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Resumen (en castellano)

A partir del trabajo realizado por Kolmogorov, Petrovski, Piskunov [32] y Fisher

[19] las soluciones en forma de ondas viajeras han jugado un papel importante en la

descripción de la dinámica generada por una gran variedad de modelos de evolución,

incluyendo las ecuaciones de reacción difusión, ecuaciones sobre reticulados, sistemas

de ecuaciones integro-diferenciales entre otros. En general, cada una de las clases de

ecuaciones mencionadas requieren un acercamiento y métodos muy espećıficos para

poder analizar los reǵımenes de transición que toman la forma de ondas viajeras. Sin

embargo, un estudio minucioso de una amplia variedad de trabajos anteriores nos

ha demostrado que las preguntas tan esenciales como la existencia/no existencia de

ondas viajeras, unicidad y descripción anaĺıtica de sus perfiles, pueden ser tratadas

desde un único punto de vista muy general, unificado y abstracto. Ésta idea nos ha

conducido a analizar la siguiente ecuación de convolución

ϕ(t) =

∫
X

∫
R
K(s, τ)g(ϕ(t− s), τ)dsdµ(τ) (∗)

donde el espacio X con medida µ, el núcleo K y la no linealidad g reflejan las

particularidades de cada modelo de evolución que se estudia.

En nuestro trabajo, bajo las condiciones mı́nimas sobre todos los componentes de

la ecuación (∗) hemos establecido:

(a) las condiciones necesarias dadas en términos del núcleo K para la existencia de

1
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los semifrentes viajeros para la ecuación (∗);

(b) la relación entre las ráıces de la ecuación caracteŕıstica en el equilibrio 0

χ(z) := 1−
∫
X

∫
R
K(s, τ)g′(0, τ)e−zsdsdµ(τ) = 0

y la existencia de los frentes viajeros;

(c) las fórmulas asintóticas para los perfiles de semifrentes en los extremos donde

estos se anulan;

(d) la propiedad geométrica de dicotomı́a de perfiles, la cual implica, en particular,

la ausencia de los pulsos viajeros en la ecuación monoestable (∗);

(e) un teorema abstracto de existencia de semifrentes para la ecuación (∗).

A modo de ejemplo, los resultados abstractos descritos en los puntos (a)-(e) se

aplicarán a dos modelos provenientes de la dinámica de poblaciones. De hecho,

como muestran las referencias [1, 14, 16, 24, 26, 31, 44, 53], el campo de las apli-

caciones de los resultados abstractos obtenidos en (a)-(e) es realmente muy amplio.

Además, nuestro análisis abstracto (no relacionado con ningún modelo en particu-

lar) nos permite revelar las razones de fondo que obligan a los diferentes sistemas

monoestables de evolución a tener ondas viajeras de similares caracteŕısticas.

El teorema de dicotomı́a, la propiedad de persistencia (uniforme) de semifrentes y

las fórmulas asintóticas dan una descripción geométrica general y no muy detallada de

los semifrentes. Esto no es muy satisfactorio desde el punto de vista de aplicaciones.

Ahora, durante los últimos años se han realizado muchas simulaciones numéricas,

las cuales muestran que los perfiles de ondas monoestables pueden exhibir una amplia

gama de tipos de comportamiento, desde muy regular (monótono) hasta oscilaciones
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caóticas. Sin embargo, son pocos los resultados anaĺıticos que establecen de man-

era rigurosa las propiedades geométricas más finas de los perfiles. En este trabajo

nosotros contribuimos al estudio geométrico de perfiles dando una respuesta afirma-

tiva a la conjetura (propuesta en el trabajo Slowly oscillating wave solutions of a sin-

gle species reaction-diffusion equation with delay, por E. Trofimchuk, V. Tkachenko

y S. Trofimchuk, Journal of Differential Equations, 2008) acerca de la existencia de

ondas no monótonas pero eventualmente monótonas en las ecuaciones monoestables

de tipo Mackey-Glass con retardo.

Los resultados principales de ésta tesis están desarrolados en los siguientes art́ıculos:

[1, 24, 31].



CHAPTER I

Introduction

1.1 Asymmetric monostable evolution systems and an abstract
convolution equation

This study is motivated by an increasing interest in understanding the geomet-

ric and dynamics properties of traveling wave solutions for asymmetric monostable

evolution systems. A classical example of such a system is the nonlocal delayed

reaction-diffusion equation

(1.1) ut(t, x) = uxx(t, x)− f(u(t, x)) +

∫
R
K(x− y)g(u(t− h, y))dy, u ≥ 0,

in which, in order to introduce an existence theorem, we will suppose that the func-

tion f satisfies the condition

(F) locally Lipschitzian function f : R+ → R+, f
′(0) > f(0) = g(0) = 0, is

strictly increasing and f(+∞) > sups≥0 g(s). In addition, f ′(0) < g′(0) < +∞ and

g(t) > 0, t > 0. The Kernel K ≥ 0 is generally asymmetric and is normalized by∫
RK(s)ds = 1.

In the particular case of equation (1.1), traveling wave propagating with the speed

c is by definition a solution of the following general form u(x, t) = ϕ(x+ct), x, t ∈ R.

The waves also should be non-negative, and we will avoid the trivial situtation by

assuming that ϕ(t) ̸≡ constant and ϕ(−∞) = 0. More exactly, in the symmetric

4
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case, the following two equivalent definitions have been commonly used:

• wavefront u(x, t) = ϕ(x − ct) is a positive classical solution of (1.1) satisfying

ϕ(−∞) = κ, ϕ(+∞) = 0, e.g. see [4, 26];

• wavefront u(x, t) = ψ(x+ ct) is a positive classical solution satisfying

ψ(−∞) = 0,ψ(+∞) = κ, e.g. see [16, 44].

IfK(s) ≡ K(−s), both definitions define the same object since wavefront ϕ(x−ct)

generates wavefront ψ(x + ct) := ϕ(−(x + ct)). Moreover, the propagation speed c

should be positive in each of the above definitions ifK is an even function. Therefore,

from the biological point of view the both type of wavefronts can be interpreted as

the expansion fronts: they converge to the positive equilibrium at each fixed position

x as t→ +∞.

Now, in view of a possible spatio-temporal asymmetry of equation (1.1), it is

convenient to introduce several changes in the usual definition of a semi-wavefront.

The above discussion suggests the following general concept adapted to the possible

asymmetry of equation (1.1):

Definition 1 A bounded positive classical solution u(x, t) = ϕ(x + ct) of equation

(1.1) is a semi-wavefront if either ϕ(−∞) = 0 or ϕ(+∞) = 0.

The prefix semi means here that, contrary to the wavefronts, the convergence of

ϕ(t) at the complementary end of R is not mandatory.

Now, the spatio-temporal asymmetry of equation (1.1) is due to the presence of

positive delay h > 0 and to an asymmetric (non-even) kernel K. In particular, this

type of asymmetry occurs naturally in the modelling of a stage structured population

in which the juveniles (larvae) move by advection as well as diffusion, but the adults
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move by diffusion alone1. Such populations could include certain marine species that

lay their eggs in water, so the larvae may be carried considerable distances by ocean

currents, but the adults are land based. A derivation of such a model is given below.

Let u(t, a, x) denote the density of the population of the species under consid-

eration at time t, location x ∈ R, age a ≥ 0. Suppose the species reaches sexual

maturity at age h ≥ 0, so the total numbers of adults and juveniles are given by

ua(t, x) =

∫ +∞

h

u(t, a, x)da, uj(t, x) =

∫ h

0

u(t, a, x)da,

where the subscripts a and j mean adult and juvenile. Since the juveniles are subject

to both advection and diffusion, u(t, a, x) satisfies

(1.2)
∂u

∂t
+
∂u

∂a
= dj

∂2u

∂x2
+ vj

∂u

∂x
− µju, for a < h,

where dj, vj, µj are respectively the diffusion rate, the advection velocity and the

death rate for juveniles. Since the adults diffuse but they are not subject to advection,

we obtain the following equation for them:

∂u

∂t
+
∂u

∂a
= da

∂2u

∂x2
− µau, for a > h.

From the definition of ua(t, x),

(1.3)
∂ua(t, x)

∂t
= u(t, h, x) + da

∂2ua(t, x)

∂x2
− µaua(t, x).

Introducing the function uξ(a, x) = u(a+ ξ, a, x), with ξ being a nonnegative param-

eter, we have from equation (1.2) that, for a < h,

∂uξ(a, x)

∂a
= dj

∂2uξ(a, x)

∂x2
+ vj

∂uξ(a, x)

∂x
− µju

ξ(a, x).

Solving this gives

uξ(a, x) =
e−µja

2
√
πdja

∫ +∞

−∞
uξ(0, y) exp

(
−(x− y + vja)

2/(4dja)
)
dy.

1This biological argument and subsequent derivation of a stage structured population model are due to the referee
of our work [24].
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Setting a = h and ξ = t− h, we get

u(t, h, x) =
e−µjh

2
√
πdjh

∫ +∞

−∞
u(t− h, 0, y) exp

(
−(x− y + vjh)

2/(4djh)
)
dy.

Note that u(t − h, 0, y) is the birth rate at time t − h at position y. If we take this

to be a function of the total number of adults at that point in space at that time, so

that

u(t− h, 0, y) = ḡ(ua(t− h, y))

for an appropriate birth function ḡ : R+ → R+, then equation (1.3) becomes

∂ua
∂t

= da
∂2ua
∂x2

−µaua+
e−µjh

2
√
πdjh

∫ +∞

−∞
ḡ(ua(t−h, y)) exp

(
−(x− y + vjh)

2/(4djh)
)
dy,

which has the form of equation (1.1), with a non-even kernel. The Figure 1.1 below

presents the graph of a typical birth function g, observe that g has the following

properties:

(G) There are 0 < ζ1 < ζ2 such that

(1) g ∈ C(R+,R+) is positive for s > 0 and there exists g′(0+) > 1;

(2) g([ζ1, ζ2]) ⊆ [ζ1, ζ2] and g(R+) ⊆ [0, ζ2];

(3) mins∈[ζ1,ζ2] g(s) = g(ζ1) while g(s) > s for s ∈ (0, ζ1].

Now, it is clear that u(x, t) = ϕ(x + ct) is a semi-wavefront if and only if ϕ(t) is

a positive bounded C2-solution of the integro-differential equation

(1.4) y′′(t)− cy′(t)− f(y(t)) +

∫
R
K(s)g(y(t− s− ch))ds = 0,

which vanishes either at −∞ or at +∞. By abusing the notation, we still call such

a solution y = ϕ(t) a semi-wavefront. Equation (1.4) can be written as

y′′(t)− cy′(t)− βy(t) + fβ(y(t)) +

∫
R
kh(w)g(y(t− w))dw = 0, t ∈ R,
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ζ2ζ1

s

y
y= s

= g(s)y

κ0

Figure 1.1: Graph of the nonlinearity g with properties (1)-(3).

where kh(w) = K(w − ch) and fβ(s) = βs − f(s) for some β > 0. Then the wave

profile ϕ solves the equation

ϕ(t) =
1

σ(c)

(∫ t

−∞
eν(t−s)(Gϕ)(s)ds+

∫ +∞

t

eµ(t−s)(Gϕ)(s)ds
)
,

where σ(c) =
√
c2 + 4β, ν < 0 < µ are the roots of z2 − cz − β = 0 and

(Gϕ)(t) :=
∫
R
kh(s)g(ϕ(t− s))ds+ fβ(ϕ(t)),

e.g. see [1]. In other words,

(1.5) ϕ(t) = (K ∗ kh) ∗ g(ϕ)(t) +K ∗ fβ(ϕ)(t),

where K(s) = eνs/σ(c) for s ≥ 0, K(s) = eµs/σ(c) for s ≤ 0, and consequently∫
RK(s)ds = 1/β. In consequence, ϕ(t) satifies the following nonlinear convolution

equation,

φ(t) =

∫
X

dµ(τ)

∫
R
K(s, τ)g(φ(t− s), τ)ds, t ∈ R,
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where

K(s, τ) =

 (K ∗ kh)(s), τ = τ0,

K(s), τ = τ1,

g(s, τ) =

 g(s), τ = τ0,

fβ(s), τ = τ1.

1.2 The Diekmann-Kaper theory re-visited

The above discussion explains our interest to develop a version of the fundamental

Diekmann and Kaper theory [9, 10, 11] (the DK theory for short) for a nonlinear

convolution equation

(1.6) φ(t) =

∫
X

dµ(τ)

∫
R
K(s, τ)g(φ(t− s), τ)ds, t ∈ R,

in the case of monostable nonlinearity g (see Figure 1.1) and when X contains more

than one point. There are various motivations to study the above equation, mainly

from the theory of traveling waves for nonlinear models (e.g. reaction-diffusion equa-

tions with delayed response [2, 22, 44, 46, 52], equations with non-local dispersal

[3, 5, 7, 8, 32, 42], lattice systems [6, 14, 28, 36]). Only a few of these models take

the simplest form when X has cardinality 1 (#X = 1) of equation (1.6) like in [11].

Therefore our first goal is to show that the framework of the Diekmann-Kaper theory

(when #X = 1) can be extended to include much broader class of convolution type

equations than it was initially intended.

Hence, in our work (X,µ) will denote a measure space with finite measure µ,

K(s, τ) ≥ 0 will be integrable on R×X with
∫
RK(s, τ)ds > 0, τ ∈ X, while mea-

surable g : R+×X → R+, g(0, τ) ≡ 0, will be continuous in φ for every fixed τ ∈ X.

The existence of semi-wavefronts to equation (1.6) is investigated in chapter III under

slightly more restrictive conditions on nonlinearity g. We would like to emphasize

that the nonlinearity g and semi-wavefronts are generally non-monotone [17] (e.g.
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see Figure 4.1). The possible non-monotonicity of waves complicates considerably

their analysis.

We begin our studies of equation (1.6) in Chapter II after assuming the existence

of a semi-wavefront solution. Our main goal will be the description of its asymptotic

behavior at −∞. This information is quite important in various aspects, in particular

it constitutes a key part of each proof of the wave uniqueness. Similarly to other

authors, we work mostly with the first positive eigenvalue λl of the linearization of

equation (1.6) at zero. By definition, these eigenvalues coincide with the roots of

characteristic equation

(1.7) χ(z) := 1−
∫
X

g′(0, τ)dµ(τ)

∫
R
K(s, τ)e−zsds = 0.

As a consequence, our analysis excludes from the consideration so called ”pushed”

fronts [21, 43, 47, 48, 51] associated to the second positive eigenvalue λr.

Observation 1 In our work, we are making the first step in order to create a general

direct extension of the Diekmann-Kaper theory. It would be interesting to consider

further generalizations of equation (1.6) in order to include more applications (for

example, equations with distributed delays considered in [14], see also [27, 42, 52]).

However, we do not pursue this direction in the thesis. It is worth to mention that our

work is not the first attempt to expand the DK theory. Schumacher has mentioned,

while studying equation

cφ′(t) = g(φ, µc ∗ g(φ)),

the impossibility of transforming it into the form to which the DK theory could be

applied [42, p.54]. Instead, Schumacher has developed an approach which is based on

guidelines of the DK theory and, at the same time, which is technically rather differ-

ent from that in [11]. In particular, in order to extend the DK uniqueness theorem,
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Schumacher has used a comparison method for differential inequalities combined with

Nagumo-point argument. In this respect, his work [42] is very close to the recent

contributions [6, 7, 8, 28].

Similarly to [42], the present studies also follow the mainstream of the DK ide-

ology. Now, from the technical point of view our approach to equation (1.6) differs

from the methods used by Diekmann and Kaper, Schumacher and Carr and Chmaj

[5] in many key points. Even though the logical sequence of results here basically

is the same as in the Diekmann-Kaper theory, our proofs are essentially different.

In particular, we do not use the Titchmarsh theory of Fourier integrals [11, 14] nor

we use the Ikehara Tauberian theorem [5, 8, 52] in order to obtain asymptotic ex-

pansions of solutions. We have found more convenient for our purpose the use of a

suitable L2−variant of the bootstrap argument (as it was suggested by Mallet-Paret

in [37, p. 9-10]).

Hence, our first main result concerns the properties of the kernel K which is

proved to satisfy exponential convergence estimates (called the Mollison’s condition

[8]). Here the fulfillment of the Mollison’s condition means that the characteristic

function (1.7) is well defined for all z from some maximal non-degenerate interval

(which can be open, closed, half-closed, finite or infinite):

Theorem I.1 (see Theorem II.1) Let continuous φ : R → [0,+∞) satisfy (1.6)

and suppose that φ(−∞) = 0 and φ(t) ̸≡ 0, t ≤ t′ for each fixed t′. If g(v, s, τ) ≥

p(τ)v holds, for some measurable p(τ) ≥ 0, δ > 0, s ≥ 0, with v ∈ (0, δ), s ≤ s̄, τ ∈

X, and

(1.8)

∫
X

∫
R
K(s, τ)p(τ)dsdµ(τ) ∈ (1,∞),

then
∫ 0

−∞ φ(s)e−sx̄ds and
∫
R

∫
X
K(s, τ)p(τ)dµ(τ)e−sx̄ds are convergent for an appro-



12

priate x̄ > 0. Furthermore, suppK ∩ (R+ ×X) ̸= ∅.

Observation 2 The equations with ‘fat-tailed’ (i.e. exponentially unbounded) ker-

nels were recently considered by Garnier [20], Medlock and Kot [38].

Now, let φ,K, g, x̄ be as in Theorem I.1 and sups∈R φ(s) <∞. Set

Φ(z) =

∫
R
e−zsφ(s)ds, K(z) =

∫
R

∫
X

K(s, τ)p(τ)dµ(τ)e−szds,

and denote the maximal open vertical strips of convergence for these two integrals as

σϕ < ℜz < γϕ and σK < ℜz < γK , respectively. Evidently, σϕ, σK ≤ 0 and γϕ, γK ≥

x̄ > 0. Since φ,K are both non-negative, by [54, Theorem 5b, p. 58], γϕ, γK , σϕ, σK

are singular points of Φ(z),K(z) (whenever they are finite). Furthermore, we prove

that K(γϕ) is always a finite number.

The second key results of our theory says that, under rather mild additional as-

sumptions of the existence of g′(0+, τ), the presence of a semi-wavefront φ, φ(−∞) =

0, guarantees the existence of a minimal positive zero λl to χ(z):

Theorem I.2 (see Theorem II.2) Assume χ(0) < 0. Let φ : R → [0,+∞) be a

semi-wavefront to equation (1.6). If φ(−∞) = 0 and φ(t) ̸≡ 0, t ≤ t′ for each fixed

t′, then χ(z) has a zero on (0, γϕ] ⊂ (0, γK ] ⊂ R ∪ {+∞}.

Observation 3 Theorem I.2 can be also viewed as a non-existence result: if the

equation χ(z) = 0 has not real solutions, then the equation (1.6) can not possess

any semi-wavefront. Let us also mention here a new type of non-existence theorem

proposed not long ago by Yagisita [55] for a nonlocal analogue of the KPP equation.

Yagisita introduced the concept of a periodic traveling wave solution with average

speed c and his version of the non-existence result (given in terms of these solutions)

is stronger than the standard one.
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Observation 4 In Chapter III, after assuming two additional mild conditions (C)

and (P), we also prove that the conclusion of Theorem I.2 remains true even if we

replace the assumption ϕ(−∞) = 0 by a weaker one: lim inft→−∞ ϕ(t) = 0.

As a consequence of the proof of Theorem I.1, φ(−∞) = 0 implies that

ψ(t) =
∫ t
−∞ φ(s)ds satisfy ψ(t) = O(ezt), with z in the positive interval (0, γϕ). Our

next result presents an exact asymptotic formula for the increasing function ψ. In

order to prove it, we will assume the following conditions:

(SB) γϕ < γK and, for some measurable C(τ) > 0 and α, σ ∈ (0, 1],

|g′(0, τ)− g(u, τ)

u
| ≤ C(τ)uα, u ∈ (0, σ),

(1.9) ζ(x) :=

∫
X×R

C(τ)K(s, τ)e−sxdsdµ < +∞, x ∈ (0, γK).

(ECρ) For some ρ ≤ γϕ and for every x ∈ (0, ρ), there exists some positive Cx

such that

(1.10) 0 ≤ φ(t) ≤ Cxe
xt, t ≤ 0.

and supposing that there is measurable d ∈ L1(X), such that

(1.11) g(u, τ) ≤ d(τ)u, u ≥ 0.

Theorem I.3 (see Theorem II.3) In addition to (1.11), (EC2ϵ), (SB), assume

that
∫
R×X K(s, τ)ρ(τ)e−sxdµds converges for all x ∈ (0, γK) and for some (technical)

measurable ρ(τ) (see Lemma 5 in Chapter II). Then χ(γϕ) = 0 and, for appropriate

ε1 > 0, a,m ∈ R, k ∈ {0, 1}, and continuous r ∈ L2(R), it holds that

ψ(t+m) = (a− t)keγϕt + e(γϕ+ε1)tr(t), t ∈ R.
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Hence, Theorem I.3 says that, under the mentioned conditions, γϕ is a zero of

χ(z). Remarkably, in some cases we can show that γϕ is the leftmost positive zero

of χ(z):

Theorem I.4 (see Theorem II.4) Assume conditions (SB), (EC2ϵ) and (1.11)

except γϕ < γK. If

1− χ1(x0) :=

∫
R

∫
X

K(s, τ)d(τ)dµ(τ)e−sx0ds ≤ 1,

for some x0 ∈ (0, γK), then γϕ coincides with the minimal positive zero λl of χ(z).

Important consequences of Chapter II concerning the wave uniqueness are stated

as Theorems 3 and 4 in [1]. Similarly we get the following asymptotic formula for

the profile φ(t):

Theorem I.5 (see Theorem II.5) Assume (SB) except γϕ < γK as well as (ECγϕ)

and suppose further that χ(0) < 0, χ(γK−) ̸= 0, g(u, τ) ≤ g′(0, τ)u, u ≥ 0.

Then γϕ coincides with the minimal positive zero λl of χ(z) and such a solution

(if exists) has the following representation:

φ(t+m) = (a− t)keλlt + e(λl+δ)tr(t), with continuous r ∈ L2(R),

for some appropriate a,m ∈ R, δ > 0. Here k = 0 [respectively, k = 1] if λl is a

simple [respectively, double] root of χ(z) = 0.

1.3 Existence of semi-wavefronts for the convolution equation

The principal research objective in the Chapter II is the asymptotic formulae for

semi-wavefronts, so that the problem of their existence was not addressed there. In

contrast, our main goal in Chapter III is to establish a satisfactory criterion for the

existence of semi-wavefronts to equation (1.6). We will be assuming the following

additional mild conditions on g and K:
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(C) For each δ > 0 there is a measurable Cδ(τ) ≥ 0 such that

g(u, τ) ≤ Cδ(τ)u for all u ∈ [0, δ];

∫
X

Cδ(τ)dµ(τ)

∫
R
K(s, τ)ds < +∞;

(P) Bounded continuous solution ϕ(t) ≥ 0 of equation (1.6) vanishes at some point

only if ϕ(t) ≡ 0.

(N) N1. There exists τ0 ∈ X, µ(τ0) = 1, such that g(v, τ) is increasing in v ∈ R+

for each fixed τ ̸= τ0 and g(v, τ0) > 0, v > 0. Consider the monotone function

g̃(v) :=

∫
X\{τ0}

g(v, τ)dµ(τ)

∫
R
K(s, τ)ds.

N2. There exists ζ2 > 0 such that Θ(v) := v − g̃(v) is strictly increasing on

[0, ζ2], and Θ(ζ2) > Cmaxv≥0 g(v, τ0) where C :=
∫
RK(s, τ0)ds,

Let us also define an auxiliar function G(v) := Θ−1(Cg(v, τ0)) with G(0) = 0, 0 <

G(v) < ζ2, v > 0. Obviously G(v) and g(v, τ0) have the similar geometrical shapes,

and same local extremum points.

Then the existence criterion (our main result in Chapter III) is given by the

following

Theorem I.6 (see Theorem III.3) Assume (N), (P) and (G), and let G′(0) be

finite and g(s, τ) ≤ g′(0, τ)s for all s ≥ 0, τ ∈ X. If χ(z), χ(0) < 0, is well defined

and changes its sign on some open interval (0, ω̄) [respectively, on (−ω̄, 0)], then

equation (1.6) has at least one semi-wavefront ϕ with sups∈R ϕ(s) ≤ ζ2, ϕ(−∞) = 0,

and lim inft→+∞ ϕ(t) > ζ1 [respectively, with ϕ(+∞) = 0, lim inft→−∞ ϕ(t) > ζ1].

Moreover, if the equation G(s) = s has exactly two solutions 0 and κ on R+, and the

point κ is globally attracting for the map G : (0, ζ2] → (0, ζ2] then ϕ(+∞) = κ.

In order to show the broad applicability of Theorem I.6, we will apply our crite-

rion to the nonlocal and asymmetric monostable evolution equations introduced in
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Section 1.1. Observe that additional real parameter c (the wave velocity) then will

appear naturally in equation (1.6). Considering c ∈ R as a bifurcation parameter,

we prove the existence of two critical speeds c−∗ < c+∗ (which can be of the same sign)

partitioning R into two intervals of admissible speeds (for either forward- or back-

ward semi-wavefronts) and the open interval I = (c−∗ , c
+
∗ ) of non-admissible speeds.

The latter means that equation (1.6) does not have any semi-wavefront if and only

if the parameter c belongs to I. As a consequence, the following result clarifies and

further develops several ideas from [46]:

Theorem I.7 (see Theorem III.5) Assume (F) and g(s) ≤ g′(0)s, f(s) ≥

f ′(0)s for all s ≥ 0. Then equation (1.4) has at least one semi-wavefront u =

ϕc(x + ct) ≤ ζ2 for each c ∈ (−∞, c−∗ ] ∪ [c+∗ ,+∞). Moreover, if c ≤ c−∗ then

ϕc(+∞) = 0 and lim infs→−∞ ϕc(s) > ζ1. Similarly, if c ≥ c+∗ then ϕc(−∞) = 0

and lim infs→+∞ ϕc(s) > ζ1. Next, if equation f(s) = g(s) has only two solutions: 0

and κ, with κ being globally attracting with respect to the map f−1◦g : (0, ζ2] → (0, ζ2],

then each of these semi-wavefronts is in fact a wavefront,

In order to prove Theorem I.6, we first establish the separation of semi-wavefronts

ϕ : R → (0,+∞) from zero at one of the ends of the real line:

Theorem I.8 (see Theorem III.1) Assume that the hypotheses (C) and (P) are

met and χ(0) < 0. Then the following dichotomy holds for each bounded solution

ϕ(t) > 0 of equation (1.6): either lim inft→+∞ ϕ(t) > 0 or ϕ(+∞) = 0. A similar

alternative is also valid at −∞.

The monotone semi-wavefronts satisfy trivially the above principle: to some ex-

tent, this explains why the existence of monotone waves is considerably easier to

prove. As we show in the thesis, the underlying reason for the dichotomy is the
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convexity properties of the characteristic function (1.7).

Corollary 1 Let all assumptions of Theorem I.8 hold. If χ(z) does not have any

positive [negative] zero and ϕ is a positive bounded solution of equation (1.6), then

lim inf
t→−∞

ϕ(t) > 0 [respectively, lim inf
t→+∞

ϕ(t) > 0].

As a consequence, equation (1.6) can not have positive pulse solutions (i.e. solu-

tions satisfying ϕ(−∞) = ϕ(+∞) = 0).

Finally, some conditions assuring the uniform separation from 0 can be found in

the following assertion:

Theorem I.9 (see Theorem III.2) Assume (N) along with all the hypotheses of

Theorem I.8 and choose ζ1 > 0 as in (G) (or Lemma 7 below). Let ϕ be a positive

bounded solution of equation (1.6). If m = infs∈R ϕ(s) < ζ1 then limt→ω ϕ(t) = 0 and

lim inft→−ω ϕ(t) > ζ1 for some ω ∈ {−∞,+∞}.

We notice that an analog of Theorem I.9 holds when ϕ(+∞) = 0 (see Section 3.2

(step 2) below).

1.4 Non-monotone and non-oscillating wavefronts for a Mackey-Glass
type equation

In the last chapter of this thesis, we consider the following local version of equation

(1.1) when f(u) = u and K(s) = δ(s) (the Dirac delta function)

(1.12) ut(t, x) = ∆u(t, x)− u(t, x) + g(u(t− h, x)), u(t, x) ≥ 0, x ∈ Rm.

This equation was also intensively studied during the last decade, e.g. see [23, 26,

39, 40, 49] and references therein.

If g is as in Figure 1.1, then the diffusive Mackey-Glass type equation (1.12)

is of the monostable type, and in that particular case when g is monotone on the
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interval [0, κ], there exists a quite satisfactory description of all its traveling fronts

u(t, x) = ϕ(ct+ ν · x), c > 0, |ν| = 1.

As we already know, the wavefront profile ϕ defines a positive heteroclinic solution

of the delay differential equation

(1.13) x′′(t)− cx′(t)− x(t) + g(x(t− ch)) = 0, t ∈ R.

In fact, we have the following

Proposition 1 [34, 47] Suppose that g : [0, κ] → R+ is monotone. Then there is

c∗ > 0 (called the minimal speed of propagation) such that equation (1.12) has a

unique (up to a translation) wavefront u(t, x) = ϕ(ct+ν ·x) for each c ≥ c∗ and each

h ≥ 0. In addition, the profile ϕ is a strictly increasing function. Finally, if c < c∗

then equation (1.12) does not have any traveling front.

Observation 5 The stability of monotone fronts in equation (1.12) was successfully

analysed in [39, 40].

Now, if g is not anymore monotone on [0, κ], much less information on the traveling

fronts to equation (1.12) is available. In particular, as far as we know, for a general

function g satisfying the hypothesis (UM)

(UM) g : R+ → R+ is continuous and has only one positive local extremum point

x = θ ∈ (0, κ) (global maximum point). Furthermore, g(0) = 0, g(κ) = κ and

there exist g′(0) > 1, g′(κ),

neither of the three aspects (the existence of the minimal speed c∗, the uniqueness,

the monotonicity properties, the front stability) mentioned in Proposition 1 had

obtained a satisfactory characterisation. In this chapter, we would like to shed some

new light on the description of possible geometrical shapes of the front profiles ϕ.



19

Due to the biological interpretation of solutions to equation (1.12), the geometric

properties of leading (invading) parts of front profiles characterise the ‘smoothness’

of the expansion (invasion) processes.

A first picture of the front monotonicity properties was obtained in [49] under the

following additional condition

(FC) The restriction g : [g(max g),max g] → R+ has the positive feedback with

respect to the equilibrium κ (i.e. (g(x)− κ)(x− κ) < 0 , x ̸= κ).

Proposition 2 [49] Consider the case when (UM) holds and g′(κ) < 0. Let u(x, t) =

ϕ(ν · x + ct) be a wavefront to Eq. (1.12). Then there is τ1 ∈ R ∪ {+∞} such that

ϕ′(s) > 0 on (−∞, τ1). Furthermore, τ1 is finite if and only if ϕ(τ1) > κ. If, in

addition, the birth function g satisfies (FC), then ϕ is eventually either monotone

or slowly oscillating around κ. Finally, if τ0 is the leftmost point where ϕ(τ0) = θ

then τ1 − τ0 ≥ ch.

It should be observed here that the existence of oscillating traveling fronts in the

delayed reaction-diffusion equations is by now a well-known fact confirmed both

numerically and analytically. The subclass of slowly oscillating profiles is defined

below:

Definition 2 Set K = [−ch, 0]∪ {1}. For any v ∈ C(K) \ {0} we define the number

of sign changes by

sc(v) = sup{k ≥ 1 : there are t0 < · · · < tk such that v(ti−1)v(ti) < 0 for i ≥ 1}.

We set sc(v) = 0 if v(s) ≥ 0 or v(s) ≤ 0 for s ∈ K. If φ : [a − h,+∞) → R is a

solution of Eq. (1.13), we set (φ̄t)(s) = φ(t+s)−κ if s ∈ [−h, 0], and (φ̄t)(1) = φ′(t).

We will say that φ(t) is slowly oscillating about κ if φ(t) − κ is oscillatory and for

each t ≥ a, we have either sc(φ̄t) = 1 or sc(φ̄t) = 2.
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The studies realized in [49] have left open the conjecture about the existence

of non-monotone but eventually monotone traveling fronts in the equation (1.12)

(and, in particular, in the important diffusive Nicholson’s blowflies equation when

g(x) = px exp(−x)). The new facts that have appeared after the publication of

[49] did not give an unconditional support to this conjecture. From one side, the

numerical simulation of wavefronts for more general non-local equations (e.g. the

non-local KPP-Fisher equation [4]) indicate, in certain cases, the presence of non-

monotone but eventually monotone traveling fronts. See also [30, 41]. On the other

hand, the recent work [30] establishes analytically that the KPP-Fisher equation

with a finite discrete delay can have wavefronts only with profiles which are either

monotone or slowly oscillating around κ.

The main result of the third chapter consists in a rigorous analytical justification

of the existence of the non-monotone and eventually monotone wavefronts (see Fig.

1.2) to the equation (1.12). In fact, we have established the following much stronger

result:

Theorem I.10 (see Theorem IV.1) There is a piece-wise linear unimodal function

g (see Fig. 4.2) satisfying (UM), (FC) and the positive numbers h, c∗ < c∗ such that

equation (1.12)

(i) has a unique wavefront u(t, x) = ϕ(x · ν + ct), |ν| = 1, for each c ≥ c∗ and does

not have any wavefront propagating with the speed c < c∗;

(ii) for each c ∈ [c∗, c
∗], the profile ϕ is non-monotone but eventually monotone (see

Fig. 1.2, where the minimal front is represented);

(iii) for each c > c∗, the wavefront profile ϕ slowly oscillates around κ.

In particular, this gives an affirmative answer the conjecture proposed in [49].
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Figure 1.2: Heteroclinic solution eventually monotone

Finally, we would like to note that the main results of the thesis can be found in

the references [1, 24, 31].



CHAPTER II

Positivity implies exponential convergence

First, we recall that in a biological context, φ is the size of an adult population, so

we are interested in positive solutions of equation (1.12). Following the introduction,

we call a bounded continuous non-constant solution φ : R → R+ semi-wavefront if

either φ(−∞) = 0 or φ(+∞) = 0. In fact, we can always assume that φ to satisfies

φ(−∞) = 0, since the other case can be easily transformed to this one via the change

of variables ζ(t) = φ(−t), with equation (1.12) assuming the form

ζ(t) =

∫
X

dµ(τ)

∫
R
K1(s, τ)g(ζ(t− s), τ)ds, K1(s, τ) := K(−s, τ).

2.1 Mollison’s condition

Hence, assuming that φ(−∞) = 0, we consider somewhat more general equation

(2.1) φ(t) =

∫
X

dµ(τ)

∫
R
K(s, τ)g(φ(t− s), t− s, τ)ds,

where measurable g : R × R × X → R+ is continuous in the first two variables for

every fixed τ ∈ X. We suppose additionally that, for some measurable p(τ) ≥ 0 and

δ > 0, s̄ ≤ 0, it holds

(2.2) g(v, s, τ) ≥ p(τ)v, v ∈ (0, δ), s ≤ s̄, τ ∈ X.

22
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First, we present a simple proof of the necessity of the following Mollison’s condition

(cf. [8]) for the existence of the semi-wavefronts:

∫
R

∫
X

K(s, τ)p(τ)dµ(τ)e−szds is finite for some z ∈ R \ {0}.(2.3)

Theorem II.1 Let continuous φ : R → [0,+∞) satisfy (2.1) and suppose that

φ(−∞) = 0 and φ(t) ̸≡ 0, t ≤ t′ for each fixed t′. If (2.2) holds and

(2.4)

∫
X

∫
R
K(s, τ)p(τ)dsdµ(τ) ∈ (1,∞),

then
∫ 0

−∞ φ(s)e−sx̄ds and
∫
R

∫
X
K(s, τ)p(τ)dµ(τ)e−sx̄ds are convergent for an appro-

priate x̄ > 0. Furthermore, suppK ∩ (R+ ×X) ̸= ∅.

Remark 1 Looking for heteroclinic solutions of the simple logistic equation x′ =

−βx+x(1+β−x) with β > 0, we obtain an example of (1.6) where suppK ∩ (R−×

X) = ∅ under conditions of the above theorem.

Proof. Since the support ofK generally is unbounded, we will truncateK by choosing

integer N such that

κ :=

∫
X

∫ N

−N
K(s, τ)p(τ)dsdµ(τ) > 1, and 0 ≤ φ(t) < δ, t < s̄− 2N.

Integrating equation (2.1) between t′ and t < s̄−N , we find that∫ t

t′
φ(v)dv ≥

∫
X

dµ(τ)

∫ N

−N
K(s, τ)

∫ t

t′
g(φ(v − s), v − s, τ)dvds

≥
∫
X

p(τ)dµ(τ)

∫ N

−N
K(s, τ)

∫ t

t′
φ(v − s)dvds

=

∫
X

p(τ)dµ(τ)

∫ N

−N
K(s, τ)(

∫ t′

t′−s
+

∫ t

t′
+

∫ t−s

t

)φ(v)dvds,

from which∫ t

t′
φ(v)dv ≤

2δ
∫
X

∫ N
−N |s|K(s, τ)p(τ)dsdµ(τ)∫

X

∫ N
−N K(s, τ)p(τ)dsdµ(τ)− 1

, t′ < t < s̄− 2N.
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Hence, the increasing function

(2.5) ψ(t) =

∫ t

−∞
φ(s)ds

is well defined for all t ∈ R and

ψ(t) ≥
∫
X

p(τ)dµ(τ)

∫ N

−N
K(s, τ)ψ(t− s)ds ≥ κψ(t−N), t < s̄− 2N.

Consider h(t) = ψ(t)e−γt where κ = eγN , cf. [5]. For all t < s̄− 2N we have

h(t−N) = ψ(t−N)e−γ(t−N) ≤ 1

κ
ψ(t)e−γteγN = h(t)

and γ = N−1 lnκ > 0. Hence supt≤0 h(t) < ∞ and ψ(t) = O(eγt), t → −∞. After

taking x̄ ∈ (0, γ) and integrating by parts, we obtain∫ t

−∞
φ(s)e−x̄sds = ψ(t)e−x̄t + x̄

∫ t

−∞
ψ(s)e−x̄sds

that proves the first statement of the theorem. Finally,

e−x̄tψ(t) =

∫
X

dµ(τ)

∫
R
e−x̄sK(s, τ)e−x̄(t−s)ψ1(t− s, τ)ds,

where ψ1(u, τ) :=
∫ u
−∞ g(φ(s), s, τ)ds ≥ p(τ)

∫ u
−∞ φ(s)ds, u ≤ s̄−N. The latter yields∫ s̄−N

−∞
e−x̄vψ(v)dv =

∫
X

dµ(τ)

∫
R
e−x̄sK(s, τ)

∫ s̄−N

−∞
e−x̄(v−s)ψ1(v − s, τ)dvds ≥

∫
X

p(τ)dµ(τ)

∫ 0

−∞
e−x̄sK(s, τ)ds

∫ s̄−N

−∞
e−x̄vψ(v)dv,

(2.6) K−(x̄) :=

∫
X

p(τ)dµ(τ)

∫ 0

−∞
e−x̄sK(s, τ)ds ≤ 1, (note that ψ(s) > 0, s ∈ R),

so that

K−(0) =

∫
X

p(τ)dµ(τ)

∫ 0

−∞
K(s, τ)ds ≤ 1 <

∫
X

p(τ)dµ(τ)

∫
R
K(s, τ)ds,

which completes the proof of the theorem.
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Remark 2 Suppose that |g(φ(s), s, τ)| ≤ C where C does not depend on s, τ . Then

|φ(t+ h)− φ(t)| ≤ C

∫
R
|Ka(s+ h)−Ka(s)|ds,

where Ka(s) :=
∫
X
K(s, τ)dµ(τ) ∈ L1(R). Since the translation is continuous in

L1(R) [12, Example 5.4], we find that φ(t) is uniformly continuous on R. It is easy

to see that the convergence of the integral
∫ 0

−∞ φ(s)ds < ∞ combined with the

uniform continuity of φ gives φ(−∞) = 0. In this way,
∫ 0

−∞ φ(s)ds <∞ implies that∫ 0

−∞ e−xsφ(s)ds <∞ for small positive x.

Remark 3 It is easy to see that the global non-negativity of g is not necessary in the

case of K having bounded support (uniformly in τ ∈ X).

Now, let φ,K, g, x̄ be as in Theorem II.1 and sups∈R φ(s) <∞. Set

Φ(z) =

∫
R
e−zsφ(s)ds, K(z) =

∫
R

∫
X

K(s, τ)p(τ)dµ(τ)e−szds,

and denote the maximal open vertical strips of convergence for these two integrals

as σϕ < ℜz < γϕ and σK < ℜz < γK , respectively. Evidently, σϕ, σK ≤ 0 and

γϕ, γK ≥ x̄ > 0. Since φ,K are both non-negative, by [54, Theorem 5b, p. 58],

γϕ, γK , σϕ, σK are singular points of Φ(z),K(z) (whenever they are finite). A simple

inspection of the proof of Theorem II.1 suggests the following

Lemma 1 Assume φ, g,K are as in Theorem II.1. Then σK ≤ σϕ < γϕ ≤ γK.

Furthermore, K(γϕ) is always a finite number.

Proof. For all z ∈ (0, γϕ), t ≤ 0, we have

ψ(t) =

∫ t

−∞
(φ(s)e−zs)ezsds ≤ ezt

∫ 0

−∞
φ(s)e−zsds,

so that
∫ 0

−∞ ψ(s)e−z
′sds <∞ for each z′ ∈ (0, γϕ) and, due to (2.6), we get

K−(z) :=

∫
X

p(τ)dµ(τ)

∫ 0

−∞
e−zsK(s, τ)ds ≤ 1
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for all z ∈ (0, γϕ). Hence, using the Beppo Levi monotone convergence theorem, we

obtain that K−(γϕ) ≤ 1. As a consequence, K(γϕ) is finite and γK ≥ γϕ.

Corollary 2 Assume that

lim
z→γK−

∫
R

∫
X

K(s, τ)p(τ)dµ(τ)e−szds = +∞.

Then γϕ is a finite number and γϕ < γK.

2.2 Abscissas of convergence

In this section, we investigate the abscissas of convergence for the bilateral Laplace

transforms ofK and bounded non-negative φ satisfying φ(−∞) = 0, φ(t) ̸≡ 0, t ≤ t′,

for each fixed t′, and solving our main equation (1.6). Now we are supposing that

the continuous g(·, τ) : R+ → R+ is differentiable at 0 with g′(0+, τ) > 0 for each

fixed τ . Then the non-negative functions

λ+δ (τ) := sup
u∈(0,δ)

g(u, τ)

u
, λ−δ (τ) := inf

u∈(0,δ)

g(u, τ)

u
, δ > 0, τ ∈ X,

are well defined, measurable, monotone in δ and pointwise converging:

lim
δ→0+

λ±δ (τ) = g′(0+, τ).

The characteristic function χ associated with the variational equation along the

trivial steady state of (1.6) is defined by

χ(z) := 1−
∫
R

∫
X

K(s, τ)g′(0+, τ)dµ(τ)e−szds.

It is supposed to be negative at z = 0: χ(0) < 0. Since condition (2.2) is obviously

satisfied with p(τ) = λ−δ (τ) and

lim
δ→0+

∫
R

∫
X

K(s, τ)λ−δ (τ)dµ(τ)ds =

∫
R

∫
X

K(s, τ)g′(0+, τ)dµ(τ)ds > 1

by the monotone convergence theorem, all results of Section 2.1 hold true for equation

(1.6). Furthermore, we have the following
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Theorem II.2 Assume χ(0) < 0. Let φ : R → [0,+∞) be a semi-wavefront to

equation (1.6). If φ(−∞) = 0 and φ(t) ̸≡ 0, t ≤ t′ for each fixed t′, then χ(z) has a

zero on (0, γϕ] ⊂ (0, γK ] ⊂ R ∪ {+∞}.

Remark 4 1) If φ(+∞) = 0 then a similar statement can be proved. Namely, in

such a case χ(z) has a zero on [σK , 0). 2) It should be noted that Theorem II.2 also

provides a non-existence result: if χ(x) < 0 for all x ∈ (0, γK ] then equation (1.6)

does not have any semi-wavefront vanishing at −∞.

Proof. For real positive z ∈ (0, γϕ) we consider the integrals

Φ(z) =

∫
R

e−zsφ(s)ds,G(z, τ) :=
∫
R

e−zsg(φ(s), τ)ds,K(z, τ) :=

∫
R

e−zsK(s, τ)ds.

Since φ is non-negative and bounded, and since g′(0+, τ) > 0 exists, the convergence

of G(z, τ) (for positive z) is equivalent to the convergence of Φ(z). Applying the

bilateral Laplace transform to equation (1.6), we obtain that

(2.7) Φ(z) =

∫
X

K(z, τ)G(z, τ)dµ(τ).

Obviously, K,G,Φ are positive at each real point of the convergence.

Let us prove that χ(z) has a zero on (0, γϕ]. First, we suppose that Φ(γϕ) =

limz→γϕ− Φ(z) = ∞. In such a case, we claim that

lim
z→γϕ−

G(z, τ)
Φ(z)

= g′(0, τ).

Indeed, let Tδ be the rightmost non-positive number such that φ(s) ≤ δ for s ≤ Tδ.

Then

λ−δ (τ)

∫ Tδ

−∞
e−zsφ(s)ds ≤

∫ Tδ

−∞
e−zsg(φ(s), τ)ds ≤ λ+δ (τ)

∫ Tδ

−∞
e−zsφ(s)ds,

∫ +∞

Tδ

e−zs(g(φ(s), τ) + φ(s))ds ≤ sups∈R(g(φ(s), τ) + φ(s))

z
e−γϕTδ .
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As a consequence, for each positive δ > 0,

λ−δ (τ) ≤ lim inf
z→γϕ−

G(z, τ)
Φ(z)

≤ lim sup
z→γϕ−

G(z, τ)
Φ(z)

≤ λ+δ (τ),

that proves our claim.

Now, by using the Fatou lemma as z → γϕ− in∫
X

K(z, τ)
G(z, τ)
Φ(z)

dµ(τ) = 1,

we obtain

1− χ(γϕ) =

∫
X

K(γϕ, τ)g
′(0, τ)dµ(τ) ≤ 1.

Therefore χ(γϕ) ≥ 0, and since χ(0) < 0 we get the required assertion.

Hence, we may suppose that Φ(γϕ) = limz→γϕ−Φ(z) > 0 is finite. Since φ(t) ̸≡

0, t ≤ t′ for each fixed t′, in such a case γϕ <∞. Due to Lemma 1, the value K(γϕ)

is also finite. Set

ζ(t) := φ(t)e−γt, K1(s, τ) := e−γsK(s, τ), where γ := γϕ.

Then, for t < Tδ −N , we have from (1.6) that
∫ t
−∞ ζ(v)dv =∫ t

−∞
φ(v)e−γvdv ≥

∫
X

dµ(τ)

∫ N

−N
K1(s, τ)

∫ t

−∞
g(φ(v − s), τ)e−γ(v−s)dvds ≥

∫
X

dµ(τ)

∫ N

−N
λ−δ (τ)K1(s, τ)

∫ t

−∞
ζ(v − s)dvds ≥

(

∫
X

dµ(τ)

∫ N

−N
λ−δ (τ)K1(s, τ)ds)

∫ t−N

−∞
ζ(v)dv.

Suppose now on the contrary that the characteristic equation

χ(z) := 1−
∫
R

∫
X

K(s, τ)g′(0+, τ)dµ(τ)e−szds = 0

has not real roots on [0, γϕ]. Then χ(0) < 0 implies χ(γ) < 0. As a consequence, in

virtue of the monotone convergence theorem,

lim
δ→0+,N→+∞

∫
X

dµ(τ)

∫ N

−N
λ−δ (τ)K1(s, τ)ds = 1− χ(γ) > 1.



29

Hence, for some appropriate δ,N > 0, increasing function ξ(t) =
∫ t
−∞ ζ(s)ds satisfies

ξ(t) ≥ κδξ(t−N), t < Tδ −N with κδ > 1. Arguing now as in the proof of Theorem

II.1 below (2.5) we conclude that the integral
∫ t
−∞ ζ(s)e−zsds converges for all small

positive z, contradicting to the definition of γϕ.

Remark 5 A natural question is whether there exists φ satisfying assumptions of

Theorem II.2 and such that Φ(γϕ) is finite. Actually, it is well known that Φ(γϕ) = ∞

under some additional conditions on K, g. For example, this happens if g(u, τ) ≤

g′(0, τ)u, u ≥ 0 (other conditions can be found in Theorem II.3), also, that is a

condition for assure existence of semi-wavefronts for equation (1.6, to see theorem

III.3). Indeed, due to the above proof, the only case to be examined is when χ(γ) ≥ 0

and Φ(γ) <∞, γ := γϕ. We have

(2.8) φ(t)e−γt ≤
∫
X

dµ(τ)

∫
R
K1(s, τ)g

′(0, τ)φ(t− s)e−γ(t−s)ds, t ∈ R,

where both sides of the inequality are continuous1 functions of t. If either (i) χ(γ) > 0

or (ii) inequality (2.8) is strict at some point t0, we will integrate (2.8) over R to get

a contradiction: Φ(γ) ≤ Φ(γ)(1−χ(γ)) (case (i)), Φ(γ) < Φ(γ)(1−χ(γ)) (case (ii)).

In consequence we are left to assume that

φ(t)e−γt =

∫
R

[∫
X

K1(s, τ)g
′(0, τ)dµ(τ)

]
φ(t− s)e−γ(t−s)ds, t ∈ R,

and
∫
R

∫
X
K1(s, τ)g

′(0, τ)dµ(τ)ds = 1. However, after integrating the latter equal-

ity over (t,+∞) and then using Lemma 7 with Remark 7 in [1], we get again a

contradiction.

It is clear that χ(z) is concave on (σK , γK), where χ′′(z) < 0. Since χ(0) is

negative, χ can have at most two real zeros, and they must be of the same sign. We

1This property becomes obvious if we rewrite (2.8) without exponential factors.
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will denote them (if they exist) by λl ≤ λr. Under assumption of the existence of a

semi-wavefront φ vanishing at −∞, χ has at least one positive root λl. Finally, it is

clear that χ is analytical in the vertical strip ℜz ∈ (0, γK).

Notation At this stage, it is convenient to introduce the following notation:

λrK =

 λr, if λr exists,

γK , otherwise.

Lemma 2 Equation χ(z) = 0 does not have roots in the open strip Σ := ℜz ∈

(λl, λrK). Furthermore, the only possible zeros on the boundary Σ are λl, λr.

Proof. Observe that if χ(z0) = 0 for some z0 ∈ Σ, then χ(ℜz0) > 0 since χ is concave,

χ(λl) = 0 and ℜz0 ∈ (λl,min{λr, γK}). On the other hand, 1 =

|
∫
R

∫
X

K(s, τ)g′(0+, τ)dµ(τ)e−sz0ds| ≤
∫
R

∫
X

K(s, τ)g′(0+, τ)dµ(τ)e−sℜz0ds

and therefore χ(ℜz0) ≤ 0, a contradiction. Now, if χ(λl + iω) = 0 for some ω ̸= 0

then similarly

1 = 1− χ(λl + iω) = |1− χ(λl + iω)| ≤ 1− χ(λl) = 1,

so that ∫
R

∫
X

K(s, τ)g′(0+, τ)dµ(τ)e−sλl(1− cosωs)ds = 0.

Thus K(s, τ)(1−cosωs) = 0 for almost all τ ∈ X, so that K(s, τ) = 0 a.e. on X×R,

a contradiction.

2.3 Asymptotic formulas

2.3.1 A bootstrap argument and the asymptotic behavior of ψ(t) =
∫ t

−∞ φ(s)ds at −∞

The main purpose of this section is to prove several auxiliary statements needed in

the studies of the asymptotic behavior of solutions φ(t) at t = −∞. Usually proofs
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of the uniqueness are based on the derivation of appropriate asymptotic formulas

with one or two leading terms (at t = −∞ as in [5, 11, 14, 52] or at t = +∞ as

in [22]). Our approach is based on an asymptotic integration routine often used in

the theory of functional differential equations, e.g. see [29], [37, Proposition 7.1] or

[18]. Thus we use neither the Titchmarsh theory of Fourier integrals [45] nor the

powerful Ikehara Tauberian theorem [5, 11]. First we will apply our methods to

get an asymptotic formula for the integral ψ(t) :=
∫ t
−∞ φ(s)ds. Since ψ ∈ C1(R) is

strictly increasing and positive, this function is somewhat easier to treat than the

solution φ(t).

Here and everywhere in the sequel, the functions φ,K, g, χ satisfy all conditions

of Section 3. In particular, χ(0) < 0. We also will use the following hypotheses (SB),

(ECρ):

(SB) γϕ < γK and, for some measurable C(τ) > 0 and α, σ ∈ (0, 1],

|g′(0, τ)− g(u, τ)

u
| ≤ C(τ)uα, u ∈ (0, σ),

(2.9) ζ(x) :=

∫
X×R

C(τ)K(s, τ)e−sxdsdµ < +∞, x ∈ (0, γK).

(ECρ) For every x ∈ (0, ρ), ρ ≤ γϕ, there exists some positive Cx such that

(2.10) 0 ≤ φ(t) ≤ Cxe
xt, t ≤ 0.

There are several situations when (ECρ) can be easily checked:

Lemma 3 Condition (ECρ) is satisfied in either of the following two cases:

(i) φ ∈ C1(R) and the integral
∫
R e

−xsφ′(s)ds converges absolutely for all x ∈ (0, ρ);

(ii) (cf. [11]) ρ < γϕ and there exist measurables d1, d2, d1d2 ∈ L1(X), such that

0 ≤ K(s, τ) ≤ d1(τ)e
ρs, s ∈ R, τ ∈ X,
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(2.11) |g(u, τ)| ≤ d2(τ)u, u ≥ 0.

Proof. (i) For each x ∈ (0, ρ) we have that

φ(t) =

∫ t

−∞
φ′(s)ds =

∫ t

−∞
exsφ′(s)e−xsds ≤ ext

∫
R
e−xs|φ′(s)|ds =: Cxe

xt.

(ii) Since ρ < γϕ, the integral
∫
R e

−xsφ(s)ds converges for all x ∈ (0, ρ]. If x ∈

(0, ρ], t ≤ 0, then

φ(t)e−xt ≤ φ(t)e−ρt =

∫
X

dµ(τ)

∫
R
K(s, τ)e−ρse−ρ(t−s)g(φ(t− s), τ)ds ≤

C :=

∫
X

d1(τ)d2(τ)dµ(τ)

∫
R
e−ρsφ(s)ds, t ∈ R.

The following simple proposition will be used several times in the sequel:

Lemma 4 Assume that h(s)e−sx ∈ L1(R) for all x ∈ [a, b]. Then

H(x, y) :=

∫
R
h(s)e−sx−isyds, y ∈ R,

is uniformly (with respect to y ∈ R) continuous on [a, b].

Proof. Take an arbitrary ε > 0 and let N > 0 be such that∫
R\[−N,N ]

|h(s)|e−sxds < 0.25ε, x ∈ [a, b].

Since et is uniformly continuous on compact sets, there exists δ > 0 such that |x1 −

x2| ≤ δ, s ∈ [−N,N ] implies |e−x1s − e−x2s| < 0.5ε/|h|1. But then

|H(x1, y)−H(x2, y)| ≤ 0.5ε+

∫ N

−N
|h(s)||e−x1s − e−x2s|ds < ε, y ∈ R.

Corollary 3 With h as in Lemma 4, we have that limy→∞H(x, y) = 0 uniformly on

x ∈ [a, b].
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Proof. Due to Lemma 4, for each ε > 0 there exists a finite sequence a := x0 < x1 <

x2 < · · · < xm =: b possessing the following property: for each x there is xj such that

|H(xj, y)−H(x, y)| < 0.5ϵ uniformly on y. Now, by the Riemann-Lebesgue lemma,

limy→∞H(xj, y) = 0 for every j. Therefore, for all j and some M > 0, we have that

|H(xj, y)| < 0.5ϵ if |y| ≥M . This implies that

|H(x, y)| ≤ |H(xj, y)−H(x, y)|+ |H(xj, y)| < ϵ, |y| ≥M, x ∈ [a, b],

and the corollary is proved.

As we know, the property φ(−∞) = 0 implies the exponential decay ψ(t) = O(ezt)

at −∞ for each z ∈ (0, γϕ). It is clear also that ψ(t) = O(t) as t → +∞. Hence,

for each fixed z ∈ (0, γϕ), we can integrate equation (1.6) twice, to find that Ψ(z) :=∫
R e

−zvψ(v)dv satisfies

Ψ(z) =

∫
X

dµ(τ)

∫
R
K(s, τ)e−zs

∫
R
e−z(v−s)

∫ v−s

−∞
g(φ(u), τ)dudvds =

∫
X

dµ(τ)

∫
R
K(s, τ)e−zs

∫
R
e−zv

∫ v

−∞
g(φ(u), τ)dudvds =(∫

X

dµ(τ)

∫
R
K(s, τ)g′(0, τ)e−zsds

)∫
R
e−zvψ(v)dv +R(z), where

R(z) :=

∫
X

dµ(τ)

∫
R
K(s, τ)e−zsds

∫
R
e−zv

∫ v

−∞
(g(φ(u), τ)− g′(0, τ)φ(u))dudv.

Therefore χ(z)Ψ(z) = R(z). Set now

G(z, τ) :=

∫
R
e−zvG(v, τ)dv, G(v, τ) :=

∫ v

−∞
(g(φ(u), τ)− g′(0, τ)φ(u))du.

Lemma 5 Assume (2.11), (SB), (EC2ϵ) for some small 2ϵ ∈ (0, γK − γϕ). Then

given a, b ∈ (0, γϕ + αϵ) there exists ρ > 0 depending on φ, a, b such that

|G(z, τ)| ≤ ρ(τ)/|z| := ρ(C(τ) + d2(τ) + g′(0, τ))/|z|, ℜz ∈ [a, b] ⊂ (0, γϕ + αϵ).
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Proof. For x := ℜz ∈ (0, γϕ + αϵ), v ≤ 0, we have

e−xv|G(v, τ)| ≤ e−xvC(τ)

∫ v

−∞
(φ(u))1+αdu ≤ e−xvCα

ϵ C(τ)ψ(v)e
αϵv,

so that e−x·|G(·, τ)| ∈ L1(R) ∩ L2(R). After integrating by parts, we obtain∫ N

−N
e−zvG(v, τ)dv =

G(−N, τ)ezN −G(N, τ)e−zN

z
+

+
1

z

∫ N

−N
e−zu(g(φ(u), τ)− g′(0, τ)φ(u))du.

This yields

|
∫
R
e−zvG(v, τ)dv| = 1

|z|
|
∫
R
e−zu(g(φ(u), τ)− g′(0, τ)φ(u))du| ≤

1

|z|

Cα
ϵ C(τ)

0∫
−∞

e−(ℜz−αϵ)uφ(u)du+ |φ|∞(g′(0, τ) + d2(τ))

+∞∫
0

e−ℜzudu

 .

Theorem II.3 In addition, assume that
∫
R×X K(s, τ)ρ(τ)e−sxdµds converges for all

x ∈ (0, γK). Then χ(γϕ) = 0 and, for appropriate ε1 > 0, a,m ∈ R, k ∈ {0, 1}, and

continuous r ∈ L2(R), it holds that

ψ(t+m) = (a− t)keγϕt + e(γϕ+ε1)tr(t), t ∈ R.

It should be noted that depending on the geometric properties of g, the value

of γϕ can be minimal (the case of a pulled semi-wavefront [51, 21, 43]) or maximal

(the case of a pushed semi-wavefront, ibid.) positive zero of χ(z). Observe that, due

to the monotonicity of ψ, we can also use here the Ikehara Tauberian theorem [5].

However it gives a slightly different result.

Proof. Set z := x+ iy. For a fixed 0 < x < γϕ + αϵ we have

|R(z)| = |
∫
X

G(z, τ)

∫
R
K(s, τ)e−zsdsdµ| ≤ 1

|z|

∫
X

ρ(τ)

∫
R
K(s, τ)e−xsdsdµ,
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so that R(z) is regular in the strip 0 < ℜz < γϕ + αϵ. Thus we can deduce from

Ψ(z) = R(z)/χ(z) that γϕ = γψ (e.g. see [11, Lemma 4.4], the definition of γψ is

similar to that of γϕ) must be a positive zero of χ(z) and Ψ(γϕ) = ∞. It is clear

that R(x + i·) is also bounded and square integrable on R (for each fixed x). Take

now γ′, γ′′ such that 0 < γ′ < γϕ < γ′′ < γϕ + αϵ. Then we may shift the path of

integration in the inversion formula for the Laplace transform (e.g. see [37, p. 10])

to obtain

ψ(t) =
1

2πi

∫ γ′+i∞

γ′−i∞
eztΨ(z)dz = −Resz=γϕ

eztR(z)

χ(z)
+
eγ

′′t

2πi

{∫ +∞

−∞
eista1(s)ds

}
,

where the first term is different from 0 and a1(s) = R(γ′′ + is)/χ(γ′′ + is) is square

integrable on R. Here we recall that, by Corollary 3, limy→∞ χ(x+ iy) = 1 uniformly

on x ∈ [γ′, γ′′]. Since χ′′(x) > 0, x ∈ (0, γK) , for some a,m ∈ R we get ψ(t+m) =

(a− t)keγϕt + eγ
′′tr(t).

Theorem II.4 Assume all conditions of Lemma 5 except γϕ < γK. If

1− χ1(x0) :=

∫
R

∫
X

K(s, τ)d2(τ)dµ(τ)e
−sx0ds ≤ 1,

for some x0 ∈ (0, γK), then γϕ coincides with the minimal positive zero λl of χ(z).

Proof. Since d2(τ) ≥ g′(0, τ), we obtain that x0 ∈ [λl, λrK ] and λl < γK .

Case I: γϕ < γK . Then, by Theorem II.3, we have χ(γϕ) = 0 so that γϕ ∈ {λl, λr}.

Suppose that γϕ > λl, this implies x0 ≤ γϕ = λr. We have

Ψ(z) =

(∫
X

dµ(τ)

∫
R
K(s, τ)d2(τ)e

−zsds

)∫
R
e−zvψ(v)dv +R1(z), where

R1(z) :=

∫
X

dµ(τ)

∫
R
K(s, τ)e−zsds

∫
R
e−zv

∫ v

−∞
(g(φ(u), τ)− d2(τ)φ(u))dudv,

or, in a shorter form,

(2.12) χ1(z)Ψ(z) = R1(z).
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It is clear that x0 = γϕ = λr > λl implies immediately that g′(0, τ) = d2(τ) a.e. on X

and that χ1(z) = χ(z), R(z) = R1(z). As we have seen in the proof of Theorem II.3,

this guarantees that R1(x0) is a finite number. Of course, R1(x0) is also well defined

if x0 < γϕ. Now, it is clear that R1(x0) ≤ 0 because of g(u, τ) ≤ d2(τ)u, u ≥ 0.

We claim that, in fact, R1(x0) < 0. Indeed, otherwise g(u, τ) = d2(τ)u, u ≥ 0, for

almost all τ ∈ X that yields d2(τ) = g′(0, τ) andR1(z) ≡ 0 leading to a contradiction:

Ψ(z) ≡ 0 and ψ(t) ≡ 0.

Now, from R1(x0) < 0,Ψ(x0) > 0, χ1(x0) ≥ 0, we deduce that Ψ must have a pole

at x0 = γϕ < γK . But then χ1(γϕ) = χ(γϕ) implies χ1(z) ≡ χ(z), R(z) = R1(z).

Hence, λl < λr = x0 < γK and γϕ = x0 is a simple pole of Ψ. Therefore we can

proceed as in the proof of Theorem II.3 taking 0 < γ′ < γϕ = λr < γ′′ < γϕ + αϵ to

obtain

ψ(t) =
1

2πi

∫ γ′+i∞

γ′−i∞
eztΨ(z)dz = −Resz=λr

eztR(z)

χ(z)
+ eγ

′′tr1(t) =

= Aeγϕt + eγ
′′tr1(t), where A := −R(λr)

χ′(λr)
< 0, r1 ∈ L2(R),

contradicting to the positivity of ψ.

Case II: γϕ = γK . Since x0 < γK = γϕ and R1(x0) < 0, we similarly deduce from

(2.12) that x0 is a singular point of Ψ(z), a contradiction.

2.3.2 Asymptotic behavior of φ(t) at −∞

The approach developed in the previous sections allows also to obtain the asymp-

totic formulas for the profiles φ:

Theorem II.5 Assume (SB) except γϕ < γK as well as (ECγϕ) and suppose further

that χ(0) < 0, χ(γK−) ̸= 0, g(u, τ) ≤ g′(0, τ)u, u ≥ 0.

Then γϕ coincides with the minimal positive zero λl of χ(z) and such a solution
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(if exists) has the following representation:

φ(t+m) = (a− t)keλlt + e(λl+δ)tr(t), with continuous r ∈ L2(R),

for some appropriate a,m ∈ R, δ > 0. Here k = 0 [respectively, k = 1] if λl is a

simple [respectively, double] root of χ(z) = 0.

Remark 6 By Theorem II.4, χ(γK−) ̸= 0 yields γϕ = λl < γK . We assume this

stronger assumption instead of γϕ < γK since it is more easy to use. Recall that we

need γϕ < γK to apply the bootstrap argument.

Proof. It is clear that equation (1.6) can be written as the linear inhomogeneous

equation

(2.13) φ(t) =

∫
X

dµ

∫
R
K(s, τ)g′(0, τ)φ(t− s)ds+D(t), t ∈ R,

where all integrals are converging and

D(t) :=

∫
X

dµ

∫
R
K(s, τ)(g(φ(t− s), τ)− g′(0, τ)φ(t− s))ds ≤ 0, t ∈ R.

Take C(τ), σ, ζ(x) as in (SB). Observe that without restricting the generality, we can

assume in (SB) that (1 + α)γϕ < γK . Since equation (1.6) is translation invariant,

we can suppose that φ(t) < σ for t ≤ 0. Applying the bilateral Laplace transform to

(2.13), we obtain that

χ(z)Φ(z) =

∫
R
e−ztD(t)dt =: D(z).

We claim that, due to conditions (SB) and (ECγϕ), function D is regular in the

strip Πα = {z : ℜz ∈ (0, (1 + α)γϕ)}. Indeed, we have

D(x+ iy) =

∫
R
e−iyt[e−xtD(t)]dt.
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Given x := ℜz ∈ (0, (1 + α)γϕ), we choose x′ sufficiently close from the left to γϕ to

satisfy −x+ (1 + α)x′ > 0. Then

|e−xtD(t)| ≤ e−xt
[∫

X

C(τ)dµ

∫ +∞

t

K(s, τ)C1+α
x′ e(1+α)x

′(t−s)ds+

+2|φ|∞
∫
X

g′(0, τ)dµ

∫ t

−∞
K(s, τ)ds

]
≤

e−xt
[
e(1+α)x

′tC1+α
x′ ζ((1 + α)x′) + 2|φ|∞

∫
X

g′(0, τ)dµ

∫ t

−∞
K(s, τ)ds

]
=:

e−xt
[
e(1+α)x

′tA1 + 2|φ|∞
∫
X

g′(0, τ)dµ

∫ t

−∞
K(s, τ)e−(1+α)x′se(1+α)x

′sds

]
≤

e(−x+(1+α)x′)t [A1 + 2|φ|∞(1− χ((1 + α)x′))] =: A2e
(−x+(1+α)x′)t, t ∈ R.

Since clearly D(t) is bounded on R, the above calculation shows that e−xtD(t)

belongs to Lk(R), for each k ∈ [1,∞] once x ∈ (0, (1 + α)γϕ). As a consequence, for

each such x the function dx(y) := D(x + i · y) is bounded and square integrable on

R.

By our assumptions, χ(z) is also regular in the domain Πα, while Φ(z) = D(z)/χ(z)

is regular in ℜz ∈ (0, γϕ) and meromorphic in Πα. In virtue of Lemma 2, we can

suppose that Φ(z) has a unique singular point γϕ in Πα which is either simple or

double pole.

Now, for some x′′ ∈ (0, γϕ), using the inversion theorem for the Fourier transform,

we obtain that for an appropriate sequence of integers Nj → +∞

φ(t) =
1

2πi
lim

j→+∞

∫ x′′+iNj

x′′−iNj

eztD(z)

χ(z)
dz

almost everywhere on R, e.g. see [37, p. 9-10]. Next, if x ∈ (γϕ, (1 + αγϕ)) then∫ x′′+iN

x′′−iN

eztD(z)dz

χ(z)
=

(∫ x+iN

x−iN
+

∫ x−iN

x′′−iN
−
∫ x+iN

x′′+iN

)
eztD(z)dz

χ(z)
− 2πiResz=γϕ

eztD(z)

χ(z)
.

Since, by Corollary 3,

(2.14) lim
j→+∞

max
z∈[x′′±iNj ,x±iNj ]

(|D(z)|+ |1− χ(z)|) = 0,
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we conclude that, for each fixed t ∈ R

lim
j→+∞

∫ x±iNj

x′′±iNj

eztD(z)

χ(z)
dz = 0.

Observe also that due to Lemma 2 and Corollary 3 (cf. (2.14)), the function χ(z)

does not have zero other than λl = γϕ in a small strip centered at ℜz = λl. Therefore

φ(t) = −Resz=γϕ
eztD(z)

χ(z)
+
ext

2π

∫
R

eiytdx(y)

χ(x+ iy)
dy.

It should be noted here thatD(γϕ) < 0 since otherwiseD(t) ≡ 0 implying χ(z)Φ(z) =

D(z) ≡ 0 so that Φ(z) ≡ 0, a contradiction. Since

Resz=γϕ
eztD(z)

χ(z)
=
eγϕtD(γϕ)

χ′(γϕ)
, if λl < λrK ,

Resz=γϕ
eztD(z)

χ(z)
=

2eγϕt

χ′′(γϕ)

(
tD(γϕ) +D′(γϕ)−D(γϕ)

χ′′′(γϕ)

3χ′′(γϕ)

)
, if λl = λr,

we get the desired representation.



CHAPTER III

Separation dichotomy and existence of wavefronts

3.1 Main results

In this chapter, we will assume the additional mild conditions (C) and (P) stated

in the Introduction:

(C) For each δ > 0 there is a measurable Cδ(τ) ≥ 0 such that

g(u, τ) ≤ Cδ(τ)u for all u ∈ [0, δ];

∫
X

Cδ(τ)dµ(τ)

∫
R
K(s, τ)ds < +∞;

(P) Bounded continuous solution ϕ(t) ≥ 0 of (1.12) vanishes at some point only if

ϕ(t) ≡ 0.

We note that assumption (P) can easily be verified in view of the following statement.

Lemma 6 Assume that there are X̃ ⊂ X, µ(X̃) > 0, and a measurable A : X̃ →

(0,+∞) such that τ ∈ X̃ implies (i) g(u, τ) = 0 if and only if u = 0; (ii) K(s, τ) > 0

for all s ∈ (−A(τ), A(τ)) =: Iτ . Let ϕ(t) ≥ 0 be a bounded continuous solution of

(1.6). Then ϕ(0) = 0 implies ϕ(t) ≡ 0 on R.

Proof. Let 0 = ϕ(0) =
∫
X
dµ(τ)

∫
RK(s, τ)g(ϕ(−s), τ)ds. This implies that the non-

negative K(s, τ)g(ϕ(−s), τ) = 0 almost everywhere on X×R. Then g(ϕ(−s), τ) = 0

almost everywhere on the measurable set S = {(τ, s) : τ ∈ X̃, s ∈ Iτ} ⊂ X×R and

40
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thus ∫
X̃

G(τ)dµ(τ) = 0, where G(τ) :=

∫ A(τ)

−A(τ)
g(ϕ(−s), τ)ds, τ ∈ X̃.

Hence, G(τ0) = 0 for some τ0 ∈ X̃ that yields g(ϕ(−s), τ0) = 0 for all s ∈ Iτ0 . Thus

ϕ(−s) = 0, s ∈ Iτ0 . Similarly, if ϕ(t0) = 0 for some t0 ∈ R, then ϕ(t) = 0 for all

t in an open neighborhood of t0. In consequence, the nonempty set of zeros of the

continuous ϕ is open and closed in R implying that ϕ(t) = 0 for all t ∈ R.

Let also recall our first result:

Theorem III.1 Assume that the hypotheses (C) and (P) are met and that χ(0) < 0.

Then the following dichotomy holds for each bounded solution ϕ(t) ≥ 0 of (1.6):

either lim inft→+∞ ϕ(t) > 0 or ϕ(+∞) = 0. A similar alternative is also valid at

−∞.

An easy combination of results from Theorem II.2 and Theorem III.1 leads to the

following

Corollary 4 Let all assumptions of Theorem III.1 hold. If χ(z) does not have any

positive [negative] zero and ϕ is a positive bounded solution of (1.6), then lim inf
t→−∞

ϕ(t) >

0 [respectively, lim inf
t→+∞

ϕ(t) > 0]. As a consequence, equation (1.6) can not have pos-

itive pulse solutions (i.e. solutions satisfying ϕ(−∞) = ϕ(+∞) = 0).

Proof. The first statement of Corollary 4 is a straightforward consequence of Theorem

II.2 (the remark below this proposition can be also helpful) and Theorem III.1. In

order to prove the last statement, it suffices to observe the following: since χ(0) < 0

and χ is concave on its maximal domain of definition, all real zeros of χ should be

of the same sign (whenever they exist).
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Let ω denote either +∞ or −∞. Then from Corollary 4 we have the following

point-wise persistence property: for each bounded positive solution ϕ(t) of Eq. (1.6)

satisfying ϕ(−ω) = 0 there is some δ(ϕ) > 0 such that lim inft→ω ϕ(t) ≥ δ(ϕ). This

fact allows us to exclude the latter inequality from the definition of semi-wavefronts

(cf. with boundary conditions (1.6) in [4]). Now, in order to prove the uniform

persistence (this means that the above mentioned δ(ϕ) can be chosen independent

of ϕ) as well as the existence of solutions to equation (1.6), we impose additional

conditions on the nonlinearity g:

(N) N1. There exists τ0 ∈ X, µ(τ0) = 1, such that g(v, τ) is increasing in v ∈ R+

for

each fixed τ ̸= τ0 and g(v, τ0) > 0, v > 0. Consider the monotone function

g̃(v) :=

∫
X\{τ0}

g(v, τ)dµ(τ)

∫
R
K(s, τ)ds.

N2. There exists ζ2 > 0 such that Θ(v) := v − g̃(v) is strictly increasing on

[0, ζ2], and Θ(ζ2) > Cmaxv≥0 g(v, τ0) where C :=
∫
RK(s, τ0)ds.

Set G(v) := Θ−1(Cg(v, τ0)). It is clear that G(0) = 0, 0 < G(v) < ζ2, v > 0, and that

the graphs of G(v) and g(v, τ0) have the similar geometrical shapes. In particular,

they share the same local extremum points.

If ϕ(t) = c is a constant solution of (1.6), then c = G(c) because of the relation

c = g̃(c) + g(c, τ0)

∫
R
K(s, τ0)ds = g̃(c) + Cg(c, τ0) = c−Θ(c) + Cg(c, τ0).

Several additional important properties of G are listed below:

Lemma 7 Let the assumptions (C) and (N) be satisfied and χ(0) < 0. Then, for

some ζ1 ∈ (0, ζ2), the following holds:
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Figure 3.1: Nonlinearity G under hypotheses (N) and χ(0) < 0.

1. G ∈ C(R+,R+) is positive for s > 0 and there exists G′(0+) > 1;

2. G([ζ1, ζ2]) ⊆ [ζ1, ζ2] and G(R+) ⊆ [0, ζ2];

3. mins∈[ζ1,ζ2]G(s) = G(ζ1) while G(s) > s for s ∈ (0, ζ1].

Proof. Let us show, for instance, that G′(0+) > 1. In view of (C), this derivative

exists and is equal to Cg′(0, τ0)/(1− g̃′(0)). Thus G′(0) > 1 if and only if χ(0) < 0.

Observe that g̃′(0+) ≤ 1 since Θ′(0+) ≥ 0 and we do not exclude the case G′(0+) =

+∞. Due to the boundedness of G, the proof of the other statements of Lemma 7

is straightforward.

Using the above framework, we can improve conclusions of Theorem III.1:

Theorem III.2 Assume (N) along with all the hypotheses of Theorem III.1 and

choose ζ1 > 0 as in Lemma 7. Let ϕ be a positive bounded solution of equation (1.6).

If m = infs∈R ϕ(s) < ζ1 then limt→ω ϕ(t) = 0 and lim inft→−ω ϕ(t) > ζ1 for some

ω ∈ {−∞,+∞}.
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The next statement is the main result of this chapter. It can be considered as a

further development of Theorem 6.1 from [10] which was proved for a single-point

space X and with more restrictive assumptions on the nonlinearity g:

Theorem III.3 Assume (N), (P) and let G′(0) be finite and g(s, τ) ≤ g′(0, τ)s

for all s ≥ 0, τ ∈ X. If χ(z), χ(0) < 0, is well defined and changes its sign on

some open interval (0, ω̄) [respectively, on (−ω̄, 0)], then equation (1.6) has at least

one semi-wavefront ϕ with sups∈R ϕ(s) ≤ ζ2, ϕ(−∞) = 0, and lim inft→+∞ ϕ(t) > ζ1

[respectively, with ϕ(+∞) = 0, lim inft→−∞ ϕ(t) > ζ1]. Moreover, if the equation

G(s) = s has exactly two solutions 0 and κ on R+, and the point κ is globally

attracting for the map G : (0, ζ2] → (0, ζ2] then ϕ(+∞) = κ.

Remark 7 It is worth noting that the existence of g′(0, τ) (and consequently of G′(0))

is not at all obligatory for the existence of semi-wavefronts. Indeed, suppose that

there is a measurable l(τ) satisfying g(s, τ) ≤ l(τ)s, s ≥ 0, and consider

χl(z) := 1−
∫
X

∫
R
K(s, τ)l(τ)dµ(τ)e−szds, g̃′l :=

∫
X\{τ0}

∫
R
K(s, τ)l(τ)dµ(τ)ds.

We also assume that (N) holds, that G possesses the second and the third properties

of Lemma 7, and that g̃′l < 1 (the latter generalises assumption G′(0) ∈ R). Then all

conclusions of Theorem III.3 remain valid if we replace χ with χl in the statement

of this theorem. See the second part of Section 3.4 for more details.

3.2 The proof of the dichotomy principle (Theorem III.1)

.

1. Let ϕ(t) be a bounded solution of (1.6). Then it is not difficult to see that ϕ(t)
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is uniformly continuous on R. Indeed, setting δ = |ϕ|∞, we find that

|ϕ(t+ h)− ϕ(t)| ≤
∫
X

dµ(τ)

∫
R
|K(s+ h, τ)−K(s, τ)|g(ϕ(t− s), τ)ds

≤ |ϕ|∞
∫
X

Cδ(τ)dµ(τ)

∫
R
|K(s+ h, τ)−K(s, τ)|ds =: |ϕ|∞σδ(h),

where limh→0 σδ(h) = 0 because of the continuity of translation in L1(R) and Lebesgue’s

dominated convergence theorem.

2. Next we prove an analog of Theorem II.2 when ϕ(+∞) = 0 and ϕ is bounded

and positive. We have

ϕ(−t) =
∫
X

dµ(τ)

∫
R
K(s, τ)g(ϕ(−t− s), τ)ds, t ∈ R.

Set ψ(t) := ϕ(−t), then ψ(−∞) = 0 and

(3.1) ψ(t) =

∫
X

dµ(τ)

∫
R
K(−s, τ)g(ψ(t− s), τ)ds.

Let χ(z) [χ1(z)] be characteristic equation for Eq. (1.6) [Eq. (3.1), respectively]. We

have

χ1(z) = 1−
∫
X

∫
R
K(−s, τ)g′(0, τ)dµ(τ)e−szds

= 1−
∫
R

∫
X

K(s, τ)g′(0, τ)dµ(τ)eszds = χ(−z)

and thus χ1(0) = χ(0) < 0. By Theorem II.2, χ1(z) has at least one positive root.

Therefore χ(z) has at least one negative zero.

3. Now, let suppose that lim supt→+∞ ϕ(t) = S > 0 and lim inft→+∞ ϕ(t) = 0.

Since χ(0) < 0 and χ is concave on its maximal domain of definition, all real zeros

of χ should be of the same sign (if they exist). Suppose that χ does not have

any real negative [respectively, positive] root. For a fixed j > S−1 there exists a

sequence of intervals [pi, qi], lim pi = +∞, such that ϕ(pi) = 1/j, limϕ(qi) = 0

[respectively, ϕ(qi) = 1/j, limϕ(pi) = 0] and ϕ(t) ≤ 1/j, t ∈ [pi, qi]. Note that
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lim supi→+∞(qi − pi) = +∞. Indeed, otherwise we can suppose that limi→+∞(qi −

pi) = σ > 0. By the pre-compactness of {ϕ(t + s); s ∈ R} in the compact-open

topology of C(R), the sequence wi(t) := ϕ(t + pi) [respectively, wi(t) := ϕ(t + qi)] of

solutions to Eq. (1.6) contains a subsequence converging to a nonnegative bounded

function w∗(t) such that w∗(0) = 1/j, w∗(σ)w∗(−σ) = 0. Since, due to Lebesgue’s

dominated convergence theorem, w∗(t) satisfies (1.6) as well, this contradicts to (P).

Thus qi − pi → +∞ and we can suppose that wi(t) has a subsequence converging

to a bounded positive solution w∗(t) of (1.6) satisfying 0 < w∗(t) ≤ 1/j for all

t ≥ 0 [respectively, for all t ≤ 0]. Since w∗(+∞) = 0 [respectively, w∗(−∞) = 0] is

impossible due to Theorem II.2 and the second step of the proof, we conclude that

0 < S∗ = lim supt→+∞w∗(t) ≤ 1/j [respectively, 0 < S∗ = lim supt→−∞w∗(t) ≤ 1/j].

Let ri → +∞ [respectively, ri → −∞] be such that w∗(ri) → S∗, then w∗(t+ ri) has

a subsequence converging to a positive solution ζj : R → [0, 1/j] of (1.6) such that

maxt∈R ζj(t) = ζj(0) = S∗ ≤ 1/j. Now, consider yj(t) = ζj(t)/ζj(0). Each yj satisfies

(3.2) yj(t) =

∫
X

dµ(τ)

∫
R
K(s, τ)aj(t− s, τ)yj(t− s)ds,

where aj(t, τ) = g(ζj(t), τ)/ζj(t). We claim that {yj(t)} has a subsequence converging

to a continuous solution y∗ : R → [0, 1], y∗(0) = 1, of the equation

(3.3) y∗(t) =

∫
X

g′(0, τ)dµ(τ)

∫
R
K(s, τ)y∗(t− s)ds.

Indeed, the sequence {yj(t)}+∞
j=1 is equicontinuous because of

|yj(t+ h)− yj(t)| ≤
∫
X

dµ(τ)

∫
R
aj(t− s)yj(t− s)|K(s+ h, τ)−K(s, τ)|ds

≤
∫
X

dµ(τ)

∫
R
aj(t− s)|K(s+ h, τ)−K(s, τ)|ds ≤ σ1(h),

where σδ was defined in step 1. In addition,∣∣∣∣∫
R
K(s, τ)aj(t− s, τ)yj(t− s)ds

∣∣∣∣ ≤ C1(τ)

∫
R
K(s, τ)ds ∈ L1(X),



47

so that, by Lebesgue’s dominated convergence theorem, we can pass to the limit (as

j → ∞) in (3.2). Hence, our claim is proved.

4. To finish with the proof of Theorem III.1, we will show that (3.3) cannot have

any nontrivial continuous solution y∗ ≥ 0. We notice that∫
X

g′(0, τ)dµ(τ)

∫
R
K(s, τ)ds > 1.

But then there exists N > 0 such that

ρ :=

∫
X

g′(0, τ)dµ(τ)

∫ N

−N
K(s, τ)ds > 1.

Integrating equation (3.3) between t′ and t > t′, we obtain that∫ t

t′
y∗(v)dv ≥

∫
X

g′(0, τ)dµ(τ)

∫ N

−N
K(s, τ)

∫ t

t′
y∗(v − s)dvds

=

∫
X

g′(0, τ)dµ(τ)

∫ N

−N
K(s, τ)(

∫ t′

t′−s
+

∫ t

t′
+

∫ t−s

t

)y∗(v)dvds,

from which we obtain that∫ t

t′
y∗(v)dv ≤

2
∫
X

∫ N
−N |s|K(s, τ)g′(0, τ)dsdµ(τ)∫

X

∫ N
−N K(s, τ)g′(0, τ)dsdµ(τ)− 1

, t′ < t.

Therefore y∗ ∈ L1(R). Now we easily get a contradiction by integrating (3.3) over

the real line:

0 <

∫
R
y∗(v)dv =

[∫
X

g′(0, τ)dµ(τ)

∫
R
K(s, τ)ds

] ∫
R
y∗(v)dv.

Hence, the dichotomy principle of Theorem III.1 is established at +∞. A similar

conclusion can also be drawn for ϕ(t) at −∞. Indeed, the latter case can be reduced

to the previous one by doing the change of variables ψ(t) := ϕ(−t) and considering

equation (3.1) with χ1 instead of equation (1.6) with χ. �
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3.3 The uniform permanence property

3.3.1 The uniform boundedness of solutions.

Notice that, in general, equation (1.6) can have unbounded continuous solutions.

The corresponding examples can be constructed by taking appropriate linear g(u, τ).

Nevertheless, as we show in the continuation, with conditions (N) and χ(0) < 0

being assumed, it is easy to avoid the possible problems with unbounded solutions

in the following two ways:

Modification of the convolution equation. Consider

ḡ(u, τ) = min{g(u, τ), g(ζ2, τ)}, τ ̸= τ0, ḡ(u, τ0) := g(u, τ0)

and

ḡ(v) =

∫
X\{τ0}

ḡ(v, τ)dµ(τ)

∫
R

K(s, τ)ds.

Then Θ̄(s) := s − ḡ(s) is a strictly increasing function. Indeed, Θ̄(s) = Θ(s),

0 ≤ s ≤ ζ2, and we know that Θ(s) strictly increases in [0, ζ2]. Furthermore, for

s ≥ ζ2, we have Θ̄(s) = s − ḡ(s) = s − ḡ(ζ2) where ḡ(ζ2) is a constant. Hence

Θ̄(s) is strictly increasing on R+. If we set Ḡ(v) = Θ̄−1(Cḡ(v, τ0)), we find that

Ḡ(v) = G(v) ≤ ζ2 for v ≥ 0.

Now we consider a modified convolution equation

ϕ(t) =

∫
X

dµ(τ)

∫
R
K(s, τ)ḡ(ϕ(t− s), τ)ds.

Each solution ϕ(t) of it is bounded;

ϕ(t) ≤ ḡ(ζ2) + Cmax
v≥0

g(v, τ0) < ḡ(ζ2) + Θ(ζ2) = ζ2.

The latter estimate assures that ϕ(t) also satisfies (1.6).

Subexponential solutions. Assume additionally that

(3.4) g(u, τ) ≤ g′(0, τ)u, u ≥ 0, for each τ ̸= τ0.
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If a continuous function ϕ satisfies (1.6) then we obtain that

(3.5) ϕ(t) ≤
∫
X\{τ0}

dµ(τ)

∫
R
K(s, τ)g′(0, τ)ϕ(t− s)ds+ ρ

in which ρ := supu≥0 g(u, τ0)
∫
RK(s, τ0)ds ≤ Θ(ζ2). Suppose, in addition, that

θ :=

∫
X\{τ0}

dµ(τ)

∫
R
K(s, τ)g′(0, τ)e−λsds < 1

for some λ > 0 and γ :=
∫
X\{τ0} dµ(τ)

∫
RK(s, τ)g′(0, τ)ds < 1. The first inequality

holds automatically if χ(λ) = 0 because of
∫
RK(s, τ0)g

′(0, τ0)e
−λsds > 0. Similarly,

since γ = g̃′(0), the second inequality holds whenever G′(0+) is finite.

Lemma 8 Assume (N), (P) and let (3.4) hold, G′(0) be a finite number and χ(λ) =

0 for some positive λ. Let also solution ϕ of (1.6) satisfy the inequality ϕ(t) ≤ δeλt

for some δ > 0 and for all t ∈ R. Then ϕ is bounded on R. In fact,

0 ≤ ϕ(t) ≤ min

{
ζ2, sup

u≥0
g(u, τ0)

G′(0)

g′(0, τ0)

}
, t ∈ R.

Proof. Using the inequality ϕ(t) ≤ δeλt in (3.5) and arguing by induction, we find

that

ϕ(t) ≤ δeλtθn + ρ+ ργ + ργ2 + . . .+ ργn−1.

Then, by passing to the limit as n→ ∞, we obtain the required estimate. We recall

here that γ = g̃′(0), G′(0) = Cg′(0, τ0)/(1 − g̃′(0)) and C =
∫
RK(s, τ0)ds. The

inequality ϕ(t) ≤ ζ2 follows from Lemma 9 proved in continuation.

3.3.2 The proof of the uniform persistence (Theorem III.2)

Let ϕ a bounded positive solution of the equation (1.6). Set

0 ≤ m := inf
t∈R

ϕ(t) ≤ sup
t∈R

ϕ(t) =:M < +∞.

First, we will prove the following simple result:
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Lemma 9 Assume that hypothesis (N) holds, then [m,M ] ⊆ G([m,M ]).

Proof. Let {tj} be such that Mj := ϕ(tj) →M . We have

ϕ(tj) =Mj ≤
∫
X

max
v∈[m,M ]

g(v, τ)dµ(τ)

∫
R
K(s, τ)ds

= max
v∈[m,M ]

∫
X\{τ0}

g(v, τ)dµ(τ)

∫
R
K(s, τ)ds+ max

v∈[m,M ]
g(v, τ0)

∫
R
K(s, τ0)ds

= g̃(M) + max
v∈[m,M ]

g(v, τ0)

∫
R
K(s, τ0)ds.

Thus M ≤ maxv∈[m,M ]G(v). Similarly, m ≥ minv∈[m,M ]G(v).

Now we are ready to complete the proof of Theorem III.2. First, we observe

that the hypothesis (N) and assumptions G′(0) > 1 and m < ζ1 yield m = 0, cf.

Fig. 3.1. Hence, due to the positivity of ϕ(t), there exists ω ∈ {−∞,+∞} such

that lim inft→ω ϕ(t) = 0. Then, applying Theorem III.1 and Corollary 4, we find

that ϕ(ω) = 0 and µ := lim inft→−ω ϕ(t) > 0. Making use of our standard limiting

solution argument (cf. Section 3.2 (step 3)), we see that, for some tj → −ω, the

sequence ϕ(t + tj) is converging in the compact-open topology of C(R) to some

function ϕ1(t), µ := inft∈R ϕ1(t) ≤ supt∈R ϕ1(t) ≤ M solving equation (1.6). By

Lemma 9, we have [µ,M ] ⊆ G([µ,M ]) which implies µ > ζ1. �

Remark 8 The last argument in the proof of Lemma 9 also shows that [m′,M ′] ⊆

G([m′,M ′]), wherem′ := lim inft→ω ϕ(t) ≤ lim supt→ω ϕ(t) =:M ′ and ω ∈ {−∞,+∞}.

3.4 The proof of the existence of wavefronts

Throughout all this section, we are assuming that (N) holds, χ(0) < 0 and that

(3.6) g(s, τ) ≤ g′(0, τ)s for all s ≥ 0, τ ∈ X.

The proof will be divided into two steps.
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Step I. For a moment, suppose additionally that

(L) g : (0,+∞) × X → (0,+∞) is bounded and uniformly linear in some right

neighborhood of the origin: g(s, τ) = g′(0, τ)s for all s ∈ [0, δ), τ ∈ X.

Let λ ∈ (0, ω̄) be the leftmost positive solution of equation χ(z) = 0, and set

B := {ϕ ∈ C(R,R) : ∥ϕ∥ = sup
s≤0

e−0.5λs|ϕ(s)|+ sup
s≥0

e−νs|ϕ(s)| < +∞};

K := {ϕ ∈ X;ϕ−(t) = δeλt(1− eϵt)χR−(t) ≤ ϕ(t) ≤ δeλt = ϕ+(t), t ∈ R},

where ϵ > 0 and ν := λ + ϵ < ω̄ are such that χ(ν) > 0. We want to prove the

existence of fixed points ϕ, ϕ ∈ K, sups∈R ϕ(s) < +∞, to the operator

Aϕ(t) =
∫
X

dµ(τ)

∫
R
K(s, τ)g(ϕ(t− s), τ)ds.

A formal linearization of A along the trivial steady state is given by

Lϕ(t) =

∫
X

dµ(τ)

∫
R
K(s, τ)g′(0, τ)ϕ(t− s)ds.

We have that Lϕ+(t) =

∫
X

dµ(τ)

∫
R
K(s, τ)g′(0, τ)δeλ(t−s)ds

= δeλt
∫
X

g′(0, τ)dµ(τ)

∫
R
K(s, τ)e−λsds = δeλt = ϕ+(t).

On the other hand, Lϕ−(t) > ϕ−(t), t ∈ R. Indeed, we have, for a fixed t ≤ 0, that

δ−1Lϕ−(t) =

∫
X

dµ(τ)

∫ +∞

t

K(s, τ)g′(0, τ)(eλ(t−s) − eν(t−s))ds

≥
∫
X

dµ(τ)

∫
R
K(s, τ)g′(0, τ)(eλ(t−s) − eν(t−s))ds

= eλt − eνt(1− χ(ν)) = eλt − eνt + eνtχ(ν) > eλt − eνt = δ−1ϕ−(t).

Lemma 10 K is a closed, bounded, convex subset of B and A : K → K is a completely

continuous map.
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Proof. It is clear that K is a closed, bounded, convex subset of B. To prove that

A(K) ⊆ K, we observe first that, for ϕ ∈ K,

Aϕ(t) ≤
∫
X

dµ(τ)

∫
R
K(s, τ)g′(0, τ)ϕ(t− s)ds = Lϕ(t) ≤ Lϕ+(t) = ϕ+(t).

Next, if for some u we have that 0 < ϕ−(u) ≤ ϕ(u), then u < 0 so that ϕ(u) ≤ δeλu ≤

δ, which implies that g(ϕ(u), τ) = g′(0, τ)ϕ(u). If ϕ−(u) = 0 then g(ϕ(u), τ) ≥

g′(0, τ)ϕ−(u) = 0. In either case, we obtain that g(ϕ(u), τ) ≥ g′(0, τ)ϕ−(u) for all

u ∈ R and therefore

Aϕ(t) ≥
∫
X

dµ(τ)

∫
R
K(s, τ)g′(0, τ)ϕ−(t− s)ds = Lϕ−(t) > ϕ−(t).

Now, we claim that AK is a precompact subset of K. Indeed, the convergence in K

is the uniform convergence on compact subsets of R. On the other hand, the set

of functions from AK restricted on every fixed compact interval [−k, k] is obviously

uniformly bounded and is also equicontinuous in virtue of the estimation (uniform

with respect to t ∈ [−k, k], ϕ ∈ K):

(3.7)

|Aϕ(t+h)−Aϕ(t)| ≤ δeλk
∫
X

g′(0, τ)dµ(τ)

∫
R
|K(s+h, τ)−K(s, τ)|e−λsds→ 0, h→ 0.

Finally, the continuity of A in K can be easily established by applying the domi-

nated convergence theorem and the compactness property of A. Indeed, if ϕj → ϕ0

in K, then Lebesgue’s theorem guarantees the point-wise convergence Aϕj(t) →

Aϕ0(t), t ∈ R, while the compactness property of A assures that this convergence is

actually uniform on each compact subset of R.

Lemmas 8, 9, 10 and the Schauder’s fixed point theorem yield

Theorem III.4 Assume that the hypotheses (N), (L), (P) hold and that G′(0) is

a finite number. Let λ be the leftmost positive zero of χ. Then A has at least one
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fixed point ϕ in K. Moreover, |ϕ|∞ := sups∈R ϕ(s) ≤ ζ2 and if the point κ is globally

attracting with respect to the map G : (0, ζ2] → (0, ζ2] then ϕ(+∞) = κ.

Note that the last statement of this theorem is a straightforward consequence of

Remark 8 (see also [25] where various conditions assuring the global stability property

of G are given).

Step II. Next we show how to reduce the general situation to the case studied in

the first part of this section. Consider the following sequence of measurable functions

γn(s, τ) :=

 g′(0, τ)s, for s ∈ [0, 1/n],

max{g′(0, τ)/n, g(s, τ)}, when s ≥ 1/n,

all of them are continuous of s for each fixed τ and satisfy hypothesis (L) with

δ = 1/n. Note that γn(s, τ) converges uniformly to g(s, τ) on R+ for every fixed τ .

Next, set X ′ := X \ {τ0} and consider continuous and increasing on R functions

g̃n(v) :=

∫
X′
γn(v, τ)dµ(τ)

∫
R
K(s, τ)ds, n = 1, 2, 3 . . .

Since γn+1(s, τ) ≤ γn(s, τ), n = 1, 2, 3 . . . , the sequence {g̃n} is monotone. Now, for

each fixed v ≥ 0, we have that limn→+∞ g̃n(v) = g̃(v) where g̃ was defined in N2.

Observe that g̃ is also continuous and therefore, by Dini’s monotone convergence

theorem, g̃n converges to g̃ uniformly on compacts.

Lemma 11 Let G′(0) > 1 be a finite number. Then Θn(v) := v − g̃n(v) is strictly

increasing in v. Furthermore, there exists an integer n0 such that functions Gn(v) :=

Θ−1
n (Cγn(v, τ0)) are well defined for all n ≥ n0 and converge to G(v) uniformly on

[0, ζ2]. Finally, for all large n, equation Gn(c) = c does not have solutions on (0, ζ1]

while G′
n(0) = G′(0) > 1.

Proof. Set w(τ) :=
∫
RK(s, τ)ds. Since G′(0) is finite, we have that

g̃′(0) =

∫
X′
g′(0, τ)w(τ)dµ(τ) < 1.
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Now, if v ∈ [0, 1/n] then g̃n(v) = g̃′(0)v and therefore g̃n(v2) − g̃n(v1) = g̃′(0)(v2 −

v1) < v2 − v1 for 0 ≤ v1 < v2 ≤ 1/n.

Next, for 1/n ≤ v1 < v2 we consider the following measurable subsets of X ′:

Aj :=

{
τ ∈ X ′ : g(vj, τ) ≤

g′(0, τ)

n

}
, Bj :=

{
τ ∈ X ′ : g(vj, τ) >

g′(0, τ)

n

}
.

Clearly, Bj = X ′ \ Aj, A2 ⊂ A1, B1 ⊂ B2 and B2 \B1 = A1 \ A2. We have

g̃n(v2)− g̃n(v1) =

∫
B2\B1

(g(v2, τ)−
g′(0, τ)

n
)w(τ)dµ(τ)+

∫
B1

(g(v2, τ)− g(v1, τ))w(τ)dµ(τ) ≤
∫
B2

(g(v2, τ)− g(v1, τ))w(τ)dµ(τ) ≤∫
X′
(g(v2, τ)− g(v1, τ))w(τ)dµ(τ) = g̃(v2)− g̃(v1) < v2 − v1.

Finally, consider v1 < 1/n < v2. Then

g̃n(v2)− g̃n(v1) = g̃n(v2)− g̃n(1/n)+ g̃n(1/n)− g̃n(v1) < v2−1/n+1/n−v1 = v2−v1.

This proves that Θn are strictly increasing. Moreover, since clearly Θn(ζ2) > maxs≥0Cγn(v, τ0)

for all large n, the functions Gn are well defined. The third conclusion of the

lemma follows now immediately from the uniform convergence of the sequences

{γn(v, τ0)}, {g̃n(v)}. Note also that Gn(v) = G′(0)v in some small neighborhood

Un of v = 0. Finally, to prove the last conclusion of the lemma, we observe that

Gn(c) = c implies

c =

∫
X

γn(c, τ)w(τ)dµ(τ) ≥
∫
X

g(c, τ)w(τ)dµ(τ) = g̃(c) + g(c, τ0)w(τ0).

In this way, Θ(c) ≥ g(c, τ0)w(τ0) so that c ≥ G(c). Since G(s) > s on [0, ζ1] (see

Lemma 7.3), G′
n(0) = G′(0) > 1 we conclude that Gn(s) > s for s ∈ (0, ζ1] and

therefore c > ζ1.

As an immediate consequence of Lemma 11, we get the following
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Corollary 5 For all sufficiently large n, and with the same ζ1 and ζ2 as in Lemma

7, each Gn possesses all three properties listed in Lemma 7.

Hence, for each large n, Corollary 5, Theorems III.4 and III.2 guarantee the exis-

tence of a positive continuous function ϕn(t) such that ϕn(−∞) = 0, lim inft→+∞ ϕn(t) ≥

ζ1, ϕn(t) ≤ ζ2, t ∈ R, and

ϕn(t) =

∫
X

dµ(τ)

∫
R
K(s, τ)γn(ϕn(t− s), τ)ds.

Since the shifted functions ϕn(s+a) satisfy the same integral equation, we can assume

that ϕn(0) = 0.5ζ1. Furthermore, similarly to (3.7) we can show that the sequence

{ϕn} is equicontinuous on R. Consequently, there exists a subsequence {ϕnj
} which

converges uniformly on compact sets to some bounded element ϕ ∈ C(R,R). By

Lebesgue’s dominated convergence theorem, ϕ satisfies equation (1.6). Finally, notice

that ϕ(0) = 0.5ζ1 and thus ϕ(−∞) = 0 and lim inft→+∞ ϕ(t) > ζ1 (by Theorem III.2).

This finalises the proof of Theorem III.4 when χ(z) has a positive zero. A similar

statement for χ(z) having a negative zero follows easily after applying the change of

variables ψ(t) = ϕ(−t). �

3.5 Non-local asymmetric equations

Considering the characteristic equation of 1.1 we can do some observations about

speed c of the wave,

χ(z) =
−χ1(z, c)

β + cz − z2
, where χ1(z, c) = z2 − cz − f ′(0) + g′(0)e−zch

∫
R
K(s)e−zsds.

Analyzing the mutual position of real zeros of χ1(z, c) and their dependence on the

parameter c, we establish in Section 3.6 the existence of two real extended numbers

c−∗ < c+∗ called the critical speeds such that, for every c ∈ (−∞, c−∗ ] ∪ [c+∗ ,+∞),

equation χ1(λ, c) = 0 either (i) has exactly two real roots λ1(c) ≤ λ2(c) or (ii) has



56

exactly one real root λ1(c). Furthermore, each λj(c) is positive if c ≥ c+∗ and is

negative if c ≤ c−∗ . If c ∈ (c−∗ , c
+
∗ ), then χ1(z, c) > 0 for all admissible z. The critical

speed c+∗ [ c−∗ ] is finite if and only if χ1(λ, c) is finite for some λ > 0 [respectively,

with some λ < 0]. If the integral in χ1 diverges for all z > 0 [for all z < 0], we set

c+∗ = +∞ [respectively, c−∗ = −∞].

Remark 9 The above definition of c±∗ generalizes the concept of critical speeds

c∗, c# ≥ 0 from [46]. In particular, it holds that c∗ = c+∗ , c# = c−∗ if c−∗ ≥ 0

and c# = 0, c∗ = max{0, c+∗ } if c−∗ < 0. Thus Theorem III.5 below gives a global

(i.e. including all c ∈ R) perspective on the existence/persistence results in [46].

Applied to equation (1.4), Theorem III.3 yields the following extension of [44,

Theorem 4.2b], [35, Theorem 1.1] and [46, Theorem 4]:

Theorem III.5 Assume (F) and g(s) ≤ g′(0)s, f(s) ≥ f ′(0)s for all s ≥ 0. Then

equation (1.4) has at least one semi-wavefront u = ϕc(x + ct) ≤ ζ2 for each c ∈

(−∞, c−∗ ]∪ [c+∗ ,+∞). Moreover, if c ≤ c−∗ then ϕc(+∞) = 0 and lim infs→−∞ ϕc(s) >

ζ1. Similarly, if c ≥ c+∗ then ϕc(−∞) = 0 and lim infs→+∞ ϕc(s) > ζ1. Next, if

equation f(s) = g(s) has only two solutions: 0 and κ, with κ being globally attracting

with respect to the map f−1 ◦ g : (0, ζ2] → (0, ζ2], then each of these semi-wavefronts

is in fact a wavefront.

Proof. For a fixed c′ ∈ R \ [c−∗ , c+∗ ], this result follows from Theorem III.3 since the

equation χ1(z, c
′) = 0 has at least one real root in the interior of the domain of

definition of χ1(·, c′). Now, if c′ ∈ {c−∗ , c+∗ } is finite, we obtain a semi-wavefront ϕc′

as a limit of profiles ϕcj where either cj ↑ c−∗ or cj ↓ c+∗ . See Section 3.4.2 above or

[46, Section 6, Case II] for more details.

We observe that each possible mutual position of c−∗ ≤ c+∗ and 0 is possible.
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For instance, if K(s) = e−(s+ρ)2/
√
4π, h = 2, g′(0) = 2 > f ′(0) = 1, then

c+∗ = −c−∗ = 0.79 for ρ = 0 (symmetric case), while c+∗ = 2.7, c−∗ = 0.7 . . . for

ρ = 5 (asymmetric case). In particular, if ρ = 5 then equation (1.4) has at least one

stationary (i.e. propagating at the velocity c = 0) semi-wavefront. In the case when

c−∗ , c
+
∗ are of the same sign, an interesting (by its possible biological interpretation)

phenomenon occurs: equation (1.4) can possess the extinction waves. Indeed, if

0 < c < c−∗ then the wave u(x, t) = ϕ(x + ct) converges to 0 at each position x

as t → +∞. Analogously, for each x ∈ R, we have limt→−∞ u(x, t) = 0 when the

velocity c is such that c+∗ < c < 0. As far as we know, this kind of extinction waves

was for the first time mentioned by K. Schumacher as backward traveling fronts in

[42, p. 66: Example and Figure 3]. See also [8, 15, 57].

Finally, under weaker conditions on g, f , we get from Theorem III.1 the following

Theorem III.6 Assume (F) and let u = ϕ(x + ct) be a positive bounded solution

of equation (1.4) satisfying lim inf
s→−∞

ϕ(s) = 0. Then ϕ(−∞) = 0, the critical speed c+∗

is finite and c ≥ c+∗ . A similar result holds when lim inf
s→+∞

ϕ(s) = 0. Hence, equation

(1.4) does not have neither pulses nor semi-wavefronts propagating at the velocity

c ∈ (c−∗ , c
+
∗ ).

3.5.1 Nonlocal lattice equations

Here we consider semi-wavefronts wj(t) = u(j+ct) of the nonlocal lattice equation

(see e.g. [1, 14, 35, 36, 47, 53, 56])

w′
j(t) = D[wj+1(t)− 2wj(t) + wj−1(t)]− dwj(t) +

∑
k∈Z

β(j − k)g(wk(t− r)), j ∈ Z,

where β(k) ≥ 0,
∑

k∈Z β(k) = 1. Let ±γ#± ≥ 0 be extended real numbers such that∑
k∈Z β(k)e

−zk converges when z ∈ Γ# := (γ#− , γ
#
+ ) and is divergent when ±z >
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±γ#± . By Cauchy-Hadamard formula, γ#+ = − lim supk→+∞ k−1 ln β(−k), where by

convention ln(0) = −∞. A similar formula also holds for γ#− . The wave profile u

satisfies

(3.8) cu′(x) = D[u(x+ 1) + u(x− 1)− 2u(x)]− du(x) +
∑
k∈Z

β(k)g(u(x− k − cr)).

Take now c ̸= 0. Then each positive bounded solution u of (3.8) satisfies (1.6) with

X = {τ0, τ1} and

K(s, τ) =

 D(H−1(s) +H1(s)), τ = τ0,∑
k∈Z β(k)Hk+cr(s), τ = τ1,

g(s, τ) =

 s, τ = τ0,

g(s), τ = τ1,

Hτ (t) = |c|−1e−
2D+d

c
(t−τ)χR+((sign c )(t− τ)), χ(z, c) := χ̃(z, c)(2D + d+ cz)−1,

χ̃(z, c) := d+ 2D + cz −D(ez + e−z)− g′(0)e−crz
∑
k∈Z

β(k)e−kz, d+ 2D + cz > 0.

The following statement can be proved analogously to Lemma 13 in 3.6:

Lemma 12 Assume that ±γ#± > 0 and that g′(0) > d. Then there exist real numbers

c−∗ < c+∗ such that, for every c ∈ C := (−∞, c−∗ ] ∪ [c+∗ ,+∞), equation χ(λ, c) = 0

either (i) has exactly two real roots λ1(c) < λ2(c) or (ii) has exactly one real root

λ1(c). Furthermore, each λj(c) is positive if c ≥ c+∗ and is negative if c ≤ c−∗ . If

c ∈ (c−∗ , c
+
∗ ), then χ(z, c) > 0 for all z ∈ (γ#− , γ

#
+ ).

Proof. See the proof of Lemma 13 below where it suffices to consider, instead of (3.9),

the equation

d+2D+cz−g′(0)e−crz
∑
k∈Z

β(k)e−kz = D(ez+e−z).

A formal computation shows that g̃(s) = 2Ds/(2D + d), θ(s) = ds/(2D + d),

G(s) = g(s)/d. Therefore, in complete analogy with the previous subsection, Theo-

rem III.3 yields the following
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Theorem III.7 Let G(s) = g(s)/d have properties 1-3 listed in Lemma 7 and g(s) ≤

g′(0)s for all s ≥ 0. Then, for every c ∈ C \ {0}, the lattice equation has at least

one semi-wavefront uj(t) = ϕc(j + ct) ≤ ζ2. The profile ϕc shares every property

mentioned in the conclusion part of Theorem III.5 (with f = id).

Theorem III.7 extends [53, Theorem 3.1], [36, Theorem 2.1], [33, Theorem 5.4]

and [13, Theorem 4.1] for non-monotone g and asymmetric β.

3.6 Analysis of the characteristic function

Consider ψ(z, c) = z2 − cz − q + pe−zch
∫
RK(s)e−zsds, where p > q and K ≥ 0,∫

RK(s)ds = 1.

Lemma 13 Assume that p > q > 0 and that ψ(z, c) is defined for all z from some

maximal open interval (a, b) ∋ 0. Then there exist real numbers c−∗ < c+∗ such that,

for every c ∈ (−∞, c−∗ ] ∪ [c+∗ ,+∞), equation ψ(λ, c) = 0 either (i) has exactly two

real roots λ1(c) < λ2(c) or (ii) has exactly one real root λ1(c). Furthermore, each

λj(c) ∈ (a, b) is positive if c ≥ c+∗ and is negative if c ≤ c−∗ . If c ∈ (c−∗ , c
+
∗ ), then

ψ(z, c) > 0 for all z ∈ (a, b).

Proof. Since ψ′′
z (z, c) > 0, z ∈ (a, b), we conclude that ψ(z, c) is strictly convex with

respect to z. Consequently, the equivalent equation

(3.9) (H(z, c) :=)(q + cz − z2)ezch = p

∫
R
e−zsK(s)ds (:= G(z)).

has at most two real roots. Since ψ(0, c) = p− q > 0, the convexity of ψ guarantees

that these roots (whenever exist) are of the same sign. Next, we have that G(0) =

p > 0, G′′(z) > 0, G(z) > 0, z ∈ (a, b). The left hand side of (3.9) increases to +∞

[converges to 0 ] at each z ∈ (0, b) when c tends to +∞ [to −∞ respectively] and the

right hand side does not depend on c. Moreover, the left hand side of (3.9) increases
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with respect to c at every positive point z where q + cz − z2 > 0. In consequence,

if equation (3.9) has a positive root for some c = c′, then it has a positive root for

each c > c′. All this implies the existence of c+∗ such that the equation (3.9) have

either two positive roots λ1(c) ≤ λ2(c) or a unique positive root λ1(c) if and only if

c ≥ c+∗ . In fact, an easy analysis of (3.9) shows that the positive λ1(c) exists and

depend continuously on c from the maximal open interval (c+∗ ,∞).

Similarly, the left hand side of (3.9) increases to +∞ [converges to 0] at each

z ∈ (a, 0) when c tends to −∞ [to +∞ respectively]. Moreover, the left hand side

of (3.9) decreases with respect to c at every z < 0 where q + cz − z2 > 0. This

implies the existence of c−∗ such that the equation (3.9) has either two negative roots

λ1(c) ≤ λ2(c) or a unique negative root λ2(c) if and only if c ≤ c−∗ . Again the

negative λ2(c) exists and depend continuously on c ∈ (−∞, c−∗ ).

The above considerations also shows that c−∗ and c+∗ are finite, and c−∗ < c+∗ .

Remark 10 With the unique exception (c−∗ = −∞), all conclusions of Lemma 13

hold also true in the case when (a, b) = (0, b), b > 0. To prove the finiteness of c+∗ , it

suffices to observe that for every positive δ there exists c1 < 0 such that H(z, c) < 0

for all z > δ, c < c1 and H(z, c) < p for all z ∈ (0, δ), c < c1. A similar assertion

(with c+∗ = +∞ ) is valid when (a, b) = (a, 0), a < 0.



CHAPTER IV

On the existence of non-monotone non-oscillating wavefronts

4.1 Main result

Throughout all the chapter we assume that g satisfies the unimodality condition

(UM) g : R+ → R+ is continuous and has only one positive local extremum point

x = θ (global maximum point). Furthermore, g(0) = 0, g(κ) = κ and there

exist g′(0) > 1, g′(κ).
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Figure 4.1: Profile of a minimal, non-monotone and non-oscillating wavefront solution of equa-
tion (1.12) .

We recall the main result of this chapter:

61
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Theorem IV.1 There is a piece-wise linear unimodal function g (see Fig. 4.2)

satisfying (UM), (FC) and the positive numbers h, c∗ < c∗ such that equation (1.12)

(i) has a unique wavefront u(t, x) = ϕ(x · ν + ct), |ν| = 1, for each c ≥ c∗ and does

not have any wavefront propagating with the speed c < c∗;

(ii) for each c ∈ [c∗, c
∗], the profile ϕ is non-monotone but eventually monotone (see

Fig. 4.1, where the minimal front is represented);

(iii) for each c > c∗, the wavefront profile ϕ slowly oscillates around κ.

The proof of this result combines several ideas from [22, 23, 49]. It is given in the

next section.

4.2 Proof of Theorem IV.1

A direct analysis of (1.13) shows that each local maximum Mj of the front profile

ϕ(t) should satisfy the inequality Mj ≤ g(θ). Therefore it suffices to consider g

defined on the interval [0, g(θ)] only. In the simplest ‘unimodal’ case, the graph of

g consists from two linear segments. This nonlinearity was already analysed in [49].

Since, in such a case, g satisfies the following sub-tangency condition at κ:

(4.1) g(x) ≤ κ+ g′(κ)(x− κ), x ∈ [0, κ],

each eventually monotone wavefront is in fact a monotone front, see [23] for more

detail. Therefore, if we want to construct a piece-wise linear birth function g suitable

for Theorem IV.1, its graph must contain at least three linear segments and do not

satisfy the inequality (4.1), see Fig. 4.2:

(4.2) g(x) :=


k1x, 0 ≤ x ≤ θ,

k2x+ q2, θ ≤ x ≤ θ1,

k3x+ q3, θ1 < x ≤ g(θ).
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Here real numbers qj are chosen to assure the continuity of g.

θ κ

y=g(s)

s

y

Figure 4.2: Graph of the unimodal birth function g from Theorem IV.1

Hence, in what follows, we will seek for the appropriate parameters kj, θj and

(h, c) to obtain the desired behaviour of the front. Actually, the main restriction on

(h, c) was already given in [23], where it was proved that an eventually monotone

wavefront in the Mackey-Glass type equation can appear only for (h, c) belonging to

the connected closed domain DL defined below:

Definition 3 (h, c) ∈ DL if and only if each of the equations χ0(z) := z2 − cz −

1 + g′(0)e−zch = 0, χκ(z) := z2 − cz − 1 + g′(κ)e−zch = 0, has exactly two real roots

(counting the multiplicity) of the same sign: the positive roots 0 < µ2 ≤ µ1 for the

first equation, and the negative roots λ2 ≤ λ1 < 0 for the second one.

The following result (established in [23, Lemma 1.1] and [49, Lemma 21]) partially

describes the structure of the set DL and other properties of eigenvalues λj:

Lemma 14 Suppose that g′(κ) < 0. Then there exists c∗ = c∗(h) ∈ (0,+∞] such

that the characteristic function χκ(z) has three real zeros λ1 ≤ λ2 < 0 < λ3 if and

only if c ≤ c∗. If c∗ is finite and c = c∗, then χκ has a double zero λ1 = λ2 < 0,
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while for c > c∗ there does not exist any negative zero to χκ. Moreover, if λj ∈ C is

a complex zero of χκ for c ∈ (0, c∗] then ℜλj < λ2 and |ℑλj| > 2π/(ch).

By [50, Theorem 4.5], for each (h, c) ∈ DL, equation (1.13) has at least one

semi-wavefront solution (i.e. positive bounded solution ϕ(t) such that ϕ(−∞) =

0. Note that each semi-wavefront automatically satisfies the separation condition

lim inf ϕ(t) > 0 at +∞). To oblige this semi-wavefront to converge to κ at +∞, we

will impose one of additional extra conditions on g, h, c given in the next proposi-

tion. These conditions are given in terms of g and a new piece-wise linear unimodal

function σ : [g2(θ), g(θ)] → [g2(θ), g(θ)] defined as σ(x) = ζ−1((1− ξ)g(x)), where

ξ = ξ(h, c) =
z2 − z1

z2e−chz1 − z1e−chz2
∈ [e−h, 1], ζ(x) = x− ψ(x),

ψ : [g2(θ), g(θ)] → [θ1, g(θ)] is the inverse of g restricted on [θ1, g(θ)], and z1(c) <

0 < z2(c) are the roots of the equation z2 − cz − 1 = 0.

Proposition 3 [50] Assume the following global stability condition

(GA) κ is the globally attracting point of one of the following one-dimensional maps

g, σ : [g2(θ), g(θ)] → [g2(θ), g(θ)].

Then, for each semi-wavefront solution of (1.13), there exists the limit ϕ(+∞) = κ.

We remark that, for the birth functions g defined by (4.2), the assumptions of

Proposition 3 can be easily verified since the continuous graphs of σ or g consists of

a finite number of line segments.

The above discussion leads to our first auxiliary result:

Lemma 15 Suppose that the hypotheses (UM), (FC) and (GA) are satisfied and

that (h, c) ∈ DL. Then there exists at least one traveling front u(t, x) = ϕ(x · ν +

ct), |ν| = 1, to equation (1.12) and its profile ϕ must be eventually monotone.
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Proof. It is clear that we only have to prove the eventual monotonicity of ϕ. Suppose,

on the contrary, that ϕ(t) is oscillating around κ. Since the feedback condition (FC)

is satisfied, Proposition 2 shows that these decaying oscillations should be slow. In

addition, we claim that the convergence of ϕ(t) to κ is not super-exponential. Indeed,

by our construction, the difference y(t) := ϕ(t)− κ satisfies the linear homogeneous

equation

(4.3) y′′(t)− cy′(t)− y(t) + k3y(t− ch) = 0,

for all sufficiently large positive t. Therefore, if y(t) is a small (i.e. super-exponentially

decaying) solution of (4.3), it should be identically zero for all large positive t, see

Theorem 3.1 in [29, p. 76]. In this way, there exists a leftmost T such that ϕ(t) = κ

for all t ≥ T . But then, by using equation (1.13), we easily get a contradiction since

ϕ(t) = κ for all t ≥ T − ch.

Now, since y(t) is not a small solution of (4.3), it can be approximated by a finite

linear combination of the eigenfunctions

y(t) = a1e
λ1t + a2e

λ2t + aje
ℜλ3t sin(ℑλjt+ a4) +O(e(ℜλ3−δ)t),

where a1, a2, aj ∈ R and aj ̸= 0, δ > 0 is sufficiently small. Now, from our assumption

about the oscillatory behaviour of ϕ, we deduce that actually a1 = a2 = 0. Recalling

now that ℑ|λj| > 2π/(ch), we obtain that ϕ(t) = κ + aje
ℜλ3t sin(ℑλjt + a4) +

O(e(ℜλ3−δ)t) is rapidly oscillation about κ, a contradiction.

Before announcing our next result, we recall that, by Proposition 2, the leading

part of the wavefront is monotone between the equilibria. Since, in addition, ϕs(t) :=

ϕ(t+ s) solves (1.13) for each fixed s, there is no loss of generality in assuming that

ϕ(0) = θ ∈ (0, κ) and that ϕ′(t) > 0 for all t ≤ 0. As a consequence, ϕ(t) satisfies
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the linear homogeneous equation

(4.4) y′′(t)− cy′(t)− y(t) + k1y(t− ch) = 0,

for all t ≤ ch. This fact allows us to find an almost complete representation of ϕ for

t ≤ ch:

Lemma 16 Suppose that ϕ(0) = θ, µ2 ≤ µ1, and that the unimodal continuous

function g is defined by (4.2) and has the shape presented on Fig. 4.2. Then, for all

t ≤ ch, it holds

(4.5) ϕ(t) = peµ2t + (θ − p)eµ1t if µ2 < µ1, ϕ(t) = −qteµ1t + θeµ1t if µ2 = µ1,

for some p, q satisfying the inequalities

(4.6) θ < p ≤ µ1θ

µ1 − µ2e−ch(µ1−µ2)
, 0 < q ≤ µ1θ

1 + µ1ch
.

Proof. Since ϕ(−∞) = 0 and ϕ(t) is not a small solution at −∞ by Theorem 3.1 in

[29, p. 76], we find that ϕ can be represented by a finite sum

ϕ(t) =
∑

ℜµj>0

cje
µjt, t ≤ 0, if µ2 < µ1, ϕ(t) = c0te

µ1t+
∑

ℜµj>0

cje
µjt, t ≤ 0, if µ2 = µ1,

where µj are roots of the characteristic equation z2 − cz − 1 + g′(0)e−zch = 0 with

the positive real parts (it is a well known fact that the set of all such roots is finite).

Now, since ℜµj < µ2 ≤ µ1 for each j < 2, we find that, in fact,

ϕ(t) = c2e
µ2t+c1e

µ1t, t ≤ 0, if µ2 < µ1, ϕ(t) = c0te
µ1t+c1e

µ1t, t ≤ 0, if µ2 = µ1.

Indeed, otherwise ϕ(t) will oscillate at −∞. Taking into account that ϕ(0) = θ, we

obtain the formulas (4.5).

Next, in order to prove the first inequality for p in (4.6), we observe that the

coefficient c1 := θ− p can be calculated explicitly (e.g. see [22, Lemma 28]) with the
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help of the bilateral Laplace transform:

(θ − p)eµ1t = −Resz=µ1

[
ezt

χκ(z)

∫ +∞

−∞
e−zsf(s)ds

]
,

with f(s) := g′(0)ϕ(s− ch)− g(ϕ(s− ch)) ≥ 0, s ∈ R, satisfying f(+∞) = (g′(0)−

1)κ > 0 and χκ(z) = z2 − cz − 1 + k1e
−zch. In consequence, since µ1 is a simple zero

of χκ and χ′(µ1) > 0, we find that

θ − p = − 1

χ′
κ(µ1)

∫ +∞

−∞
e−µ1sf(s)ds < 0.

Finally, [49, Lemma 10] guarantees that ϕ′(t) > 0 for all t ∈ [0, ch]. In particular,

ϕ′(ch) ≥ 0 that amounts to the second inequality for p in (4.6).

Using the obtained restrictions on p, we easily find that, if µ2 < µ1, then

(4.7) inf
p

max
t∈[0,ch]

ϕ(t, p) = inf
p
ϕ(ch, p) =

g(θ)

1 + µ1µ2

,

where ϕ(t, p) := peµ2t+ (θ− p)eµ1t and inf is taken over the admissible interval for p

indicated in (4.6). In particular, each non-minimal wavefront should satisfy (4.7).

Similarly, if µ1 = µ2, we obtain

(−qt+ θ)eµ1t = −Resz=µ1

[
ezt

χκ(z)

∫ +∞

−∞
e−zsf(s)ds

]
,

and therefore

q =
2

χ′′
κ(µ1)

∫ +∞

ch

e−µ1sf(s)ds > 0.

Now, the right inequality for q in (4.6) is equivalent to the above mentioned property

ϕ′(ch) ≥ 0 satisfied by each wavefront.

Corollary 6 Let all assumptions of Lemma 16 be satisfied and c > c∗. Then

(4.8) ϕ(ch, c) ≥ g(θ)

1 + µ1(c)µ2(c)
.
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Proof. To prove (4.8), it suffices to use the left-hand side relations in (4.5) and (4.6):

ϕ(ch, c) = p(eµ2ch−eµ1ch)+θeµ1ch ≥ µ1θ

µ1 − µ2e−ch(µ1−µ2)
(eµ2ch−eµ1ch)+θeµ1ch = g(θ)

1 + µ1(c)µ2(c)
.

Corollary 7 Assume, in addition to conditions of Lemma 16, that each admissible

wavefront to equation (1.12) is unique (up to translation). Then

(4.9) ϕ(c∗h, c∗) ≥
g(θ)

1 + µ2
1(c∗)

, 0 < q ≤ θ − g(θ)e−µ1(c∗)c∗h/(1 + µ2
1(c∗))

c∗h
.

Proof. Let u(t, x) = ϕ(x + ct, c), ϕ(0, c) = θ, be the wavefront propagating at the

velocity c > c∗. It is easy to see that each profile ϕ(t, c) satisfies the integral equation

(4.10)

ϕ(t, c) =
1

ξ2 − ξ1

(∫ t

−∞
eξ1(t−s)g(ϕ(s− ch, c))ds+

∫ +∞

t

eξ2(t−s)g(ϕ(s− ch, c))ds

)
,

where ξ1 < 0 < ξ2 are roots of the equation z2 − cz − 1 = 0. Take some strictly

decreasing sequence cj → c∗. Since |ϕ′(t, c)| ≤ κ/
√
c2 + 4 and |ϕ(t, c)| ≤ κ, the

sequence ϕ(t, cj) has a subsequence ϕ(t, cjk) wich converges, uniformly on compact

subsets of R, to the monotone continuous bounded function ϕ0(t), ϕ0(0) = θ. By

the Lebesgues dominated convergence theorem, ϕ0 satisfies the equation (4.10) with

c = c∗ and therefore ϕ0 is positive profile of a wavefront propagating with the velocity

c∗. In consequence, due to the uniqueness assumption, we have that ϕ0(t) = ϕ(t, c∗)

and that

(−qc∗h+ θ)eµ1c∗h = ϕ(c∗h, c∗) = ϕ0(c∗h, c∗) = lim
j→+∞

ϕ(cjh, cj)

≥ lim
j→+∞

g(θ)

1 + µ1(cj)µ2(cj)
=

g(θ)

1 + µ2
1(c∗)

.

The inequalities (4.9) follow easily from these relations.

The above considerations yields the following conclusion:
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Theorem IV.2 Let the unimodal continuous function g be defined by (4.2), where

k2 < k3 < 0 < k1. In addition, suppose that the hypotheses (UM) and (FC) are

satisfied, that (h, c) ∈ DL and that κ is the global attractor of at least one of the

following one-dimensional maps g, σ : [g2(θ), g(θ)] → [g2(θ), g(θ)] while

(4.11) γ(c) :=
g(θ)

1 + µ1(c)µ2(c)
> κ.

Then equation (1.12) has a non-empty set of traveling fronts propagating with the

speed c (which can be the minimal one). Next, each such wavefront is eventually

monotone and non-monotone. Furthermore, if either max{|k2|, |k3|} ≤ k1 or the

characteristic equation z2−cz−1+ |k2|e−zch = 0 has two real positive roots (counting

multiplicity), then there exists a unique (up to a translation) wavefront propagating

with the velocity c.

Proof. By Lemma 15, there exists at least one traveling front u(t, x) = ϕ(x · ν +

ct), |ν| = 1, to equation (1.12) and its profile ϕmust be eventually monotone. On the

other hand, Corollaries 6, 7 and (4.11) assure that ϕ(ch) > κ and therefore the profile

ϕ is non-monotone. Finally, since |g(s1)− g(s2)| ≤ max{k1, |k2|}|s1 − s2|, s ∈ [0, 1],

the uniqueness (up to a translation) of the wavefront propagating with the given

velocity c follows from [1, Theorems 7,8].

Proof of Theorem IV.1: Take k1 = −k2 = 3, k3 = −0.25, θ = 1/3, h =

2, κ = 0.53. Then the minimal speed c∗ = 0.71227871925 . . . and the critical speed

c∗ = 0.751303971089 . . . can be found from the characteristic equations z2− cz−1+

3e−2cz = 0, z2 − cz − 1 − 0.25e−2cz = 0. Recall that, by definition, {2} × [c∗, c
∗] =

DL ∩ {2} × R+. We also have that µ1(c∗) = µ2(c∗) = 0.92268222867 . . . . Next, a

straightforward (but a little bit tedious) evaluation of γ(c) shows that the inequality

(4.11) holds for each c ∈ [c∗, c
∗]. For the completeness, the proof of this fact is given
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below:

Lemma 17 Consider the above defined g and h = 2. Then

γ(c) > γ1(c) :=
1 + 1.53c2

2.55 + 1.53c2
> κ = 0.53,

c ∈ [c∗, c
∗] = [0.71227871925 . . . , 0.751303971089 . . . ].

The graph of the function γ1 : [c∗, c
∗] → R+ is shown on Fig. 4.2.

Proof. Set zj(c) = cµj(c), then 0 < z1(c) ≤ z2(c) are the unique real roots of the

equation 1 + z − c−2z2 = 3e−2z. A direct computation shows that z1(c∗) = z2(c∗) =

0.6601479161 . . . and z1(c
∗) = 0.5359537814 . . . , z2(c

∗) = 0.867 . . . . Now, for each

fixed z ∈ R the function p(c) := 1 + z − c−2z2 is strictly increasing on (0,+∞),

and therefore z1(c) is strictly decreasing and z2(c) is strictly increasing on [c∗, c
∗]. In

particular, z1(c), z2(c) ∈ [z1(c
∗), z2(c

∗)] ⊂ [0.537 . . . , 0.868] for all c ∈ [c∗, c
∗]. Next,

let us consider the quadratic polynomial

q(z) = 3 · e−2z1(c∗)
(
1− 2.04(z − z1(c∗)) + 1.9(z − z1(c∗))

2
)
,

which is a small deformation of the second order Taylor approximation of the function

y = 3e−2z at z = z1(c∗). It can be easily verified that q(z) > 3e−2z for all z ∈

[0.521, z1(c∗)) and q(z) < 3e−2z for all z ∈ (z1(c∗), 0.885]. As a consequence, for each

c ∈ [c∗, c
∗], the equation 1+z− c−2z2 = q(z) has exactly two real roots z̃1(c) > z1(c),

z̃2(c) > z2(c). Therefore

µ1(c)µ2(c) = c−2z1(c)z2(c) < c−2z̃1(c)z̃2(c) =
q(0)− 1

1 + 5.7c2e−2z1(c∗)
=

1.549 . . .

1 + 5.7c2e−2z1(c∗)

and γ(c) > 1/(1+ c−2z̃1(c)z̃2(c)) > γ1(c) := (1+1.53c2)/(2.55+1.53c2), c ∈ [c∗, c
∗] =

[0.71 . . . , 0.751 . . . ].
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(c)=y

c

γ

Figure 4.3: Graph of γ1(c)

Next, the graph of g on Fig. 4.2 was drawn by taking the above mentioned data,

it is clear from it that κ is the global attractor of g. Indeed, the second iteration

g2 : [g2(θ), g(θ)] → [g2(θ), g(θ)] is a piece-wise linear map, which slopes can not

exceed |k2k3| = 0.75 in the absolute value. Thus all the assumptions of Theorem

IV.2 are satisfied for all c ∈ [c∗, c
∗] that proves statements (i), (ii) of Theorem IV.1.

Finally, the part (iii) follows from [49, Theorem 3]. �

Remark 11 It is comforting to observe that the conclusions of Theorem IV.1 agree

with the statement of [22, Remark 2] which says that, in the case of the existence of

non-monotone and non-oscillating wavefronts, the equation z2−c∗z−1−g′κe−2zc∗ = 0,

where

g′κ := inf
x∈(0,κ)

(g(x)− g(κ))/(x− κ) = −2.69 . . . ,

can not have negative real roots.

To illustrate our theoretical results, on Fig. 4.1 we are presenting the graph of

minimal wavefront. In order to find it, we have used the estimation q ≤ 0.1314 . . .

which follows from (4.6), (4.9). The graph exhibits only one local extremum, we
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believe that it is possible to find g defined by (4.2) such that the associated wavefront

will have two critical points. It seems that the number of the critical points cannot

exceed 2 (at least for piece-wise linear g defined by (4.2)).
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