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Polyhedral Divisors and SL2-Actions
on Affine T-Varieties

Ivan Arzhantsev & Alvaro Liendo

Introduction

Let k be an algebraically closed field of characteristic 0, let M be a lattice of
rank n, let N = Hom(M, Z) be the dual lattice of M, and let T be the algebraic
torus Spec k[M ] such thatM is the character lattice of T andN is the 1-parameter
subgroup lattice of T.

A T-variety X is a normal algebraic variety endowed with an effective regular
action of T. The complexity of a T-action is the codimension of a general orbit;
since the T-action on X is effective, the complexity of X equals dimX− rankM.
For an affine variety X, introducing a T-action on X is the same as endowing
k[X] with an M-grading. There are well-known combinatorial descriptions of
T-varieties. We refer the reader to [D1] and [Fu] for the case of toric varieties, to
[K+, Chaps. 2 and 4] and [T2] for the complexity-1 case, and to [AH; AHS] for
the general case. In this paper we use the approach in [AH].

Any affine toric variety is completely determined by a polyhedral cone σ ⊆
NQ. Similarly, the description of a normal affine T-variety X due to Altmann and
Hausen [AH] involves the data (Y, σ, D), where Y is a normal semiprojective vari-
ety, σ ⊆ NQ := N⊗Q is a polyhedral cone, and D is a divisor on Y whose coeffi-
cients are polyhedra inNQ with tail cone σ. The divisor D is called a σ -polyhedral
divisor on Y (see Section 1.1 for details).

Let X be a T-variety endowed with a regular G-action, where G is any linear
algebraic group. We say that the G-action on X is compatible if the image of G
in Aut(X) is normalized but not centralized by T. Furthermore, we say that the
G-action is of fiber type if the general orbits are contained in the T-orbit closures,
and of horizontal type otherwise [FZ; L1].

Let now Ga = Ga(k) be the additive group of k. It is well known that a Ga-
action on an affine variety X is equivalent to a locally nilpotent derivation (LND)
of k[X].A description of compatible Ga-actions on an affine T-variety—or, equiv-
alently, of homogeneous LNDs on k[X]—is available in the case where X is of
complexity ≤ 1 [L1] or the Ga-action is of fiber type [L2] in terms of a general-
ization of Demazure’s [D1] roots of a fan (see Sections 1.3 and 1.4).
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A regular SL2-action on an affine variety X is uniquely defined by an sl2-triple
{δ, ∂+ , ∂−} of derivations of the algebra k[X], where the ∂± are locally nilpotent,
δ = [∂+ , ∂−] is semisimple, and [δ, ∂±] = ±2∂± (see Proposition 2.1). Assume
now that X is an affine T-variety. If the SL2-action is compatible, then (a) the
∂± are homogeneous with respect to the M-grading on k[X] and (b) the grading
given by δ is a downgrading of theM-grading.

The main result of this paper, which is presented in Section 2, is a classification
of compatible SL2-actions on an affine T-variety X when this action is of fiber
type or whenX is of complexity 1 (See Theorems 2.12 and 2.18, respectively). Our
idea is to classify compatible SL2-actions by calculating the commutator of two
homogeneous LNDs. The existence of a compatible SL2-action on X puts strong
restrictions on the combinatorial data (Y, σ, D) and endows D with an additional
structure. It should be noted that if the T-variety X is of complexity 1 and the
SL2-action is of horizontal type, thenX is spherical with respect to a larger reduc-
tive group—namely, an extension of SL2 by a torus. We do not use the theory of
spherical varieties.

The rest of the paper is devoted to two applications of our main result: special
SL2-actions and SL2-actions with an open orbit. A G-action on X is called spe-
cial (or horospherical ) if there exists a dense openW ⊆ X such that the isotropy
group of any point x ∈W contains a maximal unipotent subgroup of G. Special
actions play an important role in invariant theory.

Any special action of a connected reductive groupG on an affine varietyX may
be reconstructed from the action of a maximal torus T ⊆ G on the algebra k[X]U

of invariants of a maximal unipotent subgroup U [P2, Thm. 5]. This finding re-
duces the study of special actions to torus actions. In Section 3 we illustrate this
phenomenon for SL2-actions in our terms (see Theorem 3.11 and Remark 3.12).
In particular we show that, for every special SL2-action on an affine variety X,
there is a canonical 2-torus action and the SL2-action is compatible and of fiber
type with respect to this torus. Since the reconstruction of the G-variety X from
the T -variety Spec k[X]U is an algebraic procedure, it is useful to have a geomet-
ric description of X. In Proposition 3.10 we describe a normal affine variety X
with a special SL2-action as a T2-variety with respect to the canonical torus T2. It
is worthwhile to remark that any G-action on an affine variety may be contracted
to a special one [P2, Prop. 8]. It will be interesting to interpret contraction of
SL2-actions in terms of polyhedral divisors.

As a corollary of our classification of special actions, we prove that if an affine
T-variety X of complexity 1 admits a compatible special SL2-action of horizontal
type, then X is toric with respect to a bigger torus and the SL2-action is compati-
ble with respect to the big torus as well. Furthermore, we use a linearization result
of Berchtold and Hausen [BeH] to show that, up to conjugation in Aut(X), any
special SL2-action on an affine toric threefold X is compatible with the big torus
and thus is given by an SL2-root (see Definition 2.6).

It is natural to generalize Altmann and Hausen’s approach in [AH] to arbitrary
reductive groups. Special actions form the most accessible class for such a general-
ization. Our work in this line may be regarded as a first step toward that end. Note
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that Timashev [T1] has already given a combinatorial description forG-actions of
complexity 1 in the framework of Luna–Vust theory.

Finally, our method allows us to re-prove, in Section 4, Popov’s [P1] classifica-
tion of generically transitive SL2-actions on normal affine threefolds. The only fact
we use is the existence of a 1-dimensional torus R commuting with SL2. Together
with the maximal torus in SL2, this allows us to consider a quasi-homogeneous
threefold as a T2-variety of complexity 1, where T2 is a 2-dimensional torus. We
also obtain, as a direct consequence of our results, the characterization of toric
quasi-homogeneous SL2-threefolds given in [G] and [BHa] (see Corollaries 4.9
and 4.13). Recall that aG-variety is quasi-homogeneous if it has an openG-orbit.

Throughout the paper, we use the term “variety” to mean a normal integral
scheme of finite type over an algebraically closed field k of characteristic 0. The
term “point” always refer to a closed point.

Acknowledgments. The authors are grateful to Mikhail Zaidenberg for useful
discussions and to the referee for valuable suggestions. This work was done dur-
ing stays of both authors at the Institut Fourier, Grenoble. We thank the Institut
Fourier for its support and hospitality.

1. Preliminaries

In this section we recall the results about Ga-actions on affine T-varieties that will
be needed in the paper.

1.1. Combinatorial Description of T-Varieties

Let M be a lattice of rank n and let N = Hom(M, Z) be its dual lattice. Set-
ting MQ = M ⊗ Q and NQ = N ⊗ Q, we consider the natural duality pairing
MQ ×NQ → Q, (m,p) → 〈m,p〉 = p(m).

Let T = Spec k[M ] be the n-dimensional algebraic torus associated to M and
let X = SpecA be an affine T-variety. The comorphism A → A⊗ k[M ] induces
anM-grading onA and, conversely, everyM-grading onA arises in this way. The
T-action on X is effective if and only if the correspondingM-grading is effective.

The paper [AH] gives a combinatorial description of normal affine T-varieties.
In what follows we recall the main features of this description. Let σ be a pointed
polyhedral cone in NQ. We define Polσ(NQ) to be the set of all σ -polyhedra—
in other words, the set of all polyhedra in NQ that can be decomposed as the
Minkowski sum of a bounded polyhedron and the cone σ.

Recall that σ∨ stands for the cone in MQ that is dual to σ. To a σ -polyhedron
�∈ Polσ(NQ) we associate its support function h� : σ∨ → Q defined by

h�(m) = min〈m,�〉 = min
p∈�〈m,p〉.

Furthermore, if we let {vi} be the set of all vertices of�, then the support function
is given by

h�(m) = min
i

{vi(m)} for all m∈ σ∨. (1)

Hence h� is piecewise linear, concave, and positively homogeneous.
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Definition1.1. A normal variety Y is called semiprojective if it is projective over
an affine variety. A σ -polyhedral divisor on Y is a formal sum D = ∑

Z �Z · Z,
where Z runs over all prime divisors on Y, �Z ∈ Polσ(NQ), and �Z = σ for all
but finitely many Z. For m ∈ σ∨ we can evaluate D in m by letting D(m) be the
Q-divisor

D(m) =
∑
Z⊆Y

hZ(m) · Z,

where hZ is the support function of�Z. A σ -polyhedral divisor D is called proper
if the following conditions hold:

(i) D(m) is semiample and Q-Cartier for all m∈ σ∨; and
(ii) D(m) is big for all m∈ rel.int(σ∨).

Here rel.int(σ∨) denotes the relative interior of the cone σ∨. Furthermore, a Q-
Cartier divisor D on Y is called semiample if there exists an r > 0 such that the
linear system |rD| is base point free and is called big if there exists a divisorD0 ∈
|rD|, for some r > 0, such that the complement Y \ SuppD0 is affine.

The following theorem gives a combinatorial description of T-varieties that is
analogous to the classical combinatorial description of toric varieties. In the se-
quel, χm denotes the character of T corresponding to the lattice vector m, and
σ∨
M denotes the semigroup σ∨ ∩M. Furthermore, for a Q-divisor D on Y, we use

OY (D) to denote the sheaf OY (�D�).
Theorem 1.2 [AH]. To any proper σ -polyhedral divisor D on a semiprojective
variety Y one can associate a normal affine T-variety of dimension rankM+dimY
given by X[Y, D] = SpecA[Y, D], where

A[Y, D] =
⊕
m∈σ∨

M

Amχ
m and Am = H 0(Y, OY (D(m)) ⊆ k(Y ).

Conversely, any normal affine T-variety is isomorphic to X[Y, D] for some
semiprojective variety Y and some proper σ -polyhedral divisor D on Y.

We call Y the base variety and the pair (Y, D) the combinatorial description of
X. We also define the support of a proper σ -polyhedral divisor as Supp D =
{Z ⊆ Y | �Z �= σ}.

This combinatorial description is not unique, but it can be made unique by plac-
ing some minimality conditions on the pair (Y, D); see [AH, Sec. 8]. Here we only
need a particular case of [AH, Cor. 8.12].

Corollary 1.3. Let D and D′ be two proper σ -polyhedral divisors on a nor-
mal semiprojective variety Y. If for every prime divisorZ in Y there exists a vector
vZ ∈N such that

D = D′ +
∑
Z

(vZ + σ) · Z and
∑
Z

〈m, vZ〉 · Z is principal ∀m∈ σ∨
M ,

then X[Y, D] is equivariantly isomorphic to X[Y, D′ ].
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Most of this paper deals with the case where the base is a curve C isomorphic
to A1 or P1. Any σ -polyhedral divisor on A1 is proper. If D = ∑

z∈C �z · z is
a σ -polyhedral divisor on C = P1, then D is proper if and only if deg D :=∑

z∈C �z � σ. We also need the following result from [AH, Sec. 11].

Corollary 1.4. Let D be a proper σ -polyhedral divisor on a smooth curve C.
Then X[C, D] is toric if and only if (i) C = A1 and D can be chosen (via Corol-
lary 1.3) supported in at most one point or (ii) C = P1 and D can be chosen (via
Corollary 1.3) supported in at most two points.

1.2. Locally Nilpotent Derivations and Ga-Actions

Let X = SpecA be an affine variety. On A, ∂ is a locally nilpotent derivation
(LND) if, for every a ∈ A, there exists an n ∈ Z≥0 such that ∂n(a) = 0. We de-
note by Ga the additive group of the base field k. Given an LND ∂ on A, the map
φ∂ : Ga ×A → A, φ∂(t, f ) = exp(t∂)(f ) defines a Ga-action onX; furthermore,
any Ga-action on X arises in this way [Fr].

Let now D be a proper σ -polyhedral divisor on a semiprojective variety Y, and
let A = A[Y, D] be the corresponding M-graded domain. A Ga-action on X =
SpecA is said to be compatible with the T-action on X if the image of Ga in
Aut(X) is normalized by the torus T. A Ga-action is compatible if and only if the
corresponding LND ∂ on A is homogeneous (i.e., iff ∂ sends homogeneous ele-
ments to homogeneous elements). Any homogeneous LND ∂ has a well-defined
degree given by deg ∂ = deg ∂(f )− deg f for any homogeneous f ∈A\ ker ∂.

A homogeneous LND ∂ on A extends to a derivation on FracA = k(Y )(M)
by the Leibniz rule, where k(Y )(M) is the field of fractions of k(Y )[M ]. The
LND ∂ is said to be of fiber type if ∂(k(Y )) = 0 and of horizontal type otherwise.
Geometrically speaking, ∂ is of fiber type if and only if the general orbits of the
corresponding Ga-action onX = SpecA are contained in the orbit closures of the
T-action given by theM-grading.

1.3. Locally Nilpotent Derivations on Affine Toric Varieties

In this section we recall the classification of homogeneous LNDs on toric varieties
given in [L1]. A similar description is implicit in [D1, Sec. 4.5]. As usual, for a
cone σ we denote by σ(1) the set of all rays of σ ; also, we identify a ray with its
primitive vector.

Definition 1.5. Let σ be a pointed cone in NQ. We say that e ∈M is a root of
the cone σ if the following statements hold:

(i) there exists a ρe ∈ σ(1) such that 〈e, ρe〉 = −1; and
(ii) 〈e, ρ〉 ≥ 0 for all ρ ∈ σ(1) \ {ρe}.
The ray ρe is called the distinguished ray of the root e. We denote by R(σ) the set
of all roots of σ.
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One easily checks that any ray ρ ∈ σ(1) is the distinguished ray for infinitely many
roots e ∈ R(σ). For every root e ∈ R(σ) we define a homogeneous derivation ∂e
of degree e of the algebra k[σ∨

M ] by the formula

∂e(χ
m) = 〈m, ρe〉 · χm+e for all m∈ σ∨

M.

The following theorem gives a classification of the homogeneous LNDs on
k[σ∨

M ].

Theorem1.6. For every root e ∈ R(σ), the homogeneous derivation ∂e on k[σ∨
M ]

is an LND of degree e with kernel ker ∂e = k[τe ∩M ], where τe is the facet of σ∨
dual to the distinguished ray ρe. Conversely, if ∂ �= 0 is a homogeneous LND on
k[σ∨

M ] then ∂ = λ∂e for some root e ∈ R(σ) and some λ∈ k∗.

1.4. Locally Nilpotent Derivations on Affine T-Varieties

We first give a classification of homogeneous LNDs of fiber type on T-varieties of
arbitrary complexity (cf. [L2]).

Letting D = ∑
Z �Z · Z be a proper σ -polyhedral divisor on a semiprojective

variety Y, we set A = A[Y, D]. For every prime divisor Z ⊆ Y, we let {vi,Z | i =
1, . . . , rZ} be the set of all vertices of �Z. Letting e be a root of the cone σ, we
define

D(e) =
∑
Z

min
i

{vi,Z(e)} · Z and +∗
e = H 0(Y, OY (D(e))) \ {0}.

We remark that the evaluation divisor D(m) is defined only form∈ σ∨ and e /∈ σ∨.
The reason behind the notation used here is that—taking (1) as the definition of sup-
port function—we obtain the preceding formula for the evaluation divisor, which
can be evaluated at any m∈MQ.

For every ϕ ∈+∗
e , let

∂e,ϕ(fχ
m) = 〈m, ρe〉 · ϕ · fχm+e for all m∈ σ∨

M and f ∈ k(Y ).

The following theorem gives a classification of the homogeneous LNDs of fiber
type on A[Y, D].

Theorem 1.7. For every root e ∈ R(σ) and ϕ ∈ +∗
e , the derivation ∂e,ϕ is a

homogeneous LND of fiber type on A = A[Y, D] of degree e and with kernel

ker ∂e,ϕ =
⊕

m∈τe∩M
Amχ

m,

where τe ⊆ σ∨ is the facet dual to the distinguished ray ρe. Conversely, if ∂ �= 0
is a homogeneous LND of fiber type on A, then ∂ = ∂e,ϕ for some root e ∈ R(σ)
and some ϕ ∈+∗

e .

The classification of LNDs of horizontal type is more involved and is available
only in the case of complexity 1. Here we give an improved presentation of the
classification given in [L1, Thm. 3.28].
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Since the complexity is 1, it follows that the base variety Y is a smooth curve C.
Let D = ∑

z∈C �z ·z be a proper σ -polyhedral divisor onC, and letX = X[C, D].
IfA = A[C, D] admits a homogeneous LND of horizontal type, then C is isomor-
phic either to A1 or to P1. Hereafter we assume that C = A1 or C = P1.

Definition 1.8. A colored σ -polyhedral divisor onC is a collection D̃ = {D; vz
∀z ∈ C} if C = A1, or D̃ = {D, z∞; vz ∀z ∈ C \ z∞} if C = P1, that satisfies the
following conditions:

(i) D = ∑
z∈C �z · z is a proper σ -polyhedral divisor on C, z∞ ∈C, and vz is a

vertex of �z;
(ii) vdeg := ∑

z∈C ′ vz is a vertex of deg D|C ′ , where C ′ = C if C = A1 and C ′ =
C \ {z∞} if C = P1; and

(iii) vz ∈N with at most one exception.

We also let z0 ∈C ′ be such that vz ∈N for all z∈C ′ \ {z0}. We say that D̃ is a
coloring of D; we call z0 the marked point, z∞ the point at infinity (if C = P1),
and vz the colored vertex of the polyhedron �z.

We remark that the notion of coloring just described is independent of the coloring
that appears in the theory of spherical varieties.

Let D̃ be a colored σ -polyhedral divisor on C. Let ω ⊆ NQ be the cone gener-
ated by deg D|C ′ − vdeg; then let ω̃ ⊆ (N ⊕ Z)Q denotes the cone generated by
(ω, 0) and (vz0 , 1) ifC = A1 or by (ω, 0), (vz0 , 1), and (�z∞ +vdeg −vz0 +ω, −1)
if C = P1. Denote by d the minimal positive integer such that d · vz0 ∈N. We call
ω̃ the associated cone of the colored σ -polyhedral divisor D.

Definition 1.9. A pair (D̃, e), where D̃ is a colored σ -polyhedral divisor on C
and e ∈M, is said to be coherent if the following conditions hold.

(i) There exists an s ∈ Z such that ẽ = (e, s) ∈ M ⊕ Z is a root of the as-
sociated cone ω̃ with distinguished ray ρ̃ = (d · vz0 , d); in this case, s =
−1/d − vz0(e).

(ii) v(e) ≥ 1+ vz(e) for every z∈C ′ \ {z0} and every vertex v �= vz of the poly-
hedron �z.

(iii) d · v(e) ≥ 1 + d · vz0(e) for every vertex v �= vz0 of the polyhedron �z0 .

(iv) If Y = P1, then d · v(e) ≥ −1 − d · vdeg(e) for every vertex v of the polyhe-
dron �z∞ .

Let now L = {m∈M | vz0(m)∈ Z} and let ϕm ∈ k(C) be a rational function with

div(ϕm)|C ′ + D(m)|C ′ = 0 and ϕm · ϕm′ = ϕm+m′
for all m,m′ ∈ω∨

L.

Choosing such a ϕm is possible because D(m) is linear for m∈ω∨.
The following theorem gives a classification of homogeneous LNDs of horizon-

tal type on A[C, D]. It corresponds to [L1, Thm. 3.28].

Theorem 1.10. Let X = X[C, D] be a normal affine T-variety of complex-
ity 1. Then the homogeneous LNDs of horizontal type on k[X] = A[C, D] are in
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bijection with the coherent pairs (D̃, e), where D̃ is a coloring of D and e ∈M.
Furthermore, the homogeneous LND ∂ corresponding to (D̃, e) has degree e and
kernel

ker ∂ =
⊕
m∈ω∨

L

kϕm.

Let us give an explicit formula for the homogeneous LND ∂ associated to the co-
herent pair (D̃, e). Without loss of generality, we may assume that z0 = 0 and
z∞ = ∞ if C = P1. By Corollary 1.3 we may assume vz = 0̄ ∈ N for all z ∈
C ′ \ {z0}. Letting k[C ′ ] = k[t], the homogeneous LND of horizontal type ∂ cor-
responding to the coherent pair (D̃, e) is given by

∂(χm · t r ) = d(v0(m)+ r) · χm+e · t r+s for all (m, r)∈M ⊕ Z. (2)

Furthermore, after setting m̃ = (m, r) ∈M ⊕ Z and χm̃ = χm · t r, we can write
(2) as in the toric case:

∂(χm̃) = 〈m̃, ρ̃〉 · χm̃+ẽ for all m̃∈M ⊕ Z. (3)

We also need the following two technical lemmas, each a consequence of
Theorem 1.10.

Lemma 1.11 (cf. [L1, Lemma 4.5]). Let X = X[C, D], and let ∂1 and ∂2 be two
homogeneous LNDs of horizontal type on k[X]. Assume that z∞(∂1) = z∞(∂2).

Then ker ∂1 ∩ ker ∂2 � k if and only if ω(∂1) ∩ ω(∂2) � {0}. Furthermore, if
rankM = 2, then those conditions hold if and only if the vertices vdeg(∂1) and
vdeg(∂1) are adjacent vertices in the polyhedron deg D|C ′ .

Lemma 1.12 (cf. [L1, Rem. 3.27]). Let X = X[C, D], and let ∂ be a homoge-
neous LND of horizontal type on k[X] of degree e.

(i) If C = A1, then e ∈ω∨ ⊆ σ∨.
(ii) If C = P1 and if for every ray ρ ∈ σ(1) ∩ ω(1) we have ρ ∩ deg D = ∅, then

e ∈ω∨ ⊆ σ∨.

2. Compatible SL2-Actions on Normal Affine TTT-Varieties

In this section we give a classification of compatible SL2-actions on T-varieties
in two cases: when the T-action is of complexity 1 and when it is of arbitrary
complexity—provided that the general SL2-orbits are contained in the T-orbit
closures.

2.1. SL2-Actions on Affine Varieties

Let SL2 be the algebraic group of 2 × 2 matrices of determinant 1. Every alge-
braic subgroup of SL2 of positive dimension is conjugate to one of the following
subgroups:

T = {(
t 0
0 t−1

) | t ∈ k∗}, U(s) = {(
ε λ

0 ε−1

) | ε, λ∈ k, εs = 1
}
,

N = T ∪ (
0 1

−1 0

) · T, B = T · U(1).



Polyhedral Divisors and SL2-Actions on Affine T-Varieties 739

Here T is a maximal torus, N is the normalizer of a maximal torus, B is a Borel
subgroup, and U(s) is a cyclic extension of a maximal unipotent subgroup. We
also define the following maximal unipotent subgroups:

U+ = U(1), U− = (
0 −1
1 0

) · U(1) ·
(

0 1
−1 0

)
.

As a group, SL2 is generated by the unipotent subgroups U+ and U− that are iso-
morphic to Ga.

Let now X = SpecA be an affine variety endowed with an SL2-action. The
two U±-actions on X are equivalent to two LNDs ∂± on the algebra A, and the
T -action on X is equivalent to a Z-grading on A. Furthermore, this Z-grading
on A is also uniquely determined by its infinitesimal generator—that is, by the
semisimple derivation δ given by δ(a) = deg(a) ·a for every homogeneous a ∈A.

The following well-known proposition gives a criterion for the existence of an
SL2-action on an affine variety. In the absence of a citation we provide a short
proof (cf. [FZ, 4.15]).

Proposition 2.1. A nontrivial SL2-action on an affine variety X = SpecA is
equivalent to a (not necessarily effective) Z-grading on A with infinitesimal gen-
erator δ and a couple of homogeneous LNDs (∂+ , ∂−) of degrees degZ ∂± = ±2
and satisfying [∂+ , ∂−] = δ.

Furthermore, the Z-grading is effective if and only if SL2 acts effectively onX.
If the Z-grading is not effective, then the kernel of SL2 → Aut(X) is {±Id} and
so PSL2 acts effectively on X.

Proof. Assume first that SL2 acts nontrivially on X. Let {h, e+ , e−} be the sl2-
triple in the Lie algebra sl2. Since e± is tangent to the 1-parameter unipotent sub-
groupU± in SL2, it acts onA as an LND ∂±. The vector h is tangent to the torus T,
so h acts on A as the infinitesimal generator δ of a Z-grading. Because [h, e±] =
±2e±, the LND ∂± is homogeneous of degree ±2 and the relation [e+ , e−] = h

implies [∂+ , ∂−] = δ.

Conversely, assume that we have δ, ∂+ , ∂− as in the proposition. Then s =
〈δ, ∂+ , ∂−〉 is a Lie subalgebra in Der(A) isomorphic to sl2. Furthermore, every
element of A is contained in a finite-dimensional s-submodule. Recall that any
finite-dimensional sl2-module has the canonical structure of an SL2-module whose
tangent representation coincides with the given one. This gives A the structure of
a rational SL2-module. Since SL2 is generated as a group by the subgroups U±
and since the LNDs ∂± define the action of U± via automorphisms, it follows
that the group SL2 acts on A via automorphisms. This proves that A is a rational
SL2-algebra or, equivalently, that SL2 acts regularly on X.

We now restrict our attention to the case of affine T-varieties. The following defi-
nition identifies the class of SL2-actions to be studied in the sequel.

Definition 2.2. An SL2-action on a T-variety X is compatible if the image of
SL2 in Aut(X) is normalized but not centralized by the torus T.
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Assume now that X is a T-variety endowed with a compatible SL2-action. De-
note by S̃L2 the image of SL2 in Aut(X). There is a homomorphism ψ : T →
Aut(S̃L2). Since any automorphism from Aut(S̃L2) is inner, we have Aut(S̃L2) #
PSL2. Thus the image of T is either trivial or is a maximal torus T ⊆ PSL2. If the
former, then T centralizes S̃L2 and so this case is excluded by the definition of a
compatible SL2-action. Hence T contains T and so T = T · S, where S = kerψ
is a complementary subtorus that centralizes the SL2-action. Let U± be unipotent
root subgroups in S̃L2 with respect to the torus T. Then the SL2-action on X is
determined by the infinitesimal generator corresponding to a Z-grading on k[X]
defined by T (this is a downgrading of theM-grading) and twoM-homogeneous
LNDs ∂± corresponding to the U±-actions. We thus have the following corollary.

Corollary 2.3. (i) Let X be a normal affine T-variety endowed with a com-
patible SL2-action. We may then assume, in Proposition 2.1, that δ is the in-
finitesimal generator corresponding to a downgrading of M and that the ∂± are
M-homogeneous LNDs. Furthermore, T = T · S, where T is the maximal torus
in SL2 and S is a complementary subtorus that centralizes the SL2-action.

(ii) LetX be a normal affine T-variety endowed with an SL2-action that is cen-
tralized by T. Then we may extend T by T so that the SL2-action is compatible
with this bigger torus action.

The following generalizes a definition in [L2].

Definition 2.4. We say that a compatible SL2-action on a T-variety is of fiber
type if the general orbits are contained in the T-orbit closures and of horizontal
type otherwise.

Clearly, a compatible SL2-action is of fiber type if and only if both derivations ∂±
are of fiber type. The next lemma shows that a compatible SL2-action is of hori-
zontal type if and only if both derivations ∂± are of horizontal type.

Lemma 2.5. Consider a compatible SL2-action on a T-variety X, and assume
that the LND ∂+ is of fiber type. Then the SL2-action is of fiber type.

Proof. Set B = T · U+ ⊆ SL2. Then the B-action on X is of fiber type; in other
words, the general B-orbits are contained in the orbit closures of the T-action. We
consider two cases.

Case 1: The general SL2-orbits onX are 2-dimensional. Then, for general x ∈
X, one has B · x = SL2 · x and hence the SL2-action is of fiber type.

Case 2: The general SL2-orbits on X are 3-dimensional. Consider a general
point x ∈X and the stabilizer T2

x ⊆ T of the subvariety B · x. Since any automor-
phism of the group B is inner and since the torus T normalizes B, we may find a
1-dimensional subtorus Sx ⊆ T2

x that commutes with the B-action on B · x. But
the image of the homomorphism ψ : T → Aut(S̃L2) # PSL2 is a maximal torus,
so the subtorus Sx is in the kernel of ψ. Hence Sx commutes with the SL2-action.
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In particular, Sx preserves B · x and SL2 · x, and its action on SL2 · x may be lifted
to the action of a maximal torus S̃ ⊆ SL2 by right-multiplication on SL2 via a fi-
nite covering S̃ → Sx. Yet it is easy to check that the (B × S̃ )-action on SL2 has
an open orbit, so Sx permutes the general B-orbits on SL2 · x. This provides a
contradiction.

2.2. SL2-Actions on Toric Varieties

In this section we give a complete classification of compatible SL2-actions on affine
toric varieties. Because a toric variety has an open T-orbit, every SL2-action on a
toric variety is of fiber type.

Definition 2.6. Let σ ⊆ NQ be a polyhedral cone. A root e ∈ R(σ) is called
an SL2-root if also −e ∈ R(σ).
If e is an SL2-root, then 〈e, ρe〉 = −1, 〈e, ρ−e〉 = 1, and 〈e, ρ〉 = 0 for all ρ ∈
σ(1) \ {ρ±e}. Thus the number of SL2-roots of a cone σ with r rays does not ex-
ceed r(r − 1), and this bound is attained for a regular cone of dimension r.

Theorem 2.7. The compatible SL2-actions on an affine toric variety Xσ are in
bijection with the SL2-roots of σ. Furthermore, for every SL2-root e ∈ R(σ), the
corresponding SL2-action is effective if and only if the lattice vector ρ−e − ρe is
primitive. If ρ−e − ρe is not primitive, then 1

2 (ρ−e − ρe) is primitive and PSL2

acts effectively on Xσ .

Proof. Let A = k[σ∨
M ] and let e ∈ R(σ) be an SL2-root. Setting p = ρ−e − ρe,

we define a Z-grading on A as follows:

degZ χ
m = 〈m,p〉 ∈ Z for all m∈ σ∨

M.

Therefore, the infinitesimal generator of the corresponding Gm-action is given by

δ(χm) = 〈m,p〉χm for all m∈ σ∨
M.

A routine computation shows that δ, ∂e, and ∂−e satisfy the conditions of Propo-
sition 2.1. Moreover, since 〈e,p〉 = 2, it follows that either p is primitive or p/2
is primitive. This proves the “only if” part of the theorem.

To prove the converse, let δ, ∂−, ∂+ be three homogeneous derivations satisfy-
ing the conditions of Proposition 2.1. Because ∂± are LNDs, we have ∂± = λ±∂e±
for some λ± ∈ k∗ and some roots e± ∈ R(σ). Furthermore, since the derivation δ
comes from a downgrading of theM-grading onA, there exists a lattice element p
such that

δ(χm) = 〈m,p〉χm for all m∈ σ∨
M.

The commutator [∂+ , ∂−] is a homogeneous operator of degree e+ +e−, so e :=
e+ = −e−. One now checks that the commutator is given by

[∂+ , ∂−](χm) = λ+λ−〈m, ρ−e − ρe〉χm for all m∈ σ∨
M.

Hence p = ρ−e − ρe and λ+ = λ−1
− , and the result follows.
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Remark 2.8. If e is an SL2-root of σ, then −e is also an SL2-root. The corre-
sponding SL2-actions are conjugate.

Example 2.9. Let Xσ be an affine toric variety of dimension 2. Up to auto-
morphism of the lattice N, we may assume that σ ⊆ NQ is the cone spanned by
the vectors ρ1 = (1, 0) and ρ2 = (a, b), where 0 ≤ a < b and gcd(a, b) = 1.
According to Theorem 2.7,Xσ admits a compatible SL2-action if and only if there
exists an e ∈M such that 〈e, ρ1〉 = 1 and 〈e, ρ2〉 = −1. The only solution is e =
(1, −1) and b = a + 1. In addition, the action is effective if and only if b is odd.

It is well known that the toric variety Xσ corresponds to the affine cone over
the rational normal curve C of degree a + 1 (also known as Veronese cone). The
curve C is the image of P1 under the morphism

ψ : P1 ↪→ P a+1, [x : y] → [xa+1 : xay : xa−1y2 : · · · : ya+1].

The SL2-action on Xσ is induced by the canonical SL2-action on the simple SL2-
module V(a + 1) of binary forms of degree a + 1.

Example 2.10. Let now Xσ be an affine toric variety of dimension 3. Letting e
be an SL2-root of σ, we use ρe and ρ−e to denote the corresponding distinguished
rays and consider a ray ρ �= ρ±e. Because 〈e, ρ〉 = 0, there can be no more than
two nondistinguished rays. Thus the cone σ has at most four rays.

Assume first that σ is simplicial and set e = (1, 0, 0). Then, up to automor-
phism of the lattice N, the cone σ is spanned by the vectors ρ1 = (1, 0, 0), ρ2 =
(0,1, 0), and ρ3 = (−1, b, a), where 0 ≤ b < a.

Let now σ be a nonsimplicial cone and again set e = (1, 0, 0). Then, up to auto-
morphism of the lattice N, the cone σ is spanned by the vectors ρ1 = (1, 0, 0),
ρ2 = (0,1, 0), ρ3 = (0, b, a), and ρ4 = (−1, c, d), where 0 ≤ b < a, gcd(a, b) =
1, d > 0, and ac > bd.

Remark 2.11. In dimension 4 or higher, a cone admitting an SL2-root can have
an arbitrary number of rays.

2.3. SL2-Actions of Fiber Type on T-Varieties

In the following theorem we give a classification of SL2-actions of fiber type on
normal affine T-varieties of arbitrary complexity.

Theorem 2.12. Let D be a proper σ -polyhedral divisor on a semiprojective
variety Y. Then the compatible SL2-actions of fiber type on the affine T-variety
X = X[Y, D] are in bijection with the SL2-roots e of σ such that the divisor D(e)
is principal and D(e)+ D(−e) = 0.

Also, the corresponding SL2-action is effective if and only if the lattice vector
ρ−e − ρe is primitive. If ρ−e − ρe is not primitive, then 1

2 (ρ−e − ρe) is primitive
and PSL2 acts effectively on X.

Proof. Setting A = A[Y, D] = k[X], we let e be an SL2-root of σ satisfying the
conditions of the theorem. As in the toric case, we let ρ±e ∈ σ(1) be the respective
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distinguished rays of the roots ±e. Set p = ρ−e − ρe; we then define a Z-grading
on A via

degZ(Am · χm) = 〈m,p〉 ∈ Z for all m∈ σ∨
M.

Therefore, the infinitesimal generator of the corresponding Gm-action is given by

δ(fχm) = 〈m,p〉 · fχm for all m∈ σ∨
M and f ∈Am.

Let ϕ be any rational function on Y such that div(ϕ)+D(e) = 0. Set ∂+ = ϕ∂e
and ∂− = ϕ−1∂−e. By Theorem 1.7, the derivations ∂± are LNDs on A.

Now a routine computation shows that δ, ∂+ , and ∂− satisfy the conditions of
Proposition 2.1. Furthermore, since 〈e,p〉 = 2 we have that p is primitive or that
p/2 is primitive. This proves the “only if” part of the theorem.

To prove the converse, let δ, ∂−, ∂+ be three homogeneous derivations satisfying
the conditions of Proposition 2.1. Since the ∂± are LNDs of fiber type, it follows
that ∂± = ∂e±,ϕ± for some roots e± ∈ R(σ) and ϕ± ∈ +∗

e±. Much as in the toric
case, we can prove that e := e+ = −e−.

The commutator [∂+ , ∂−] is given by

[∂+ , ∂−](fχm) = ϕ+ϕ−〈m,p〉 · fχm for all m∈ σ∨
M and f ∈Am,

where p = ρ−e − ρe. Hence ϕ+ = ϕ−1
− . Furthermore, since ϕ± ∈+∗

e± , we have

div(ϕ+)+ D(e) ≥ 0 and div(ϕ−)+ D(−e) ≥ 0

and so D(e)+ D(−e) ≥ 0. (4)

Moreover,

D(e)+ D(−e) =
∑
Z

(
min
i

{vi,Z(e)} − max
i

{vi,Z(e)}
)

· Z ≤ 0.

Hence D(e) + D(−e) = 0. Finally, (4) yields div(ϕ+) + D(e) = 0 and so D(e)
is principal.

Remark 2.13. (i) By the proof of Theorem 2.12, the condition D(e)+D(−e) =
0 is fulfilled if and only if vi,Z(e) = vj,Z(e) for all prime divisors Z ⊆ Y and
all i, j.

(ii) If rankM = 2 then the condition D(e)+ D(−e) = 0 in Theorem 2.12 can
be fulfilled only if�Z has only one vertex for all prime divisors Z ⊆ Y (i.e., only
if �Z = vZ + σ). Indeed, the condition vi,Z(e) = vj,Z(e) for all i, j implies that
all the vertices are contained in the line L = {v ∈ NQ | 〈e, v − v1,Z〉 = 0}. But
±e /∈ σ∨ and so L ∩ σ is a half-line inside the cone σ. This implies that there can
be only one vertex vZ := v1,Z.

Example 2.14. Let N = Z3 and C = A1, and let σ be the positive octant in NQ.

We also let � = Conv(v1, v2) + σ, where v1 = (1,1, −1) and v2 = (−1, −1, 1),
and let D = � · [0]. Consider the SL2-root e = (−1,1, 0) of σ. Since v1(e) =
v2(e) = 0 we have D(e)+ D(−e) = 0 and so, by Theorem 2.12, the SL2-root e
produces an SL2-action on X = X[C, D].

The variety X is toric by Corollary 1.4. As a toric variety, X is given by the
nonsimplicial cone σ̃ ⊆ (N ⊕ Z)Q spanned by (v1, 1), (v2, 1), (ν1, 0), (ν2, 0), and
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(ν3, 0), where {νi} is the standard base of N. The SL2-action is compatible with
the big torus and is given by the SL2-root ẽ = (e, 0) of σ̃.

2.4. SL2-Actions of Horizontal Type on T-Varieties

In this section we give the more involved classification of SL2-actions of horizon-
tal type in the case of T-varieties of complexity 1. Here we use the notation of
Section 1.4.

Letting D be a proper σ -polyhedral divisor on the curve C = A1 or C = P1,
we set X = X[C, D] and assume that X admits a compatible SL2-action of hori-
zontal type. By Proposition 2.1, an SL2-action on X is completely determined by
two homogeneous LNDs ∂± with deg ∂+ = −deg ∂− = e. By Theorem 1.10, the
LNDs of horizontal type are in bijection with coherent pairs. Let ∂± be the LND
given by the coherent pair (D̃±, ±e), respectively, where

D̃± =
{ {D; v±

z ∀z∈C} with marked point z±
0 if C = A1,

{D, z±∞; v±
z ∀z∈C \ z±∞} with marked point z±

0 if C = P1.
(5)

Let A1 = Spec k[t]. In the sequel, we assume that z+
0 = 0 and that z+∞ = ∞ if

C = P1. We also let q(t) be a coordinate around z−0 having point at infinity z−∞ if
C = P1; that is, q is a Möbius transformation

q(t) = at + b
ct + d with ad − bc = 1, q(z−0 ) = 0, and q(z−∞) = ∞ if C = P1.

If C = A1, then c = 0 and so we may choose a = d = 1 and b = −z−0 .
By Corollary 1.3 we may and will assume v−

z = 0 for all z ∈C \ {z−0 , z−∞}. We
also let d± be the smallest positive integer such that d± · v±

z±0
is contained in the

lattice N and let s± = − 1
d± ∓ v±

z±0
(e). In this setting, equation (2) yields

∂−(χm · qr ) = d−(v−
z−0
(m)+ r) · χm−e · qr+s− for all (m, r)∈M ⊕ Z. (6)

To obtain a similar expression for ∂+ , we let

D′ =
{

D − ∑
z �=z+0 (v

+
z + σ) · z if C = A1,

D − ∑
z �=z+0 ,z+∞(v

+
z + σ) · (z− z+∞) if C = P1.

By Corollary 1.3, X[C, D] # X[C, D′ ] equivariantly and, in the new σ -poly-
hedral divisor D′, the colored vertices v+

z are zero for all z �= 0. Further-
more, let

A[C, D] =
⊕
m∈σ∨

M

Amχ
m where Am = H 0(

C, O(D(m))),
A[C, D′ ] =

⊕
m∈σ∨

M

A′
mξ

m where A′
m = H 0(C, O(D′(m)));

then, by Theorem 1.2, the isomorphism A[C, D] → A[C, D′ ] is given by ξm =
ϕmχm. Here ϕm ∈ k(t) is a rational function whose divisor is D′(m)− D(m) for
all m∈ σ∨

M , and ϕm · ϕm′ = ϕm+m′
. In this setting, equation (2) yields
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∂+(ϕmχm · t r ) = d+(v+
0 (m)+ r) · ϕm+eχm+e · t r+s+

for all (m, r)∈M ⊕ Z. (7)

Recall that the LNDs ∂± on k[X] correspond to the U±-actions on X of a com-
patible SL2-action onX and so, by Corollary 2.3(i), the commutator δ = [∂+ , ∂−]
is a downgrading of theM-grading on k[X]. In other words, there exists a p ∈N
such that

δ(fχm) = 〈m,p〉 · fχm for all m∈ σ∨
M and f ∈ k(t). (8)

To ease the notation, we shall use a prime to denote the partial derivative with
respect to t; thus, f ′ = d

dt
(f ).

Proposition 2.15. If X[C, D] admits an SL2-action of horizontal type, then the
marked points and the infinity points (if C = P1) of D̃+ and D̃− can be chosen to
be equal. That is, with notation as before, we may assume without loss of gener-
ality that z+

0 = z−0 = 0 and z+∞ = z−∞ = ∞. Moreover, d+ = d− := d.

Proof. By (8) we have δ(t) = 0, and a routine computation (see the Appendix)
then shows that

δ(t) = d+d− · ϕe · t s+ · q s− ·
((

1 − 1

d−

)
t −

(
1 − 1

d+

)
q

q ′ − q ′′qt
(q ′)2

)
; (9)

therefore,

> :=
((

1 − 1

d−

)
t −

(
1 − 1

d+

)
q

q ′ − q ′′qt
(q ′)2

)
= 0.

Recall that q(t) = at+b
ct+d with ad−bc = 1. Letting ?± = 1−1/d±, we can show

by simple computation that

> = ac(2 − ?+)t 2 + (?− − ?+(2bc + 1)+ 2bc)t + ?+bd = 0.

Since ?± < 1, we have ac = 0. If a = 0, then bc = −1 and so ?+ + ?− = 2. This
provides a contradiction. Hence c = 0, so ad = 1 and ?+ = ?−. This last equality
gives d+ = d−. Furthermore, the equality c = 0 yields z−∞ = z+∞ = ∞. Hence
we may assume that q(t) = t − z−0 , in which case the commutator becomes

δ(t) = d+d− · ϕe · t s+ · (t − z−0 )s
− ·

((
1 − 1

d−

)
t −

(
1 − 1

d+

)
(t − z−0 )

)
.

Assume for a moment that z−0 �= z+
0 = 0. Then δ(t) = 0 implies d+ = d− = 1;

that is, the colored vertices v+
z+0

and v−
z−0

of the respective marked points belong to

the latticeN. Now Definition1.8 shows that there are no marked points, and we can
choose z+

0 = z−0 to be any point different from the common point at infinity.

By the preceding proposition, hereafter we assume that z+
0 = z−0 = 0, z+∞ = z−∞ =

∞, and d+ = d− := d. Then the LNDs ∂+ and ∂− are given by
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∂+(ϕmχm · t r ) = d · (v+
0 (m)+ r) · ϕm+eχm+e · t r+s+ for all (m, r)∈M ⊕ Z ,

∂−(χm · t r ) = d · (v−
0 (m)+ r) · χm−e · t r+s− for all (m, r)∈M ⊕ Z;

s+ = − 1

d
− v+

0 (e), s− = − 1

d
+ v−

0 (e);

ϕm =
∏
z �=0,∞

(t − z)−v+
z (m) for all m∈ σ∨

M.

Corollary 2.16. Let X = X[C, D] be a T-variety of complexity 1 that is en-
dowed with a compatible SL2-action of horizontal type. If �z = σ for all z �=
z±

0 , z±∞, then X is toric and the SL2-action is compatible with the big torus.

Proof. The variety X is toric by Corollary 1.4. Furthermore, the big torus ac-
tion is induced by the (M ⊕ Z)-grading of k[X] given by deg(χm) = (m, 0) and
deg(t) = (0, 1). Since�z = 0 for all z∈ A1 \{0}, we have ϕm = 1 for allm∈ σ∨

M.

Hence, by (3), the ∂± are homogeneous with respect to the (M ⊕ Z)-grading of
k[X]. This gives that the U±-actions on X are compatible with the big torus ac-
tion, and so the SL2-action is also compatible with the big torus action.

Since compatible SL2-actions on toric varieties are described in Theorem 2.7, in
the sequel we address only the case in which the SL2-action on X is not compat-
ible with a bigger torus. In the next lemma we show that if X[C, D] admits an
SL2-action of horizontal type then D has a very special form.

For a subset S ⊆ NQ we denote the convex hull of S by Conv(S). For a vector
e ∈MQ we let e⊥ = {p ∈NQ | 〈e,p〉 = 0} be the subspace ofNQ orthogonal to e.

Lemma 2.17. Let X = X[C, D] be a normal affine T-variety of complexity 1
and endowed with a compatible SL2-action of horizontal type. Assume that the
SL2-action is not compatible with a bigger torus and let e ∈M be the degree of
the homogeneous LND ∂+ on k[X] corresponding to the U+-action on X. Then
C = A1 or C = P1, D = ∑

z∈C �z · z, and the σ -polyhedra �z can be chosen
(via Corollary 1.3) as in one of the following cases:

�0 = Conv(0, v−
0 )+ σ, �1 = Conv(0, v+

1 )+ σ,

�z = σ ∀z∈ A1 \ {0,1}, �∞ = @+ σ,

where v−
0 , v+

1 ∈N, v−
0 , v+

1 /∈ σ, v−
0 (e) = 1, v+

1 (e) = −1, and @ ⊆ e⊥ is a bounded
polyhedron; or

�0 = v−
0 + σ, �1 = Conv(0, v+

1 )+ σ,

�z = σ ∀z∈ A1 \ {0,1}, �∞ = @+ σ,

where 2v−
0 , v+

1 ∈N, v+
1 /∈ σ, 2v−

0 (e) = 1, v+
1 (e) = −1, and @ ⊆ e⊥ is a bounded

polyhedron.

In proving this lemma we shall use the following notation:

αm = t
d

dt
(ln(ϕm)), v0 = v−

0 − v+
0 , ν = v0(e)− 1

d
.
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Therefore, αm+m′ = αm + αm′ . More explicitly, we have

αm = −t
∑
z �=0,∞

v+
z (m)

1

t − z = −v+(m)−
∑
z �=0,∞

v+
z (m)

z

t − z ,

where

v+ =
∑
z �=0,∞

v+
z = v+

deg − v+
0 and α ′

m = d

dt
(αm) =

∑
z �=0,∞

v+
z (m)

z

(t − z)2 .

For a rational function R(t) = P(t)/Q(t), we define the degree degR =
degP − degQ such that deg(R1 · R2) = deg(R1) + deg(R2). We also let the
principal part of R be the result of the polynomial division between P and Q.
Then deg(R) = 0 if and only if the principal part of R is a nonzero constant.

Proof of Lemma 2.17. The Appendix shows that the commutator δ = [∂+ , ∂−] is
given by

δ(χmt r ) = d 2ϕetν−1/d · (νv0(m)+ αev0(m)+ ναm + tα ′
m + αeαm) · χmt r

:= > · χmt r. (10)

By (8), then, we know that > must be independent of t and linear in m and that
> �≡ 0.

Assume that v+
z �= 0 and v+

z (e) = 0 for some z �= 0, ∞. Then ϕe does not con-
tain the factor t−z and, for anym such that v+

z (m) �= 0, the summand v+
z (m)

zt

(t−z)2
in tα ′

m cannot be eliminated because αm and tα ′
m are linearly independent. Hence

v+
z (e) = 0 implies v+

z = 0. Moreover, we have v+
z (e) ∈ {0, −1, −2} since other-

wise the factor (t − z)−v+
z (e) in ϕe cannot be canceled in >. Therefore, ϕe is a

polynomial.
A direct computation shows that the principal part of νv0(m) + αev0(m) +

ναm + tα ′
m + αeαm is given by

L := (v0(e)− v+(e)− 1/d ) · (v0(m)− v+(m)).

Next assume that L(e) = 0. Because deg(ϕetν−1/d) = ν − 1/d − v+(e) =
v0(e) − v+(e) − 2/d, we have deg(ϕetν−1/d) < 0 and so deg(>) < 0. This is a
contradiction because >(e)must be independent of t. In the following we assume
that L(e) �= 0, which yields deg(ϕetν−1/d) = 0. The proof proceeds via three
cases.

Case I: νv0 �= 0. Evaluating > in t = 0, we obtain > = d 2ϕe(0) · 0ν−1/d ·
νv0(m). Hence ν − 1/d = 0 and, since deg(ϕetν−1/d) = 0, we have ϕe = 1. This
yields v+

z (e) = 0 for all z �= 0, ∞ and so v+
z = 0 for all z �= 0, ∞.

Let z �= 0, ∞ and assume that �z has a vertex v �= 0. By Definition 1.9(ii) ap-
plied to D̃±, v±

z = 0 and so v(e) ≥ 1 and −v(e) ≥ 1, which provides a contradic-
tion. This yields �z = σ. Hence X[C, D] is a toric variety and, by Corollary 1.4,
the SL2-action is compatible with the big torus.

Case II: ν = 0. In this case d = 1 because ν − 1/d appears as the exponent
of t in >. This yields v±

0 ∈ N and so we can assume v+
0 = 0 by Corollary 1.3.

Now ν = v−
0 (e) − 1 and so v−

0 (e) = 1. Furthermore, deg(ϕetν−1/d) = 0 implies
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deg(ϕe) = 1; hence we can assume v+
z (e) = 0 for all z �= 1 and v+

1 (e) = −1. This
yields v+

z = 0 for all z �= 1. Now the commutator is given by

δ(χmt r ) = t − 1

t
·
(
v−

0 (m)
t

t − 1
+ v+

1 (m)
t

(t − 1)2
− v+

1 (m)
t 2

(t − 1)2

)
· χmt r.

Since
t

t − 1
+ t

(t − 1)2
− t 2

(t − 1)2
= 0, (11)

we have

δ(χmt r ) = 〈m, v−
0 − v+

1 〉 · χmt r for all (m, r)∈M ⊕ Z.

Let now z �= 0,1, ∞ and assume that �z has a vertex v �= 0. Since v±
z = 0

(by Definition 1.9(ii) applied to D̃±), we obtain v(e) ≥ 1 and −v(e) ≥ 1. This
provides a contradiction, so �z = σ. A similar argument shows that the only ver-
tices in �0 and �1 are {0, v−

0 } and {0, v+
1 }, respectively. Finally, if C = P1, let v

be a vertex of�∞. Definition 1.9(iv) then shows that v(e) ≥ 0 and −v(e) ≥ 0, so
−v(e) = 0. This corresponds to the first case in the lemma.

Case III: v0 = 0. This condition implies that v−
0 = v+

0 and ν = −1/d.
Therefore, d = 1 or d = 2 because ν − 1/d = −2/d appears as the exponent
of t in >. If d = 1 then, by Definition 1.8, we can change the marked points of D̃±
so that v−

z0
�= v+

z0
. Hence this case reduces to Case I or Case II.

Assume now that d = 2 so that v−
0 = v+

0 ∈ 1
2N \ N. The condition

deg(ϕetν−1/d) = 0 implies deg(ϕe) = 1, so we can assume that v+
z (e) = 0 for all

z �= 1 and that v+
1 (e) = −1. This yields v+

z = 0 for all z �= 1. The commutator is
now given by

δ(χmt r ) = 2v+
1 (m)

t − 1

t
·
(

t

t − 1
+ 2

t

(t − 1)2
− 2

t 2

(t − 1)2

)
· χmt r.

By (11) we then have

δ(χmt r ) = 〈m, −2v+
1 〉 · χmt r for all (m, r)∈M ⊕ Z.

Using the same argument as in Case II, we obtain that �z = σ for all z �=
0,1, ∞ and that the only vertices in �0 and �1 are {v−

0 } and {0, v+
1 }, respectively.

Finally, if C = P1, let v be a vertex of �∞. By Corollary 1.3, we can assume that
2v−

0 (e) = 1; then Definition 1.9(iv) shows that v(e) = 0 for every vertex v of�∞.
This corresponds to the second case in the lemma. The proof is now complete.

To obtain a full classification of compatible SL2-actions of horizontal type on X,
we only need conditions for existence of the homogeneous LNDs ∂± of horizontal
type on k[X] defined in (6) and (7).

The following theorem provides the announced classification of compatible
SL2-actions of horizontal type on T-varieties of complexity 1. We shall use the
following notation. Let D be as in Lemma 2.17; then D admits two different col-
orings as in (5). Let ω̃± be the associated cone of D̃± (see before Definition 1.9).
Finally, for every e ∈M, let ẽ± = (±e, −1/d ∓ v±

0 (e))∈M ⊕ Z.
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Theorem 2.18. Let X = X[C, D] be a normal affine T-variety of complexity 1.
Then X admits a compatible SL2-action of horizontal type that is not compatible
with a bigger torus if and only if the following conditions hold.

(i) The base curve C is either A1 or P1.

(ii) There exists a lattice vector e ∈M such that the σ -polyhedral divisor D may
be shifted (via Corollary 1.3) to one of the following two forms:

�0 = Conv(0, v−
0 )+ σ, �1 = Conv(0, v+

1 )+ σ,

�z = σ ∀z∈ A1 \ {0,1}, �∞ = @+ σ,

where v−
0 , v+

1 ∈ N, v−
0 , v+

1 /∈ σ, v−
0 (e) = 1, v+

1 (e) = −1, and @ ⊆ e⊥ is a
bounded polyhedron; or

�0 = v−
0 + σ, �1 = Conv(0, v+

1 )+ σ,

�z = σ ∀z∈ A1 \ {0,1}, �∞ = @+ σ,

where 2v−
0 , v+

1 ∈ N, v+
1 /∈ σ, 2v−

0 (e) = 1, v+
1 (e) = −1, and @ ⊆ e⊥ is a

bounded polyhedron.
(iii) The lattice vectors ẽ± ∈M ⊕ Z are the respective roots of the cones ω̃±.

Moreover, if (C, σ, D) is in one of the two forms described in (ii), then the com-
patible SL2-action of horizontal type on X is given by the sl2-triple {δ, ∂+ , ∂−}
of derivations, where δ = [∂+ , ∂−], the homogeneous LNDs ∂± are given by the
coherent pairs (D̃±, ±e), and D̃± are the following colorings of D:{

D̃+ = {D, ∞; v1 = v+
1 , vz = 0 ∀z �= 1, ∞}

D̃− = {D, ∞; v0 = v−
0 , vz = 0 ∀z �= 0, ∞} in the first case; or{

D̃+ = {D, ∞; v0 = v−
0 , v1 = v+

1 , vz = 0 ∀z �= 0,1, ∞}
D̃− = {D, ∞; v0 = v−

0 , vz = 0 ∀z �= 0, ∞} in the second case.

Proof. By Lemma 2.17, if X admits a compatible SL2-action of horizontal type
that is not compatible with a bigger torus, then (i) and (ii) hold. Moreover, by
the proof of Lemma 2.17, such anX admits a compatible SL2-action of horizontal
type if and only if the derivations ∂± given by (6) and (7) define LNDs on k[X].

By Theorem 1.10, the derivations ∂± define LNDs on k[X] if and only if there
exists an e ∈ M such that (D̃±, ±e) are coherent pairs. In turn, (D̃±, ±e) are
coherent pairs if and only if ẽ± is a root of the cone ω̃± and parts (ii)–(iv) of
Definition 1.9 hold. It is a routine verification that Definition 1.9(ii)–(iv) holds for
(D̃±, ±e), so the theorem is proved.

3. Special SL2-Actions

In this section we give a classification of special SL2-actions on normal affine vari-
eties that generalizes Theorem 1 in [Ar]. Let us first state the necessary definitions
and results for an arbitrary reductive group.

Let G be a connected reductive algebraic group, let T ⊆ B be a maximal torus
and a Borel subgroup ofG, and let X+(G) be the semigroup of dominant weights



750 Ivan Arzhantsev & Alvaro Liendo

ofGwith respect to the pair (T,B). Any regular action of the groupG on an affine
variety X defines the structure of a rational G-algebra on the algebra of regular
functions k[X]. In particular, we have the isotypic decomposition

k[X] =
⊕

λ∈X+(G)
k[X]λ,

where k[X]λ is the sum of all the simple G-submodules in k[X] with the highest
weight λ.

Definition 3.1. A G-action on X is called special (or horospherical ) if there
exists a dense openW ⊆ X such that the isotropy group of any point x ∈W con-
tains a maximal unipotent subgroup of the group G.

Remark 3.2. If aG-action is special, then the isotropy groupGx contains a max-
imal unipotent subgroup for all x ∈X.
Theorem 3.3 (see [P2, Thm. 5]). A G-action on an affine variety X is special
if and only if

k[X]λ · k[X]µ ⊆ k[X]λ+µ for all λ,µ∈ X+(G).

Corollary 3.4. For a special action, the isotypic decomposition is a X+(G)-
grading on the algebra k[X]. This defines an action of an algebraic torus S onX,
and this action commutes with the G-action.

Furthermore, since S acts on every isotypic component by scalar multiplication,
it follows that every G-invariant subspace in k[X] is S-invariant. In particular, S
preserves every G-invariant ideal in k[X] and thus every G-invariant closed sub-
variety in X. This shows that the torus S preserves all G-orbit closures on X.

We return now to the case of SL2-actions on T-varieties.

Proposition 3.5. Every compatible SL2-action of fiber type on an affine T-
variety X is special.

Proof. For a general x ∈X, let Y = SL2 · x. Then Y ⊆ T · x. Denote by TY the
stabilizer of the subvariety Y in T. Since the torus T normalizes the SL2-action,
it permutes SL2-orbit closures; therefore, TY acts on Y with an open orbit.

Since TY also normalizes the SL2-action, there exists a subtorus SY ⊆ TY of
codimension 1 that centralizes the SL2-action on Y. In particular, it preserves the
open orbit SL2 · x ↪→ Y. But SL2 · x # SL2/H, whereH is the isotropy group of
x in SL2. We have SY ⊆ AutSL2(SL2/H ) and thus

rankAutSL2(SL2/H ) ≥ dim(SL2/H )− 1.

Yet AutSL2(SL2/H )#NSL2(H )/H and rankNSL2(H )/H ≤1, so dim(SL2/H )≤
2. If H coincides either with a maximal torus or with its normalizer in SL2, then
the group NSL2(H )/H is finite—a contradiction. HenceH is a finite extension of
a maximal unipotent subgroup of SL2, and the SL2-action is special.
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Corollary 3.6. Every compatible SL2-action on a toric variety is special.

In the following proposition we come to a partial converse of Proposition 3.5.
Namely, we realize any special action of SL2 as a compatible action of fiber type
with respect to a canonical 2-dimensional torus action.

Proposition 3.7. Every special SL2-variety admits the action of a 2-dimensional
torus such that the SL2-action is both compatible with the torus action and of
fiber type.

Proof. Let T2 be the 2-dimensional torus T · S, where T is a maximal torus in
SL2 and S is the torus described in Corollary 3.4. By construction, the actions of
T and S onX commute and preserve every SL2-orbit closure, and T2 has an open
orbit on every such orbit closure.

In the next proposition we determine the special SL2-actions among the compati-
ble SL2-actions on a complexity-1 affine T-variety.

Proposition 3.8. Let X be a normal affine T-variety of complexity 1 and en-
dowed with a compatible SL2-action. Then the SL2-action is special if and only if
(i) it is of fiber type or (ii) it is of horizontal type, X is toric, and the SL2-action
is compatible with the big torus. In particular, the T-varieties of complexity 1 that
admit a nonspecial compatible SL2-action are given in Theorem 2.18.

Proof. If the SL2-action is of fiber type, then the proposition follows from Propo-
sition 3.5.

Assume that the SL2-action is of horizontal type and special. Since the SL2-
action is compatible, T must be a product of a maximal torus T of SL2 and a
subtorus T ′ that commutes with the SL2-action. In particular, T preserves all the
SL2-isotypic components in k[X].

On the other hand, the 1-dimensional torus S constructed in Corollary 3.4 acts
on any isotypic component by a scalar multiplication. Thus S commutes with T.

We know that general closures of the canonical 2-torus (T ·S)-orbits coincide with
closures of SL2-orbits (see Proposition 3.7). Since the SL2-action is compatible,
T is contained in T; since the SL2-action is of horizontal type, the closures of
SL2-orbits are not contained in the closures of the T-orbits. Hence S is not con-
tained in T, so we may extend T by S to obtain a big torus that acts on X with an
open orbit.

For the rest of this section we let T2 be a 2-dimensional algebraic torus. In the
following, we give a description of compatible SL2-actions of fiber type on T2-
varieties. By Propositions 3.5 and 3.7, this gives a description of all special SL2-
actions on normal affine varieties.

The following example gives a construction of certain T2-varieties admitting a
compatible SL2-action of fiber type.

Example 3.9. LetM be a lattice of rank 2, and let σ be the cone spanned in NQ

by the vectors (1, 0) and (r −1, r) for some r ∈ Z>0. By Example 2.9, the cone σ
admits the SL2-root e = (1, −1).
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We also fix a semiprojective variety Y and an ample Q-Cartier divisor H on Y.
Consider the σ -polyhedral divisor given by D = � · H, where � = (1, 1) + σ.
The σ -polyhedral divisor D is proper because, for every (m1,m2)∈ σ∨

M \ {0}, the
evaluation divisor is given by D(m1,m2) = (m1 +m2) ·H and m1 +m2 > 0.

We have D(e) = D(−e) = 0. As a result, Theorem 2.12 yields that the T2-
variety X = X[Y, D] admits an SL2-action of fiber type and that the generic
isotropy subgroup in SL2 is U(r).

Furthermore, if we let X ′ be the T2-variety obtained with the foregoing con-
struction but with the data Y andH replaced by Y ′ andH ′, thenX is isomorphic to
X ′ if and only if (i) Y # Y ′ and (ii) under this isomorphism,H is linearly equiva-
lent toH ′. Indeed, sinceH is ample, [D2, Prop. 3.3] implies that Y is unique up to
isomorphism. Finally, Corollary 1.3 shows that H and H ′ are linearly equivalent.

Proposition 3.10. Every T2-varietyX endowed with an SL2-action of fiber type
is isomorphic to one in Example 3.9.

Proof. Let X = X[Y, D], where D = ∑
Z �Z · Z is a proper σ -polyhedral divi-

sor on a semiprojective variety Y. Since X is endowed with an SL2-action of fiber
type, the cone σ admits an SL2-root. By Example 2.9 we can assume that σ is the
cone spanned in NQ by the vectors (1, 0) and (r − 1, r). In this case e = (1, −1).

By Remark 2.3(ii), the σ -polyhedra�Z is vZ+σ for vZ ∈NQ. The divisor D(e)
is principal (by Theorem 2.12) and is given by

D(e) =
∑
Z

〈e, vZ〉 · Z.

Furthermore, by Corollary 1.3 we can assume that D(e) = 0; hence, for every Z,

vZ = αZ(1, 1) for some αZ ∈ Q.

Letting H = D((1, 0)) = ∑
Z αZ · Z, we obtain D = � ·H for � = (1, 1)+ σ.

Recall that the divisor H is semiample and big but not necessarily ample. Never-
theless, by [D2, Prop. 3.3], the combinatorial data (Y, D) may be chosen so that
H is ample.

The following theorem is a direct consequence of Proposition 3.7 and Proposi-
tion 3.10.

Theorem 3.11. Every normal affine varietyX of dimension k+2 endowed with a
special SL2-action is uniquely determined by a positive integer r, a semiprojective
variety Y of dimension k, and a linear equivalence class [H ] of ample Q-Cartier
divisors on Y.

Remark 3.12. The variety X can be recovered from the data in Theorem 3.11 as
follows. Let σ be the cone spanned in NQ # Q2 by the rays (1, 0) and (r − 1, r),
r > 0, and let Bs = H 0(Y, OY (sH )). Then X is equivariantly isomorphic to
SpecA, where A is theM-graded algebra

A =
⊕
m∈σ∨

M

Amχ
m such that Am = Bm1+m2 .
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The pair (Y, [H ]) defines, via Demazure’s construction [D2], a T1-varietyW of
dimension k + 1. Then the varietyW with the new, noneffective T1-action given
by T1 → T1, t → t r is nothing but Spec k[X]U+ endowed with the action of the
maximal torus T ⊆ SL2. The corresponding noneffective Z-grading on k[X]U+

is given by

k[X]U+ =
⊕
i∈Z≥0

Bit
ri.

From this classification we obtain the following corollary.

Corollary 3.13. Let X be an affine toric variety endowed with a special SL2-
action. If the canonical torus T2 of the special action is contained in the big torus,
then the SL2-action is normalized by the big torus.

Proof. By Proposition 3.7 and Proposition 3.10, we can assume that X (regarded
as a T2-variety) is given by the combinatorial data X = X[Y, D], where Y is a
normal semiprojective varietyY and D is the proper σ -polyhedral divisor given by

D =
∑
Z

�Z · Z.

Here σ is the cone spanned inNQ # Q2 by the vectors (1, 0) and (r −1, r),�Z =
αZ(1, 1)+ σ, and

∑
Z αZ · Z is an ample Q-Cartier divisor on Y. In this case, the

SL2-root of the cone σ is e = (1, −1). Furthermore, the SL2-action of fiber type
corresponding to e is unique.

Since X is toric and T2 is a subtorus of the big torus, by [AH, Sec. 11] we can
assume that Y is the toric variety given by a fan F ⊆ ÑQ and that D is supported
in the toric divisors of Y. Denote by Zρ the toric divisor corresponding to a ray
ρ ∈F(1). In this case, the X is the toric variety given by the cone σ̃ in NQ ⊕ ÑQ

that is spanned by
(σ, 0̄) and (�Zρ , ρ) ∀ρ ∈F(1).

Hence, the rays of cone σ̃ are spanned by

ν+ = ((1, 0), 0̄), ν− = ((r − 1, r), 0̄),

and νρ = (αZρ(1, 1), ρ) ∀ρ ∈F(1).
We claim that there exists an SL2-root ẽ ∈ M ⊕ M̃ of the cone σ̃ that, when

restricted to σ, gives the SL2-root e of σ. Indeed, ẽ = (e, 0̄) = ((1, −1), 0̄) is an
SL2-root of the cone σ̃ because the duality pairings between ẽ and the rays of σ̃
are 〈ẽ, ν+〉 = 1, 〈ẽ, ν−〉 = −1, and 〈ẽ, νρ〉 = 0 for all ρ ∈F(1).
Remark 3.14. In the case of a special SL2-action on a 3-dimensional toric va-
riety X, by [BeH] the canonical torus T2 is conjugated to a subtorus of the big
torus. So up to conjugation in Aut(X), every special SL2-action on X is normal-
ized by the big torus. In higher dimensions, it is an open problem whether T2 is
conjugated to a subtorus of the big torus.
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Corollary 3.15. Consider a special SL2-action on the affine space As, and as-
sume that the action of the canonical torus T2 on As is linearizable. Then there
exists an SL2-equivariant isomorphism As # k2 ⊕ k s−2, where k2 is the tauto-
logical SL2-module and the SL2-action on k s−2 is identical.

Proof. By Corollary 3.13 we may assume that the SL2-action on As is normalized
by the torus of all diagonal matrices T s and, moreover, that this action is given by
the SL2-root (1, −1, 0, . . . , 0).

4. Quasi-Homogeneous SL2-Threefolds

In this section we study SL2-actions with an open orbit on a normal affine three-
fold X.

4.1. SL2-Threefolds via Polyhedral Divisors

It is a by-product of a classification due to Popov [P1] that most quasi-homogeneous
SL2-threefolds admit the action of a 2-dimensional torus making the SL2-action
compatible (as described more fully in what follows). Such threefolds can thus be
classified with the methods of Section 2.4. In this section, T2 denotes an algebraic
torus of dimension 2 and so of rankM = 2.

Proposition 4.1. Let X be an affine normal quasi-homogeneous SL2-threefold.
Then X admits the action of a 2-dimensional torus T2 making the SL2-action
compatible—except when X is equivariantly isomorphic to SL2/H with H <

SL2 noncommutative and finite. Furthermore, T2 = T ×R, where T is the maxi-
mal torus in SL2 and R is a 1-dimensional torus commuting with the SL2-action.

Proof. See [P1] or [Kr, Chap. 3, Sec. 4.8].

In the following we confine ourselves to the case where X �# SL2/H with H <

SL2 noncommutative and finite, so thatX can be regarded as a T2-variety of com-
plexity 1. Up to conjugation, the only finite commutative subgroups of SL2 are
the cyclic groups

µr = {(
ξ 0
0 ξ−1

) | ξ r = 1
}
, r ∈ Z>0.

Popov’s classification is given in terms of the order of the generic stabilizer rX
and the so-called height hX. We propose to replace the height by the slope h̄X (see
Definitions 4.6 and 4.11 for a precise definition). The main result of this section
is the following theorem. The invariants rX, hX, and h̄X are given in the table of
Theorem 4.2 but their values will not be computed until after the proof of that the-
orem. In the table we also give the number NX of SL2-orbits of X; this number is
given only for reference, as it is not proved in the text.

Theorem 4.2. Let X be an affine, normal, quasi-homogeneous SL2-threefold.
Then X �# SL2/H, with H < SL2 noncommutative and finite, if and only if X #
X[C, D] and the combinatorial data (C, D) are as listed in the following table.
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C σ D rX hX h̄X NX

A
1 {0} �0[0] +�1[1] r — — 1

A
1 cone((1,1)) �0[0] +�1[1] r 1 1 2

P
1 cone((a + 1, a), (r + a − 1, r + a)) �0[0] +�1[1] +�∞[∞] r a

a+r
a

a+1 3

Here a ∈ Q>0 and r ∈ Z>0,

�0 = Conv(0, (1, 0))+ σ, �1 = Conv(0, (r − 1, r))+ σ,

and �∞ = (a, a) + σ for a ∈ Q>0. Furthermore, X[C, D] is an (SL2/µr)-
embedding, and X is an homogeneous space of SL2 if and only if σ = {0}.
Before proving this theorem, we need a preliminary result. Let X = X[C, D]
for some σ -polyhedral divisor on a smooth curve. Since the SL2-action has an
open orbit, the general isotropy group is finite and so the SL2-action is nonspe-
cial. Hence, by Proposition 3.8, the SL2-action is of horizontal type (C = A1 or
C = P1), and we may and will assume in the sequel that D is as in Theorem 2.18.

We will use the following general lemma to identify the σ -polyhedral divisors
in Theorem 2.18 that give rise to quasi-homogeneous SL2-actions. Here the di-
mension of a domain A is the dimension of the algebraic variety SpecA.

Lemma 4.3. Let X be a normal affine variety endowed with a nonspecial SL2-
action. ThenX has finite generic stabilizer if and only if dim k[X]SL2 ≤ dimX−3.

Proof. Assume first that X has finite generic stabilizer. By Rosenlicht’s theorem,
the transcendence degree of k(X)SL2 is equal to the codimension of the general
orbit [Do, Cor. 6.2], so

tr.deg k(X)SL2 = dimX − 3

(here “tr.deg” denotes the transcendence degree of a field over the base field k).
Since Frac k[X]SL2 ⊆ k(X)SL2, we have

dim k[X]SL2 ≤ dimX − 3.

Assume now that the generic stabilizer has positive dimension. Since the SL2-
action is nonspecial, the generic stabilizer is 1-dimensional and coincides either
with T orN. In both cases the subgroup has a finite index in its normalizer in SL2.

By [Lu2, Cor. 3], we obtain that the general SL2-orbits are closed in X. Hence
they are separated by regular invariants, so dim k[X]SL2 = dimX − 2.

We now proceed to the proof of the main theorem in this section.

Proof of Theorem 4.2. We prove first the “only if” part. Let X = X[C, D] be an
affine T2-variety admitting a compatible SL2-action with an open orbit. We have
C = A1 or C = P1, and we can assume that D is as in Theorem 2.18. Let ∂± be
the homogeneous LNDs of horizontal type corresponding to the U±-action on X,
and let ±e be the degree of ∂±.

Since v+
1 (e) = −1, it follows that e is a primitive lattice vector; therefore, up

to automorphism of the lattice M, we may and will assume e = (1, −1). Assume
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for a moment that C = P1. In this case the cone σ is full-dimensional and so σ∨
is pointed; hence ±e /∈ σ∨. This yields that e⊥ = Q(1, 1) intersects with σ only
once and so �∞ = (a, a)+ σ.

We have k[X]U± = ker ∂±. Because SL2 is generated by U± as a group,
k[X]SL2 = ker ∂+ ∩ ker ∂−. Hence, the compatible SL2-action onX[C, D] has an
open orbit if and only if

ker ∂+ ∩ ker ∂− = k.

By Lemma 1.11, if deg D|A1 has only two vertices then ker ∂+ ∩ ker ∂− � k.
Hence the second family of σ -polyhedral divisors in Theorem 2.18 does not give
quasi-homogeneous SL2-threefolds. In the following, we assume that D is as in
the first family in Theorem 2.18.

Up to an automorphism of the lattice N, we can assume v−
0 = (1, 0) and v+

1 =
(r −1, r) with r ∈ Z≥0. If r = 0 then again deg D|A1 has only two vertices and so
ker ∂+ ∩ ker ∂− � k. Therefore, r ≥ 1. This shows that �0 and �1 have the form
given in the theorem.

It remains only to find the tail cone σ. Let C = A1. In this case, ±e ∈ σ∨ and
so σ = {0} or σ = cone((1, 1)). If C = P1, we let σ = cone(ρ1, ρ2). Since ±e /∈
σ∨, by Lemma 1.12 we have

deg D ∩ ρ1 �= ∅ and deg D ∩ ρ2 �= ∅.
This yields ρ1 = cone(a + 1, a) and ρ2 = cone(r + a − 1, r + a) with a > 0,
thereby proving the “only if” part.

Now let X = X[C, D] be as in the theorem. By Theorem 2.18, a simple
verification shows that X admits an SL2-action, and by Lemma 1.11 we have
ker ∂+ ∩ ker ∂− = k. Hence the SL2-action has finite generic stabilizer and so X
is a quasi-homogeneous SL2-threefold.

The last assertion of the theorem is shown in Lemmas 4.4 and 4.5 to follow.

4.2. Parameters

In the rest of this section we define and compute the parameters rX, hX, and h̄X
given in the table of Theorem 4.2. First, we give a geometric interpretation of the
parameter rX.

Lemma 4.4. Let X = X[C, D] be as in Theorem 4.2. Then X is equivariantly
isomorphic to the homogeneous space SL2/µr if and only ifC = A1 and σ = {0}.
Proof. Assume that X is a homogeneous space. The statement is equivalent to
claiming that the general orbit of the acting torus is closed. Let us consider G =
SL2 × R, where R is the 1-dimensional torus commuting with SL2 (see Propo-
sition 4.1) and so X is a homogeneous space of G. Then the acting torus T2 =
T ×R is a reductive subgroup ofG. By [Lu1], the general T2-orbit onX is closed.

To complete the proof, we need only show that r (in the definition of�1) is the
order of the generic stabilizer of the SL2-action on X. By [Kr, II.3.1, Satz 3], the
algebra k[SL2 ] viewed as an (SL2 ×SL2)-module has the isotypic decomposition
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k[SL2 ] #
⊕
d≥0

V(d )⊗ V(d ),

where V(d ) is the simple SL2-module of binary forms of degree d. The 1-dimen-
sional subtorusR commuting with the (left) SL2-action may be identified with the
maximal torus in the second (right) SL2. Then the homogeneous space SL2/µr is
obtained as the quotient of SL2 by the cyclic subgroup of order r in R. So simple
SL2-submodules in k[SL2/µr ] have the form V(d ) ⊗ w, where w runs through
the R-weight vectors of V(d ) whose weight is divisible by r.

The subalgebra of U+-invariants of k[SL2/µr ] is spanned by the elements
v ⊗ w ∈ V(d ) ⊗ w, where v is highest-weight vector in V(d ). Let T be the
maximal torus in the (left) SL2-action. We have shown that the order r of the
generic stabilizer is the minimal integer such that ker ∂+ contains a T -weight vec-
tor of weight r that is not R-invariant.

We return now to the combinatorial data X = X[C, D]. Since e = (1, −1), the
grading given byR corresponds to the raypR = (1, 1); by the proof of Lemma 2.17,
the grading given by T corresponds to the raypT = v−

0 −v+
1 = (1, 0)−(r−1, r) =

(−r + 2, r). By Theorem 1.10, the cone of the semigroup algebra ker ∂+ is dual
to ω = cone((−1, 0), (r − 1, r)). The semigroup ω∨

M is spanned by m1 = (0, 1),
m2 = (−r, r − 1), and m3 = (−1, 1), and we have

〈m1,pT 〉 = 〈m2,pT 〉 = r, 〈m3,pT 〉 = 2, and 〈m3,pR〉 = 0.

Hence r is the minimal weight such that the ker ∂+ contains a T -weight vector that
is not R-invariant, and the lemma follows.

Lemma 4.5. Let X = X[C, D] be as in Theorem 4.2. Then r = rX is the order
of the generic stabilizer and X is an (SL2/µr)-embedding.

Proof. If C = A1, σ = {0}, and r ≥ 1, then the result follows from Lemma 4.4.
Let now X = X[C, D] be as in Theorem 4.2 with σ �= {0}. By [A+, Thm. 17],
there is a T2-equivariant open embedding SL2/µr ↪→ X. Hence the lemma fol-
lows from the homogeneous case.

In the following we assume that X is not equivariantly isomorphic to a homoge-
neous space. Let r be the order of the generic stabilizer ofX. The open embedding
SL2/µr ↪→ X induces an inclusion of the algebras of U+-invariants k[X]U+ ↪→
k[SL2/µr ]U+ . Both these algebras are semigroup algebras. Moreover, the cones
of these semigroup algebras share a common ray inMQ. This ray will be denoted
by ρU+ .

Let ω ⊆ MQ # Q2 be a full-dimensional cone and let ρ be one of its rays.
It is well known that, up to automorphism of the lattice M, we can assume ρ =
cone((1, 0)) and ω = cone((1, 0), (b, c)) with 1 ≤ b ≤ c and gcd(b, c) = 1. We
define the slope of ω with respect to ρ as b/c ∈ Q ∩ (0,1].

Definition 4.6. Let X be a nonhomogeneous quasi-homogeneous SL2-three-
fold. The slope h̄X of X is the slope of the cone of the ring of U+-invariants with
respect to the ray ρU+ .
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Remark 4.7. This definition does not coincide with the height defined by Popov
and used in the literature [BHa; G; Kr; P1]. That height will be introduced shortly
and denoted by the plain letter hX. We will also show the relation between slope
and height. The main motivation for using a different definition is that the results
have simpler statements.

Let X = X[C, D] be as in Theorem 4.2, and assume that X is not a homogeneous
space. If C = A1 and σ = cone((1, 1)), then by Theorem 1.10 the cone of the ring
of U+-invariants k[X]U+ is given by cone((0, 1)(−1, 1)) and so the slope of X is
h̄X = 1. Assume now that C = P1. In this case, by Theorem 1.10 the cone of the
ring k[X]U+ is given by cone((0, 1), (−a, a+1)) and the common ray of the cones
of k[X]U+ and k[SL2/µr ]U+ is spanned by the lattice vector (0, 1). Therefore,
the slope of X is

h̄X = a

a + 1
∈ Q ∩ (0, 1). (12)

Because the function defining h̄X in terms of a is one-to-one, we have the follow-
ing corollary.

Corollary 4.8. Two nonhomogeneous quasi-homogeneous SL2-threefolds X
and X ′ are equivariantly isomorphic if and only if rX = rX ′ and h̄X = h̄X ′ .

The next corollary gives a criterion for a quasi-homogeneous SL2-threefold to be
toric. This result is also given in [BHa; G] in terms of the height of X.

Corollary 4.9. Let X be a quasi-homogeneous SL2-threefold. Then X is a
toric variety if and only if X is nonhomogeneous and h̄X = p/(p + 1) for some
p ∈ Z>0.

Proof. Let X # X[C, D], with C = A1 or C = P1 and with D as in Theorem 4.2.
By Corollaries 1.3 and 1.4, we obtain that X is toric if and only if C = P1 and a is
an integer. Let now h̄ = p/q with gcd(p, q) = 1 and p, q ≥ 0. By (12) we have
a = p/(q − p) and so the result follows.

Remark 4.10. In Corollary 4.9, the SL2-action is not compatible with the big
torus because otherwise the SL2-action would be special.

4.3. Relation between Slope and Height

Let X be a nonhomogeneous quasi-homogeneous SL2-threefold.

Definition 4.11. The height hX of X is defined as follows. If rX = 1, then the
height of X is the same as the slope of X; that is, hX = h̄X. If rX > 1, then there
is a unique, nonhomogeneous, quasi-homogeneous SL2-threefoldX ′ with rX ′ = 1
such that X = X ′/µr (see [P1] or [Kr, III.4.9, Satz 1]). In this case, the height of
X is defined as the slope of X ′: hX = h̄X ′ .

In this section we compute the height of X in terms of the slope and the order of
the generic stabilizer. We also state Corollary 4.9 in terms of the height.
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Assume that rX > 1 and let X ′ be as in Definition 4.11. We letM,N, σ,C, D =∑
�z · z andM ′,N ′, σ ′,C ′, D′ = ∑

�′
z · z be the combinatorial data ofX andX ′,

respectively. By Definition 4.11 we have

�0 = Conv(0, (1, 0))+ σ, �1 = Conv(0, (r − 1, r))+ σ,

�′
0 = Conv(0, (1, 0))+ σ ′, �′

1 = Conv(0, (0, 1))+ σ ′.

The morphism ϕ : X ′ → X is given by the quotient by the group µr contained
in the T2 acting on X ′. Thus the morphism ϕ is given by a morphisms ϕ∗ : N ′ →
N of lattices and hence C # C ′. Furthermore, since the morphism ϕ∗ sends �′

0
into �0 and �′

1 into �1 we have that ϕ∗ is given by

(1, 0) → (1, 0) and (0, 1) → (r − 1, r).

If C = A1, then C ′ # A1 and so hX = h̄X ′ = 1. So assume that C = P1 and let
�∞ = (a, a)+ σ. In this case, C ′ # P1 and�′∞ = 1

r
(a, a)+ σ ′. Now (12) yields

hX = h̄X ′ = a

a + r ∈ Q ∩ (0, 1). (13)

The expressions (12) and (13) imply the following corollary.

Corollary 4.12. Let X be a nonhomogeneous quasi-homogeneous SL2-three-
fold. Then

hX = h̄X

rX − (rX − 1)h̄X
.

Finally, a direct computation shows that—in terms of the height—Corollary 4.9
takes the same form as in [BHa; G].

Corollary 4.13. Let X be a nonhomogeneous quasi-homogeneous SL2-three-
fold. Let hX = p/q, where gcd(p, q) = 1 and p, q > 0. Then X is a toric variety
if and only if q − p divides r.

4.4. Generically Transitive SL2 × T s-Action

Consider now the reductive groupG = SL2 ×T s for some s ∈ Z≥0. Any action of
this group on a normal affine variety is compatible with the action of the torus T =
T × T s, where T ⊆ SL2 is a maximal torus. The results of Section 2.4 may be re-
garded as a classification of generically transitiveG-actions under the assumption
that the complexity of the corresponding T-action does not exceed 1. In this sec-
tion we have dealt with the case s = 1, which (because of Proposition 4.1) yields a
classification of generically transitiveG-actions with s = 0. The following exam-
ple shows that our techniques do not allow one to describe all generically transitive
G-actions with s = 1.

Example 4.14. Let G = SL2 × k∗ and X = V3 = 〈x3, x 2y, xy2, y3〉 be a sim-
ple SL2-module of binary forms of degree 3, where k∗ acts by scalar multiplica-
tion. The moduleV3 contains a1-parameter family of general SL2-orbits—namely,
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SL2 · (α(x3 + y3)), α ∈ k \{0}. Therefore,G acts onV3 with an open orbit that is
isomorphic toG/µ2. The torus T = T × k∗ acts onX with complexity 2. Assume
that T may be extended by a torus R commuting with G. Then R commutes with
k∗ and its action descends to the projectivization P(V3). As a result, R maps to a
subtorus of PGL 4. Since V3 is simple, it follows from Schur’s lemma that there
are no nonidentity elements in PGL 4 commuting with the image of SL2.

Appendix: The Commutator Formulas

In this appendix we prove the commutator formulas (9) and (10) used in Sec-
tion 2.4. The computations are routine but cumbersome, so we put them in an
appendix to streamline the text presentation.

We retain the notation used in Section 2.4. The main idea is that from (6) and
(7) we can obtain formulas for ∂±(χm) and for ∂±(t) by applying the Leibniz rule.
Then we use these formulas to compute the commutator δ = [∂+ , ∂−].

A simple evaluation of (6) and (7) yields

∂−(t) = d− · χ−e · (q ′)−1 · q1+s−, ∂−(χm) = d− · v−
z−0
(m) · χm−e · q s−,

and
∂+(t) = d+ · ϕe · χe · t1+s+.

Evaluating now (7) for r = 0, we obtain

(ϕm)′ · χm · ∂+(t)+ ϕm · ∂+(χm) = d+ · v+
0 (m) · ϕm+e · χm+e · t s+.

The definition of αm then yields

∂+(χm) = d+ · (v+
0 (m)− αm) · ϕe · χm+e · t s+.

Proof of (9). We first compute ∂+∂−(t) and ∂−∂+(t):

∂+∂−(t) = ∂+(d− · χ−e · (q ′)−1 · q1+s−)

= d+d−ϕet s
+
q s

−
(
(αe − v+

0 (e)) ·
q

q ′ − q ′′qt
(q ′)2

+ (1 + s−) · t
)

;

∂−∂+(t) = ∂−(d+ · χe · t1+s+)

= d+d−ϕet s
+
q s

−
(
v−
z−0
(e) · t + (1 + s+ + αe) · q

q ′

)
.

The commutator is therefore given by

δ(t) = d+d−ϕet s
+
q s

−
(
(1 + s− − v−

z−0
(e)) · t − (1 + s+ + v+

0 (e)) ·
q

q ′ − q ′′qt
(q ′)2

)
,

and (9) follows because s+ = −1/d+ − v+
0 (e) and s− = −1/d− + v−

z−0
(e).

Proof of (10). In this case we have z±
0 = 0, z±∞ = ∞, and d± = d. Hence

∂−(t) = d · χ−e · t1+s−, ∂−(χm) = d · v−
0 (m) · χm−e · t s−,

∂+(t) = d · ϕe · χe · t1+s+, ∂+(χm) = d · (v+
0 (m)− αm) · ϕe · χm+e · t s+.
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This yields

∂+(χmt r ) = dϕe · (v+
0 (m)+ r − αm) · χm+et r+s

+
,

∂−(χmt r ) = d · (v−
0 (m)+ r) · χm−et r+s

−
.

Recall that s+ = −1/d − v+
0 (e), s

− = −1/d + v−
0 (e), v0 = v−

0 − v+
0 , and ν =

v0(e)− 1/d = s+ + s− + 1/d. Now a direct computation yields

∂+∂−(χmt r ) = d 2χe · (v−
0 (m)+ r) · (v+

0 (m)+ ν + r − αm + αe) · χmtν−1/d,

∂−∂+(χmt r ) = d 2χe · (−tα ′
m + αe(v+

0 (m)+ r − αm)
+ (v+

0 (m)+ r − αm)(v−
0 (m)+ ν + r)) · χmtν−1/d.

Formula (10) follows by computing δ(χmt r ) = ∂+∂−(χmt r )− ∂−∂+(χmt r ).
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