Units in semisimple algebras over **Q** and Voronoï algorithm

Renaud Coulangeon, Université Bordeaux

based on a joint work with Gabriele Nebe, RWTH Aachen

Patagonia, December 2013

Let

 $A = M_n(D)$ a finitely generated simple algebra over \mathbb{Q}

$$\cup$$
 ($D =$ skew field, with center K)

Λ a maximal order

Let

$$A = M_n(D)$$
 a finitely generated simple algebra over \mathbb{Q}

$$\cup$$
 ($D =$ skew field, with center K)

Let Λ^{\times} be the group of units in Λ .

Let

$$A = M_n(D)$$
 a finitely generated simple algebra over \mathbb{Q}

$$\cup$$
 ($D =$ skew field, with center K)

Let Λ^{\times} be the group of units in Λ .

Let

$$A = M_n(D)$$
 a finitely generated simple algebra over \mathbb{Q}

$$\cup$$
 ($D =$ skew field, with center K)

Let Λ^{\times} be the group of units in Λ .

Questions :

structure ?

Let

$$A = M_n(D)$$
 a finitely generated simple algebra over \mathbb{Q}

$$\cup$$
 ($D =$ skew field, with center K)

Let Λ^{\times} be the group of units in Λ .

- structure ?
- computation ?

Let

$$A = M_n(D)$$
 a finitely generated simple algebra over \mathbb{Q}

$$\cup$$
 ($D =$ skew field, with center K)

Let Λ^{\times} be the group of units in Λ .

- structure ?
- computation ?

$$\bullet \ \Lambda_1^{\times} \simeq \Lambda_2^{\times} ?$$

Let

$$A = M_n(D)$$
 a finitely generated simple algebra over \mathbb{Q}

$$\cup$$
 ($D =$ skew field, with center K)

Let Λ^{\times} be the group of units in Λ .

- structure ?
- computation ?
- $\blacktriangleright \ \Lambda_1^{\times} \simeq \Lambda_2^{\times} \ ?$
- maximal finite subgroups ?

"A good knowledge of the quotient graph $\Gamma \setminus X$ yields virtually all the information on Γ ."

"A good knowledge of the quotient graph $\Gamma \setminus X$ yields virtually all the information on Γ ."

Explicitly, one can use the following fundamental exact sequence from Bass-Serre theory to get a *presentation* of Γ (*i.e.* generators and relations)

$$1 \longrightarrow \pi_1(X) \longrightarrow \pi_1(\Gamma \backslash \backslash X) \longrightarrow \Gamma \longrightarrow 1$$

(this idea dates back to Opgenorth 2001)

"A good knowledge of the quotient graph $\Gamma \setminus X$ yields virtually all the information on Γ ."

Explicitly, one can use the following fundamental exact sequence from Bass-Serre theory to get a *presentation* of Γ (*i.e.* generators and relations)

$$1 \longrightarrow \pi_1(X) \longrightarrow \pi_1(\Gamma \backslash \backslash X) \longrightarrow \Gamma \longrightarrow 1$$

(this idea dates back to Opgenorth 2001) Question : how can one get such a graph *X* ?

"A good knowledge of the quotient graph $\Gamma \setminus X$ yields virtually all the information on Γ ."

Explicitly, one can use the following fundamental exact sequence from Bass-Serre theory to get a *presentation* of Γ (*i.e.* generators and relations)

$$1 \longrightarrow \pi_1(X) \longrightarrow \pi_1(\Gamma \backslash \backslash X) \longrightarrow \Gamma \longrightarrow 1$$

(this idea dates back to Opgenorth 2001) Question : how can one get such a graph *X* ? Answer : Voronoi theory, graph of perfect "forms".

 $A = M_n(D)$, *O* a **fixed** maximal order in *D*.

 $A = M_n(D)$, O a fixed maximal order in D.

 $\Lambda \subset A$ maximal order $\Leftrightarrow \exists$ an *O*-lattice $L \subset D^n$ such that $\Lambda = \operatorname{End}(L) = \{M \in M_n(D) \mid ML \subset L\}$

 $A = M_n(D)$, O a fixed maximal order in D.

 $\Lambda \subset A \text{ maximal order} \Leftrightarrow \exists \text{ an } O\text{-lattice } L \subset D^n \text{ such that} \\ \Lambda = \text{End}(L) = \{M \in M_n(D) \mid ML \subset L\}$

 $\implies \Lambda^{\times} = \operatorname{GL}(L) = \{a \in M_n(D) \mid aL = L\}.$

 $A = M_n(D)$, O a fixed maximal order in D.

 $\Lambda \subset A$ maximal order $\Leftrightarrow \exists$ an *O*-lattice $L \subset D^n$ such that $\Lambda = \operatorname{End}(L) = \{M \in M_n(D) \mid ML \subset L\}$

$$\implies \Lambda^{\times} = \operatorname{GL}(L) = \{ a \in M_n(D) \mid aL = L \}.$$

Classification of *O*-lattices (*Steinitz class*) $\implies \Lambda$ conjugated in $GL_n(D)$ to

$$\Lambda(\mathfrak{a}) := \begin{pmatrix} O & \dots & O & \mathfrak{a}^{-1} \\ \vdots & \dots & \vdots & \vdots \\ O & \dots & O & \mathfrak{a}^{-1} \\ \mathfrak{a} & \dots & \mathfrak{a} & O' \end{pmatrix}$$

where $O' = O_I(\mathfrak{a}) = \{x \in K \mid x\mathfrak{a} \subseteq \mathfrak{a}\}.$

$$A = M_n(D)$$
 \rightarrow $A_{\mathbb{R}} := A \otimes_{\mathbb{Q}} \mathbb{R} = M_n(D_{\mathbb{R}})$

$$D_{\mathbb{R}} := D \otimes_{\mathbb{Q}} \mathbb{R} \cong \bigoplus_{i=1}^{s} M_{d/2}(\mathbb{H}) \oplus \bigoplus_{i=1}^{r} M_{d}(\mathbb{R}) \oplus \bigoplus_{i=1}^{t} M_{d}(\mathbb{C}).$$

where K = Z(D), *d* is the degree of *D* (so that $d^2 = \dim_K D$),

 $\begin{array}{ll} \iota_1, \ldots, \iota_s & \text{ are the real places of } K := Z(D) \text{ that ramify in } D, \\ \sigma_1, \ldots, \sigma_r & \text{ the real places of } K \text{ that do not ramify in } D \\ \tau_1, \ldots, \tau_t & \text{ the complex places of } K. \end{array}$

$$A = M_n(D)$$
 \rightarrow $A_{\mathbb{R}} := A \otimes_{\mathbb{Q}} \mathbb{R} = M_n(D_{\mathbb{R}})$

$$D_{\mathbb{R}} := D \otimes_{\mathbb{Q}} \mathbb{R} \cong \bigoplus_{i=1}^{s} M_{d/2}(\mathbb{H}) \oplus \bigoplus_{i=1}^{r} M_{d}(\mathbb{R}) \oplus \bigoplus_{i=1}^{t} M_{d}(\mathbb{C}).$$

where K = Z(D), *d* is the degree of *D* (so that $d^2 = \dim_K D$),

ι_1,\ldots,ι_s	are the real places of $K := Z(D)$ that ramify in D ,
σ_1,\ldots,σ_r	the real places of K that do not ramify in D
τ_1,\ldots,τ_t	the complex places of K.

 \sim a well-defined involution * on $D_{\mathbb{R}}$ ("*transconjugation*"), which induces an involution [†] on $A_{\mathbb{R}}$ (* on the entries + transposition of the matrix)

Remark : in general $A \subset A_{\mathbb{R}}$ is not sable under [†].

$$A = M_n(D)$$
 \rightarrow $A_{\mathbb{R}} := A \otimes_{\mathbb{Q}} \mathbb{R} = M_n(D_{\mathbb{R}})$

$$D_{\mathbb{R}} := D \otimes_{\mathbb{Q}} \mathbb{R} \cong \bigoplus_{i=1}^{s} M_{d/2}(\mathbb{H}) \oplus \bigoplus_{i=1}^{r} M_{d}(\mathbb{R}) \oplus \bigoplus_{i=1}^{t} M_{d}(\mathbb{C}).$$

where K = Z(D), *d* is the degree of *D* (so that $d^2 = \dim_K D$),

ι_1,\ldots,ι_s	are the real places of $K := Z(D)$ that ramify in D ,
σ_1,\ldots,σ_r	the real places of K that do not ramify in D
τ_1,\ldots,τ_t	the complex places of K.

 \sim a well-defined involution * on $D_{\mathbb{R}}$ ("*transconjugation*"), which induces an involution [†] on $A_{\mathbb{R}}$ (* on the entries + transposition of the matrix)

Remark : in general $A \subset A_{\mathbb{R}}$ is not sable under [†].

$$S_n(D_{\mathbb{R}}) = \left\{ F \in A_{\mathbb{R}} \mid F^{\dagger} = F \right\} \quad \supset \quad P_n(D_{\mathbb{R}}) = S_n(D_{\mathbb{R}})_{>0}$$

To $F \in S_n(D_{\mathbb{R}})$ one can associate a quadratic form on the real vector space $D_{\mathbb{R}}^n$, defined as

$$F[x] := \operatorname{trace}(Fxx^{\dagger}),$$

which is positive definite if $F \in P_n(D_{\mathbb{R}})$.

I

$$S_n(D_{\mathbb{R}}) = \{F \in A_{\mathbb{R}} \mid F^{\dagger} = F\} \quad \supset \quad P_n(D_{\mathbb{R}}) = S_n(D_{\mathbb{R}})_{>0}$$

To $F \in S_n(D_{\mathbb{R}})$ one can associate a quadratic form on the real vector space $D_{\mathbb{R}}^n$, defined as

$$\mathsf{F}[x] := \mathsf{trace}(Fxx^{\dagger}),$$

which is positive definite if $F \in P_n(D_{\mathbb{R}})$.

Definition

Let $L \subset D^n$ an *O*-lattice, and $F \in P_n(D_{\mathbb{R}})$

• $\min_{L}(F) = \min_{0 \neq \ell \in L} F[\ell],$

$$S_n(D_{\mathbb{R}}) = \{F \in A_{\mathbb{R}} \mid F^{\dagger} = F\} \quad \supset \quad P_n(D_{\mathbb{R}}) = S_n(D_{\mathbb{R}})_{>0}$$

To $F \in S_n(D_{\mathbb{R}})$ one can associate a quadratic form on the real vector space $D_{\mathbb{R}}^n$, defined as

$$\mathsf{F}[x] := \mathsf{trace}(Fxx^{\dagger}),$$

which is positive definite if $F \in P_n(D_{\mathbb{R}})$.

Definition

Let $L \subset D^n$ an *O*-lattice, and $F \in P_n(D_{\mathbb{R}})$

- $\min_{L}(F) = \min_{0 \neq \ell \in L} F[\ell],$
- ► $S_L(F) = \{\ell \in L \mid F[\ell] = \min_L(F)\}.$

$$S_n(D_{\mathbb{R}}) = \{F \in A_{\mathbb{R}} \mid F^{\dagger} = F\} \quad \supset \quad P_n(D_{\mathbb{R}}) = S_n(D_{\mathbb{R}})_{>0}$$

To $F \in S_n(D_{\mathbb{R}})$ one can associate a quadratic form on the real vector space $D_{\mathbb{R}}^n$, defined as

 $F[x] := \operatorname{trace}(Fxx^{\dagger}),$

which is positive definite if $F \in P_n(D_{\mathbb{R}})$.

Definition

Let $L \subset D^n$ an *O*-lattice, and $F \in P_n(D_{\mathbb{R}})$

- $\min_{L}(F) = \min_{0 \neq \ell \in L} F[\ell],$
- ► $S_L(F) = \{\ell \in L \mid F[\ell] = \min_L(F)\}.$
- (minimal classes) $Cl_L(F) := \{H \in P_n(D_{\mathbb{R}}) \mid S_L(H) = S_L(F)\}.$

A cell complex

The minimal classes w.r.t. a given lattices *L* form a cell complex ("Voronoi complex") on which $\Lambda^{\times} = GL(L)$ acts

►
$$g \cdot F := g^{\dagger} F g$$

Aut_L(F) = { $g \in GL(L) \mid g \cdot F = F$ } finite group.

►
$$g \cdot \operatorname{Cl}_L(F) := \operatorname{Cl}_L(g \cdot F)$$

Aut_L(Cl_L(F)) = { $g \in \operatorname{GL}(L) \mid g \cdot \operatorname{Cl}_L(F) = \operatorname{Cl}_L(F)$ } \supset Aut_L(F).

Definition

A form *F* is *L*-perfect if $Cl_L(F) = \mathbb{R}_{>0}F$.

Voronoi theory \Rightarrow this complex is finite mod Λ^{\times} and can be computed explicitely (Voronoi algorithm, neighbouring process).

Maximal finite subbgroups

Let *G* be a finite subgroup of $\Lambda^{\times} = GL(L)$. Set

$$\mathcal{F}(G) = \{F \in S_n(\mathbb{D}_{\mathbb{R}}) \mid g \cdot F = F\}.$$

A form F is G-perfect w.r.t. L if $Cl_L(F) \cap \mathcal{F}(G) = \mathbb{R}_{>0}F$.

Theorem

- 1. Let G be a maximal finite subgroup of GL(L). Then, there exists a **well-rounded** (=compact) minimal class C such that $C \cap \mathcal{F}(G) = \mathbb{R}_{>0}F$ for some form F, and $G = \operatorname{Aut}_L(C)$.
- If G is a finite subgroup of GL(L), then the maximal finite subgroups of GL(L) containing it are of the form H = Aut_L(C_G) where C_G is a G-minimal class.

Example

Table: Well rounded minimal classes for $K = \mathbb{Q}[\sqrt{-15}]$

$L_0 = O_K \oplus O_K$					
С	$G = \operatorname{Aut}_L(C)$	$\dim(\pi_G(C))$	$\operatorname{Aut}_{L}(F)$	maximal	
		perf. corank = 0	0		
<i>P</i> ₁	$C_6 \\ C_4$	1	C_6	no	
<i>P</i> ₂	C_4	1	C_4	no	
		perf. corank = 1	1		
<i>C</i> ₁	D ₁₂	1	D ₁₂	yes	
C_2 C_3	D ₁₂	1	D ₁₂	yes	
C_3	C ₂ C ₂	2		no	
C_4	C_2	2		no	
perf. corank = 2					
D_1	D ₈	1	D ₈	yes	
D ₂	D ₈	1	D_8	yes	
D ₃	V_4	1	V_4	yes	
D_4	V_4	1	V_4	yes	

Example (continued)

$L_1 = O_K \oplus \mathfrak{p}_2$						
С	$G = \operatorname{Aut}_L(C)$	$\dim(\pi_G(C))$	$\operatorname{Aut}_L(F)$	maximal		
perf. corank = 0						
Р	$C_3 : C_4$	1	$C_3 : C_4$	yes		
	perf. corank = 1					
<i>C</i> ₁	D ₈	1	D ₈	yes		
<i>C</i> ₂	D ₈ D ₁₂	1	D_8	yes		
<i>C</i> ₃	D ₁₂	1	D ₁₂	yes		
perf. corank = 2						
D	V4	1	V_4	yes		

Table: Well rounded minimal classes for $K = \mathbb{Q}[\sqrt{-15}]$

Example (continued)

$L_1 = O_K \oplus \mathfrak{p}_2$					
С	$G = \operatorname{Aut}_L(C)$	$\dim(\pi_G(C))$	$\operatorname{Aut}_L(F)$	maximal	
perf. corank = 0					
Р	$C_3 : C_4$	1	$C_3 : C_4$	yes	
		perf. corank = 1	1		
<i>C</i> ₁	D ₈	1	D ₈	yes	
C_2 C_3	D ₈	1	D_8	yes	
C_3	D ₁₂	1	D ₁₂	yes	
perf. corank = 2					
D	<i>V</i> 4	1	V_4	yes	

Table: Well rounded minimal classes for $K = \mathbb{Q}[\sqrt{-15}]$

Corollary

 $\operatorname{GL}_2(\mathcal{O}_K) = \operatorname{GL}(L_0)$ and $\operatorname{GL}(L_1)$ are not isomorphic.

Number of conjugacy classes of maximal finite subgroups

	<i>D</i> ₈	D ₁₂	<i>V</i> ₄	$SL_{2}(3)$	Q_8	<i>C</i> ₃ : <i>C</i> ₄
$K = \mathbb{Q}[\sqrt{-15}]$						
$St(L) = [O_{\kappa}]$	2	2	2	-	-	-
$St(L) = [\wp_2]$	2	1	1	-	-	1
$K = \mathbb{Q}[\sqrt{-5}]$						
$St(L) = [O_{\kappa}]$	3	2	1	-	1	-
$St(L) = [\wp_2]$	1	2	1	1	-	-
$K = \mathbb{Q}[\sqrt{-6}]$						
$St(L) = [O_{\kappa}]$	3	2	1	1	-	-
$St(L) = [\wp_2]$	1	1	2	-	1	1
$K = \mathbb{Q}[\sqrt{-10}]$						
$St(L) = [O_{\kappa}]$	3	2	1	-	1	-
$St(L) = [\wp_2]$	1	-	3	1	-	2
$K = \mathbb{Q}[\sqrt{-21}]$						
$St(L) = [O_{\kappa}]$	6	4	2	-	-	2
$St(L) = [\wp_2]$	2	-	6	-	-	-
$St(L) = [\wp_3]$	-	2	6	2	-	-
$St(L) = [\wp_5]$	-	-	8	-	2	-