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1 Regular quadratic forms and lattices

1.1 Definitions and basic properties

Definition: [L.E. Dickson, Ann. of Math., 1927] A positive
definite integral quadratic form f in n variables is said to be
regular if for positive integers a the equation

f (x1, . . . , xn) = a

is solvable in integers x1, . . . , xn whenever it is true that for
every positive integer m the congruence

f (x1, . . . , xn) ≡ a (mod m)

is solvable in integers x1, . . . , xn.



Lattice formulation:

Let L be a Z-lattice on a positive definite rational quadratic
space (V , Q). For a prime p, let Lp denote the local
completion of L at p, and let gen(L) be the genus of L.

For a positive integer a, write a → L or a ∈ Q(L) if there
exists v ∈ L such that Q(v) = a, and a → Lp if there exists
v ∈ Lp such that Q(v) = a. If S is a set of positive integers,
then S → L or S ⊆ Q(L) will mean a → L for all a ∈ S . Write
a → gen(L) if there exists L′ ∈ gen(L) such that a → L′.

Definition: The lattice L is regular if, for positive integers a,
a → L whenever a → Lp for all p.

Equivalently: The lattice L is regular if, for positive integers a,
a → L whenever a → gen(L).
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A few observations:

I The regular lattices are those for which a local-global
principle holds for the representation of integers.

I Every universal lattice is regular.

I Every lattice having class number 1 is regular.

I Regularity is preserved by scaling.

I If a lattice is regular or universal, then so is any lattice in
its isometry class. So in counting regular or universal
lattices, the count will always refer to the number of
isometry classes of primitive lattices with the stated
property.



1.2 Regular ternary quadratic forms and lattices

B.W. Jones thesis (1928): There exist 102 diagonal regular
ternary quadratic forms.

G.L. Watson thesis (1953): There exist only finitely many
regular ternary quadratic forms.

G.L. Watson (1954): Asymptotic growth of the exceptional set
with the discriminant.

Jagy, Kaplansky & Schiemann (1997): There are at most 913
regular ternary quadratic forms, of which 119 have class
number exceeding 1. (Regularity has not yet been proven for
14 of these forms - see B.-K. Oh, Acta Arith., 2011, and R.
Lemke Oliver, preprint, 2013)



1.3 Regular quaternary quadratic forms and lattices

Ramanujan (1917): There exist 54 diagonal universal
quaternary quadratic forms.

Bhargava & Hanke (290-Theorem): There exist 6436 universal
quaternary lattices.

E (1995): There exist infinitely many (nonisometric) regular
quaternary lattices.

B.M. Kim (unpublished) has determined all regular diagonal
quaternary lattices. The list of these lattices consists of 106
individual lattices and 180 infinite families.
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2 Strictly regular quaternary lattices

2.1 Statement of results

Definitions: A vector v ∈ L is primitive in L, denoted v
∗
∈ L, if

{v} can be extended to a basis for L. A positive integer a is

primitively represented by L, denoted a
∗→ L or a ∈ Q∗(L), if

there exists v
∗
∈ L such that Q(v) = a.

Definition: A lattice L is strictly regular if, for positive integers

a, a
∗→ L whenever a

∗→ Lp for all p. (Terminology due to
Watson (1976))

Remark: If L is strictly regular, then L is regular.
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Theorem 1: There exist only finitely many strictly regular
primitive quaternary lattices.

Proposition: There exist 96 strictly regular diagonal primitive
quaternary lattices. Among these lattices, there are 27 strictly
universal lattices and 34 lattices of class number 1.

2.2 Successive Minima

For a lattice L of rank n, let µi(L) denote the ith successive
minimum of L, for 1 ≤ i ≤ n. Then there exists a linearly
independent set of vectors {v1, . . . , vn} such that
Q(vi) = µi(L) for 1 ≤ i ≤ n, and

dL ≤
n∏

i=1

µi(L).
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It can be proved using character sum estimates that there
exists a constant C such that µi(L) ≤ C for 1 ≤ i ≤ 3 for all
regular lattices of rank at least 4.

When n = 4, we will refer to the primitive sublattice of L
generated by {v1, v2, v3} as a “leading ternary sublattice ” of
L. If T is a leading ternary sublattice of the quaternary lattice
L then:

• µi(T ) = µi(L) for 1 ≤ i ≤ 3;

• for v ∈ T , v
∗
∈ T if and only if v

∗
∈ L;

• if v ∈ L \ T , then µ4(L) ≤ Q(v).
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2.3 Watson transformations

Let L be a positive definite quadratic Z-lattice with sL ⊆ Z.
We will say that L is primitive if sL = Z; L is even if nL ⊆ 2Z,
and odd otherwise. For a primitive lattice L and positive
integer m, define the sublattice

Λm(L) = {x ∈ L : Q(x + y)− Q(y) ∈ mZ for all y ∈ L}.

For an odd prime p, define δp(L) to be the primitive lattice
obtained from Λp(L) upon scaling by a suitable power of p.
For an odd (even, resp.) lattice L, define δ2(L) to be the
primitive lattice obtained from Λ2(L) (Λ4(L), resp.) upon
scaling by a suitable power of 2. [J. Bochnak & B.-K. Oh,
Ann. Inst. Fourier, Grenoble, 2008]



Lemma: Let L be a strictly regular primitive quaternary lattice
and let p be a prime.

i) If 2Zp * Q(Lp), then δp(L) is strictly regular;
ii) There exists a nonnegative integer k such that δk

p (L) is
strictly regular and 2Zp → δk

p (L).

2.4 Outline of proof of Theorem 1

Suppose on the contrary that there exists an infinite family R
of non-isometric strictly regular primitive quaternary lattices.
Since the lattices in R are regular, the prime divisors of the
discriminants of the lattices in R lie in a fixed finite set
[Bochnak & Oh]. So there exists some prime q such that the
powers of q dividing the discriminants of lattices in R are
unbounded.
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For L ∈ R and a prime p 6= q, there exists a nonnegative
integer k such that the lattice δk

p (L) satisfies the properties
• δk

p (L) is strictly regular;
• 2Zp → δk

p (L)p;
• dL and d(δk

p (L)) are divisible by the same powers of q.

So without loss of generality we may assume that for all
primes p 6= q, 2Zp → Lp for all L ∈ R.

For all lattices L ∈ R, L is regular and so µi(L) is bounded
i = 1, 2, 3. Consequently only finitely many ternary lattices
can occur among the leading ternary sublattices of the lattices
in R. So there exists a ternary lattice T which occurs as a
leading ternary sublattice of infinitely many lattices in R. Let
W = QT .
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So there exists an infinite subfamily F ⊆ R such that i) T is
isometric to a leading ternary sublattice of L for all L ∈ F , and
ii) the powers of q dividing the discriminants of lattices in F
are unbounded.

Claim: Wq is anisotropic.

On the contrary, suppose that Wq is isotropic. Then there
exists some t ∈ N such that q2tZq → Tq. By a computation
of Hasse symbols, there exists a prime q′ such that Wq′ is
anisotropic. Then there exists an even positive integer b such
that b(Q×

q′)2 ∩ Q(Wq′) = ∅. For any L ∈ F , q2tb → Lp for all

p; since L is regular, it follows that q2tb → L. But q2tb 6→ T ,
and it would follow that µ4(L) ≤ q2tb for all L ∈ F , leading to
a contradiction since the powers of q dividing the
discriminants of the lattices in L are unbounded.
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Lemma: There exists ` = `(T , q) ∈ N such that
Q∗(Tq) ∩ q`Zq = ∅.

The proof of the lemma follows by considering various
possibilities for a Jordan splitting of Tq and using the Local
Square Theorem.

Completion of proof of Theorem 1:

Let v
∗
∈ T be such that q - Q(v) and denote Q(v) = a. Let

k ∈ N be such that 2k ≥ `.

If L ∈ F and ordqdL is sufficiently large relative to k and
ordqdT , it can be shown that Lq has a Jordan splitting in a
basis {x1, . . . , x4} in which

ordqQ(x4) ≥ 2k + 3 and B(xi , x4) = 0 for i = 1, 2, 3.
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Write v =
∑4

i=1 aixi with ai ∈ Zq and consider
v ′ = v − a4x4 ∈ Lq. Then

Q(v ′) ≡ a (mod q2k+3Zq)

and it follows that there exists ξ ∈ Z×
q such that

a = ξ2Q(v ′) = Q(ξv ′).

Let w = qkξv ′ + x4

∗
∈ Lq. Then

Q(w) ≡ q2ka (mod q2k+3Zq)

and so there exists λ ∈ Z×
q such that

q2ka = λ2Q(w) = Q(λw).

Hence, q2ka
∗→ Lq.



Also, qkv
∗
∈ Lp for all p 6= q. Hence, q2ka

∗→ Lp for all p.

Since L is strictly regular, it follows that q2ka
∗→ L. But

q2ka 6 ∗→ T , since 2k ≥ `. It would then follow that

µ4(L) ≤ q2ka, for all L ∈ F ,

which is impossible since the discriminants of the lattices in F
are unbounded. This completes the proof of Theorem 1.



3 (n-1)-regular lattices of rank n

3.1 Kitaoka’s characteristic submodules

Theorem: [Kitaoka, Nagoya Math. J., 1978] Let L be a lattice
of rank n in a nondegenerate quadratic space over Q; then L
has a submodule M of rank (n-1) and dM 6= 0 which is a
direct summand of L as a module and satisfies the following
condition:

Let L′ be a lattice in some nondegenerate quadratic space
U ′ over Q with dL′ = dL, rank L′ = n and tp(L

′) ≥ tp(L) for
all primes p; if M → L′, then L′ ∼= L.

Definition: Let L be a lattice of rank n and let k ≤ n be a
positive integer. The lattice L is k-regular if for lattices K of
rank k , K → L whenever K → gen(L).
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Corollary: If L is an (n-1)-regular lattice of rank n, then the
class number of L is one.

3.2 Statement of Theorem 2
The definition of k-regularity can be carried over verbatim to
the case of an o-lattice on a totally definite quadratic space
over a totally real algebraic number field F , where o is the ring
of integers of F .

Theorem 2: If L is an (n-1)-regular definite lattice of rank
n ≥ 2 over the ring of integers of any totally real number field,
then the class number of L is one.

Note: The case n = 2 in this theorem is a consequence of a
result in Chan & Icaza, Bull. London Math. Soc., 2008.
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4 Some further questions

I Does the result of Theorem 1 generalize to definite
quaternary lattices over the rings of integers of totally
real number fields? (The finiteness result for regular
ternary lattices is generalized to this context in Chan &
Icaza, Bull. London Math. Soc., 2008.)

I Are there other positive integers k and n for which there
exist infinitely many k-regular lattices of rank n, but only
finitely many that are strictly k-regular? (A next
interesting case to investigate seems to be the case of
strictly 2-regular lattices of rank 6.)

I Do there exist any (n-2)-regular lattices of rank n with
class number exceeding one, for any n ≥ 4?
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Thank You!!


