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THE AUTOMORPHISM GROUP OF A VARIETY

WITH TORUS ACTION OF COMPLEXITY ONE

IVAN ARZHANTSEV, JÜRGEN HAUSEN, ELAINE HERPPICH, AND ALVARO LIENDO

Abstract. We consider a normal complete rational variety with a torus
action of complexity one. In the main results, we determine the roots
of the automorphism group and give an explicit description of the root
system of its semisimple part. The results are applied to the study
of almost homogeneous varieties. For example, we describe all almost
homogeneous (possibly singular) del Pezzo K∗-surfaces of Picard number
one and all almost homogeneous (possibly singular) Fano threefolds of
Picard number one having a reductive automorphism group with two-
dimensional maximal torus.
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1. Introduction

For any complete rational algebraic variety X , the unit component Aut(X)0 of
its automorphism group is linear algebraic and it is a natural desire to understand
the structure of this group. Essential insight is provided by the roots, i.e., the eigen-
values of the adjoint representation of a maximal torus on the Lie algebra. Recall
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that if a linear algebraic group is reductive, then its set of roots forms a so-called
root system and, up to coverings, determines the group. In the general case, the
group is generated by its maximal torus and the additive one-parameter subgroups
corresponding to the roots. Seminal work on the structure of automorphism groups
has been done by Demazure [7] for the case of smooth complete toric varieties X .
Here, the acting torus T of X is as well a maximal torus of Aut(X)0 and Demazure
described the roots of Aut(X)0 with respect to T in terms of the defining fan of
X ; see [6], [5], [17], [19] for further development in this direction. Cox [6] presented
an approach to the automorphism group of a toric variety via the homogeneous
coordinate ring and thereby generalized Demazure’s results to the simplicial case;
see [4] for an application of homogeneous coordinates to the study of automorphism
groups in the more general case of spherical varieties.

In the present paper, we go beyond the toric case in the sense that we consider
normal complete rational varietiesX coming with an effective torus action T×X →
X of complexity one, i.e., the dimension of T is one less than that of X ; the simplest
nontrivial examples are K∗-surfaces, see [20], [21]. Our approach is based on the
Cox ring R(X) and the starting point is the explicit description of R(X) in the
complexity one case provided by [12], [13]; see also Section 3 for details. Generators
and relations of R(X) as well as the grading by the divisor class group Cl(X) can
be encoded in a sequence A = a0, . . . , ar of pairwise linearly independent vectors
in K2 and an integral matrix

P =




−l0 l1 . . . 0 0
. . . . . . . . . . . . . . . . . . . . .
−l0 0 . . . lr 0
d0 d1 . . . dr d′




of size (n+m)× (r+ s), where li are nonnegative integral vectors of length ni, the
di are s×ni blocks, d

′ is an s×m block and the columns of P are pairwise different
primitive vectors generating the column space Qr+s as a convex cone. Conversely,
the data A, P always define a Cox ring R(X) = R(A, P ) of a complexity one T -
variety X . The dimension of X equals s + 1 and the acting torus T has Zs as its
character lattice. The matrix P determines the grading and the exponents occuring
in the relations, whereas A is responsible for continuous aspects, i.e., coefficients in
the relations.

The crucial concept for the investigation of the automorphism group Aut(X)
are the Demazure P -roots, which we introduce in Definition 5.2. Roughly speaking,
these are finitely many integral linear forms u on Zr+s satisfying a couple of linear
inequalities on the columns of P . In particular, given P , the Demazure P -roots
can be easily determined. In contrast with the toric case, the Demazure P -roots
are divided into two types. Firstly, there are “vertical” ones corresponding to root
subgroups whose orbits are contained in the closures of generic torus orbits. Such
Demazure P -roots are defined by free generators of the Cox ring and their de-
scription is analogous to the toric case. Secondly, there are “horizontal” Demazure
P -roots corresponding to root subgroups whose orbits are transversal to generic
torus orbits. Dealing with this type heavily involves the relations among genera-
tors of the Cox ring. Our first main result expresses the roots of Aut(X)0 and,
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moreover, the approach shows how to obtain the corresponding root subgroups, see
Theorem 5.5 and Corollary 5.11 for the precise formulation:

Theorem. Let X be a nontoric normal complete rational variety with an effective

torus action T × X → X of complexity one. Then Aut(X) is a linear algebraic

group having T as a maximal torus and the roots of Aut(X) with respect to T are

precisely the Zs-parts of the Demazure P -roots.

The basic idea of the proof is to relate the group Aut(X) to the group of graded
automorphisms of the Cox ring. This is done in Section 2 more generally for arbi-
trary Mori dream spaces, i.e., normal complete varieties with a finitely generated
Cox ring R(X). In this setting, the grading by the divisor class group Cl(X) defines
an action of the characteristic quasitorus HX = SpecK[Cl(X)] on the total coordi-

nate space X = SpecR(X) and X is the quotient of an open subset X̂ ⊆ X by the
action of HX . The group of Cl(X)-graded automorphisms of R(X) is isomorphic
to the group Aut(X, HX) of HX -equivariant automorphisms of X . Moreover, the
group Bir2(X) of birational automorphisms of X defined on an open subset of X
having complement of codimension at least two plays a role. Theorem 2.1 brings
all groups together:

Theorem. Let X be a (not necessarily rational) Mori dream space. Then there

exists a commutative diagram of morphisms of linear algebraic groups where the

rows are exact sequences and the upwards inclusions are of finite index:

1 // HX
// Aut(X, HX) // Bir2(X) // 1

1 // HX
// Aut(X̂, HX) //

?�

OO

Aut(X) //
?�

OO

1.

This means in particular that the unit component of Aut(X) coincides with that
of Bir2(X), which in turn is determined by Aut(X, HX), the group of graded auto-
morphisms of the Cox ring. Coming back to rational varieties X with torus action
of complexity one, the task then is a detailed study of the graded automorphism
group of the rings R(X) = R(A, P ). This is done in a purely algebraic way. The
basic concepts are provided in Section 3. The key result is the description of the
“primitive homogeneous locally nilpotent derivations” on R(A, P ) given in Theo-
rem 4.4. The proof of the first main theorem in Section 5 then relates the Demazure
P -roots via these derivations to the roots of the automorphism group Aut(X).

In Section 6 we apply our results to the study of almost homogeneous rationalK∗-
surfaces X of Picard number one; here, almost homogeneous means that Aut(X)
has an open orbit in X . It turns out that these surfaces are always (possibly
singular) del Pezzo surfaces and, up to isomorphism, there are countably many of
them, see Corollary 6.3. Finally in the case that X is log terminal with only one
singularity, we give classifications for fixed Gorenstein index.

In Section 7, we investigate the semisimple part Aut(X)ss ⊆ Aut(X) of the
automorphism group; recall that the semisimple part of a linear algebraic group
is a maximal connected semisimple subgroup. In the case of a toric variety, by
Demazure’s results, the semisimple part of the automorphism group has a root
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system composed of systems Ai. Here comes a summarizing version of our second
main result, which settles the complexity one case; see Theorem 7.2 for the detailed
description.

Theorem. Let X be a nontoric normal complete rational variety with an effective

torus action T ×X → X of complexity one. The root system Φ of the semisimple

part splits as Φ = Φvert ⊕ Φhor with

Φvert =
⊕

Cl(X)

AmD−1, Φhor ∈ {∅, A1, A2, A3, A1 ⊕A1, B2},

where mD is the number of invariant prime divisors in X with infinite T -isotropy
that represent a given class D ∈ Cl(X). The number mD as well as the possibilities

for Φhor can be read off from the defining matrix P .

Examples and applications of this result are discussed in Section 8. The main
results concern varieties of dimension three which are almost homogeneous under
the action of a reductive group and additionally admit an effective action of a two-
dimensional torus. In Proposition 8.4, we explicitly describe the Cox rings of these
varieties. Moreover, in Proposition 8.6, we list all those having Picard number one
and a reductive automorphism group; it turns out that any such variety is a Fano
variety.

2. The Automorphism Group of a Mori Dream Space

Let X be a normal complete variety defined over an algebraically closed field
K of characteristic zero with finitely generated divisor class group Cl(X) and Cox
sheaf R; we recall the definition below. If X is a Mori dream space, i.e., the Cox
ring R(X) = Γ(X, R) is finitely generated as a K-algebra, then we obtain the
following picture

SpecXR = X̂ ⊆ X = SpecR(X),

//HX

��
X

where the total coordinate space X comes with an action of the characteristic qu-

asitorus HX := SpecK[Cl(X)], the characteristic space X̂ , i.e. the relative spec-
trum of the Cox sheaf, occurs as an open HX -invariant subset of X and the map

pX : X̂ → X is a good quotient for the action of HX .

We study automorphisms of X in terms of automorphisms of X and X̂. By
an HX-equivariant automorphism of X we mean a pair (ϕ, ϕ̃), where ϕ : X → X
is an automorphism of varieties and ϕ̃ : HX → HX is an automorphism of linear
algebraic groups satisfying

ϕ(t ·x) = ϕ̃(t) ·ϕ(x) for all x ∈ X, t ∈ HX .

We denote the group of HX -equivariant automorphisms of X by Aut(X, HX).

Analogously, one defines the group Aut(X̂, HX) of HX -equivariant automorphisms

of X̂. A weak automorphism of X is a birational map ϕ : X → X which defines
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an isomorphism of big open subsets, i.e., there are open subsets U1, U2 ⊆ X with
complement X \ Ui of codimension at least two in X such that ϕ|U1

: U1 → U2

is a regular isomorphism. We denote the group of weak automorphisms of X by
Bir2(X).

Theorem 2.1. Let X be a Mori dream space. Then there exists a commutative

diagram of morphisms of linear algebraic groups where the rows are exact sequences

and the upwards inclusions are of finite index:

1 // HX
// Aut(X, HX) // Bir2(X) // 1

1 // HX
// Aut(X̂, HX) //

?�

OO

Aut(X) //
?�

OO

1

Moreover, there is a big open subset U ⊆ X with Aut(U) = Bir2(X) and the groups

Aut(X, HX), Bir2(X), Aut(X̂, HX), Aut(X) act morphically on X, U , X̂, X,

respectively.

Our proof uses some ingredients from algebra, which we develop first. LetK be a
finitely generated abelian group and consider a finitely generated integral K-algebra

R =
⊕

w∈K

Rw.

The weight monoid of R is the submonoid S ⊆ K consisting of the elements w ∈ K
with Rw 6= 0. The weight cone of R is the convex cone ω ⊆ KQ in the rational
vector space KQ = K ⊗Z Q generated by the weight monoid S ⊆ K. We say that
the K-grading of R is pointed if the weight cone ω ⊆ KQ contains no line and
R0 = K holds. By an automorphism of the K-graded algebra R we mean a pair
(ψ, F ), where ψ : R → R is an isomorphism of K-algebras and F : K → K is an
isomorphism such that ψ(Rw) = RF (w) holds for all w ∈ K. We denote the group
of such automorphisms of R by Aut(R, K).

Proposition 2.2. Let K be a finitely generated abelian group and R =
⊕

w∈K Rw

a finitely generated integral K-algebra with R∗ = K∗. Suppose that the grading is

pointed. Then Aut(R, K) is a linear algebraic group over K and R is a rational

Aut(R, K)-module.

Proof. The idea is to represent the automorphism group Aut(R, K) as a closed
subgroup of the linear automophism group of a suitable finite dimensional vector
subspace V 0 ⊆ R. In the subsequent construction of V 0, we may assume that the
weight cone ω generates KQ as a vector space.

Consider the subgroup Γ ⊆ Aut(K) of Z-module automorphisms K → K such
that the induced linear isomorphism KQ → KQ leaves the weight cone ω ⊆ KQ

invariant. By finite generation of R, the cone ω is polyhedral and thus Γ is finite.
Let f1, . . . , fr ∈ R be homogeneous generators and denote by wi := deg(fi) ∈ K
their degrees. Define a finite Γ-invariant subset and a vector subspace

S0 := Γ · {w1, . . . , wr} ⊆ K, V 0 :=
⊕

w∈S0

Rw ⊆ R.
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For every automorphism (ψ, F ) of the graded algebra R, we have F (S0) = S0

and thus ψ(V 0) = V 0. Moreover, (ψ, F ) is uniquely determined by its restriction
on V 0. Consequently, we may regard the automorphism group H := Aut(R, K) as
a subgroup of the general linear group GL(V 0). Note that every g ∈ H

(i) permutes the components Rw of the decomposition V 0 =
⊕

w∈S0 Rw,
(ii) satisfies

∑
ν aνg(f1)

ν1 · · · g(fr)
νr = 0 for any relation

∑
ν aνf

ν1
1 · · · fνr

r = 0.

Obviously, these are algebraic conditions. Moreover, every g ∈ GL(V 0) satisfying
the above conditions can be extended uniquely to an element of Aut(R, K) via

g
(∑

ν

aνf
ν1
1 · · · fνr

r

)
:=

∑

ν

aνg(f1)
ν1 · · · g(fr)

νr .

Thus, we see that H ⊆ GL(V 0) is precisely the closed subgroup defined by the
above conditions (i) and (ii). In particular H = Aut(R, K) is linear algebraic.
Moreover, the symmetric algebra SV 0 is a rational GL(V 0)-module, hence SV 0 is
a rational H-module for the algebraic subgroup H of GL(V 0), and so is its factor
module R. �

Corollary 2.3. Let K be a finitely generated abelian group and R =
⊕

w∈K Rw

a finitely generated integral K-algebra with R∗ = K∗. Consider the corresponding

action of H := SpecK[K] on X := SpecR. Then we have a canonical isomorphism

Aut(X, H) → Aut(R, K), (ϕ, ϕ̃) 7→ (ϕ∗, ϕ̃∗),

where ϕ∗ is the pullback of regular functions and ϕ̃∗ the pullback of characters. If the

K-grading is pointed, then Aut(X, H) is a linear algebraic group acting morphically

on X.

We will also need details of the construction of the Cox sheaf R on X , which
we briefly recall now. Denote by c : WDiv(X) → Cl(X) the map sending the Weil
divisors to their classes, let PDiv(X) = ker(c) denote the group of principal divisors
and choose a character, i.e., a group homomorphism χ : PDiv(X) → K(X)∗ with

div(χ(E)) = E, for all E ∈ PDiv(X).

This can be done by prescribing χ suitably on a Z-basis of PDiv(X). Consider the
associated sheaf of divisorial algebras

S :=
⊕

WDiv(X)

SD, SD := OX(D).

Denote by I the sheaf of ideals of S locally generated by the sections 1 − χ(E),
where 1 is homogeneous of degree zero, E runs through PDiv(X) and χ(E) is
homogeneous of degree −E. The Cox sheaf associated to K and χ is the quotient
sheaf R := S/I together with the Cl(X)-grading

R =
⊕

[D]∈Cl(X)

R[D], R[D] := π
( ⊕

D′∈c−1([D])

SD′

)
,

where π : S → R denotes the projection. The Cox sheaf R is a quasicoherent sheaf
of Cl(X)-graded OX -algebras. The Cox ring is the ring R(X) of global sections of
the Cox sheaf.
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Proof of Theorem 2.1. We set GX := Aut(X, HX) for short. According to Corol-
lary 2.3, the group GX is linear algebraic and acts morphically on X . Looking at
the representations of HX and GX on Γ(X, O) = R(X) defined by the respective
actions, we see that the canonical inclusion HX → GX is a morphism of linear
algebraic groups.

Next we construct the subset U ⊆ X from the last part of the statement. Con-

sider the translates g·X̂, where g ∈ GX . Each of them admits a good quotient with
a complete quotient space:

pX,g : g · X̂ → (g · X̂)//HX .

By [3], there are only finitely many open subsets of X with such a good quotient.

In particular, the number of translates g · X̂ is finite.
Let W ⊆ X denote the maximal open subset such that the restricted quotient

Ŵ → W , where Ŵ := p−1
X (W ), is geometric, i.e., has the HX -orbits as its fibers.

Then, for any g ∈ GX , the translate g · Ŵ ⊆ g · X̂ is the (unique) maximal open
subset which is saturated with respect to the quotient map pX,g and defines a
geometric quotient. Consider

Û :=
⋂

g∈GX

g · Ŵ ⊆ X̂.

By the preceding considerations Û is open, and by construction it is GX -invariant

and saturated with respect to pX . By [1, Prop. 6.1.6] the set Ŵ is big in X .

Consequently, also Û is big in X . Thus, the (open) set U := pX(Û) is big in X .
By the universal property of the geometric quotient, there is a unique morphical

action of GX on U making pX : Û → U equivariant. Thus, we have homomorphism
of groups

GX → Aut(U) ⊆ Bir2(X).

We show that π : GX → Bir2(X) is surjective. Consider a weak automorphism
ϕ : X → X . The pullback defines an automorphism of the group of Weil divisors

ϕ∗ : WDiv(X) → WDiv(X), D 7→ ϕ∗D.

As in the construction of the Cox sheaf, consider the sheaf of divisorial algebras
S =

⊕
SD associated to WDiv(X) and fix a character χ : PDiv(X) → K(X)∗ with

div(χ(E)) = E for any E ∈ PDiv(X). Then we obtain a homomorphism

α : PDiv(X) → K∗, E 7→
ϕ∗(χ(E))

χ(ϕ∗(E))
.

We extend this to a homomorphism α : WDiv(X) → K∗ as follows. Write Cl(X)
as a direct sum of a free part and cyclic groups Γ1, . . . , Γs of order ni. Take
D1, . . . , Dr ∈ WDiv(X) such that the classes of D1, . . . , Ds are generators for
Γ1, . . . , Γs and the remaining ones define a basis of the free part. Set

α(Di) :=
ni
√
α(niDi) for 1 6 i 6 s, α(Di) := 1 for s+ 1 6 i 6 r.

Then one directly checks that this extends α to a homomorphism WDiv(X) → K∗.
Using α(E) as a “correction term”, we define an automorphism of the graded sheaf
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S of divisorial algebras: for any open set V ⊆ X we set

ϕ∗ : Γ(V, SD) → Γ(ϕ−1(V ), Sϕ∗(D)), f 7→ α(D)f ◦ ϕ.

By construction ϕ∗ sends the ideal I arising from the character χ to itself. Conse-
quently, ϕ∗ descends to an automorphism (ψ, F ) of the (graded) Cox sheaf R; note
that F is the pullback of divisor classes via ϕ. The degree zero part of ψ equals the
usual pullback of regular functions on X via ϕ. Thus, the element in Aut(X, HX)

defined by Specψ : Û → Û maps to ϕ.
Clearly, HX lies in the kernel of π : GX → Bir2(X). For the reverse inclusion,

consider an element g ∈ ker(π). Then g is a pair (ϕ, ϕ̃) and, by the construction
of π, we have a commutative diagram

Û
ϕ //

pX

��

Û

pX

��
U

id
// U .

In particular, ϕ stabilizes all HX -invariant divisors. It follows that the pullback

ϕ∗ on Γ(Û , O) = R(X) stabilizes the homogeneous components. Thus, for any
homogeneous f of degree w, we have ϕ∗(f) = λ(w)f with a homomorphism λ : K →
K∗. Consequently ϕ(x) = h · x holds with an element h ∈ HX . The statements
concerning the upper sequence are verified.

Now, consider the lower sequence. Since X̂ is big in X , every automorphism

of X̂ extends to an automorphism of X . We conclude that Aut(X̂, HX) is the

(closed) subgroup of GX leaving the complement X \ X̂ invariant. As seen before,

the collection of translates GX · X̂ is finite and thus the subgroup Aut(X̂, HX) of
GX is of finite index. Moreover, lifting ϕ ∈ Aut(X) as before gives an element of

Aut(X, HX) leaving X̂ invariant. Thus, Aut(X̂, HX) → Aut(X) is surjective with

kernel HX . By the universal property of the qood quotient X̂ → X , the action of
Aut(X) on X is morphical. �

Corollary 2.4. The automorphism group Aut(X) of a Mori dream space X is

linear algebraic and acts morphically on X.

Corollary 2.5. If two Mori dream spaces X1, X2 admit open subsets Ui ⊆ Xi such

that Xi \Ui is of codimension at least two in Xi and U1 is isormorphic to U2, then

the unit components of Aut(X1) and Aut(X2) are isomorphic to each other.

Let CAut(X, HX) denote the centralizer of HX in the automorphism group
Aut(X). Then CAut(X, HX) consists of all automorphisms ϕ : X → X satisfying

ϕ(t ·x) = t ·ϕ(x) for all x ∈ X, t ∈ HX .

In particular, we have CAut(X, HX) ⊆ Aut(X, HX). The group CAut(X, HX)
may be used to detect the unit component Aut(X)0 of the automorphism group
of X .
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Corollary 2.6. Let X be a Mori dream space. Then there is an exact sequence of

linear algebraic groups

1 // HX
// CAut(X, HX)0 // Aut(X)0 // 1.

Proof. According to [24, Cor. 2.3], the group CAut(X, HX)0 leaves X̂ invariant.

Thus, we have CAut(X, HX)0 ⊆ Aut(X̂, HX) and the sequence is well defined.
Moreover, for any ϕ ∈ Aut(X)0, the pullback ϕ∗ : Cl(X) → Cl(X) is the identity.
Consequently, ϕ lifts to an element of CAut(X, HX). Exactness of the sequence
thus follows by dimension reasons. �

Corollary 2.7. Let X be a Mori dream space. Then, for any closed subgroup

F ⊆ Aut(X)0, there is a closed subgroup F ′ ⊆ CAut(X, HX)0 such that the induced

map F ′ → F is an epimorphism with finite kernel.

Corollary 2.8. Let X be a Mori dream space such that the group CAut(X, HX) is
connected, e.g. a toric variety. Then there is an exact sequence of linear algebraic

groups

1 // HX
// CAut(X, HX) // Aut(X)0 // 1.

Example 2.9. Consider the nondegenerate quadricX in the projective space Pn+1,
where n > 4 is even. Then the Cox ring of X is the Z-graded ring

R(X) = K[T0, . . . , Tn+1] / 〈T
2
0 + . . .+ T 2

n+1〉, deg(T0) = . . . = deg(Tn+1) = 1.

The characteristic quasitorus is HX = K∗. Moreover, for the equivariant automor-
phisms and the centralizer of HX we obtain

Aut(X, HX) = CAut(X, HX) = K∗En+2 ·On+2.

Thus, CAut(X, HX) has two connected components. Note that for n = 4, the
quadric X comes with a torus action of complexity one.

3. Rings with a Factorial Grading of Complexity One

Here we recall the necessary constructions and results on factorially graded rings
of complexity one and Cox rings of varieties with a torus action of complexity one
from [12]. The main result of this section is Proposition 3.5, which describes the
dimension of the homogeneous components in terms of the (common) degree of the
relations. As before, we work over an algebraically closed field K of characteristic
zero.

Let K be an abelian group and R =
⊕

K Rw a K-graded algebra. The grading
is called effective if the weight monoid S of R generates K as a group. Moreover,
we say that the grading is of complexity one, if it is effective and dim(KQ) equals
dim(R)− 1. By a K-prime element of R we mean a homogeneous nonzero nonunit
f ∈ R such that f |gh with homogeneous g, h ∈ R implies f |g or f |h. We say that
R is factorially K-graded if every nonzero homogeneous nonunit of R is a product
of K-primes.

Construction 3.1. See [12, Section 1]. Fix r ∈ Z>1, a sequence n0, . . . , nr ∈ Z>1,
set n := n0 + . . .+ nr and let m ∈ Z>0. The input data are
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• a matrix A := [a0, . . . , ar] with pairwise linearly independent column vectors
a0, . . . , ar ∈ K2,

• an integral r× (n+m) block matrix P0 = (L0, 0), where L0 is a r×n matrix
build from tuples li := (li1, . . . , lini

) ∈ Z
ni

>1 as follows

L0 =



−l0 l1 . . . 0
. . . . . . . . . . . . . . . .
−l0 0 . . . lr


 .

Consider the polynomial ring K[Tij, Sk] in the variables Tij , where 0 6 i 6 r,
1 6 j 6 ni and Sk, where 1 6 k 6 m. For every 0 6 i 6 r, define a monomial

T li
i := T li1

i1 · · ·T
lini

ini
.

Denote by I the set of all triples I = (i1, i2, i3) with 0 6 i1 < i2 < i3 6 r and
define for any I ∈ I a trinomial

gI := det

[
T

li1
i1

T
li2
i2

T
li3
i3

ai1 ai2 ai3

]
.

Let P ∗
0 denote the transpose of P0. We introduce a grading on K[Tij , Sk] by the

factor group K0 := Zn+m/im(P∗
0). Let Q0 : Z

n+m → K0 be the projection and set

deg(Tij) := wij := Q0(eij), deg(Sk) := wk := Q0(ek),

where eij ∈ Zn+m, for 0 6 i 6 r, 1 6 j 6 ni, and ek ∈ Zn+m, for 1 6 k 6 m, are
the canonical basis vectors. Note that all the gI are K0-homogeneous of degree

µ := l01w01 + . . .+ l0n0
w0n0

= . . . = lr1wr1 + . . .+ lrnr
wrnr

∈ K0.

In particular, the trinomials gI generate aK0-homogeneous ideal and thus we obtain
a K0-graded factor algebra

R(A, P0) := K[Tij , Sk] / 〈gI ; I ∈ I〉.

Theorem 3.2 (See [12, Theorems 1.1 and 1.3]). With the notation of Construc-

tion 3.1, the following statements hold.

(i) The K0-grading of ring R(A, P0) is effective, pointed, factorial and of

complexity one.

(ii) The variables Tij and Sk define a system of pairwise nonassociated K0-

prime generators of R(A, P0).
(iii) Every finitely generated normal K-algebra with an effective, pointed, fac-

torial grading of complexity one is isomorphic to some R(A, P0).

Note that in the case r = 1, there are no relations and the theorem thus treats
the effective, pointed gradings of complexity one of the polynomial ring.

Example 3.3 (The E6-singular cubic I). Let r = 2, n0 = 2, n1 = n2 = 1, m = 0
and consider the data

A =

[
0 −1 1
1 −1 0

]
, P0 = L0 =

[
−1 −3 3 0
−1 −3 0 2

]
.
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Then we have exactly one triple in I, namely I = (0, 1, 2), and, as a ring, R(A, P0)
is given by

R(A, P0) = K[T01, T02, T11, T21] / 〈T01T
3
02 + T 3

11 + T 2
21〉.

The grading group K0 = Z4/im(P ∗
0 ) is isomorphic to Z2 and the grading can be

given explicitly via

deg(T01) =

(
−3
3

)
, deg(T02) =

(
1
1

)
, deg(T11) =

(
0
2

)
, deg(T21) =

(
0
3

)
.

Recall that for any integral ring R =
⊕

K Rw graded by an abelian group K,
one has the subfield of degree zero fractions inside the field of fractions:

Q(R)0 =

{
f

g
; f, g ∈ R homogeneous, g 6= 0, deg(f) = deg(g)

}
⊆ Q(R).

Proposition 3.4. Take any i, j with i 6= j and 0 6 i, j 6 r. Then the field of

degree zero fractions of the ring R(A, P0) is the rational function field

Q(R(A, P0))0 = K

(
T

lj
j

T li
i

)
.

Proof. It suffices to treat the case m = 0. Let F =
∏
Tij be the product of all

variables. Then Tn = Kn
F is the n-torus and P0 defines an epimorphism having the

quasitorus H0 := SpecK[K0] as its kernel

π : Tn → Tr, (tij) 7→

(
tl11
tl00
, . . . ,

tlrr

tl00

)
.

Set X := SpecR(A, P0). Then π(XF ) = XF /H0 is a curve defined by affine linear
equations in the coordinates of Tr and thus rational. The assertion follows. �

The following observation shows that the common degree µ = deg(gI) of the
relations generalizes the “remarkable weight” introduced by Panyushev [22] in the
factorial case. Recall that the weight monoid S0 ⊆ K0 consists of all w ∈ K0

admitting a nonzero homogeneous element.

Proposition 3.5. Consider the K0-graded ring R := R(A, P0) and the degree

µ = deg(gI) of the relations as defined in Construction 3.1. For w ∈ S0 let sw ∈ Z>0

be the unique number with w − swµ ∈ S0 and w − (sw + 1)µ 6∈ S0. Then we have

dim(Rw) = sw + 1 for all w ∈ S0.

The element µ ∈ K0 is uniquely determined by this property. We have dim(Rµ) = 2
and any two nonproportional elements in Rµ are coprime. Moreover, any w ∈ S0

with w − µ 6∈ S0 satisfies dim(Rw) = 1.

Proof. According to Proposition 3.4, the field Q(R)0 of degree zero fractions is the

field of rational functions in p1/p0, where p0 := T l0
0 and p1 := T l1

1 are coprime and
of degree µ. Moreover, by the structure of the relations gI , we have dim(Rµ) = 2.

Now, consider w ∈ S0. If we have dim(Rw) = 1, then dim(Rµ) = 2 implies sw =
0 and the assertion follows in this case. Suppose that we have dim(Rw) > 1. Then
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we find two nonproportional elements f0, f1 ∈ Rw and two coprime homogeneous
polynomials F0, F1 of a common degree s > 0 such that

f1
f0

=
F1(p0, p1)

F0(p0, p1)
.

Observe that F1(p0, p1) must divide f1. This implies w − sµ ∈ S0. Repeating
the procedure with w − sµ and so on, we finally arrive at a weight w̃ = w − swµ
with dim(Rw̃) = 1. Moreover, by the procedure, any element of Rw is of the form
hF (p0, p1) with 0 6= h ∈ Rw̃ and a homogeneous polynomial F of degree sw. The
assertion follows. �

Corollary 3.6. Assume that we have r > 2 and that li1 + . . . + lini
> 2 holds for

all i.

(i) The K0-homogeneous components R(A, P0)wij
and R(A, P0)wk

of the gen-

erators Tij and Sk are all of dimension one.

(ii) Consider w = wi1j1 + . . .+ witjt ∈ K0, where 1 6 t 6 r. If likjk = 1 holds

for 1 6 k 6 t− 1, then R(A, P0)w is of dimension one.

Proof. According to Proposition 3.5, we have to show that the shifts of the weights
wij , wk and w by −µ do not belong to the weight monoid S0. For wk this is clear.
For wij , the assumption gives

wij − µ = −(lij − 1)wij −
∑

b6=j

libwib 6∈ S0.

Let us consider the weight w of (ii). Since t 6 r holds, there is an index 0 6 i0 6 r
with i0 6= ik for k = 1, . . . , t. We have w − µ = Q0(e) for

e := ei1j1 + . . .+ eitjt − (li01ei01 + . . .+ li0ni0
ei0ni0

) ∈ Zn+m.

By the assumptions, we find 1 6 ci 6 ni, where 0 6 i 6 r, such that cik 6= jk holds
for 1 6 k 6 t− 1 and cit 6= jt or litcit > 2. Then the linear form

l−1
0c0
e∗0c0 + . . .+ l−1

rcre
∗
rcr

vanishes along the kernel of Q0 : Q
n+m → (K0)Q and thus induces a linear form

on (K0)Q which separates w − µ = Q0(e) from the weight cone. �

We turn to Cox rings of varieties with a complexity one torus action. They are
obtained by suitably downgrading the rings R(A, P0) as follows.

Construction 3.7. Fix r ∈ Z>1, a sequence n0, . . . , nr ∈ Z>1, set n := n0+ . . .+
nr, and fix integers m ∈ Z>0 and 0 < s < n+m− r. The input data are

• a matrix A := [a0, . . . , ar] with pairwise linearly independent column
vectors a0, . . . , ar ∈ K2,

• an integral block matrix P of size (r + s)× (n+m) the columns of which
are pairwise different primitive vectors generating Qr+s as a cone:

P =

(
L0 0
d d′

)
,

where d is an (s×n)-matrix, d′ an (s×m)-matrix and L0 an (r×n)-matrix
build from tuples li := (li1, . . . , lini

) ∈ Z
ni

>1 as in Construction 3.1.
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Let P ∗ denote the transpose of P , consider the factor group K := Zn+m/im(P∗)
and the projection Q : Zn+m → K. We define a K-grading on K[Tij, Sk] by setting

deg(Tij) := Q(eij), deg(Sk) := Q(ek).

The trinomials gI of Construction 3.1 are K-homogeneous, all of the same degree.
In particular, we obtain a K-graded factor ring

R(A, P ) := K[Tij, Sk; 0 6 i 6 r, 1 6 j 6 ni, 1 6 k 6 m] / 〈gI ; I ∈ I〉.

Theorem 3.8 (See [12, Theorem 1.4]). With the notation of Construction 3.7, the
following statements hold.

(i) The K-grading of the ring R(A, P ) is factorial, pointed and almost free,

i.e., K is generated by any n+m− 1 of the deg(Tij), deg(Sk).
(ii) The variables Tij and Sk define a system of pairwise nonassociated K-

prime generators of R(A, P ).

Remark 3.9. As rings R(A, P0) and R(A, P ) coincide but the K0-grading is finer
than the K-grading. The downgrading map K0 → K fits into the following com-
mutative diagram built from exact sequences

0

��
0

��

Zs

��
0 // Zr

P∗
0 //

��

Zn+m Q0 // K0
//

��

0

0 // Zr+s

P∗
//

��

Zn+m

Q
// K //

��

0.

Zs

��

0

0

The snake lemma [15, Sec. III.9] allows us to identify the direct factor Zs of Zr+s

with the kernel of the downgrading map K0 → K. Note that for the quasitori T ,
H0 and H associated to abelian groups Zs, K0 and K we have T = H0/H .

Construction 3.10. Consider a ring R(A, P ) with its K-grading and the finer
K0-grading. Then the quasitori H = SpecK[K] and H0 := SpecK[K0] act on

X := SpecR(A, P ). Let X̂ ⊆ X be a big H0-invariant open subset with a good
quotient

p : X̂ → X = X̂//H

such that X is complete and for some open set U ⊆ X , the inverse image p−1(U) ⊆
X is big and H acts freely on U . Then X is a Mori dream space of dimension s+1
with divisor class group Cl(X) ∼= K and Cox ring R(X) ∼= R(A, P ). Moreover, X
comes with an induced effective action of the s-dimensional torus T := H0/H .
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Remark 3.11. Let X be a T -variety arising from data A and P via Construc-
tion 3.10. Then every Tij ∈ R(A, P ) defines an invariant prime divisorDij = T ·xij
in X such that the isotropy group Txij

is cyclic of order lij and the gcd of the entries
of dij ∈ Zs represents the nonzero weight of the cotangent presentation of Txij

at
xij . Moreover, each Sk defines an invariant prime divisor Ek ⊆ X such that the
one-parameter subgroup K∗ → T corresponding to d′k ⊆ Zs acts trivially on Ek.

Theorem 3.12. Let X be an n-dimensional complete normal rational variety with

an effective action of an (n − 1)-dimensional torus S. Then X is equivariantly

isomorphic to a T -variety arising from data (A, P ) as in Construction 3.10.

Proof. Wemay assume thatX is not a toric variety. According to [12, Theorem 1.5],
the Cl(X)-graded Cox ring of X is isomorphic to a K-graded ring R(A, P ). Thus,

in the notation of Construction 3.10, there is a big H-invariant open subset X̂ of

X with X ∼= X̂//H . Applying [24, Cor. 2.3] to a subtorus T0 ⊆ H0 projecting

onto T = H0/H , we see that X̂ is even invariant under H0. Thus, T acts on X .
Since the T -action is conjugate in Aut(X) to the given S-action on X , the assertion
follows. �

Example 3.13 (The E6-singular cubic II). Let r = 2, n0 = 2, n1 = n2 = 1, m = 0,
s = 1 and consider the data

A =

[
0 −1 1
1 −1 0

]
, P =



−1 −3 3 0
−1 −3 0 2
−1 −2 1 1


 .

Then, as remarked before, we have exactly one triple I = (0, 1, 2) and, as a ring,
R(A, P ) is given by

R(A, P ) = K[T01, T02, T11, T21] / 〈T01T
3
02 + T 3

11 + T 2
21〉.

The grading groupK = Z4/im(P ∗) is isomorphic to Z and the grading can be given
explicitly via

deg(T01) = 3, deg(T02) = 1, deg(T11) = 2, deg(T21) = 3.

As shown for example in [10], see also [11, Example 3.7], the ring R(A, P ) is the
Cox ring of the E6-singular cubic surface in the projective space given by

X = V (z1z
2
2 + z2z

2
0 + z33) ⊆ P3.

4. Primitive Locally Nilpotent Derivations

Here, we investigate the homogeneous locally nilpotent derivations of the K0-
graded algebra R(A, P0). The description of the “primitive” ones given in The-
orem 4.4 is the central algebraic tool for our study of automorphism groups. As
before, K is an algebraically closed field of characteristic zero.

Let us briefly recall the necessary background. We consider derivations on an
integral K-algebra R, that is, K-linear maps δ : R → R satisfying the Leibniz rule

δ(fg) = δ(f)g + fδ(g).
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Any such δ : R → R extends uniquely to a derivation δ : Q(R) → Q(R) of the
quotient field. Recall that a derivation δ : R → R is said to be locally nilpotent if
for every f ∈ R there is an n ∈ N with δn(f) = 0. Now suppose that R is graded
by a finitely generated abelian group:

R =
⊕

w∈K

Rw.

A derivation δ : R→ R is called homogeneous if for every w ∈ K there is a w′ ∈ K
with δ(Rw) ⊆ Rw′ . Any homogeneous derivation δ : R → R has a degree deg(δ) ∈ K
satisfying δ(Rw) ⊆ Rw+deg(δ) for all w ∈ K.

Definition 4.1. Let K be a finitely generated abelian group, R =
⊕

K Rw a
K-graded K-algebra and Q(R)0 ⊆ Q(R) the subfield of all fractions f/g of homo-
geneous elements f, g ∈ R with deg(f) = deg(g).

(i) We call a homogeneous derivation δ : R → R primitive if deg(δ) does not
lie in the weight cone ω ⊆ KQ of R.

(ii) We say that a homogeneous derivation δ : R → R is of vertical type if
δ(Q(R)0) = 0 holds and of horizontal type otherwise.

Remark 4.2. Every primitive homogeneous derivation is locally nilpotent. Indeed,
for any weight w of the weight monoid S0 there exists a positive integer k such that
w + k deg(δ) /∈ S0, hence δ(Rw) = 0.

Construction 4.3. Notation as in Construction 3.1. We define derivations of the
K0-graded algebra R(A, P0) constructed there. The input data are

• a sequence C = (c0, . . . , cr) with 1 6 ci 6 ni,
• a vector β ∈ Kr+1 lying in the row space of the matrix [a0, . . . , ar].

Note that for 0 6= β as above either all entries differ from zero or there is a unique
i0 with βi0 = 0. According to these cases, we put further conditions and define:

(i) if all entries β0, . . . , βr differ from zero and there is at most one i1 with
li1ci1 > 1, then we set

δC,β(Tij) :=




βi

∏

k 6=i

∂T lk
k

∂Tkck
, j = ci,

0, j 6= ci,

δC,β(Sk) := 0 for k = 1, . . . , m,

(ii) if βi0 = 0 is the unique zero entry of β and there is at most one i1 with
i1 6= i0 and li1ci1 > 1, then we set

δC,β(Tij) :=




βi

∏

k 6=i,i0

∂T lk
k

∂Tkck
, j = ci,

0, j 6= ci,

δC,β(Sk) := 0 for k = 1, . . . , m.
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These assignments define K0-homogeneous primitive derivations δC,β : R(A, P0) →
R(A, P0) of degree

deg(δC,β) =





rµ −
∑

k

deg(Tkck), in case (i),

(r − 1)µ−
∑

k 6=i0

deg(Tkck), in case (ii).

Proof. The assignments (i) and (ii) on the variables define a priori derivations of
the polynomial ring K[Tij, Sk]. Recall from Construction 3.1 that R(A, P0) is the
quotient of K[Tij , Sk] by the ideal generated by all

gI = det

[
T

li1
i1

T
li2
i2

T
li3
i3

ai1 ai2 ai3

]
,

where I = (i1, i2, i3). Since the vector β lies in the row space of [a0, . . . , ar], we
see that δC,β sends every trinomial gI to zero and thus descends to a well defined
derivation of R(A, P0).

We check that δC,β is homogeneous. Obviously, every δC,β(Tij) is a K0-homo-
geneous element of K[Tij ]. Moreover, with the degree µ of the relations gI , we
have

deg(δC,β(Tij))− deg(Tij) =





rµ−
∑

k

deg(Tkck), in case (i),

(r − 1)µ−
∑

k 6=i0

deg(Tkck), in case (ii).

In particular, the left hand side does not depend on (i, j). We conclude that δC,β

is homogeneous of degree deg(δC,β(Tij))− deg(Tij).
For primitivity, we have to show that the degree of δC,β does not lie in the weight

cone of R(A, P0). We exemplarily treat case (i), where we may assume that i1 = 0
holds. As seen before, the degree of δC,β is represented by the vector

vC,β := −e0c0 +
∑

j 6=c1

l1je1j + . . .+
∑

j 6=cr

lrjerj ∈ Zn+m.

Thus, we look for a linear form on Qn+m separating this vector from the orthant
cone(eij , ek) and vanishing along the kernel of Qn+m → (K0)Q, i.e., the linear
subspace spanned by the columns of P ∗

0 . For example, we may take

l−1
0c0
e∗0c0 + l−1

1c1
e∗1c1 + . . .+ l−1

rcre
∗
rcr . �

Theorem 4.4. Let δ : R(A, P0) → R(A, P0) be a nontrivial primitive K0-homoge-

neous derivation.

(i) If δ is of vertical type, then δ(Tij) = 0 holds for all i, j and there is a

k0 such that δ(Sk0
) does not depend on Sk0

and δ(Sk) = 0 holds for all

k 6= k0.
(ii) If δ is of horizontal type, then we have δ = hδC,β, where δC,β is as in

Construction 4.3 and h is K0-homogeneous with h ∈ ker(δC,β).
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In the proof of this theorem we will make frequently use of the following facts;
the statements of the first Lemma occur in Freudenburg’s book, see [8, Principles 1,
5 and 7, Corollary 1.20].

Lemma 4.5. Let R be an integral K-algebra, δ : R→ R a locally nilpotent deriva-

tion and let f, g ∈ R.

(i) If fg ∈ ker(δ) holds, then f, g ∈ ker(δ) holds.
(ii) If δ(f) = fg holds, then δ(f) = 0 holds.

(iii) The derivation fδ is locally nilpotent if and only if f ∈ ker(δ) holds.

(iv) If g |δ(f) and f |δ(g), then δ(f) = 0 or δ(g) = 0.

Lemma 4.6. Let δ : R(A, P0) → R(A, P0) be a primitive K0-homogeneous deriva-

tion induced by a K0-homogeneous derivation δ̂ : K[Tij, Sk] → K[Tij , Sk]. Then

δ̂(gI) = 0 holds for all relations gI .

Proof. Clearly, we have δ̂(a) ⊆ a for the ideal a ⊆ K[Tij , Sk] generated by the

gI . Recall that all gI are of the same degree µ. By primitivity, deg(δ) = deg(δ̂)
is not in the weight cone. Thus, K[Tij, Sk]µ+deg(δ̂) ∩ a = {0} holds. This implies

δ̂(gI) = 0. �

Proof of Theorem 4.4. Suppose that δ is of vertical type. Then δ(T li
i /T

ls
s ) = 0

holds for any two 0 6 i < s 6 r. By the Leibniz rule, this implies

δ(T li
i )T ls

s = T li
i δ(T

ls
s ).

We conclude that T li
i divides δ(T li

i ) and T ls
s divides δ(T ls

s ). By Lemma 4.5 (ii),

this implies δ(T li
i ) = δ(T ls

s ) = 0. Using Lemma 4.5 (i), we obtain δ(Tij) = 0 for all
variables Tij . Since δ is nontrivial, we should have δ(Sk0

) 6= 0 at least for one k0.
Consider the basis ek = deg(Sk) of Z

m, where k = 1, . . . , m, and write

deg(δ) = w′ +

m∑

k=1

bkek, where w′ ∈ K0 and bk ∈ Z.

Then deg(δ(Sk0
)) = w′ +

∑
k 6=k0

bkek + (bk0
+ 1)ek0

. By Lemma 4.5, the variable

Sk0
does not divide δ(Sk0

). This and the condition δ(Sk0
) 6= 0 imply bk0

= −1
and bk > 0 for k 6= k0. This proves that δ(Sk) = 0 for all k 6= k0 and δ(Sk0

) is
K0-homogeneous and does not depend on Sk0

.
Now suppose that δ is of horizontal type. Then there exists a variable Tij with

δ(Tij) 6= 0. Write

deg(δ(Tij)) = deg(Tij) + w′ +

m∑

k=1

bkek.

Then all coefficients bk are nonnegative and consequently we obtain δ(Sk) = 0 for
k = 1, . . . , m.

We show that for any T li
i there is at most one variable Tij with δ(Tij) 6= 0.

Assume that we find two different j, k with δ(Tij) 6= 0 and δ(Tik) 6= 0. Note that
we have

∂T li
i

∂Tij
δ(Tij),

∂T li
i

∂Tik
δ(Tik) ∈ R(A, P0)µ+deg(δ).
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By Proposition 3.5, the component of degree µ+deg(δ) is of dimension one. Thus,

the above two terms differ by a nonzero scalar and we see that T lik
ik divides the sec-

ond term. Consequently, Tik must divide δ(Tik), which contradicts Lemma 4.5 (ii).
A second step is to see that for any two variables Tij and Tks with δ(Tij) 6= 0

and δ(Tks) 6= 0 we must have lij = 1 or lks = 1. Otherwise, we see as before

that ∂T li
i /∂Tij δ(Tij) and ∂T lk

k /∂Tks δ(Tks) differ by a nonzero scalar. Thus, we
conclude δ(Tij) = fTks and δ(Tks) = hTij , a contradiction to Lemma 4.5 (iv).

Finally, we prove the assertion. As already seen, for every 0 6 k 6 r there is at
most one ck with δ(Tkck) 6= 0. Let K ⊆ {0, . . . , r} denote the set of all k admitting
such a ck. From Proposition 3.5 we infer R(A, P0)µ+deg(δ) = Kf with some nonzero
element f . We claim that

f = h
∏

k∈K

∂T lk
k

∂Tkck
, δ(Tici) = βih

∏

k∈K\{i}

∂T lk
k

∂Tkck
,

hold with a homogeneous element h ∈ R(A, P0) and scalars β0, . . . , βr ∈ K. In-
deed, similar to the previous arguments, the first equation follows from fact that all
∂T lk

k /∂Tkck δ(Tkck) are nonzero elements of the same degree as f and hence each

∂T lk
k /∂Tkck must divide f . The second equation is clear then.
The vector β := (β0, . . . , βr) lies in the row space of the matrix A. To see

this, consider the lift of δ to K[Tij , Sk] defined by the second equation and apply
Lemma 4.6. Now let C = (c0, . . . , cr) be any sequence completing the ck, where
k ∈ K. Then we have δ = hδC,β . The fact that h belongs to the kernel of δC,β

follows from Lemma 4.5. �

Example 4.7 (The E6-singular cubic III). Situation as in Example 3.3. The
primitive homogeneous derivations of R(A, P0) of the form δC,β are the following

(i) C = (1, 1, 1) and β = (β0, 0, −β0). Here we have deg(δC,β) = (3, 0) and

δC,β(T01) = 2β0T21, δC,β(T21) = −β0T
3
02, δC,β(T02) = δC,β(T11) = 0.

(ii) C = (1, 1, 1) and β = (β0, −β0, 0). Here we have deg(δC,β) = (3, 1) and

δC,β(T01) = 3β0T
2
11, δC,β(T11) = −β0T

3
02, δC,β(T02) = δC,β(T21) = 0.

The general primitive homogeneous derivation δ of R(A, P0) has the form hδC,β

with h ∈ ker(δC,β), and

deg(δ) = deg(h) + deg(δC,β) /∈ ω.

In the above case (i), the only possibilities for deg(h) are deg(h) = (k, k) or
deg(h) = (k, k) + (0, 2) and thus we have

δ = T k
02δC,β or δ = T k

02T11δC,β.

In the above case (ii), the only possibility for deg(h) is deg(h) = (k, k) and thus
we obtain

δ = T k
02δC,β.
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5. Demazure Roots

Here we present and prove the main result, Theorem 5.5. It describes the root
system of the automorphism group of a rational complete normal variety X coming
with an effective torus action T × X → X of complexity one in terms of the
defining matrix P of the Cox ring R(X) = R(A, P ), see Construction 3.10 and
Theorem 3.12.

Definition 5.1. Let A, P be as in Construction 3.7. We say that R(A, P ) is
minimally presented if r > 2 holds and for every 0 6 i 6 r we have li1+. . .+lini

> 2

The assumption that R(A, P ) is minimally presented means that the resulting
variety is nontoric and there occur no linear monomials in the defining relations gI ;
the latter can always be achieved by omitting redundant generators.

Definition 5.2. Let P be a matrix as in Construction 3.7. Denote by vij , vk ∈
N = Zr+s the columns of P and by M the dual lattice of N .

(i) A vertical Demazure P -root is a tuple (u, k0) with a linear form u ∈ M
and an index 1 6 k0 6 m satisfying

〈u, vij〉 > 0 for all i, j,

〈u, vk〉 > 0 for all k 6= k0,

〈u, vk0
〉 = −1.

(ii) A horizontal Demazure P -root is a tuple (u, i0, i1, C), where u ∈ M is a
linear form, i0 6= i1 are indices with 0 6 i0, i1 6 r, and C = (c0, . . . , cr)
is a sequence with 1 6 ci 6 ni such that

lici = 1 for all i 6= i0, i1,

〈u, vici〉 =

{
0, i 6= i0, i1,

−1, i = i1,

〈u, vij〉 >





lij , i 6= i0, i1, j 6= ci,

0, i = i0, i1, j 6= ci,

0, i = i0, j = ci,

〈u, vk〉 > 0 for all k.

(iii) The Zs-part of a Demazure P -root κ = (u, k0) or κ = (u, i0, i1, C) is the
tuple ακ of the last s coordinates of the linear form u ∈ M = Zr+s. We
call ακ also a P -root.

Note that in the minimally presented case, the P -roots are by their defining
conditions always nonzero.

Example 5.3 (The E6-singular cubic IV). As earlier, let r = 2, n0 = 2, n1 = n2 =
1, m = 0, s = 1 and consider the data

A =

[
0 −1 1
1 −1 0

]
, P =



−1 −3 3 0
−1 −3 0 2
−1 −2 1 1


 .
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There are no vertical Demazure P -roots because of m = 0. There is a horizontal
Demazure P -root κ = (u, i0, i1, C) given by

u = (−1, −2, 3), i0 = 1, i1 = 2, C = (1, 1, 1).

A direct computation shows that this is the only one. The Zs-part of κ is the third
coordinate of the linear form u, i.e., it is u3 = 3 ∈ Z = Zs.

Note that the Demazure P -roots are certain Demazure roots [7, Section 3.1] of
the fan with the rays through the columns of P as its maximal cones. In particular,
there are only finitely many Demazure P -roots. For computing them explicitly, the
following presentation is helpful.

Remark 5.4. The Demazure P -roots are the lattice points of certain polytopes
in MQ. For an explicit description, we encode the defining conditions as a lattice
vector ζ ∈ Zn+m and an affine subspace η ⊆MQ:

(i) For any index 1 6 k0 6 m define a lattice vector ζ = (ζij , ζk) ∈ Zn+m and
an affine subspace η ⊆MQ by

ζij := 0 for all i, j, ζk := 0 for all k 6= k0, ζk0
:= −1,

η := {u′ ∈MQ; 〈u′, vk0
〉 = −1} ⊆MQ.

Then the vertical Demazure P -roots κ = (u, k0) are given by the lattice
points u of the polytope

B(k0) := {u′ ∈ η; P ∗u′ > ζ} ⊆MQ.

(ii) Given i0 6= i1 with 0 6 i0, i1 6 r and C = (c0, . . . , cr) with 1 6 ci 6 ni

such that lici = 1 holds for all i 6= i0, i1, set

ζij :=





lij , i 6= i0, i1, j 6= ci,

−1, i = i1, j = ci1 ,

0 else,

ζk = 0 for 1 6 l 6 m.

η := {u′ ∈MQ; 〈u
′, vici〉 = 0 for i 6= i0, i1, 〈u

′, vi1ci1 〉 = −1}.

Then the horizontal Demazure P -roots κ = (u, i0, i1, C) are given by the
lattice points u of the polytope

B(i0, i1, C) := {u′ ∈ η; P ∗u′ > ζ} ⊆MQ.

In order to state and prove the main result, let us briefly recall the necessary
concepts from the theory of linear algebraic groups G. One considers the adjoint
representation of the torus T on the Lie algebra Lie(G), i.e., the tangent represen-
tation at eG of the T -action on G given by conjugation (t, g) 7→ tgt−1. There is a
unique T -invariant splitting Lie(G) = Lie(T )⊕ n, where n is spanned by nilpotent
vectors, and one has a bijection

1-PASGT (G) → {T -eigenvectors of n}, λ 7→ λ̇(0).

Here 1-PASGT (G) denotes the set of one parameter additive subgroups λ : Ga → G

normalized by T and λ̇ denotes the differential. A root of G with respect to T
is an eigenvalue of the T -representation on n, that is, a character χ ∈ X(T ) with
t · v = χ(t)v for some T -eigenvector 0 6= v ∈ n.
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Theorem 5.5. Let A, P be as in Construction 3.7 such that R(A, P ) is minimally

presented and let X be a (nontoric) variety with a complexity one torus action

T ×X → X arising from A, P according to Construction 3.10.

(i) The automorphism group Aut(X) is a linear algebraic group with maximal

torus T .
(ii) Under the canonical identification X(T ) = Zs, the roots of Aut(X) with

respect to T are precisely the P -roots.

The rest of the section is devoted to the proof. We will have to deal with the
K0- and K-degrees of functions and derivations. It might be helpful to recall the
relations between the gradings from Remark 3.9. The following simple facts will be
frequently used.

Lemma 5.6. In the setting of Constructions 3.1 and 3.7, consider the polynomial

ring K[Tij , Sk] with the K0-grading and the coarser K-grading.

(i) For a monomial h =
∏
T

eij
ij

∏
Sek
k with exponent vector e = (eij , ek), the

K0- and K-degrees are given as

degK0
(h) = Q0(e), degK(h) = Q(e).

(ii) A monomial h ∈ K[T±1
ij , S±1

k ] is of K-degree zero if and only if there is

an u ∈M with

h = hu :=
∏

T
P∗(u)ij
ij

∏
S
P∗(u)k
k =

∏
T

〈u,vij〉
ij

∏
S
〈u,vk〉
k .

(iii) Let δ be a derivation on K[Tij , Sk] sending the generators Tij , Sk to mono-

mials. Then δ is K-homogeneous of K-degree zero if and only if

degK(T−1
ij δ(Tij)) = degK(S−1

k δ(Sk)) = 0 holds for all i, j, k.

If 0 6= δ is K0-homogeneous, then degK(δ) = 0 holds if and only if one of

the T−1
ij δ(Tij) and S

−1
k δ(Sk) is nontrivial of K-degree zero.

As a first step towards the roots of the automorphism group Aut(X), we now
associateK0-homogeneous locally nilpotent derivations ofR(A, P ) to the Demazure
P -roots.

Construction 5.7. Let A and P be as in Construction 3.7. For u ∈ M and the
lattice vector ζ ∈ Zn+m of Remark 5.4 consider the monomials

hu =
∏

i,j

T
〈u,vij〉
ij

∏

k

S
〈u,vk〉
k , hζ :=

∏

i,j

T
ζij
ij

∏

k

Sζk
k .

We associate to any Demazure P -root κ a locally nilpotent derivation δκ of R(A, P ).
If κ = (u, k0) is vertical, then we define a δκ of vertical type by

δκ(Tij) := 0 for all i, j, δκ(Sk) :=

{
Sk0

hu, k = k0,

0, k 6= k0.

If κ = (u, i0, i1, C) is horizontal, then there is a unique vector β in the row space
of A with βi0 = 0, βi1 = 1 and we define a δκ of horizonal type by

δκ :=
hu

hζ
δC,β .
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In all cases, the derivation δκ is K0-homogeneous; its K0-degree is the Zs-part of κ
and the K-degree is zero:

degK0
(δκ) = Q0(P

∗(u)), degK(δκ) = 0.

Proof. In the vertical case δκ(Sk0
) does not depend on Sk0

and in the horizontal
case the factors before δC,β in the definitions of δκ are contained in ker(δC,β). Thus,
the derivations δκ are locally nilpotent. Clearly, the δκ are K0-homogeneous. By
Lemma 5.6, the monomial hu is of K0-degree Q0(P

∗(u)). In the vertical case,
this implies directly that δκ is of K0-degree Q0(P

∗(u)). In the horizontal case,
we use Lemma 5.6 and the degree computation of Construction 4.3 to see that hζ

and δC,β have the same K0-degree. Thus δκ is of K0-degree Q0(P
∗(u)). Since

P ∗(u) ∈ ker(Q) holds, we obtain that all δκ are of K-degree Q(P ∗(u)) = 0. �

Proposition 5.8. Consider a minimally presented algebra R(A, P ) with its fine

K0-grading and the coarser K-grading and let δ be a K0-homogeneous locally nilpo-

tent derivation of K-degree zero on R(A, P ).

(i) If δ is of vertical type, then there is an index 1 6 k0 6 m such that δ is a

linear combination of derivations δκt
with Demazure P -roots κt = (ut, k0).

(ii) If δ is of horizontal type, then are indices 0 6 i0, i1 6 r and a sequence

C = (c0, . . . , cr) such that δ is a linear combination of derivations δκt

with Demazure P -roots κt = (ut, i0, i1, C).

Lemma 5.9. Let δ be a nontrivial K0-homogeneous locally nilpotent derivation on

a minimally presented algebra R(A, P ) and let r > 2. If δ is of K-degree zero,

then δ is primitive with respect to the K0-grading.

Proof. We have to show that the K0-degree w of δ does not lie in the weight cone
of the K0-grading. First observe that w 6= 0 holds: otherwise Corollary 3.6 yields
that δ annihilates all generators Tij and Sk, a contradiction to δ 6= 0. Now assume
that w lies in the weight cone of the K0-grading. Then, for some d > 0, we find a
nonzero f ∈ R(A, P )dw. The K-degree of f equals zero and thus f is constant, a
contradiction. �

Proof of Proposition 5.8. First assume that δ is vertical. Lemma 5.9 tells us that δ
is primitive with respect to the K0-grading. According to Theorem 4.4, there is an
index 1 6 k0 6 m and an element h ∈ R(A, P ) represented by a polynomial only
depending on variables from ker(δ) such that we have

δ(Tij) = 0 for all i, j, δ(Sk) = 0 for all k 6= k0, δ(Sk0
) = h.

Clearly, hS−1
k0

is K0-homogeneous of K-degree zero. Lemma 5.6 shows that the
monomials of hS−1

k0
are of the form hu with u ∈ M . The facts that the monomi-

als huSk0
do not depend on Sk0

and have nonnegative exponents yield the inequal-
ities of a vertical Demazure P -root for each (u, k0). Consequently, δ is a linear
combination of deriviations arising from vertical Demazure P -roots.

We turn to the case that δ is horizontal. Again by Lemma 5.9, our δ is primitive
with respect to the K0-grading and by Theorem 4.4 it has the form hδC,β for some
K0-homogeneous h ∈ ker(δC,β). By construction, δC,β is induced by a homogeneous
derivation of K[Tij , Sk] having the same K0- and K-degrees; we denote this lifted
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derivation again by δC,β. Similarly, h is represented by a polynomial in K[Tij , Sk],
which we again denote by h.

We show that any monomial of h depends only on variables from ker(δC,β).
Indeed, suppose that there occurs a monomial Tijh

′ with δC,β(Tij) 6= 0 in h. Then,
using the fact that δ is of K-degree zero, we obtain

deg(Tij) = deg(δ(Tij)) = deg(Tij) + deg(h′) + deg(δC,β(Tij)).

This implies deg(h′) + deg(δC,β(Tij)) = 0; a contradiction to the fact that the
weight cone of the K-grading contains no lines. This proves the claim. Thus, we
may assume that the polynomial h is a monomial.

The next step is to see that it is sufficient to take derivations δC,β with a vector β
in the row space having one zero coordinate. Consider a general β, which means one
with only nonvanishing coordinates. By construction, the row space of A contains
unique vectors β0 and β1 with β0

0 = β1
1 = 0 and β = β0 + β1. With these vectors,

we have

hδC,β = h
∂T l0

0

∂T0c0
δC,β0 + h

∂T l1
1

∂T1c1
δC,β1 .

By Construction 4.3, the K0-degrees and thus the K-degrees of the left hand side
and of the summands coincide. Moreover, h is a monomial in generators from
ker(δC,β) and any such generator is annihilated by δC,β0 and by δC,β1 too.

Let e = (eij , ek) denote the exponent vector of the monomial h. According to
Lemma 5.6, the condition that the (K0-homogeneous) derivation δ has K-degree
zero is equivalent to the fact that the monomial

T−1
i1ci1

hδC,β(Ti1ci1 ) = T−1
i1ci1

T
ei0ci0

i0ci0

∏

i

j 6=ci

T
eij
ij

∏

k

Sek
k βi1

∏

i6=i0,i1

∂T li
i

∂Tici

has the form hu for some linear form u ∈M . Taking into account that the exponents
eij and ek are nonnegative, we see that these conditions are equivalent to equalities
and inequalities in the definition of a horizontal Demazure P -root. �

We recall the correspondence between locally nilpotent derivations and one pa-
rameter additive subgroups. Consider any integral affine K-algebra R, where K is
an algebraically closed field of characteristic zero. Every locally nilpotent derivation
δ : R → R gives rise to a rational representation ̺δ : Ga → Aut(R) of the additive
group Ga of the field K via

̺δ(t)(f) := exp(tδ)(f) :=

∞∑

d=0

td

d!
δd(f).

This sets up a bijection between the locally nilpotent derivations of R and the ra-
tional representations of Ga by automorphisms of R. The representation associated
to a locally nilpotent derivation δ : R → R gives rise to a one parameter additive
subgroup (1-PASG) of the automorphism group of X := SpecR:

λδ : Ga → Aut(X), t 7→ Spec(̺δ(t)).
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Now suppose that R is graded by some finitely generated abelian group K0 and
consider the associated action of H0 := SpecK[K0] on X = SpecR. We relate ho-
mogeneity of locally nilpotent derivation δ to properties of the associated subgroup
U δ := λδ(Ga) of Aut(X).

Lemma 5.10. In the above setting, let δ be a locally nilpotent derivation on R.
The following statements are equivalent.

(i) The derivation δ is K0-homogeneous.

(ii) One has hU δh
−1 = U δ for all h ∈ H0.

Moreover, if one of these two statements holds, then the degree w := deg(δ) ∈ K0

is uniquely determined by the property

h̺δ(t)h
−1 = ̺δ(χ

w(h)t) for all h ∈ H0.

Proof of Theorem 5.5. Assertion (i) is clear by Corollary 2.4 and the fact that X is
nontoric. We prove (ii). Consider R(A, P ) with its fine K0-grading and the coarser
K-grading. The quasitori H0 := SpecK[K0] and H := SpecK[K] act effectively on
X = SpecR(A, P ). We view H0 and H as subgroups of Aut(X). For any locally
nilpotent deriviation δ on R(A, P ) and U δ = λδ(Ga), Lemma 5.10 gives

δ is K0-homogeneous ⇐⇒ hU δh
−1 = U δ for all h ∈ H0,

δ is K-homogeneous of degree 0 ⇐⇒ huh−1 = u for all h ∈ H, u ∈ U δ.

Recall that X arises as X = X̂//H for an open H0-invariant set X̂ ⊆ X . Moreover,
the action of T = H0/H on X is the induced one, i.e. it makes the quotient map

p : X̂ → X equivariant. Set for short

G := CAut(X, H)0, G := Aut(X)0.

Denote by 1-PASGH0
(G) and 1-PASGT (G) the one parameter additive sub-

groups normalized by H0 and T respectively. Moreover, let LND(R(A, P ))0 de-
note the set of K-homogeneous locally nilpotent derivations of K-degree zero and
LNDK0

(R(A, P ))0 the subset of K0-homogeneous ones. Then we arrive at a com-
mutative diagram

LNDK0
(R(A, P ))0OO
∼=
��

⊆ LND(R(A, P ))0OO
∼=
��

1-PASGH0
(G) ⊆

p∗

��

1-PASG(G)

p∗

��
1-PASGT (G) ⊆ 1-PASG(G).

Construction 5.7 associates an element δκ ∈ LNDK0
(R(A, P ))0 to any Demazure

P -root κ. Going downwards the left hand side of the above diagram, the latter
turns into an element λκ ∈ 1-PASGT (G). Differentiation gives the T -eigenvector

λ̇κ(0) ∈ Lie(G) having as its associated root the unique character χ of T satisfying

tλκ(z)t
−1 = λκ(χ(t)z) for all t ∈ T, z ∈ K.
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Remark 3.9 and Lemma 5.10 show that under the identification X(T ) = Zs the
character χ is just the Zs-part of the Demazure P -root κ. Proposition 5.8 tells
us that any element of LNDK0

(R(A, P ))0 is a linear combination of derivations δκ
arising from Demazure P -roots. Moreover, by Corollary 2.7, the push forward p∗
maps 1-PASGH0

(G) onto 1-PASGT (G). We conclude that Lie(G) is spanned as a

K-vector space by Lie(T ) and λ̇κ(0), where κ runs through the Demazure P -roots.
Assertion (ii) follows. �

Corollary 5.11 (of proof). Let X be a nontoric normal complete rational variety

with a torus action T × X → X of complexity one arising as a good quotient

p : X̂ → X from R(A, P ) according to Construction 3.10.

(i) Every Demazure P -root κ induces an additive one parameter subgroup

λκ = p∗λδκ : Ga → Aut(X).
(ii) The Demazure P -root κ is vertical if and only if the general orbit of λκ is

contained in some T -orbit closure.
(iii) The Demazure P -root κ is horizontal if and only if the general orbit of λκ

is not contained in any T -orbit closure.
(iv) The unit component Aut(X)0 of the automorphism group is generated by

T and the images λκ(Ga).

Proof. Assertions (i) and (iv) are clear by the proof of Theorem 5.5. For (ii) and (iii)
recall that κ is vertical (horizontal) if and only if δκ is of vertical (horizontal) type.
The latter is equivalent to saying that λκ(Ga) acts trivially (non-trivially) on the
field of T -invariant rational functions. �

Example 5.12 (The E6-singular cubic V). Let A and P as in Example 5.3. From
there we infer that R(A, P ) admits precisely one horizontal Demazure P -root. For
the automorphism group of the corresponding surfaceX this means that Aut(X)0 is
the semidirect product ofK∗ andGa twisted via the weight 3, see again Example 5.3.
In particular, the surface X is almost homogeneous. Moreover, in this case, one can
show directly that the group of graded automorphisms of R(A, P ) is connected.
Thus, Theorem 2.1 yields that Aut(X) is the semidirect product of K∗ and Ga. This
is in accordance with [23]; we would like to thank Antonio Laface for mentioning
this reference to us.

6. Almost Homogeneous Surfaces

A variety is almost homogeneous if its automorphism group acts with an open
orbit. We take a closer look to this case with a special emphasis on almost homoge-
neous rational K∗-surfaces of Picard number one. The first statement characterizes
the almost homogeneous varieties coming with a torus action of complexity one in
arbitrary dimension.

Theorem 6.1. Let X be a nontoric normal complete rational variety with a torus

action T × X → X of complexity one and Cox ring R(X) = R(A, P ). Then the

following statements are equivalent.

(i) The variety X is almost homogeneous.

(ii) There exists a horizontal Demazure P -root.
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Moreover, if one of these statements holds, and R(A, P ) is minimally presented,

then the number r − 1 of relations of R(A, P ) is bounded by

r − 1 6 dim(X) + rk(Cl(X))−m− 2.

Proof. If (i) holds, then Aut(X) acts with an open orbit onX and by Corollary 5.11,
there must be a horizontal Demazure P -root κ. Conversely, if (ii) holds, then there
is a horizontal Demazure P -root κ and Corollary 5.11 says that for U = p∗(δκ(Ga)),
the group T ⋉ U acts with an open orbit on X .

For the supplement, recall first that R(A, P ) is a complete intersection with r−1
necessary relations and thus we have

n+m− (r − 1) = dim(R(A, P )) = dim(X) + rk(Cl(X)).

Now observe that any relation gI involving only three variables prevents existence of
a horizontal Demazure P -root. Consequently, by suitably arranging the relations,
we have n0, n1 > 1 and ni > 2 for all i > 2. Thus, n > 2 + 2(r − 1) holds and the
assertion follows. �

We specialize to dimension two. Any normal complete rational K∗-surface X is
determined by its Cox ring and thus is given up to isomorphism by the defining
data A and P of the ring R(X) = R(A, P ); we also say that the K∗-surface X
arises from A and P and refer to [11, Sec. 3.3] for more background. A first step
towards the almost homogeneous X is to determine possible horizontal Demazure
P -roots in the following setting.

Proposition 6.2. Consider integers l02 > 1, l11 > l21 > 2 and d01, d02, d11, d21
such that the following matrix has pairwise different primitive columns generat-

ing Q3 as a convex cone:

P :=



−1 −l02 l11 0
−1 −l02 0 l21
d01 d02 d11 d21


 .

Moreover, assume that P is positive in the sense that det(P01) > 0 holds, where P01

is the 3× 3 matrix obtained from P by deleting the first column. Then the possible

horizontal Demazure P -roots are

(i) κ = (u, 1, 2, (1, 1, 1)), where u =
(
d01α+

d21α+ 1

l21
, −

d21α+ 1

l21
, α

)
with an

integer α satisfying

l21 |d21α+ 1,
l02

d02 − l02d01
6 α 6 −

l11
l21d11 + l11d21 + d01l11l21

,

(ii) if l02 = 1: κ = (u, 1, 2, (2, 1, 1)), where u =
(
d02α+

d21α+1

l21
, −

d21α+1

l21
, α

)

with an integer α satisfying

l21 |d21α+ 1, −
l11

l21d11 + l11d21 + d02l11l21
6 α 6

1

d01 − d02
,
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(iii) κ = (u, 2, 1, (1, 1, 1)), where u =
(
−
d11α+ 1

l11
, d01α+

d11α+ 1

l11
, α

)
with an

integer α satisfying

l11 |d11α+ 1,
l02

d02 − l02d01
6 α 6 −

l21
l21d11 + l11d21 + d01l11l21

,

(iv) if l02 = 1: κ = (u, 2, 1, (2, 1, 1)), where u =
(
−
d11α+1

l11
, d02α+

d11α+1

l11
, α

)

with an integer α satisfying

l11 |d11α+ 1, −
l21

l21d11 + l11d21 + d02l11l21
6 α 6

1

d01 − d02
.

Proof. In the situation of (i), evaluating the general linear form u = (u1, u2, u3)
on the columns of P gives the following conditions for a Demazure P -root:

−u1 − u2 + u3d01 = 0, u2l21 + u3d21 = −1,

−u1l02 − u2l02 + u3d02 > l02, u1l11 + u3d11 > 0.

Resolving the equations for u1, u2 and plugging the result into the inequalities gives
the desired roots with α := u3. The other cases are treated analogously. �

Corollary 6.3. The nontoric almost homogeneous normal complete rational K∗-

surfaces X of Picard number one are precisely the ones arising from data

A =

[
0 −1 1
1 −1 0

]
, P =



−1 −l02 l11 0
−1 −l02 0 l21
d01 d02 d11 d21




as in Proposition 6.2 allowing an integer α according to one of the Conditions 6.2 (i)
to (iv). In particular, the Cox ring of X is given as

R(X) = K[T01, T02, T11, T21] / 〈T01T
l02
02 + T l11

11 + T l21
21 〉

with the grading by Z4/im(P ∗). Moreover, the anticanonical divisor of X is ample,

i.e., X is a del Pezzo surface.

Proof. As any surface with finitely generated Cox ring, X is Q-factorial. Since X
has Picard number one, the divisor class group Cl(X) is of rank one. Now take
a minimal presentation R(X) = R(A, P ) of the Cox ring. Then, according to
Theorem 6.1, we have m = 0 and there is exactly one relation in R(A, P ). Thus P
is a 3× 4 matrix. Moreover, Theorem 6.1 says that there is a horizontal Demazure
P -root. Consequently, one of the exponents l01 and l02 must equal one, say l01.
Fixing a suitable order for the last two variables we ensure l11 > l21. Passing to
the K∗-action t−1 · x instead of t · x if necessary, we achieve that P is positive in
the sense of Proposition 6.2.

Let us see why X is a del Pezzo surface. Denote by Pij the matrix obtained from
P by deleting the column vij . Then, in Cl(X)0 = Z, the factor group of Cl(X) by
the torsion part, the weights w0

ij of Tij are given up to a factor α as

(w0
01, w

0
02, w

0
11, w

0
21) = α(det(P01), − det(P02), det(P11), − det(P21)).

According to [1, Prop. III.3.4.1], the class of the anticanonical divisor in Cl(X)0 is
given as the sum over all w0

ij minus the degree of the relation. The inequalities on
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the lij , dij implied by the existence of an integer α as in Proposition 6.2 (i) to (iv)
show that the anticanonical class is positive (note that α rules out). �

We turn to the case of precisely one singular point. In that case, the integer α
in clauses (i) to (iv) of Proposition 6.2 satisfies the divisibility conditions automat-
ically.

Construction 6.4 (K∗-surfaces with one singularity). Consider a triple (l0, l1, l2)
of integers satisfying the following conditions:

l0 > 1, l1 > l2 > 2, l0 < l1l2, gcd(l1, l2) = 1.

Let (d1, d2) be the (unique) pair of integers with d1l2 + d2l1 = −1 and 0 6 d2 < l2
and consider the data

A =

[
0 −1 1
1 −1 0

]
, P =



−1 −l0 l1 0
−1 −l0 0 l2
0 1 d1 d2




Then the associated ring R(l0, l1, l2) := R(A, P ) is graded by Z4/im(P ∗) ∼= Z, and
is explicitly given by

R(l0, l1, l2) = K[T1, T2, T3, T4]/〈T1T
l0
2 + T l1

3 + T l2
4 〉,

deg(T1) = l1l2 − l0, deg(T2) = 1, deg(T3) = l2, deg(T4) = l1.

Proposition 6.5. For the K∗-surface X = X(l0, l1, l2) with Cox ring R(l0, l1, l2),
the following statements hold :

(i) X is nontoric and we have Cl(X) = Z,

(ii) X comes with precisely one singularity,

(iii) X is a del Pezzo surface if and only if l0 < l1 + l2 + 1 holds,

(iv) X is almost homogeneous if and only if l0 6 l1 holds.

Moreover, any normal complete rational nontoric K∗-surface of Picard number one

with precisely one singularity is isomorphic to some X(l0, l1, l2).

Proof. First note that X = X(l0, l1, l2) is obtained as in Construction 3.10: the
group HX = K∗ acts on K4 by

t · z = (tl1l2−l0z1, tz2, t
l2z3, t

l1z4),

the total coordinate space X := V (T1T
l0
2 +T l1

3 +T l2
4 ) is invariant under this action

and we have

X̂ = X \ {0}, X = X̂/K∗.

Thus, Cl(X) = Z holds and, since the Cox ring R(X) = R(l0, l1, l2) is not a
polynomial ring, X is nontoric.

Using [1, Prop. III.3.1.5], we show that the set of singular points of X consists

of the image x0 ∈ X of the point (1, 0, 0, 0) ∈ X̂ under the quotient map X̂ → X .
If l1l2 − l0 > 1 holds, then the local divisor class group

Cl(X, x0) = Z/(l1l2 − l0)Z

is nontrivial and thus x0 ∈ X singular. If l1l2 − l0 = 1 holds, then we have l0 > 1

and therefore (1, 0, 0, 0) ∈ X̂ and hence x0 ∈ X is singular. Since all other local
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divisor class groups of X are trivial and, moreover, all singular points of X̂ lie in
the orbit K∗ · (1, 0, 0, 0), we conclude that x0 ∈ X is the only singular point.

According to [1, Prop. III.3.4.1], the anticanonical class of X is l1 + l2 + 1− l0.
This proves (iii). Finally, for (iv), we infer from Proposition 6.2 that the existence
of a horizontal Demazure P -root is equivalent to the existence of an integer α with
l0 6 α 6 l1, which in turn is equivalent to l0 6 l1.

We come to the supplement. The surface X arises from a ring R(A, P ), where
we may assume that R(A, P ) is minimally presented. The first task is to show that
n = 4, m = 0 and r = 2 holds. We have

n+m− (r − 1) = dim(X) + rk(Cl(X)) = 3.

Any relation gI involving only three variables gives rise to a singularity in the source
and a singularity in the sink of the K∗-action. We conclude that at most two of the
monomials occuring in the relations may depend only on one variable. Thus, the
above equation shows that n = 4, m = 0 and r = 2 hold.

We may assume that the defining equation is of the form T l01
01 T

l02
02 + T l11

11 + T l21
21 .

Again, since one of the two elliptic fixed points must be smooth, we can conclude
that one of l0j equals one, say l01. Now it is a direct consequence of the description
of the local divisor class groups given in [1, Prop. III.3.1.5] that a K∗-surface with
precisely one singularity arises from a matrix P as in the assertion. �

Now we look at the log terminal ones of the X(l0, l1, l2); recall that a singularity
is log terminal if all its resolutions have discrepancies bigger than −1. Over C,
the log terminal surface singularities are precisely the quotient singularities by
subgroups of GL2(C), see for example [18, Sec. 4.6]. The Gorenstein index of
X is the minimal positive integer ı(X) such that ı(X) times the canonical divisor
KX is Cartier.

Corollary 6.6. Assume that X = X(l1, l2, l3) is log terminal. Then we have the

following three cases :

(i) the surface X is almost homogeneous,

(ii) the singularity of X is of type E7,

(iii) the singularity of X is of type E8.

Moreover, for the almost homogenoeus surfaces X = X(l1, l2, l3) of Gorenstein

index ı(X) = a, we have

(i) (l0, l1, l2) = (1, l1, l2) with the bounds l2 6 l1 6 8
3a

2 + 4
3a,

(ii) (l0, l1, l2) = (2, l1, 2) with the bound l1 6 4a,
(iii) (l0, l1, l2) = (3, 3, 2), (2, 4, 3), (2, 5, 3), (3, 5, 2).

Proof. The condition thatX is log terminal means that the number l0l1l2 is bounded
by l0l1+l0l2+l1l2; this can be seen by explicitly performing the canonical resolution
of singularities of X(l0, l1, l2), see [11, Sec. 3]. Thus, the allowed (l0, l1, l2) must
be platonic triples and we are left with

(1, l1, l2), (2, l1, 2), (3, 3, 2), (2, 4, 3), (2, 5, 3), (3, 5, 2), (4, 3, 2), (5, 3, 2).

The last two give the surfaces with singularities E7, E8 and in all other cases,
the resulting surface is almost homogeneous by Proposition 6.5. The Gorenstein
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condition says that aKX lies in the Picard group. According to [1, Cor. III.3.1.6],
this is equivalent to the fact that l1l2 − l0 divides a · (l1 + l2 + 1− l0). The bounds
then follow by direct estimations, see [14, Sec. 7.2] for details. �

Corollary 6.7. The following tables list the triples (l0, l1, l2) together with roots

of Aut(X) for the log terminal almost homogeneous complete rational K∗-surfaces

X = X(l0, l1, l2) with precisely one singularity up to Gorenstein index ı(X) = 5.

ı(X) = 1 ı(X) = 2 ı(X) = 3

(1, 3, 2): {1, 2, 3} (1, 7, 3): {1, 3, 4, 7} (2, 7, 2): {2, 3, 5, 7}
(2, 3, 2): {2, 3} (1, 13, 4): {1, 4, 5, 9, 13}
(3, 3, 2): {3} (1, 8, 5): {3, 5, 8}

ı(X) = 4 ı(X) = 5

(2, 5, 2): {2, 3, 5} (2, 11, 2): {2, 3, 5, 7, 9, 11}
(1, 21, 5): {1, 5, 6, 11, 16, 21} (1, 13, 7): {2, 6, 13}

(2, 4, 3): {3, 4}
(1, 17, 3): {2, 3, 5, 8, 11, 14, 17}
(1, 31, 6): {1, 6, 7, 13, 19, 25, 31}
(1, 18, 7): {4, 7, 11, 18}

7. Structure of the Semisimple Part

We describe the root system of the semisimple part of the automorphism group of
a nontoric normal complete rational variety admitting a torus action of complexity
one. Let us first recall the necessary background on semisimple groups and their
root systems.

A connected linear algebraic group G is semisimple if it has only trivial closed
connected commutative normal subgroups. Any linear algebraic group G admits a
maximal connected semisimple subgroup Gss ⊆ G called a semisimple part. The
semisimple part is unique up to conjugation by elements from the unipotent radical.
If G is semisimple, then the set ΦG ⊆ XR(T ) of roots with respect to a given
maximal torus T ⊆ G is a root system, i.e., for every α ∈ ΦG one has

ΦG ∩ Rα = {±α}, sα(ΦG) = ΦG,

where sα : XR(T ) → XR(T ) denotes the reflection with fixed hyperplane α⊥ with
respect to a given scalar product on XR(T ). The possible root systems are elemen-
tarily classified; for us, the following types (always realized with the standard scalar
product) will be important:

An := {ei − ej ; 1 6 i, j 6 n+ 1, i 6= j} ⊆ Rn+1,

B2 := {±e1, ±e2, ±(e1 + e2), ±(e1 − e2)} ⊆ R2.

The root system of a connected semisimple linear groupG determinesG up to cover-
ings; for example, An belongs to the (simply connected) special linear group SLn+1

and B2 to the (simply connected) symplectic group Sp4.
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We turn to varieties with a complexity one torus action. Consider data A, P as
in Construction 3.7 and the resulting ring R(A, P ) with its fine K0-grading and
the coarser K-grading. Recall that the fine grading group K0 splits as

K0 = Kvert
0 ⊕Khor

0 , where Kvert
0 := 〈degK0

(Sk)〉, K
hor
0 := 〈degK0

(Tij)〉.

Note that Kvert
0

∼= Zm is freely generated by degK0
(S1), . . . , degK0

(Sm). Moreover,
by Remark 3.9, the direct factor Zs of the column space Zr+s of P is identified via
Q0 ◦ P

∗ with the kernel of the downgrading map K0 → K.

Definition 7.1. Let A, P be as in Construction 3.7 such that the associated ring
R(A, P ) is minimally presented and write ακ for the P -root, i.e., the Zs-part,
associated to Demazure P -root κ.

(i) We call a P -root ακ semisimple if −ακ = ακ′ holds for some Demazure
P -root κ′.

(ii) We call a semisimple P -root ακ vertical if ακ ∈ Kvert
0 and horizontal if

ακ ∈ Khor
0 holds.

(iii) We write Φss
P , Φ

vert
P and Φhor

P for the set of semisimple, vertical semisimple
and horizontal semisimple P -roots in Rs respectively.

Theorem 7.2. Let A, P be as in Construction 3.7 such that R(A, P ) is minimally

presented and let X be a (nontoric) variety with a complexity one torus action

T ×X → X arising from A, P according to Construction 3.10. Then the following

statements hold.

(i) Φvert
P , Φhor

P and Φss
P are root systems, we have Φss

P = Φvert
P ⊕ Φhor

P and Φss
P

is the root system with respect to T of the semisimple part Aut(X)ss.
(ii) For p ∈ K denote by mp the number of variables Sk with degK(Sk) = p.

Then we have

Φvert
P

∼=
⊕

p∈K

Amp−1,
∑

p∈K

(mp − 1) < dim(X)− 1.

(iii) Suppose Φhor
P 6= ∅. Then r = 2 holds, and, after suitably renumbering the

variables one has

(a) T01T02 + T11T12 + T l2
2 , w01 = w11 and w02 = w12,

(b) T01T02 + T 2
11 + T l2

2 , and w01 = w02 = w11

for the defining relation of R(A, P ) and the degrees wij = degK(Tij) of

the variables.

(iv) In the above case (iii a), we obtain the following possibilities for the root

system Φhor
P :

• If l21 + . . .+ l2n2
> 3 holds, then one has

Φhor
P =

{
A1 ⊕A1, w01 = w02 = w11 = w12,

A1, otherwise.
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• If n2 = 2 and l21 = l22 = 1 hold, then one has

Φhor
P =





A3, w01 = w02 = w11 = w12 = w21 = w22,

A2, w01 = w11 = w21, w02 = w12 = w22, w01 6= w02,

A1 ⊕A1, w01 = w02 = w11 = w21, w01 6= w21, w01 6= w22,

A1, otherwise.

(v) In the above case (iii b), we obtain the following possibilities for the root

system Φhor
P :

• If l21 + . . .+ l2n2
> 3 holds, then one has

Φhor
P = A1.

• If n2 = 1 and l21 = 2 hold, then one has

Φhor
P =

{
A1 ⊕A1, w01 = w02 = w11 = w21,

A1, otherwise.

• If n2 = 2 and l21 = l22 = 1 hold, then one has

Φhor
P =

{
B2, w01 = w02 = w11 = w21 = w22,

A1, otherwise.

The rest of the section is devoted to the proof of this theorem. Some of the
steps are needed later on and therefore formulated as Lemmas. We fix A, P as in
Construction 3.7 and assume that R(A, P ) is minimally presented.

Lemma 7.3. Let δ be a nonzero primitive K0-homogeneous derivation on R(A, P ),
decompose degK0

(δ) = wvert + whor according to K0 = Kvert
0 ⊕ Khor

0 and write

wvert =
∑
bkwk with wk = degK0

(Sk) and bk ∈ Z.

(i) If δ is of vertical type, then there is a k0 with bk0
= −1 and bk > 0 for all

k 6= k0. Moreover, whor belongs to the weight monoid of R(A, P ).
(ii) If δ is of horizontal type, then bk > 0 holds for all k. Moreover, −whor

does not belong to the weight monoid of R(A, P ).

Proof. If δ is nonzero of vertical type, then Theorem 4.4 (i) directly yields the
assertion. If δ is nonzero of horizontal type, then it is of the form δ = hδC,β as in
Theorem 4.4 (ii). For the degree of δ, we have

degK0
(δ) = wvert + whor = degK0

(h)vert + degK0
(h)hor + degK0

(δC,β),

where degK0
(δC,β) lies in K

hor
0 by Construction 4.3. Since degK0

(h)vert belongs to
the weight monoid S and, due to primitivity, degK0

(δ) lies outside the weight cone,

we must have whor 6= 0. Moreover, for a Tij with δ(Tij) 6= 0 and wij := degK0
(Tij),

the degree computation of Construction 4.3 shows

0 6= degK0
(h)hor + degK0

(δC,β) + wij = degK0
(δ(Tij))

hor.

Thus, whor+wij is a nonzero element in S. If also −whor belongs to S, then we can
take 0 6= f, g ∈ R(A, P ) homogeneous of degree whor+wij and −whor respectively.
The product fg is of degree wij . By Corollary 3.6, this means fg = cTij with
c ∈ K. A contradiction to the fact that Tij is K0-prime. �
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By definition, the semisimple roots occur in pairs α+, α− with α+ + α− = 0.
Given a pair κ+, κ− of Demazure P -roots defining α+, α−, write δ+, δ− for the
derivations arising from κ+, κ− via Construction 5.7. We call the pairs κ+, κ− and
δ+, δ− associated to α+, α−. Note that associated pairs κ+, κ− or δ+, δ− are in
general not uniquely determined by α+, α−.

Lemma 7.4. Let δ+, δ− be a pair of primitive K0-homogeneous derivations asso-

ciated to a pair α+, α− of semisimple roots.

(i) The roots α+, α− are the K0-degrees of the derivations δ+, δ−. In partic-

ular, we have

degK0
(δ+) + degK0

(δ−) = α+ + α− = 0.

(ii) If δ+ is of vertical type, then also δ− is of vertical type and α+, α− are

both vertical.

(iii) If δ+ is of horizontal type, then also δ− is of horizontal type and α+, α−

are both horizontal.

Proof. The first assertion is clear by Construction 5.7. Using the decomposition
K0 = Kvert

0 ⊕Khor
0 , we obtain

αvert
+ + αvert

− = 0, αhor
+ + αhor

− = 0.

If δ+ is of horizontal type, then Lemma 7.3 (ii) shows that −αhor
+ = αhor

− does
not belong to the weight monoid. Thus Lemma 7.3 (i) says that δ− must be of
horizontal type. Moreover, Lemma 7.3 (ii) shows that αvert

+ and αvert
− vanish and

thus α+, α− are horizontal.
If δ+ is of vertical type, then, by the preceeding consideration, also δ− must be

vertical. Moreover, Lemma 7.3 (i) tells us that αhor
+ and αhor

− both belong to the
weight monoid. As seen above they have opposite signs. Since the weight cone is
pointed, we obtain αhor

+ = αhor
− = 0, which means that α+, α− are vertical. �

For the subsequent study, we will perform certain elementary column and row
operations with the matrix P , which we will call admissible:

(I) swap two columns inside a block vij1 , . . . , vijni
,

(II) swap two whole column blocks vij1 , . . . , vijni
and vi′j1 , . . . , vi′jn

i′
,

(III) add multiples of the upper r rows to one of the last s rows,
(IV) any elementary row operation among the last s rows.
(V) swap two columns inside the d′ block.

The operations of type (III) and (IV) do not change the ring R(A, P ) whereas the
types (I), (II), (V) correspond to certain renumberings of the variables of R(A, P )
keeping the (graded) isomorphy type.

For a Demazure P -root κ = (u, k0) of vertical type, the index k0 is uniquely
determined by the Zs-part of u. Thus, we may speak of the distinguished index of
a vertical P -root. Note that for any pair α± of vertical semisimple P -roots, the
distinguished indices satisfy k+0 6= k−0 .

Lemma 7.5. Let 1 6 k+0 < k−0 6 m be given and denote by f ∈ Zn+m the

vector with fk±
0

= ∓1 and all other entries zero. Then the following statements are

equivalent.
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(i) There exists a pair α± of vertical semisimple roots with distinguished in-

dices k±0 .
(ii) The vector f can be realized by admissible operations of type (III) and (IV)

as the (r + 1)th row of P .
(iii) The variables Sk+

0

and Sk−
0

have the same K-degree.

Proof. Suppose that (i) holds. Let κ± = (u±, k±0 ) be a pair of Demazure P -
roots associated to α±. Then u := u+ + u− satisfies 〈u, vij〉 > 0 for all i, j and
〈u, vk〉 > 0 for all k. Since the columns of P generate Qr+s as a cone, we obtain
u = 0. Consequently u− = −u+ holds and we conclude

〈u+, vij〉 = 0 for all i, j, 〈u+, vk〉 = 0 for all k 6= k±0 ,

〈u+, vk+

0

〉 = −1, 〈u+, vk−
0

〉 = 1.

Now write u+ = (u+1 , α
+) with the Zs-part α+ and let σ be an (s− 1)× s matrix

complementing the (primitive) row α+ to a unimodular matrix. Consider the block
matrix 


Er 0
u+1 α+

0 σ


 .

Applying this matrix from the left to P describes admissible operations of type (III)
and (IV) realizing the vector f as the (r + 1)th row of P . Thus, (i) implies (ii).

To see that (ii) implies (i), we may assume that f is already the (r + 1)th row
of P . Consider u± ∈ Zr+s having u±r+1 = ±1 as the only nonzero coordinate. Then

the Zs-parts α± of the vertical Demazure P -roots κ± = (u±, k±0 ) are as wanted.
Clearly, (ii) implies (iii). Conversely, the implication “(iii)⇒ (ii)” is obtained by

similar arguments as “(i)⇒ (ii)”. �

Lemma 7.6. Let Eq denote the q × (q + 1) block matrix [−1, Eq], where 1 is a

column with all entries equal one and Eq is the q× q unit matrix. After admissible

operations of type (III), (IV) and (V), the [d, d′] block of P is of the form

[d, d′] =




0 Emp1
0 0

. . . . . . . . . . . . . . . . . . . . . . . . . .
0 0 Empt

0
d∗ d′′1 . . . d′′t d′′




where p1, . . . , pt ∈ K are the elements such that the number mpi
of variables Sk of

degree pi is at least two and d′′i is a block of length mpi
with only the first column

possibly nonzero. Moreover, Φvert
P is a root system and we have

Φvert
P

∼=
⊕

p∈K

Amp−1,
∑

p∈K

(mp − 1) < dim(X)− 1.

Proof. This is a direct application of Lemma 7.5. �

Lemma 7.7. If there exists a pair of semisimple roots α± ∈ Φhor
P , then r = 2, and

after suitably renumbering l0, l1, l2, the following two cases remain.

(i) We have n0 = n1 = 2 and l01 = l02 = l11 = l12 = 1 and for any pair δ± of

derivations associated to α± one has i+0 = i−0 = 2.
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(ii) We have n0 = 1, l01 = 2 and n1 = 2, l11 = l12 = 1 and for any pair δ± of

derivations associated to α± one has i+0 = i−0 = 2.

Proof. Lemma 7.4 says that δ+, δ− are of horizontal type, by Construction 5.7 they
are of the form δ± = h±δC±,β± and the degree computation of Construction 4.3
gives

degK0
(δ±) = (r − 1)µ−

∑

k 6=i±
0

wkc±
k
+ w±,

where µ is the common K0-degree of the relations, wij the K0-degree of Tij , the i
±
0 -

th component of β± vanishes and w± is the K0-degree of h±. Now fix two distinct
i+, i− with i± 6= i±0 and li+c+

i+
= 1. Then degK0

(δ+) + degK0
(δ−) = 0 leads to

w := w+ + w− +
∑

k 6=i+
0
,i+

(µ− wkc+
k
) +

∑

k 6=i−
0
,i−

(µ− wkc−
k
) = wi+c+

i+
+ wi−c−

i−
.

Note that all summands are elements of the weight monoid of R(A, P ) and, except
possibly w±, all are nonzero. Moreover, Corollary 3.6 (ii) shows that the K0-
homogeneous component R(A, P )w is generated by f+f−, where

f+ := Ti+c+
i+
, f− := Ti−c−

i−
.

Now, choosing suitable presentations of the µ, write the first presentation of w as the
K0-degree of a monomial f in the variables Tij corresponding to the occuring wij .
Then f = f+f− holds. Since f+ and f− are K0-prime, we conclude w± = 0 and
r = 2. Renumbering i+0 7→ 2, i+ 7→ 1, the above equation simplifies to

w = µ− w0c+
0

+ µ− wi−
2
c−
i2

−
= w1c+

1

+ wi−c−
i−
,

where i−2 differs from i−0 and i−. We conclude further i−2 = 1 and
∑
l0j =

∑
l1j = 2

and i−0 = i+0 . Since li+c+
i+

= l1c+
1

equals one, we arrive at the cases (i) and (ii). �

The above lemma shows that for a given pair α± ∈ Φhor
P , all associated pairs of

Demazure P -roots (or derivations) share the same i0 = i+0 = i−0 . This allows us to
speak about the distinguished index i0 of α± ∈ Φhor

P .

Lemma 7.8. Suppose n0 = n1 = 2, l01 = l02 = l11 = l12 = 1. If there exists a pair

α± ∈ Φhor
P with distinguished index i0 = 2, then P can be brought by admissible

operations, without moving the n2-block, into the form

P =




−1 −1 1 1 0 0
−1 −1 0 0 l2 0
−1 0 0 1 0 0
0 0 0 d∗12 d∗2 d′∗


 , (7.8.1)

where the lower line is a matrix of size (s− 1)× (n+m). Conversely, if P is of the

above shape, then α± = (±1, 0) ∈ Φhor
P has distinguished index i0 = 2. Moreover,

up to admissible operations of type (III) and (IV), situation (7.8.1) is equivalent to

degK(T01) = degK(T12), degK(T02) = degK(T11).
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Proof. Fix an associated pair κ± = (u±, 2, i±1 , C±) of Demazure P -roots. Renum-
bering the variables, we first achieve i+1 = 1 and C+ = (1, 1, 1). Adding suitable
multiples of the top two rows of P to the lower s rows, brings P into the form

P =



−1 −1 1 1 0 0
−1 −1 0 0 l2 0
0 d02 0 d12 d2 d′




Now we explicitly go through the defining conditions of the Demazure P -root κ+
with

u+ = (u+1 , u
+
2 , α+), where u±i ∈ Z, i+1 = 1, C+ = (1, 1, 1).

This gives in particular, u+1 = −1 and u−1 = 1. Going through the conditions of a
Demazure P -root κ− = (u−, 2, i−1 , C−) leaves us with the two possibilities

u− = (1, −1, −α+), i−1 = 0, C− = (2, 2, 1),

u− = (0, −1, −α+), i−1 = 1, C− = (2, 2, 1).

In both cases, we obtain

〈α+, d02〉 = 〈α+, d12〉 = 1,

〈α+, d2j〉 = −l2j for j = 1, . . . , n2,

〈α+, d
′
k〉 = 0 for j = 1, . . . , m.

Now choose any invertible s× s matrix with α+ as its first row and apply it from
the left to P . Then the third row of P looks as follows

[
0 1 0 1 −l2 0

]
.

Adding suitable multiples of the third row to the last s − 1 rows and adding the
second to the third row brings P into the desired form. The remaining statements
are directly checked. See also [14, Section 7.3] for a detailed proof. �

Lemma 7.9. Consider a pair α± ∈ Φhor
P with distinguished index i0 = 2. There

exists another pair α̃± ∈ Φhor
P with distinguished index ĩ0 = 2 if and only if we have

degK(T01) = degK(T02) = degK(T11) = degK(T12).

Moreover, if the latter holds, then α±, α̃± are the only pairs of semisimple roots

with distinguished index 2 and they form a root system isomorphic to A1 ⊕A1.

Proof. We may assume that we are in the setting of Lemma 7.8. Then we just have
to go through the possible cases ĩ±1 and C− and observe that the existence of α̃±

implies a special shape of P equivalent to the above degree condition. �

Lemma 7.10. Suppose n0 = 1, l01 = 2 and n2 = 2, l11 = l12 = 1. Then there is

at most one pair α± ∈ Φhor
P with distinguished index i0 = 2. If there is one, then P

can be brought by admissible operations, without moving the n2-block, into the form

P =




−2 1 1 0 0
−2 0 0 l2 0
−1 0 1 0 0
d∗01 0 0 d∗2 d′∗


 , (7.10.1)
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where the lower line is a matrix of size (s− 1)× (n+m). Conversely, if P is of the

above shape, then α± = (±1, 0) ∈ Φhor
P has distinguished index i0 = 2. Moreover,

up to admissible operations of type (III) and (IV), situation (7.10.1) is equivalent

to

degK(T01) = degK(T11) = degK(T12).

Proof. This is a similar computation as in the previous lemma. Clearly, we may
assume C+ = (1, 1, 1) and by suitable row operations, we bring P into the form

P =



−2 1 1 0 0
−2 0 0 l2 0
d01 0 d12 d2 d′




Now enter the defining conditions of a Demazure P -root κ+ with u+ =(u+1 , u
+
2 , α+).

It turns out that C− = (1, 2, 2) or C− = (1, 2, 1) must hold. We end up with
u+1 = 0 and

〈α+, d01〉 = 2u+2 − 1,

〈α+, d12〉 = 1,

〈α+, d2j〉 = −u+2 l2j for j = 1, . . . , n2,

〈α+, d
′
k〉 = 0 for j = 1, . . . , m.

As before, this enables us to bring P via suitable row operations into the desired
form. The remaining statements are directly seen, we refer again to [14, Section 7.3]
for the details. �

Proof of Theorem 7.2. Lemma 7.6 shows that Φvert
P is a root system and has the

desired form. This proves (ii). Concerning Φhor
P , assertion (iii) as well as the

cases l21 + . . .+ l2n2
> 3 of assertions (iv) and (v) are proven by Lemmas 7.7, 7.8

and 7.9. The remaining cases of (iv) and (v) are deduced using the special shape
of P guaranteed by Lemma 7.7. So, Φvert

P and Φhor
P are root systems of the desired

shape. Lemma 7.4 and the decomposition of K0 into a vertical and a horizontal
part show that Φss

P splits into the direct sum of Φvert
P and Φhor

P .
To conclude the proof, we have to verify that Φss

P is in fact the root system
of the semisimple part of Aut(X). For this, it suffices to realize the root system
Φss

P as the root system of some semisimple subgroup G ⊆ Aut(X) (which then

necessarily is a semisimple part). Consider X := SpecR(A, P ) and the action of
HX := SpecK[K]. The group G ⊆ Aut(X) will be induced by a representation of a
suitable semisimple group on Kn+m commuting with the action of HX and leaving
X := SpecR(A, P ) invariant.

We first care about Φvert
P . Consider the semisimple group Gvert := ×p SLmp

.
It acts on Kn+m: triviallly on Kn and blockwise on Km =

⊕
p K

mp . This action

commutes with the action of HX and leaves X as well as X̂ invariant. Thus the
Gvert-action descends to X . This realizes Gvert ⊆ Aut(X) as a subgroup with root
system Φvert

P .
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Similarly, going through the cases, we realize Φhor
P as a root system of a semisim-

ple group Ghor ⊆ Aut(X). Recall that for the defining relation, we have the possi-
bilities

(a) T01T02 + T11T12 + T l2
2 , (b) T01T02 + T 2

11 + T l2
2 .

Consider case (a). If we have the equations w01 = w11 and w02 = w12, then g ∈ SL2

acts on the T01, T11-space as (gt)−1 and on the T02, T12-space as g. By trivial
extension, we obtain an action on Kn+m commuting with the H-action, leaving the
defining relation and thus X invariant. Thus, we have an induced effective action
of a semisimple group Ghor with root system A1 on X .

If we have w01 = w02 = w11 = w12, then the canonical action of the group
SO4 on the T01, T11, T02, T12-space extends trivially to Kn+m, commutes with the
action of HX and leaves X invariant. Again, this gives an induced effective action
of a semisimple group Ghor on X , this time the root system is A1 ⊕A1; recall that
SO4 has SL2 × SL2 as its universal covering.

Now let n2 = 2 and l21 = l22 = 1. Then we have n = 6. If all six K-degrees wij

coincide, then take the action of SO6 on Kn and extend it trivially to Kn+m. This
induces an action of a semisimple group Ghor on X . The root system is that of the
universal covering SL4, i.e. we obtain A3. If all wi1 and all wi2 coincide but we
have w01 6= w02, then consider the action of SL3 given by (gt)−1 on the Ti1-space
and by g on the Ti2-space. This leads to a Ghor with root system A2.

Finally, consider case (b). If w01 = w02 = w11 holds, then the canonical action
of the group SO3 on the T01, T02, T11-space defines a semisimple subgroup Ghor of
Aut(X) with root system A1. If n2 = 1 and l21 = 2 holds and we have w01 =
w02 = w11 = w21, then n = 4 holds and the canonical action of SO4 on Kn induces
a semisimple subgroup Ghor of Aut(X) with root system A1⊕A1. If we have n2 = 2
and l21 = l22 = 1 and all degrees wij coincide, then the canonical action of SO5 on
K5 extends to Kn+m and induces a subgroup Ghor of Aut(X) with root system B2.

Alltogether, we realized the root systems Φvert
P and Φhor

P by semisimple subgroups
Gvert and Ghor of Aut(X). By construction, these groups commute and thus define
a semisimple subgroup G := GvertGhor of Aut(X) with the desired root system
Φss

P = Φvert
P ⊕ Φhor

P . �

Corollary 7.11 (of proof). In the situation of Theorem 7.2, any pair of semisimple

roots defines a subgroup of the automorphism group locally isomorphic to SL2.

8. Applications

In this section we present applications of Theorem 7.2. A first one concerns
the automorphism group of arbitrary nontoric Mori dream surfaces (not necessarily
admitting a K∗-action).

Proposition 8.1. Let X be a nontoric Mori dream surface. Then Aut(X)0 is

solvable and the following cases can occur:

(i) X is a K∗-surface,

(ii) Aut(X)0 is unipotent.
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Proof. Consider a maximal torus T ⊆ Aut(X)0. If T is trivial, then we are in
case (ii). In particular, Aut(X)0 is solvable then. If T is one-dimensional, then we
are in case (i) and the task is to show that the semisimple part of Aut(X) is trivial,
i.e., Aut(X) has no semisimple roots. For this, we remark first that as a Mori dream
surface with a nontrivial K∗-action, X is rational. Thus, we may assume that X
arises from A, P as in Construction 3.7 and that R(A, P ) is minimally presented.
Note that we have s = 1.

The estimate of Theorem 7.2 (ii) forbids vertical semisimple P -roots. Let us see
why there are no horizontal semisimple P -roots. Otherwise, Lemmas 7.8 and 7.10
show that we must have m = 0 and, up to admissible operations, the matrix P is
one of the following:



−1 −1 1 1 0
−1 −1 0 0 l2
−1 0 0 1 0


 ,



−2 1 1 0
−2 0 0 l2
−1 0 1 0


 .

Since the columns of P are pairwise different primitive vectors, we obtain n2 = 1
and l21 = 1; a contradiction to the assumption that the ring R(A, P ) is minimally
presented. �

We take a brief look at q-dimensional varieties X coming with a nontrivial action
of SLq. They were classified (in the smooth case) by Mabuchi [16]. Let us see how
to obtain the rational nontoric part of his list with the aid of Theorem 7.2.

Example 8.2. Let X a nontoric q-dimensional complete normal variety with a
nontrivial action of SLq. Since SLq has only finite normal subgroups, X comes
with a torus action T ×X → X of complexity one. Proposition 8.1 tells us that X
is of dimension at least three. If SLq acts with an open orbit, then X has a finitely
generated divisor class group and, by existence of the T -action of complexity one,
must be rational. So, we may assume that we are in the setting of Theorem 7.2,
where we end up in the cases A2, A3 of second item of (iv), which amounts to the
following two possibilities.

(i) We have q = 3 and X is the flag variety SL3/B3; in particular, Cl(X) ∼= Z2

and

R(X) ∼= K[T01, T02, T11, T12, T21, T22] / 〈T01T02 + T11T12 + T21T22〉

hold, where the Z2-grading is given by

deg(T01) = deg(T11) = deg(T21) = (1, 0),

deg(T02) = deg(T12) = deg(T22) = (0, 1).

(ii) We have q = 4 and X is the smooth quadric V (T0T1+T2T3+T4T5) in P5,
where SL4 acts as the universal covering of SO6.

Now assume that SLq acts with orbits of dimension at most q − 1. Then this
action gives a root system Aq−1 ⊆ Φvert

P . If X were rational, then Theorem 7.2 (ii)
would require q < dim(X), which is excluded by assumption. Thus, X must be
nonrational. In particular, the rational nontoric part of Mabuchi’s list is established,
even for a priori singular varieties.
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We turn to nontoric varieties with a torus action of complexity one which are
almost homogeneous under some reductive group. Recall that an action of a re-
ductive group G on X is spherical if some Borel subgroup of G acts with an open
orbit on X .

Proposition 8.3. Let X be a nontoric complete normal variety. Then the following

statements are equivalent.

(i) X allows a torus action of complexity one and an almost homogeneous

reductive group action.

(ii) X is spherical with respect to an action of a reductive group of semisimple

rank one.

(iii) X is isomorphic to a variety as in Theorem 7.2 (iii).

Proof. The implication “(ii)⇒ (i)” is obvious. For the implication “(iii)⇒ (ii)”,
take a pair of semisimple horizontal P -roots α+ and α−. Then the acting torus T
of X and the root subgroups U± associated to α± generate a reductive group G of
semisimple rank one in Aut(X) and X is spherical with respect to the action of G.

Assume that (i) holds. Then the open orbit of the acting reductive group G is
unirational. Thus, X is unirational. By the existence of a torus action of complexity
one, X contains an open subset of the form T × C with some affine curve C. We
conclude that C and hence X are rational. Consequently, X is a Mori dream space.
In particular, Corollary 2.4 yields that Aut(X) is linear algebraic. Moreover, we
may assume that we are in the setting of Theorem 7.2. The image of G0 in Aut(X)
is contained in a maximal connected reductive subgroup G′ of Aut(X). Suitably
conjugating G′, we may assume that the acting torus T of X is a maximal torus
of G′. Since G′ is generated by root subgroups, we infer from Corollary 5.11 that
there must be a horizontal Demazure P -root. Since every root of G′ is semisimple,
we end up in Case 7.2 (iii). �

Specializing to dimension three, we obtain a quite precise picture of the possible
matrices P in the above setting.

Proposition 8.4. Let X be a three-dimensional nontoric complete normal rational

variety. Suppose that X is almost homogeneous under an action of a reductive group

and there is an effective action of a two-dimensional torus on X. Then the Cox

ring of X is given as R(X) = R(A, P ) with a matrix P according to the following

cases

(i) P =




−1 −1 1 1 0 0
−1 −1 0 0 l2 0
−1 0 0 1 0 0
0 0 0 d∗12 d∗2 d′∗


,

(ii) P =




−2 1 1 0 0
−2 0 0 l2 0
−1 0 1 0 0
d∗01 0 0 d∗2 d′∗


.

In both cases, we have m 6 2; that means that the d′∗-part can be either empty,

equal to ±1 or equal to (±1, ∓1).
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Proof. Clearly, we may assume that we are in the situation of Theorem 7.2. Since
X is nontoric but almost homogeneous, there must be a semisimple horizontal P -
root. Thus, Lemmas 7.8 and 7.10 show that after admissible operations, P is of the
desired shape. �

As a direct consequence, one retrieves results of Haddad [9] on the Cox rings of
three-dimensional varieties that are almost homogeneous under an SL2-action and
additionally come with an effective action of a two-dimensional torus T ; compare
also [2] for the affine case.

Corollary 8.5. Let X be a three-dimensional nontoric complete normal rational

variety. Suppose that X is almost homogeneous under an action of SL2 and there

is an effective action of a two-dimensional torus T on X. Then X has at most two

T -invariant prime divisors with infinite T -isotropy, i.e., we have m 6 2 and the

Cox ring of X is given as

R(X) = K[Tij , Sk]/〈T01T02 + T11T12 + T l21
21 · · ·T

l2n2

2n2
〉.

Proof. We are in the situation of Proposition 8.4. The assumption that SL2 acts
with an open orbit implies that we are in case (i). �

Finally, we consider almost homogeneous varieties with reductive automorphism
group; see for example [19] for results on the toric case. Here, we list all almost
homogeneous threefolds of Picard number one with a reductive automorphism group
having a maximal torus of dimension two.

Proposition 8.6. Let X be a Q-factorial three-dimensional complete normal vari-

ety of Picard number one. Suppose that Aut(X) is reductive, has a maximal torus

of dimension two and acts with an open orbit on X. Then X is a rational Fano

variety and, up to isomorphy, arises from a matrix P from the following list :

(i)




−1 −1 1 1 0
−1 −1 0 0 l21
−1 0 0 1 0
0 0 0 d12 d21


, l21 > 1, d12 > 2, − d21

d12−1 < l21 < −d21,

(ii)




−2 1 1 0 0
−2 0 0 l21 l22
−1 0 1 0 0
d01 0 0 d21 d22


 , l21, l22 > 1, 2d22 > −d01l22, −2d21 > d01l21,

(iii)




−2 1 1 0 0
−2 0 0 1 l22
−1 0 1 0 0
d01 0 0 d21 d22


,

l22 > 1, d22 > d21l22 + l22, 2d22 > −d01l22,
−2d21 > d01,
or

l22 > 1, 2d22 > −d01l22, 1− 2d21 > d01,

(iv)




−2 1 1 0 0
−2 0 0 1 1
−1 0 1 0 0
−1 0 0 1 0


,
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(v)




−2 1 1 0 0
−2 0 0 l21 0
−1 0 1 0 0
1 0 0 d21 1


, 1 < l21 < −2d21 < 2l21.

Conversely, each of the above listed matrices defines a Q-factorial rational almost

homogeneous Fano variety with reductive automorphism group having a two-dimen-

sional maximal torus.

Proof. See [14, Section 7.4] for the detailed version. According to Proposition 8.3,
we may assume that X arises from a matrix P . The fact that Aut(X) is reductive
means that every root must be semisimple and the fact that it acts with an open
orbit means that there exists at least one pair of horizontal semisimple roots. Now,
suppose we have m = 0. If there is only one pair of horizontal semisimple P -roots,
then reductivity of the automorphism group forbids further P -roots and we end up
with the first three cases. If there are more then one pair of semisimple roots, then
we end up in case four. Finally, if m > 0 holds, then m = 1 is the only possibility
and one is left with case (v). �
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72076 Tübingen, Germany

E-mail address: juergen.hausen@uni-tuebingen.de

E.H.: Mathematisches Institut, Universität Tübingen, Auf der Morgenstelle 10,
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