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Why three dimensions?

Studying gravity in three dimensions
I One often learn something from unphysical models, e.g.

toy models.

I Many problems simplify tremendously in three dimensions,
yet the geometry is still rich enough to provide interesting
results. Techniques may then be applied to 4D.

I Particularly quantum gravity simplifies drastically in 3D
which makes it more interesting to study.

I 3D gravity provides a nice laboratory to study the
AdS/CFT correspondence.
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Scalar-Tensor theories in general

Why bother?
I We know that General Relativity does not solve

everything, neither is it quantizable. In fact, while being a
beautiful theory, there are still plenty of open questions.

I In physics it is common to modify theories, using the
correspondence principle, to explain new phenomena.
Hence it is reasonable to study modified theories of
gravity.

I Scalar tensor theories constitute one of the simplest
extensions/modifications of General Relativity.
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Lovelock, Horndeski and DHOST

A brief history
I In 1971 David Lovelock derived (under certain

assumptions like vanishing torsion, etc) the most general
action in arbitrary dimensions constructed from the
metric yielding at most second order field equations.

I His student, Gregory Horndeski, then determined in 1974
the most general such action constructed from the metric
tensor and a scalar field in D = 4.

I The requirement of having at most second order field
equations is to avoid so-called Ostrogradsky instabilities
(ghosts), which are extra degrees of freedom with
negative energy.
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Degenerate higher order scalar tensor theories

DHOST
I In 2015 David Langlois and Karim Noui introduced the

so-called Degenerate Higher-Order Scalar-Tensor theories.

I These theories are a generalization of Horndeski theories:
While the equations of motion of Horndeski theories
contain only two derivatives, DHOST theories contain
equations of motion of higher order.

I Despite being of higher order, DHOST theories do not
generate ghosts.
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Degenerate higher order scalar tensor theories

Action

S =

∫
d4x
√
−g
[
Z (X , φ) + G (X , φ)R

+ A1(X , φ)φµνφ
µν + A2(X , φ)(�φ)2

+ A3(X , φ)�φφµφµνφ
ν + F1(X , φ)�φ + F2(X , φ)Gµνφµν

+ A4(X , φ)φµφµνφ
νρφρ + A5(X , φ) (φµφµνφ

ν)2
]

φµ = ∇µφ

φµν = ∇µ∇νφ

X = φµ φ
µ
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The model

Action

S =

∫
d3x
√
−g
[
Z (X ) + G (X )R

+ A2(X )
(
(�φ)2 − φµνφ

µν
)

+ A3(X )�φφµφµνφ
ν

+ A4(X )φµφµνφ
νρφρ + A5(X ) (φµφµνφ

ν)2
]

φµ = ∇µφ

φµν = ∇µ∇νφ

X = φµ φ
µ

Olaf Baake Black holes in generalized scalar tensor theories Thesis Project



Symmetries of the action

Scalar field transformations
I Shift symmetry: φ→ φ + const.→ Noether current

I Discrete symmetry: φ→ −φ
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Symmetries of the action

Scalar field transformations
I Shift symmetry: φ→ φ + const.→ Noether current

I Discrete symmetry: φ→ −φ

Disformal transformation

gµν → g̃µν + K (X )φµφν

Transforms one DHOST theory into another by mixing the
coupling functions in the action. Possibly can be used to
encounter solutions of one theory by transforming those of
another (work in progress).
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Symmetries of the action

Kerr-Schild transformation

gµν → g̃µν = g (0)
µν − a(x)lµlν ,

with lµ being a null and geodesic w.r.t. both metrics:

gµν lµlν = g (0)µν lµlν = 0, lµ∇µlν = lµ∇(0)
µ lν = 0.
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Symmetries of the action

Kerr-Schild transformation

gµν → g̃µν = g (0)
µν − a(x)lµlν ,

with lµ being a null and geodesic w.r.t. both metrics:

gµν lµlν = g (0)µν lµlν = 0, lµ∇µlν = lµ∇(0)
µ lν = 0.

Invariance of the action
I Action is quasi-invariant under a KS transformation given

that a(r) satisfies a first order differential equation.

I If X is constant, the solution to said equation is
a(r) = M , where M is a constant (mass term of the
metric in 3D).
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Symmetries of the action

KS transformation: The Kerr metric as an example
Writing the seed metric of flat space in ellipsodial coordinates:

ds2
0 = −dt2 +

Σ

r 2 + ω2
dr 2 + Σdθ2 +

(
r 2 + ω2

)
sin2 θdϕ2

with Σ = r 2 + ω2 cos2 θ. Then the Kerr metric can be
generated in the following way:

ds2 = ds2
0 +

M

Σ
l ⊗ l

l = dt +
Σ

r 2 + ω2
dr − ω sin2 θdϕ
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ds2
0 = −dt2 +

Σ

r 2 + ω2
dr 2 + Σdθ2 +

(
r 2 + ω2

)
sin2 θdϕ2

with Σ = r 2 + ω2 cos2 θ. Then the Kerr metric can be
generated in the following way:

ds2 = ds2
0 +

M

Σ
l ⊗ l

l = dt +
Σ

r 2 + ω2
dr − ω sin2 θdϕ

Now we can look at the solutions!
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The road towards a solution

Stationary, axialsymmetric ansatz

ds2 = −f (r)dt2 +
dr 2

f (r)
+ H2(r) [dθ − k(r)dt]2 ,

φ = φ(r).
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The road towards a solution

Stationary, axialsymmetric ansatz

ds2 = −f (r)dt2 +
dr 2

f (r)
+ H2(r) [dθ − k(r)dt]2 ,

φ = φ(r).

Additional condition

Z2
2 − 2Z1Z3 = 0

Z1 = G + XA2,

Z2 = 2A2 + XA3 + 4GX ,

Z3 = A3 + A4 + XA5.
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The road towards a solution

Solution/s

ds2 = −F (r)dt2 +
dr 2

F (r)
+ r 2

(
dθ + Nθ(r)dt

)2
,

F =

(
Z

2Z1
r 2 −M +

J2

4r 2

)
, Nθ =

J

2r 2
.

Where X has to satisfy 0 = (Z1Z )X − ZZ2.
Note that the solution is completely determined by the
previously defined combinations Z1 and Z2, hence different
functions in the action can lead to the same solution with
effective cosmological constant Λeff = −Z/2Z1.
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The road towards a solution

Solution/s

ds2 = −F (r)dt2 +
dr 2

F (r)
+ r 2

(
dθ + Nθ(r)dt

)2
,

F =

(
Z

2Z1
r 2 −M +

J2

4r 2

)
, Nθ =

J

2r 2
.

Other properties
I Equations remain solved by this metric without imposing

the condition Z2
2 − 2Z1Z3 = 0.

I The ansatz φ = qt + ψ(r) + Lθ admits the same metric
as a solution.
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The road towards a solution

Solution/s

ds2 = −F (r)dt2 +
dr 2

F (r)
+ r 2

(
dθ + Nθ(r)dt

)2
,

F =

(
Z

2Z1
r 2 −M +

J2

4r 2

)
, Nθ =

J

2r 2
.

Open questions and ongoing work
Does a disformal transformation map to a differend DHOST
theory violating the condition we imposed on the action
functions? Can we use it (or find another sophisticated
transformation) to encounter new solutions?
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The road towards a solution

Solution/s

ds2 = −F (r)dt2 +
dr 2

F (r)
+ r 2

(
dθ + Nθ(r)dt

)2
,

F =

(
Z

2Z1
r 2 −M +

J2

4r 2

)
, Nθ =

J

2r 2
.

Open questions and ongoing work
What is the meaning behind the condition we imposed on the
functions? We found some hints relating it to the degeneracy
conditions in different dimensions. Moreover it appears to be
related to the Kerr-Schild invariance of the Noether current.
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More work in 4D

Regular BH solutions
I Using similar techniques we are studying regular (no

curvature singularity) black hole solutions of different
topologies in four dimensions.

I We have derived the equations of motion for the ansatz

ds2 = −h(r)dt2 +
1

f (r)
dr 2 +

r 2

1 + κθ
dθ2 + r 2θ2dϕ2,

with κ ∈ {−1, 0, 1}.
I The equations admit a rich set of different solutions. The

ongoing work at the moment is to study their properties.
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Black hole thermodynamics

I 1972 Hawking proved that the area of the event horizon
can never decrease, just like entropy due to the 2nd law
of thermodynamics.

I Nowadays BH thermodynamics is a well established topic
of research. Particularly theories of quantum gravity may
want to explain the meaning of entropy in this context.

I There are different methods to calculate the entropy. We
have applied the Euclidean method (Euclidean
continuation of the action is used in order to add a
boundary term that extremizes the action) and a
generalized Cardy formula (the entropy can be computed
in the corresponding CFT due to the AdS/CFT, provided
that the theory admits a regular scalar soliton which is
identified with its ground state).
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Black hole thermodynamics

Thermodynamic parameters

S = 8Z1π
2rh,

M = 2πZ1M = 2πZ1

(
r 2
h

L2
+

J2

4r 2
h

)
,

J = −2πZ1J ,

T =
1

4π

(
2rh
L2
− J2

2r 3
h

)
.

With L2 = 2Z1(X )/Z (X ), so imposing Z1 > 0 and Z > 0
ensures positive mass and entropy solutions.

Olaf Baake Black holes in generalized scalar tensor theories Thesis Project



Black hole thermodynamics

Thermodynamic parameters

S = 8Z1π
2rh,

M = 2πZ1M = 2πZ1

(
r 2
h

L2
+

J2

4r 2
h

)
,

J = −2πZ1J ,

T =
1

4π

(
2rh
L2
− J2

2r 3
h

)
.

With L2 = 2Z1(X )/Z (X ), so imposing Z1 > 0 and Z > 0
ensures positive mass and entropy solutions.
First law of thermodynamics holds: dM = TdS + ΩdJ !
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Phase transition

Gibbs free energy (static case)

∆FBTZ = FBTZ −F = 16π3T 2

[
Z2

1 (X )

Z(X )
− Z

2
1 (0)

Z(0)

]

∆FSol = FSol −F = 16π3T 2Z2
1 (X )

Z(X )
− 2πZ1(X )

For the soliton there is a Hawking-Page phase transition at

Tc =

√
2

4π

√
Z(X )

Z1(X )
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Phase transition
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Conclusions and outlook

Summary and future work
I Under relatively general circumstances there is a unique

BTZ-like solution that depends only on a combination of
the coupling functions.

I Are there more solutions if the condition on the functions
is removed? Can we generate solutions between different
DHOST theories using sophisticated transformations?

I Can we understand the condition imposed on the coupling
functions better?

I The thermodynamic properties of the solution correspond
exactly to what one would expect from a BTZ-like metric.

I Extend/continue work in four dimensions. How do the
different types of black holes change their properties?
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Why torsion?

Modifying gravity by adding torsion
I Another way to modify gravity is making use of a

different geometry.

I Going from special to general relativity, one considers a
non-zero curvature. Hence another simple extension
would be non-zero torsion.

I While bosons do not ”feel” the torsion, the geodesics of
fermions are affected due to their non-commutative
nature, hence it becomes particularly interesting in the
study of quantum effects.

I We ”source” torsion through the addition of a scalar field
to the action. Hence we effectively modify the action
again by means of a scalar field (like before).
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Why torsion?

The tale of Einstein and Cartan
I General Relativity is formulated using pseudo-Riemannian

geometry with symmetric connection (torsion free). All
the geometric information is contained in the metric.

I This is generally appealing since ∂ληµν immediately
generalizes to ∇λgµν and adding torsion appears to be
unnecessary.

I In 1922 Élie Cartan proposed reformulating the theory
into what is now called the first-order formulation of
gravity (using Cartan geometry).

I This allows for a new interpretation of the geometry and
reveals the vanishing of torsion to be an additional
constraint on the field equations.
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I In 1922 Élie Cartan proposed reformulating the theory
into what is now called the first-order formulation of
gravity (using Cartan geometry).

I This allows for a new interpretation of the geometry and
reveals the vanishing of torsion to be an additional
constraint on the field equations.
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Rewriting the theory

Introducing a tetrad
Instead of working in a coordinate basis, itis often more
convenient to work in a local orthonormal frame, with basis
one-forms ea(x) = eaµ(x)dxµ:

ds2 = gµν(x)dxµdxν = ηabe
a(x)eb(x)

gµν(x) = ηab e
a
µ(x) ebν(x),

δab = eaµ(x)e µ
b , δµν = eaν(x)e µ

a

All the information of the metric is contained in the tetrad, yet
it is not uniquely determined by the metric tensor! We always
have the freedom of ”rotating” the tetrad by means of a local
Lorentz transformation!
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Rewriting the theory

The spin connection
In order to obtain a consistent covariant derivative, we need to
define the so-called ”spin connection”, ωa

b(x) = ω a
µ b(x)dxµ:

DV a
b = dV a

b + ωa
c ∧ V c

b + ωc
b ∧ V a

c

With this, the torsion two-form can be written as:

Dea = dea + ωa
b ∧ eb = T a.

Olaf Baake Black holes with torsion Thesis Project
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In order to obtain a consistent covariant derivative, we need to
define the so-called ”spin connection”, ωa

b(x) = ω a
µ b(x)dxµ:

DV a
b = dV a

b + ωa
c ∧ V c

b + ωc
b ∧ V a

c

With this, the torsion two-form can be written as:

Dea = dea + ωa
b ∧ eb = T a.

The curvature form
With the spin-connection the curvature two-form is defined as:

Ra
b = dωa

b + ωa
c ∧ ωc

b =
1

2
Ra

bµνdx
µ ∧ dxν

Olaf Baake Black holes with torsion Thesis Project



Rewriting the theory

The basic ingredients

ea = eaµdx
µ

ωa
b = ω a

µ bdx
µ

Ra
b = dωa

b + ωa
c ∧ ωc

b

T a = Dea = dea + ωa
b ∧ eb

Example: Einstein-Hilbert action

IEH[g ] = κ′
∫

d4x
√
−gR

→ IEH[e, ω] = κ

∫
εabcdR

ab ∧ ec ∧ ed
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Calculating the field equations

Equations of motion

1

4κ
Sab = εabcde

c ∧ T d

1

2κ
τa = εabcde

b ∧ Rcd

General action

I = IEH + IM

= κ

∫
εabcdR

ab ∧ ec ∧ ed + IM
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Calculating the field equations

Equations of motion

1

4κ
Sab = εabcde

c ∧ T d

1

2κ
τa = εabcde

b ∧ Rcd

Remarks
It can be shown that in order to have torsion the spin current
Sab must not be zero, while curvature can still ”propagate”
outside of matter! However, in order to avoid torsion one has
to choose the matter Lagrangians in such a way that they do
not depend on the connection!
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Calculating the field equations

Equations of motion

0 = εabcde
c ∧ T d

0 = εabcde
b ∧ Rcd

Example: Schwarzschild

ds2 = −f (r)2dt2 + g(r)2dr 2 + r 2dΣ2
2

e0 = f (r)dt, e1 = g(r)dr , e2 = rdθ, e3 = r sin(θ)dϕ
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Calculating the field equations

Spin connection

Solve torsion equation 0 = dea + ω̄a
b ∧ eb:

ω̄0
1 =

f ′

g
dt ω̄1

2 = − 1

g
dθ

ω̄2
3 = − cos(θ)dϕ ω̄1

3 = −sin(θ)

g
dϕ

Example: Schwarzschild

ds2 = −f (r)2dt2 + g(r)2dr 2 + r 2dΣ2
2

e0 = f (r)dt, e1 = g(r)dr , e2 = rdθ, e3 = r sin(θ)dϕ
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Calculating the field equations

Equations (not independent!)

0 = −gf ′ + rf ′g ′ − rgf ′′ + fg ′

0 = 2rg ′ + g 3 − g

0 = 2rf ′ + f − fg 2

Example: Schwarzschild

ds2 = −f (r)2dt2 + g(r)2dr 2 + r 2dΣ2
2

e0 = f (r)dt, e1 = g(r)dr , e2 = rdθ, e3 = r sin(θ)dϕ
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Equations (not independent!)

0 = −gf ′ + rf ′g ′ − rgf ′′ + fg ′

0 = 2rg ′ + g 3 − g

0 = 2rf ′ + f − fg 2

⇒ f (r)2 = g(r)−2 = 1− 2M

r
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The source of torsion

Generating torsion
I As mentioned before, one needs to include matter to act

as a source of torsion

I This can make the theory arbitrarily complex, in particular
since it is necessary to construct a matter Lagrangian
that depends on the spin connection.

I However, if we want the matter to directly interact with
gravity, a natural way is to include a coupling of the field
to the curvature form.

I One elegant approach is making use of the Gauß-Bonnet
term, which is usually a topological invariant.
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The action

Adding the Gauß-Bonnet term

I = IEH+IC ,

IEH = κ

∫
εabcdR

ab ∧ ec ∧ ed ,

IC = λ

∫
εabcde

a ∧ eb ∧ ec ∧ ed .
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The action

Adding the Gauß-Bonnet term

I = IEH+IC+IGB ,

IEH = κ

∫
εabcdR

ab ∧ ec ∧ ed ,

IC = λ

∫
εabcde

a ∧ eb ∧ ec ∧ ed ,

IGB =

∫
εabcd φR

ab ∧ Rcd .
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Field equations

Variation of ω

0 = εabcd
(
κec ∧ T d − dφ ∧ Rcd

)
Variation of e

0 = εabcd
(
κeb ∧ Rcd + 2λeb ∧ ec ∧ ed

)
Variation of φ (locally exact)

0 = εabcdR
ab ∧ Rcd

= d

[
εabcd

(
ωab ∧ ωcd +

2

3
ωab ∧ ωc

e ∧ ωed

)]
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Solving the equations

Static, spherically symmetric ansatz
Solving the equations turns out to be a complex task. The
first obvious choice is to consider a static and spherically
symmetric ansatz:

ds2 = −f (r)2dt2 + g(r)2dr 2 + r 2dΣ2
2

e0 = f (r)dt, e1 = g(r)dr , e2 = rdθ, e3 = r sin(θ)dϕ
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Solving the equations turns out to be a complex task. The
first obvious choice is to consider a static and spherically
symmetric ansatz:

ds2 = −f (r)2dt2 + g(r)2dr 2 + r 2dΣ2
2

e0 = f (r)dt, e1 = g(r)dr , e2 = rdθ, e3 = r sin(θ)dϕ

Separating the torsion from the rest
I Define contorsion: κab = ωa

b − ω̄a
b.

I Then the torsion form can be written as T a = κab ∧ eb.

I We know the torsion free connection ω̄a
b from solving the

zero torsion equation 0 = dea + ω̄a
b ∧ eb.
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Solving the equations

Applying Killing symmetries to the torsion
A physically reasonable assumption would be to require the
torsion to possess the same symmetries as the metric.
Therefore one can apply the Lie derivative with respect to the
Killing vector fields on the torsion tensor to find the most
general form with these symmetries:

T 0 = C0e
0 ∧ e1 + D0e

2 ∧ e3,

T 1 = C1e
0 ∧ e1 + D1e

2 ∧ e3,

T 2 = D2e
0 ∧ e2 + A2e

0 ∧ e3 + D3e
1 ∧ e2 + B2e

1 ∧ e3,

T 3 = D2e
0 ∧ e3 − A2e

0 ∧ e2 + D3e
1 ∧ e3 − B2e

1 ∧ e2.

Where the functions depend on r only.
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Solving the equations

Problems of finding a solution
I We now have a long list of coupled differential equations

in the metric functions, the torsion functions and the
scalar field.

I The system of equations turns out to be very complex
and there is no obvious way of solving it (there are many
possibilities to try out).

I Up to now we were not even able to show whether a
solution can exist or not. At least we could not find an
obvious contradiction to asymptotic AdS-like behaviour.

I Extensions may be necessary (non-static, axial symmetry,
dynamical scalar field, · · · ).
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Conclusions and outlook

Summary and future work
I Rewriting gravity in terms of Cartan geometry yields a

natural inclusion of torsion.

I We sourced torsion through a scalar field coupled to the
Gauß-Bonnet term. The system of equations turns out to
be very complicated (even in the simplest case).

I At the same time the system seems quite restrictive, so a
relaxation of the symmetries or other modifications in the
ansatz may be needed to study the problem.

I It would be interesting to see the effects of torsion and
compare it to a known system without torsion.
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That’s all folks!

Thank you very much for your attention!
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