A survey of results on the u-invariant of a rational function field

David Leep
University of Kentucky

December 19, 2013

Basic definitions

Basic definitions

k is a field.

Basic definitions

k is a field.
The classical u-invariant of $k, u(k)$, is defined as

Basic definitions

k is a field.
The classical u-invariant of $k, u(k)$, is defined as the supremum of the dimensions of anisotropic quadratic forms defined over k.

Basic definitions

k is a field.
The classical u-invariant of $k, u(k)$, is defined as the supremum of the dimensions of anisotropic quadratic forms defined over k.
If $\operatorname{dim}(q)>u(k)$, then q is isotropic over k.

This talk will not deal with the more general u-invariant of a field that is defined for formally real fields.

Basic examples I

Basic examples I

$u($ algebraically closed field $)=1$

Basic examples I

$u($ algebraically closed field $)=1$
$u($ real closed field $)=\infty$

Basic examples I

$u($ algebraically closed field $)=1$
$u($ real closed field $)=\infty$
$x_{1}^{2}+\cdots+x_{n}^{2}$ is anisotropic over k for all $n \geq 1$

Basic examples I

$u($ algebraically closed field $)=1$
$u($ real closed field $)=\infty$
$x_{1}^{2}+\cdots+x_{n}^{2}$ is anisotropic over k for all $n \geq 1$
$u($ finite field $)=2$

Basic examples I

$u($ algebraically closed field $)=1$
$u($ real closed field $)=\infty$
$x_{1}^{2}+\cdots+x_{n}^{2}$ is anisotropic over k for all $n \geq 1$
$u($ finite field $)=2$
$u(\mathrm{p}$-adic field $)=4$

Basic examples I

$u($ algebraically closed field $)=1$
$u($ real closed field $)=\infty$
$x_{1}^{2}+\cdots+x_{n}^{2}$ is anisotropic over k for all $n \geq 1$
$u($ finite field $)=2$
$u(\mathrm{p}$-adic field $)=4$
$u($ nonreal number field $)=4$

Basic examples I

$u($ algebraically closed field $)=1$
$u($ real closed field $)=\infty$
$x_{1}^{2}+\cdots+x_{n}^{2}$ is anisotropic over k for all $n \geq 1$
$u($ finite field $)=2$
$u(\mathrm{p}$-adic field $)=4$
$u($ nonreal number field $)=4$
$u(k((t)))=2 u(k)$

If K is a field complete with respect to a discrete valuation with residue field k, then

If K is a field complete with respect to a discrete valuation with residue field k, then $u(K)=2 u(k)$

If K is a field complete with respect to a discrete valuation with residue field k, then $u(K)=2 u(k)$
The last result is easy to prove when char $k \neq 2$ and a bit harder to prove when char $k=2$.

Basic examples II

Basic examples II

k is a \mathcal{C}_{i}-field if for all $d \geq 1$, every homogeneous form defined over k of degree d in n variables is isotropic over k whenever $n>d^{i}$.

Basic examples II

k is a \mathcal{C}_{i}-field if for all $d \geq 1$, every homogeneous form defined over k of degree d in n variables is isotropic over k whenever $n>d^{i}$.

If k is a \mathcal{C}_{i}-field, then $u(k) \leq 2^{i}$.

Basic examples II

k is a \mathcal{C}_{i}-field if for all $d \geq 1$, every homogeneous form defined over k of degree d in n variables is isotropic over k whenever $n>d^{i}$.
If k is a \mathcal{C}_{i}-field, then $u(k) \leq 2^{i}$. Algebraically closed fields are \mathcal{C}_{0}-fields.

Basic examples II

k is a \mathcal{C}_{i}-field if for all $d \geq 1$, every homogeneous form defined over k of degree d in n variables is isotropic over k whenever $n>d^{i}$.

If k is a \mathcal{C}_{i}-field, then $u(k) \leq 2^{i}$.
Algebraically closed fields are \mathcal{C}_{0}-fields.
Finite fields are \mathcal{C}_{1}-fields.

Basic examples II

k is a \mathcal{C}_{i}-field if for all $d \geq 1$, every homogeneous form defined over k of degree d in n variables is isotropic over k whenever $n>d^{i}$.

If k is a \mathcal{C}_{i}-field, then $u(k) \leq 2^{i}$.
Algebraically closed fields are \mathcal{C}_{0}-fields.
Finite fields are \mathcal{C}_{1}-fields.
It is usually very difficult to determine whether a given field is a \mathcal{C}_{i}-field for some i.

There are three ways to construct new \mathcal{C}_{i}-fields from other ones.

There are three ways to construct new \mathcal{C}_{i}-fields from other ones.

Theorem

Assume that k is a \mathcal{C}_{i}-field. Then

There are three ways to construct new \mathcal{C}_{i}-fields from other ones.

Theorem

Assume that k is a \mathcal{C}_{i}-field. Then $k(t)$ is a \mathcal{C}_{i+1}-field.

There are three ways to construct new \mathcal{C}_{i}-fields from other ones.

Theorem

Assume that k is a \mathcal{C}_{i}-field. Then
$k(t)$ is a \mathcal{C}_{i+1}-field.
Every algebraic extension of k is a \mathcal{C}_{i}-field.

There are three ways to construct new \mathcal{C}_{i}-fields from other ones.

Theorem

Assume that k is a \mathcal{C}_{i}-field. Then $k(t)$ is a \mathcal{C}_{i+1}-field.
Every algebraic extension of k is a \mathcal{C}_{i}-field. $k((t))$ is a \mathcal{C}_{i+1}-field.

Corollary

Assume that k is a \mathcal{C}_{i}-field. Then

Corollary

Assume that k is a \mathcal{C}_{i}-field. Then $u(k) \leq 2^{i}$,

Corollary

Assume that k is a \mathcal{C}_{i}-field. Then $u(k) \leq 2^{i}$, $u(k(t)) \leq 2^{i+1}$,

Corollary

Assume that k is a \mathcal{C}_{i}-field. Then $u(k) \leq 2^{i}$, $u(k(t)) \leq 2^{i+1}$,
For every algebraic extension of $E / k, u(E) \leq 2^{i}$,

Corollary

Assume that k is a \mathcal{C}_{i}-field. Then $u(k) \leq 2^{i}$, $u(k(t)) \leq 2^{i+1}$,
For every algebraic extension of $E / k, u(E) \leq 2^{i}$, $u(k((t))) \leq 2^{i+1}$.

Basic questions on $u(k(t))$

Basic questions on $u(k(t))$

Let k be an arbitrary field and assume that $u(k)$ is finite.

Basic questions on $u(k(t))$

Let k be an arbitrary field and assume that $u(k)$ is finite. What can be said about $u(E)$ where E / k is a finite algebraic extension of k ?

Basic questions on $u(k(t))$

Let k be an arbitrary field and assume that $u(k)$ is finite. What can be said about $u(E)$ where E / k is a finite algebraic extension of k ?
What can be said about $u(k(t))$?

Basic questions on $u(k(t))$

Let k be an arbitrary field and assume that $u(k)$ is finite. What can be said about $u(E)$ where E / k is a finite algebraic extension of k ?
What can be said about $u(k(t))$?
We have the following.

Theorem

$2 u(k) \leq 2 \sup \{u(E) \mid E / k$ finite separable ext. $\} \leq u(k(t))$

Basic questions on $u(k(t))$

Let k be an arbitrary field and assume that $u(k)$ is finite.
What can be said about $u(E)$ where E / k is a finite algebraic extension of k ?
What can be said about $u(k(t))$?
We have the following.

Theorem

$2 u(k) \leq 2 \sup \{u(E) \mid E / k$ finite separable ext. $\} \leq u(k(t))$
We now consider these questions in more detail.

First assume that char $k=2$.

First assume that char $k=2$.
Recall that k^{2} is a subfield of k.

First assume that char $k=2$.
Recall that k^{2} is a subfield of k.
We let $\left[k: k^{2}\right]$ denote the dimension of k over k^{2}.

First assume that char $k=2$.
Recall that k^{2} is a subfield of k.
We let $\left[k: k^{2}\right]$ denote the dimension of k over k^{2}.

Proposition

Let L denote a finite algebraic extension of k. Then

First assume that char $k=2$.
Recall that k^{2} is a subfield of k.
We let $\left[k: k^{2}\right]$ denote the dimension of k over k^{2}.

Proposition

Let L denote a finite algebraic extension of k. Then
(1) $\left[L: L^{2}\right]=\left[k: k^{2}\right]$
(2) $\left[k(t): k(t)^{2}\right]=2\left[k: k^{2}\right]$

First assume that char $k=2$.
Recall that k^{2} is a subfield of k.
We let $\left[k: k^{2}\right]$ denote the dimension of k over k^{2}.

Proposition

Let L denote a finite algebraic extension of k. Then
(1) $\left[L: L^{2}\right]=\left[k: k^{2}\right]$
(2) $\left[k(t): k(t)^{2}\right]=2\left[k: k^{2}\right]$
(3) $\left[k: k^{2}\right] \leq u(k) \leq 2\left[k: k^{2}\right]$

First assume that char $k=2$.
Recall that k^{2} is a subfield of k.
We let $\left[k: k^{2}\right]$ denote the dimension of k over k^{2}.

Proposition

Let L denote a finite algebraic extension of k. Then
(1) $\left[L: L^{2}\right]=\left[k: k^{2}\right]$
(2) $\left[k(t): k(t)^{2}\right]=2\left[k: k^{2}\right]$
(3) $\left[k: k^{2}\right] \leq u(k) \leq 2\left[k: k^{2}\right]$
(4) $u(L) \leq 2 u(k)$
(5) $2 u(k) \leq u(k(t)) \leq 4 u(k)$

First assume that char $k=2$.
Recall that k^{2} is a subfield of k.
We let $\left[k: k^{2}\right]$ denote the dimension of k over k^{2}.

Proposition

Let L denote a finite algebraic extension of k. Then
(1) $\left[L: L^{2}\right]=\left[k: k^{2}\right]$
(2) $\left[k(t): k(t)^{2}\right]=2\left[k: k^{2}\right]$
(3) $\left[k: k^{2}\right] \leq u(k) \leq 2\left[k: k^{2}\right]$
(9) $u(L) \leq 2 u(k)$
(5) $2 u(k) \leq u(k(t)) \leq 4 u(k)$

Proof.

4. $u(L) \leq 2\left[L: L^{2}\right]=2\left[k: k^{2}\right] \leq 2 u(k)$

First assume that char $k=2$.
Recall that k^{2} is a subfield of k.
We let $\left[k: k^{2}\right]$ denote the dimension of k over k^{2}.

Proposition

Let L denote a finite algebraic extension of k. Then
(1) $\left[L: L^{2}\right]=\left[k: k^{2}\right]$
(2) $\left[k(t): k(t)^{2}\right]=2\left[k: k^{2}\right]$
(3) $\left[k: k^{2}\right] \leq u(k) \leq 2\left[k: k^{2}\right]$
(9) $u(L) \leq 2 u(k)$
(5) $2 u(k) \leq u(k(t)) \leq 4 u(k)$

Proof.

4. $u(L) \leq 2\left[L: L^{2}\right]=2\left[k: k^{2}\right] \leq 2 u(k)$
5. $u(k(t)) \leq 2\left[k(t): k(t)^{2}\right]=4\left[k: k^{2}\right] \leq 4 u(k)$

For the rest of the talk, assume that fields have characteristic $\neq 2$.

For the rest of the talk, assume that fields have characteristic $\neq 2$.
Many, but not all, of the following results hold in characteristic 2 , but for simplicity we avoid this case.

Basic inequalities - algebraic extensions

Basic inequalities - algebraic extensions

Theorem
 If $[E: k]=r$, then $u(E) \leq \frac{r+1}{2} u(k)$.

Basic inequalities - algebraic extensions

$$
\begin{aligned}
& \text { Theorem } \\
& \text { If }[E: k]=r \text {, then } u(E) \leq \frac{r+1}{2} u(k) \\
& \text { If }[E: k]=r \text { and } u(k)=1 \text {, then } \\
& \qquad u(E) \leq \begin{cases}2 & \text { if } 1 \leq r \leq 4 \\
\frac{r-1}{2} & \text { if } r \geq 5\end{cases}
\end{aligned}
$$

Basic inequalities - algebraic extensions

$$
\begin{aligned}
& \text { Theorem } \\
& \text { If }[E: k]=r \text {, then } u(E) \leq \frac{r+1}{2} u(k) \\
& \text { If }[E: k]=r \text { and } u(k)=1 \text {, then } \\
& \qquad u(E) \leq \begin{cases}2 & \text { if } 1 \leq r \leq 4 \\
\frac{r-1}{2} & \text { if } r \geq 5\end{cases}
\end{aligned}
$$

The first statement is optimal for $1 \leq r \leq 3$.

Basic inequalities - algebraic extensions

Theorem

If $[E: k]=r$, then $u(E) \leq \frac{r+1}{2} u(k)$.
If $[E: k]=r$ and $u(k)=1$, then

$$
u(E) \leq \begin{cases}2 & \text { if } 1 \leq r \leq 4 \\ \frac{r-1}{2} & \text { if } r \geq 5\end{cases}
$$

The first statement is optimal for $1 \leq r \leq 3$.
The second statement is optimal for $1 \leq r \leq 8$.

Basic inequalities - algebraic extensions

Theorem

If $[E: k]=r$, then $u(E) \leq \frac{r+1}{2} u(k)$.
If $[E: k]=r$ and $u(k)=1$, then

$$
u(E) \leq \begin{cases}2 & \text { if } 1 \leq r \leq 4 \\ \frac{r-1}{2} & \text { if } r \geq 5\end{cases}
$$

The first statement is optimal for $1 \leq r \leq 3$.
The second statement is optimal for $1 \leq r \leq 8$.
No example is known where $u(E)>2 u(k)$.

Basic inequalities - algebraic extensions

Theorem

If $[E: k]=r$, then $u(E) \leq \frac{r+1}{2} u(k)$.
If $[E: k]=r$ and $u(k)=1$, then

$$
u(E) \leq \begin{cases}2 & \text { if } 1 \leq r \leq 4 \\ \frac{r-1}{2} & \text { if } r \geq 5\end{cases}
$$

The first statement is optimal for $1 \leq r \leq 3$.
The second statement is optimal for $1 \leq r \leq 8$.
No example is known where $u(E)>2 u(k)$.
Examples are known where $u(E)=2 u(k), u(E)=\frac{3}{2} u(k)$, and also many other cases.

The proof of the theorem depends on the following theorem about systems of quadratic forms.

The proof of the theorem depends on the following theorem about systems of quadratic forms.

Theorem
Let $\mathcal{S}=\left\{q_{1}, \ldots, q_{r}\right\}$ be a system of quadratic forms defined over k in n variables.

The proof of the theorem depends on the following theorem about systems of quadratic forms.

Theorem

Let $\mathcal{S}=\left\{q_{1}, \ldots, q_{r}\right\}$ be a system of quadratic forms defined over k in n variables.
If $n>\frac{r(r+1)}{2} u(k)$, then \mathcal{S} is isotropic over k.

The proof of the theorem depends on the following theorem about systems of quadratic forms.

Theorem

Let $\mathcal{S}=\left\{q_{1}, \ldots, q_{r}\right\}$ be a system of quadratic forms defined over k in n variables.
If $n>\frac{r(r+1)}{2} u(k)$, then \mathcal{S} is isotropic over k.
That is, $u_{k}(r, 1) \leq \frac{r(r+1)}{2} u(k)$.

The proof of the theorem depends on the following theorem about systems of quadratic forms.

Theorem

Let $\mathcal{S}=\left\{q_{1}, \ldots, q_{r}\right\}$ be a system of quadratic forms defined over k in n variables.
If $n>\frac{r(r+1)}{2} u(k)$, then \mathcal{S} is isotropic over k.
That is, $u_{k}(r, 1) \leq \frac{r(r+1)}{2} u(k)$.
This bound is optimal for $r=1,2,3$.

The proof of the theorem depends on the following theorem about systems of quadratic forms.

Theorem

Let $\mathcal{S}=\left\{q_{1}, \ldots, q_{r}\right\}$ be a system of quadratic forms defined over k in n variables.
If $n>\frac{r(r+1)}{2} u(k)$, then \mathcal{S} is isotropic over k.
That is, $u_{k}(r, 1) \leq \frac{r(r+1)}{2} u(k)$.
This bound is optimal for $r=1,2,3$.
Nothing is known in general for $r \geq 4$.

Basic inequalities - rational function fields

Basic inequalities - rational function fields

Theorem

$$
2 u(k) \leq 2 \sup \{u(E) \mid E / k \text { finite algebraic }\} \leq u(k(t))
$$

Basic inequalities - rational function fields

Theorem

$$
2 u(k) \leq 2 \sup \{u(E) \mid E / k \text { finite algebraic }\} \leq u(k(t))
$$

There exist fields k that have finite extensions with $u(E)=2 u(k)$.

Basic inequalities - rational function fields

Theorem

$$
2 u(k) \leq 2 \sup \{u(E) \mid E / k \text { finite algebraic }\} \leq u(k(t))
$$

There exist fields k that have finite extensions with $u(E)=2 u(k)$.
Then $u(k(t)) \geq 2 u(E)=4 u(k)$.

Basic inequalities - rational function fields

Theorem

$$
2 u(k) \leq 2 \sup \{u(E) \mid E / k \text { finite algebraic }\} \leq u(k(t))
$$

There exist fields k that have finite extensions with $u(E)=2 u(k)$.
Then $u(k(t)) \geq 2 u(E)=4 u(k)$.
No example is known where $u(k(t))>4 u(k)$.

Basic inequalities - rational function fields

Theorem

$$
2 u(k) \leq 2 \sup \{u(E) \mid E / k \text { finite algebraic }\} \leq u(k(t))
$$

There exist fields k that have finite extensions with $u(E)=2 u(k)$.
Then $u(k(t)) \geq 2 u(E)=4 u(k)$.
No example is known where $u(k(t))>4 u(k)$.
In cases when there exists a finite extension with $u(E)>u(k)$, the exact value of $u(k(t))$ is not known. In fact, no upper bound for $u(k(t))$ is known.

Basic inequalities - rational function fields

Theorem

$$
2 u(k) \leq 2 \sup \{u(E) \mid E / k \text { finite algebraic }\} \leq u(k(t))
$$

There exist fields k that have finite extensions with $u(E)=2 u(k)$.
Then $u(k(t)) \geq 2 u(E)=4 u(k)$.
No example is known where $u(k(t))>4 u(k)$.
In cases when there exists a finite extension with $u(E)>u(k)$, the exact value of $u(k(t))$ is not known. In fact, no upper bound for $u(k(t))$ is known.
The only known values of $u(k(t))$ are powers of two.

The Milnor exact sequence for the Witt ring $W(k)$ of k gives the following result.

The Milnor exact sequence for the Witt ring $W(k)$ of k gives the following result.

Theorem

We have $I^{n}(E)=0$ for all finite algebraic extensions E / k if and only if $I^{n+1}(k(t))=0$.

The Milnor exact sequence for the Witt ring $W(k)$ of k gives the following result.

Theorem

We have $I^{n}(E)=0$ for all finite algebraic extensions E / k if and only if $I^{n+1}(k(t))=0$.

Recall that $I^{n}(E)$ is the ideal in $W(E)$ generated by the n-fold Pfister forms defined over E.

The Milnor exact sequence for the Witt ring $W(k)$ of k gives the following result.

Theorem

We have $I^{n}(E)=0$ for all finite algebraic extensions E / k if and only if $I^{n+1}(k(t))=0$.

Recall that $I^{n}(E)$ is the ideal in $W(E)$ generated by the n-fold Pfister forms defined over E.
If $u(E)<2^{n}$, then every n-fold Pfister form defined over E is hyperbolic over E, and so $I^{n}(E)=0$.

The Milnor exact sequence for the Witt ring $W(k)$ of k gives the following result.

Theorem

We have $I^{n}(E)=0$ for all finite algebraic extensions E / k if and only if $I^{n+1}(k(t))=0$.

Recall that $I^{n}(E)$ is the ideal in $W(E)$ generated by the n-fold Pfister forms defined over E.
If $u(E)<2^{n}$, then every n-fold Pfister form defined over E is hyperbolic over E, and so $I^{n}(E)=0$.
The converse holds for $n=1,2$ but it does not hold for $n \geq 3$.

The Milnor exact sequence for the Witt ring $W(k)$ of k gives the following result.

Theorem

We have $I^{n}(E)=0$ for all finite algebraic extensions E / k if and only if $I^{n+1}(k(t))=0$.

Recall that $I^{n}(E)$ is the ideal in $W(E)$ generated by the n-fold Pfister forms defined over E.
If $u(E)<2^{n}$, then every n-fold Pfister form defined over E is hyperbolic over E, and so $I^{n}(E)=0$.
The converse holds for $n=1,2$ but it does not hold for $n \geq 3$. There are fields k with $I^{3}(k)=0$ but $u(k)$ can be arbitrarily large.

Theorem

Assume that $u(E)=1$ for all finite algebraic extensions E / k. Then $u(k(t))=2$.

Theorem

Assume that $u(E)=1$ for all finite algebraic extensions E / k. Then $u(k(t))=2$.

Proof.

Theorem

Assume that $u(E)=1$ for all finite algebraic extensions E / k. Then $u(k(t))=2$.

Proof.

For all finite algebraic extensions, $u(E)=1$ and so $I(E)=0$.

Theorem

Assume that $u(E)=1$ for all finite algebraic extensions E / k. Then $u(k(t))=2$.

Proof.

For all finite algebraic extensions, $u(E)=1$ and so $I(E)=0$. Therefore $I^{2}(k(t))=0$ by the Milnor exact sequence, and this implies $u(k(t)) \leq 2$.

Theorem

Assume that $u(E)=1$ for all finite algebraic extensions E / k. Then $u(k(t))=2$.

Proof.

For all finite algebraic extensions, $u(E)=1$ and so $I(E)=0$. Therefore $I^{2}(k(t))=0$ by the Milnor exact sequence, and this implies $u(k(t)) \leq 2$.
Since $u(k(t)) \neq 1$, we have $u(k(t))=2$.

Assume that $u(E)=2$ for all finite algebraic extensions E / k.

Assume that $u(E)=2$ for all finite algebraic extensions E / k. Then $u(k(t)) \geq 4$.

Assume that $u(E)=2$ for all finite algebraic extensions E / k. Then $u(k(t)) \geq 4$.
Does $u(k(t))=4$?

Assume that $u(E)=2$ for all finite algebraic extensions E / k. Then $u(k(t)) \geq 4$.
Does $u(k(t))=4$?
No.

Theorem

There exists a field k with $u(E)=2$ for all finite extensions E / k and such that $u(k(t)) \geq 6$. Thus $u(k(t))>2 \sup \{u(E) \mid E / k$ finite algebraic $\}$.

Theorem

There exists a field k with $u(E)=2$ for all finite extensions E / k and such that $u(k(t)) \geq 6$. Thus $u(k(t))>2 \sup \{u(E) \mid E / k$ finite algebraic $\}$.

The example comes from work of Colliot-Thélène and Madore.

Theorem

There exists a field k with $u(E)=2$ for all finite extensions E / k and such that $u(k(t)) \geq 6$. Thus $u(k(t))>2 \sup \{u(E) \mid E / k$ finite algebraic $\}$.

The example comes from work of Colliot-Thélène and Madore. They constructed a field k with $u(E)=2$ for all finite extensions E / k and two quadratic forms q_{1}, q_{2} defined over k in 5 variables such that $\left\{q_{1}, q_{2}\right\}$ have no nontrivial common zero defined over k.

Theorem

There exists a field k with $u(E)=2$ for all finite extensions E / k and such that $u(k(t)) \geq 6$. Thus $u(k(t))>2 \sup \{u(E) \mid E / k$ finite algebraic $\}$.

The example comes from work of Colliot-Thélène and Madore. They constructed a field k with $u(E)=2$ for all finite extensions E / k and two quadratic forms q_{1}, q_{2} defined over k in 5 variables such that $\left\{q_{1}, q_{2}\right\}$ have no nontrivial common zero defined over k.
Then the Amer-Brumer theorem implies that $q_{1}+t q_{2}$ is an anisotropic quadratic form defined over $k(t)$.

Theorem

There exists a field k with $u(E)=2$ for all finite extensions E / k and such that $u(k(t)) \geq 6$. Thus $u(k(t))>2 \sup \{u(E) \mid E / k$ finite algebraic $\}$.

The example comes from work of Colliot-Thélène and Madore. They constructed a field k with $u(E)=2$ for all finite extensions E / k and two quadratic forms q_{1}, q_{2} defined over k in 5 variables such that $\left\{q_{1}, q_{2}\right\}$ have no nontrivial common zero defined over k.
Then the Amer-Brumer theorem implies that $q_{1}+t q_{2}$ is an anisotropic quadratic form defined over $k(t)$.
Thus $u(k(t)) \geq 5$ and therefore $u(k(t)) \geq 6$.

I found the following generalization of the theorem of Colliot-Thélène and Madore:

I found the following generalization of the theorem of Colliot-Thélène and Madore:

Theorem

Assume that Q is an anisotropic quadratic form defined over $k(t)$ with $\operatorname{dim}(Q)=5$, and assume that Q satisfies the following two conditions.

I found the following generalization of the theorem of Colliot-Thélène and Madore:

Theorem

Assume that Q is an anisotropic quadratic form defined over $k(t)$ with $\operatorname{dim}(Q)=5$, and assume that Q satisfies the following two conditions.
(1) For each monic irreducible polynomial $\pi \in k[t]$, if $\partial_{\pi}^{2}(Q) \neq 0$, then
(1) $\partial_{\pi}^{2}(Q)$ is represented by a one-dimensional form over E_{π},
(2) $\partial_{\pi}^{1}(Q) \notin I^{2}\left(E_{\pi}\right)$.
(3) $\operatorname{deg}(\pi)$ is a 2-power.

I found the following generalization of the theorem of Colliot-Thélène and Madore:

Theorem

Assume that Q is an anisotropic quadratic form defined over $k(t)$ with $\operatorname{dim}(Q)=5$, and assume that Q satisfies the following two conditions.
(1) For each monic irreducible polynomial $\pi \in k[t]$, if
$\partial_{\pi}^{2}(Q) \neq 0$, then
(1) $\partial_{\pi}^{2}(Q)$ is represented by a one-dimensional form over E_{π},
(2) $\partial_{\pi}^{1}(Q) \notin I^{2}\left(E_{\pi}\right)$.
(3) $\operatorname{deg}(\pi)$ is a 2-power.
(2) If $\partial_{\infty}^{1}(Q) \neq 0$, then
(1) $\partial_{\infty}^{1}(Q)$ is represented by a one-dimensional form over E_{∞},
(2) $\partial_{\infty}^{2}(Q) \notin I^{2}\left(E_{\infty}\right)$.

Theorem(continued)
Here E_{π} denotes the residue field of the valuation on $k(t)$ corresponding to π, and E_{∞} is the residue field corresponding to $\frac{1}{t}$.

Theorem(continued)
Here E_{π} denotes the residue field of the valuation on $k(t)$ corresponding to π, and E_{∞} is the residue field corresponding to $\frac{1}{t}$.
Let F be a field such that either F / k is an algebraic extension with $[F: k]$ odd, or $F=k(C)$ is the function field of a conic C defined over k. Then $Q_{F(t)}$ is anisotropic over $F(t)$ and $Q_{F(t)}$ satisfies the two conditions above with F in place of k.

Theorem(continued)
Here E_{π} denotes the residue field of the valuation on $k(t)$ corresponding to π, and E_{∞} is the residue field corresponding to $\frac{1}{t}$.
Let F be a field such that either F / k is an algebraic extension with $[F: k]$ odd, or $F=k(C)$ is the function field of a conic C defined over k. Then $Q_{F(t)}$ is anisotropic over $F(t)$ and $Q_{F(t)}$ satisfies the two conditions above with F in place of k. It follows that there exists a field extension K of k such that $u(E)=2$ for all finite extensions E / K and $u(K(t)) \geq 6$.

Theorem(continued)
Here E_{π} denotes the residue field of the valuation on $k(t)$ corresponding to π, and E_{∞} is the residue field corresponding to $\frac{1}{t}$.
Let F be a field such that either F / k is an algebraic extension with $[F: k]$ odd, or $F=k(C)$ is the function field of a conic C defined over k. Then $Q_{F(t)}$ is anisotropic over $F(t)$ and $Q_{F(t)}$ satisfies the two conditions above with F in place of k. It follows that there exists a field extension K of k such that $u(E)=2$ for all finite extensions E / K and $u(K(t)) \geq 6$. I don't have an upper bound for $u(K(t))$ in this case.

The u-invariant of rational function fields over a complete discretely valued field

The u-invariant of rational function fields over a complete discretely valued field

Assume that k is a field that is complete with respect to a discrete valuation having residue field κ.

The u-invariant of rational function fields over a complete discretely valued field

Assume that k is a field that is complete with respect to a discrete valuation having residue field κ.
The classical example is $k=\mathbf{Q}_{p}, \kappa=\mathbf{F}_{p}$.

The u-invariant of rational function fields over a

 complete discretely valued fieldAssume that k is a field that is complete with respect to a discrete valuation having residue field κ.
The classical example is $k=\mathbf{Q}_{p}, \kappa=\mathbf{F}_{p}$.
Three methods have been found to prove that $u\left(\mathbf{Q}_{p}(t)\right)=8$.

The u-invariant of rational function fields over a

 complete discretely valued fieldAssume that k is a field that is complete with respect to a discrete valuation having residue field κ.
The classical example is $k=\mathbf{Q}_{p}, \kappa=\mathbf{F}_{p}$.
Three methods have been found to prove that $u\left(\mathbf{Q}_{p}(t)\right)=8$.
Parimala and Suresh developed one method for $p \neq 2$ and recently handled the case $p=2$ also.

The u-invariant of rational function fields over a

 complete discretely valued fieldAssume that k is a field that is complete with respect to a discrete valuation having residue field κ.
The classical example is $k=\mathbf{Q}_{p}, \kappa=\mathbf{F}_{p}$.
Three methods have been found to prove that $u\left(\mathbf{Q}_{p}(t)\right)=8$.
Parimala and Suresh developed one method for $p \neq 2$ and recently handled the case $p=2$ also.
Harbater, Hartmann, Krashen used patching techniques for the case $p \neq 2$.

The u-invariant of rational function fields over a

 complete discretely valued fieldAssume that k is a field that is complete with respect to a discrete valuation having residue field κ.
The classical example is $k=\mathbf{Q}_{p}, \kappa=\mathbf{F}_{p}$.
Three methods have been found to prove that $u\left(\mathbf{Q}_{p}(t)\right)=8$.
Parimala and Suresh developed one method for $p \neq 2$ and recently handled the case $p=2$ also.
Harbater, Hartmann, Krashen used patching techniques for the case $p \neq 2$.
I used a theorem of Heath-Brown to give a proof valid for all p that also is valid for function fields of higher transcendence degree. (More details below.)

Becher, Grimm, Van Geel used results based on patching techniques and valuation theory to prove the following result.

Becher, Grimm, Van Geel used results based on patching techniques and valuation theory to prove the following result.

Theorem

Assume that k is a field that is complete with respect to a discrete valuation having residue field κ and assume that char $\kappa \neq 2$. Then

$$
u(k(t))=2 \cdot \sup \{u(\ell(t)) \mid \ell / \kappa \text { finite separable extension }\}
$$

Becher, Grimm, Van Geel used results based on patching techniques and valuation theory to prove the following result.

Theorem

Assume that k is a field that is complete with respect to a discrete valuation having residue field κ and assume that char $\kappa \neq 2$. Then

$$
u(k(t))=2 \cdot \sup \{u(\ell(t)) \mid \ell / \kappa \text { finite separable extension }\} .
$$

With $k=\mathbf{Q}_{p}, \kappa=\mathbf{F}_{p}$, we have $u(\ell(t))=4$, and so $u\left(\mathbf{Q}_{p}(t)\right)=8$.

A generalization of \mathcal{C}_{i}-fields

For $d \geq 0$, a field k satisfies property $\mathcal{C}_{i}(d)$ if every system of r homogeneous forms of degree d defined over k in n variables, $n>r d^{i}$, has a nontrivial simultaneous zero defined over k.

A generalization of \mathcal{C}_{i}-fields

For $d \geq 0$, a field k satisfies property $\mathcal{C}_{i}(d)$ if every system of r homogeneous forms of degree d defined over k in n variables, $n>r d^{i}$, has a nontrivial simultaneous zero defined over k. If k is a $\mathcal{C}_{i}(2)$-field, then the case $r=1$ shows that $u(k) \leq 2^{i}$.

A generalization of \mathcal{C}_{i}-fields

For $d \geq 0$, a field k satisfies property $\mathcal{C}_{i}(d)$ if every system of r homogeneous forms of degree d defined over k in n variables, $n>r d^{i}$, has a nontrivial simultaneous zero defined over k. If k is a $\mathcal{C}_{i}(2)$-field, then the case $r=1$ shows that $u(k) \leq 2^{i}$. If k is a \mathcal{C}_{i}-field, then Lang-Nagata proved that k is a $\mathcal{C}_{i}(d)$-field for all positive integers d.

Theorem
 If k is a $\mathcal{C}_{i}(d)$-field, then $k(t)$ is an $\mathcal{C}_{i+1}(d)$-field.

Theorem

If k is a $\mathcal{C}_{i}(d)$-field, then $k(t)$ is an $\mathcal{C}_{i+1}(d)$-field. If k is a $\mathcal{C}_{i}(d)$-field, then every algebraic extension of k is a $\mathcal{C}_{i}(d)$-field.

Theorem

If k is a $\mathcal{C}_{i}(d)$-field, then $k(t)$ is an $\mathcal{C}_{i+1}(d)$-field. If k is a $\mathcal{C}_{i}(d)$-field, then every algebraic extension of k is a $\mathcal{C}_{i}(d)$-field.

Thus if k is an $\mathcal{C}_{i}(2)$-field, then $k\left(t_{1}, \ldots, t_{m}\right)$ is an $\mathcal{C}_{i+m}(2)$-field and $u\left(k\left(t_{1}, \ldots, t_{m}\right)\right) \leq 2^{i+m}$.

For a long time, it was hoped that one could prove that \mathbf{Q}_{p} is a $\mathcal{C}_{2}(2)$-field.

For a long time, it was hoped that one could prove that \mathbf{Q}_{p} is a \mathcal{C}_{2} (2)-field.
That is, a system of r quadratic forms defined over \mathbf{Q}_{p} in n variables should have a nontrivial common zero defined over \mathbf{Q}_{p} whenever $n>4 r\left(=r \cdot 2^{2}\right)$.

For a long time, it was hoped that one could prove that \mathbf{Q}_{p} is a $\mathcal{C}_{2}(2)$-field.
That is, a system of r quadratic forms defined over \mathbf{Q}_{p} in n variables should have a nontrivial common zero defined over \mathbf{Q}_{p} whenever $n>4 r\left(=r \cdot 2^{2}\right)$.
This is known for $r=1,2$.

For a long time, it was hoped that one could prove that \mathbf{Q}_{p} is a \mathcal{C}_{2} (2)-field.
That is, a system of r quadratic forms defined over \mathbf{Q}_{p} in n variables should have a nontrivial common zero defined over \mathbf{Q}_{p} whenever $n>4 r\left(=r \cdot 2^{2}\right)$.
This is known for $r=1,2$.
For a fixed $r \geq 3$, it is known that the result holds for sufficiently large p compared to r. But for $r \geq 4$, no explicit bound is known for how large p should be compared to r.

For a long time, it was hoped that one could prove that \mathbf{Q}_{p} is a \mathcal{C}_{2} (2)-field.
That is, a system of r quadratic forms defined over \mathbf{Q}_{p} in n variables should have a nontrivial common zero defined over \mathbf{Q}_{p} whenever $n>4 r\left(=r \cdot 2^{2}\right)$.
This is known for $r=1,2$.
For a fixed $r \geq 3$, it is known that the result holds for sufficiently large p compared to r. But for $r \geq 4$, no explicit bound is known for how large p should be compared to r. The problem remains open.

Here is a newer approach.

Here is a newer approach.
For $d \geq 0$, a field k satisfies property $\mathcal{A}_{i}(d)$ if every system of r homogeneous forms of degree d defined over k in n variables, $n>r d^{i}$, has a nontrivial simultaneous zero in an extension field over k of degree prime to d.

Here is a newer approach.
For $d \geq 0$, a field k satisfies property $\mathcal{A}_{i}(d)$ if every system of r homogeneous forms of degree d defined over k in n variables, $n>r d^{i}$, has a nontrivial simultaneous zero in an extension field over k of degree prime to d.
Write $k \in \mathcal{A}_{i}(d)$ if k is an $\mathcal{A}_{i}(d)$-field.

Here is a newer approach.
For $d \geq 0$, a field k satisfies property $\mathcal{A}_{i}(d)$ if every system of r homogeneous forms of degree d defined over k in n variables, $n>r d^{i}$, has a nontrivial simultaneous zero in an extension field over k of degree prime to d.
Write $k \in \mathcal{A}_{i}(d)$ if k is an $\mathcal{A}_{i}(d)$-field.
If k is a $\mathcal{C}_{i}(d)$-field, then k is an $\mathcal{A}_{i}(d)$-field.

Here is a newer approach.
For $d \geq 0$, a field k satisfies property $\mathcal{A}_{i}(d)$ if every system of r homogeneous forms of degree d defined over k in n variables, $n>r d^{i}$, has a nontrivial simultaneous zero in an extension field over k of degree prime to d.
Write $k \in \mathcal{A}_{i}(d)$ if k is an $\mathcal{A}_{i}(d)$-field.
If k is a $\mathcal{C}_{i}(d)$-field, then k is an $\mathcal{A}_{i}(d)$-field.
If $k \in \mathcal{A}_{i}(2)$, then the case $r=1$ and Springer's theorem on odd degree extensions shows that $u(k) \leq 2^{i}$.

Theorem

If k is an $\mathcal{A}_{i}(d)$-field, then $k(t)$ is an $\mathcal{A}_{i+1}(d)$-field.

Theorem

If k is an $\mathcal{A}_{i}(d)$-field, then $k(t)$ is an $\mathcal{A}_{i+1}(d)$-field. If k is an $\mathcal{A}_{i}(d)$-field and d is a prime power, then every algebraic extension E / k is an $\mathcal{A}_{i}(d)$-field.

Theorem

If k is an $\mathcal{A}_{i}(d)$-field, then $k(t)$ is an $\mathcal{A}_{i+1}(d)$-field. If k is an $\mathcal{A}_{i}(d)$-field and d is a prime power, then every algebraic extension E / k is an $\mathcal{A}_{i}(d)$-field.

Thus if k is an $\mathcal{A}_{i}(2)$-field, then $k\left(t_{1}, \ldots, t_{m}\right)$ is an $\mathcal{A}_{i+m}(2)$-field and thus $u\left(k\left(t_{1}, \ldots, t_{m}\right)\right) \leq 2^{i+m}$.

Theorem

\mathbf{Q}_{p} is an $\mathcal{A}_{2}(2)$-field.

Theorem

\mathbf{Q}_{p} is an $\mathcal{A}_{2}(2)$-field.

Corollary

$u\left(\mathbf{Q}_{p}\left(t_{1}, \ldots, t_{m}\right)\right)=2^{m+2}$

Theorem

\mathbf{Q}_{p} is an $\mathcal{A}_{2}(2)$-field.
Corollary
$u\left(\mathbf{Q}_{p}\left(t_{1}, \ldots, t_{m}\right)\right)=2^{m+2}$
Proof.
$\mathbf{Q}_{p}\left(t_{1}, \ldots, t_{m}\right)$ is an $\mathcal{A}_{2+m}(2)$-field, so

Theorem

\mathbf{Q}_{p} is an $\mathcal{A}_{2}(2)$-field.

Corollary

$u\left(\mathbf{Q}_{p}\left(t_{1}, \ldots, t_{m}\right)\right)=2^{m+2}$

Proof.

$\mathbf{Q}_{\boldsymbol{p}}\left(t_{1}, \ldots, t_{m}\right)$ is an $\mathcal{A}_{2+m}(2)$-field, so $u\left(\mathbf{Q}_{p}\left(t_{1}, \ldots, t_{m}\right)\right) \leq 2^{m+2}$.

Theorem

\mathbf{Q}_{p} is an $\mathcal{A}_{2}(2)$-field.

Corollary

$u\left(\mathbf{Q}_{p}\left(t_{1}, \ldots, t_{m}\right)\right)=2^{m+2}$

Proof.

$\mathbf{Q}_{\boldsymbol{p}}\left(t_{1}, \ldots, t_{m}\right)$ is an $\mathcal{A}_{2+m}(2)$-field, so $u\left(\mathbf{Q}_{p}\left(t_{1}, \ldots, t_{m}\right)\right) \leq 2^{m+2}$.
We have $u\left(\mathbf{Q}_{p}\left(t_{1}, \ldots, t_{m}\right)\right) \geq 2^{m+2}$ by straightforward valuation theory.

To prove that \mathbf{Q}_{p} is an $\mathcal{A}_{2}(2)$-field, we need the following theorem proved by Heath-Brown.

To prove that \mathbf{Q}_{p} is an $\mathcal{A}_{2}(2)$-field, we need the following theorem proved by Heath-Brown.

Theorem

Let K be a p-adic field with residue field F.

To prove that \mathbf{Q}_{p} is an $\mathcal{A}_{2}(2)$-field, we need the following theorem proved by Heath-Brown.

Theorem

Let K be a p-adic field with residue field F.
Let $S=\left\{q_{1}, \ldots, q_{r}\right\}$ be a system of r quadratic forms defined over K in n variables.

To prove that \mathbf{Q}_{p} is an $\mathcal{A}_{2}(2)$-field, we need the following theorem proved by Heath-Brown.

Theorem

Let K be a p-adic field with residue field F.
Let $S=\left\{q_{1}, \ldots, q_{r}\right\}$ be a system of r quadratic forms defined over K in n variables. If $n>4 r$ and $|F| \geq(2 r)^{r}$, then S is isotropic over K.

To prove that \mathbf{Q}_{p} is an $\mathcal{A}_{2}(2)$-field, we need the following theorem proved by Heath-Brown.

Theorem

Let K be a p-adic field with residue field F.
Let $S=\left\{q_{1}, \ldots, q_{r}\right\}$ be a system of r quadratic forms defined over K in n variables. If $n>4 r$ and $|F| \geq(2 r)^{r}$, then S is isotropic over K.

We now use this theorem to prove that \mathbf{Q}_{p} is an $\mathcal{A}_{2}(2)$-field.

Let $S=\left\{q_{1}, \ldots, q_{r}\right\}$ be a system of r quadratic forms defined over \mathbf{Q}_{p} in n variables and assume that $n>r \cdot 2^{2}=4 r$.

Let $S=\left\{q_{1}, \ldots, q_{r}\right\}$ be a system of r quadratic forms defined over \mathbf{Q}_{p} in n variables and assume that $n>r \cdot 2^{2}=4 r$.
Let \mathbf{F}_{p} be the residue field of \mathbf{Q}_{p}.

Let $S=\left\{q_{1}, \ldots, q_{r}\right\}$ be a system of r quadratic forms defined over \mathbf{Q}_{p} in n variables and assume that $n>r \cdot 2^{2}=4 r$.
Let \mathbf{F}_{p} be the residue field of \mathbf{Q}_{p}.
If K is an unramified extension of \mathbf{Q}_{p} with residue field E and
$\left[K: \mathbf{Q}_{p}\right]=I$, then $\left[E: \mathbf{F}_{p}\right]=\left[K: \mathbf{Q}_{p}\right]=I$ and
$|E|=\left|\mathbf{F}_{p}\right|^{\prime}=p^{\prime}$.

Let $S=\left\{q_{1}, \ldots, q_{r}\right\}$ be a system of r quadratic forms defined over \mathbf{Q}_{p} in n variables and assume that $n>r \cdot 2^{2}=4 r$.
Let \mathbf{F}_{p} be the residue field of \mathbf{Q}_{p}.
If K is an unramified extension of \mathbf{Q}_{p} with residue field E and
$\left[K: \mathbf{Q}_{p}\right]=I$, then $\left[E: \mathbf{F}_{p}\right]=\left[K: \mathbf{Q}_{p}\right]=I$ and
$|E|=\left|\mathbf{F}_{p}\right|^{\prime}=p^{\prime}$.
Since \mathbf{F}_{p} is a finite field, it is known that such unramified extensions exist for every $l \geq 1$.

Let $S=\left\{q_{1}, \ldots, q_{r}\right\}$ be a system of r quadratic forms defined over \mathbf{Q}_{p} in n variables and assume that $n>r \cdot 2^{2}=4 r$.
Let \mathbf{F}_{p} be the residue field of \mathbf{Q}_{p}.
If K is an unramified extension of \mathbf{Q}_{p} with residue field E and
$\left[K: \mathbf{Q}_{p}\right]=I$, then $\left[E: \mathbf{F}_{p}\right]=\left[K: \mathbf{Q}_{p}\right]=I$ and
$|E|=\left|\mathbf{F}_{p}\right|^{\prime}=p^{\prime}$.
Since \mathbf{F}_{p} is a finite field, it is known that such unramified extensions exist for every $I \geq 1$.
Thus there exists such a K with $/$ odd and $|E|=p^{\prime} \geq(2 r)^{r}$.

Let $S=\left\{q_{1}, \ldots, q_{r}\right\}$ be a system of r quadratic forms defined over \mathbf{Q}_{p} in n variables and assume that $n>r \cdot 2^{2}=4 r$.
Let \mathbf{F}_{p} be the residue field of \mathbf{Q}_{p}.
If K is an unramified extension of \mathbf{Q}_{p} with residue field E and
$\left[K: \mathbf{Q}_{p}\right]=I$, then $\left[E: \mathbf{F}_{p}\right]=\left[K: \mathbf{Q}_{p}\right]=I$ and
$|E|=\left|\mathbf{F}_{p}\right|^{\prime}=p^{\prime}$.
Since \mathbf{F}_{p} is a finite field, it is known that such unramified extensions exist for every $I \geq 1$.
Thus there exists such a K with $/$ odd and $|E|=p^{\prime} \geq(2 r)^{r}$.
Then Heath-Brown's theorem implies that S is isotropic over K.

Let $S=\left\{q_{1}, \ldots, q_{r}\right\}$ be a system of r quadratic forms defined over \mathbf{Q}_{p} in n variables and assume that $n>r \cdot 2^{2}=4 r$.
Let \mathbf{F}_{p} be the residue field of \mathbf{Q}_{p}.
If K is an unramified extension of \mathbf{Q}_{p} with residue field E and
$\left[K: \mathbf{Q}_{p}\right]=I$, then $\left[E: \mathbf{F}_{p}\right]=\left[K: \mathbf{Q}_{p}\right]=I$ and
$|E|=\left|\mathbf{F}_{p}\right|^{\prime}=p^{\prime}$.
Since \mathbf{F}_{p} is a finite field, it is known that such unramified extensions exist for every $I \geq 1$.
Thus there exists such a K with $/$ odd and $|E|=p^{\prime} \geq(2 r)^{r}$.
Then Heath-Brown's theorem implies that S is isotropic over K.
Since $\left[K: \mathbf{Q}_{p}\right.$] is odd, it follows that $\mathbf{Q}_{p} \in \mathcal{A}_{2}(2)$.

A calculation of $u(k(t))$ using pairs of quadratic forms

A calculation of $u(k(t))$ using pairs of quadratic forms

We need two lemmas.

A calculation of $u(k(t))$ using pairs of quadratic forms

We need two lemmas.
Lemma (Amer's theorem)
Let q_{1}, q_{2} be two quadratic forms defined over k.

A calculation of $u(k(t))$ using pairs of quadratic forms

We need two lemmas.

Lemma (Amer's theorem)

Let q_{1}, q_{2} be two quadratic forms defined over k. Then q_{1}, q_{2} vanish on a common m-dimensional space over k if and only if

A calculation of $u(k(t))$ using pairs of quadratic forms

We need two lemmas.

Lemma (Amer's theorem)

Let q_{1}, q_{2} be two quadratic forms defined over k. Then q_{1}, q_{2} vanish on a common m-dimensional space over k if and only if $q_{1}+t q_{2}$ vanishes on an m-dimensional space over $\left.k(t)\right)$.

A calculation of $u(k(t))$ using pairs of quadratic forms

We need two lemmas.

Lemma (Amer's theorem)

Let q_{1}, q_{2} be two quadratic forms defined over k.
Then q_{1}, q_{2} vanish on a common m-dimensional space over k if and only if
$q_{1}+t q_{2}$ vanishes on an m-dimensional space over $\left.k(t)\right)$.

Lemma

Let Q be a quadratic form defined over $k(t)$.

A calculation of $u(k(t))$ using pairs of quadratic forms

We need two lemmas.

Lemma (Amer's theorem)

Let q_{1}, q_{2} be two quadratic forms defined over k.
Then q_{1}, q_{2} vanish on a common m-dimensional space over k
if and only if
$q_{1}+t q_{2}$ vanishes on an m-dimensional space over $\left.k(t)\right)$.

Lemma

Let Q be a quadratic form defined over $k(t)$.
Then there exist two quadratic forms q_{1}, q_{2} defined over k such that

A calculation of $u(k(t))$ using pairs of quadratic forms

We need two lemmas.

Lemma (Amer's theorem)

Let q_{1}, q_{2} be two quadratic forms defined over k.
Then q_{1}, q_{2} vanish on a common m-dimensional space over k
if and only if
$q_{1}+t q_{2}$ vanishes on an m-dimensional space over $\left.k(t)\right)$.

Lemma

Let Q be a quadratic form defined over $k(t)$.
Then there exist two quadratic forms q_{1}, q_{2} defined over k such that

$$
Q=q_{1}+t q_{2} \text { in } W(k(t))
$$

A calculation of $u(k(t))$ using pairs of quadratic forms

We need two lemmas.

Lemma (Amer's theorem)

Let q_{1}, q_{2} be two quadratic forms defined over k.
Then q_{1}, q_{2} vanish on a common m-dimensional space over k
if and only if
$q_{1}+t q_{2}$ vanishes on an m-dimensional space over $\left.k(t)\right)$.

Lemma

Let Q be a quadratic form defined over $k(t)$.
Then there exist two quadratic forms q_{1}, q_{2} defined over k such that
$Q=q_{1}+t q_{2}$ in $W(k(t))$.
That is, $Q \perp m \mathbb{H} \simeq q_{1}+t q_{2}$ over $k(t)$ for some $m \geq 0$.

Let $u_{k}(2, m)$ denote the largest integer N such that there exist quadratic forms q_{1}, q_{2} defined over k in N variables that do not vanish on a common m-dimensional space over k.

Let $u_{k}(2, m)$ denote the largest integer N such that there exist quadratic forms q_{1}, q_{2} defined over k in N variables that do not vanish on a common m-dimensional space over k. Set $u_{k}(2, m)=\infty$ if no such integer exists.

Let $u_{k}(2, m)$ denote the largest integer N such that there exist quadratic forms q_{1}, q_{2} defined over k in N variables that do not vanish on a common m-dimensional space over k.
Set $u_{k}(2, m)=\infty$ if no such integer exists.
The two lemmas are needed to prove the following theorem.

Let $u_{k}(2, m)$ denote the largest integer N such that there exist quadratic forms q_{1}, q_{2} defined over k in N variables that do not vanish on a common m-dimensional space over k.
Set $u_{k}(2, m)=\infty$ if no such integer exists.
The two lemmas are needed to prove the following theorem.

Theorem

$u(k(t))=\sup _{m \geq 1}\left\{u_{k}(2, m)-2(m-1)\right\}$

Proposition
Let $n \geq 1$.
(1) $2 \leq u_{k}(2, m+1)-u_{k}(2, m) \leq 3$ for all $m \geq 1$.

Proposition

Let $n \geq 1$.
(1) $2 \leq u_{k}(2, m+1)-u_{k}(2, m) \leq 3$ for all $m \geq 1$.
(2) $u_{k}(2,1)+2(m-1) \leq u_{k}(2, m) \leq u_{k}(2,1)+3(m-1)$ for all $m \geq 1$.

Proposition

Let $n \geq 1$.
(1) $2 \leq u_{k}(2, m+1)-u_{k}(2, m) \leq 3$ for all $m \geq 1$.
(2) $u_{k}(2,1)+2(m-1) \leq u_{k}(2, m) \leq u_{k}(2,1)+3(m-1)$ for all $m \geq 1$.
(3) $u(k(t))$ is finite if and only if there exists an integer N such that $u_{k}(2, m+1)=u_{k}(2, m)+2$, for all $n \geq N$.

Proposition

Let $n \geq 1$.
(1) $2 \leq u_{k}(2, m+1)-u_{k}(2, m) \leq 3$ for all $m \geq 1$.
(2) $u_{k}(2,1)+2(m-1) \leq u_{k}(2, m) \leq u_{k}(2,1)+3(m-1)$ for all $m \geq 1$.
(3) $u(k(t))$ is finite if and only if there exists an integer N such that $u_{k}(2, m+1)=u_{k}(2, m)+2$, for all $n \geq N$.
(4) $u(k(t)) \leq N$ if and only $u_{k}(2, m) \leq N+2(m-1)$ for all $m \geq 1$.

Suppose for some N that $u_{k}(2, m) \leq N+2(m-1)$ for all $m \geq 1$.

Suppose for some N that $u_{k}(2, m) \leq N+2(m-1)$ for all $m \geq 1$.
Let q_{1}, q_{2} be quadratic forms defined over k in n variables where $n=N+2(m-1)+1>u_{k}(2, m)$.

Suppose for some N that $u_{k}(2, m) \leq N+2(m-1)$ for all $m \geq 1$.
Let q_{1}, q_{2} be quadratic forms defined over k in n variables where $n=N+2(m-1)+1>u_{k}(2, m)$.
Then q_{1}, q_{2} vanish on an m-dimensional space over k.

Suppose for some N that $u_{k}(2, m) \leq N+2(m-1)$ for all $m \geq 1$.
Let q_{1}, q_{2} be quadratic forms defined over k in n variables where $n=N+2(m-1)+1>u_{k}(2, m)$.
Then q_{1}, q_{2} vanish on an m-dimensional space over k.
We can assume that q_{1}, q_{2} vanish on the m-dimensional space given by $x_{m+1}=\cdots=x_{n}=0$.

Suppose for some N that $u_{k}(2, m) \leq N+2(m-1)$ for all $m \geq 1$.
Let q_{1}, q_{2} be quadratic forms defined over k in n variables where $n=N+2(m-1)+1>u_{k}(2, m)$.
Then q_{1}, q_{2} vanish on an m-dimensional space over k.
We can assume that q_{1}, q_{2} vanish on the m-dimensional space given by $x_{m+1}=\cdots=x_{n}=0$.
Then

Suppose for some N that $u_{k}(2, m) \leq N+2(m-1)$ for all $m \geq 1$.
Let q_{1}, q_{2} be quadratic forms defined over k in n variables where $n=N+2(m-1)+1>u_{k}(2, m)$.
Then q_{1}, q_{2} vanish on an m-dimensional space over k.
We can assume that q_{1}, q_{2} vanish on the m-dimensional space given by $x_{m+1}=\cdots=x_{n}=0$.
Then

$$
\begin{aligned}
& q_{1}=x_{1} L_{1}\left(x_{m+1}, \ldots, x_{n}\right)+\cdots+x_{m} L_{m}+Q_{1}\left(x_{m+1}, \ldots, x_{n}\right) \\
& q_{2}=x_{1} M_{1}\left(x_{m+1}, \ldots, x_{n}\right)+\cdots+x_{m} M_{m}+Q_{2}\left(x_{m+1}, \ldots, x_{n}\right)
\end{aligned}
$$

The $2 m$ linear forms $L_{1}\left(x_{m+1}, \ldots, x_{n}\right), \ldots, L_{m}, M_{1}, \ldots, M_{m}$

The $2 m$ linear forms $L_{1}\left(x_{m+1}, \ldots, x_{n}\right), \ldots, L_{m}, M_{1}, \ldots, M_{m}$ span a vector space of dimension at most $n-m$ and

The $2 m$ linear forms $L_{1}\left(x_{m+1}, \ldots, x_{n}\right), \ldots, L_{m}, M_{1}, \ldots, M_{m}$ span a vector space of dimension at most $n-m$ and $n-m=N+m-1$.

The $2 m$ linear forms $L_{1}\left(x_{m+1}, \ldots, x_{n}\right), \ldots, L_{m}, M_{1}, \ldots, M_{m}$ span a vector space of dimension at most $n-m$ and $n-m=N+m-1$.
For large $m, L_{1}, \ldots, L_{m}, M_{1}, \ldots, M_{m}$ are highly linearly dependent.

I have found a way to construct spaces of zeros of q_{1}, q_{2} where the $2 m$ linear forms span a vector space whose dimension has order of magnitude equal to $\frac{3}{2} m$.

Suppose that k is an algebraically closed field, char $k \neq 2$.

Suppose that k is an algebraically closed field, char $k \neq 2$. Then $u(k(t))=2$ because $k(t)$ is a C_{1}-field (or by an argument from an earlier slide).

Suppose that k is an algebraically closed field, char $k \neq 2$. Then $u(k(t))=2$ because $k(t)$ is a C_{1}-field (or by an argument from an earlier slide).
I have given a direct proof that $u_{k}(2, m)=2 m$ for all $m \geq 1$.

Suppose that k is an algebraically closed field, char $k \neq 2$. Then $u(k(t))=2$ because $k(t)$ is a C_{1}-field (or by an argument from an earlier slide).
I have given a direct proof that $u_{k}(2, m)=2 m$ for all $m \geq 1$.
Thus $u(k(t))=\sup _{m \geq 1}\left\{u_{k}(2, m)-2(m-1)\right\}=2$.

THANK YOU

