A uniform construction of smooth integral models over an arbitrary local field and a recipe for computing local densities

Sungmun Cho

University of Toronto
1 Local densities
 - Notations
 - Local density
 - Group scheme

2 A uniform construction of smooth integral models
 - Main theorem
 - A recipe for computing local densities
Notations

- A, the ring of integers of a local field F, π its uniformizer, and κ its residue field
- B, the ring of integers (a maximal A-order) in K where K is one of
 - $K = F$;
 - a separable quadratic extension of F;
 - the quaternion algebra over F.
- q, the cardinality of κ
- (L, h), (anti)-hermitian B-lattice (including quadratic A-lattice when $K = F$)
- the dual lattice $L^\# = \{ x \in L \otimes_A F : h(x, L) \subset B \}$.
Definition

The local density of \((L, h)\) is

\[
\beta_L = \frac{1}{[G : G^\circ]} \cdot \lim_{N \to \infty} q^{-N\dim G} \# \underline{G}'(A/\pi^N A).
\]

Here, \(\underline{G}'(K) = \text{Aut}_{B \otimes_A K}(L \otimes_A K, h \otimes_A K)\) for any commutative \(A\)-algebra \(K\).
Definition

The local density of \((L, h)\) is

\[
\beta_L = \frac{1}{[G : G^\circ]} \cdot \lim_{N \to \infty} q^{-N \dim G} \# G'(A/\pi^N A).
\]

Here, \(G'(K) = \text{Aut}_{B \otimes_A K}(L \otimes_A K, h \otimes_A K)\) for any commutative \(A\)-algebra \(K\).

Definition (another definition)

\[
\beta_L = \frac{1}{[G : G^\circ]} \int_{\text{Aut}_B(L,h)} |\omega^\text{id}|.
\]

Here, \(\omega^\text{id}\) is a certain volume form associated to \(G'\).
Theorem (Raynaud)

Let A be a discrete valuation ring. Let G' be an affine group scheme of finite type over A with the smooth generic fiber G. Then, there exists a unique smooth affine group scheme (called smooth integral model) G over A such that G and G' have the same generic fiber G and

$$G(R) = G'(R)$$

for any étale A-algebra R.
Theorem (Raynaud)

Let A be a discrete valuation ring. Let G' be an affine group scheme of finite type over A with the smooth generic fiber G. Then, there exists a unique smooth affine group scheme (called smooth integral model) G over A such that G and G' have the same generic fiber G and

$$G(R) = G'(R)$$

for any étale A-algebra R.

The following integral is well known:

$$\int_{\text{Aut}_B(L,h)} |\omega^{\text{can}}| = q^{-\dim G} \cdot \#G(\kappa).$$

Here ω^{can} is a volume form associated to G.
The local density \(\beta_L \) can be computed as follows:

\[
\beta_L = \frac{1}{2} \int_{\text{Aut}_B(L,h)} |\omega^{\text{ld}}|.
\]

The local density can also be expressed in terms of the canonical volume form:

\[
\int_{\text{Aut}_B(L,h)} |\omega^{\text{can}}| = q^{-\dim G} \cdot \# G(\kappa).
\]

In order to obtain an explicit formula for the local density, it suffices to:

- determine the special fiber of \(G \), especially its maximal reductive quotient;
- relate the volume forms \(\omega^{\text{ld}} \) and \(\omega^{\text{can}} \).
Theorem (-, 2013)

There exist suitable, canonical, inclusions (easily and explicitly constructed)

\[\cdots \subseteq T_1^n \subseteq \cdots \subseteq T_1^1 \subseteq T_1^0 \]

of representable sheaves on the small flat site over \(A \) such that a morphism \(\rho : M^\ast \longrightarrow H \), defined by \(\rho(m) = h \circ m \), is smooth and the desired smooth integral model \(G = \rho^{-1}(h) \).
Theorem (-, 2013)

Let \(\widetilde{G} \) be the special fiber of \(G \). Let \(M' = \text{End}_B(L) \) and \(H' = \{ f : f \text{ is a quadratic (or hermitian) form on } L \} \). Let

\[
q^N = \frac{\#(H'/\widetilde{T}_2(A))}{\#(M'/\widetilde{T}_1(A))}
\]

for an integer \(N \). Then the local density of \((L, h)\) is

\[
\beta_L = \frac{1}{[G : G^0]} q^N \cdot q^{-\dim G} \cdot \#\widetilde{G}(\kappa).
\]