Units in semisimple algebras over \mathbf{Q} and Voronoï algorithm

Renaud Coulangeon, Université Bordeaux

based on a joint work with Gabriele Nebe, RWTH Aachen

Patagonia, December 2013

Introduction

Let
$A=M_{n}(D)$ a finitely generated simple algebra over \mathbb{Q}
$\cup \quad(D=$ skew field, with center $K)$
Λ a maximal order

Introduction

Let
$A=M_{n}(D)$ a finitely generated simple algebra over \mathbb{Q}
$\cup \quad(D=$ skew field, with center $K)$
Λ a maximal order

Let Λ^{\times}be the group of units in Λ.

Introduction

Let
$A=M_{n}(D)$ a finitely generated simple algebra over \mathbb{Q}
$\cup \quad(D=$ skew field, with center $K)$
Λ a maximal order

Let Λ^{\times}be the group of units in Λ.

Questions :

Introduction

Let
$A=M_{n}(D)$ a finitely generated simple algebra over \mathbb{Q}
$\cup \quad(D=$ skew field, with center $K)$
Λ a maximal order

Let Λ^{\times}be the group of units in Λ.

Questions :

- structure?

Introduction

Let
$A=M_{n}(D)$ a finitely generated simple algebra over \mathbb{Q}
$\cup \quad(D=$ skew field, with center $K)$
Λ a maximal order

Let Λ^{\times}be the group of units in Λ.

Questions :

- structure?
- computation ?

Introduction

Let
$A=M_{n}(D)$ a finitely generated simple algebra over \mathbb{Q}
$\cup \quad(D=$ skew field, with center $K)$
Λ a maximal order

Let Λ^{\times}be the group of units in Λ.

Questions :

- structure?
- computation ?
- $\Lambda_{1}^{\times} \simeq \Lambda_{2}^{\times}$?

Introduction

Let
$A=M_{n}(D)$ a finitely generated simple algebra over \mathbb{Q}
$\cup \quad(D=$ skew field, with center $K)$
Λ a maximal order

Let Λ^{\times}be the group of units in Λ.

Questions :

- structure?
- computation ?
- $\Lambda_{1}^{\times} \simeq \Lambda_{2}^{\times}$?
- maximal finite subgroups ?

General method : let $\Gamma=\Lambda^{\times}$act on a connected graph X.

General method : let $\Gamma=\Lambda^{\times}$act on a connected graph X.
"A good knowledge of the quotient graph $\Gamma \backslash X$ yields virtually all the information on Г."

General method : let $\Gamma=\Lambda^{\times}$act on a connected graph X.
"A good knowledge of the quotient graph $\Gamma \backslash X$ yields virtually all the information on Г."

Explicitely, one can use the following fundamental exact sequence from Bass-Serre theory to get a presentation of Γ (i.e. generators and relations)

$$
1 \longrightarrow \pi_{1}(X) \longrightarrow \pi_{1}(\Gamma \backslash \backslash X) \longrightarrow \Gamma \longrightarrow 1
$$

(this idea dates back to Opgenorth 2001)

General method : let $\Gamma=\Lambda^{\times}$act on a connected graph X.
"A good knowledge of the quotient graph $\Gamma \backslash X$ yields virtually all the information on Г."

Explicitely, one can use the following fundamental exact sequence from Bass-Serre theory to get a presentation of Γ (i.e. generators and relations)

$$
1 \longrightarrow \pi_{1}(X) \longrightarrow \pi_{1}(\Gamma \backslash \backslash X) \longrightarrow \Gamma \longrightarrow 1
$$

(this idea dates back to Opgenorth 2001)
Question : how can one get such a graph X ?

General method : let $\Gamma=\Lambda^{\times}$act on a connected graph X.
"A good knowledge of the quotient graph $\Gamma \backslash X$ yields virtually all the information on Г."

Explicitely, one can use the following fundamental exact sequence from Bass-Serre theory to get a presentation of Γ (i.e. generators and relations)

$$
1 \longrightarrow \pi_{1}(X) \longrightarrow \pi_{1}(\Gamma \backslash \backslash X) \longrightarrow \Gamma \longrightarrow 1
$$

(this idea dates back to Opgenorth 2001)
Question : how can one get such a graph X ?
Answer : Voronoi theory, graph of perfect "forms".

Lattices

$A=M_{n}(D), \quad O$ a fixed maximal order in D.

Lattices

$A=M_{n}(D), \quad O$ a fixed maximal order in D.
$\Lambda \subset A$ maximal order $\Leftrightarrow \exists$ an O-lattice $L \subset D^{n}$ such that

$$
\Lambda=\operatorname{End}(L)=\left\{M \in M_{n}(D) \mid M L \subset L\right\}
$$

Lattices

$A=M_{n}(D), \quad O$ a fixed maximal order in D.
$\Lambda \subset A$ maximal order $\Leftrightarrow \exists$ an O-lattice $L \subset D^{n}$ such that $\Lambda=\operatorname{End}(L)=\left\{M \in M_{n}(D) \mid M L \subset L\right\}$
$\Longrightarrow \Lambda^{\times}=\operatorname{GL}(L)=\left\{a \in M_{n}(D) \mid a L=L\right\}$.

Lattices

$A=M_{n}(D), \quad O$ a fixed maximal order in D.
$\Lambda \subset A$ maximal order $\Leftrightarrow \exists$ an O-lattice $L \subset D^{n}$ such that

$$
\Lambda=\operatorname{End}(L)=\left\{M \in M_{n}(D) \mid M L \subset L\right\}
$$

$\Longrightarrow \Lambda^{\times}=\operatorname{GL}(L)=\left\{a \in M_{n}(D) \mid a L=L\right\}$.
Classification of O-lattices (Steinitz class) $\Longrightarrow \Lambda$ conjugated in $G L_{n}(D)$ to

$$
\Lambda(\mathfrak{a}):=\left(\begin{array}{cccc}
O & \ldots & O & \mathfrak{a}^{-1} \\
\vdots & \ldots & \vdots & \vdots \\
O & \ldots & O & \mathfrak{a}^{-1} \\
\mathfrak{a} & \ldots & \mathfrak{a} & O^{\prime}
\end{array}\right)
$$

where $O^{\prime}=O_{l}(\mathfrak{a})=\{x \in K \mid x \mathfrak{a} \subseteq \mathfrak{a}\}$.

Forms

$$
\begin{gathered}
A=M_{n}(D) \leadsto A_{\mathbb{R}}:=A \otimes_{\mathbb{Q}} \mathbb{R}=M_{n}\left(D_{\mathbb{R}}\right) \\
D_{\mathbb{R}}:=D \otimes_{\mathbb{Q}} \mathbb{R} \cong \bigoplus_{i=1}^{s} M_{d / 2}(\mathbb{H}) \oplus \bigoplus_{i=1}^{r} M_{d}(\mathbb{R}) \oplus \bigoplus_{i=1}^{t} M_{d}(\mathbb{C}) .
\end{gathered}
$$

where $K=Z(D), d$ is the degree of D (so that $d^{2}=\operatorname{dim}_{K} D$),
$\iota_{1}, \ldots, \iota_{s} \quad$ are the real places of $K:=Z(D)$ that ramify in D,
$\sigma_{1}, \ldots, \sigma_{r}$ the real places of K that do not ramify in D
$\tau_{1}, \ldots, \tau_{t}$ the complex places of K.

Forms

$$
\begin{gathered}
A=M_{n}(D) \leadsto A_{\mathbb{R}}:=A \otimes_{\mathbb{Q}} \mathbb{R}=M_{n}\left(D_{\mathbb{R}}\right) \\
D_{\mathbb{R}}:=D \otimes_{\mathbb{Q}} \mathbb{R} \cong \bigoplus_{i=1}^{s} M_{d / 2}(\mathbb{H}) \oplus \bigoplus_{i=1}^{r} M_{d}(\mathbb{R}) \oplus \bigoplus_{i=1}^{t} M_{d}(\mathbb{C}) .
\end{gathered}
$$

where $K=Z(D), d$ is the degree of D (so that $d^{2}=\operatorname{dim}_{K} D$),
$\iota_{1}, \ldots, \iota_{s} \quad$ are the real places of $K:=Z(D)$ that ramify in D,
$\sigma_{1}, \ldots, \sigma_{r}$ the real places of K that do not ramify in D
$\tau_{1}, \ldots, \tau_{t}$ the complex places of K.
\leadsto a well-defined involution * on $D_{\mathbb{R}}$ ("transconjugation"), which induces an involution ${ }^{\dagger}$ on $A_{\mathbb{R}}$ (${ }^{*}$ on the entries + transposition of the matrix)
Remark: in general $A \subset A_{\mathbb{R}}$ is not sable under ${ }^{\dagger}$.

Forms

$$
\begin{gathered}
A=M_{n}(D) \leadsto A_{\mathbb{R}}:=A \otimes_{\mathbb{Q}} \mathbb{R}=M_{n}\left(D_{\mathbb{R}}\right) \\
D_{\mathbb{R}}:=D \otimes_{\mathbb{Q}} \mathbb{R} \cong \bigoplus_{i=1}^{s} M_{d / 2}(\mathbb{H}) \oplus \bigoplus_{i=1}^{r} M_{d}(\mathbb{R}) \oplus \bigoplus_{i=1}^{t} M_{d}(\mathbb{C}) .
\end{gathered}
$$

where $K=Z(D), d$ is the degree of D (so that $d^{2}=\operatorname{dim}_{K} D$),
$\iota_{1}, \ldots, \iota_{s} \quad$ are the real places of $K:=Z(D)$ that ramify in D,
$\sigma_{1}, \ldots, \sigma_{r}$ the real places of K that do not ramify in D
$\tau_{1}, \ldots, \tau_{t}$ the complex places of K.
\leadsto a well-defined involution * on $D_{\mathbb{R}}$ ("transconjugation"), which induces an involution ${ }^{\dagger}$ on $A_{\mathbb{R}}$ (${ }^{*}$ on the entries + transposition of the matrix)
Remark: in general $A \subset A_{\mathbb{R}}$ is not sable under ${ }^{\dagger}$.

Forms (2)

$$
S_{n}\left(D_{\mathbb{R}}\right)=\left\{F \in A_{\mathbb{R}} \mid F^{\dagger}=F\right\} \quad \supset \quad P_{n}\left(D_{\mathbb{R}}\right)=S_{n}\left(D_{\mathbb{R}}\right)_{>0}
$$

To $F \in S_{n}\left(D_{\mathbb{R}}\right)$ one can associate a quadratic form on the real vector space $D_{\mathbb{R}}^{n}$, defined as

$$
F[x]:=\operatorname{trace}\left(F x x^{\dagger}\right),
$$

which is positive definite if $F \in P_{n}\left(D_{\mathbb{R}}\right)$.

Forms (2)

$$
S_{n}\left(D_{\mathbb{R}}\right)=\left\{F \in A_{\mathbb{R}} \mid F^{\dagger}=F\right\} \quad \supset \quad P_{n}\left(D_{\mathbb{R}}\right)=S_{n}\left(D_{\mathbb{R}}\right)_{>0}
$$

To $F \in S_{n}\left(D_{\mathbb{R}}\right)$ one can associate a quadratic form on the real vector space $D_{\mathbb{R}}^{n}$, defined as

$$
F[x]:=\operatorname{trace}\left(F x x^{\dagger}\right),
$$

which is positive definite if $F \in P_{n}\left(D_{\mathbb{R}}\right)$.

Definition

Let $L \subset D^{n}$ an O-lattice, and $F \in P_{n}\left(D_{\mathbb{R}}\right)$

- $\min _{L}(F)=\min _{0 \neq \ell \in L} F[\ell]$,

Forms (2)

$$
S_{n}\left(D_{\mathbb{R}}\right)=\left\{F \in A_{\mathbb{R}} \mid F^{\dagger}=F\right\} \quad \supset \quad P_{n}\left(D_{\mathbb{R}}\right)=S_{n}\left(D_{\mathbb{R}}\right)_{>0}
$$

To $F \in S_{n}\left(D_{\mathbb{R}}\right)$ one can associate a quadratic form on the real vector space $D_{\mathbb{R}}^{n}$, defined as

$$
F[x]:=\operatorname{trace}\left(F x x^{\dagger}\right),
$$

which is positive definite if $F \in P_{n}\left(D_{\mathbb{R}}\right)$.
Definition
Let $L \subset D^{n}$ an O-lattice, and $F \in P_{n}\left(D_{\mathbb{R}}\right)$

- $\min _{L}(F)=\min _{0 \neq \ell \in L} F[\ell]$,
- $S_{L}(F)=\left\{\ell \in L \mid F[\ell]=\min _{L}(F)\right\}$.

Forms (2)

$$
S_{n}\left(D_{\mathbb{R}}\right)=\left\{F \in A_{\mathbb{R}} \mid F^{\dagger}=F\right\} \quad \supset \quad P_{n}\left(D_{\mathbb{R}}\right)=S_{n}\left(D_{\mathbb{R}}\right)_{>0}
$$

To $F \in S_{n}\left(D_{\mathbb{R}}\right)$ one can associate a quadratic form on the real vector space $D_{\mathbb{R}}^{n}$, defined as

$$
F[x]:=\operatorname{trace}\left(F x x^{\dagger}\right),
$$

which is positive definite if $F \in P_{n}\left(D_{\mathbb{R}}\right)$.

Definition

Let $L \subset D^{n}$ an O-lattice, and $F \in P_{n}\left(D_{\mathbb{R}}\right)$

- $\min _{L}(F)=\min _{0 \neq \ell \in L} F[\ell]$,
- $S_{L}(F)=\left\{\ell \in L \mid F[\ell]=\min _{L}(F)\right\}$.
- (minimal classes) $\mathrm{Cl}_{L}(F):=\left\{H \in P_{n}\left(D_{\mathbb{R}}\right) \mid S_{L}(H)=S_{L}(F)\right\}$.

A cell complex

The minimal classes w.r.t. a given lattices L form a cell complex ("Voronoi complex") on which $\Lambda^{\times}=\mathrm{GL}(L)$ acts

- $g \cdot F:=g^{\dagger} F g$
$\operatorname{Aut}_{L}(F)=\{g \in \mathrm{GL}(L) \mid g \cdot F=F\}$ finite group.
- $g \cdot \mathrm{Cl}_{L}(F):=\mathrm{Cl}_{L}(g \cdot F)$
$\operatorname{Aut}_{L}\left(\mathrm{Cl}_{L}(F)\right)=\left\{g \in \mathrm{GL}(L) \mid g \cdot \mathrm{Cl}_{L}(F)=\mathrm{Cl}_{L}(F)\right\} \supset \operatorname{Aut}_{L}(F)$.
Definition
A form F is L-perfect if $\mathrm{Cl}_{L}(F)=\mathbb{R}_{>0} F$.
Voronoi theory \Rightarrow this complex is finite $\bmod \Lambda^{\times}$and can be computed explicitely (Voronoi algorithm, neighbouring process).

Maximal finite subbgroups

Let G be a finite subgroup of $\Lambda^{\times}=G L(L)$. Set

$$
\mathcal{F}(G)=\left\{F \in S_{n}\left(\mathbb{D}_{\mathbb{R}}\right) \mid g \cdot F=F\right\}
$$

A form F is G-perfect w.r.t. L if $\mathrm{Cl}_{L}(F) \cap \mathcal{F}(G)=\mathbb{R}_{>0} F$.

Theorem

1. Let G be a maximal finite subgroup of $\mathrm{GL}(L)$. Then, there exists a well-rounded (=compact) minimal class C such that $C \cap \mathcal{F}(G)=\mathbb{R}_{>0} F$ for some form F, and $G=\operatorname{Aut}_{L}(C)$.
2. If G is a finite subgroup of $\mathrm{GL}(L)$, then the maximal finite subgroups of $\mathrm{GL}(L)$ containing it are of the form $H=\operatorname{Aut}_{L}\left(C_{G}\right)$ where C_{G} is a G-minimal class.

Example

Table: Well rounded minimal classes for $K=\mathbb{Q}[\sqrt{-15}]$

$L_{0}=O_{K} \oplus O_{K}$				
C	$G=$ Aut $_{L}(C)$	$\operatorname{dim}\left(\pi_{G}(C)\right)$	Aut $_{L}(F)$	maximal
perf. corank $=0$				
P_{1}	C_{6}	1	C_{6}	no
P_{2}	C_{4}	1	C_{4}	no
perf. corank $=1$				
C_{1}	D_{12}	1	D_{12}	yes
C_{2}	D_{12}	1	D_{12}	yes
C_{3}	C_{2}	2		no
C_{4}	C_{2}	2		no
perf. corank $=2$				
D_{1}	D_{8}	1	D_{8}	yes
D_{2}	D_{8}	1	D_{8}	yes
D_{3}	V_{4}	1	V_{4}	yes
D_{4}	V_{4}	1	V_{4}	yes

Example (continued)

Table: Well rounded minimal classes for $K=\mathbb{Q}[\sqrt{-15}]$

$L_{1}=O_{K} \oplus p_{2}$				
C	$G=\operatorname{Aut}_{L}(C)$	$\operatorname{dim}\left(\pi_{G}(C)\right)$	Aut $_{L}(F)$	maximal
perf. corank $=0$				
P	$C_{3}: C_{4}$	1	$C_{3}: C_{4}$	yes
perf. corank $=1$				
C_{1}	D_{8}	1	D_{8}	yes
C_{2}	D_{8}	1	D_{8}	yes
C_{3}	D_{12}	1	D_{12}	yes
perf. corank $=2$				
D	V_{4}	1	V_{4}	yes

Example (continued)

Table: Well rounded minimal classes for $K=\mathbb{Q}[\sqrt{-15}]$

$L_{1}=O_{K} \oplus p_{2}$				
C	$G=\operatorname{Aut}_{L}(C)$	$\operatorname{dim}\left(\pi_{G}(C)\right)$	Aut $_{L}(F)$	maximal
perf. corank $=0$				
P	$C_{3}: C_{4}$	1	$C_{3}: C_{4}$	yes
perf. corank $=1$				
C_{1}	D_{8}	1	D_{8}	yes
C_{2}	D_{8}	1	D_{8}	yes
C_{3}	D_{12}	1	D_{12}	yes
perf. corank $=2$				
D	V_{4}	1	V_{4}	yes

Corollary
$\mathrm{GL}_{2}\left(O_{K}\right)=\mathrm{GL}\left(L_{0}\right)$ and $\mathrm{GL}\left(L_{1}\right)$ are not isomorphic.

Number of conjugacy classes of maximal finite subgroups

	D_{8}	D_{12}	V_{4}	$\mathrm{SL}_{2}(3)$	Q_{8}	$C_{3}: C_{4}$
$K=\mathbb{Q}[\sqrt{-15}]$						
$S t(L)=\left[O_{K}\right]$	2	2	2	-	-	-
$S t(L)=\left[\wp_{2}\right]$	2	1	1	-	-	1
$K=\mathbb{Q}[\sqrt{-5}]$						
$S t(L)=\left[O_{K}\right]$	3	2	1	-	1	-
$S t(L)=\left[\wp_{2}\right]$	1	2	1	1	-	-
$K=\mathbb{Q}[\sqrt{-6}]$						
$S t(L)=\left[O_{K}\right]$	3	2	1	1	-	-
$S t(L)=\left[\wp_{2}\right]$	1	1	2	-	1	1
$K=\mathbb{Q}[\sqrt{-10}]$						
$\operatorname{St}(L)=\left[O_{K}\right]$	3	2	1	-	1	-
$S t(L)=\left[\wp_{2}\right]$	1	-	3	1	-	2
$K=\mathbb{Q}[\sqrt{-21}]$						
$\operatorname{St}(L)=\left[O_{K}\right]$	6	4	2	-	-	2
$S t(L)=\left[\wp_{2}\right]$	2	-	6	-	-	-
$S t(L)=\left[\wp_{3}\right]$	-	2	6	2	-	-
$S t(L)=\left[\wp_{5}\right]$	-	-	8	-	2	-

