PROPERTIES OF VECTOR-VALUED τ-DISCRETE FRACTIONAL CALCULUS AND ITS CONNECTION WITH CAPUTO FRACTIONAL DERIVATIVES

3

4

YONG-KUI CHANG AND RODRIGO PONCE

ABSTRACT. In this paper, for a given vector-valued sequence $(v^n)_{n \in \mathbb{N}_0}$, we study its discrete fractional derivative in the sense of Caputo for $0 < \alpha < 1$ and its connection with the Caputo fractional derivative. Moreover, we study the convergence of this Caputo fractional difference operator to the Caputo fractional derivative.

1. INTRODUCTION

In the last two decades, the theory and the applications of time-fractional differential equations have 5 been a topic of great interest, see for instance, [2, 4, 12, 14, 15, 19, 20, 21, 23, 24, 25]. However, these 6 continuous-time applications sometimes need to be studied, for practical purposes, as discrete problems. 7 The first investigations on difference of fractional order date back to Kuttner in 1957 (see [13]) and 8 there are many different definitions of this concept. The study of existence, properties and applications g of discrete fractional difference equations has attracted considerable attention of many researchers in the 10 last years, see for instance [1, 3, 6, 7, 10, 18]. However, these articles focus mainly on scalar fractional 11 difference equations. Very recently, C. Lizama in [16] introduced a new method to study on fractional 12 difference equations in Banach spaces. See also [8, 9, 17] for related results. 13

For a given differentiable vector-valued function $u : \mathbb{R}_+ \to X$, the Caputo fractional derivative of uof order α , with $0 < \alpha < 1$, is defined by $\partial_t^{\alpha} u(t) := (g_{1-\alpha} * u')(t)$, where for $\beta > 0$, the function g_{β} is defined by $g_{\beta}(t) := \frac{t^{\beta-1}}{\Gamma(\beta)}$, and * denotes the usual finite convolution: $(f * g)(t) = \int_0^t f(t-s)g(s)ds$. On the other hand, for $0 < \alpha < 1$ and a fixed time-size $\tau > 0$, the Caputo fractional difference operator of a vector-valued sequence $(v^n)_{n \in \mathbb{N}_0}$ is defined by (see for instance [22])

$$({}_C\nabla^{\alpha}v)^n := \nabla^{-(1-\alpha)}_{\tau} (\nabla^1_{\tau}v)^n, \quad n \in \mathbb{N},$$

where $(\nabla_{\tau}^{-(1-\alpha)}v)^n := \tau \sum_{j=0}^n k_{\tau}^{1-\alpha}(n-j)v^j, n \in \mathbb{N}_0$, and for $\beta > 0, \nabla_{\tau}^1 v^n := \frac{v^n - v^{n-1}}{\tau}$, and

$$k_{\tau}^{\beta}(n) := \frac{\tau^{\beta-1}\Gamma(\beta+n)}{\Gamma(\beta)\Gamma(n+1)}, \quad n \in \mathbb{N}_0.$$

14 Intuitively, for a given $v : \mathbb{R}_+ \to X$ and τ small enough, $(_C \nabla^{\alpha} v)^n$ corresponds to an approximation 15 of $\partial_t^{\alpha} v(t)$ at $t_n := \tau n$, where the sequence $(v^n)_{n \in \mathbb{N}_0}$ is defined by $v^n = \int_0^{\infty} \rho_n^{\tau}(t) v(t) dt$ and $\rho_n^{\tau}(t) :=$ 16 $e^{-\frac{t}{\tau}} \left(\frac{t}{\tau}\right)^n \frac{1}{\tau n!}$.

The properties of Caputo fractional derivatives and fractional differences are well-known, see for instance [3, 10, 12, 19] and the references therein. However, there are only some papers studying its connections. In this paper, we study the main properties of $_{C}\nabla^{\alpha}$ and its relations with the Caputo fractional derivative ∂_{t}^{α} for $0 < \alpha < 1$.

The paper is organized as follows. In Section 2 we give the preliminaries. In Section 3 we study the main properties of the discrete Caputo fractional derivative $(_{C}\nabla^{\alpha}v)^{n}$ of a vector-valued sequence.

²⁰²⁰ Mathematics Subject Classification. Primary 34A08; Secondary 39A12, 65J10, 65M22.

Key words and phrases. Fractional differential equations, difference equations, fractional calculus.

Moreover, we study its connection with the Caputo fractional derivative ∂_t^{α} . In particular, we show that for a differentiable function $v : \mathbb{R}_+ \to X$, it holds

$$\partial_t^\alpha v(t) = \lim_{\tau \to 0^+} \tau \sum_{n=0}^\infty \rho_n^\tau(t) \, _C \nabla_\tau^\alpha v^n$$

1 for all $t \ge 0$, where $v^n = \int_0^\infty \rho_n^\tau(t) v(t) dt$. Finally, we study the convergence of $(_C \nabla^\alpha v)^n$ to $\partial_t^\alpha v$ at $t_n = \tau n$ 2 whenever $\tau \to 0^+$.

3

2. Preliminaries

In this section, we give some definitions which are used further in this paper. Let $\tau > 0$ be fixed and $n \in \mathbb{N}_0$. The functions ρ_n^{τ} are defined by

$$\rho_n^{\tau}(t) := e^{-\frac{t}{\tau}} \left(\frac{t}{\tau}\right)^n \frac{1}{\tau n!}$$

for all $t \ge 0$, $n \in \mathbb{N}_0$. We notice that $\rho_n^{\tau}(t) \ge 0$ and the change of variables $s = t/\tau$ implies

$$\int_0^\infty \rho_n^\tau(t) dt = 1, \quad \text{ for all } \quad n \in \mathbb{N}_0.$$

For a given Banach space $X \equiv (X, \|\cdot\|)$, the space of all vector-valued sequences $v : \mathbb{N}_0 \to X$ is denoted by $s(\mathbb{N}_0, X)$. The backward Euler operator $\nabla_{\tau} : s(\mathbb{N}_0, X) \to s(\mathbb{N}_0, X)$ is defined by

$$\nabla_{\tau} v^n := \frac{v^n - v^{n-1}}{\tau}, \quad n \in \mathbb{N}.$$

For $m \geq 2$, the backward difference operator of order $m, \nabla^m_{\tau} : s(\mathbb{N}_0, X) \to s(\mathbb{N}_0, X)$, is defined by

$$(\nabla_{\tau}^m v)^n := \nabla_{\tau}^{m-1} (\nabla_{\tau} v)^n, \quad n \ge m,$$

where ∇_{τ}^1 is defined as $\nabla_{\tau}^1 := \nabla_{\tau}, \nabla_{\tau}^0$ as the identity operator, and for n < m, by $(\nabla_{\tau}^m v)^n := 0$. As in 5 [10, Chapter 1, Section 1.5] we adopt the convention

(2.1)
$$\sum_{j=0}^{-\kappa} v^j = 0, \quad \text{for all} \quad k \in \mathbb{N}.$$

Moreover, by induction, we have that if $v \in s(\mathbb{N}_0, X)$, then

$$(\nabla_{\tau}^{m}v)^{n} = \frac{1}{\tau^{m}} \sum_{j=0}^{m} \binom{m}{j} (-1)^{j} v^{n-j}, \quad n \in \mathbb{N}.$$

For a given $\alpha > 0$, we define g_{α} as $g_{\alpha}(t) := \frac{t^{\alpha-1}}{\Gamma(\alpha)}$ and the sequence $\{k_{\tau}^{\alpha}(n)\}_{n \in \mathbb{N}_0}$ by

$$k_{\tau}^{\alpha}(n) := \frac{\tau^{\alpha-1}\Gamma(\alpha+n)}{\Gamma(\alpha)\Gamma(n+1)}, \quad n \in \mathbb{N}_0, \, \alpha > 0.$$

⁶ By [11, Formula 3.381-4, p. 346], we get

(2.2)
$$k_{\tau}^{\alpha}(n) = \int_{0}^{\infty} \rho_{n}^{\tau}(t) g_{\alpha}(t) dt, \quad n \in \mathbb{N}_{0}, \, \alpha > 0.$$

⁷ In particular, we notice that $k_{\tau}^1(n) = 1$ for all $n \in \mathbb{N}_0$.

Definition 2.1. [22] Let $\alpha > 0$. The α^{th} -fractional sum of $v \in \mathcal{F}(\mathbb{R}; X)$ is defined by

$$(\nabla_{\tau}^{-\alpha}v)^n := \tau \sum_{j=0}^n k_{\tau}^{\alpha}(n-j)v^j, \quad n \in \mathbb{N}_0.$$

Definition 2.2. [22] Let $\alpha \in \mathbb{R}_+ \setminus \mathbb{N}_0$. The Caputo fractional backward difference operator of order α , $_C \nabla^{\alpha} : \mathcal{F}(\mathbb{R}_+; X) \to \mathcal{F}(\mathbb{R}_+; X)$, is defined by

$$({}_C\nabla^{\alpha}v)^n := \nabla_{\tau}^{-(m-\alpha)} (\nabla_{\tau}^m v)^n, \quad n \in \mathbb{N},$$

1 where $m - 1 < \alpha < m$.

Definition 2.3. Let $\alpha \in \mathbb{R}_+ \setminus \mathbb{N}_0$. The Riemann-Liouville fractional backward difference operator of order α , ${}^{R}\nabla^{\alpha} : \mathcal{F}(\mathbb{R}_+; X) \to \mathcal{F}(\mathbb{R}_+; X)$, is defined by

$$(^{R}\nabla^{\alpha}v)^{n} := \nabla^{m}_{\tau}(\nabla^{-(m-\alpha)}_{\tau}v)^{n}, \quad n \in \mathbb{N},$$

² where $m - 1 < \alpha < m$.

³ If $\alpha \in \mathbb{N}_0$, the operators $_C \nabla^{\alpha}$ and $^R \nabla^{\alpha}$ are defined as the backward difference operator ∇^{α}_{τ} . For a given vector-valued sequence $\{v^n\}_{n\in\mathbb{N}_0}$ and a scalar sequence $c = (c^n)_{n\in\mathbb{N}_0}$, we define the discrete convolution $c \star v$ as

$$(c \star v)^n := \sum_{k=0}^n c^{n-k} v^k, \quad n \in \mathbb{N}_0.$$

⁴ Moreover, for scalar valued sequences $b = (b^n)_{n \in \mathbb{N}_0}$ and $c = (c^n)_{n \in \mathbb{N}_0}$, we define $(b \star c \star v)^n := (b \star (c \star v))^n$ ⁵ for all $n \in \mathbb{N}_0$.

As in [22, Corollary 2.9] we can prove the following convolution property. If $\alpha, \beta > 0$, then

(2.3)
$$k_{\tau}^{\alpha+\beta}(n) = \tau \sum_{j=0}^{n} k_{\tau}^{\alpha}(n-j)k_{\tau}^{\beta}(j) = \tau (k_{\tau}^{\alpha} \star k_{\tau}^{\beta})(n),$$

7 for all $n \in \mathbb{N}_0$. Given $s \in s(\mathbb{N}_0, X)$, its Z-transform, \tilde{s} , is defined by $\tilde{s}(z) := \sum_{j=0}^{\infty} z^{-j} s^j$, where $s^j := s(j)$ 8 and $z \in \mathbb{C}$. We notice that the convergence of this series holds for |z| > R, where R is large enough. It is 9 a well known fact that if $s_1, s_2 \in s(\mathbb{N}_0, X)$ and $\tilde{s}_1(z) = \tilde{s}_2(z)$ for all |z| > R for some R > 0, then $s_1^j = s_2^j$ 10 for all j = 0, 1, ...

11

3. Properties of discrete fractional derivative

In this section, we prove the main properties of the discrete fractional derivatives. The next proposition shows that $\nabla^{-\alpha}$ verifies a semigroup law.

14 **Proposition 3.4.** If $\alpha, \beta > 0$, then $\nabla_{\tau}^{-(\alpha+\beta)}v^n = \nabla_{\tau}^{-\alpha}(\nabla_{\tau}^{-\beta}v)^n$ for all $n \in \mathbb{N}_0$.

Proof. Let $n \in \mathbb{N}_0$. Then by (2.3) we get

$$\nabla_{\tau}^{-\alpha} (\nabla_{\tau}^{-\beta} v)^n = \nabla_{\tau}^{-\alpha} (\tau (k_{\tau}^{\beta} \star v)^n) = \tau^2 (k_{\tau}^{\alpha} \star (k_{\tau}^{\beta} \star v))^n = \tau (k_{\tau}^{\alpha+\beta} \star v)^n = \nabla_{\tau}^{-(\alpha+\beta)} v^n.$$

15

Proposition 3.5. [22, Proposition 2.6] If $0 < \alpha < 1$ and $n \in \mathbb{N}_0$, then

17 (1)
$$_C \nabla^{\alpha+1} v^n = {}_C \nabla^{\alpha} (\nabla^1 v)^n,$$

18 (2)
$${}^{R}\nabla^{\alpha+1}v^{n} = \nabla^{1}({}^{R}\nabla^{\alpha}v)^{n}$$
, and

19 (3)
$${}^{R}\nabla^{\alpha}(\nabla^{1}v)^{n} = \nabla^{1}({}_{C}\nabla^{\alpha}v)^{n}.$$

Moreover, $_{C}\nabla^{\alpha+1}v^{n} \neq _{C}\nabla^{1}(_{C}\nabla^{\alpha}v)^{n}$, (see [22, Section 2]). The next result shows that $_{C}\nabla^{\alpha}$ is a left inverse of $\nabla^{-\alpha}$ but, in general, it is not a right inverse.

Proposition 3.6. If $0 < \alpha < 1$ and $n \in \mathbb{N}_0$, then

23 (1) $_C \nabla^{\alpha} (\nabla^{-\alpha}_{\tau} v)^n = v^n.$

24 (2) $\nabla_{\tau}^{-\alpha} ({}_C \nabla^{\alpha} v)^n = v^n - v^0.$

1 Proof. Let $n \in \mathbb{N}$. Since $k_{\tau}^1(n) = 1$ for all $n \in \mathbb{N}_0$, by Proposition 3.4 we have

$$\begin{split} {}_{C}\nabla^{\alpha}(\nabla_{\tau}^{-\alpha}v)^{n} &= \nabla_{\tau}^{-(1-\alpha)}(\nabla_{\tau}^{1}(\nabla_{\tau}^{-\alpha}v)^{n}) \\ &= \frac{1}{\tau}\nabla_{\tau}^{-(1-\alpha)}(\nabla_{\tau}^{-\alpha}v^{n} - \nabla_{\tau}^{-\alpha}v^{n-1}) \\ &= \frac{1}{\tau}(\nabla_{\tau}^{-1}v^{n} - \nabla_{\tau}^{-1}v^{n-1}) \\ &= \frac{1}{\tau}\left(\tau\sum_{j=0}^{n}k_{\tau}^{1}(n-j)v^{j} - \tau\sum_{j=0}^{n-1}k_{\tau}^{1}(n-1-j)v^{j}\right) \\ &= v^{n}, \end{split}$$

for all $n \in \mathbb{N}$. By convention (2.1), the last equalities imply that $_{C}\nabla^{\alpha}(\nabla^{-\alpha}_{\tau}v)^{0} = v^{0}$ and (1) holds for all $n \in \mathbb{N}_{0}$. To prove (2), as $k^{1}_{\tau}(n) = 1$ for all $n \in \mathbb{N}_{0}$, we have by Proposition 3.4 that

$$\nabla_{\tau}^{-\alpha} ({}_{C}\nabla^{\alpha} v)^{n} = \nabla_{\tau}^{-\alpha} (\nabla_{\tau}^{-(1-\alpha)} \nabla_{\tau}^{1} v^{n}) = \nabla_{\tau}^{-1} (\nabla_{\tau}^{1} v)^{n} = \tau \sum_{j=0}^{n} k_{\tau}^{1} (n-j) \nabla_{\tau}^{1} v^{j} = \sum_{j=1}^{n} v^{j} - v^{j-1} = v^{n} - v^{0},$$

² for all $n \in \mathbb{N}$. Now, if n = 0, then by definition $\nabla_{\tau}^{-\alpha} ({}_{C} \nabla^{\alpha} v)^{0} = 0$ and therefore, (2) holds for all ³ $n \in \mathbb{N}_{0}$.

Example 3.7. If $0 < \alpha < 1$ and $\beta > 0$, then $\nabla_{\tau}^{-\alpha}(k_{\tau}^{\beta})^n = k_{\tau}^{\alpha+\beta}(n)$. In fact, by (2.3) we have

$$\nabla_{\tau}^{-\alpha}(k_{\tau}^{\beta})^n = \tau \sum_{j=0}^n k_{\tau}^{\alpha}(n-j)k_{\tau}^{\beta}(j) = \tau(k_{\tau}^{\alpha} \star k_{\tau}^{\beta})(n) = k_{\tau}^{\alpha+\beta}(n),$$

4 for all $n \in \mathbb{N}_0$.

5 Theorem 3.8. [22, Theorem 2.7] Let $0 < \alpha < 1$. If $v : [0, \infty) \to X$ is differentiable and bounded, then 6 for all $n \in \mathbb{N}$, we have

(3.4)
$$\int_0^\infty \rho_n^\tau(t) \partial_t^\alpha v(t) dt = {}_C \nabla^\alpha v^n,$$

Example 3.9. If $0 < \alpha < 1$ and $\beta > 1$, then $\nabla^{\alpha}_{\tau}(k^{\beta}_{\tau})^n = k^{\beta-\alpha}_{\tau}(n)$. In fact, as $k^{\beta}_{\tau}(n) = \int_0^{\infty} \rho^{\tau}_n(t)g_{\beta}(t)dt$ (see (2.2)), by Theorem 3.8, we have

$$_{C}\nabla^{\alpha}(k_{\tau}^{\beta})^{n}=\int_{0}^{\infty}\rho_{n}^{\tau}(t)\partial_{t}^{\alpha}g_{\beta}(t)dt,$$

7 for all $n \in \mathbb{N}_0$. Since $(g_{\alpha} * g_{\beta})(t) = g_{\alpha+\beta}(t)$ for any $\alpha, \beta > 0$, we have $\partial_t^{\alpha} g_{\beta}(t) = (g_{1-\alpha} * g'_{\beta})(t) = g_{\beta-\alpha}(t)$, and therefore $_C \nabla^{\alpha} (k_{\tau}^{\beta})^n = k_{\tau}^{\beta-\alpha}(n)$.

9 Proposition 3.10. If $0 < \alpha < 1$ and $n \in \mathbb{N}$, then $\nabla_{\tau}^{-\alpha} (\nabla_{\tau}^{1} v)^{n} = \nabla_{\tau}^{1} (\nabla_{\tau}^{-\alpha} v)^{n} - k_{\tau}^{\alpha}(n)v^{0}$.

¹ *Proof.* For all $n \in \mathbb{N}$, we have

$$\begin{split} \nabla_{\tau}^{-\alpha} (\nabla_{\tau}^{1} v)^{n} &= \tau \sum_{j=0}^{n} k_{\tau}^{\alpha} (n-j) (\nabla_{\tau}^{1} v^{j}) \\ &= \sum_{j=1}^{n} k_{\tau}^{\alpha} (n-j) (v^{j} - v^{j-1}) \\ &= \sum_{j=0}^{n} k_{\tau}^{\alpha} (n-j) v^{j} - \sum_{j=0}^{n-1} k_{\tau}^{\alpha} (n-1-j) v^{j} - k_{\tau}^{\alpha} (n) v^{0} \\ &= (k_{\tau}^{\alpha} \star v)^{n} - (k_{\tau}^{\alpha} \star v)^{n-1} - k_{\tau}^{\alpha} (n) v^{0} \\ &= \nabla_{\tau}^{1} (\tau (k_{\tau}^{\alpha} \star v)^{n} - k_{\tau}^{\alpha} (n) v^{0}. \end{split}$$

2

6

- 3 The next result relates the discrete Caputo and Riemann-Liouville fractional derivatives.
- 4 **Proposition 3.11.** If $0 < \alpha < 1$ and $n \in \mathbb{N}$, then ${}_{C}\nabla^{\alpha}_{\tau}v^{n} = {}^{R}\nabla^{\alpha}_{\tau}v^{n} k^{1-\alpha}_{\tau}(n)v^{0}$.
- 5 Proof. Since $0 < 1 \alpha < 1$, by Proposition 3.10 we have

$${}_{C}\nabla^{\alpha}_{\tau}v^{n} = \nabla^{-(1-\alpha)}_{\tau}(\nabla^{1}_{\tau}v)^{n} = \nabla^{1}_{\tau}(\nabla^{-(1-\alpha)}_{\tau}v)^{n} - k^{1-\alpha}_{\tau}(n)v^{0} = {}^{R}\nabla^{\alpha}_{\tau}v^{n} - k^{1-\alpha}_{\tau}(n)v^{0}.$$

Similarly to [16, Theorem 3.1] we can prove the following assertion: If $(f^n)_{n \in \mathbb{N}_0}$ denotes the sequence defined by $f^n := \int_0^\infty \rho_n^{\tau}(t) f(t) dt$ for a given vector-valued function $f : \mathbb{R}_+ \to X$, then

$$\tilde{F}(z) = \frac{1}{\tau} \hat{f}\left(\frac{1}{\tau}\left(1 - \frac{1}{z}\right)\right), \quad |z| > 1,$$

7 where F denotes the sequence associated to $(f^n)_{n \in \mathbb{N}_0}$. As consequence, we have that for a given $\beta > 0$ 8 the Z-transform of the sequence $(k_{\tau}^{\beta}(n))_{n \in \mathbb{N}_0}$ is given by

(3.5)
$$\widetilde{k_{\tau}^{\beta}}(z) = \tau^{\beta-1} \frac{z^{\beta}}{(z-1)^{\beta}}$$

9 for all |z| > 1.

We recall that for $0 < \alpha < 1$ and a differentiable function $f : \mathbb{R}_+ \to X$, the Laplace transform of the

11 Caputo fractional derivative satisfies

(3.6)
$$\widehat{\partial_t^{\alpha} f}(\lambda) = \lambda^{\alpha} \widehat{f}(\lambda) - \lambda^{\alpha-1} f(0).$$

¹² The next theorem gives an analogous result for the Z-transform of the discrete Caputo fractional deriv-¹³ ative of a sequence $(u^n)_{n \in \mathbb{N}_0}$.

Theorem 3.12. Let $v^n := {}_C \nabla^{\alpha}_{\tau} u^n$. If $0 < \alpha < 1$, then the Z-transform of the sequence $(v^n)_{n \in \mathbb{N}_0}$ is given by

(3.7)
$$\tilde{v}(z) = \frac{1}{\tau^{\alpha}} \left(\frac{z-1}{z}\right)^{\alpha} \tilde{u}(z) - \frac{1}{\tau^{\alpha}} \left(\frac{z-1}{z}\right)^{\alpha-1} u^{0}.$$

 $_{1}$ *Proof.* By definition and (3.5),

$$\begin{split} \tilde{v}(z) &= \sum_{n=0}^{\infty} v^n z^{-n} \\ &= \sum_{n=0}^{\infty} \nabla_{\tau}^{-(1-\alpha)} (\nabla_{\tau}^1 u)^n z^{-n} \\ &= \sum_{n=0}^{\infty} \left(\tau \sum_{j=0}^n k_{\tau}^{1-\alpha} (n-j) \nabla_{\tau}^1 u^j \right) z^{-n} \\ &= \left(\tau \sum_{n=0}^{\infty} k_{\tau}^{1-\alpha} (n) z^{-n} \right) \left(\sum_{n=0}^{\infty} (\nabla_{\tau}^1 u^n) z^{-n} \right) \\ &= \tau^{1-\alpha} \frac{z^{1-\alpha}}{(z-1)^{1-\alpha}} \left(\sum_{n=0}^{\infty} (\nabla_{\tau}^1 u^n) z^{-n} \right). \end{split}$$

Moreover, we have

$$\sum_{n=0}^{\infty} (\nabla_{\tau}^{1} u^{n}) z^{-n} = \frac{1}{\tau} \sum_{n=1}^{\infty} (u^{n} - u^{n-1}) z^{-n} = \frac{1}{\tau} \left(\sum_{n=0}^{\infty} u^{n} z^{-n} - z^{-1} \sum_{n=0}^{\infty} u^{n} z^{-n} - u^{0} \right) = \frac{1}{\tau} \left(\frac{z-1}{z} \tilde{u}(z) - u^{0} \right).$$

Therefore,

Therefore,

2

$$\tilde{v}(z) = \tau^{1-\alpha} \frac{z^{1-\alpha}}{(z-1)^{1-\alpha}} \frac{1}{\tau} \left(\frac{z-1}{z} \tilde{u}(z) - u^0 \right) = \frac{1}{\tau^{\alpha}} \left(\frac{z-1}{z} \right)^{\alpha} \tilde{u}(z) - \frac{1}{\tau^{\alpha}} \left(\frac{z-1}{z} \right)^{\alpha-1} u^0.$$

Theorem 3.13. Let $v : \mathbb{R}_+ \to X$ be a differentiable function and $0 < \alpha < 1$. For $v^n := \int_0^\infty \rho_n^\tau(r) v(r) dr$, we have

$$\partial_t^\alpha v(t) = \lim_{\tau \to 0^+} \tau \sum_{n=0}^\infty \rho_n^\tau(t) \, _C \nabla_\tau^\alpha v^n,$$

3 for all $t \geq 0$.

Proof. Let $R^{\alpha}_{\tau}(t) := \tau \sum_{n=0}^{\infty} \rho^{\tau}_{n}(t) C \nabla^{\alpha}_{\tau} v^{n}$. From [11, Formula 3.381-4] we have that the Laplace transform of ρ^{τ}_{n} verifies $\hat{\rho}^{\tau}_{n}(\lambda) = \frac{1}{(1+\tau\lambda)^{n+1}}$. Then by Theorem 3.12 with $z = 1 + \tau\lambda$, we have

$$\widehat{R_{\tau}^{\alpha}}(\lambda) = \frac{\tau}{(1+\tau\lambda)} \sum_{n=0}^{\infty} {}_{C} \nabla_{\tau}^{\alpha} v^{n} (1+\tau\lambda)^{-n} = \frac{\tau}{(1+\tau\lambda)} \left[\frac{1}{\tau^{\alpha}} \left(\frac{\tau\lambda}{1+\tau\lambda} \right)^{\alpha} \tilde{v} (1+\tau\lambda) - \frac{1}{\tau^{\alpha}} \left(\frac{\tau\lambda}{1+\tau\lambda} \right)^{\alpha-1} v^{0} \right].$$

Since $\tilde{v}(z) = \frac{1}{\tau} \hat{v} \left(\frac{1}{\tau} \left(\frac{z-1}{z} \right) \right)$ we have $\tilde{v}(1+\tau\lambda) = \frac{1}{\tau} \hat{v} \left(\frac{\lambda}{1+\tau\lambda} \right)$, and therefore

$$\widehat{R_{\tau}^{\alpha}}(\lambda) = \frac{\lambda^{\alpha}}{(1+\tau\lambda)^{\alpha+1}} \widehat{v}\left(\frac{\lambda}{1+\tau\lambda}\right) - \lambda^{\alpha-1} \frac{1}{(1+\tau\lambda^{\alpha})} v^{0}$$

Moreover,

$$v^{0} = \int_{0}^{\infty} \rho_{0}^{\tau}(r)v(r)dr = \frac{1}{\tau} \int_{0}^{\infty} e^{-\frac{r}{\tau}}v(r)dr = \frac{1}{\tau}\hat{v}\left(\frac{1}{\tau}\right),$$

for all $\tau > 0$. As $\lim_{\tau \to 0^+} \frac{1}{\tau} \hat{v}\left(\frac{1}{\tau}\right) = v(0)$, we conclude that

$$\lim_{\tau \to 0^+} \widehat{R^{\alpha}_{\tau}}(\lambda) = \lambda^{\alpha} \hat{v}(\lambda) - \lambda^{\alpha - 1} v(0)$$

⁴ By the uniqueness of the Laplace transform and (3.6), we have $\lim_{\tau \to 0^+} R^{\alpha}_{\tau}(t) = \partial_t^{\alpha} v(t)$ for all $t \ge 0$. \Box

6

Now, for any fixed t > 0, we will consider the following path Γ_t : For $\frac{\pi}{2} < \theta < \pi$, we take ϕ such that $\frac{1}{2}\phi < \frac{\pi}{2}\alpha < \phi < \theta$. Next, we define Γ_t as the union $\Gamma_t^1 \cup \Gamma_t^2$, where

$$\Gamma^1_t := \left\{ \frac{1}{t} e^{i\psi/\alpha} : -\phi < \psi < \phi \right\} \quad \text{ and } \quad \Gamma^2_t := \left\{ r e^{\pm i\phi/\alpha} : \frac{1}{t} \le r \right\}.$$

From [22, Lemma 4.18] we have the following Lemma.

Lemma 3.14. Let Γ_t be the complex path defined above. If $\mu \ge 0$, then there exist positive constants C_{α} , depending only on α , such that

$$\int_{\Gamma_t} \left| \frac{e^{zt}}{z^{\mu}} \right| |dz| \le C_{\alpha} t^{\mu-1}$$

for all t > 0, where

1

$$C_{\alpha} := \left(2\phi \int_{-\phi}^{\phi} e^{\cos(\psi/\alpha)} d\psi + \frac{2}{-\cos(\phi/\alpha)} \right).$$

Theorem 3.15. Let $u : \mathbb{R}_+ \to X$ be bounded differentiable function, $0 < \alpha < 1$ and $\tau > 0$. Define the sequence $(v^n)_{n \in \mathbb{N}_0}$ as $v^n := \int_0^\infty \rho_n^\tau(r)v(r)dr$. Let T > 0 be fixed, $n \in \mathbb{N}$, $t_n = \tau n$ with $0 < t_n \leq T$. If v' is bounded and $v'' \in L^1(\mathbb{R}_+)$, then there exists a constant M_α , depending only on α , such that

$$|\partial_t^{\alpha} v(t_n) - {}_C \nabla_{\tau}^{\alpha} v^n \| \le \tau^{1-\alpha} M_{\alpha}(\|v'(0)\| + \|v''\|_{L^1(\mathbb{R}_+)}).$$

Proof. Since $\int_0^\infty \rho_n^\tau(t) dt = 1$, by Theorem 3.8, we can write

$$\partial_t^{\alpha} v(t_n) - {}_C \nabla_{\tau}^{\alpha} v^n = \int_0^{\infty} \rho_n^{\tau}(t) [\partial_t^{\alpha} v(t_n) - \partial_t^{\alpha} v(t)] dt$$

Let $\Gamma = \{\lambda \in \Gamma_t : \operatorname{Re}(\lambda) > 0\}$, where Γ_t is the path defined in Lemma 3.14. As the Laplace transform of $\partial_t^{\alpha} v(t)$ verifies $\widehat{\partial_t^{\alpha} v}(\lambda) = \lambda^{\alpha} \hat{v}(\lambda) - \lambda^{\alpha-1} v(0)$, we have by the inversion of the Laplace transform,

$$\partial_t^{\alpha} v(t_n) - \partial_t^{\alpha} v(t) = \frac{1}{2\pi i} \int_{\Gamma} (e^{\lambda t_n} - e^{\lambda t}) (\lambda^{\alpha} \hat{v}(\lambda) - \lambda^{\alpha - 1} v(0)) d\lambda$$

Integrating by parts, we have

$$\partial_t^{\alpha} v(t_n) - \partial_t^{\alpha} v(t) = \frac{1}{2\pi i} \int_{\Gamma} \frac{(e^{\lambda t_n} - e^{\lambda t})}{\lambda} \frac{1}{\lambda^{1-\alpha}} v'(0) d\lambda + \frac{1}{2\pi i} \int_{\Gamma} \frac{(e^{\lambda t_n} - e^{\lambda t})}{\lambda} \frac{1}{\lambda^{1-\alpha}} \int_0^{\infty} e^{-\lambda s} v''(s) ds d\lambda.$$

By the mean value for complex valued functions, there exist t_0, t_1 with $0 < t_n < t_0 < t_1 < t$ such that

$$\frac{|e^{\lambda t} - e^{\lambda t_n}|}{|\lambda|} \le (t - t_n) \left(|e^{t_0 \lambda}| + |e^{t_1 \lambda}| \right).$$

² The hypotheses and Lemma 3.14 imply that

$$\begin{split} |\partial_{t}^{\alpha}v(t_{n}) - \partial_{t}^{\alpha}v(t)| &\leq \frac{1}{2\pi} \int_{\Gamma} \frac{|e^{\lambda t_{n}} - e^{\lambda t}|}{|\lambda|} \frac{1}{|\lambda|^{1-\alpha}} \|v'(0)\| |d\lambda| \\ &+ \frac{1}{2\pi} \int_{\Gamma} \frac{|e^{\lambda t_{n}} - e^{\lambda t}|}{|\lambda|} \frac{1}{|\lambda|^{1-\alpha}} \int_{0}^{\infty} e^{-\operatorname{Re}(\lambda)s} \|v''(s)\| ds |d\lambda| \\ &\leq \frac{1}{2\pi} (t - t_{n}) (\|v'(0)\| + \|v''\|_{L^{1}(\mathbb{R}_{+})}) \int_{\Gamma} \left[\frac{|e^{\lambda t_{0}}|}{|\lambda|^{1-\alpha}} + \frac{|e^{\lambda t_{1}}|}{|\lambda|^{1-\alpha}} \right] |d\lambda| \\ &\leq \frac{C_{\alpha}}{2\pi} (t - t_{n}) (\|v'(0)\| + \|v''\|_{L^{1}(\mathbb{R}_{+})}) (t_{0}^{-\alpha} + t_{1}^{-\alpha}) \\ &\leq \frac{C_{\alpha}}{\pi} (t - t_{n}) (\|v'(0)\| + \|v''\|_{L^{1}(\mathbb{R}_{+})}) t_{n}^{-\alpha}. \end{split}$$

Since $\int_0^\infty \rho_n^\tau(t) t dt = \tau(n+1) \int_0^\infty \rho_{n+1}^\tau(t) dt$, we obtain that $\int_0^\infty \rho_n^\tau(t) (t-t_n) dt = \tau$, and therefore,

$$\|\partial_{t}^{\alpha}v(t_{n}) - {}_{C}\nabla_{\tau}^{\alpha}v^{n}\| \leq \int_{0}^{\infty}\rho_{n}^{\tau}(t)\|\partial_{t}^{\alpha}v(t_{n}) - \partial_{t}^{\alpha}v(t)\|dt \leq \tau \frac{C_{\alpha}}{\pi}(\|v'(0)\| + \|v''\|_{L^{1}(\mathbb{R}_{+})})t_{n}^{-\alpha}dt \leq \tau \frac{C_{\alpha}}{\pi}(\|v'(0)\| + \|v''\|_{L^{1}(\mathbb{R}_{+})})$$

Thus,

1

2

$$\|\partial_t^{\alpha} v(t_n) - {}_C \nabla_{\tau}^{\alpha} v^n\| \le \tau^{1-\alpha} \frac{C_{\alpha}}{\pi} (\|v'(0)\| + \|v''\|_{L^1(\mathbb{R}_+)}) = \tau^{1-\alpha} M_{\alpha} (\|v'(0)\| + \|v''\|_{L^1(\mathbb{R}_+)}).$$

Corollary 3.16. Under the assumptions of Theorem 3.15, we have

$$\lim_{\tau \to 0^+} \|\partial_t^{\alpha} v(t_n) - {}_C \nabla_{\tau}^{\alpha} v^n\| = 0$$

4. Examples

Given $\alpha > 0$ we have by [5, Appendix A] that if $u(t) = e^{\rho t}$, and $m = \lceil \alpha \rceil$, then

$$\partial_t^{\alpha} u(t) = \sum_{l=0}^{\infty} \frac{\rho^{l+m} t^{l+m-\alpha}}{\Gamma(l+1+m-\alpha)} = \rho^m t^{m-\alpha} E_{1,m-\alpha+1}(\rho t),$$

where for p, q > 0, $E_{p,q}$ is the Mittag-Leffler function defined by $E_{p,q}(z) = \sum_{j=0}^{\infty} \frac{z^j}{\Gamma(\alpha j + \beta)}$. Moreover, by [11, Formula 3.381-4] we have that

$$u^{j} = \int_{0}^{\infty} \rho_{j}^{\tau}(t)u(t)dt = \frac{1}{(1-\tau\rho)^{j+1}}$$

for all $j \ge 0$. On the other hand, for each $n \in \mathbb{N}$ and $\alpha = \frac{1}{2}$, by definition we have

$$({}_{C}\nabla^{\alpha}u)^{n} = \nabla^{-(1-\alpha)}_{\tau}(\nabla^{1}_{\tau}u)^{n} = \tau \sum_{j=1}^{n} k_{\tau}^{1-\alpha}(n-j)\frac{u^{j}-u^{j-1}}{\tau} = \frac{\tau^{-\frac{1}{2}}}{\sqrt{\pi}} \sum_{j=1}^{n} \frac{\Gamma(\frac{1}{2}+n-j)}{\Gamma(n-j+1)}(u^{j}-u^{j-1}).$$

In Figure 1 we have $\partial_t^{\alpha} u(t)$ and its approximation $(_C \nabla^{\alpha} u)^n$ on the interval [0,1] for $1 \le n \le N$, $\alpha = \frac{1}{2}$ and $\rho = -\frac{1}{2}$. We consider $\tau = 1/N$ for N = 30, N = 60 and N = 120.

FIGURE 1. The fractional derivative $\partial_t^{\alpha} u(t)$ (line) and its approximation $(_C \nabla^{\alpha} u)^n$ (circles) for N = 30, N = 60 and N = 120.

Acknowledgements. The authors thank the reviewer for his/her detailed review and suggestions that
have improved the previous version of the paper. Also, the first author was partially supported by NSFC

^{7 (12271419).}

DISCRETE FRACTIONAL CALCULUS

- [1] T. Abdeljawad, On Riemann and Caputo fractional differences, Comput. Math. Appl. 62 (2011), no. 3, 1602-6111.
- [2] M. Allen, L. Caffarelli, A. Vasseur, A parabolic problem with a fractional time derivative, Arch. Ration. Mech. Anal. 221 (2016) 603-630.
- [3] F. Atici, P. Eloe, Initial value problems in discrete fractional calculus, Proc. Amer. Math. Soc. 137 (2009), no. 3, 5 981-989. 6
- [4] P. de Carvalho-Neto, G. Planas, Mild solutions to the time fractional Navier-Stokes equations in \mathbb{R}^N , J. Differential Equations 259 (2015), 2948-2980. 8
- [5] J. Diethelm, N. Ford, A. Freed, Y. Luchko, Algorithms for the fractional calculus: A selection of numerical methods, g Comput. Methods Appl. Mech. Engrg. 194 (2005) 743-773. 10
- [6] R. Ferreira, Discrete fractional Gronwall inequality, Proc. Amer. Math. Soc. 140 (2012) (5), pp. 1605-1612. 11
- [7] C. Goodrich, Existence and uniqueness of solutions to a fractional difference equation with nonlocal conditions, Com-12 put. Math. Appl. 61 (2011), no. 2, 191-202. 13
- [8] C. Goodrich, C. Lizama, A transference principle for nonlocal operators using a convolutional approach: Fractional 14 monotonicity and convexity, Israel J. of Mathematics, 236 (2020), 533-589. 15
- C. Goodrich, C. Lizama, Positivity, monotonicity and convexity for convolution operators, Discrete and Continuous 16 [9] Dyn. Systems-A, 40 (2020) (8), 4961-4983. 17
- 18 [10] C. Goodrich, A. Peterson, Discrete fractional calculus, Springer, Cham, 2015.
- [11] I. Gradshteyn, I. Ryzhik, Table of integrals, series and products, Academic Press, New York, 2000. 19
- [12] A. Kilbas, H. Srivastava, J. Trujillo, Theory and applications of fractional differential equations, North-Holland Math-20 ematics studies 204, Elsevier Science B.V., Amsterdam, 2006. 21
- [13] B. Kuttner, On differences of fractional order, Proc. London Math. Soc. 3, No 1 (1957), 453-466. 22
- 23 [14] K. Li, J. Peng, J. Jia, Cauchy problems for fractional differential equations with Riemann-Liouville fractional derivatives, J. Funct. Anal. 263 (2012), 476-510. 24
- [15] Z. Liu, X. Li, Approximate controllability of fractional evolution systems with Riemann-Liouville fractional derivatives, 25 SIAM J. Control Optim. 53 (2015), 1920-1933. 26
- [16] C. Lizama, The Poisson distribution, abstract fractional difference equations, and stability, Proc. Amer. Math. Soc. 27 145 (2017), no. 9, 3809-3827. 28
- [17] C. Lizama, W. He, Y. Zhou, The Cauchy problem for discrete-time fractional evolution equations, J. of Comp. and 29 Applied Mathematics, 370 (2020), 112683. 30
- [18] Ch. Lubich, Discretize fractional calculus, SIAM J. Math. Anal., 17 (1986), 704-719. 31
- [19] K. Miller, B. Ross, An Introduction to the fractional calculus and fractional differential equations, Wiley, New York 32 33 1993.
- [20] V. Poblete, R. Ponce, Maximal L^p-regularity for fractional differential equations on the line, Math. Nachr. 290 (2017), 34 2009-2023. 35
- [21] R. Ponce, Asymptotic behavior of mild solutions to fractional Cauchy problems in Banach spaces, Appl. Math. Lett. 36 **105** (2020), 106322. 37
- [22] R. Ponce, Time discretization of fractional subdiffusion equations via fractional resolvent operators. Comput. Math. 38 39 Appl. 80 (2020), no. 4, 69-92.
- [23] H. Sun, Y. Zhang, D. Baleanu, W. Chen, Y. Chen, A new collection of real world applications of fractional calculus 40 in science and engineering, Comm. in Nonlinear Sci. and Num. Sim., 64 (2018), 213-231. 41
- [24] B. Torebek, R. Tapdigoglu, Some inverse problems for the nonlocal heat equation with Caputo fractional derivative, 42 Math. Methods Appl. Sci. 40 (2017), no. 18, 6468-6479. 43
- [25] R. Wang, D. Chen, T. Xiao, Abstract fractional Cauchy problems with almost sectorial operators, J. Diff. Equations 44 **252** (2012), 202-235. 45
- School of Mathematics and Statistics, Xidian University, Xi'an 710071, Shaanxi-China. 46
- E-mail address: lzchangyk@163.com 47

1

2

3

4

7

- UNIVERSIDAD DE TALCA, INSTITUTO DE MATEMÁTICAS, CASILLA 747, TALCA-CHILE. 48
- 49 E-mail address: rponce@inst-mat.utalca.cl, rponce@utalca.cl

References