Quadratic and cubic form invariants of certain algebras with involution

Karim Johannes Becher

Departement Wiskunde-Informatica, Universiteit Antwerpen

17 December 2013

Decomposability for algebras with involution

Let F be a field and (A, σ) an F-algebra with involution.

Question

Is (A, σ) totally decomposable, i.e. isomorphic to a tensor product of quaternion algebras with involution?

Question

Does $\operatorname{Sym}(\sigma)$ contain a quadratic extension K / F ?

Question

Given such K / F, is $K \subseteq Q$ for an F-quaternion algebra $Q \subseteq A$ with $\sigma(Q)=Q$?

We define the capacity of (A, σ) as

$$
\operatorname{cap}(A, \sigma)=\left\{\begin{aligned}
\operatorname{deg}(A) & \text { if } \sigma \text { is orthogonal, } \\
\operatorname{deg}(A) & \text { if } \sigma \text { is unitary, } \\
\frac{1}{2} \operatorname{deg}(A) & \text { if } \sigma \text { is symplectic. }
\end{aligned}\right.
$$

Proposition

$$
\operatorname{cap}(A, \sigma)=\max \{[F[x]: F] \mid x \in \operatorname{Symd}(A, \sigma)\}
$$

If $\operatorname{cap}(A, \sigma)=1$, then σ is the unique involution of its type on A. If $\operatorname{cap}(A, \sigma)=2$, then (A, σ) is totally decomposable. Here, we study the case where $\operatorname{cap}(A, \sigma)=4$.

Successive decomposition

Let (A, σ) be an F-algebra with involution.

Proposition

Let $Q \subseteq A$ be an F-quaternion algebra such that $\sigma(Q)=Q$ and let $C=C_{A}(Q)$. Then

$$
(A, \sigma) \simeq\left(Q,\left.\sigma\right|_{Q}\right) \otimes\left(C,\left.\sigma\right|_{C}\right)
$$

If $\left.\sigma\right|_{Q}$ is orthogonal, then $\left.\sigma\right|_{C}$ is of same type as σ and

$$
\operatorname{cap}\left(C,\left.\sigma\right|_{C}\right)=\frac{1}{2} \operatorname{cap}(A, \sigma)
$$

Hence, if $\operatorname{cap}(A, \sigma)=4$ and A contains a σ-stable F-quaternion algebra, then (A, σ) is totally decomposable.

Capacity 2

Assume from now that σ is not orthogonal whenever $\operatorname{char}(F)=2$. Assume that $\operatorname{cap}(A, \sigma)=2$ and let $V=\operatorname{Symd}(\sigma)$. Then

$$
\operatorname{dim}(V)= \begin{cases}3 & \text { if } \sigma \text { is orthogonal } \\ 4 & \text { if } \sigma \text { is unitary } \\ 6 & \text { if } \sigma \text { is symplectic. }\end{cases}
$$

There exists a natural symmetry

$$
V \longrightarrow V, x \mapsto \bar{x}
$$

such that $x+\bar{x}, x \bar{x} \in F$ for all $x \in V$.
For $x \in V$ we have $[F[x]: F] \leq 2$, as $x^{2}-(x+\bar{x}) x+x \bar{x}=0$.
Moreover, $q: V \longrightarrow F, x \mapsto x \bar{x}$ is a regular quadratic form.
Let's call (V, q) the symmetrizer form of (A, σ).

Symmetric quadratic extensions

Let (A, σ) be an F-algebra with involution with $\operatorname{cap}(A, \sigma)=4$.
Let K / F be a quadratic étale extension with $K \subseteq \operatorname{Symd}(\sigma)$ and $C=C_{A}(K)$ satisfying $\operatorname{dim}_{F}(C)=\frac{1}{2} \operatorname{dim}_{F}(A)$. Then:
$\left(C,\left.\sigma\right|_{C}\right)$ is a K-algebra with involution with $\operatorname{cap}(C, \sigma)=2$.
There exist (many) biquadratic étale L / F with $K \subseteq L \subseteq \operatorname{Symd}(\sigma)$.
We take the symmetrizer form of (C, σ) and apply the Scharlau transfer from K to F to obtain a regular quadratic form over F. In this form L is a 4-dimensional hyperbolic subspace. We take its orthogonal complement and denote it π^{K}. Then

$$
\operatorname{dim}\left(\pi^{K}\right)= \begin{cases}2 & \text { if } \sigma \text { is orthogonal } \\ 4 & \text { if } \sigma \text { is unitary } \\ 8 & \text { if } \sigma \text { is symplectic }\end{cases}
$$

What else can we say about the form π^{K} ?

Decomposability and isotropy

Let (A, σ) be an F-algebra with involution with $\operatorname{cap}(A, \sigma)=4$.
Consider quadratic étale K / F as before, with $K \subseteq \operatorname{Symd}(\sigma)$.

Proposition

The form π^{K} is isotropic if and only if there exists an F-quaternion algebra $Q \subseteq A$ with $K \subseteq Q, \sigma(Q)=Q$ and $\left.\sigma\right|_{Q}$ orthogonal.

Theorem

The form π^{K} is either anisotropic or hyperbolic, and it is independent of the choice of K / F.

Corollary

If (A, σ) is totally decomposable, then there is a decomposition where K is contained in one quaternion factor.

The decomposability form

Let (A, σ) be an F-algebra with involution with $\operatorname{cap}(A, \sigma)=4$.
Assume that σ is not orthogonal if $\operatorname{char}(F)=2$.
We have almost shown the following:

Theorem

To (A, σ) there is associated an r-fold Pfister form π where

$$
r= \begin{cases}1 & \text { if } \sigma \text { is orthogonal } \\ 2 & \text { if } \sigma \text { is unitary } \\ 3 & \text { if } \sigma \text { is symplectic }\end{cases}
$$

For any field extension L / F we have that $(A, \sigma)_{L}$ is totally decomposable if and only if π_{L} is hyperbolic.

However, we assumed the existence of a convenient quadratic extension K / F contained in $\operatorname{Symd}(\sigma)$!
This is a challenge when A is a division algebra and σ is symplectic.

The Pfaffian polynomial

Let (A, σ) be an F-algebra with symplectic involution and $\operatorname{deg}(A)=8$.
The elements $x \in \operatorname{Symd}(\sigma)$ satisfy an equation

$$
x^{4}-c_{1}(x) x^{3}+c_{2}(x) x^{2}-c_{3}(x) x+c_{4}(x)=0
$$

where $c_{i}: \operatorname{Symd}(\sigma) \longrightarrow F$ is a form of degree i over $F(i \leq 4)$.

Proposition

There exists $x \in \operatorname{Symd}(\sigma) \backslash\{0\}$ with $c_{1}(x)=c_{3}(x)=0$ and in particular $\left[F\left(x^{2}\right): F\right] \leq 2$.

Springer's Theorem for cubic forms

Proposition

There exists $x \in \operatorname{Symd}(\sigma) \backslash\{0\}$ with $c_{1}(x)=c_{3}(x)=0$ and in particular $\left[F\left(x^{2}\right): F\right] \leq 2$.

Consider the cubic form $\gamma=\left(V, c_{3}\right)$ of dimension 27 over F where

$$
V=\left\{x \in \operatorname{Symd}(\sigma) \mid c_{1}(x)=0\right\}
$$

Claim: γ is isotropic.
This is true if A is split, so in particular if F is quadratically closed. Hence, γ_{L} is isotropic over a 2-extension L / F.

Theorem

Let L / F be a 2-extension and let γ be a cubic form over F. Then γ is isotropic over L if and only if γ is isotropic over F.

Rowen's Theorem

Let A be a central simple algebra of exponent 2 and degree 8 .

Theorem (Garibaldi-Parimala-Tignol for $\operatorname{char}(F) \neq 2$)

For any symplectic involution σ on A, there exists a quadratic étale extension K / F contained in $\operatorname{Symd}(A, \sigma)$.

Corollary (Rowen)

The algebra A contains a triquadratic étale extension of F.
The new proof used:

Theorem

Any central simple algebra of exponent 2 is split by a 2-extension.
This follows from Merkurjev's Theorem, but a direct elementary proof can be given.

