ε) + 1 + phe−λj(ε)h| → |1 + phe−λjh| 6= 0.

Hence, |Bj(ε, v)| ≤ |f̃ε,v(−λj(ε))|+ |rε,v(−λj(ε))|
|χ′(−λj(ε), ε)|

≤ C/σ′ + C7

min
j,ε
|χ′(−λj(ε), ε)|

≤ C8

if ε ∈ Λ2, for some small ε2 > 0 and v ∈ Ω.
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Step III. Consider uε,v(t) = e(b−σ′)twε,v(t) and vε,v(t) = e(b−σ)twε,v(t). We have

uε,v(t) =
1

2πi

∫ −b+σ′+∞·i

−b+σ′−∞·i
e(s+b−σ′)tHε,v(s)ds =

1

2π

∫ +∞

−∞
eiξtHε,v(−b+ σ′ + iξ)dξ.

By Plancherel theorem,

‖uε,v‖2 =
1

2π
‖Hε,v(−b+ σ′ + i·)‖2 ≤

C1

2
√
π(b− σ′)

.

Hence, vε,v(t) = e−(σ−σ′)tuε,v(t) is integrable on [0,+∞), and by the Cauchy-Schwarz

inequality

‖vε,v‖1 ≤
‖uε,v‖2√
2(σ − σ′)

≤ C1

2
√

2π(b− σ′)(σ − σ′)
.

Step IV. We claim that there exist real numbers C9 > 0 and ε3 > 0 such that

|wε,v(t)| ≤ C9e
−(b−σ)t, t ≥ 0, for all (ε, v) ∈ Λ3 × Ω. In order to prove this, it suffices

to show that vε,v is uniformly bounded for small ε ∈ Λ3. Since

ε2w′′ε,v(t) + w′ε,v(t)− wε,v(t) + pwε,v(t+ h) = fε,v(t), t ∈ R,

we find that vε,v(t) = e(b−σ)twε,v(t) satisfies

ε2v′′ε,v(t) + (1− 2ε2(b− σ))v′ε,v(t) = Pε,v(t),

where α = 1− 2ε2(b− σ) > 0 and Pε,v ∈ L1[0,+∞) is defined by

Pε,v(t) = e(b−σ)tfε,v(t) + (1 + (b− σ)− ε2(b− σ)2)vε,v(t)− pe−(b−σ)hvε,v(t+ h).

The variation of constants formula yields

(4.16) v′ε,v(t) = e−
α
ε2
t

(
v′ε,v(0) +

1

ε2

∫ t

0

e
α
ε2
sPε,v(s)ds

)
, ε 6= 0.

A direct integration of (4.16) gives

vε,v(t) = vε,v(0) +
ε2

α
v′ε,v(0)(1− e− α

ε2
t) +

1

ε2

∫ t

0

∫ u

0

e
α
ε2

(s−u)Pε,v(s)dsdu.
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After changing the order of integration in the iterated integral, we get

1

ε2

∣∣∣∣
∫ t

0

∫ t

s

e
α
ε2

(s−u)Pε,v(s)duds

∣∣∣∣ =
1

α

∣∣∣∣
∫ t

0

Pε,v(s)(1− e
α
ε2

(s−t))ds

∣∣∣∣ ≤
1

α

∫ t

0

|Pε,v(s)|ds.

Additionally, recalling Step II, we find that |v′ε,v(0)| ≤ (b− σ)|wε,v(0)|+ |w′ε,v(0)| ≤

≤ (b− σ)(|yε,v(0)|+ |zε,v(0)|) + |φ′ε,v(0)|+ |z′ε,v(0)| < C10.

As a consequence, for all small ε and v ∈ Ω, we have that

|vε,v(t)| ≤ |vε,v(0)|+ ε2

α
C10(1 + e−

α
ε2
t) +

1

α

∫ +∞

0

|Pε,v(s)|ds ≤ C11, t ≥ 0.

Finally, since wε,v(t) = vε,v(t)e
−(b−σ)t, Lemma IV.11 is proved. �

4.6 Existence of fast traveling wave

Theorem IV.12. In Theorem IV.8, take µ = λ−δ, with small δ > 0. Assume that ψ

is the positive heteroclinic of (1.5) normalized by ψ(t) = exp(λt)+O(exp((2λ−δ)t)),

t→ −∞. Then we can choose a neighborhood U ⊂ Cµ(R) of ψ and a neighborhood

E∗µ × V∗µ of 0 ∈ R2 in such a way that ψε,v ∈ U , (ε, v) ∈ E∗µ × V∗µ, is positive and

unique in U (up to translations in t) for every fixed ε. Moreover, ψε,v(t − t0) =

exp(λ1(ε)t) +O(exp(1.99µt)) at t→ −∞ for some t0 = t0(ε, v) ∈ R.

Proof: First, we take Vµ, Eµ ⊂ (−ε1, ε1), U as in Theorem IV.8. It follows from

Lemma IV.9 and Theorem IV.8 that Vµ ⊂ R and that we can choose positive δ and

Eµ such that <λj(ε) < µ < λ < λ1(ε) < 1.99µ < λ∞(ε) for all ε ∈ Eµ. If we set

yε,v(t) = ψε,v(−t), then yε,v satisfies (4.10) where

|fε,v(t)| = |g(yε,v(t+ h))− g′(0)yε,v(t+ h)| ≤ C1e
−2µt, t ≥ −h.

Lemma IV.11 assures that there are V ′µ ⊂ Vµ, E ′µ ⊂ Eµ such that

yε,v(t) = B(ε, v)e−λ1(ε)t + wε,v(t), (ε, v) ∈ E ′µ × V ′µ.
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Here B : E ′µ ×V ′µ → R+, B(0, 0) = 1, is continuous and |wε,v(t)| ≤ C∗e−1.99µt, t ≥ 0,

for some C∗ > 0.

Hence, there are E ′′µ × V ′′µ and T > 0 (independent of ε, v) such that yε,v(t) >

0.5e−λ1(ε)t, t > T , for all (ε, v) ∈ E ′′µ×V ′′µ . On the other side, lim(ε,v)→0 yε,v(t) = ψ(−t)

uniformly on R. In consequence, since ψ is bounded from below by a positive constant

on [−T,∞), we conclude that yε,v is positive on R, if (ε, v) belongs to sufficiently

small neighborhood E∗µ×V∗µ ⊂ E ′′µ×V ′′µ of the origin. Without the loss of the generality,

we can assume additionally that ψε,v ∈ U for all (ε, v) ∈ E∗µ × V∗µ.

Next, for every fixed ε ∈ E∗µ, the subset F = {ψε,v : v ∈ Vµ} ⊂ Cµ(R) is

homeomorphic to Vµ. On the other hand, for every n > 0, the collection Pn =

{ψε,0(t − s), s ∈ (−n, n)} of positive heteroclinics is a continuous 1-manifold in

Cµ(R). Since ψε,0 ∈ F ∩Pn we obtain that {ψε,v : v ∈ V∗µ} ⊂ P∞. In consequence,

ψε,v(t) is unique in U (up to shifts in t) for every fixed small ε. �

Theorem IV.13. Set P = {(ε, v) ∈ E0 × V0 : ψε,v(t) > 0, t ∈ R}, where E0,V0 are

as in Theorem IV.8. Then there exist a neighborhood E∗ × V∗ ⊂ E0 × V0 of 0 and

C > 0 such that, for all (ε, v) ∈ P∗ := P ∩ (E∗ × V∗), we have that

(4.17) ψε,v(t) = B(ε, v)eλ1(ε)t + wε,v(t),

where |wε,v(t)| ≤ Ce1.99λt, t ≤ 0, and B : E∗ × V∗ → (0,∞) is continuous.

Proof: Let E ′ ⊂ E0 be such that λ∞(ε) > 3λ, for all ε ∈ E ′. The last assertion of

Theorem IV.8 implies that, for some γ > 0, C1 > 0,

(4.18) sup
t≥0
|ψε,v(t)| ≤ C1, |ψε,v(t)| ≤ C1e

γt, t ≤ 0.

If we set yε,v(t) = ψε,v(−t), then yε,v satisfies (4.10) where

|fε,v(t)| = |g(yε,v(t+ h))− g′(0)yε,v(t+ h)| ≤ C2e
−2γt, t ≥ −h.
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Set Γ = sup{γ > 0 such that (4.18) holds for all (ε, v) ∈ P ∩ (E ′ × V0)}. Applying

Lemma IV.11, we get

yε,v(t) =
∑

0<λj(ε)<2Γ

Bj(ε, v)e−λj(ε)t + w̃ε,v(t),

where Bj : E ′′ × V0 → C are continuous and |w̃ε,v(t)| ≤ C3e
−1.99Γt, t ≥ 0, (ε, v) ∈

P∩(E ′′×V0), for some C3 > 0 and open E ′′ ⊂ E ′. Since Γ > 0 is finite and yε,v(t) > 0,

we obtain
∑

0<λj(ε)<2Γ

Bj(ε, v)e−λj(ε)t = B(ε, v)e−λ1(ε)t,

so that Γ ≥ λ, see Lemma IV.9. Next, due to Lemma II.9, it holds that B(0, 0) > 0.

Hence, Γ = λ. �

Corollary IV.14. Given δ ∈ (0, λ) and (εj, vj) ∈ P∗, j = 0, 1, . . . , the convergence

ψεj ,vj
C0(R)−→ ψε0,v0 implies ψεj ,vj

Cλ−δ(R)−→ ψε0,v0 .

Proof: By the contrary, suppose that there are a sequence {ψεj ,vj , (εj, vj) ∈ P∗}j≥0

and η > 0 such that

lim
j
|ψεj ,vj − ψε0,v0|0 = 0, |ψεj ,vj − ψε0,v0|λ−δ > η, j = 1, 2, . . .

It follows from (4.17) that there exist C > 0 and T < 0 such that

ψεj ,vj(t)e
−(λ−δ)t ≤ Ceδt < η/4, j = 0, 1, 2, . . . , t ≤ T.

Thus

sup
s≤T

[
e−(λ−δ)s|ψεj ,vj(s)− ψε0,v0(s)|

]
≤ η/2, j = 1, 2, . . . .

Next, since ψεj ,vj(t)→ ψε0,v0(t) uniformly on R, we can find j∗ such that

sup
s∈[T,0]

[
e−(λ−δ)s|ψεj ,vj(s)− ψε0,v0(s)|

]
≤ η

2
, sup
s≥0
|ψεj ,vj(s)− ψε0,v0(s)| ≤

η

2
, j ≥ j∗.

But all this means that |ψεj ,vj − ψε0,v0|λ−δ ≤ η/2 for all j ≥ j∗, a contradiction. �
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4.7 Uniqueness Theorems

In this section establishes our main result for a reaction-diffusion equation with

local delay. Here we show that there exists exactly one wavefront for each fixed

sufficiently fast speed. For to prove the Theorem I.7 we need the following auxiliary

result.

Lemma IV.15. Assume I.5. Consider wavefront u(x, t) = φ(x + ct), to equation

(1.4). Then there exists a unique τ such that φ(τ) = A, φ′(s) > 0 for all s ≤ τ .

Proof: See [52, Proposition 2.1]. �

Now everywhere below, all positive wavefronts φ will be normalized by the con-

ditions φ(0) = ζ1/2 and φ′(s) > 0, s < 0, with ζ1 ≤ A defined in Chapter II.

The possibility of such a normalization was established in Lemma IV.15. Let ψ,

ψ(0) = ζ1/2, ψ(s) < ζ1/2, s < 0, be the positive heteroclinic of (1.5) given in Lemma

II.9. By Theorem IV.12, there exists a neighborhood (−ε0, ε0) × U ⊂ R × Cλ−δ(R)

of (0, ψ) such that for every fixed ε ∈ (−ε0, ε0) there is a unique normalized positive

wavefront ψε ∈ U . We claim that, if ε is sufficiently small, then this ψε will be the

unique normalized positive wavefront of equation (4.1). By way of contradiction, let

us suppose that we can find a sequence εj → 0 and normalized positive wavefronts

φεj 6= ψεj .

Lemma IV.16. Assume I.5 and I.4. Then φεj → ψ uniformly on R.

Proof: First, we prove the uniform convergence φεj → ψ on compact subsets of

R. Since g is a bounded function, we obtain from (4.8) that

|φ′εj(t)|+ |φεj(t)| ≤ ε−2(µ− λ)−1max
s≥0

g(s) + max
s≥0

g(s) ≤ 2ζ2, j ∈ N.

Hence, by the Ascoli-Arzelà theorem combined with the diagonal method, {φεj} is
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precompact in C(R,R). Thus, every {φεjk} has a subsequence converging in C(R,R)

to some continuous positive bounded function ϕ(s) such that ϕ′(s) ≥ 0, s ≤ 0, and

ϕ(0) = ζ1/2. Making use of the Lebesgue’s dominated convergence theorem, we

deduce from equation (4.8) that

ϕ(t) =

∫ t

−∞
e−(t−s)g(ϕ(s− h))ds.

Therefore ϕ is a positive bounded solution of equation (1.5) and since the equilibrium

κ of equation (1.5) is globally attractive, it holds that ϕ(+∞) = κ. On the other

hand, since ϕ(−∞) ≤ ϕ(0) = ζ1/2, we have that ϕ(−∞) = 0. Hence, due to Lemma

II.9, we obtain that ϕ(t) = ψ(t), t ∈ R. Next, if φεn 6→ ψ uniformly on R then there

exist a subsequence {φεjn} ⊂ {φεj} (for short, we will write again {φεj} instead of

{φεjn}), a sequence {Sj} and positive numbers T, δ < κ/6 such that

|ψ(Sj)− φεj(Sj)| = 2δ, |ψ(t)| < 0.25δ, t ≤ −T, |ψ(t)− κ| < 0.25δ, t ≥ T.

Since φεn converges uniformly on [−2T, 2T ] to ψ, and φεn , ψ are monotone increasing

on (−∞, 0], we can suppose that |ψ(t)−φεn(t)| < δ for all t ∈ (−∞, 2T ] and n ≥ n0.

In this way, Sj → +∞ and we can suppose that

|ψ(t)− φεj(t)| < 2δ, t ∈ (−∞, Sj).

Consider the sequence yj(t) = φεj(t+Sj) of heteroclinics to equation (4.1). We have

that |yj(0)− κ| > 1.5δ and |yj(t)− κ| < 3δ when t ∈ (T − Sj, 0). Arguing as above,

we find that {yj} contains a subsequence converging, on compact subsets of R, to

some solution y∗(t) of (1.5) satisfying |y∗(0) − κ| ≥ 1.5δ and |y∗(t) − κ| ≤ 3δ < κ
2

for all t < 0. Lemma II.13 implies that infR y∗(t) > 0. Since y∗(0) 6= κ, we have

established the existence of a non-constant positive bounded and separated from 0

solution to (1.5). This contradicts to the global attractivity of κ. �
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Corollary IV.17. φεj → ψ in Cλ−δ(R).

Proof: Since φεj → ψ in C0(R), we have that φεj = ψεj ,vj for some vj ∈ V0. Now

we can apply Corollary IV.14 to find that φεj → ψ in Cλ−δ(R).

Lastly, Theorem IV.12 and Corollary IV.17 implies that φεj = ψεj , a contradiction

which completes the proof of Theorem I.7. �

4.8 Nonmonotonicity of travelling wave

In this section we give the results obtained in [21] where the oscillation of the

traveling waves about positive equilibrium is obtained.

Lemma IV.18. Let g′(κ) < 0 and |g′(κ)|heh+1 > 1. Then the equation

ε2z2 − z − 1 + g′(κ) exp(−zh) = 0(4.19)

has no negative real roots, for all sufficiently small ε. Moreover, if the equilibrium

κ of (1.5) is hyperbolic, then, for all small ε, there are no roots of (4.19) on the

imaginary axis.

Proof: See [21, Lemma 15]. �

Lemma IV.19. Assume I.4 and g′(κ)heh+1 < −1. Then for small ε > 0, every

nonconstant and bounded solution φ of (4.1) such that φ(+∞) = κ oscillates about

κ.

Proof: See [21, Lemma 16]. �

4.9 Application

In order to apply Theorems I.7, we need to find sufficient conditions to ensure

the global attractivity of the positive equilibrium of (1.5). Some results in this

direction were found in [39] for nonlinearities satisfying a generalized Yorke condition.
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The reader can be referred to [43] for the case of unimodal nonlinearities, and for

further references. On the other hand, in [33] provide various conditions which are

sufficient to guarantee the exponential stability of the positive steady state. The

above mentioned works yield the following

Corollary IV.20. Let g ∈ C3(R+,R+) be such that

(1) the Schwarz derivative (Sg)(x) = g′′′(x)(g′(x))−1 − (3/2) (g′′(x)(g′(x))−1)
2

is

negative for all x > 0, x 6= xM ;

(2) g has only one critical point xM (global maximum);

(3) g has exactly two fixed points, 0 and κ > 0. Moreover, Γ0 := g′(0) > 1;

(4) 1 + i
√

Γ2
0 − 1 6= Γ0 exp(−ih

√
Γ2

0 − 1);

(5) either Γ := g′(κ) ∈ [0, 1) or

Γ < 0 and e−h > −Γ ln
Γ2 − Γ

Γ2 + 1
.

Then there exists a unique (modulo translations) positive wavefront of equation (1.4)

for each sufficiently large speed c.

Proof: We only need to check assumptions I.5 and I.4 of Theorem IV.15. Since g

is C3-smooth, it is immediate that (2), (3) imply (I.5). Next, condition (4) ensures

that the characteristic equation λ+1 = g′(0) exp(−λh) has no roots on the imaginary

axis. Therefore the trivial steady state is hyperbolic.

In the rest of the proof, we assume that (1)− (3) hold. In consequence, if g′(κ) ∈

[0, 1) then the positive equilibrium is exponentially stable (e.g. see [33, Corollary

3.2]) and globally attracting (e.g. see [43, Proposition 3.2]). The second line of

condition (5) also ensures the exponential stability of κ (see [33, Theorem 2.9]) and

the global attractivity of κ (see [39, Corollary 2.3]). Therefore (1)−(5) imply (I.4).�
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Below, we apply Theorem IV.15 and Corollary IV.20 to two time-delayed reaction-

diffusion population models. First, we consider the diffusive Nicholson’s blowflies

equation

(4.20) ut(t, x) = ∆u(t, x)− δu(t, x) + pu(t− h, x)e−bu(t−h,x), t ∈ R, x ∈ Rm.

This equation was introduced in [46], it generalizes the famous Nicholson’s blowflies

equation

y′(t) = −δy(t) + py(t− h)e−by(t−h),

intensively studied for the last decade. Equation (4.20) takes into account spatial dis-

tribution of the species, and nowadays there is growing interest in understanding the

factors that influence the spatial spread of the growing population modeled by (4.20).

Relevant biological discussion can be found in [28], where various modifications of

(4.20) were proposed and studied.

After a linear rescaling of both variables u and t, we can assume that δ = b = 1.

Therefore equation (4.20) can be written in the following normalized form

(4.21) ut(t, x) = ∆u(t, x)− u(t, x) + pu(t− h, x)e−u(t−h,x).

The case of interest is p > 1 when (4.21) has a unique positive steady state κ = ln p.

It is immediate to check that the birth function

g(s) = pse−s, s ≥ 0,

satisfies conditions (1) − (3) of the above corollary. In this way, the conclusion of

Corollary IV.20 holds if Γ0 = p and Γ = 1 − ln p satisfy conditions (4), (5). It is

worth to mention that (5) trivially holds if Γ ∈ [−1, 1) (that is, when 0 < ln p ≤ 2).

As a second application, let us consider the birth function

g(s) =
ps

1 + sn
, n ≥ 1, s ≥ 0.
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This function was proposed in 1977 by Mackey and Glass to model hematopoiesis

(blood cell production). The Mackey-Glass equation with non-monotone nonlinearity

can be written in the following normalized form

(4.22) y′(t) = −y(t) +
py(t− h)

1 + (y(t− h))n
.

The corresponding reaction-diffusion equation with delay is

(4.23) ut(t, x) = ∆u(t, x)− u(t, x) +
pu(t− h, x)

1 + (u(t− h, x))n
.

Taking p > 1 in equation (4.23), we find that conditions (2), (3) and (I.5) are sat-

isfied with κ = (p − 1)1/n. Furthermore, if n ≥ 2, then the Schwarz derivative of

g(s) = ps/(1 + sn), s ≥ 0, n ≥ 1 is negative, see [26, Lemma 3]. Consequently, the

conclusion of Corollary IV.20 holds if n ≥ 2 and Γ0 = p, Γ = 1 − n + n/p, satisfy

conditions (4), (5). Now, suppose that n ∈ (1, 2]. Then [33, Corollary 3.2] [respec-

tively, [26, Theorem 2]] guarantees that the positive steady state of equation (4.22)

is exponentially stable [respectively, globally attractive]. Therefore, if n ∈ (1, 2] and

1 + i
√
p2 − 1 6= p exp(−ih

√
p2 − 1), then Theorem IV.15 assures the existence of

a unique (modulo translations) positive wavefront of equation (4.23) for each suffi-

ciently large speed c.



CHAPTER V

Existence of fast positive wavefronts for a non-local delayed
reaction-diffusion equation

5.1 Introduction

The main object of study in this chapter is the time-delayed reaction-diffusion equa-

tion (1.6). Here h ≥ 0 denotes the time delay and it is assumed that the non-negative

averaging kernel K satisfies
∫

RK(w)dw = 1,
∫

RK(w)eλwdw ∈ R, for every λ ∈ R.

The function −s+g(s) is of the monostable type and sufficiently smooth and we also

suppose that g satisfies I.9. Our main concern are the positive wavefront solutions

u(t, x) = φ(x + ct) of (1.6) After scaling, φ is a positive heteroclinic solution of the

delay differential equation

(5.1) ε2y′′(t)− y′(t)− y(t) +

∫

R
K(w)g(y(t− h− εw))dw = 0, t ∈ R,

where ε := 1/c > 0, c is the wavefront velocity.

In this chapter, inspired by [4, 20, 21], we give the affirmative answer to the

existence question. Namely, for a broad family of nonlinearities g satisfying the

hypothesis I.4 and I.5 we prove that equation (1.6) has a continuous family of positive

wavefronts u(t, x) = φc(ct+ x) provided that the wave speed c is sufficiently large.

This result can be viewed as a natural continuation and extension of the main

theorem in [21], where a similar problem for a local delayed reaction-diffusion equation

90
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was analysed (the local equation can be obtained formally from (1.6) by taking the

delta of Dirac as K(w)). It should be stressed here that, due to the presence of

non-local terms, a direct application of the method from [21] to equation (1.6) fails

due to technical issues arising. To cope with them, we use here a somewhat different

approach proposed in [4] and based on the uniform asymptotic integration formulae

(see Lemma V.11 below).

5.2 Spaces and operators

This section contains several lemmas which will be needed later. We will assume

I.4 and I.9, where the C1- smooth function g is defined and bounded on the whole

real axis R. Let λ be as in Lemma II.7 and let ψ be as in Lemma II.9.

Notation V.1. For a fixed µ > 0 and λ∗ ∈ (0, λ), we will consider the following

Banach spaces:

Cµ(R) =

{
y ∈ C(R,R) : lim

s→−∞
e−µsy(s), lim

s→+∞
y(s) exists and are finite

}
,

Cψ,λ∗(R) =

{
y ∈ Cλ∗(R) :

∫ 0

−∞
y(s)ψ′(s)ds = 0

}
,

equipped with the norm ‖y‖µ = max{‖y‖+, ‖y‖−µ }, where ‖y‖+ = supR+
|y(s)| and

‖y‖−µ = supR− e
−µs|y(s)|(in order to simplify the notation, we shall often write ‖y‖

instead of ‖y‖µ).

Note that ψ, ψ′ ∈ Cλ∗(R) \ Cψ,λ∗(R).

Definition V.2. The same manner like in Chapter IV, we will also need the integral

operator

N : Cψ,λ∗(R)→ Cλ∗(R); (N y)(t) =

∫ t

−∞
e−(t−s)q(s)y(s− h)ds,

where q(s) = g′(ψ(s− h)).
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Since q(−∞) = g′(0+) = p > 1 and q(+∞) = g′(κ), it can be checked directly

that N is well defined.

The following lemma was proved in [21, Lemma 9] for spaces Cψ,λ∗(R) defined

in a different way (the convergence lims→−∞ e−λ∗sy(s) was not required). Since our

definition of Cψ,λ∗(R) involves this condition of convergence we decided to include

the proof.

Lemma V.3. I − N : Cψ,λ∗(R) → Cλ∗(R) is an isomorphism of Banach spaces,

where I : Cψ,λ∗(R)→ Cλ∗(R), I(y) = y, and λ∗ /∈ {<λj}.

Proof: By [21, Lemma 9], the operator I − N is injective and the equation

(I − N )y = d, d ∈ Cλ∗(R) has a solution y such that there exists y(+∞) ∈ R,
∫ 0

−∞
y(s)ψ′(s)ds = 0 and ‖y‖−λ∗ < ∞. Hence, we only need to show that y(t)e−λ∗t

converges as t→ −∞. First, observe that z(t) := y(t)− d(t) satisfies

(5.2) z′(t) = −z(t) + q(t)z(t− h) + q(t)d(t− h).

Set r0 =
p limt→−∞ d(t− h)e−λ∗t

1 + λ∗ − pe−λ∗t
. Since q(t) = p + O(exp(λt)), t→ −∞, we obtain

that r(t) = e−λ∗tz(t)− r0, is a bounded solution of

r′(t) = −(1 + λ∗)r(t) + [p exp (−λ∗h) + ε1(t)]r(t− h) + ε2(t),

where ε1, ε2 : R → R are bounded and ε1(−∞), ε2(−∞) = 0. We claim that

limt→−∞ r(t) = 0. On the contrary, let us suppose that there exists a real num-

ber ε0 > 0 and a sequence tn → −∞ such that |r(tn)| ≥ ε0 for all n ≥ 1. We find

that rn(t) = r(t+ tn), t ∈ R, is a bounded solution of the equation

r′n(t) = −(1 + λ∗)rn(t) + an(t)rn(t− h) + bn(t),

where an(t) = p exp (−λ∗h) + ε1(t+ tn) and bn(t) = ε2(t+ tn). Consequently,

(5.3) rn(t) =

∫ t

−∞
e−(1+λ∗)(t−s)[an(s)rn(s− h) + bn(s)]ds,
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and

|rn(t)|+ |r′n(t)| ≤ sup
t∈R
|r(t)|

(
2 + λ∗ + p+ sup

t∈R
|ε1(t)|

)
+ sup

t∈R
|ε2(t)|, t ∈ R.

Hence, by the Ascoli-Arzelá compactness criterion the sequence {rn(t)} is pre-compact

in the compact open topology of C(R,R). Thus there is a subsequence {rnk(t)} con-

verging in C(R,R) to some continuous bounded function r∗(t), such that r∗(0) ≥

ε0 > 0. By the Lebesgue’s dominated convergence theorem, it holds that, for every

fixed t ∈ R,

∫ t

−∞
e(1+λ∗)s[ank(s)rnk(s− h) + bnk(s)]ds→ pe−λ∗h

∫ t

−∞
e(1+λ∗)sr∗(s− h)ds.

In consequence, we deduce from equation (5.3) that r∗(t) satisfies

(5.4) r′∗(t) = −(1 + λ∗)r∗(t) + pe−λ∗hr∗(t− h).

Finally, since (5.4) is hyperbolic and r∗ is bounded on R, then r∗(t) ≡ 0, a contra-

diction. Hence, r(−∞) = 0 so that

lim
t→−∞

y(t)e−λ∗t = r0 + lim
t→−∞

d(t)e−λ∗t.

�

Definition V.4. Set σ(ε) =
√

1 + 4ε2, |ε| ≥ 0. For λ∗ ∈ (0, λ) define the operators

G, Lε, Iε : Cλ∗(R)→ Cλ∗(R) as follows

(Gy)(t) = g(y(t)), (Lεy)(t) =

∫

R
K(w)y(t− εw)dw,

(Iεy)(t) =
1

σ(ε)

(∫ t

−∞
e
−2(t−s)
1+σ(ε) y(s− h)ds+

∫ +∞

t

e
(1+σ(ε))(t−s)

2ε2 y(s− h)ds
)
, ε 6= 0,

where −2
1+σ(ε)

and 1+σ(ε)
2ε2

are the roots of ε2z2 − z − 1 = 0.
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Notice that, since there exists finite g′(0), we have g(s) = sγ(s) for a bounded

γ ∈ C(R). As a consequence, G is well-defined and it can be checked directly that

Iε and Lε are well defined too. Moreover, since |(Lεy)(t)| ≤ ‖y‖ for all t ∈ R, and

e−λ∗t|(Lεy)(t)| ≤ ‖y‖
∫

R
K(w)e−λ∗εwdw for all t ≤ 0, we conclude that Lε is a linear

continuous operator on Cλ∗(R).

In order to study the existence of positive heteroclinic solutions φ(t) of (5.1), we

will consider the following integral equation:

(5.5) y(t) =
1

σ(ε)

(∫ t

−∞
e
−2(t−s)
1+σ(ε) (Gεy)(s− h)ds+

∫ +∞

t

e
(1+σ(ε))(t−s)

2ε2 (Gεy)(s− h)ds
)
,

where the operator Gε := Lε ◦ G.

Each wavefront φ being a bounded function should satisfy (5.5). This equation

can be written in a shorter form

(5.6) y − (Iε ◦ Gε)y = 0.

Lemma V.5. Gε is Fréchet continuously differentiable on Cλ∗(R), with the differen-

tial Gε′ : Cλ∗(R)→ L(Cλ∗(R), Cλ∗(R)), given by Gε′(y0) : h(·)→ Lε ◦ G ′(y0)h(·).

Proof: Since Lε : Cλ∗(R) → Cλ∗(R) is a linear continuous operator, the proof of

Lemma V.5 follows directly from [21, Lemma 11]. �

Definition V.6. Now we consider the integral operators I−ε , I+
ε : Cµ(R) → Cµ(R)

defined by

(I−ε y)(t) =

∫ t

−∞
e
−2(t−s)
1+σ(ε) y(s− h)ds, (I+

ε y)(t) =

∫ +∞

t

e
(1+σ(ε))(t−s)

2ε2 y(s− h)ds.

Set I := I−0 and I+
0 := 0.

In the following lemmas we study the continuity properties of the operator families

{I±ε , |ε| < 1√
2µ
}.
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Lemma V.7. Families I±ε : (− 1√
2µ
, 1√

2µ
)→ L(Cµ(R), Cµ(R)) are continuous in the

operator norm. In particular, Iε → I uniformly when ε→ 0.

Proof: This follows by an analysis similar to that realized in the proof of Lemma

IV.5.

The proof of the next lemma uses a nice idea from [20].

Lemma V.8. Families Iε ◦ Lε : (− 1√
2µ
, 1√

2µ
)→ L(Cµ(R), Cµ(R)) are continuous in

the operator norm. In particular, Iε ◦ Lε → I uniformly as ε→ 0.

Proof: For the convenience of the reader the proof will be divided into several

parts.

Step I. Set D1
µ(R) =

{
y ∈ Cµ(R) ∩ C1(R) : lim

s→±∞
y′(s) = 0

}
. First, we establish

the existence of a constant C > 0, which does not depend on ε, y such that

(5.7) ‖I±ε ◦ (Lε − Lε0)y‖ ≤ C|ε− ε0|‖y‖, y ∈ D1
µ(R), |ε0|, |ε| <

1√
2µ
.

In consequence,

‖(I±ε ◦ Lε − I±ε0 ◦ Lε0)y‖ ≤ ‖(I±ε ◦ (Lε − Lε0)y‖+ ‖y‖‖I±ε − I±ε0‖‖Lε0‖

≤ C1‖y‖(|ε− ε0|+ ‖I±ε − I±ε0‖), y ∈ D1
µ(R).

(5.8)

Taking into account that D1
µ(R) is dense in Cµ(R), we conclude that inequality (5.8)

holds for all y ∈ Cµ(R). Thus, we obtain that

(5.9) ‖I±ε ◦ Lε − I±ε0 ◦ Lε0‖ ≤ C(|ε− ε0|+ ‖I±ε − I±ε0‖), |ε0|, |ε| <
1√
2µ
.

The statement of the lemma follows now from (5.9) and Lemma V.7 .

Step II. Here, we estimate I+
ε ◦ (Lε − Lε0)(y)(t) for y ∈ D1

µ(R). Since y(−∞) = 0,

by exchanging the order of integration and integrating by parts with respect to the
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variable s, we get that

∫ ∞

t

e
1+σ(ε)

2ε2
(t−s)

∫

R
K(w)(y(s− εw − h)− y(s− ε0w − h))dwds

= (ε0 − ε)
∫ ∞

t

e
1+σ(ε)

2ε2
(t−s)

∫

R
K(w)

∫ 1

0

y′(s− (ε− ε0)γw − h− ε0w)wdγ dw ds

= (ε− ε0)

∫ 1

0

(∫

R
K(w)wy(t− (ε− ε0)γw − h− ε0w)dw

− 1 + σ(ε)

2ε2

∫ ∞

t

e
1+σ(ε)

2ε2
(t−s)

∫

R
K(w)wy(s− (ε− ε0)γw − h− ε0w)dwds

)
dγ.

In consequence, for all t ∈ R,

|I+
ε ◦ (Lε − Lε0)(y)(t)| ≤ |ε− ε0|‖y‖

∫

R
K(w)|w|dw

∫ 1

0

(
1+

1 + σ(ε)

2ε2

∫ ∞

t

e
1+σ(ε)

2ε2
(t−s)ds

)
dγ ≤ 2|ε− ε0|‖y‖

∫

R
K(w)|w|dw.

If t < 0, then

e−µt|I+
ε ◦ (Lε − Lε0)(y)(t)| ≤ |ε− ε0|‖y‖

∫ 1

0

C(γ, ε)
(

1+

1 + σ(ε)

2ε2

∫ ∞

t

e
1+σ(ε)−2ε2µ

2ε2
(t−s)ds

)
dγ ≤ 3|ε− ε0|‖y‖

∫ 1

0

C(γ, ε)dγ,(5.10)

where C(γ, ε) :=

∫

R
K(w)|w|e−µ((ε−ε0)γw+h+ε0w)dw.

Since, |ε0|, |ε| < 1√
2µ

and γ ∈ [0, 1], we get

C(γ, ε) ≤
∫

R
K(w)|w|eµ|(ε−ε0)γw+ε0w|dw ≤

∫

R
K(w)|w|eµ(h+3

√
2µ|w|)dw.(5.11)

Finally, from (5.10) and (5.11) we obtain that

e−µt|I+
ε ◦ (Lε − Lε0)(y)(t)| ≤ C1|ε− ε0|‖y‖, t ≤ 0,

where C1 is a positive constant which does not depend on ε, y.
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Step III. We can proceed similarly to estimate I−:

∫ t

−∞
e
−2(t−s)
1+σ(ε)

∫

R
K(w)(y(s− εw − h)− y(s− ε0w − h))dwds

= (ε0 − ε)
∫ t

−∞
e
−2(t−s)
1+σ(ε)

∫

R
K(w)

∫ 1

0

y′(s− (ε− ε0)γw − h− ε0w)wdγdwds

= (ε0 − ε)
∫ 1

0

(∫ +∞

−∞
K(w)wy(t− (ε− ε0)γw − h− ε0w)dw

+
2

1 + σ(ε)

∫ t

−∞
e
−2(t−s)
1+σ(ε)

∫

R
K(w)wy(s− (ε− ε0)γw − h− ε0w)dwds

)
dγ.

In the same manner of step I, we get

|I−ε ◦ (Lε − Lε0)(y)(t)| ≤ 2|ε− ε0|‖y‖
∫

R
K(w)|w|dw, t ∈ R,

and, for all t < 0,

e−µt|I−ε ◦ (Lε − Lε0)(y)(t)| ≤ 2‖y‖|ε− ε0|
∫ 1

0

C(γ, ε)dγ ≤ C2‖y‖|ε− ε0|,

where C2 > 0 is a constant which does not depend on ε, y. Thus (5.7) is proved and

the lemma follows. �

5.3 A charecteristic equation

In this section, we analyze the equation

(5.12) ε2z2 − z − 1 + p exp(−zh)

∫

R
K(w) exp(−εzw)dw = 0, h > 0.

The next result relates λj described above to the roots λj(ε) of equation (5.12)

with ε 6= 0. Set λj(0) = λj, j > 1 and λ1(0) = λ.

Lemma V.9. Suppose that p > 1.

(1) There exists a real positive number ε0 > 0 such that, for every ε ∈ (0, ε0), the

equation (5.12) has exactly two real roots 0 < λ1(ε) < λ∞(ε) and if ε > ε0, then

χ(z, ε) > 0 for all z > 0. Furthermore, the vertical strip λ1(ε) ≤ <z ≤ λ∞(ε)

does not contain complex roots of (5.12) with =z 6= 0.
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(2) Take some ξ 6∈ {<λj, j ∈ N}. Then there are ε1 = ε1(ξ) > 0, an interval Oξ :=

(−ε1, ε1) and a positive integer m = m(ξ) such that, for every 0 < |ε| < ε1,

0 < λ1(ε) < 2(p−1) and |ε|−1 < λ∞(ε) < ε−2 +1. Moreover, the vertical strip

ξ ≤ <z ≤ 2(p−1) contains exactly m roots λ1(ε), . . . , λm(ε) of (5.12). Next, the

functions λj : Oξ → C are continuous and the roots λj(ε), j = 1, . . . ,m, ε ∈ Oξ,

are simple.

Proof: By [51, Lemma 20] we obtain there exists ε0 > 0 such that the first

affirmation of item (1) holds. Now we prove that the vertical strip λ1(ε) ≤ <z ≤

λ∞(ε) does not contain complex roots of (5.12) for each ε ∈ (0, ε0). For this, we first

observe that if µ(ε), ν(ε) are the (real) roots of ε2z2 − z − 1 = 0, then we obtain

|ε2z2−z−1| = ε2|z−µ(ε)||z−ν(ε)| ≥ ε2|<z−µ(ε)||<z−ν(ε)| = |ε2(<z)2−<z−1|.

Let H(z, ε) := 1 + z − ε2z2 and G(z, ε) := p exp(−zh)

∫

R
K(w) exp(−εzw)dw. We

observe that H(0, ε) < G(0, ε). Since λ1(ε) and λ∞(ε) are the unique real roots of

equation H(z, ε) = G(z, ε), then we get that H(z, ε) > G(z, ε) for all z > 0 such

that λ1(ε) < z < λ∞(ε), see figure 5.1.

Thus for all z ∈ C such that λ1(ε) < <z < λ∞(ε), we obtain that

|pe−zh
∫

R
K(w)e−εzwdw| ≤ pe−<zh

∫

R
K(w)e−ε<zwdw < 1 + <z − ε2<z2

= |ε2(<z)2 −<z − 1| ≤ |ε2z2 − z − 1|,

so that the vertical strip λ1(ε) < <z < λ∞(ε) does not contain roots of (5.12) for

each 0 < ε < ε0.

Next, let z ∈ C is such that <z = λ1(ε) or <z = λ∞(ε). If z is root of (5.12), then

<
(
ε2z2 − z − 1 + p exp(−zh)

∫

R
K(w) exp(−εzw)dw

)
= 0,
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this implies that

ε2(=z)2 = −2

∫

R
K(w) exp(−εzw) sin2

(=z(h+ εw)

2

)
dw,

so that =z = 0.

On the other hand, set ψ(z, ε) = ε2z2−z−1+p exp(−zh)

∫

R
K(w) exp(−εzw)dw.

Then ψ ∈ C1(C × R,C). Arguing as above, there exists a positive number ε0 such

that the equation ψ(z, ε) = 0 has exactly two positive real roots λ1(ε) < λ∞(ε) if

and only if 0 < |ε| < ε0.

Consider ε 6= 0 and let z = z0(ε) be a positive root of (5.12). Then ε2z2
0(ε) −

z0(ε)− 1 < 0 and hence 0 < z0(ε) < 1+
√

1+4ε2

2ε2
< ε−2 + 1. Moreover, analyzing (5.12)

we get that inf
0<|ε|<ε0

z0(ε) > 0. In addition, for |ε| > 0 small, we have that

ψ(1/|ε|, ε) = − 1

|ε| + p exp(−h/|ε|)
∫

R
K(w) exp(−wε/|ε|)dw < 0,

ψ(2(p− 1), ε) ≤ −p+ p exp(−2(p− 1)h)

∫

R
K(w) exp(−2ε(p− 1)w)dw < 0.

Thus, since ψ(0, ε) = p− 1 > 0 and ψ(ε−2 + 1, ε) > 0 , we can suppose that, for all

0 < |ε| < ε0,

0 < λ1(ε) < 2(p− 1), |ε|−1 < λ∞(ε) < ε−2 + 1.

Next, we claim that the vertical strip ξ ≤ <z ≤ 2(p − 1) contains only a fixed

number of roots of (5.12) for each small, |ε| 6= 0. First, we fix 0 < ε̄ < ε0 such that

∫

R
K(w)emax{|ξ|,2(p−1)}ε̄|w|dw < 2.

If z(ε) is a root of (5.12) and <z(ε) ∈ [ξ, 2(p− 1)], then for |ε| sufficiently small we

find that

|ε2z2(ε)− z(ε)− 1| ≥ |=(ε2z2(ε)− z(ε)− 1)| ≥ |=z(ε)|
2

,
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and, for 0 < |ε| < ε̄, we obtain

|pe−z(ε)h
∫

R
K(w)e−εz(ε)wdw| ≤ pe−<z(ε)h

∫

R
K(w)e−ε<z(ε)wdw < 2pe−ξh.

Therefore, |=z(ε)| < 4pe−ξh for all |ε| sufficiently small.

Next, let g(z) = −z − 1 + p exp(−zh) and consider the following rectangle E2 =

[ξ, 2(p − 1)] × [−4pe−ξh, 4pe−ξh]. If <z = 2(p − 1) or <z = ξ, then by Lemma II.7

and the definition of ξ we get that |g(z)| > 0. In addition, if |=z| = 4pe−ξh, we find

that

|g(z)| ≥ | − =z + p=(e−zh)| ≥ ||=z| − p|=(e−zh)|| ≥ |=z| − pe−<zh = 3pe−ξh > 0.

On the other hand, the family of analytic functions ψ(·, ε), |ε| < 1, is uniformly

bounded and converges pointwise to g(·) in E2 as ε→ 0. Then by Montel’s Theorem

(e.g. see Lemma IV.4.8 in [23]) we obtain that limε→0 ψ(z, ε) = g(z) uniformly on

E2. Hence, applying Rouché’s theorem to the analytic functions ψ(z, ε) and g(z) on

E2, we get that they have the same number of roots (say, m roots) in the vertical

strip ξ ≤ <z ≤ 2(p− 1), for all small |ε|.

Next, by Lemma II.7 we get that ψ(λj, 0) = 0 and ψz(λj, 0) 6= 0. Thus, by

the implicit function theorem there exists intervals (−εj, εj) ⊆ R and C1-mappings

λj : (−εj, εj) → E2 such that λj(0) = λj and ψ(λj(ε), ε) = 0, j = 1 . . .m. If

ε∗ := min
i=1,m

εj, then we can define λj : (−ε∗, ε∗) → E2, for all j = 1, . . . ,m. Finally,

since the root λj of (2.2) is simple, for each j ≥ 1, we obtain that λj(ε) is simple for

each j ∈ {1, . . . ,m} and ε ∈ (−ε∗, ε∗). �
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λ1(ε) λ∞(ε)

H

G

1

p

Figure 5.1: G(z, ε) and H(z, ε), z ≥ 0, |ε| > 0 small.

5.4 Asymptotic expansions

In this section, we analyze the asymptotic expansions of solutions to the non-

homogenuos equation

(5.13) ε2y′′(t) + y′(t)− y(t) + p

∫

R
K(−s)y(t− εs+ h)ds = fε(t), t ∈ R.

This equation is singular at ε = 0. Remarkably, under some natural assumptions,

each family {yε(t)} of bounded solutions of (5.13) admits an asymptotic expansion

at t = +∞ which is regular in ε .

In this way, Lemma V.11 extends a result in [4] proved for the local case.

Notation V.10. Throughout the lemma, we denote by β, γ, η, ρ, b, C, C1, C2, C∗, . . .

some positive constants which do not depend on the parameter ε ∈ Λj := (−εj, εj),

where our convention is that 1 > ε0 > ε1 > · · · > ε∗ > 0. We also assume that

h > 0, p > 1.

Lemma V.11. Let y(·)(·), f(·)(·) : Λ0×R→ R be continuous functions and yε satisfies
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(5.13). Suppose further that sup
t≤0

[|yε(t)|+ |fε(t)|] ≤ C, |yε(t)| ≤ Ce−γt, t ≥ 0, and

that |fε(t)| ≤ Ce−bt, t ≥ 0, ε ∈ Λ0. If γ < b, then given σ ∈ (0, b), there exists

ε∗ > 0 and continuous bounded functions Bj : (−ε∗, ε∗)→ C such that

yε(t) = zε(t) + wε(t), t ∈ R,

where zε(t) =
∑

γ≤<λj(ε)<b−σ′
Bj(ε)e

−λj(ε)t is a finite sum of eigensolutions of (5.13)

associated to the roots λj(ε) ∈ {γ ≤ <λj(ε) < b− σ′, σ′ ∈ (0, σ)} of (5.12). Further-

more, |wε(t)|+ |w′ε(t)| ≤ C∗e−(b−σ)t, t ≥ 0, ε ∈ (−ε∗, ε∗).

Proof: First, observe that the conditions of Lemma V.11 imply that y′ε(t) and

y′′ε (t) are bounded on R, for each ε 6= 0. Indeed, yε satisfies the equation

(5.14) ε2y′′(t) + y′(t)− y(t) +Gε(t) = 0,

where Gε(t) := p
∫ +∞
−∞ K(−s)yε(t− εs+h)ds− fε(t) is uniformly bounded: |Gε(t)| ≤

C(p+ 1) =: C1, t ∈ R, ε ∈ Λ0.

Now as a bounded solution of (5.14), yε should satisfy

(5.15) yε(t) =
1√

1 + 4ε2

(∫ t

−∞
eλ̄(t−s)Gε(s)ds+

∫ +∞

t

eµ̄(t−s)Gε(s)ds

)
, t ∈ R,

where λ̄ = λ̄(ε) and µ̄ = µ̄(ε) are the roots of ε2z2 + z − 1 = 0 and λ̄ < 0 < µ̄.

Differentiating (5.15), we obtain

(5.16) y′ε(t) =
1√

1 + 4ε2

(
λ̄

∫ t

−∞
eλ̄(t−s)Gε(s)ds+ µ̄

∫ +∞

t

eµ̄(t−s)Gε(s)ds

)
,

so that

|y′ε(t)| ≤
µ̄√

1 + 4ε2

∫ +∞

t

eµ̄(t−s)|Gε(s)|ds+
|λ̄|√

1 + 4ε2

∫ t

−∞
eλ̄(t−s)|Gε(s)|ds

≤ C1

(
µ̄

∫ +∞

t

eµ̄(t−s)ds+ |λ̄|
∫ t

−∞
eλ̄(t−s)ds

)
= 2C1, t ∈ R.(5.17)
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In consequence,

|y′′ε (t)| ≤ 1

ε2

(
|y′(t)|+ |y(t)|+ |Gε(t)|

)
≤ ε−2(3C1 + C), t ∈ R, ε 6= 0.(5.18)

Applying the Laplace transform L to equation (6.12), we obtain

χ(z, ε)ỹε(z) = f̃ε(z) + rε(z), <z > 0,

where χ(z, ε) = ε2z2 + z − 1 + p exp(zh)

∫

R
K(−s)e−εzsds, ỹε = L{yε}, f̃ε = L{fε}

and

rε(z) = ε2(y′ε(0) + zyε(0)) + yε(0)− pezh
∫

R
K(−s)e−zsεds

∫ 0

h−sε
e−zuyε(u)du.

Due to our assumptions, ỹε is holomorphic in the open half-plane {<z > −γ} and

f̃ε is holomorphic in {<z > −b}. Since rε is an entire function, we obtain that

Hε(z) := (f̃ε(z) + rε(z))/χ(z, ε)

is meromorphic in <z > −b, with only finitely many poles there.

The rest of the proof is divided into four parts.

Step I. We claim that there are σ′ ∈ (0, σ), ε1 > 0, such that |Hε(z)| ≤ C2/|z|, if

<z = −b+ σ′, ε ∈ Λ1. Indeed, take σ′ ∈ (0, σ) such that the line <z = −b+ σ′ does

not contain any eigenvalue −λj(ε), ε ∈ Λ1, and σ′ − b 6= −1. We have

|f̃ε(z)| ≤
∫ +∞

0

e−<zt|fε(t)|dt ≤ C

∫ +∞

0

e−(<z+b)tdt ≤ C

σ′
, <z ≥ −b+ σ′;

|rε(z)| ≤ ε2(|y′ε(0)|+ |z||yε(0)|) + |yε(0)|

+ pe<zh
∫

R
K(−s)e−<zsε

∣∣∣∣
∫ 0

h−sε
e−zuyε(u)du

∣∣∣∣ ds.

Next, for some fixed k > −b + σ′, consider the vertical strip Σk := {−b + σ′ ≤

<z ≤ k} and set ρ = max{k, b}. If we define

Q(z) := pe<zh
∫

R
K(−s)e−<zsε

∣∣∣∣
∫ 0

h−sε
e−zuyε(u)du

∣∣∣∣ ds,
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then for all z ∈ Σk we have

Q(z) ≤ Cpekh
∫

R
K(−s)eρ|s|eρ(h+|s|)(h+ |s|)ds

≤ Cpe(k+ρ)h

∫

R
K(−s)e2ρ|s|(h+ |s|)ds := C3.

Hence, taking into account (5.17) we find that |rε(z)| ≤ C4(1 + ε2|z|), z ∈ Σk.

Now set bε(z) := −1 + pezh
∫

R
K(−s)e−εzsds. We have

|bε(z)| ≤ 1 + pe<zh
∫

R
K(−s)e−ε<zsds ≤ 1 + pe<zh

∫

R
K(s)e|ε||<z||s|ds

≤ 1 + pekh
∫

R
K(s)eρ|s|ds := β, z ∈ Σk,(5.19)

so that

(5.20) |z||Hε(z)| ≤ C5(|z|+ ε2|z|2)

|ε2z2 + z + bε(z)| , z ∈ Σk.

As it was show in step I in Lemma IV.11, the estimates (5.19) and (5.20) imply

the main assertion of Step I.

Step II. Taking k > 0, we can use the inversion formula

(5.21) yε(t) =
1

2πi

∫ k+∞i

k−∞i
eztỹε(z)dz =

1

2πi

∫ k+∞i

k−∞i
eztHε(z)dz, t ≥ 0.

By Lemma V.9, Hε(z) has only finitely many poles in the strip −b < <z ≤ 0.

Also, Hε(z) → 0 uniformly in the strip −b + σ′ ≤ <z ≤ k, as |=z| → ∞, and

Hε(−b + σ′ + i·) ∈ L2(R). Thus, we may shift the path of integration in (5.21) to

the left (e.g. see [41, p. 8]), to the line <z = −b+σ′, obtaining yε(t) = zε(t) +wε(t),

where

zε(t) =
∑

0≤<λj(ε)<b−σ′
Res−λj(ε)e

ztHε(z), wε(t) =
1

2πi

−b+σ′+∞·i∫

−b+σ′−∞·i

eztHε(z)dz.

By Lemma V.9, the roots of equation χ(z, ε) = 0 are simple for all small |ε|. Hence

zε(t) =
∑

0≤<λj(ε)<b−σ′
e−λj(ε)tBj(ε), with Bj(ε) =

f̃ε(−λj(ε)) + rε(−λj(ε))
χ′(−λj(ε), ε)

.
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It is easy to check that Bj(ε) is continuous in some open neighborhood of 0 (observe

here that the continuity of y′ε(0) follows from (5.16)). Take λj(ε) such that −b+σ′ <

−<λj(ε) ≤ 0, then |rε(−λj(ε))| ≤ C4(ε2|λj(ε)|+ 1) ≤ C4(max
j,ε
|λj(ε)|+ 1) := C7. In

addition, by Lebesgue’s theorem on dominated convergence, if ε→ 0 then

0 <
∣∣∣χ′(−λj(ε), ε)

∣∣∣ =
∣∣∣− 2ε2λj(ε) + 1 + phe−λj(ε)h

∫

R
K(−s)eελj(ε)sds

− εpe−λj(ε)h
∫

R
K(−s)seελj(ε)sds

∣∣∣→ |1 + phe−λjh| 6= 0.

Hence, |Bj(ε)| ≤
|f̃ε(−λj(ε))|+ |rε(−λj(ε))|

|χ′(−λj(ε), ε)|
≤ C/σ′ + C7

min
j,ε
|χ′(−λj(ε), ε)|

≤ C8,

if ε ∈ Λ2 = (−ε2, ε2), for some small ε2 > 0.

Step III. Consider uε(t) = e(b−σ′)twε(t) and vε(t) = e(b−σ)twε(t). We have

uε(t) =
1

2πi

∫ −b+σ′+∞·i

−b+σ′−∞·i
e(s+b−σ′)tHε(s)ds =

1

2π

∫ +∞

−∞
eiξtHε(−b+ σ′ + iξ)dξ.

By Plancherel’s theorem,

‖uε‖2 =
1

2π
‖Hε(−b+ σ′ + i·)‖2 ≤

C2

2
√
π(b− σ′)

.

Hence, vε(t) = e−(σ−σ′)tuε(t) is integrable on [0,+∞), and by the Cauchy-Schwarz

inequality

‖vε‖1 ≤
‖uε‖2√

2(σ − σ′)
≤ C2

2
√

2π(b− σ′)(σ − σ′)
.

Step IV. We claim that there exist real numbers C9 > 0 and ε3 > 0 such that

|wε(t)| ≤ C9e
−(b−σ)t, t ≥ 0, for all ε ∈ Λ3 = (−ε3, ε3). In order to prove this, it

suffices to show that vε is uniformly bounded for ε ∈ Λ3. First for ε > 0, note that

ε2w′′ε (t) + w′ε(t)− wε(t) + p

∫ t+h
ε

−∞
K(−s)wε(t− εs+ h)ds = Fε(t), t ∈ R,

where Fε(t) = fε(t) − p
∫ +∞

t+h
ε

K(−s)(yε(t − εs + h) − zε(t − εs + h))ds. Therefore,

vε(t) = e(b−σ)twε(t) satisfies

(5.22) ε2v′′ε (t) + αv′ε(t) = Pε(t),
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where α = 1− 2ε2(b− σ) > 0 and

Pε(t) = e(b−σ)tFε(t) + (1 + (b− σ)− ε2(b− σ)2)vε(t)

− p
∫ t+h

ε

−∞
K(−s)e(b−σ)(εs−h)vε(t− εs+ h)ds.

We claim that Pε ∈ L1[0,+∞] and ‖Pε‖1 ≤ C10. First, we show that e(b−σ)tFε(t)

is integrable on [0,+∞[. Indeed, is clear that e(b−σ)tfε(t) is integrable on R+. Fix

ρ > b− σ > 0, we have

∫ ∞

0

e(b−σ)t

∫ ∞
t+h
ε

K(−s)|yε(t− εs+ h)|dsdt

≤ C

∫ ∞

0

e(b−σ)t

∫ ∞
t+h
ε

K(−s)eρ(s− t+h
ε

)dsdt

≤ Ce−hρ
∫ ∞

0

e(b−σ−ρ)t

∫ +∞

0

K(−s)eρsdsdt := C11.(5.23)

In addition,

∫ ∞

0

e(b−σ)t

∫ +∞

t+h
ε

K(−s)|zε(t− εs+ h)|dsdt

≤
∫ ∞

0

e(b−σ)t
∑

0≤<λj(ε)<b−σ′
|Bj(ε)|

∫ +∞

t+h
ε

K(−s)e(−b+σ′)(t−εs+h)dsdt

≤
∫ ∞

0

e(σ′−σ)t
∑

0≤<λj(ε)<b−σ′
|Bj(ε)|

∫ +∞

0

K(−s)e−(−b+σ′)sdsdt ≤ C12.(5.24)

We conclude from (5.23) and (5.24) that e(b−σ)tFε(t) ∈ L1[0,+∞]. Furthermore,

since

∫ +∞

0

∫ t+h
ε

−∞
K(−s)e(b−σ)(εs−h)|vε(t− εs+ h)|dsdt

≤
∫ +∞

0

(
1

ε

∫ +∞

0

K
(u− t− h

ε

)
e(b−σ)|u−t−h

ε
|dt

)
|vε(u)|du

≤
∫ +∞

0

(∫ +∞

−∞
K(s)e(b−σ)|s|ds

)
|vε(u)|du ≤ C13

∫ +∞

0

|vε(u)|du ≤ C14,

we find that ‖Pε‖1 ≤ C10 for some C10 > 0.
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Next, by the variation of constants formula, we obtain from (5.22) that

(5.25) v′ε(t) = e−
α
ε2
t

(
v′ε(0) +

1

ε2

∫ t

0

e
α
ε2
sPε(s)ds

)
, ε 6= 0.

A direct integration of (5.25) yields

vε(t) = vε(0) +
ε2

α
v′ε(0)(1− e− α

ε2
t) +

1

ε2

∫ t

0

∫ u

0

e
α
ε2

(s−u)Pε(s)dsdu.

After changing the order of integration in the iterated integral, we obtain

1

ε2

∣∣∣∣
∫ t

0

∫ t

s

e
α
ε2

(s−u)Pε(s)duds

∣∣∣∣ =
1

α

∣∣∣∣
∫ t

0

Pε(s)(1− e
α
ε2

(s−t))ds

∣∣∣∣ ≤
1

α

∫ t

0

|Pε(s)|ds.

Additionally, since vε(t) = e(b−σ)twε(t), we get v′ε(0) = (b−σ)(yε(0)−zε(0))+y′ε(0)−

z′ε(0). Recalling (5.17), we find that

|v′ε(0)| ≤ (b− σ)(|yε(0)|+ |zε(0)|) + |y′ε(0)|+ |z′ε(0)| ≤ C15.

As a consequence, for all small |ε|, we have that

|vε(t)| ≤ |vε(0)|+ ε2

α
C15 +

1

α

∫ +∞

0

|Pε(s)|ds ≤ C16, t ≥ 0.

Taking into account the estimates

|Pε(t)| ≤ e(b−σ)t|Fε(t)|+ C16

(
1 + (b− σ) + (b− σ)2 + p

∫

R
K(−s)e(b−σ)|s|ds

)
,

and

e(b−σ)t|Fε(t)| ≤ C + p

∫ +∞

0

K(−s)
(
Ceρs +

∑

0≤<λj(ε)<b−σ′
|Bj(ε)|e−(−b+σ′)s

)
ds,

we obtain that |Pε(t)| ≤ C17, t ≥ 0 (cf. (5.23), (5.24)). This implies that |v′ε(t)| ≤

C15 +C17/α. Since α = 1− 2ε2(b− σ) > 0, for all ε such that ε2 < 1
4(b−σ)

, we obtain

that |v′ε(t)| ≤ C18. In consequence, |w′ε(t)| ≤ C19e
−(b−σ)t. Now, a similar reasoning

applies to the case ε < 0.
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Finally, since |yε(t)| ≤ Ce−γt, t ≥ 0, γ < b and |wε(t)| ≤ C9e
−(b−σ)t, t ≥ 0, we find

that

zε(t) =
∑

γ≤<λj(ε)<b−σ′
e−λj(ε)tBj(ε), t ≥ 0.

�

5.5 Existence of a continuous family of positive wavefronts

In this section, we prove the existence of positive wavefronts of equation (1.6).

This amounts to prove the existence of positive heteroclinic solutions of equation

(5.1).

Theorem V.12. Assume I.4 and I.9 . Let ψ be some positive heteroclinic solution of

equation (1.6): ψ(−∞) = 0, ψ(+∞) = κ. Then, for every δ > 0 there is a continuous

family of positive heteroclinic solutions ψε : (−ε∗, ε∗)→ Cλ−δ(R), ψ0 = ψ, of equation

(5.1). Furthermore, for some continuous t0 = t0(ε) we have ψε(t−t0) = exp(λ1(ε)t)+

θ1
ε(t), ψ′ε(t − t0) = λ1(ε) exp(λ1(ε)t) + θ2

ε(t) > 0, where |θiε(t)| ≤ C exp((2λ − δ)t),

t0 ≤ t0(ε).

Proof: We will suppose here that the C1-smooth function g is defined and bounded

on the whole real axis R.

For δ > 0 small, consider λ∗ = λ − δ. As we have seen, there is a neighborhood

Λ of 0 such that the operator F : Cψ,λ∗(R) × Λ → Cλ∗(R), F (φ, ε) = αψ′ + φ −

(Iε ◦ Gε)(αψ′ + φ) is well defined. Set φ0 := (ψ − αψ′) ∈ Cψ,λ∗(R) where α =

ψ2(0)(2

∫ 0

−∞
(ψ′(s))2ds)−1. From Lemma V.5 and Lemma V.8 it follows that F ∈

C(Cψ,λ∗(R) × Λ, Cλ∗(R)) and Fφ(φ, ε) is continuous in a neighborhood of (φ0, 0).

Note that

Fφ(φ, ε)y = y − Iε ◦ G ′ε(αψ′ + φ)y, y ∈ Cψ,λ∗(R).
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On the other hand, since

ψ(t)− (I−0 ◦ G)(ψ)(t) = ψ(t)−
∫ t

−∞
e−(t−s)g(ψ(s− h)ds = 0,

and

(I−0 ◦ G ′(ψ))(y)(t) =

∫ t

−∞
e−(t−s)g′(ψ(s− h))y(s− h)ds,

for all t ∈ R and y ∈ Cψ,λ∗(R), we conclude that

F (φ0, 0) = αψ′ + φ0 − (I0 ◦ G0)(αψ′ + φ0) = ψ − (I−0 ◦ G)(ψ) = 0,

Fφ(φ0, 0) = I − I0 ◦ G ′0(αψ′ + φ0) = I − I−0 ◦ G ′(ψ) = I −N .

Hence, applying the Implicit Function Theorem (e.g. see Lemma 2.1 and Remark

2.2(i) in [7, pp. 36-37]), we establish the existence of a continuous family φε : (−ε0, ε0)

→ Cψ,λ∗(R) of solutions of F (φ, ε) = 0. Since ψ0 = ψ, ψε = αψ′+φε ∈ Cλ∗(R) satisfy

equation (5.6), we obtain that

ψε(+∞) =
1

σ(ε)
Gε(ψε(+∞))

(1 + σ(ε)

2
+

2ε2

1 + σ(ε)

)
= g(ψε(+∞)) = κ.

On the other hand, ψε(−∞) = 0 in view of ψε ∈ Cλ∗(R). Therefore, ψε satisfies

all conclusions of the third sentence of the theorem, except its positivity, which is

proved below.

Let ε1 ∈ (0, ε0) be such that λ∗ < λ1(ε) < 2λ∗ < λ∞(ε) for all ε ∈ E1 = (−ε1, ε1).

Since ψ(·) : (−ε0, ε0) → Cλ∗(R) is continuous, there exists a constant C1 > 0 such

that |ψε(t)| ≤ C1 exp(λ∗t), t ≤ 0 and |ψε(t)| ≤ C1, t > 0, for all ε ∈ E1. Thus ψε

satisfies

(5.26) ε2ψ′′ε (t)− ψ′ε(t)− ψε(t) + p

∫

R
K(w)ψε(t− h− εw)dw = Ψε(t),

where

Ψε(t) =

∫

R
K(w) (pψε(t− h− εw)− g(ψε(t− h− εw))) dw
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is continuous in (ε, t) ∈ E1 × R. Since g(s) = ps + O(s2) as s → 0, we have that

|ps− g(s)| ≤Ms2, s ∈ [−s0, s0] for some s0,M > 0. Furthermore, since g(s) = sγ(s)

for a bounded γ ∈ C(R), we obtain that |ps− g(s)| ≤ sups∈R |p−γ(s)|
s0

s2, for all |s| ≥ s0.

Hence |ps− g(s)| ≤ C2s
2, s ∈ R, where C2 = max{M,

sups∈R |p−γ(s)|
s0

}. Consequently,

|Ψε(t)| ≤ C2‖ψε‖2e2λ∗t

∫

R
K(w)e2λ∗|w|dw ≤ C3e

2λ∗t, t ∈ R.

Setting yε(t) = ψε(−t), we see that yε satisfies

(5.27) ε2y′′(t) + y′(t)− y(t) + p

∫

R
K(−w)y(t+ h− εw)dw = fε(t), t ≥ 0,

where fε(t) := Ψε(−t). We observe that yε and fε satisfy the conditions of Lemma

V.11 with γ = λ∗ and b = 2λ∗. Therefore, for δ > 0 there is σ′ ∈ (0, δ) such that

yε(t) =
∑

λ∗≤<λj(ε)<2λ∗−σ′
e−λj(ε)tBj(ε) + w̃ε(t),

where |w̃ε(t)|+ |w̃′ε(t)| ≤ C∗e−(2λ∗−δ)t, t ≥ 0.

Next, we can suppose that λ∗ < λ1(ε) < 2λ∗ − δ for all ε ∈ E2 = (−ε2, ε2) ⊂ E1.

By Lemmas II.7, V.9, we have that <λj(ε) < λ∗ < λ < 2λ∗ < λ∞(ε), j ≥ 2, provided

that ε is small (say, ε ∈ E2 ⊂ E1) and λ∗ is sufficiently close to λ. In consequence,

setting θε(t) = w̃ε(−t), we obtain

(5.28) ψε(t) = B(ε) exp(λ1(ε)t) + θε(t),

(5.29) ψ′ε(t) = B(ε)λ1(ε) exp(λ1(ε)t) + θ′ε(t),

where Bε : E2 → R is continuous and |θε(t)|+ |θ′ε(t)| ≤ C∗e(2λ∗−δ)t, ε ∈ E2, t ≤ 0.

Now, consider the heteroclinic solution ψ(t) = exp(λt) + z(t) of equation (1.5).

Observe that z(t) = O(exp(2λ∗t)) at t = −∞. Thus we get 1−B(0) = e−λt(w0(t)−

z(t)) and

|1−B(0)| ≤ C4(e(2λ∗−δ−λ)t + e(2λ∗−λ)t), t ≤ 0,
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which is possible only if B(0) = 1.

Hence, there are E3 = (−ε3, ε3) ⊂ E2 and T < 0 (independent of ε) such that

ψε(t) ≥ eλ1(ε)t(0.7− C∗e(2λ∗−δ−λ1(ε))t) ≥ 0.5eλ1(ε)t > 0, t < T,

for all ε ∈ E3. On the other hand, we know that limε→0 ψε(t) = ψ(t) uniformly on R

and that ψ is bounded from below by a positive constant on [T,∞). In consequence,

we conclude that ψε is positive on R, if ε ∈ E4 = (−ε4, ε4) ⊂ E3.

Finally, to complete the proof of Theorem V.12 it suffices to take

t0(ε) = −λ−1
1 (ε) log(B(ε)).

�

5.6 Non-monotonicity of wavefronts

In this section, we prove that the fast positive wavefronts are non-monotone if

continuous g is differentiable at κ and

(5.30) g′(κ)heh+1 < −1.

Set ∆(z, ε) = ε2z2 − z − 1 + g′(κ) exp(−zh)

∫

R
K(w) exp(−zwε)dw.

Lemma V.13. Assume condition (5.30) and that suppK ⊂ [−η, η], for some η > 0.

Then the characteristic equation ∆(z, ε) = 0 has no real negative roots for all |ε|

sufficiently small.

Proof: Suppose that |ε| < h
η
. Since g′(κ) < 0, for |ε| small, we have

∆′′z(z, ε) = 2ε2 + g′(κ)

∫ η

−η
K(w) exp(−z(wε+ h))(εw + h)2dw

≤ 2ε2 + g′(κ)

∫ η

−η
K(w)(εw + h)2dw < 0, z < 0,
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so that ∆(z, ε) is strictly convex with respect to z < 0 for each |ε| small. This

guaranties the existence of at most two negative roots. Moreover, as it was proved

in [21, Lemma 15 ], ∆(z, 0) has not real roots once condition (5.30) is satisfied and

∆(z, 0) < 0, z ≤ 0 with ∆′z(z, 0) = −1−hg′(κ)e−zh. If we suppose that hg′(κ) < −1,

then

∆′z(0, ε) = −1− hg′(κ)− εg′(κ)

∫ η

−η
K(w)wdw > 0,

for all |ε| sufficiently small. Since ∆(0, ε) = −1 + g′(κ) < 0 we get, for |ε| small,

∆(z, ε) < 0, z ≤ 0. Now suppose that hg′(κ) ≥ −1. This implies that ∆′z(0, 0) =

−1 − hg′(κ) ≤ 0 and since limz→−∞∆(z, 0) = −∞ there exists z0 < 0 such that

∆(z0, 0) is a maximum point of ∆(z, 0). We have ∆′z(z0, 0) = 0 and ∆′′z(z0, 0) = −h,

so that we can use the implicit function theorem to deduce the existence of a negative

root z(ε) of the equation ∆′z(z, ε) = 0 with z(0) = z0, when |ε| is small. Moreover,

z(ε) is the absolute maximum point of z → ∆(z, ε) on ] − ∞, 0]. Finally, since

∆(z(ε), ε) depends continuously on ε, for |ε| > 0 small we have ∆(z, ε) < 0 for all

z ≤ 0. �

Lemma V.14. Assume I.9 and condition (5.30). Then every non-constant solution

ψ : R→ R of (1.6) satisfying ψ(+∞) = κ, oscillates about κ.

Proof: Consider some non-constant solution ψ : R → R of (1.6) such that

ψ(+∞) = κ. If for some η ∈ R, it holds that ψ(t) = κ for all t ≥ η, then we

obtain that g(ψ(t−h)) = κ, t ≥ η. This yields ψ(t) = κ for all t ≥ η−h. Repeating

this procedure, we find that ψ(t) ≡ κ, a contradiction.

Let σ(t) := ψ(t)− κ 6≡ 0. Since σ(+∞) = 0, it suffices to prove that σ oscillates

about zero. Observe that for some t0 ∈ R, σ satisfies the following delay differential
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equation:

(5.31) σ′(t) + σ(t)− q(t)σ(t− h) = 0, t ≥ t0,

where q(t) ∈ C([t0,+∞),R−) and limt→+∞ q(t) = g′(κ) < 0.

Since the characteristic equation ∆(z, 0) = 0 has no real roots, we obtain that

every solution of the limiting equation:

(5.32) σ′(t) + σ(t)− g′(κ)σ(t− h) = 0,

oscillates about zero (see [30, 35]). Now, equation (5.31) has positive and asymptotic

constant coefficient. Thus we can apply Theorem 2.4.1 from [30] to conclude that

every non-constant solution of (5.31) also oscillates. �

Theorem V.15. Assume I.4 and I.9, and condition (5.30). Then for each small

|ε| > 0, the positive wavefront solution ψε of equation (1.6) is non-monotone.

Proof: Let ψ be some positive heteroclinic solution of equation (1.6) and consider

the continuous family of positive heteroclinic solutions ψε of equation (1.6) obtained

in Theorem V.12. By Lemma V.14, ψ oscillates about κ. This implies that there is

t1 > 0 such that ψ(t1) > κ. Since limε→0 ψε = ψ uniformly on R, we get ψε(t1) > κ

for every small |ε|. Finally, since ψε(+∞) = κ and ψε(−∞) = 0, we conclude that

ψε is non-monotone. �

Theorem V.16. Assume I.9, condition (5.30) and let suppK ⊂ [−η, η]. If φε is a

fast positive wavefront solution of equation (1.6), then φε oscillates about κ.

Proof: By Lemma (V.13) equation ∆(z, ε) = 0 has no real negative roots. There-

fore we can apply Theorem 6 from [51] to conclude that φε is oscillatory for all small

ε > 0. �
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5.7 Application

Corollary V.17. Let assumptions of Corollary IV.20 . Then all conclusions of

Theorem I.10 hold true.

Now we apply Theorem I.10 and Corollary V.17 to time-delayed reaction-diffusion

population model of Nicholson’s and Mackey-Glass. First, we consider the non-local

diffusive Nicholson’s blowflies equation

(5.33) ut(t, x) = uxx(t, x)− δu(t, x) + p

∫

R
K(x− w)u(t− h,w)e−bu(t−h,w)dw,

where t, x ∈ R and δ, b > 0.

After a linear rescaling of both variables u and t, we can assume that δ = b = 1.

Equation (5.33) can therefore be written in the following normalized form

(5.34) ut(t, x) = uxx(t, x)− u(t, x) + p

∫

R
K(x− w)u(t− h,w)e−bu(t−h,w)dw.

The case of interest is p > 1 where equation (5.34) has a unique positive steady

state κ = ln p. Since the birth function g(s) = pse−s, s ≥ 0, satisfies all conditions

of Corollary V.17, then Theorem I.10 assures the existence of positive wavefront of

equation (5.34) for each sufficiently large speed c. Moreover, if ln p >
heh+1 + 1

heh+1
,

then these positive wavefront are non-monotone and are oscillating about κ if K(s)

has a compact support.

As a second application, let us consider the Mackey-Glass equation with non-

monotone nonlinearity birth function g(s) =
ps

1 + sn
, n ≥ 1, s ≥ 0. The corresponding

reaction-diffusion equation with non-local delay is

(5.35) ut(t, x) = uxx(t, x)− u(t, x) + p

∫

R
K(x− w)

u(t− h,w)

1 + (u(t− h,w))n
dw.

Taking p > 1 in equation (5.35), we find that all conditions of Corollary V.17 are

satisfied with κ = (p− 1)1/n and Γ = 1− n+ n/p. Then Corollary V.17 assures the
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existence of positive wavefronts of equation (5.35) for each sufficiently large speed c.

Now if p >
nheh+1

(n− 1)heh+1 − 1
, then these fast positive wavefront are non-monotone

and are oscillating about κ if K(s) has a compact support.



CHAPTER VI

On the uniqueness of positive semi-wavefronts for non-local
delayed reaction-diffusion equations

6.1 Introduction

In this chapter we prove the uniqueness (up to translations) of positive wave

solutions u(t, x) = φ(x + ct) satisfying φ(−∞) = 0 for non-local delayed reaction-

diffusion equations (1.1) where f, g ∈ C(R+,R+) and the non-negative K ∈ L1(R+×

R) satisfy the assumptions I.11 - I.14. However, usual Lipschitz condition |g(s) −

g(t)| ≤ g′(0)|s− t| is not required here. The uniqueness result is proved for all speeds

c > c?, where c? is given in Definition I.15. The proof is based on the observation that,

for c > c?, every two semi-wavefronts profiles to (1.1) have the same ”principal part”

in their asymptotic developments at −∞. However, in difference with [49, 19, 15, 59],

this ”principal part” contains more than one term (typically,
[
λ∞(c)
λ1(c)

]
− 1 terms).

We would like to emphasize that our main interest here is the uniqueness of semi-

wavefronts. Therefore, in Theorem I.16 we impose only those conditions which are

important for the proof of the uniqueness. It is easy to see that the assumptions of

Theorem I.16 do not guarantee the existence of semi-wavefronts (E.g. take linear f, g.

The same example shows that positive waves u(t, x) = φ(x + ct), with φ(−∞) = 0

and without restrictions on the growth of φ at +∞, are generally non-unique). The

relevant existence results can be found in [1, 20, 21, 37, 40, 51, 54, 55], observe that

116
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this list does not include [15].

On the other hand, integral equations for profile φ of semi-wavefront to (1.1) can

not be written in the form of nonlinear convolution equation

(6.1) φ(t) = (g ◦ φ) ∗ k(t), t ∈ R

studied in [15]. As a consequence, if comparing with [15], the implementation of our

idea requires new arguments, and our proof is self-contained. Moreover, our approach

allows to improve the uniqueness result (Theorem 6.4) of [15] to the following form:

Theorem VI.1. Suppose that the conditions of Theorem 6.3 from [15] are satisfied

(except the condition g(t) ≤ g′(0)t) and that, in addition, g in (6.1) is such that

|g(t1)− g(t2)| ≤ L|t1 − t2| for all t1, t2 ∈ [0, p]. If

(6.2) L inf
λ>0

∫

R
e−λsk(s)ds < 1,

then there is at most one nontrivial solution φ (modulo translation) of (6.1).

The proof of Theorem VI.1 is obtained by applying our methods and following

the results of [3] in the section Diekmann-Kaper theory re-visited. Theorem 6.4 in

[15] assumes L = g′(0), in such case (6.2) is satisfied automatically (under conditions

of the theorem). This also means that the ”optimal” L can be taken arbitrarily close

to
(
infλ>0

∫
R e
−λsk(s)ds

)−1
and is bigger than g′(0).

6.2 Preliminaries

Is clear that the profiles φ of the semi-wavefronts u(t, x) = φ(x+ ct) must satisfy

for t ∈ R,

(6.3) y′′(t)− cy′(t)− f(y(t)) +

∫ ∞

0

∫

R
K(s, w)g (y(t− cs− w)) dwds = 0.
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Equation (6.3) can be written as

y′′(t)− cy′(t)− βy(t) + fβ(y(t)) +

∫ ∞

0

∫

R
K(s, w)g(y(t− cs− w))dwds = 0, t ∈ R,

where fβ(s) = βs− f(s) for some β > 0.

Being φ a positive bounded function, it should satisfy the integral equation

φ(t) =
1

σ(c)

(∫ t

−∞
eν(t−s)G(φ(s))ds+

∫ +∞

t

eµ(t−s)G(φ(s))ds

)
,(6.4)

where σ(c) =
√
c2 + 4β, ν < 0 < µ are the roots of z2 − cz − β = 0 and G(φ(t)) :=

∫ ∞

0

∫

R
K(s, w)g(φ(t− cs− w))dwds+ fβ(φ(t)).

Hence, in order to establish the uniqueness of semi-wavefronts, we have to prove

the uniqueness of positive bounded solutions φ, φ(−∞) = 0 of equation (6.4). The

proof will involve the following Lipschitz property of fβ(s):

Lemma VI.2. Suppose that f satisfies I.12. Then, for every M > 0 there exists

β = β(M) > 0 sufficiently large such that fβ(s) ≥ 0 for all s ≥ 0 and

|fβ(s1)− fβ(s2)| ≤
(
β − inf

s≥0
f ′(s)

)
|s1 − s2|, s1, s2 ∈ [0,M ].

Proof: Since f is continuously differentiable on [0,M ] and f(0) = 0, we can choose

β > infs≥0 f
′(s) such that fβ(s) = βs− f(s) ≥ 0 for all s ∈ [0,M ] and

max
s∈[0,M ]

f ′(s) ≤ 2β − inf
s≥0

f ′(s).

Take s1 < s2 in [0,M ], then f(s2) − f(s1) = f ′(s0)(s2 − s1) for some s0 ∈ [s1, s2].

Thus

(6.5)
fβ(s2)− fβ(s1)

s2 − s1

= β − f(s2)− f(s1)

s2 − s1

= β − f ′(s0) ≤ β − inf
s≥0

f ′(s),

and

(6.6)
fβ(s2)− fβ(s1)

s2 − s1

≥ β −
(

2β − inf
s≥0

f ′(s)
)

= −β + inf
s≥0

f ′(s).
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From (6.5) and (6.6) we obtain that

∣∣∣∣
fβ(s2)− fβ(s1)

s2 − s1

∣∣∣∣ ≤
(
β − inf

s≥0
f ′(s)

)
, s1, s2 ∈ [0,M ],

and the lemma follows. �

Lemma VI.3. Let β be as in Lemma VI.2. If φ : R→ (0,+∞) is a bounded solution

of equation (6.3), then

φ(t)e−νt ≤ φ(s)e−νs and φ(t)e−µt ≥ φ(s)e−µs, t ≤ s,(6.7)

where ν < 0 < µ are the roots of z2 − cz − β = 0.

Proof: Differentiating (6.4), we obtain

(6.8) φ′(t) =
1

σ(c)

(
ν

∫ t

−∞
eν(t−s)G(φ(s))ds+ µ

∫ +∞

t

eµ(t−s)G(φ(s))ds

)
,

so that

(6.9) φ′(t)− νφ(t) =
1

σ(c)
(µ− ν)

∫ +∞

t

eµ(t−s)G(φ(s))ds > 0,

and

(6.10) φ′(t)− µφ(t) =
1

σ(c)
(ν − µ)

∫ t

−∞
eν(t−s)G(φc(s))ds < 0.

Hence, (φ(t)e−νt)′ > 0 and (φ(t)e−µt)′ < 0 for all t ∈ R, which imply (6.7). �

6.3 Characteristic equations

In this section, we analyze the roots of the characteristic equation χ(z, c) = 0,

where p, q ≥ 0 and

(6.11) χ(z, c) := z2 − cz − q + p

∫ ∞

0

∫

R
K(s, w)e−z(cs+w)dwds.
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Lemma VI.4. Assume I.13 and suppose that p > q. There exists a real number c0

such that for every c > c0, equation (6.11) has exactly two real roots 0 < λ̃1(c) <

λ̃∞(c). If c < c0, then χ(z, c) > 0 for all z > 0. Furthermore, the vertical strip

λ̃1(c) ≤ <z ≤ λ̃∞(c) does not contain complex roots of (6.11) with =z 6= 0.

Proof: Set

H(z, c) := q + cz − z2, G(z, c) := p

∫ ∞

0

∫

R
K(s, w)e−z(cs+w)dwds.

Then H(0, c) = q < G(0, c) = p and

G′′z(z, c) = p

∫ ∞

0

∫

R
K(s, w)e−z(cs+w)(cs+ w)2dwds > 0,

so that G(z, c) is strictly concave with respect to z. As a consequence, equation

H(z, c) = G(z, c) has at most two real roots.

Now, note that for z > 0, G(z, c) decreases with respect to c whileH(z, c) increases

with respect c. Thus, we obtain there exists c0 > 0 such that for every c ∈ (c0,+∞),

the equation (6.11) has exactly two real roots 0 < λ̃1(c) < λ̃∞(c) and if c < c0, then

χ(z, c) > 0 for all z > 0.

We now prove that the vertical strip λ̃1(c) ≤ <z ≤ λ̃∞(c) does not contain complex

roots of (6.11) for each c > c0. We first observe that if µ(c), ν(c) are the roots of

z2 − cz − q = 0, then for all z ∈ C \ R we have

|z2 − cz − q| = |z − µ(c)||z − ν(c)| > |<z − µ(c)||<z − ν(c)| = |(<z)2 − c<z − q|.

Next, since λ̃1(c) and λ̃∞(c) are the unique real roots of equation H(z, c) = G(z, c),

we get H(z, c) > G(z, c) for all z ∈
(
λ̃1(c), λ̃∞(c)

)
, see figure 6.1.

Thus, for all z ∈ C \ R such that λ̃1(c) ≤ <z ≤ λ̃∞(c), we obtain that

|p
∫ ∞

0

∫

R
K(s, w)e−z(cs+w)dwds| ≤ p

∫ ∞

0

∫

R
K(s, w)e−<z(cs+w)dwds

≤ q + c<z −<z2 = |(<z)2 − c<z − q| < |z2 − cz − q|,
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H

G

q

p

λ̃1(c) λ̃∞(c)

Figure 6.1: G(z, c) and H(z, c), z ≥ 0, c > c0.

so that the vertical strip λ̃1(c) ≤ <z ≤ λ̃∞(c) does not contain roots z ∈ C \ R of

(6.11) for each c > c0. �

6.4 Asymptotic formulae for semi-wave profile

First, following Lemma 22 from [51], we obtain an asymptotic expansion of certain

solutions y to the non-homogeneous equation

(6.12) y′′(t) + αy′(t)− qy(t) + p

∫ ∞

0

∫

R
K(s, w)y(t+ms+ nw)dwds = h(t), t ∈ R,

where α, p, q,m, n 6= 0. Throughout the section, we assume (I.13) and we denote by

C1, C2, . . . some positive constants and by a, b, c, . . . some real numbers.

Lemma VI.5. Let y ∈ C2(R,R) verify equation (6.12), where |h(t)| ≤ C1e
bt for all

t ≥ 0. Suppose further that |y(t)| ≤ C2e
at, t ≥ 0 and |y(t)| ≤ C3e

dt, t ≤ 0, for some

a, d. If a > b, then given σ ∈ (0, a− b) we have that

y(t) = z(t) + exp((b+ σ)t)o(1), t→ +∞,

where z(t) is a finite sum of eigensolutions of (6.12) associated to the eigenvalues

λ̃j(c) such that (b+ σ) < <λ̃j(c) ≤ a. The analogous result for t→ −∞ also holds.
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Proof: First, observe that the conditions of Lemma VI.5 imply the existence of

k ≥ a such that |y′(t)|, |y′′(t)| ≤ C4e
kt, t ≥ 0. Indeed, y satisfies the equation

(6.13) y′′(t) + αy′(t)− qy(t) +H(t) = 0,

where H(t) := p

∫ ∞

0

∫

R
K(s, w)y(t+ms+ nw)dwds− h(t) is such that

|H(t)| ≤ p

∫ ∞

0

(∫ − t+ms
n

−∞
K(s, w)|y(t+ms+ nw)|dw

+

∫ +∞

− t+ms
n

K(s, w)|y(t+ms+ nw)|dw
)
ds+ |h(t)|

≤ C5e
kt

(∫ ∞

0

∫ +∞

−∞
K(s, w)ek|ms+nw|dwds+ 1

)
:= C6e

kt, t ≥ 0,

where k = max{|a|, |d|}.

Now, from (6.13) for t ≥ 0 we get that

(y′(t)eαt)′ = eαt
(
qy(t)−H(t)

)
,

so that

y′(t) = e−αt
(
y′(0) +

∫ t

0

eαs(qy(s)−H(s))ds
)
.

Thus, we obtain that

|y′(t)| ≤ e−αt
(
|y′(0)|+ qC2 + C6

α + k

(
e(α+k)t − 1

))
, α + k 6= 0, t ≥ 0.(6.14)

Hence, if α+k > 0, then from (6.14) we have |y′(t)| ≤ C7e
kt, t ≥ 0, and if α+k < 0,

from (6.14) we obtain that |y′(t)| ≤ C8e
−αt, t ≥ 0. Finally, from (6.13) we obtain

easily similar estimations for y′′(t), t ≥ 0, for both cases.

Applying the Laplace transform to (6.12), we can prove the assertion using the

same method of proof of [51, Lemma 22]. �

The next lemma is crucial in the proof of uniqueness, it gives an asymptotic

expansion of positive solutions φ of equation (6.3). Since g′(0) > f ′(0), Lemma VI.4
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implies that equation (1.9) has two positive roots λ1(c) < λ∞(c) if and only if c > c∗.

Moreover, the vertical strip λ1(c) ≤ <z ≤ λ∞(c) does not contain roots λj(c) ∈ C\R

of (1.9).

Lemma VI.6. Suppose that f ′(0+), g′(0+) are finite and let φ be a positive semi-

wavefront solution of equation (6.3). Then for each ρ ∈ (0, 1) there exist Γ > 0 and

t0 < 0 such that supt≤t0
φ(t−Γ)
φ(t)

≤ ρ.

Proof: Suppose that, contrary to our claim, there exist ρ ∈ (0, 1) and tn → −∞

such that for Γ = − ln ρ
2

λ1(c)
, it holds φ(tn − Γ) > ρφ(tn). Now, since φ satisfies (6.3),

we conclude that φn(t) :=
φ(t+ tn)

φ(tn)
is a positive solution of

φ′′n(t)− cφ′n(t)− βφn(t) +

∫ ∞

0

∫

R
Kn(s, w)φn(t− cs− w))dwds

+ bn(t)φn(t) = 0,

where Kn(s, w) := K(s, w)an(t, w), an(t, w) :=
g(φ(t+ tn − cs− w))

φ(t+ tn − cs− w)
and bn(t) :=

fβ(φ(t+ tn))

φ(t+ tn)
.

From (6.7), it follows that eµt ≤ φn(t) ≤ eνt for all t ≤ 0 and eνt ≤ φn(t) ≤ eµt

for all t ≥ 0. Note also that φn(−Γ) > ρ, bn(t) < β and since g′(0) exists, an(t, w) ≤

C9 for all n ∈ N and t, w ∈ R. Moreover, limn→∞Kn(s, w) = K(s, w)g′(0) and

limn→∞ bn(t) = f ′β(0) pointwise. Set

Gn(t) =

∫ ∞

0

∫

R
Kn(s, w)φn(t− cs− w)dwds+ bn(t)φn(t).

Then for each T > 0 there exists C10 := C10(T ) such that for all t ∈ [−T, T ] we have
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|Gn(t)| ≤ C10. Indeed,

0 ≤ Gn(t) ≤ C9

∫ ∞

0

∫

R
K(s, w)φn(t− cs− w))dwds+ βφn(t)

≤ C9

∫ ∞

0

(∫ t−cs

−∞
K(s, w)eµ(t−cs−w)dw +

∫ +∞

t−cs
K(s, w)eν(t−cs−w)dw

)
ds

+ βmax{e|ν|t, eµt}

≤ C9e
ζT

∫ ∞

0

∫

R
K(s, w)eζ|cs+w|dwds+ βmax{e|ν|T , eµT} := C10,

where ζ := max{µ, |ν|}.

Now, observe that (6.9) and (6.10) imply that νφ(t) ≤ φ′(t) ≤ µφ(t) for all t ∈ R

so that

|φ′n(t)| ≤ max{|ν|, µ}φn(t) ≤ max{|ν|, µ}emax{|ν|,µ}T .

In this way, we may apply the Ascoli-Arzela compactness criterion together with a

diagonal argument on each of the intervals [−T, T ] to find a subsequence {φnj(t)}

converging, in the compact open topology, to a non-negative function φ∗ : R → R.

Note that φ∗(−Γ) > ρ and eµt ≤ φ∗(t) ≤ eνt for all t ≤ 0 and eνt ≤ φ∗(t) ≤ eµt for all

t ≥ 0. By the Lebesgue’s dominated convergence theorem, we have for every fixed

t ∈ R

Gn(t)→ G∗(t) := g′(0)

∫ ∞

0

∫

R
K(s, w)φ∗(t− cs− w))dwds+ f ′β(0)φ∗(t).

In consequence, integrating

φ′n(t) =

∫ t

0

ec(t−s)(βφn(s)−Gn(s))ds

between 0 and t and then taking the limit as nj →∞, we establish that φ∗ satisfies

φ′′∗(t)− cφ′∗(t)− f ′(0)φ∗(t) + g′(0)

∫ ∞

0

∫

R
K(s, w)φ∗(t− cs− w))dwds = 0.(6.15)

By Lemma VI.5, for almost every b < λ∞(c)

φ∗(t) = z(t) + w+(t), t ∈ R,
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where z(t) is a finite sum of eigensolutions of (6.15) associated to the eigenvalues

λj(c) with b < <λj(c) ≤ µ and w+(t) = O(ebt), t → +∞. Since φ∗(t) > 0 for all

t ∈ R, then this sum does not contain eigenfunctions associated to eigenvalue with

<λj > λ∞(c) so that b < <λj(c) ≤ λ∞(c). We now choose b = λ1(c)− δ, δ > 0 small.

Since the strip λ1(c)− δ < <λj(c) ≤ λ∞(c) does not contain complex roots of (1.9)

with =λj(c) 6= 0, we obtain

φ∗(t) = A1(c)eλ1(c)t + A2(c)eλ∞(c)t + w+(t), t ∈ R,

where Aj(c) ∈ R and w+(t) = O(e(λ1(c)−δ)t), t→ +∞.

In a similar way, we obtain

φ∗(t) = B1(c)eλ1(c)t +B2(c)eλ∞(c)t + w−(t), t ∈ R,

where w−(t) = O(e(λ∞(c)+σ)t), t→ −∞, Bj(c) ∈ R and σ > 0 small.

Since

w−(t) = (A1(c)−B1(c))eλ1(c)t + (A2(c)−B2(c))eλ∞(c)t + w+(t), t ∈ R,

we have w−(t) = O(eλ∞(c)t), t → +∞. Thus, for z ∈ C such that λ∞(c) < <z <

λ∞(c) + σ, we can define the two-sided Laplace transform of w−:

W (z) :=

∫

R
e−ztw−(t)dt.

Since w− is also a solution of (6.15), applying the Laplace transform to (6.15) we

obtain that χ0(z, c)W (z) = 0 for all λ∞(c) < <z < λ∞(c) + σ . But χ0(z, c) 6= 0 if

λ∞(c) < <z < λ∞(c)+σ so that W (z) = 0. By the Inversion Theorem [56, Theorem

6b, p.244] we get that w−(t) = 0 for all t ∈ R. Therefore

φ∗(t) = B1(c)eλ1(c)t +B2(c)eλ∞(c)t, t ∈ R,(6.16)
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where B1(c), B2(c) ≥ 0.

Finally, from (6.16) we get that

φ∗(t) = eλ1(c)(t−s)
(
B1(c)eλ1(c)s +B2(c)eλ∞(c)se(λ∞(c)−λ1(c))(t−s)

)

≤ eλ1(c)(t−s)φ∗(s), t ≤ s.

This implies that φ∗(−Γ) ≤ e−Γλ1(c)φ∗(0) = e−Γλ1(c) = ρ
2
, a contradiction. �

Lemma VI.7. Assume that f, g : R+ → R+ are functions differentiable at 0. Then

any positive semi-wavefront solution φ of equation (6.3) satisfies that φ(t) = O(eγt)

as t→ −∞, for some γ = γ(c) > 0.

Proof: Let ρ ∈ (0, 1), then Lemma VI.6 implies that there are Γ > 0 and t0 < 0

such that φ(t − Γ) ≤ ρφ(t) for all t ≤ t0. Now, we define the function h(t) =

φ(t)e−γt, t ∈ R, where γ = 1
Γ

ln 1
ρ
> 0. Then,

h(t− Γ) = φ(t− Γ)e−γ(t−Γ) ≤ ρeγΓφ(t)e−γt = h(t).

This implies that supt<t0 h(t) is finite. Hence, φ(t) = O(eγt) as t→ −∞.

We observed that the proof of Lemma VI.6 is a new form to prove the lemma

above. See [?, Theorem 21] for the other form prove it. �

Lemma VI.8. Suppose I.14. Let φ be a positive solution of equation (6.3) with

c > c0 such that supt≥0 φ(t) is finite. Then, there is t0 ∈ R and a small δ > 0 such

that either

φ(t− t0) = eλ1(c)t + w(t), t ∈ R,

or

φ(t− t0) = eλ∞(c)t + w̄(t), t ∈ R,
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where λ1(c) < λ∞(c) are the positive roots of equation (1.9), w(t) = O(e(λ1(c)+δ)t)

and w̄(t) = O(e(λ∞(c)+δ)t) as t→ −∞.

Proof: By Lemma VI.7 there exists γ > 0 such that φ(t) = O(eγt) as t → −∞.

Since φ(t) ≥ φ(0)eµt for all t ≤ 0, φ has not super exponential decay at t = −∞.

Thus, without restricting the generality, we may assume that γ is ”almost optimal”

in the sense that φ(t) = O(eγt) as t→ −∞, but for all ρ > 0, φ(t) 6= O(e(γ+ρ)t), t→

−∞. Being φ a solution of equation (6.3), it satisfies

(6.17) y′′(t)−cy′(t)−f ′(0)y(t)+g′(0)

∫ ∞

0

∫

R
K(s, w)y(t−cs−w)dwds = h(t), t ∈ R,

where

h(t) =

∫ ∞

0

∫

R
K(s, w)

(
g′(0)φ(t− cs− w)− g(φ(t− cs− w))

)
dwds

+ f(φ(t))− f ′(0)φ(t).

Since g satisfies I.14, |g′(0)s− g(s)| ≤ Qsθ+1 for all s ∈ [0, ε] so that there exists C11

such that |g′(0)s− g(s)| ≤ C11s
θ+1, s ∈ [0, supt∈R φ(t)]. Similar arguments apply to

f . Consequently, for all t ∈ R

|h(t)| ≤ C12e
γ(θ+1)t

(∫ ∞

0

∫

R
K(s, w)e−(γ(θ+1))(cs+w)dwds+ 1

)
:= C13e

γ(θ+1)t.

Next, consider ψ(t) = φ(−t), then ψ satisfies

(6.18) y′′(t) + cy′(t)− f ′(0)y(t) + g′(0)

∫ ∞

0

∫

R
K(s, w)y(t+ cs+ w)dwds = H(t),

where H(t) = h(−t). Note that ψ and H(t) satisfy of conditions of Lemma VI.5

with a = −γ, b = −γ(θ + 1) and d = 0. Hence, we have that for all 0 < σ < γθ,

ψ(t) = z̃(t) + w̃(t), t ≥ 0,
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where z̃(t) is a finite sum of eigensolutions of (6.18) associated to the eigenvalues λ̃j(c)

such that −γ(θ + 1) + σ < <λ̃j(c) ≤ −γ and the function w̃(t) = O(e(−γ(θ+1)+σ)t) as

t → +∞. Observe now that λ̃ is an eigenvalue of (6.18) if and only if −λ̃ is a root

of (1.9). Thus,

φ(t) = z(t) + w(t), t ≤ 0,

where z(t) := z̃(−t) is a finite sum of eigensolutions of (6.17) associated to the

eigenvalues λj(c) such that γ ≤ <λj(c) < γ(θ + 1) − σ and w(t) := w̃(−t) =

O(e(γ(θ+1)−σ)t) as t→ −∞.

Now, being φ(t) > 0 observe that [γ, γ(θ + 1)] ∩ {λ1(c), λ∞(c)} 6= ∅ so that for

some σ small we have

φ(t) = B1(c)eλ1(c)t +B2(c)eλ∞(c)t +O(e(λ∞(c)+δ)t), t ∈ R,

where B1(c), B2(c) ∈ R can not both be zero and δ > 0 is small. Next, if B1(c) 6= 0,

then the positivity of φ implies that B1(c) > 0 and the first affirmation of lemma

follows. Otherwise, if B1(c) = 0, then B2(c) > 0 and the second affirmation of lemma

follows. �

6.5 Uniqueness of positive semi-wavefront

In this section we establish the uniqueness of the positive semi-wavefront of equa-

tion (6.3) for each speed c > c?, where c? is given in (1.8). In the sequel, we will

assume that I.11- I.14 hold.

In the following lemma we will prove that the asymptotic formula with λ∞(c) in

Lemma VI.8 can not happen when c > c?.

Lemma VI.9. If ψ is a positive semi-wavefront of equation (6.3) with c > c?, then
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there are t0 ∈ R and small δ > 0 such that

ψ(t− t0) = eλ1(c)t + w(t), t ∈ R,

where λ1(c) is the smallest positive root of equation (1.9) and w(t) = O(e(λ1(c)+δ)t)

as t→ −∞.

Proof: Suppose that the assertion of the lemma is false. Then Lemma VI.8 assures

that for all z ∈ C such that 0 < <z < λ∞(c) the two-side Laplace transform of ψ,

Ψ(z) =

∫

R
e−zsψ(s) ds, is well defined.

Next, we observe that ψ satisfies the equation

ψ′′(t)− cψ′(t)−
[

inf
s≥0

f ′(s)
]
ψ(t) + L

∫ ∞

0

∫

R
K(s, w)ψ(t− cs− w)dwds = h(t).

(6.19)

Here

h(t) =

∫ ∞

0

∫

R
K(s, w)(Lψ − g ◦ ψ)(t− cs− w)dwds

+
(
β − inf

s≥0
f ′(s)

)
ψ(t)− fβ(ψ(t))

is a non-negative bounded function such that h(t) ≤ Ceλ∞(c)t, t ≤ 0, for some C > 0.

Indeed,

Ls− g(s) ≤ s

(
L+ sup

s∈A

g(s)

s

)
, where A := (0, sup

t∈R
ψ(t)].

The same reasoning applies to
(
β − inf

s≥0
f ′(s)

)
ψ(t) − fβ(ψ(t)). Therefore, for some

C1 > 0,

0 ≤ h(t) ≤ C1e
λ∞(c)t

(∫ ∞

0

∫

R
K(s, w)e−λ∞(c)(cs+w)dwds+ 1

)
, t ≤ 0.
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Next, from equations (6.3), (6.9) and (6.10) we obtain easily that ψ′(t) and ψ′′(t)

are bounded in R and ψ′(t), ψ′′(t) = O(eλ∞(c)t) at t → −∞. Applying the two-

side Laplace transform to (6.19), we get that χL(z, c)Ψ(z) = H(z), where H(z) =

∫
R e
−zsh(s) ds. Moreover, Ψ(z) and H(z) are analytic in 0 < <z < λ∞(c). As a

consequence, the function Ψ(z) = H(z)
χL(z,c)

has removable singularities in 0 < <z <

λ∞(c).

Now, if we suppose that h(t) = 0, t ∈ R, then H(z) = 0 for all z ∈ C so

that Ψ(z) = 0 in 0 < <z < λ∞(c). By the Inversion Theorem we have ψ(t) = 0

for all t ∈ R, a contradiction. Hence, h(t) > 0 on some subinterval of R and

H(γ1(c)), H(γ∞(c)) > 0, where γ1(c) and γ∞(c) are the positive roots of χL(z, c) = 0.

Then we get that γ1(c) and γ∞(c) are simple poles of Ψ(z), a contradiction.

Theorem VI.10. Suppose that φ and ψ are two different positive semi-wavefront

solutions of (6.3) and c > c?. Then there exists t0(c) ∈ R such that φ(t− t0) = ψ(t)

for all t ∈ R.

Proof: Due to the Lemma VI.9, we can assume that φ, ψ have the same asymptotic

representation φ(t), ψ(t) = eλ1(c)t + O(e(λ1(c)+δ)t) at −∞, for some δ > 0 small. We

will divide the proof into three step.

Step I. By way of contradiction, suppose that Ω(t) := φ(t) − ψ(t) 6= 0. Then,

Ω(−∞) = 0, supt>0 Ω(t) is finite and Ω(t) = O(e(λ1(c)+δ)t) as t→ −∞. Moreover, Ω

satisfies the equation

y′′(t)− cy′(t)− f ′(0)y(t) + g′(0)

∫ ∞

0

∫

R
K(s, w)y(t− cs− w)dwds = h(t),
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where

h(t) =

∫ ∞

0

∫

R
K(s, w)(g′(0)Ω− g ◦ φ+ g ◦ ψ))(t− cs− w)dwds

+ f(φ(t))− f(ψ(t))− f ′(0)Ω(t).

Since g satisfies (I.14), for all s1, s2 ∈ [0, ε] we get that

|g(s1)− g(s2)− g′(0)(s1 − s2)| ≤
∣∣∣∣
g(s1)− g(s2)

s1 − s2

− g′(0)

∣∣∣∣ |s1 − s2|

≤ |g′(s)− g′(0)||s1 − s2| ≤ Qsθ|s1 − s2|,

where s is a number between s1 and s2. Moreover, (I.11) implies that

|g(s1)− g(s2)− g′(0)(s1 − s2)| ≤ L+ g′(0)

(2ε)θ
|s1 − s2|(s1 + s2)θ, s1, s2 > ε.

Similar arguments apply to f . Consequently, we obtain easily that the function h

satisfies h(t) = O(e(λ1(c)(θ+1)+δ)t) as t→ −∞.

Since the characteristic equation (1.9) does not have roots for λ1(c) < <z <

λ∞(c), a proceed analogously to the prove of Lemma VI.8 enables us to write Ω(t) =

O(eγt) as t→ −∞, where γ ≥ λ∞(c) is almost optimal.

Step II. Let γ1(ε) < γ∞(ε) be the positive roots of equation χL(z, c) = 0 and fix

m > 0 such that γ1(c) < m < γ∞(c). Then

m2 − cm− inf
s≥0

f ′(s) + L

∫ ∞

0

∫

R
K(s, w)e−m(cs+w)dwds < 0,(6.20)

and if we define P := β − inf
s≥0

f ′(s), then (6.20) implies that

P + L

∫ ∞

0

∫

R
K(s, w)e−m(cs+w)dwds

β + cm−m2
< 1.

Note that λ1(c) ≤ γ1(c) < m < γ∞(c) ≤ λ∞(c).

Step III. We now define Ω̄(t) := |Ω(t)|e−mt ≥ 0, t ∈ R. Then step I implies that

Ω̄(±∞) = 0 and Ω̄(τ) = maxs∈R Ω̄(s) > 0 for some τ ∈ R.
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Next, take M := max{supt∈R ψ(t), supt∈R φ(t)} in Lemma VI.2. This lemma and

integral equation (6.4) imply that

|Ω(t)| ≤ 1

σ(c)

(∫ t

−∞
eν(t−s)|G(φ(s))− G(ψ(s))|ds

+

∫ +∞

t

eµ(t−s)|G(φ(s))− G(ψ(s))|ds
)

≤ 1

σ(c)

(∫ t

−∞
eν(t−s)

(
L

∫ ∞

0

∫

R
K(r, w)|Ω(s− cr − w)|dwdr + P |Ω(s)|

)
ds

+

∫ +∞

t

eµ(t−s)
(
L

∫ ∞

0

∫

R
K(r, w)|Ω(s− cr − w)|dwdr + P |Ω(s)|

)
ds

)
,

so that

Ω̄(τ) ≤ Ω̄(τ)

σ(c)

(
L

∫ ∞

0

∫

R
K(r, w)e−m(cr+w)dwdr + P

)(∫ τ

−∞
e(ν−m)(τ−s)ds

+

∫ +∞

τ

e(µ−m)(τ−s)ds

)

=
Ω̄(τ)

σ(c)

(
L

∫ ∞

0

∫

R
K(r, w)e−m(cr+w)dwdr + P

)
ν − µ

(ν −m)(µ−m)

= Ω̄(τ)

(
L

∫ ∞

0

∫

R
K(r, w)e−m(cr+w)dwdr + P

)
1

β + cm−m2
< Ω̄(τ),(6.21)

which is impossible. Hence, Ω̄(τ) = 0 and the lemma follows. �

Remark VI.11. Some estimations of c? can be found in [5, 53, 57].



CHAPTER VII

On the minimal speed of traveling waves for a non-local
delayed reaction-diffusion equation

7.1 Estimation of the minimal speed of propagation

In this chapter, we estimate the minimal speed of propagation of positive traveling

wave solutions for non-local delayed reaction-diffusion equation (1.6), which is widely

used in applications, e.g. see [28, 36, 47, 51, 55] and references wherein. It is assumed

that the birth function g is of the monostable type, p := g′(0) > 1 and h ≥ 0. The

non-negative kernel K is such that K(s) = K(−s) for s ∈ R,
∫

RK(s)ds = 1 and

∫
RK(s) exp(λs)ds is finite for all λ ∈ R. Consider

(7.1) ψ(z, ε) = εz2 − z − 1 + p exp(−zh)

∫

R
K(s) exp(−√εzs)ds,

which determines the eigenvalues of equation (1.6) at the trivial steady state. From

[40, 51], we know that there is ε0 = ε0(h) > 0 such that ψ(z, ε0) = 0 has a unique

multiple positive root z0 = z0(h). Furthermore, if g(s) ≤ g′(0)s for s ≥ 0, then

the minimal speed c∗ is equal to c∗ = 1/
√
ε0 . Note that z0 and ε0 are the unique

solutions of the system

(7.2) ψ(z, ε) = 0, ψz(z, ε) = 0.

Let us state our main result.
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Notation VII.1. Set

k1 = 2

√
p− 1

1 + p
2

∫
R s2K(s)ds

− p
∫

R
sK(s) exp

(
−s
√

p− 1

1 + p
2

∫
R s2K(s)ds

)
ds,

k2 =
1√
ln p

ln

(
p

∫

R
K(s) exp(−

√
ln ps)ds

)
.

It is clear that k2 > 0 and bellow we will show that k1 is positive.

Theorem VII.2. Assume that K(s) ≥ 0 is such that K(s) = K(−s) for s ∈ R,

∫
RK(s)ds = 1 and

∫
RK(s) exp(λs)ds is finite for all λ ∈ R. Then c∗ = c∗(h) =

1/
√
ε0(h) is a C∞-smooth decreasing function of variable h ∈ R+. Moreover,

1. max

{
2

√
p− 1

p(2h+ h2) + 1
,
2
√

ln p

1 + h

}
< c∗ < min

{
k1

1 + h
,
k2

h

}
, h ∈ [0, 1],

2. max

{
2

√
p− 1

p(2h+ h2) + 1
,

√
ln p

h

}
< c∗ < min

{
k1

2
,
k2√
h

}
, h ∈ [1,+∞).

Furthermore,
C1

h
≤ c∗(h) ≤ C2

h
, h ≥ 1, for some positive C1 < C2.

Observe that Theorem VII.2 implies that c∗(h) = O(h−1), h → +∞, in this way

we improve the estimation c∗(h) = O(h−1/2), h→ +∞, proved in [53, 57].

Proof: It follows from [40, 51] that the functions z0 = z0(h) and ε0 = ε0(h)

are well defined for all h ≥ 0. Set F (h, z, ε) = (ψ(z, ε), ψz(z, ε)). It is easy to see

F ∈ C∞(R+ × R× (0,∞),R2), F (h, z0, ε0) = 0, and

∣∣∣∣
∂F (h, z0, ε0)

∂(z0, ε0)

∣∣∣∣ = ψzz(z0, ε0)ψε(z0, ε0)

= (2ε0 + p

∫

R
K(s) exp(−z0(h+

√
ε0s))(h+

√
ε0s)

2ds)

× z0

2ε0

(1 + hp

∫

R
K(s) exp(−z0(h+

√
ε0s))ds) > 0.

Applying the Implicit Function Theorem we find that z0, ε0 ∈ C∞(0,+∞).

On the other hand, after introducing a new variable w =
√
εz we find that system

(7.2) takes the following form:
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(7.3)

(
1 +

w√
ε
− w2

)
exp

(
wh√
ε

)
= p

∫

R
K(s) exp(−ws)ds.

(7.4)

(
h√
ε
w2 +

(
2− h

ε

)
w − 1 + h√

ε

)
exp

(
wh√
ε

)
= p

∫

R
sK(s) exp(−ws)ds.

Let G(w) =
(

1 + w√
ε0
− w2

)
, H(w) =

(
1 + w√

ε0
− w2

)
exp

(
wh√
ε0

)
and R(w) =

p
∫

RK(s) exp(−ws)ds. Set also w0 = w0(h) =
√
ε0(h)z0(h). First, note that

G(w0) = exp
(
−wh√
ε0

)
R(w0) > 0 and G(w) ≥ 1 when 0 ≤ w ≤ 1/

√
ε0. As can

be checked directly, H has a unique positive local extremum (maximum) at some w̄.

Since K(s) = K(−s), s ∈ R, it is easy to see that R increases on R+.

Differentiating equation (7.3) with respect to h and using (7.4) we get the following

differential equation

(7.5) ε′0(h) =
2ε0(h)G(w0(h))

1 + hG(w0(h))
> 0.

The remainder of the proof will be divided in several steps.

Step I. If h ∈ [0, 1], then H ′(1/
√
ε0) =

(
h−1√
ε0

)
eh/ε0 ≤ 0. Hence, w̄ ≤ 1/

√
ε0.

In addition, if w ∈ (0, w̄) then H ′(w) > 0. As R′(w) > 0 for w > 0, we have

w0 < w̄ ≤ 1/
√
ε0. Thus, we get G(w0) ≥ 1. In this way, ε′0(h) ≥ 2ε0(h)/(1 + h)

for h ∈ [0, 1] that yields (1 + h)2ε0(0) ≤ ε0(h) ≤ (1 + h)2ε0(1)/4 (equivalently,

2c∗(1)/(1 + h) ≤ c∗(h) ≤ c∗(0)/(1 + h), for h ∈ [0, 1]). Next, taking h = 0 in

equations (7.3) and (7.4) we obtain that

(7.6)
1√
ε0(0)

= 2w0(0)− p
∫

R
sK(s) exp (−w0(0)s)ds,

1 + w2
0(0) = p

∫

R
K(s)(1 + w0(0)s) exp(−w0(0)s)ds

= p

(
1−

∫
R s

2K(s)ds

2
w2

0(0)−
∫

R s
4K(s)ds

8
w4

0(0)− . . .
)
.
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As a consequence of the latter formula, we get

w0(0) <

√
p− 1

1 + p
2

∫
R s2K(s)ds

.

Then (7.6) implies that c∗(0) < k1 so that c∗(h) < k1/(1 + h) for h ≤ 1. Note that

k1 > 0 since R is increasing for w > 0. Finally, since c∗(h) is decreasing, we have

that c∗(h) < k1/2 for h ≥ 1.

Step II. If h ≥ 1, then w̄ ≥ 1/
√
ε0. As consequence, G(w̄) ≤ 1 = G(1/

√
ε0)

so that G(w) ≥ G(w̄) for all w ∈ [0, w̄] (see Figure 7.1). Additionally, G(w̄) =

(2w̄
√
ε0 − 1) 1

h
≥ 1

h
, therefore we conclude that G(w0) ≥ 1/h. Hence, we have

ε′0(h) ≥ ε0(h)/h, so that ε(h) ≥ ε(1)h (equivalently, c∗(h) ≤ c∗(1)/
√
h) for h ≥ 1.

Now, if h = 1 we have w̄ = 1/
√
ε0(1). Thus, taking h = 1 and w = w̄ in (7.3) we

get exp(1/ε0(1)) = R(w̄) > R(0) = p that yields
√

ln p < 1/
√
ε0(1) = c∗(1). On the

other hand, for all 0 ≤ w < 1/
√
ε0, we have

(7.7) exp

(
wh√
ε0

)
<

(
1 +

w√
ε0

− w2

)
exp

(
wh√
ε0

)
≤ p

∫

R
K(s) exp(−ws)ds.

In particular, taking h = 1 and w =
√

ln p in (7.7) we conclude that c∗(1) < k2 so

that c∗(h) < k2/
√
h for h ≥ 1. Additionally, using c∗(h) ≥ 2c∗(1)/(1 + h) obtained

in step I, we also concluded that c∗(h) > 2
√

ln p/(1 + h), for h ∈ [0, 1].

Step III. For h > 0, it is evident that ε′0(h) ≤ 2ε0(h)/h. Integrating the latter

inequality on [h, 1] we obtain ε(h) ≥ ε(1)h2 (equivalently, c∗(h) ≤ c∗(1)/h), for

0 < h ≤ 1 so that c∗(h) < k2/h, for h ∈ (0, 1]. Analogous, by integrating ε′0(h) ≤

2ε0(h)/h on [1, h] we have ε0(h) ≤ ε0(1)h2 (equivalently, c∗(h) ≥ c∗(1)/h), for h ≥ 1.

Thus, we obtain c∗(h) >
√

ln p/h, h ≥ 1.

On the other hand, for all h ≥ 0, we have G(w0) ≤ 1 + 1/(4ε0). As consequence,

ε′0(h) ≤ (4ε0(h)+1)/(2(1+h)) for all h ≥ 0 so that ε0(h) ≤ ((4ε0(0)+1)(1+h)2−1)/4.

Taking h = 0 in (7.3), we get 1 + 1/(4ε0(0)) > G(w0(0)) = R(w0(0)) > p so that
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ε0

1
2
√

ε0

1
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p

Figure 7.1: G, H and R for h > 1.

c∗(0) > 2
√
p− 1. In consequence,

(7.8) c∗(h) > 2

√
p− 1

p(2h+ h2) + 1
, h ≥ 0.

Step IV. Setting w = r, r ∈ (0, 1), in the second inequality of (7.7) we obtain

(
1− r2

)
exp

(
rh√
ε0(h)

)
< p

∫

R
K(s) exp(−rs)ds,

from which we get that

(7.9)
1√
ε0(h)

<
1

hr
ln

(
p

1− r2

∫

R
K(s) exp(−rs)ds

)
, h > 0.

Considering (7.8) and (7.9) we get
C1

h
≤ c∗(h) ≤ C2

h
for h ≥ 1. This completes the

proof. �

7.2 An example

Consider the heat kernel Kα(s) = (4πα)−1/2 exp (−s2/(4α)). Then Theorem VII.2

applies with

k1 = 2
√
p− 1




1 + αp exp
(
α(p−1)
1+αp

)

√
1 + αp


 , k2 = (1 + α)

√
ln p.

In fact, in this case we can plot graphs of c∗ against h using standard numerical
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Figure 7.2: The minimal speed and its bounds (p = 2 and α = 1).

methods to solve some appropriately chosen initial value problem ε0(h0) = ρ0 for

differential equation (7.5). For example, if we take h0 = α then ρ0 coincides with

positive solution of the equation 1 + 1
4ρ

= p exp (− α
4ρ

). Next, we can explicitly

find G(w0) in (7.5) by using Cardano’s formulas to solve the cubic equation (w2
0 −

w0/
√
ε0−1)(2

√
ε0αw0−h) + 1−2

√
ε0w0 = 0. It is easy to see that this equation has

three real roots for all h ≥ 0 and α > 0, and that w0 is the leftmost positive root.

Figure 7.2 shows the minimal speed c∗ and its estimations when p = 2 and α = 1.

Remark that we do not need the restriction α ≤ h required in [57].

Finally, note that letting α → 0+ in (1.6) and (7.1) we recover the characteristic

equation for the delayed reaction-diffusion equation

ut(t, x) = uxx(t, x)− u(t, x) + g(u(t− h, x)),

which was studied by various authors (e.g. see [4, 53] and references therein). In this

case, our results complete and partially improve the estimations of [53].
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