Quadratic and cubic form invariants of certain algebras with involution

Karim Johannes Becher

Departement Wiskunde-Informatica, Universiteit Antwerpen

17 December 2013

Decomposability for algebras with involution

Let F be a field and (A, σ) an F-algebra with involution.

Question

Is (A, σ) totally decomposable, i.e. isomorphic to a tensor product of quaternion algebras with involution?

Question

Does $Sym(\sigma)$ contain a quadratic extension K/F?

Question

Given such K/F, is $K \subseteq Q$ for an F-quaternion algebra $Q \subseteq A$ with $\sigma(Q) = Q$?

We define the capacity of (A, σ) as

$$\operatorname{cap}(A, \sigma) = \begin{cases} \operatorname{deg}(A) & \text{if } \sigma \text{ is orthogonal}, \\ \operatorname{deg}(A) & \text{if } \sigma \text{ is unitary}, \\ \frac{1}{2}\operatorname{deg}(A) & \text{if } \sigma \text{ is symplectic.} \end{cases}$$

Proposition

$$\operatorname{cap}(A, \sigma) = \max \left\{ [F[x] : F] \mid x \in \operatorname{Symd}(A, \sigma) \right\}$$

If $cap(A, \sigma) = 1$, then σ is the unique involution of its type on A. If $cap(A, \sigma) = 2$, then (A, σ) is totally decomposable. Here, we study the case where $cap(A, \sigma) = 4$. Let (A, σ) be an *F*-algebra with involution.

Proposition

Let $Q \subseteq A$ be an F-quaternion algebra such that $\sigma(Q) = Q$ and let $C = C_A(Q)$. Then

$$(A,\sigma)\simeq (Q,\sigma|_Q)\otimes (C,\sigma|_C).$$

If $\sigma|_Q$ is orthogonal, then $\sigma|_C$ is of same type as σ and

$$\operatorname{cap}(\mathcal{C},\sigma|_{\mathcal{C}}) = \frac{1}{2}\operatorname{cap}(\mathcal{A},\sigma).$$

Hence, if $cap(A, \sigma) = 4$ and A contains a σ -stable F-quaternion algebra, then (A, σ) is totally decomposable.

Capacity 2

Assume from now that σ is not orthogonal whenever char(F) = 2. Assume that cap(A, σ) = 2 and let $V = \text{Symd}(\sigma)$. Then

$$\dim(V) = \begin{cases} 3 & \text{if } \sigma \text{ is orthogonal,} \\ 4 & \text{if } \sigma \text{ is unitary,} \\ 6 & \text{if } \sigma \text{ is symplectic.} \end{cases}$$

There exists a natural symmetry

$$V \longrightarrow V, x \mapsto \overline{x}$$

such that $x + \overline{x}, x\overline{x} \in F$ for all $x \in V$.

For $x \in V$ we have $[F[x] : F] \leq 2$, as $x^2 - (x + \overline{x})x + x\overline{x} = 0$. Moreover, $q : V \longrightarrow F, x \mapsto x\overline{x}$ is a regular quadratic form. Let's call (V, q) the symmetrizer form of (A, σ) .

Symmetric quadratic extensions

Let (A, σ) be an *F*-algebra with involution with $cap(A, \sigma) = 4$. Let K/F be a quadratic étale extension with $K \subseteq \text{Symd}(\sigma)$ and $C = C_A(K)$ satisfying dim_{*F*}(*C*) = $\frac{1}{2}$ dim_{*F*}(*A*). Then: $(C, \sigma|_C)$ is a K-algebra with involution with $cap(C, \sigma) = 2$. There exist (many) biquadratic étale L/F with $K \subseteq L \subseteq \text{Symd}(\sigma)$. We take the symmetrizer form of (C, σ) and apply the Scharlau transfer from K to F to obtain a regular quadratic form over F. In this form L is a 4-dimensional hyperbolic subspace. We take its orthogonal complement and denote it π^{K} . Then

$$\dim(\pi^{K}) = \begin{cases} 2 & \text{if } \sigma \text{ is orthogonal} \\ 4 & \text{if } \sigma \text{ is unitary} \\ 8 & \text{if } \sigma \text{ is symplectic} \end{cases}$$

What else can we say about the form π^{K} ?

Decomposability and isotropy

Let (A, σ) be an *F*-algebra with involution with $cap(A, \sigma) = 4$. Consider quadratic étale K/F as before, with $K \subseteq Symd(\sigma)$.

Proposition

The form π^{K} is isotropic if and only if there exists an *F*-quaternion algebra $Q \subseteq A$ with $K \subseteq Q$, $\sigma(Q) = Q$ and $\sigma|_{Q}$ orthogonal.

Theorem

The form π^{K} is either anisotropic or hyperbolic, and it is independent of the choice of K/F.

Corollary

If (A, σ) is totally decomposable, then there is a decomposition where K is contained in one quaternion factor.

The decomposability form

Let (A, σ) be an *F*-algebra with involution with $cap(A, \sigma) = 4$.

Assume that σ is not orthogonal if char(F) = 2.

We have almost shown the following:

Theorem

To (A, σ) there is associated an r-fold Pfister form π where

$$r = \begin{cases} 1 & \text{if } \sigma \text{ is orthogonal} \\ 2 & \text{if } \sigma \text{ is unitary} \\ 3 & \text{if } \sigma \text{ is symplectic} \end{cases}$$

For any field extension L/F we have that $(A, \sigma)_L$ is totally decomposable if and only if π_L is hyperbolic.

However, we assumed the existence of a convenient quadratic extension K/F contained in $Symd(\sigma)$!

This is a challenge when A is a division algebra and σ is symplectic.

Let (A, σ) be an *F*-algebra with symplectic involution and deg(A) = 8. The elements $x \in \text{Symd}(\sigma)$ satisfy an equation

$$x^4 - c_1(x)x^3 + c_2(x)x^2 - c_3(x)x + c_4(x) = 0$$

where $c_i : \text{Symd}(\sigma) \longrightarrow F$ is a form of degree *i* over *F* (*i* ≤ 4).

Proposition

There exists $x \in \text{Symd}(\sigma) \setminus \{0\}$ with $c_1(x) = c_3(x) = 0$ and in particular $[F(x^2) : F] \leq 2$.

Proposition

There exists $x \in \text{Symd}(\sigma) \setminus \{0\}$ with $c_1(x) = c_3(x) = 0$ and in particular $[F(x^2) : F] \leq 2$.

Consider the cubic form $\gamma = (V, c_3)$ of dimension 27 over F where

 $V = \{x \in \text{Symd}(\sigma) \mid c_1(x) = 0\}.$

<u>Claim:</u> γ is isotropic.

This is true if A is split, so in particular if F is quadratically closed. Hence, γ_L is isotropic over a 2-extension L/F.

Theorem

Let L/F be a 2-extension and let γ be a cubic form over F. Then γ is isotropic over L if and only if γ is isotropic over F.

Rowen's Theorem

Let A be a central simple algebra of exponent 2 and degree 8.

Theorem (Garibaldi-Parimala-Tignol for $char(F) \neq 2$)

For any symplectic involution σ on A, there exists a quadratic étale extension K/F contained in Symd(A, σ).

Corollary (Rowen)

The algebra A contains a triquadratic étale extension of F.

The new proof used:

Theorem

Any central simple algebra of exponent 2 is split by a 2-extension.

This follows from Merkurjev's Theorem, but a direct elementary proof can be given.