Positive binary forms representing the same arithmetic progressions

Byeong-Kweon Oh (SNU)

International Conference on the Algebraic and Arithmetic Theory of Quadratic Forms, Puerto Natales, Patagonia, Chile

In 1938, Delone proved that $\left(x^{2}+3 y^{2}, x^{2}+x y+y^{2}\right)$ is the unique pair of non-isometric positive definite integral binary forms representing same integers. In this talk, we find all pairs of positive definite binary integral forms representing same integers in the set $A_{p, k}=\{p n+k: n \geq 0\}$ for any prime p and any non-negative integer k less than p.

Some notations

Some notations

- Let $f(x, y)=[a, b, c]=a x^{2}+b x y+c y^{2}$ be a (positive definite integral) binary quadratic form with discriminant $d_{f}:=b^{2}-4 a c<0$. We always assume that f is primitive, that is, $(a, b, c)=1$.

Some notations

- Let $f(x, y)=[a, b, c]=a x^{2}+b x y+c y^{2}$ be a (positive definite integral) binary quadratic form with discriminant $d_{f}:=b^{2}-4 a c<0$. We always assume that f is primitive, that is, $(a, b, c)=1$.
- The binary \mathbb{Z}-lattice corresponding to f is denoted by $L_{f}=\mathbb{Z} x+\mathbb{Z} y$. It satisfies $[Q(x), 2 B(x, y), Q(y)]=[a, b, c]$. We always assume that the norm ideal of any binary lattice is \mathbb{Z}.

Some notations

- Let $f(x, y)=[a, b, c]=a x^{2}+b x y+c y^{2}$ be a (positive definite integral) binary quadratic form with discriminant $d_{f}:=b^{2}-4 a c<0$. We always assume that f is primitive, that is, $(a, b, c)=1$.
- The binary \mathbb{Z}-lattice corresponding to f is denoted by $L_{f}=\mathbb{Z} x+\mathbb{Z} y$. It satisfies $[Q(x), 2 B(x, y), Q(y)]=[a, b, c]$. We always assume that the norm ideal of any binary lattice is \mathbb{Z}.
- For two binary forms f and g, f is (properly) equivalent to g if there is a $T=\left(\begin{array}{ll}r & s \\ t & u\end{array}\right) \in G L_{2}(\mathbb{Z}) \quad\left(S L_{2}(\mathbb{Z})\right.$, respectively $)$ such that $f(r x+s y, t x+u y)=g(x, y)$.

Some notations

- Let $f(x, y)=[a, b, c]=a x^{2}+b x y+c y^{2}$ be a (positive definite integral) binary quadratic form with discriminant $d_{f}:=b^{2}-4 a c<0$. We always assume that f is primitive, that is, $(a, b, c)=1$.
- The binary \mathbb{Z}-lattice corresponding to f is denoted by $L_{f}=\mathbb{Z} x+\mathbb{Z} y$. It satisfies $[Q(x), 2 B(x, y), Q(y)]=[a, b, c]$. We always assume that the norm ideal of any binary lattice is \mathbb{Z}.
- For two binary forms f and g, f is (properly) equivalent to g if there is a $T=\left(\begin{array}{ll}r & s \\ t & u\end{array}\right) \in G L_{2}(\mathbb{Z}) \quad\left(S L_{2}(\mathbb{Z})\right.$, respectively $)$ such that $f(r x+s y, t x+u y)=g(x, y)$.
- If f is (properly) equivalent to g, then we write $f \sim g$ ($f \simeq g$, respectively).

Composition law

Composition law

- Let \mathfrak{S}_{d} be the set of all proper equivalence classes of primitive binary forms with discriminant $d . h(d)=\left|\mathfrak{S}_{d}\right|$.

Composition law

- Let \mathfrak{S}_{d} be the set of all proper equivalence classes of primitive binary forms with discriminant $d . h(d)=\left|\mathfrak{S}_{d}\right|$.
- For two classes $\mathfrak{C}_{1}, \mathfrak{C}_{2} \in \mathfrak{S}_{d}$, there are $\left[a_{1}, b, c_{1}\right] \in \mathfrak{C}_{1}$ and $\left[a_{2}, b, c_{2}\right] \in \mathfrak{C}_{2}$ such that $\left(a_{1}, a_{2}\right)=1$.

Composition law

- Let \mathfrak{S}_{d} be the set of all proper equivalence classes of primitive binary forms with discriminant $d . h(d)=\left|\mathfrak{S}_{d}\right|$.
- For two classes $\mathfrak{C}_{1}, \mathfrak{C}_{2} \in \mathfrak{S}_{d}$, there are $\left[a_{1}, b, c_{1}\right] \in \mathfrak{C}_{1}$ and $\left[a_{2}, b, c_{2}\right] \in \mathfrak{C}_{2}$ such that $\left(a_{1}, a_{2}\right)=1$.
- The composition $\mathfrak{C}_{1} \cdot \mathfrak{C}_{2}$ is the class in \mathfrak{S}_{d} containing $\left[a_{1} a_{2}, b, *\right]$.

Composition law

- Let \mathfrak{S}_{d} be the set of all proper equivalence classes of primitive binary forms with discriminant $d . h(d)=\left|\mathfrak{S}_{d}\right|$.
- For two classes $\mathfrak{C}_{1}, \mathfrak{C}_{2} \in \mathfrak{S}_{d}$, there are $\left[a_{1}, b, c_{1}\right] \in \mathfrak{C}_{1}$ and $\left[a_{2}, b, c_{2}\right] \in \mathfrak{C}_{2}$ such that $\left(a_{1}, a_{2}\right)=1$.
- The composition $\mathfrak{C}_{1} \cdot \mathfrak{C}_{2}$ is the class in \mathfrak{S}_{d} containing [$\left.a_{1} a_{2}, b, *\right]$.
- Under this composition law, \mathfrak{S}_{d} forms an finite abelian group.

Composition law

- Let \mathfrak{S}_{d} be the set of all proper equivalence classes of primitive binary forms with discriminant $d . h(d)=\left|\mathfrak{S}_{d}\right|$.
- For two classes $\mathfrak{C}_{1}, \mathfrak{C}_{2} \in \mathfrak{S}_{d}$, there are $\left[a_{1}, b, c_{1}\right] \in \mathfrak{C}_{1}$ and $\left[a_{2}, b, c_{2}\right] \in \mathfrak{C}_{2}$ such that $\left(a_{1}, a_{2}\right)=1$.
- The composition $\mathfrak{C}_{1} \cdot \mathfrak{C}_{2}$ is the class in $\mathfrak{S}_{\boldsymbol{d}}$ containing $\left[a_{1} a_{2}, b, *\right]$.
- Under this composition law, \mathfrak{S}_{d} forms an finite abelian group.
- The identity class \mathfrak{I}_{d} is the class containing a form representing 1.

Composition law

- Let \mathfrak{S}_{d} be the set of all proper equivalence classes of primitive binary forms with discriminant $d . h(d)=\left|\mathfrak{S}_{d}\right|$.
- For two classes $\mathfrak{C}_{1}, \mathfrak{C}_{2} \in \mathfrak{S}_{d}$, there are $\left[a_{1}, b, c_{1}\right] \in \mathfrak{C}_{1}$ and $\left[a_{2}, b, c_{2}\right] \in \mathfrak{C}_{2}$ such that $\left(a_{1}, a_{2}\right)=1$.
- The composition $\mathfrak{C}_{1} \cdot \mathfrak{C}_{2}$ is the class in \mathfrak{S}_{d} containing [$\left.a_{1} a_{2}, b, *\right]$.
- Under this composition law, \mathfrak{S}_{d} forms an finite abelian group.
- The identity class \mathfrak{I}_{d} is the class containing a form representing 1.
- A class \mathfrak{C} is called an ambiguous class if $\mathfrak{C}^{-1}=\mathfrak{C}$.

Composition law

- Let \mathfrak{S}_{d} be the set of all proper equivalence classes of primitive binary forms with discriminant $d . h(d)=\left|\mathfrak{S}_{d}\right|$.
- For two classes $\mathfrak{C}_{1}, \mathfrak{C}_{2} \in \mathfrak{S}_{d}$, there are $\left[a_{1}, b, c_{1}\right] \in \mathfrak{C}_{1}$ and $\left[a_{2}, b, c_{2}\right] \in \mathfrak{C}_{2}$ such that $\left(a_{1}, a_{2}\right)=1$.
- The composition $\mathfrak{C}_{1} \cdot \mathfrak{C}_{2}$ is the class in \mathfrak{S}_{d} containing [$\left.a_{1} a_{2}, b, *\right]$.
- Under this composition law, \mathfrak{S}_{d} forms an finite abelian group.
- The identity class \mathfrak{I}_{d} is the class containing a form representing 1 .
- A class \mathfrak{C} is called an ambiguous class if $\mathfrak{C}^{-1}=\mathfrak{C}$.
- For binary forms $f_{1} \in \mathfrak{C}_{1}$ and $f_{2} \in \mathfrak{C}_{2}, f_{1} \cdot f_{2}$ denotes a form in the class $\mathfrak{C}_{1} \cdot \mathfrak{C}_{2}$.

Some notations

Some notations

- The isometry group $O(f)$ of f is defined by

$$
O(f)=\left\{\left(\begin{array}{ll}
r & s \\
t & u
\end{array}\right) \in G L_{2}(\mathbb{Z}): f(r x+s y, t x+u y)=f(x, y)\right\} .
$$

Some notations

- The isometry group $O(f)$ of f is defined by

$$
O(f)=\left\{\left(\begin{array}{ll}
r & s \\
t & u
\end{array}\right) \in G L_{2}(\mathbb{Z}): f(r x+s y, t x+u y)=f(x, y)\right\} .
$$

- The proper isometry group of f is denoted by $O^{+}(f)$.

Some notations

- The isometry group $O(f)$ of f is defined by

$$
O(f)=\left\{\left(\begin{array}{ll}
r & s \\
t & u
\end{array}\right) \in G L_{2}(\mathbb{Z}): f(r x+s y, t x+u y)=f(x, y)\right\} .
$$

- The proper isometry group of f is denoted by $O^{+}(f)$.
- Note that $o^{+}(f):=\left|O^{+}(f)\right|=2$ unless $d_{f} \neq-3,-4$. In the exceptional cases, $o^{+}([1,1,1])=6$ and $o^{+}([1,0,1])=4$.

Some notations

- The isometry group $O(f)$ of f is defined by

$$
O(f)=\left\{\left(\begin{array}{ll}
r & s \\
t & u
\end{array}\right) \in G L_{2}(\mathbb{Z}): f(r x+s y, t x+u y)=f(x, y)\right\}
$$

- The proper isometry group of f is denoted by $O^{+}(f)$.
- Note that $o^{+}(f):=\left|O^{+}(f)\right|=2$ unless $d_{f} \neq-3,-4$. In the exceptional cases, $o^{+}([1,1,1])=6$ and $o^{+}([1,0,1])=4$.
- We define

$$
R(a, f)=\left\{(x, y) \in \mathbb{Z}^{2}: f(x, y)=a\right\} .
$$

Some notations

- The isometry group $O(f)$ of f is defined by

$$
O(f)=\left\{\left(\begin{array}{ll}
r & s \\
t & u
\end{array}\right) \in G L_{2}(\mathbb{Z}): f(r x+s y, t x+u y)=f(x, y)\right\}
$$

- The proper isometry group of f is denoted by $O^{+}(f)$.
- Note that $o^{+}(f):=\left|O^{+}(f)\right|=2$ unless $d_{f} \neq-3,-4$. In the exceptional cases, $o^{+}([1,1,1])=6$ and $o^{+}([1,0,1])=4$.
- We define

$$
R(a, f)=\left\{(x, y) \in \mathbb{Z}^{2}: f(x, y)=a\right\} .
$$

- Note that $R(a, f)$ is a finite set. We define $r(a, f)=|R(a, f)|$.

Some notations

- The isometry group $O(f)$ of f is defined by

$$
O(f)=\left\{\left(\begin{array}{ll}
r & s \\
t & u
\end{array}\right) \in G L_{2}(\mathbb{Z}): f(r x+s y, t x+u y)=f(x, y)\right\}
$$

- The proper isometry group of f is denoted by $O^{+}(f)$.
- Note that $o^{+}(f):=\left|O^{+}(f)\right|=2$ unless $d_{f} \neq-3,-4$. In the exceptional cases, $o^{+}([1,1,1])=6$ and $o^{+}([1,0,1])=4$.
- We define

$$
R(a, f)=\left\{(x, y) \in \mathbb{Z}^{2}: f(x, y)=a\right\} .
$$

- Note that $R(a, f)$ is a finite set. We define $r(a, f)=|R(a, f)|$.
- $Q(f)=\{a \in \mathbb{Z}: r(a, f) \neq 0\}$.

Some notations

- The isometry group $O(f)$ of f is defined by

$$
O(f)=\left\{\left(\begin{array}{ll}
r & s \\
t & u
\end{array}\right) \in G L_{2}(\mathbb{Z}): f(r x+s y, t x+u y)=f(x, y)\right\}
$$

- The proper isometry group of f is denoted by $O^{+}(f)$.
- Note that $o^{+}(f):=\left|O^{+}(f)\right|=2$ unless $d_{f} \neq-3,-4$. In the exceptional cases, $o^{+}([1,1,1])=6$ and $o^{+}([1,0,1])=4$.
- We define

$$
R(a, f)=\left\{(x, y) \in \mathbb{Z}^{2}: f(x, y)=a\right\} .
$$

- Note that $R(a, f)$ is a finite set. We define $r(a, f)=|R(a, f)|$.
- $Q(f)=\{a \in \mathbb{Z}: r(a, f) \neq 0\}$.
- For a binary lattice $L, R(a, L)$ and $Q(L)$ are similarly defined .

Some known results

Some known results

- For any positive integer k with $(k, d)=1$,

$$
\sum_{\mathfrak{C} \in \mathfrak{S}_{d}} r(k, \mathfrak{C})=w_{d} \sum_{n \mid k}\left(\frac{d}{n}\right),
$$

where (\cdot) is the Kronecker's symbol and $w_{-3}=6, w_{-4}=4$, otherwise $w_{d}=2$.

Some known results

- For any positive integer k with $(k, d)=1$,

$$
\sum_{\mathfrak{C} \in \mathfrak{S}_{d}} r(k, \mathfrak{C})=w_{d} \sum_{n \mid k}\left(\frac{d}{n}\right),
$$

where (\cdot) is the Kronecker's symbol and $w_{-3}=6, w_{-4}=4$, otherwise $w_{d}=2$.

- If $h(d)=1$, then we can explicitly compute the number $r(k, f)$ for the binary form f with $d_{f}=d$.

Some known results

- For any positive integer k with $(k, d)=1$,

$$
\sum_{\mathfrak{C} \in \mathfrak{S}_{d}} r(k, \mathfrak{C})=w_{d} \sum_{n \mid k}\left(\frac{d}{n}\right),
$$

where (\cdot) is the Kronecker's symbol and $w_{-3}=6, w_{-4}=4$, otherwise $w_{d}=2$.

- If $h(d)=1$, then we can explicitly compute the number $r(k, f)$ for the binary form f with $d_{f}=d$.
- $h(d)=1$ if and only if $d=-3,-4,-8,-11,-19,-43,-67$, $-163,-12,-16,-28,-27$.

Some remarks

Some remarks

- $f \sim g$ if and only if $L_{f} \simeq L_{g}$ if and only if $f \simeq g$ or $f \simeq g^{-1}$.

Some remarks

- $f \sim g$ if and only if $L_{f} \simeq L_{g}$ if and only if $f \simeq g$ or $f \simeq g^{-1}$.
- For a binary lattice L, the corresponding binary form f_{L} is well defined only up to equivalence.

Some remarks

- $f \sim g$ if and only if $L_{f} \simeq L_{g}$ if and only if $f \simeq g$ or $f \simeq g^{-1}$.
- For a binary lattice L, the corresponding binary form f_{L} is well defined only up to equivalence.
- For two binary lattices L and $M, f_{L} \cdot f_{M}$ is NOT defined.

Some remarks

- $f \sim g$ if and only if $L_{f} \simeq L_{g}$ if and only if $f \simeq g$ or $f \simeq g^{-1}$.
- For a binary lattice L, the corresponding binary form f_{L} is well defined only up to equivalence.
- For two binary lattices L and $M, f_{L} \cdot f_{M}$ is NOT defined.
- If either f_{L} or f_{M} is contained in an ambiguous class, then $f_{L} \cdot f_{M}$ is well defined up to equivalence.

Some remarks

- $f \sim g$ if and only if $L_{f} \simeq L_{g}$ if and only if $f \simeq g$ or $f \simeq g^{-1}$.
- For a binary lattice L, the corresponding binary form f_{L} is well defined only up to equivalence.
- For two binary lattices L and $M, f_{L} \cdot f_{M}$ is NOT defined.
- If either f_{L} or f_{M} is contained in an ambiguous class, then $f_{L} \cdot f_{M}$ is well defined up to equivalence.
- $r\left(a, f_{L} \cdot f_{M}\right)+r\left(a, f_{L} \cdot f_{M}^{-1}\right)$ is independent of the choices of proper equivalences. Hence it is well defined.

Some remarks

- $f \sim g$ if and only if $L_{f} \simeq L_{g}$ if and only if $f \simeq g$ or $f \simeq g^{-1}$.
- For a binary lattice L, the corresponding binary form f_{L} is well defined only up to equivalence.
- For two binary lattices L and $M, f_{L} \cdot f_{M}$ is NOT defined.
- If either f_{L} or f_{M} is contained in an ambiguous class, then $f_{L} \cdot f_{M}$ is well defined up to equivalence.
- $r\left(a, f_{L} \cdot f_{M}\right)+r\left(a, f_{L} \cdot f_{M}^{-1}\right)$ is independent of the choices of proper equivalences. Hence it is well defined.
- For a class $\mathfrak{C} \in \mathfrak{S}_{d}$ and a prime p, if $r(p, \mathfrak{C}) \neq 0$, then $r(p, \mathfrak{D})=0$ for any $\mathfrak{D} \in \mathfrak{S}_{d}-\left\{\mathfrak{C}, \mathfrak{C}^{-1}\right\}$.

Watson transformations

Watson transformations

- For any prime p, the Watson transformation $\Lambda_{p}(L)$ of a lattice L is defined by

$$
\Lambda_{p}(L)=\{x \in L: Q(x+z) \equiv Q(x) \quad(\bmod p) \forall z \in L\}
$$

Watson transformations

- For any prime p, the Watson transformation $\Lambda_{p}(L)$ of a lattice L is defined by

$$
\Lambda_{p}(L)=\{x \in L: Q(x+z) \equiv Q(x) \quad(\bmod p) \forall z \in L\}
$$

- Define $\mathbb{H}=[0,1,0]$.

Watson transformations

- For any prime p, the Watson transformation $\Lambda_{p}(L)$ of a lattice L is defined by

$$
\Lambda_{p}(L)=\{x \in L: Q(x+z) \equiv Q(x) \quad(\bmod p) \forall z \in L\}
$$

- Define $\mathbb{H}=[0,1,0]$.
- Note that

$$
L_{p}=L \otimes \mathbb{Z}_{p} \nsucceq \mathbb{H} \quad \text { if and only if } \quad Q(L) \cap p \mathbb{Z}=Q\left(\Lambda_{p}(L)\right)
$$

Problem

Problem

- We write $(L, M) \simeq\left(L^{\prime}, M^{\prime}\right)$ if $L \simeq L^{\prime}, M \simeq M^{\prime}$ or $L \simeq M^{\prime}, M \simeq L^{\prime}$

Problem

- We write $(L, M) \simeq\left(L^{\prime}, M^{\prime}\right)$ if $L \simeq L^{\prime}, M \simeq M^{\prime}$ or $L \simeq M^{\prime}, M \simeq L^{\prime}$
- (Delone, Watson) $Q(L)=Q(M)$ if and only if $L \simeq M$ or $(L, M) \simeq([1,0,3],[1,1,1])$.

Problem

- We write $(L, M) \simeq\left(L^{\prime}, M^{\prime}\right)$ if $L \simeq L^{\prime}, M \simeq M^{\prime}$ or $L \simeq M^{\prime}, M \simeq L^{\prime}$
- (Delone, Watson) $Q(L)=Q(M)$ if and only if $L \simeq M$ or $(L, M) \simeq([1,0,3],[1,1,1])$.
- For a prime p and an integer $k(0 \leq k \leq p-1)$, define $A_{p, k}=\left\{p n+k: n \in \mathbb{Z}^{+} \cup\{0\}\right\}$.

Problem

- We write $(L, M) \simeq\left(L^{\prime}, M^{\prime}\right)$ if $L \simeq L^{\prime}, M \simeq M^{\prime}$ or $L \simeq M^{\prime}, M \simeq L^{\prime}$
- (Delone, Watson) $Q(L)=Q(M)$ if and only if $L \simeq M$ or $(L, M) \simeq([1,0,3],[1,1,1])$.
- For a prime p and an integer $k(0 \leq k \leq p-1)$, define $A_{p, k}=\left\{p n+k: n \in \mathbb{Z}^{+} \cup\{0\}\right\}$.
- (Problem) Find all non-isometric pairs (L, M) of binary lattices such that

$$
Q(L) \cap A_{p, k}=Q(M) \cap A_{p, k} \neq \emptyset .
$$

Remarks

Remarks

- In the representation point of view, it is convenient to consider "lattices" rather than "forms". However if we use the group structure, we have to consider the proper equivalence classes.

Remarks

- In the representation point of view, it is convenient to consider "lattices" rather than "forms". However if we use the group structure, we have to consider the proper equivalence classes.
- There is NO composition law between equivalences classes of lattices.
- In the representation point of view, it is convenient to consider "lattices" rather than "forms". However if we use the group structure, we have to consider the proper equivalence classes.
- There is NO composition law between equivalences classes of lattices.
- Let p be an odd prime and a be any integer such that $-a$ is a quadratic non-residue modulo p.

Remarks

- In the representation point of view, it is convenient to consider "lattices" rather than "forms". However if we use the group structure, we have to consider the proper equivalence classes.
- There is NO composition law between equivalences classes of lattices.
- Let p be an odd prime and a be any integer such that $-a$ is a quadratic non-residue modulo p.
- If $L=[1,0, a]$ and $M=\left[1,0, p^{2} a\right]$, then

$$
Q(L) \cap p \mathbb{Z}=Q(M) \cap p \mathbb{Z}=Q\left(p^{2} x^{2}+a p^{2} y^{2}\right)
$$

Remarks

- In the representation point of view, it is convenient to consider "lattices" rather than "forms". However if we use the group structure, we have to consider the proper equivalence classes.
- There is NO composition law between equivalences classes of lattices.
- Let p be an odd prime and a be any integer such that $-a$ is a quadratic non-residue modulo p.
- If $L=[1,0, a]$ and $M=\left[1,0, p^{2} a\right]$, then

$$
Q(L) \cap p \mathbb{Z}=Q(M) \cap p \mathbb{Z}=Q\left(p^{2} x^{2}+a p^{2} y^{2}\right) .
$$

- Therefore there are infinitely many such pairs if $k=0$.

Useful Lemmas

Useful Lemmas

- (Weber) For any (primitive) binary lattice L, there are infinitely many primes that are represented by L.

Useful Lemmas

- (Weber) For any (primitive) binary lattice L, there are infinitely many primes that are represented by L.
- (Meyer) For any binary lattice L, L represents infinitely many primes in the set $A_{n, k}$ if $Q(L) \cap A_{n, k} \neq \emptyset$.

Useful Lemmas

- (Weber) For any (primitive) binary lattice L, there are infinitely many primes that are represented by L.
- (Meyer) For any binary lattice L, L represents infinitely many primes in the set $A_{n, k}$ if $Q(L) \cap A_{n, k} \neq \emptyset$.
- (Pall's Lemma) Assume that $L_{p} \simeq \mathbb{H}$. Let T be the binary lattice such that $r(p, T)>0$ and $d_{T}=d_{L}$. For any integer n,

$$
r(p n, L)=r\left(n, f_{L} \cdot f_{T}\right)+r\left(n, f_{L} \cdot f_{T}^{-1}\right)-r\left(\frac{n}{p}, L\right)
$$

Example

Example

- Note that $\mathfrak{C}_{-108}=\{[1,0,27],[4,2,7],[4,-2,7]\}$.

Example

- Note that $\mathfrak{C}_{-108}=\{[1,0,27],[4,2,7],[4,-2,7]\}$.
- Let $n=2^{a} 3^{b} k$ with $(k, 6)=1$.

Example

- Note that $\mathfrak{C}_{-108}=\{[1,0,27],[4,2,7],[4,-2,7]\}$.
- Let $n=2^{a} 3^{b} k$ with $(k, 6)=1$.
- If $a>0$ or $b>0$, then

$$
r\left(n, x^{2}+27 y^{2}\right)=\omega \sum_{m \mid k}\left(\frac{-3}{m}\right)
$$

where

$$
\omega= \begin{cases}2 & \text { if } a=0 \text { and } b \geq 2 \text { or } a \geq 2 \text { and } b=0 \\ 6 & \text { if } a \text { is positive even integer and } b \geq 2 \\ 0 & \text { otherwise }\end{cases}
$$

Example

Example

- Assume that $(n, 6)=1$.

Example

- Assume that $(n, 6)=1$.
- If we define

$$
P=\{p: p \equiv 1(\bmod 3), 2 \text { is a cubic residue modulo } p\}
$$

then $r(p,[1,0,27])>0$ if and only if $p \in P$.

Example

- Assume that $(n, 6)=1$.
- If we define

$$
P=\{p: p \equiv 1(\bmod 3), 2 \text { is a cubic residue modulo } p\}
$$

then $r(p,[1,0,27])>0$ if and only if $p \in P$.

- Let Q be the set of primes that are congruent to 1 modulo 3 and are not represented by $[1,0,27]$.

Example

- Assume that $(n, 6)=1$.
- If we define

$$
P=\{p: p \equiv 1(\bmod 3), 2 \text { is a cubic residue modulo } p\}
$$

then $r(p,[1,0,27])>0$ if and only if $p \in P$.

- Let Q be the set of primes that are congruent to 1 modulo 3 and are not represented by $[1,0,27]$.
- Let

$$
n=\prod_{i=1}^{r} p_{i}^{e_{i}} \prod_{j=1}^{s} q_{j}^{f_{j}} \prod_{k=1}^{t} r_{k}^{g_{k}}
$$

where $p_{i} \in P$ and $q_{j} \in Q$ and $r_{k} \equiv 2(\bmod 3)$.

Example

- Assume that $(n, 6)=1$.
- If we define

$$
P=\{p: p \equiv 1(\bmod 3), 2 \text { is a cubic residue modulo } p\}
$$

then $r(p,[1,0,27])>0$ if and only if $p \in P$.

- Let Q be the set of primes that are congruent to 1 modulo 3 and are not represented by $[1,0,27]$.
- Let

$$
n=\prod_{i=1}^{r} p_{i}^{e_{i}} \prod_{j=1}^{s} q_{j}^{f_{j}} \prod_{k=1}^{t} r_{k}^{g_{k}}
$$

where $p_{i} \in P$ and $q_{j} \in Q$ and $r_{k} \equiv 2(\bmod 3)$.

- If g_{k} is odd for some k, then $r(n,[1,0,27])=0$.

Example

Example

- Assume that g_{k} is even for any k.

Example

- Assume that g_{k} is even for any k.
- Then we have

$$
r\left(n, x^{2}+27 y^{2}\right)=\frac{2}{3} \prod_{i=1}^{r}\left(e_{i}+1\right) \prod_{j=1}^{s}\left(\left(f_{j}+1\right)+\epsilon\right)
$$

where

$$
\epsilon=\left\{\begin{array}{lll}
0 & \text { if } \prod_{j=1}^{s}\left(f_{j}+1\right) \equiv 0 & (\bmod 3) \\
2 & \text { if } \prod_{j=1}^{s}\left(f_{j}+1\right) \equiv 1 & (\bmod 3) \\
-2 & \text { otherwise }
\end{array}\right.
$$

Sublattices with index p

Sublattices with index p

- Let $L=\mathbb{Z} x+\mathbb{Z} y$ be a binary lattice.

Sublattices with index p

- Let $L=\mathbb{Z} x+\mathbb{Z} y$ be a binary lattice.
- The set of sublattices of L with index p is denoted by $\Gamma_{p}(L)$.

Sublattices with index p

- Let $L=\mathbb{Z} x+\mathbb{Z} y$ be a binary lattice.
- The set of sublattices of L with index p is denoted by $\Gamma_{p}(L)$.
- Every lattice in $\Gamma_{p}(L)$ is of the form

$$
L_{-1}:=\mathbb{Z}(p x)+\mathbb{Z} y \quad \text { and } \quad L_{u}:=\mathbb{Z}(x+u y)+\mathbb{Z}(p y),
$$

where $0 \leq u \leq p-1$.

Sublattices with index p

- Let $L=\mathbb{Z} x+\mathbb{Z} y$ be a binary lattice.
- The set of sublattices of L with index p is denoted by $\Gamma_{p}(L)$.
- Every lattice in $\Gamma_{p}(L)$ is of the form

$$
L_{-1}:=\mathbb{Z}(p x)+\mathbb{Z} y \quad \text { and } \quad L_{u}:=\mathbb{Z}(x+u y)+\mathbb{Z}(p y),
$$

where $0 \leq u \leq p-1$.

- Assume that p is odd.

Sublattices with index p

Sublattices with index p

- If L_{p} is isotropic unimodular, then each lattice in $\Gamma_{p}(L)$ is locally isometric to

$$
\left\langle 1,-p^{2}\right\rangle\left(\frac{p-1}{2}\right),\left\langle\Delta_{p},-\Delta_{p} p^{2}\right\rangle\left(\frac{p-1}{2}\right) \text { or }\langle p,-p\rangle(2) .
$$

Sublattices with index p

- If L_{p} is isotropic unimodular, then each lattice in $\Gamma_{p}(L)$ is locally isometric to

$$
\left\langle 1,-p^{2}\right\rangle\left(\frac{p-1}{2}\right),\left\langle\Delta_{p},-\Delta_{p} p^{2}\right\rangle\left(\frac{p-1}{2}\right) \text { or }\langle p,-p\rangle(2) .
$$

- If L_{p} is anisotropic unimodular, then each lattice in $\Gamma_{p}(L)$ is locally isometric to

$$
\left\langle 1,-\Delta_{p} p^{2}\right\rangle\left(\frac{p+1}{2}\right) \text { or }\left\langle\Delta_{p},-p^{2}\right\rangle\left(\frac{p+1}{2}\right) .
$$

Sublattices with index p

- If L_{p} is isotropic unimodular, then each lattice in $\Gamma_{p}(L)$ is locally isometric to

$$
\left\langle 1,-p^{2}\right\rangle\left(\frac{p-1}{2}\right),\left\langle\Delta_{p},-\Delta_{p} p^{2}\right\rangle\left(\frac{p-1}{2}\right) \text { or }\langle p,-p\rangle(2) .
$$

- If L_{p} is anisotropic unimodular, then each lattice in $\Gamma_{p}(L)$ is locally isometric to

$$
\left\langle 1,-\Delta_{p} p^{2}\right\rangle\left(\frac{p+1}{2}\right) \text { or }\left\langle\Delta_{p},-p^{2}\right\rangle\left(\frac{p+1}{2}\right) .
$$

- If $L_{p}=\left\langle\epsilon_{1}, \epsilon_{2} p^{t}\right\rangle$ is not unimodular, then each lattice in $\Gamma_{p}(L)$ is locally isometric to

$$
\left\langle\epsilon_{1}, \epsilon_{2} p^{t+2}\right\rangle(p) \text { or }\left\langle\epsilon_{1} p^{2}, \epsilon_{2} p^{t}\right\rangle(1)
$$

Sublattices with index p

Sublattices with index p

- For any binary lattice K with $p \mid d_{K}, u_{p}(K):=\left(\frac{a}{p}\right)$ for any $a \in Q(K)-p \mathbb{Z}$.

Sublattices with index p

- For any binary lattice K with $p \mid d_{K}, u_{p}(K):=\left(\frac{a}{p}\right)$ for any $a \in Q(K)-p \mathbb{Z}$.
- We define two subsets $\Gamma_{p, \pm 1}(L)$ of $\Gamma_{p}(L)$ by

$$
\Gamma_{p, \pm 1}(L):=\left\{K \in \Gamma_{p}(L): u_{p}(K)= \pm 1\right\} .
$$

Sublattices with index p

- For any binary lattice K with $p \mid d_{K}, u_{p}(K):=\left(\frac{a}{p}\right)$ for any $a \in Q(K)-p \mathbb{Z}$.
- We define two subsets $\Gamma_{p, \pm 1}(L)$ of $\Gamma_{p}(L)$ by

$$
\Gamma_{p, \pm 1}(L):=\left\{K \in \Gamma_{p}(L): u_{p}(K)= \pm 1\right\} .
$$

- The number of equivalence classes in $\Gamma_{p, \pm 1}(L):=\gamma_{p, \pm 1}(L)$.

Sublattices with index p

- For any binary lattice K with $p \mid d_{K}, u_{p}(K):=\left(\frac{a}{p}\right)$ for any $a \in Q(K)-p \mathbb{Z}$.
- We define two subsets $\Gamma_{p, \pm 1}(L)$ of $\Gamma_{p}(L)$ by

$$
\Gamma_{p, \pm 1}(L):=\left\{K \in \Gamma_{p}(L): u_{p}(K)= \pm 1\right\} .
$$

- The number of equivalence classes in $\Gamma_{p, \pm 1}(L):=\gamma_{p, \pm 1}(L)$.
- (Lemma) For the action $\Phi: O(L) \times \Gamma_{p, \pm 1}(L) \mapsto \Gamma_{p, \pm 1}(L)$ defined by $\Phi(\sigma, M)=\sigma(M)$, each orbit $o b(M)$ consists of all lattices isometric to M. Furthermore $|o b(M)|=\frac{o(L)}{o(M)}$.

Number of equivalent classes

Number of equivalent classes

- Assume $o(L)=4$ and $\tau_{x} \in O(L)$ for a primitive vector $x \in L$.

Number of equivalent classes

- Assume $o(L)=4$ and $\tau_{x} \in O(L)$ for a primitive vector $x \in L$.
- If $\left(\frac{-d_{L}}{p}\right)=1$, then

$$
\gamma_{p,\left(\frac{Q(x)}{p}\right)}(L)=2+\frac{p-4-\left(\frac{-1}{p}\right)}{4} \text { and } \gamma_{p,-\left(\frac{Q(x)}{p}\right)}(L)=0+\frac{p-\left(\frac{-1}{p}\right)}{4}
$$

Number of equivalent classes

- Assume $o(L)=4$ and $\tau_{x} \in O(L)$ for a primitive vector $x \in L$.
- If $\left(\frac{-d_{L}}{p}\right)=1$, then

$$
\gamma_{p,\left(\frac{Q(x)}{p}\right)}(L)=2+\frac{p-4-\left(\frac{-1}{p}\right)}{4} \text { and } \gamma_{p,-\left(\frac{Q(x)}{p}\right)}(L)=0+\frac{p-\left(\frac{-1}{p}\right)}{4},
$$

- If $\left(\frac{-d_{L}}{p}\right)=-1$, then

$$
\gamma_{p, 1}(L)=\gamma_{p,-1}(L)=\mathbf{1}+\frac{p-2+\left(\frac{-1}{p}\right)}{4}
$$

Number of equivalent classes

- Assume $o(L)=4$ and $\tau_{x} \in O(L)$ for a primitive vector $x \in L$.
- If $\left(\frac{-d_{L}}{p}\right)=1$, then

$$
\gamma_{p,\left(\frac{Q(x)}{p}\right)}(L)=2+\frac{p-4-\left(\frac{-1}{p}\right)}{4} \text { and } \gamma_{p,-\left(\frac{Q(x)}{p}\right)}(L)=0+\frac{p-\left(\frac{-1}{p}\right)}{4}
$$

- If $\left(\frac{-d_{L}}{p}\right)=-1$, then

$$
\gamma_{p, 1}(L)=\gamma_{p,-1}(L)=1+\frac{p-2+\left(\frac{-1}{p}\right)}{4}
$$

- Finally, if p divides the discriminant of L, then

$$
\gamma_{p, u_{p}(L)}(L)=\mathbf{1}+\frac{p-1}{2} \quad \text { and } \quad \gamma_{p,-u_{p}(L)}(L)=\mathbf{0} .
$$

Number of equivalent classes

Number of equivalent classes

- If $L=[1,0,1]$, then

$$
\gamma_{p, 1}(L)=\frac{\mathbf{3}+\left(\frac{\mathbf{2}}{\mathbf{p}}\right)}{\mathbf{2}}+\frac{p-2\left(\frac{2}{p}\right)-\left(\frac{-1}{p}\right)-6}{8}
$$

and

$$
\gamma_{p,-1}(L)=\frac{\mathbf{1}-\left(\frac{\mathbf{2}}{\mathbf{p}}\right)}{\mathbf{2}}+\frac{p+2\left(\frac{2}{p}\right)-\left(\frac{-1}{p}\right)-2}{8}
$$

Number of equivalent classes

Number of equivalent classes

- If $L=[1,1,1]$ and $p \neq 3$ then

$$
\gamma_{p, 1}(L)=\frac{\mathbf{3}+\left(\frac{\mathbf{3}}{\mathbf{p}}\right)}{\mathbf{2}}+\frac{p-3\left(\frac{3}{p}\right)-\left(\frac{p}{3}\right)-9}{12}
$$

and

$$
\gamma_{p,-1}(L)=\frac{\mathbf{1}-\left(\frac{\mathbf{3}}{\mathbf{p}}\right)}{\mathbf{2}}+\frac{p+3\left(\frac{3}{p}\right)-\left(\frac{p}{3}\right)-3}{12}
$$

Number of equivalent classes

- If $L=[1,1,1]$ and $p \neq 3$ then

$$
\gamma_{p, 1}(L)=\frac{\mathbf{3}+\left(\frac{\mathbf{3}}{\mathbf{p}}\right)}{\mathbf{2}}+\frac{p-3\left(\frac{3}{p}\right)-\left(\frac{p}{3}\right)-9}{12}
$$

and

$$
\gamma_{p,-1}(L)=\frac{\mathbf{1}-\left(\frac{\mathbf{3}}{\mathbf{p}}\right)}{\mathbf{2}}+\frac{p+3\left(\frac{3}{p}\right)-\left(\frac{p}{3}\right)-3}{12}
$$

- Finally, if $L=[1,1,1]$ and $p=3$, then $\gamma_{p, 1}(L)=1$ and $\gamma_{p,-1}(L)=0$.

When $k \neq 0, p \neq 2$

When $k \neq 0, p \neq 2$

- Let L and M be binary \mathbb{Z}-lattices such that $L \not \approx M$ and $(L, M) \not 千([1,1,1],[1,0,3])$.

When $k \neq 0, p \neq 2$

- Let L and M be binary \mathbb{Z}-lattices such that $L \nsim M$ and $(L, M) \not 千([1,1,1],[1,0,3])$.
- (Main result for $k \neq 0, p \neq 2$) Two lattices L and M satisfy the condition

$$
Q(L) \cap A_{p, k}=Q(M) \cap A_{p, k} \neq \emptyset
$$

if and only if

$$
L_{2} \simeq M_{2} \text { and every lattice in } \Gamma_{p,\left(\frac{k}{p}\right)}(L) \text { is isometric to } M,
$$

or $L=[1,0,3]$ and the pair $([1,1,1], M)$ instead of (L, M) satisfies the above condition. Furthermore in the former case, it is equivalent to the conditions given in Table I and II:

Table I

p	k	$o(L)$	d_{L}	$\left(\frac{Q(x)}{p}\right)$	M
3	1	2	$1(\bmod 3)$	\times	$[L: M]=3, u_{p}(M)=1$
3	2	2	$1(\bmod 3)$	\times	$[L: M]=3, u_{p}(M)=-1$
3	1	4	$1(\bmod 3)$	\times	$[L: M]=3, u_{p}(M)=1$
3	2	4	$1(\bmod 3)$	\times	$[L: M]=3, u_{p}(M)=-1$
3	1	4	$2(\bmod 3)$	-1	$[L: M]=3, u_{p}(M)=1$
3	2	4	$2(\bmod 3)$	1	$[L: M]=3, u_{p}(M)=-1$
5	1,4	4	$\pm 1(\bmod 5)$	-1	$[L: M]=5, u_{p}(M)=1$
5	2,3	4	$\pm 1(\bmod 5)$	1	$[L: M]=5, u_{p}(M)=-1$

Table I $\left(x \in L\right.$ is a primitive vector such that $\left.\tau_{x} \in O(L)\right)$

Table II

p	k	L	M	p	k	L	M
3	1	$[1,1,1]$	$[1,1,7]$	5	1,4	$[1,1,1]$	$[1,1,19]$
5	2,3	$[1,1,1]$	$[3,3,7]$	7	$1,2,4$	$[1,1,1]$	$[1,1,37]$
7	$3,5,6$	$[1,1,1]$	$[3,3,13]$	11	$2,6,7,8,10$	$[1,1,1]$	$[7,1,13]$
13	$2,5,6,7,8,11$	$[1,1,1]$	$[7,5,19]$	3	1	$[1,0,1]$	$[1,0,9]$
3	2	$[1,0,1]$	$[2,2,5]$	5	1,4	$[1,0,1]$	$[1,0,25]$
5	2,3	$[1,0,1]$	$[2,2,13]$	7	$1,2,4$	$[1,0,1]$	$[1,0,49]$

Table II

Sketch of proof

Sketch of proof

- Assume that $Q(L) \cap A_{p, k}=Q(M) \cap A_{p, k} \neq \emptyset$.

Sketch of proof

- Assume that $Q(L) \cap A_{p, k}=Q(M) \cap A_{p, k} \neq \emptyset$.
- Then $L_{q} \simeq M_{q}$ for any $q \neq 2, p$.

Sketch of proof

- Assume that $Q(L) \cap A_{p, k}=Q(M) \cap A_{p, k} \neq \emptyset$.
- Then $L_{q} \simeq M_{q}$ for any $q \neq 2, p$.
- $L_{2} \simeq M_{2}$ or $\left(L_{2}, M_{2}\right) \simeq([1,1,1],[1,0,3])$.

Sketch of proof

- Assume that $Q(L) \cap A_{p, k}=Q(M) \cap A_{p, k} \neq \emptyset$.
- Then $L_{q} \simeq M_{q}$ for any $q \neq 2, p$.
- $L_{2} \simeq M_{2}$ or $\left(L_{2}, M_{2}\right) \simeq([1,1,1],[1,0,3])$.
- Assume that $L_{2} \simeq M_{2}$.

Sketch of proof

- Assume that $Q(L) \cap A_{p, k}=Q(M) \cap A_{p, k} \neq \emptyset$.
- Then $L_{q} \simeq M_{q}$ for any $q \neq 2, p$.
- $L_{2} \simeq M_{2}$ or $\left(L_{2}, M_{2}\right) \simeq([1,1,1],[1,0,3])$.
- Assume that $L_{2} \simeq M_{2}$.
- If $L_{p} \simeq M_{p}$, then there is a prime $q \in Q(L) \cap A_{p, k}$. Since $d_{L}=d_{M}, L \simeq M$.

Sketch of proof

- Assume that $Q(L) \cap A_{p, k}=Q(M) \cap A_{p, k} \neq \emptyset$.
- Then $L_{q} \simeq M_{q}$ for any $q \neq 2, p$.
- $L_{2} \simeq M_{2}$ or $\left(L_{2}, M_{2}\right) \simeq([1,1,1],[1,0,3])$.
- Assume that $L_{2} \simeq M_{2}$.
- If $L_{p} \simeq M_{p}$, then there is a prime $q \in Q(L) \cap A_{p, k}$. Since $d_{L}=d_{M}, L \simeq M$.
- Therefore we may assume that

$$
L_{p} \simeq\left[\epsilon_{1}, 0, \epsilon_{2} p^{\alpha}\right] \quad \text { and } \quad M_{p} \simeq\left[\epsilon_{1}, 0, \epsilon_{2} p^{\beta}\right]
$$

where $\epsilon_{i} \in \mathbb{Z}_{p}^{\times}, \beta-\alpha \in 2 \mathbb{Z}^{+}$and $\epsilon_{1} k \in\left(\mathbb{Z}_{p}^{\times}\right)^{2}$.

Sketch of proof

Sketch of proof

- The discriminant of each sublattice of L with index $p^{\frac{(\beta-\alpha)}{2}}$ equal to that of M.

Sketch of proof

- The discriminant of each sublattice of L with index $p^{\frac{(\beta-\alpha)}{2}}$ equal to that of M.
- By Meyer's theorem, the number of sublattices of L with index $p^{\frac{(\beta-\alpha)}{2}}$ is 1 up to isometry.

Sketch of proof

- The discriminant of each sublattice of L with index $p^{\frac{(\beta-\alpha)}{2}}$ equal to that of M.
- By Meyer's theorem, the number of sublattices of L with index $p^{\frac{(\beta-\alpha)}{2}}$ is 1 up to isometry.
- From this, we have $\gamma_{p,\left(\frac{k}{p}\right)}(L)=1$.

Sketch of proof

- The discriminant of each sublattice of L with index $p^{\frac{(\beta-\alpha)}{2}}$ equal to that of M.
- By Meyer's theorem, the number of sublattices of L with index $p^{\frac{(\beta-\alpha)}{2}}$ is 1 up to isometry.
- From this, we have $\gamma_{p,\left(\frac{k}{p}\right)}(L)=1$.
- To consider the case when $\left(L_{2}, M_{2}\right) \simeq([1,1,1],[1,0,3])$, we need some modification of the above argument.

When $k \neq 0, p=2$

When $k \neq 0, p=2$

- (Main result for $k \neq 0, p=2$) For two binary \mathbb{Z}-lattices L, M,

$$
Q(L) \cap A_{2,1}=Q(M) \cap A_{2,1}
$$

if and only if
(i) $(L, M) \simeq([a, b, a],[a, 2 b, 4 a])$, where $a \equiv 1(\bmod 2)$ and $b \equiv 0$ $(\bmod 2)$ or;
(ii) $L_{2} \simeq \mathbb{H}_{2}$ and M is the unique primitive sublattice of L with index 2 .

Corollaries

- Let p be a prime greater than 13 and let $\operatorname{gcd}(k, p)=1$. For two binary lattices L and M,

$$
Q(L) \cap A_{p, k}=Q(M) \cap A_{p, k}
$$

if and only if $L \simeq M$ or $(L, M) \simeq([1,1,1],[1,0,3])$.

Corollaries

- Let p be a prime greater than 13 and let $\operatorname{gcd}(k, p)=1$. For two binary lattices L and M,

$$
Q(L) \cap A_{p, k}=Q(M) \cap A_{p, k}
$$

if and only if $L \simeq M$ or $(L, M) \simeq([1,1,1],[1,0,3])$.

- For two binary lattices L and M such that $Q(L) \cap A_{p, k} \neq \emptyset$,
$r(p n+k, L)=r(p n+k, M)$ for any non-negative integer n
if and only if $(p, k)=(2,1),(3,1),(3,2), L_{p} \simeq \mathbb{H}_{p}$ and M is the unique primitive sublattice of L with index p such that $u_{p}(M)=\left(\frac{k}{p}\right)$ only when $p=3$.

Necessary conditions for $k=0$

Necessary conditions for $k=0$

- Let L and M be non-isometric binary lattices such that

$$
Q(L) \cap p \mathbb{Z}=Q(M) \cap p \mathbb{Z} .
$$

Then we have

Necessary conditions for $k=0$

- Let L and M be non-isometric binary lattices such that

$$
Q(L) \cap p \mathbb{Z}=Q(M) \cap p \mathbb{Z} .
$$

Then we have

- $L_{q} \simeq M_{q}$ for any $q \neq 2, p$;

Necessary conditions for $k=0$

- Let L and M be non-isometric binary lattices such that

$$
Q(L) \cap p \mathbb{Z}=Q(M) \cap p \mathbb{Z}
$$

Then we have

- $L_{q} \simeq M_{q}$ for any $q \neq 2, p$;
- If $p \neq 2$, then $L_{2} \simeq M_{2}$ or $\left(L_{2}, M_{2}\right) \simeq([1,1,1],[1,0,3])$;

Necessary conditions for $k=0$

- Let L and M be non-isometric binary lattices such that

$$
Q(L) \cap p \mathbb{Z}=Q(M) \cap p \mathbb{Z}
$$

Then we have

- $L_{q} \simeq M_{q}$ for any $q \neq 2, p$;
- If $p \neq 2$, then $L_{2} \simeq M_{2}$ or $\left(L_{2}, M_{2}\right) \simeq([1,1,1],[1,0,3])$;
- $L_{p} \simeq \mathbb{H}$ if and only if $M_{p} \simeq \mathbb{H}$.

Necessary conditions for $k=0$

- Let L and M be non-isometric binary lattices such that

$$
Q(L) \cap p \mathbb{Z}=Q(M) \cap p \mathbb{Z}
$$

Then we have

- $L_{q} \simeq M_{q}$ for any $q \neq 2, p$;
- If $p \neq 2$, then $L_{2} \simeq M_{2}$ or $\left(L_{2}, M_{2}\right) \simeq([1,1,1],[1,0,3])$;
- $L_{p} \simeq \mathbb{H}$ if and only if $M_{p} \simeq \mathbb{H}$.
- If $L_{p} \nsim \mathbb{H}$, then $Q\left(\Lambda_{p}(L)\right)=Q\left(\Lambda_{p}(M)\right)$.

Necessary conditions for $k=0$

- Let L and M be non-isometric binary lattices such that

$$
Q(L) \cap p \mathbb{Z}=Q(M) \cap p \mathbb{Z}
$$

Then we have

- $L_{q} \simeq M_{q}$ for any $q \neq 2, p$;
- If $p \neq 2$, then $L_{2} \simeq M_{2}$ or $\left(L_{2}, M_{2}\right) \simeq([1,1,1],[1,0,3])$;
- $L_{p} \simeq \mathbb{H}$ if and only if $M_{p} \simeq \mathbb{H}$.
- If $L_{p} \nsim \mathbb{H}$, then $Q\left(\Lambda_{p}(L)\right)=Q\left(\Lambda_{p}(M)\right)$.
- Conversely, if neither L_{p} nor M_{p} is isometric to \mathbb{H} and $Q\left(\Lambda_{p}(L)\right)=Q\left(\Lambda_{p}(M)\right)$, then $Q(L) \cap p \mathbb{Z}=Q(M) \cap p \mathbb{Z}$.

When $L_{2} \simeq M_{2}$

When $L_{2} \simeq M_{2}$

- For two non-isometric binary lattices L and M, assume that $L_{p} \simeq M_{p} \simeq \mathbb{H}$ and $L_{2} \simeq M_{2}$ if $p \neq 2$.

When $L_{2} \simeq M_{2}$

- For two non-isometric binary lattices L and M, assume that $L_{p} \simeq M_{p} \simeq \mathbb{H}$ and $L_{2} \simeq M_{2}$ if $p \neq 2$.
- Let T be the binary lattice s.t. $r(p, T)>0$ and $d_{T}=d_{L}$.

When $L_{2} \simeq M_{2}$

- For two non-isometric binary lattices L and M, assume that $L_{p} \simeq M_{p} \simeq \mathbb{H}$ and $L_{2} \simeq M_{2}$ if $p \neq 2$.
- Let T be the binary lattice s.t. $r(p, T)>0$ and $d_{T}=d_{L}$.
- (Main result for $k=0, L_{2} \simeq M_{2}$) Under the above assumptions,
$Q(L) \cap p \mathbb{Z}=Q(M) \cap p \mathbb{Z}$ if and only if $\left|f_{T}\right|=4$ and $f_{L} \sim f_{M} \cdot f_{T}^{2}$.
Furthermore, if the above holds, then $-4 p^{4}+1 \leq d_{L}<0$.

When $L_{2} \simeq M_{2}$

- For two non-isometric binary lattices L and M, assume that $L_{p} \simeq M_{p} \simeq \mathbb{H}$ and $L_{2} \simeq M_{2}$ if $p \neq 2$.
- Let T be the binary lattice s.t. $r(p, T)>0$ and $d_{T}=d_{L}$.
- (Main result for $k=0, L_{2} \simeq M_{2}$) Under the above assumptions,
$Q(L) \cap p \mathbb{Z}=Q(M) \cap p \mathbb{Z}$ if and only if $\left|f_{T}\right|=4$ and $f_{L} \sim f_{M} \cdot f_{T}^{2}$.
Furthermore, if the above holds, then $-4 p^{4}+1 \leq d_{L}<0$.
- Since f_{T}^{2} is contained in the ambiguous class, $f_{M} \cdot f_{T}^{2}$ is well defined up to equivalence.

When $L_{2} \simeq M_{2}$

- For two non-isometric binary lattices L and M, assume that $L_{p} \simeq M_{p} \simeq \mathbb{H}$ and $L_{2} \simeq M_{2}$ if $p \neq 2$.
- Let T be the binary lattice s.t. $r(p, T)>0$ and $d_{T}=d_{L}$.
- (Main result for $k=0, L_{2} \simeq M_{2}$) Under the above assumptions,
$Q(L) \cap p \mathbb{Z}=Q(M) \cap p \mathbb{Z}$ if and only if $\left|f_{T}\right|=4$ and $f_{L} \sim f_{M} \cdot f_{T}^{2}$.
Furthermore, if the above holds, then $-4 p^{4}+1 \leq d_{L}<0$.
- Since f_{T}^{2} is contained in the ambiguous class, $f_{M} \cdot f_{T}^{2}$ is well defined up to equivalence.
- The above lower bound for d_{L} is extremal. In fact, $(L, M)=\left(\left[1,1, p^{4}\right],\left[p^{2}, 1, p^{2}\right]\right)$ satisfies the above condition.

Sketch of proof

Sketch of proof

- Assume that $Q(L) \cap p \mathbb{Z}=Q(M) \cap p \mathbb{Z}$.

Sketch of proof

- Assume that $Q(L) \cap p \mathbb{Z}=Q(M) \cap p \mathbb{Z}$.
- Note that for any integer n,

$$
\begin{aligned}
r\left(p n, f_{L}\right) & =r\left(n, f_{L} \cdot f_{T}\right)+r\left(n, f_{L} \cdot f_{T}^{-1}\right)-r\left(\frac{n}{p}, L\right) \quad \text { and } \\
r\left(p n, f_{M}\right) & =r\left(n, f_{M} \cdot f_{T}\right)+r\left(n, f_{M} \cdot f_{T}^{-1}\right)-r\left(\frac{n}{p}, M\right) .
\end{aligned}
$$

Sketch of proof

- Assume that $Q(L) \cap p \mathbb{Z}=Q(M) \cap p \mathbb{Z}$.
- Note that for any integer n,

$$
\begin{aligned}
r\left(p n, f_{L}\right) & =r\left(n, f_{L} \cdot f_{T}\right)+r\left(n, f_{L} \cdot f_{T}^{-1}\right)-r\left(\frac{n}{p}, L\right) \quad \text { and } \\
r\left(p n, f_{M}\right) & =r\left(n, f_{M} \cdot f_{T}\right)+r\left(n, f_{M} \cdot f_{T}^{-1}\right)-r\left(\frac{n}{p}, M\right) .
\end{aligned}
$$

- Using Weber's Theorem, one may prove that $\left(f_{L} \cdot f_{T}, f_{L} \cdot f_{T}^{-1}\right)$ is properly equivalent to

$$
\begin{aligned}
& \left(f_{M} \cdot f_{T}, f_{M} \cdot f_{T}^{-1}\right), \quad\left(f_{M} \cdot f_{T}, f_{M}^{-1} \cdot f_{T}\right), \quad\left(f_{M}^{-1} \cdot f_{T}^{-1}, f_{M} \cdot f_{T}^{-1}\right) \text { or } \\
& \left(f_{M}^{-1} \cdot f_{T}^{-1}, f_{M}^{-1} \cdot f_{T}\right)
\end{aligned}
$$

Sketch of proof

- Assume that $Q(L) \cap p \mathbb{Z}=Q(M) \cap p \mathbb{Z}$.
- Note that for any integer n,

$$
\begin{aligned}
r\left(p n, f_{L}\right) & =r\left(n, f_{L} \cdot f_{T}\right)+r\left(n, f_{L} \cdot f_{T}^{-1}\right)-r\left(\frac{n}{p}, L\right) \quad \text { and } \\
r\left(p n, f_{M}\right) & =r\left(n, f_{M} \cdot f_{T}\right)+r\left(n, f_{M} \cdot f_{T}^{-1}\right)-r\left(\frac{n}{p}, M\right)
\end{aligned}
$$

- Using Weber's Theorem, one may prove that $\left(f_{L} \cdot f_{T}, f_{L} \cdot f_{T}^{-1}\right)$ is properly equivalent to

$$
\begin{aligned}
& \left(f_{M} \cdot f_{T}, f_{M} \cdot f_{T}^{-1}\right), \quad\left(f_{M} \cdot f_{T}, f_{M}^{-1} \cdot f_{T}\right), \quad\left(f_{M}^{-1} \cdot f_{T}^{-1}, f_{M} \cdot f_{T}^{-1}\right) \text { or } \\
& \left(f_{M}^{-1} \cdot f_{T}^{-1}, f_{M}^{-1} \cdot f_{T}\right)
\end{aligned}
$$

- Therefore we have

$$
f_{L} \simeq f_{M} \cdot f_{T}^{-2} \simeq f_{M} \cdot f_{T}^{2} \quad \text { or } \quad f_{L} \simeq f_{M}^{-1} \cdot f_{T}^{-2} \simeq f_{M}^{-1} \cdot f_{T}^{2} .
$$

When $L_{2} \not 千 M_{2}$

- Assume that $L_{p} \simeq M_{p} \simeq \mathbb{H}$ and $L_{2} \simeq[1,1,1], M_{2} \simeq[1,0,3]$.

When $L_{2} \not 千 M_{2}$

- Assume that $L_{p} \simeq M_{p} \simeq \mathbb{H}$ and $L_{2} \simeq[1,1,1], M_{2} \simeq[1,0,3]$.
- (Main result for $k=0, L_{2} \not \approx M_{2}$) Under the above assumptions, $Q(L) \cap p \mathbb{Z}=Q(M) \cap p \mathbb{Z}$ if and only if there are odd integers a, b such that
$L \simeq[a, b, a], M \simeq[a, 2 b, 4 a]$ and $r\left(p^{2},\left[4,2, \frac{1-d_{L}}{4}\right]\right)>0$.
Furthermore, if the above holds, then $-4 p^{2}+1 \leq d_{L}<0$.

When $L_{2} \not \approx M_{2}$

- Assume that $L_{p} \simeq M_{p} \simeq \mathbb{H}$ and $L_{2} \simeq[1,1,1], M_{2} \simeq[1,0,3]$.
- (Main result for $k=0, L_{2} \not \approx M_{2}$) Under the above assumptions, $Q(L) \cap p \mathbb{Z}=Q(M) \cap p \mathbb{Z}$ if and only if there are odd integers a, b such that
$L \simeq[a, b, a], M \simeq[a, 2 b, 4 a]$ and $r\left(p^{2},\left[4,2, \frac{1-d_{L}}{4}\right]\right)>0$.
Furthermore, if the above holds, then $-4 p^{2}+1 \leq d_{L}<0$.
- The above lower bound for d_{L} is extremal. In fact, $L=[p, 1, p]$ and $M=[p, 2,4 p]$ satisfies the above condition.

When $p=3$

	f_{L}, f_{M}	f_{L}, f_{M}	f_{L}, f_{M}
$L_{3} \simeq M_{3} \simeq \mathbb{H}_{3}, L_{2} \simeq M_{2}$	$[1,0,17],[2,2,9]$	$[1,0,32],[4,4,9]$	$[1,0,56],[8,8,9]$
$L_{3} \simeq M_{3} \simeq \mathbb{H}_{3}, L_{2} \simeq M_{2}$	$[7,0,8],[4,4,15]$	$[1,0,65],[9,8,9]$	$[5,0,13],[2,2,33]$
$L_{3} \simeq M_{3} \simeq \mathbb{H}_{3}, L_{2} \simeq M_{2}$	$[1,0,77],[9,4,9]$	$[7,0,11],[2,2,39]$	$[1,0,80],[9,2,9]$
$L_{3} \simeq M_{3} \simeq \mathbb{H}_{3}, L_{2} \simeq M_{2}$	$[5,0,16],[4,4,21]$	$[1,1,39],[5,5,9]$	$[1,1,51],[7,7,9]$
$L_{3} \simeq M_{3} \simeq \mathbb{H}_{3}, L_{2} \simeq M_{2}$	$[1,1,69],[9,7,9]$	$[1,1,81],[9,1,9]$	$[5,1,15],[7,3,11]$
$L_{3} \simeq M_{3} \simeq \mathbb{H}_{3}, L_{2} \simeq M_{2}$	$[1,1,75],[9,5,9]$		
$L_{3} \simeq M_{3} \simeq \mathbb{H}_{3}, L_{2} \nsim M_{2}$	$[3,1,3],[3,2,12]$	$[1,1,9],[4,2,9]$	$[1,1,7],[4,2,7]$
$L_{3} \simeq M_{3} \simeq \mathbb{H}_{3}, L_{2} \nsim M_{2}$	$[1,1,3],[4,2,3]$		

Table $Q(L) \cap 3 \mathbb{Z}=Q(M) \cap 3 \mathbb{Z}$

Corollaries

Corollaries

- (Corollary) Let p be a prime and let L, M be non isometric binary lattices. Then $r(p n, L)=r(p n, M)$ for any integer n if and only if neither L_{p} nor M_{p} is isometric to \mathbb{H} and $\Lambda_{p}(L) \simeq \Lambda_{p}(M)$.

Corollaries

- (Corollary) Let p be a prime and let L, M be non isometric binary lattices. Then $r(p n, L)=r(p n, M)$ for any integer n if and only if neither L_{p} nor M_{p} is isometric to \mathbb{H} and $\Lambda_{p}(L) \simeq \Lambda_{p}(M)$.
- (Corollary) If $Q(L) \cap A_{p, k} \neq Q(M) \cap A_{p, k}$, then $(Q(L)-Q(M)) \cap A_{p, k}$ is an infinite set.

Kaplansky's conjecture

Kaplansky's conjecture

Let L and M be (positive definite integral) ternary \mathbb{Z}-lattices.

Kaplansky's conjecture

Let L and M be (positive definite integral) ternary \mathbb{Z}-lattices.

- (Schiemann) $L \simeq M$ if and only if $r(a, L)=r(a, M)$ for any integer a.

Kaplansky's conjecture

Let L and M be (positive definite integral) ternary \mathbb{Z}-lattices.

- (Schiemann) $L \simeq M$ if and only if $r(a, L)=r(a, M)$ for any integer a.
- (Cerviño-Hein) There are infinitely many counterexamples for the quaternary case.

Kaplansky's conjecture

Let L and M be (positive definite integral) ternary \mathbb{Z}-lattices.

- (Schiemann) $L \simeq M$ if and only if $r(a, L)=r(a, M)$ for any integer a.
- (Cerviño-Hein) There are infinitely many counterexamples for the quaternary case.
- What happens if $Q(L)=Q(M)$?

Kaplansky's conjecture

Let L and M be (positive definite integral) ternary \mathbb{Z}-lattices.

- (Schiemann) $L \simeq M$ if and only if $r(a, L)=r(a, M)$ for any integer a.
- (Cerviño-Hein) There are infinitely many counterexamples for the quaternary case.
- What happens if $Q(L)=Q(M)$?
- (Kaplansky's conjecture) $Q(L)=Q(M)$ if and only if either
(i) both L and M are regular and $L \in \operatorname{gen}(M)$, or
(ii) $(L, M) \simeq(\langle a\rangle \perp[b, b, b],\langle a, b, 3 b\rangle)$, or
(iii) $(L, M) \simeq\left(\left(\begin{array}{ccc}a & \frac{b}{2} & \frac{b}{2} \\ \frac{b}{2} & a & \frac{b}{2} \\ \frac{b}{2} & \frac{b}{2} & a\end{array}\right),[a, 2 b, 2 a+b] \perp\langle 2 a-b\rangle\right)$.

