Strong approximation with Brauer-Manin obstruction for certain algebraic varieties

Fei XU

School of Mathematical Sciences, Capital Normal University, Beijing 100048, P.R.CHINA
I. Strong Approximation.

Let F be a number field and X_F be a separated scheme of finite type over F.

Let \mathbb{A}_F and \mathbb{A}^f_F are the adeles and finite adeles of F respectively.

Definition: The strong approximation holds for X_F if $X_F(F)$ is dense in $X_F(\mathbb{A}^f_F)$ under the diagonal map.
Examples satisfying strong approximation

1. $X_F = \mathbb{G}_a$ (Chinese Remainder Theorem).

2. X_F = semi-simple, simply connected such that the real points of any simple F-component is not compact. (Eichler-Kneser-Weil-Shimura-Platonov-Prasad etc.)

3. $X_F : \ x_1^d + x_2^d + \cdots + x_n^d = a$ with $a \in F^\times$, where d and n are positive integers with

$$n \geq d(2^{d-1}+[F : \mathbb{Q}])[F : \mathbb{Q}]+1 \text{ and } d \equiv 1 \mod 2.$$

(circle method).
Diophantine interpretation.

Let \mathfrak{o}_F be the ring of integers of F.

A separated scheme X of finite type over \mathfrak{o}_F is called an integral model of X_F if

$$X_F = X \times_{\mathfrak{o}_F} F.$$

Definition. If

$$\prod_{p \in \Omega_F} X(\mathfrak{o}_{F_p}) \neq \emptyset \Rightarrow X(\mathfrak{o}_F) \neq \emptyset,$$

we say the Hasse principle holds for X.

Fei XU: Strong approximation with Brauer-Manin obstruction for certain algebraic varieties
Proposition. The strong approximation holds for X_F if and only if the Hasse principle holds for any integral model of X_F.

Examples satisfying the Hasse principle.

1. X is defined by the linear equations. (\mathbb{G}_a^n)

2. $X: q(x_1, \cdots, x_n) = c$ with indefinite quadratic form q over \mathfrak{o}_F with $n \geq 4$ and $c \neq 0$. ($\text{Spin}(n)$).
II. Strong Approximation with Brauer-Manin Obstruction.

By Manin’s idea:

\[X_F(\mathbb{A}_F)^{Br(X_F)} = \{ (x_p)_{p \in \Omega_F} \in X_F(\mathbb{A}_F) : \sum_p inv_p(\xi(x_p)) = 0 \text{ for all } \xi \in Br(X_F) \} \]

where \(Br(X_F) = H^2_{et}(X_F, \mathbb{G}_m) \) and \(\mathbb{G}_m \) is the etale sheaf defined by the multiplicative groups.
Class field theory implies that

$$X_F(F) \subseteq X_F(\mathbb{A}_F)^{Br(X_F)} \subseteq X_F(\mathbb{A}_F).$$

Definition. If $X_F(F)$ is dense in the projection to the finite adele part

$$\text{pr}_{\mathbb{A}_F}^F[X_F(\mathbb{A}_F)^{Br(X_F)}]$$

under the diagonal map, we say the strong approximation with the Brauer-Manin obstruction holds for X_F.
Proposition. The strong approximation with the Brauer-Manin obstruction holds for X_F if and only if for any integral model X of X_F,

$$X(\mathcal{O}_F) \neq \emptyset \iff \left(\prod_p X(\mathcal{O}_F_p) \right)^{Br(X_F)} \neq \emptyset$$

where

$$\left(\prod_p X(\mathcal{O}_F_p) \right)^{Br(X_F)} = \left(\prod_p X(\mathcal{O}_F_p) \right) \cap X_F(\mathbb{A}_F)^{Br(X_F)}.$$
III. Homogeneous Spaces.

Suppose X_F is a homogeneous space of a linear algebraic group G_F with $X_F(F) \neq \emptyset$. Then

$$X_F \cong G_F / H_F$$

over F, where H is the stabilizer of a rational point of $X_F(F)$.
Theorem. Strong approximation with Brauer-Manin obstruction holds for X_F if

1) (Colliot-Thélène - Xu). G is semi-simple and simply connected, F_∞-points of any simple factor of G is not compact and H is connected or a finite commutative group scheme.

The special case for $G = \text{Spin}$ and H connected has independently proved by Erovenko & Rapinchuk and Beli & Chan
2) (Harari). G is an algebraic torus.

3) (Borovoi-Demarche). F_∞ points of any simple factor of simply connected semi-simple part of G is not compact and H is connected.

4) (Poitou-Tate). G is a finite commutative group scheme.

5) (Wei-Xu). G is a group of multiplicative type.
Application: Studying linear algebra over \mathfrak{o}_F.

Example.

$$
\begin{pmatrix}
0 & -5 \\
1 & 0
\end{pmatrix} =
\begin{pmatrix}
2 & 1 \\
0 & 1
\end{pmatrix}
\begin{pmatrix}
-1 & -3 \\
2 & 1
\end{pmatrix}
\begin{pmatrix}
2 & 1 \\
0 & 1
\end{pmatrix}^{-1}
$$

$$
\begin{pmatrix}
0 & -5 \\
1 & 0
\end{pmatrix} =
\begin{pmatrix}
1 & -2 \\
1 & 1
\end{pmatrix}
\begin{pmatrix}
-1 & -3 \\
2 & 1
\end{pmatrix}
\begin{pmatrix}
1 & -2 \\
1 & 1
\end{pmatrix}^{-1}
$$

But these two matrices are not similar over \mathbb{Z}!
IV. Families of Homogeneous Spaces.

G.L. Watson investigated the local-global principle over \(\mathbb{Z} \) for the following equation

\[
q(x_1, \cdots, x_n) + \sum_{i=1}^{n} a_i(t)x_i + b(t) = 0
\]

where \(q(x_1, \cdots, x_n) \) is a quadratic form over \(\mathbb{Z} \) and \(a_1(t), \cdots, a_n(t) \) and \(b(t) \) are polynomials over \(\mathbb{Z} \).
The above variety is isomorphic to

\[X_Q : \quad q(x_1, \cdots, x_n) = p(t) \]

over \(\mathbb{Q} \), where \(p(t) \) is a polynomial over \(\mathbb{Q} \).

The study of strong approximation of \(X_Q \) will provide the solvability of Watson’s equation by choosing Watson’s equation as an integral model.
Let \(\tilde{X}_Q \to X_Q \) be a resolution of singularities for \(X_Q \).

Theorem (Colliot-Thélène - Xu). If \(\tilde{X}_Q(\mathbb{R}) \) is not compact, then strong approximation with Brauer-Manin obstruction holds for \(\tilde{X}_Q \).

Watson’s result is certain case that \(Br(X_Q)/Br(\mathbb{Q}) \) is trivial. This result is also true over a number field.
One needs to extend spinor genus theory to a quadratic diophantine equation \((L + u)\) in order to prove the above theorem when \(q\) is a definite quadratic form.

Moreover, studying (primitive) representation by a quadratic diophantine equation \((L + u)\) is equivalent to studying (primitive) representation of a quadratic form \(L\) with congruent conditions.
General fibration method:
Let $f : X_F \rightarrow Y_F$ be a morphism of smooth quasi-projective geometrically integral varieties over F and assume

(1) all geometric fibers of f are non-empty and integral.

(2) there is $W_F \subset Y_F$ be a non-empty open subset such that $f : f^{-1}(W) \rightarrow W$ is smooth.
Proposition. Suppose $X(\mathbb{A}_F) \neq \emptyset$ and

1) Y_F satisfies the strong approximation.

2) The fiber of f above F-points of W satisfy the strong approximation.

3) The map $f^{-1}(W)(F_p) \to W(F_p)$ is surjective for all archimedean places p.

Then X_F satisfies the strong approximation.
Example. Let U be an open sub-scheme of \mathbb{G}^n_a for some positive integer n such that

$$\text{codim}(\mathbb{G}^n_a \setminus U, \mathbb{G}^n_a) \geq 2.$$

Then U satisfies strong approximation.

Proof. Let $p : \mathbb{G}^n_a \to \mathbb{G}_a; (x_1, \cdots, x_n) \mapsto x_1$. Then

$$p|_U^{-1}(y) = p^{-1}(y) \cap U \quad \text{and} \quad p^{-1}(y) \cong \mathbb{G}^{n-1}_a$$

with $\text{codim}(p^{-1}(y) \setminus (p^{-1}(y) \cap U), p^{-1}(y)) \geq 2$ for almost all $y \in \mathbb{G}_a(F)$. Induction and the above proposition.
Theorem (Colliot-Thélène - Harari). Let X be a smooth integral affine variety and $f : X \to \mathbb{G}_a$ be a surjective morphism such that all fibers are geometrically integral. Suppose (1) the generic fiber of f is a homogeneous space of a simply connected, semi-simple and almost simple group G over $F(t)$ and the geometric stabilizers connected reductive. (2) f has a rational section over F_p and the specialization G_x of G is isotropic over F_p for almost all $x \in \mathbb{G}_a(F_p)$ for some archimedean place p. (3) any element in $Br(X)$ takes a single value in $X(F_p)$ for all archimedean primes p. Then X satisfies strong approximation with Brauer-Manin obstruction.
V. Toric Varieties.

Definition: Let T be an torus over F and X be a normal and separated scheme of finite type over F with action of T

$$m_X : T \times_k X \longrightarrow X$$

over F. X is called a toric variety with respect to T over F if there is an open immersion $i_T : T \hookrightarrow X$ over F such that the multiplication of T is compatible with m_X.
Theorem (Cao - Xu).
Any smooth toric variety over F satisfies strong approximation with Brauer-Manin obstruction.

Under certain geometric assumption, Chambert-Loir and Tschinkel proved the same result by using harmonic analysis.
VI. Application to Counting Integral Points.

Let X be a separated scheme of finite type over \mathbb{Z} such that

$$X_\mathbb{Q} = X \times_{\mathbb{Z}} \mathbb{Q} \hookrightarrow \text{Spec}(\mathbb{Q}[x_1, \cdots, x_n]).$$

The basic question is to find asymptote formula for

$$N(X, T) = \# \{(x_i) \in X(\mathbb{Z}) : |x_i| \leq T\}$$

as $T \to \infty$.

Fei XU

Strong approximation with Brauer-Manin obstruction for certain
The Hardy-Littlewood circle method

\[N(X, T) \sim \left(\prod_{p} N_p(X) \right) \cdot N_{\infty}(X_{\mathbb{Q}}, T) \]

as \(T \to \infty \), where

\[N_p(X) = \lim_{k \to \infty} \frac{\#X(\mathbb{Z}/(p^k))}{p^k \cdot \text{dim}(X_{\mathbb{Q}})} \]

and

\[N_{\infty}(X_{\mathbb{Q}}, T) = \text{vol}\left(\{(x_i) \in X_{\mathbb{Q}}(\mathbb{R}) : |x_i| \leq T\} \right). \]

Once the Hardy-Littlewood circle method can be applied for \(X \), then \(X \) satisfies the Hasse principle.
Brauer-Manin obstruction indicates that the Hasse principle is not true in general.

It is natural to ask how the asymptote formula looks like in this situation.
Theorem (Borovoi-Rudnick).
If X_Q is a symmetric homogeneous space of almost simple, semi-simple and simply connected linear algebraic group G such that $G(\mathbb{R})$ is not compact, then there is a density function δ (defined by Kottwitz invariant) such that

$$N(X, T) \sim \int_{(\prod_p X(\mathbb{Z}_p)) \times X_Q(\mathbb{R}, T)} \delta(x)dx$$

as $T \to \infty$, where

$$X_Q(\mathbb{R}, T) = \{(x_i) \in X_Q(\mathbb{R}) : |x_i| \leq T\}$$

and dx is the Tamagawa measure.
For any

$$\xi \in Br(X_\mathbb{Q}) = H^2_{et}(X_\mathbb{Q}, \mathbb{G}_m),$$

one can regard ξ as a locally constant function over

$X_\mathbb{Q}(\mathbb{A}_\mathbb{Q})$ and $X(\mathbb{Q}_p)$ by

$$\xi((x_p)) = \prod_{p \leq \infty} inv_p(\xi(x_p)) \quad \text{and} \quad \xi(x_p) = inv_p(\xi(x_p))$$

with a fixed identification

$$\mathbb{Q}/\mathbb{Z} \cong \bigcup_n \mu_n \subset \mathbb{C}^\times.$$
For a homogeneous space X, one can define

$$N_p(X, \xi) = \int_{X(\mathbb{Z}_p)} \xi \, dp$$

for any prime p and

$$N_\infty(X, T, \xi) = \int_{X(\mathbb{Q}(\mathbb{R},T))} \xi \, d_\infty$$

where $\prod_{p \leq \infty} dp$ is the Tamagawa measure over $X(\mathbb{A}_\mathbb{Q})$.
If $\xi = 1$, then

$$N_p(X, 1) = \int_{X(\mathbb{Z}_p)} d_p = \lim_{k \to \infty} \frac{\#X(\mathbb{Z}/(p^k))}{p^k \cdot \text{dim}(X_{\mathbb{Q}})}$$

and

$$N_\infty(X, T, 1) = vol(X_{\mathbb{Q}}(\mathbb{R}, T))$$

which are the same as those in the circle method.
Theorem (Wei-Xu).
If \(X_\mathbb{Q}\) is a symmetric homogeneous space of almost simple, semi-simple and simply connected linear algebraic group \(G\) such that \(G(\mathbb{R})\) is not compact, then

\[
N(X, T) \sim \sum_{\xi \in (Br(X_\mathbb{Q})/Br(\mathbb{Q}))} \prod_{p} N_p(X, \xi) N_\infty(X, T, \xi)
\]

as \(T \to \infty\), where \(Br(X_\mathbb{Q})/Br(\mathbb{Q})\) is finite.
Example.
Let \(p(\lambda) \) be an irreducible monic polynomial of degree \(n \geq 2 \) over \(\mathbb{Z} \) and \(X \) be a scheme defined by the following equations in variables \(x_{i,j} \)

\[
det(\lambda I_n - (x_{i,j})) = p(\lambda)
\]

over \(\mathbb{Z} \) with \(1 \leq i, j \leq n \). Then

\[
N(X, T) \sim (\prod_p \int_{X(\mathbb{Z}_p)} d_p) \cdot \int_{X_{\mathbb{Q}}(\mathbb{R}, T)} d_\infty
\]

as \(T \to \infty \).
Corollary (Eskin-Mozes-Shah).
If \(p(\lambda) \) is split completely over \(\mathbb{R} \) and \(\mathbb{Z}[\theta] \) is the ring of integers of \(\mathbb{Q}(\theta) \) for a root \(\theta \) of \(p(\lambda) \), then

\[
N(X, T) \sim \frac{2^{n-1} \cdot h \cdot R \cdot \omega_n T^{\frac{1}{2}n(n-1)}}{\sqrt{D} \prod_{i=2}^{n} \Lambda(i^2)}
\]

as \(T \to \infty \), where \(h \) is the class number of \(\mathbb{Z}[\theta] \), \(R \) is the regulator of \(\mathbb{Q}(\theta) \), \(D \) is the discriminant of \(p(\lambda) \), \(\omega_n \) is the volume of unit ball in \(\mathbb{R}^{\frac{1}{2}n(n-1)} \) and \(\Lambda(s) = \pi^{-s} \Gamma(s) \zeta(2s) \).
Thank you!