# MILD SOLUTIONS FOR A MULTI-TERM FRACTIONAL DIFFERENTIAL EQUATION VIA RESOLVENT OPERATORS 

YONG-KUI CHANG AND RODRIGO PONCE


#### Abstract

This paper is concerned with multi-term fractional differential equations. With the help of the theory of fractional resolvent families, we establish the existence of mild solutions to a multi-term fractional differential equation.


## 1. Introduction

In the last two decades, differential equations involving fractional derivatives, have been used in many mathematical models to describe a wide variety of phenomena, including problems in viscoelasticity, signal and image processing, engineering, economics, epidemiology and among others, and the study of this kind of equations has been a topic of interest in recent years. See $[9,16,19$, $25,37,41,42,43,45]$ and the references therein.

In this paper, we consider the following multi-term fractional differential equations

$$
\begin{equation*}
\partial^{\alpha} u(t)=A u(t)+\partial^{\alpha-\beta} f(t, u(t)), \quad t \in \mathbb{R} \tag{1.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\partial_{t}^{\alpha} u(t)=A u(t)+\partial_{t}^{\alpha-\beta} f(t, u(t)), \quad t \in[0, T] \tag{1.2}
\end{equation*}
$$

where $A$ is a closed linear operator defined in a Banach space $X, 1<\alpha, \beta<2, T>0$, and $f$ is a suitable continuous function. Here, for $\gamma>0$ the derivatives $\partial^{\gamma} u$ and $\partial_{t}^{\gamma} u$, denote the Weyl and Caputo fractional derivatives, respectively.

Although the definition of the fractional derivatives in the sense of Weyl (defined on $\mathbb{R}$ ) and Caputo (defined on $[0, \infty)$ ) are different, we notice that the mild solution to equations (1.1) and (1.2) can be written in terms of the same resolvent family. In fact, if $A$ is the generator of the fractional resolvent family $\left\{S_{\alpha, 1}(t)\right\}_{t \geq 0}$ (see its definition in Section 2) then the mild solutions to Equations (1.1) and (1.2) are defined, respectively, by

$$
u(t)=\int_{-\infty}^{t} S_{\alpha, \beta}(t-s) f(s, u(s)) d s, \quad t \in \mathbb{R}
$$

and

$$
u(t)=S_{\alpha, 1}(t) x+S_{\alpha, 2}(t) y+\int_{0}^{t} S_{\alpha, \beta}(t-s) f(s, u(s)) d s, \quad t>0
$$

where $x=u(0)$ and $y=u^{\prime}(0)$ are the initial conditions in equation (1.2), and the families $\left\{S_{\alpha, \beta}(t)\right\}_{t \geq 0}$, and $\left\{S_{\alpha, 2}(t)\right\}_{t \geq 0}$, are given respectively by

$$
S_{\alpha, \beta}(t)=\left(g_{\beta-1} * S_{\alpha, 1}\right)(t), \quad \text { and } \quad S_{\alpha, 2}(t)=\left(g_{1} * S_{\alpha, 1}\right)(t)
$$

Here, the $*$ denotes the usual finite convolution and for $\gamma>0$ the function $g_{\gamma}$ is defined by $g_{\gamma}(t):=$ $t^{\gamma-1} / \Gamma(\gamma)$, where $\Gamma(\cdot)$ is the Gamma function. The fractional resolvent family $\left\{S_{\alpha, 1}(t)\right\}_{t \geq 0}$ is defined

[^0]by
$$
S_{\alpha, 1}(t):=\frac{1}{2 \pi i} \int_{\Gamma} e^{\lambda t} \lambda^{\alpha-1}\left(\lambda^{\alpha}-A\right)^{-1} d \lambda, \quad t \geq 0
$$
where $\Gamma$ is a suitable complex path where the resolvent operator $\left(\lambda^{\alpha}-A\right)^{-1}$ is well defined. By the uniqueness of the Laplace transform it is easy to see that
$$
S_{\alpha, 2}(t)=\frac{1}{2 \pi i} \int_{\Gamma} e^{\lambda t} \lambda^{\alpha-2}\left(\lambda^{\alpha}-A\right)^{-1} d \lambda \quad \text { and } \quad S_{\alpha, \beta}(t)=\frac{1}{2 \pi i} \int_{\Gamma} e^{\lambda t} \lambda^{\alpha-\beta}\left(\lambda^{\alpha}-A\right)^{-1} d \lambda,
$$
for all $t \geq 0$. The existence of mild solutions to equation (1.1) in case $\beta=1$ has been widely studied in the last years, see for instance $[4,12,13,24]$ and references therein. In these mentioned papers, the operator $A$ is assumed to be an $\omega$-sectorial operator of angle $\theta$ (see definition in Section 2). In this case, $A$ generates a resolvent family $\left\{E_{\alpha}(t)\right\}_{t \geq 0}$ (see $[11,28]$ ) which satisfies
$$
\left\|E_{\alpha}(t)\right\| \leq \frac{C}{1+|\omega| t^{\alpha}}, \quad \text { for all } t \geq 0
$$
where $C$ is a positive constant depending only on $\alpha$ and $\theta$. This decay of $\left\{E_{\alpha}(t)\right\}_{t>0}$ provides also some tools to obtain many and interesting consequences on the study of qualitative properties of solutions to fractional (and integral) differential (and difference) equations. See for instance [ $4,7,8,29,31,44]$ and the references therein for further details. We notice that, by the uniqueness of the Laplace transform, the resolvent families $\left\{E_{\alpha}(t)\right\}_{t \geq 0}$ and $\left\{S_{\alpha, 1}(t)\right\}_{t \geq 0}$ are the same for $1<\alpha<2$.

On the other hand, the existence of mild solutions to fractional differential equations with nonlocal conditions has been studied by several authors in the last years. The concept of nonlocal initial condition was introduced by L. Byszewski [6] to extend the study of classical initial value problems. This notion results more suitable to describe more precisely several phenomena in applied sciences, because it considers additional information in the initial data. More concretely, the nonlocal conditions have the form $u(0)+g(u)=u_{0}$ instead $u(0)=u_{0}$, where $g$ is an appropriate function that represents the additional information in the system and provides a better description of the initial state of the system than the classical initial value problem. The theory of nonlocal Cauchy problems has been developed rapidly and has been studied widely in the last years, see for instance [3, 33, 38] and the references therein for more details.

There exists a wide recent literature on the existence of mild solutions to fractional differential equations with nonlocal initial conditions. More specifically, the problem

$$
\begin{cases}\partial_{t}^{\alpha} u(t) & =A u(t)+f(t, u(t)), \quad t \in[0, T]  \tag{1.3}\\ u(0)+g(u) & =u_{0},\end{cases}
$$

$$
\begin{equation*}
u(t)=S_{\alpha, 1}\left(u_{0}-g(u)\right)+\int_{0}^{t} S_{\alpha, \alpha}(t-s) f(s, u(s)) d s \tag{1.4}
\end{equation*}
$$

where $S_{\alpha, 1}(t):=\left(g_{1-\alpha} * S_{\alpha, \alpha}\right)(t)$, see for instance [30]. We notice that the variation of constant formula (1.4) coincides with the case $\alpha=1$ introduced in [6, Section 3]. Similarly, for $1<\alpha<2$ and $\beta=1$ or $\beta=\alpha$, the equation (1.2) subject to the nonlocal conditions $u(0)+g(u)=u_{0}$, and $u^{\prime}(0)+h(u)=u_{1}$, where $g, h: C(I, X) \rightarrow X$ are continuous and $u_{0}, u_{1}$ belong to $X,(I:=[0, T])$

Definition 2.1. Let $\alpha>0$ and $n=\lceil\alpha\rceil$. The Caputo fractional derivative of order $\alpha$ of a function $u:[0, \infty) \rightarrow X$ is defined by

$$
\partial_{t}^{\alpha} u(t):=\int_{0}^{t} g_{n-\alpha}(t-s) u^{(n)}(s) d s
$$

Definition 2.2. Let $\alpha>0$ and $n=[\alpha]+1$. The Weyl fractional derivative of order $\alpha$ of a function $u: \mathbb{R} \rightarrow X$ is defined by

$$
\partial^{\alpha} u(t):=\frac{d^{n}}{d t^{n}} \partial^{-(n-\alpha)} u(t),
$$

where for $\gamma>0, \partial^{-\gamma} u(t):=\int_{-\infty}^{t} g_{\gamma}(t-s) u(s) d s$ for all $t \in \mathbb{R}$.

$$
\begin{equation*}
S_{\alpha, \beta}(t) x=g_{\beta}(t) x+\int_{0}^{t} g_{\alpha}(t-s) A S_{\alpha, \beta}(s) x d s \tag{2.1}
\end{equation*}
$$

(3) If $x \in X, t \geq 0$, then $\int_{0}^{t} g_{\alpha}(t-s) S_{\alpha, \beta}(s) x d s \in D(A)$ and $S_{\alpha, \beta}(t) x=g_{\beta}(t) x+A \int_{0}^{t} g_{\alpha}(t-$ s) $S_{\alpha, \beta}(s) x d s$

In particular, $S_{\alpha, \beta}(0)=g_{\beta}(0) \mathcal{I}$.
The next result gives sufficient conditions on $\alpha, \beta$ and $A$ to obtain generators of $(\alpha, \beta)$-resolvent families.

Theorem 2.5. [28] Let $1<\alpha<2$ and $\beta \geq 1$ such that $\alpha-\beta+1>0$. Assume that $A$ is $\omega$-sectorial of angle $\frac{(\alpha-1) \pi}{2}$, where $\omega<0$. Then A generates an exponentially bounded $(\alpha, \beta)$-resolvent family.
Theorem 2.6. [28] Let $1<\alpha<2$ and $\beta \geq 1$ such that $\alpha-\beta+1>0$. Assume that $A$ is $\omega$-sectorial of angle $\frac{(\alpha-1)}{2} \pi$, where $\omega<0$. Then, there exists a constant $C>0$, depending only on $\alpha$ and $\beta$, such that

$$
\begin{equation*}
\left\|S_{\alpha, \beta}(t)\right\| \leq \frac{C t^{\beta-1}}{1+|\omega| t^{\alpha}}, \quad \text { for all } t>0 \tag{2.2}
\end{equation*}
$$

Finally, we recall some spaces of functions. For a given Banach space $(X,\|\cdot\|)$, let $B C(X):=$ $\left\{f: \mathbb{R} \rightarrow X:\|f\|_{\infty}:=\sup _{t \in \mathbb{R}}\|f(t)\|<\infty\right\}$ be the Banach space of all bounded and continuous functions. For $T>0$ fixed, $P_{T}(X)$ denotes the space of all vector-valued periodic functions, that is, $P_{T}(X):=\{f \in B C(X): f(t+T)=f(t)$, for all $t \in \mathbb{R}\}$. We denote by $A P(X)$ to the space of all almost periodic functions (in the sense of Bohr), which consists of all $f \in B C(X)$ such that for every $\varepsilon>0$ there exists $l>0$ such that for every subinterval of $\mathbb{R}$ of length $l$ contains at least one
point $\tau$ such that $\|f(t+\tau)-f(t)\|_{\infty} \leq \varepsilon$. A function $f \in B C(X)$ is said to be almost automorphic if for every sequence of real numbers $\left(s_{n}^{\prime}\right)_{n \in \mathbb{N}}$ there exists a subsequence $\left(s_{n}\right)_{n \in \mathbb{N}} \subset\left(s_{n}^{\prime}\right)_{n \in \mathbb{N}}$ such that

$$
g(t):=\lim _{n \rightarrow \infty} f\left(t+s_{n}\right)
$$

is well defined for each $t \in \mathbb{R}$, and

$$
f(t)=\lim _{n \rightarrow \infty} g\left(t-s_{n}\right), \quad \text { for each } t \in \mathbb{R}
$$

1

$$
3
$$

We denote by $A A(X)$ the Banach space of all almost automorphic functions.
On the other hand, the space of compact almost automorphic functions is the space of all functions $f \in B C(X)$ such that for all sequence $\left(s_{n}^{\prime}\right)_{n \in \mathbb{N}}$ of real numbers there exists a subsequence $\left(s_{n}\right)_{n \in \mathbb{N}} \subset$ $\left(s_{n}^{\prime}\right)_{n \in \mathbb{N}}$ such that $g(t):=\lim _{n \rightarrow \infty} f\left(t+s_{n}\right)$ and $f(t)=\lim _{n \rightarrow \infty} g\left(t-s_{n}\right)$ uniformly over compact subsets of $\mathbb{R}$.

We notice that $P_{T}(X), A P(X), A A(X)$ and $A A_{c}(X)$ are Banach spaces under the norm $\|\cdot\|_{\infty}$ and

$$
P_{T}(X) \subset A P(X) \subset A A(X) \subset A A_{c}(X) \subset B C(X)
$$

We notice that all these inclusions are proper. Now we consider the set $C_{0}(X):=\{f \in B C(X):$ $\left.\lim _{|t| \rightarrow \infty}\|f(t)\|=0\right\}$, and define the space of asymptotically periodic functions as $A P_{T}(X):=$ $P_{T}(X) \oplus C_{0}(X)$. Analogously, we define the space of asymptotically almost periodic functions,

$$
A A P(X):=A P(X) \oplus C_{0}(X)
$$

the space of asymptotically compact almost automorphic functions,

$$
A A A_{c}(X):=A A_{c}(X) \oplus C_{0}(X)
$$

and the space of asymptotically almost automorphic functions,

$$
A A A(X):=A A(X) \oplus C_{0}(X)
$$

We have the following natural proper inclusions

$$
A P_{T}(X) \subset A A P(X) \subset A A A_{c}(X) \subset A A A(X) \subset B C(X)
$$

$$
\begin{equation*}
\partial^{\alpha} u(t)=A u(t)+\partial^{\alpha-\beta} f(t), \quad t \in \mathbb{R} \tag{3.3}
\end{equation*}
$$

Definition 3.8. A function $u \in C(\mathbb{R}, X)$ is called a mild solution to equation (3.3) if the function $s \mapsto S_{\alpha, \beta}(t-s) f(s)$ is integrable on $(-\infty, t)$ for each $t \in \mathbb{R}$ and

$$
\begin{equation*}
u(t)=\int_{-\infty}^{t} S_{\alpha, \beta}(t-s) f(s) d s, \quad t \in \mathbb{R} \tag{3.4}
\end{equation*}
$$

$$
\left\{\begin{align*}
v^{\prime}(t) & =\int_{0}^{t} \frac{(t-s)^{\alpha-2}}{\Gamma(\alpha-1)} A v(s)+\frac{(t-s)^{\beta-2}}{\Gamma(\beta-1)} f(s) d s, \quad t \geq 0  \tag{3.5}\\
v(0) & =v_{0}, \quad v_{0} \in X
\end{align*}\right.
$$

$$
\begin{equation*}
v(t)=S_{\alpha, 1}(t) v_{0}+\int_{0}^{t} S_{\alpha, \beta}(t-s) f(s) d s, \quad t \geq 0 \tag{3.6}
\end{equation*}
$$

where $\left\{S_{\alpha, \beta}(t)\right\}_{t \geq 0}$ is the family of operators given by

$$
S_{\alpha, \beta}(t):=\left(g_{\beta-1} * S_{\alpha, 1}\right)(t)
$$

On the other hand, by [28, Corollary 3.9] the function $t \mapsto S_{\alpha, \beta}(t)$ is uniformly 1-integrable and therefore if $f$ is a bounded continuous function (for example, if $f$ belongs to $\mathcal{N}(X)$ ), then the mild solution to equation (1.1) is given by

$$
u(t)=\int_{-\infty}^{t} S_{\alpha, \beta}(t-s) f(s) d s
$$

$$
\begin{equation*}
\phi(t):=\int_{-\infty}^{t} S_{\alpha, \beta}(t-s) f(s) d s, \quad t \in \mathbb{R} \tag{3.7}
\end{equation*}
$$

Since

$$
v(t)-u(t)=S_{\alpha, 1}(t) v_{0}-\int_{t}^{\infty} S_{\alpha, \beta}(s) f(t-s) d s
$$

we conclude by [28, Corollary 3.8], that $v(t)-u(t) \rightarrow 0$ as $t \rightarrow \infty$.
Let $1<\alpha<2, \beta \geq 1$ such that $\alpha-\beta+1>0, \omega<0$ and assume that $A$ is an $\omega$-sectorial operator of angle $\theta=\frac{(\alpha-1)}{2} \pi$. By Theorem 2.5, the operator $A$ generates a resolvent family $\left\{S_{\alpha, \beta}(t)\right\}_{t \geq 0}$. Take a bounded and continuous function $f: \mathbb{R} \rightarrow X$, (for example, we can take $f \in \mathcal{N}(X)$ ). Define the function $\phi(t)$ by

By Theorem 2.6 we have $\|\phi\|_{\infty} \leq\left\|S_{\alpha, \beta}\right\|_{1}\|f\|_{\infty}$. If $f(t) \in D(A)$ for all $t \in \mathbb{R}$, then $\phi(t) \in D(A)$ for all $t \in \mathbb{R}$ (see [5, Proposition 1.1.7]). Assume that $\partial^{\alpha} \phi$ exists. The Proposition 2.4 and Fubini's

We notice that (3.3) can be considered as the limiting equation of the following integro-differential equation with singular kernels
in the sense that the mild solution to equation (3.5) converges to the mild solution of (3.3) as $t \rightarrow \infty$. In fact, if $\omega<0$ and $A$ is an $\omega$-sectorial operator of angle $\theta=\frac{(\alpha-1)}{2} \pi$, then taking Laplace transform in (3.5) we obtain

$$
\lambda \hat{v}(\lambda)-v(0)=\frac{1}{\lambda^{\alpha-1}} A \hat{v}(\lambda)+\frac{1}{\lambda^{\beta-1}} \hat{f}(\lambda), \quad \operatorname{Re} \lambda>0
$$

which is equivalent to

$$
\left(\lambda^{\alpha}-A\right) \hat{v}(\lambda)=\lambda^{\alpha-1} v(0)+\lambda^{\alpha-\beta} \hat{f}(\lambda), \quad \operatorname{Re} \lambda>0
$$

Therefore the solution of problem (3.5) can be written as

$$
\begin{equation*}
u(t)=\int_{-\infty}^{t} S_{\alpha, \beta}(t-s) f(s, u(s)) d s, \quad t \in \mathbb{R} \tag{3.8}
\end{equation*}
$$

Theorem 3.11. Let $1 \leq \beta<\alpha<2, \omega<0$ and $A$ is an $\omega$-sectorial operator of angle $\theta=\frac{(\alpha-1)}{2} \pi$. If $f \in \mathcal{N}(\mathbb{R} \times X, X)$ satisfies

$$
\begin{equation*}
\|f(t, u)-f(t, v)\| \leq L\|u-v\|, \text { for all } t \in \mathbb{R}, \text { and } u, v \in X \tag{3.9}
\end{equation*}
$$

where $L<\frac{\alpha}{C}|\omega|^{\beta / \alpha} B\left(\frac{\beta}{\alpha}, 1-\frac{\beta}{\alpha}\right)^{-1}$, and $C$ is the constant given in Theorem 2.6, and $B(\cdot, \cdot)$ denotes the Beta function, then the equation (1.1) has a unique mild solution $u \in \mathcal{N}(X)$.

1

$$
\begin{equation*}
(F \phi)(t):=\int_{-\infty}^{t} S_{\alpha, \beta}(t-s) f(s, \phi(s)) d s, \quad t \in \mathbb{R} \tag{3.10}
\end{equation*}
$$

$$
\begin{equation*}
\int_{0}^{\infty}\left\|S_{\alpha, \beta}(t)\right\| d t \leq \frac{C}{\alpha}|\omega|^{-\beta / \alpha} B\left(\frac{\beta}{\alpha}, 1-\frac{\beta}{\alpha}\right)<\infty \tag{3.11}
\end{equation*}
$$

and [23, Theorems 3.3 and 4.1], $F$ is well defined, that is, $F \phi \in \mathcal{N}(X)$ for all $\phi \in \mathcal{N}(X)$. For $\phi_{1}, \phi_{2} \in \mathcal{N}(X)$ and $t \in \mathbb{R}$, by (3.11), we have:

$$
\begin{aligned}
\left\|\left(F \phi_{1}\right)(t)-\left(F \phi_{2}\right)(t)\right\| & \leq \int_{-\infty}^{t}\left\|S_{\alpha, \beta}(t-s)\left[f\left(s, \phi_{1}(s)\right)-f\left(s, \phi_{2}(s)\right)\right]\right\| d s \\
& \leq \int_{-\infty}^{t} L\left\|S_{\alpha, \beta}(t-s)\right\| \cdot\left\|\phi_{1}(s)-\phi_{2}(s)\right\| d s \\
& \leq L\left\|\phi_{1}-\phi_{2}\right\|_{\infty} \int_{0}^{\infty}\left\|S_{\alpha, \beta}(r)\right\| d r \\
& \leq \frac{L C}{\alpha}|\omega|^{-\beta / \alpha} B\left(\frac{\beta}{\alpha}, 1-\frac{\beta}{\alpha}\right)\left\|\phi_{1}-\phi_{2}\right\|_{\infty}
\end{aligned}
$$

5 This proves that $F$ is a contraction, so by the Banach fixed point theorem there exists a unique $u \in \mathcal{N}(X)$ such that $F u=u$.

Theorem 3.12. Let $1 \leq \beta<\alpha<2, \omega<0$ and $A$ is an $\omega$-sectorial operator of angle $\theta=\frac{(\alpha-1)}{2} \pi$. If $f \in \mathcal{N}(\mathbb{R} \times X, X)$ satisfies

$$
\|f(t, u)-f(t, v)\| \leq \mathfrak{L}(t)\|u-v\|, \text { for all } t \in \mathbb{R}, \text { and } u, v \in X
$$

where $\mathfrak{L}(\cdot) \in L^{1}\left(\mathbb{R}, \mathbb{R}_{+}\right)$, then the equation (1.1) admits a unique mild solution $u \in \mathcal{N}(X)$.
Proof. It easily follows by Theorem 2.6 that $\left\|S_{\alpha, \beta}(t)\right\| \leq \widetilde{C}:=\max \left\{C, \frac{C}{|\omega|}\right\}$. Define the operator 11 $F$ as (3.10). For $u, v \in \mathcal{N}(X)$ and $t \in \mathbb{R}$, we have

$$
\begin{aligned}
\|(F u)(t)-(F v)(t)\| & \leq \int_{-\infty}^{t}\left\|S_{\alpha, \beta}(t-s)[f(s, u(s))-f(s, v(s))]\right\| d s \\
& \leq \widetilde{C}\|u-v\|_{\infty} \int_{0}^{\infty} \mathfrak{L}(t-\xi) d \xi \\
& =\widetilde{C}\|u-v\|_{\infty} \int_{-\infty}^{t} \mathfrak{L}(s) d s
\end{aligned}
$$

12
Generally, we have

$$
\begin{aligned}
\left\|\left(F^{n} u\right)(t)-\left(F^{n} v\right)(t)\right\| & \leq\|u-v\|_{\infty} \frac{(\widetilde{C})^{n}}{(n-1)!}\left(\int_{-\infty}^{t} \mathfrak{L}(s)\left(\int_{-\infty}^{s} \mathfrak{L}(\xi) d \xi\right)^{n-1} d s\right) \\
& \leq\|u-v\|_{\infty} \frac{(\widetilde{C})^{n}}{n!}\left(\int_{-\infty}^{t} \mathfrak{L}(s) d s\right)^{n} \\
& \leq\|u-v\|_{\infty} \frac{\left(\|\mathfrak{L}\|_{1} \widetilde{C}\right)^{n}}{n!} .
\end{aligned}
$$

Since $\frac{\left(\|\mathfrak{L}\|_{1} \widetilde{C}\right)^{n}}{n!}<1$ for sufficiently large $n$, by the contraction principle $F$ admits a unique fixed point $u \in \mathcal{N}(X)$.

## 4. Mild solutions to Equation (1.2) with nonlocal conditioins

Assume that $A$ is an $\omega$-sectorial operator of angle $\theta=\frac{(\alpha-1)}{2} \pi$. By Theorem 2.5 the operator $A$ generates a resolvent family $\left\{S_{\alpha, \beta}(t)\right\}_{t \geq 0}$. If $h: C(I, X) \rightarrow X$ is a continuous function, $f(0, u(0))=0$ and $u_{1} \in X$, then it is well known that the mild solution to problem

$$
\begin{cases}\partial_{t}^{\alpha} u(t) & =A u(t)+\partial_{t}^{\alpha-\beta} f(t, u(t)), \quad 0 \leq t \leq T  \tag{4.12}\\ u(0) & =0 \\ u^{\prime}(0)+h(u) & =u_{1}\end{cases}
$$

is given by means of the variation-of-constant formula

$$
u(t)=S_{\alpha, 2}(t)\left[u_{1}-h(u)\right]+\int_{0}^{t} S_{\alpha, \beta}(t-s) f(s, u(s)) d s, \quad t \in[0, T]
$$

We assume the following

- H1. The function $f$ satisfies the Carathéodory condition, that is $f(\cdot, u)$ is strongly measurable for each $u \in X$ and $f(t, \cdot)$ is continuous for each $t \in I:=[0, T]$.
- H2. There exists a continuous function $\mu: I \rightarrow \mathbb{R}_{+}$such that

$$
\|f(t, u)\| \leq \mu(t)\|u\|, \quad \forall t \in I, u \in C(I, X)
$$

and $f(0, u(0))=0$.

- H3. The function $h: C(I, X) \rightarrow X$ is continuous and there exists $L_{h}>0$ such that

$$
\|h(u)-h(v)\|<L_{h}\|u-v\|, \forall u, v \in C(I, X)
$$

- H4. The set $\mathcal{K}=\left\{S_{\alpha, \beta}(t-s) f(s, u(s)): u \in C(I, X), 0 \leq s \leq t\right\}$ is relatively compact for each $t \in I$.

Proposition 4.13. Let $1<\alpha<2$ and $1<\beta \leq 2$ such that $\alpha-\beta+1>0$. If $A$ is an $\omega$-sectorial operator of angle $\theta=\frac{(\alpha-1)}{2} \pi$, where $\omega<0$, then the function $t \mapsto S_{\alpha, \beta}(t)$ is continuous in $\mathcal{B}(X)$ for all $t>0$.

Proof. It proof follows similarly to [30, Proposition 11]. We omit the details.
We recall the following results.
Lemma 4.14 (Mazur's Theorem). If $K$ is a compact subset of a Banach space $X$, then its convex closure $\overline{\operatorname{conv}(K)}$ is compact.

Lemma 4.15 (Leray-Schauder Alternative Theorem). Let $C$ be a convex subset of a Banach space $X$. Suppose that $0 \in C$. If $F: C \rightarrow C$ is a completely continuous map, then either $F$ has a fixed point, or the set $\{x \in C: x=\lambda F(x), 0<\lambda<1\}$ is unbounded.

Lemma 4.16 (Krasnoselskii Theorem). Let $C$ be a closed convex and nonempty subset of a Banach space $X$. Let $Q_{1}$ and $Q_{2}$ be two operators such that
i) If $u, v \in C$, then $Q_{1} u+Q_{2} v \in C$.
ii) $Q_{1}$ is a mapping contraction.
iii) $Q_{2}$ is compact and continuous.

Then, there exists $z \in C$ such that $z=Q_{1} z+Q_{2} z$.
We have the following existence theorem.
Theorem 4.17. Let $1<\alpha<2$ and $1<\beta<2$ such that $\alpha-\beta+1>0$. Assume that $A$ is an $\omega$-sectorial operator of angle $\theta=\frac{(\alpha-1)}{2} \pi$, where $\omega<0$. Under assumptions H1-H4, the problem (4.12) has at least one mild solution.

Proof. By Theorem 2.5, the operator $A$ generates a resolvent family $\left\{S_{\alpha, 1}(t)\right\}_{t \geq 0}$. By the uniqueness of the Laplace transform we have $S_{\alpha, 2}(t)=\left(g_{1} * S_{\alpha, 1}\right)(t)$ and $S_{\alpha, \beta}(t)=\left(g_{\beta-1} * S_{\alpha, 1}\right)(t)$ for all $t \geq 0$. Moreover, by Theorem 2.6 there exists a constant $M>0$ such that $\left\|S_{\alpha, 2}(t)\right\| \leq M$ and $\left\|S_{\alpha, \beta}(t)\right\| \leq M$ for all $t \geq 0$. Now, we define the operator $\Gamma: C(I, X) \rightarrow C(I, X)$ by

$$
(\Gamma u)(t):=S_{\alpha, 2}(t)\left[u_{1}-h(u)\right]+\int_{0}^{t} S_{\alpha, \beta}(t-s) f(s, u(s)) d s, \quad t \in[0, T] .
$$

Let $B_{r}:=\{u \in C(I, X):\|u\| \leq r\}$, where $r>0$. We shall prove that $\Gamma$ has at least one fixed point by the Leray-Schauder fixed point theorem. We will consider several steps in the proof.

Step 1. The operator $\Gamma$ sends bounded sets of $C(I, X)$ into bounded sets of $C(I, X)$. In fact, take $u \in B_{r}$ and $G:=\sup _{u \in B_{r}}\|h(u)\|$. Then

$$
\begin{aligned}
\|\Gamma u(t)\| & \leq\left\|S_{\alpha, 2}(t)\right\|\left(\left\|u_{1}\right\|+\|h(u)\|\right)+\int_{0}^{t}\left\|S_{\alpha, \beta}(t-s)\right\|\|f(s, u(s))\| d s \\
& \leq M\left(\left\|u_{1}\right\|+G\right)+M \int_{0}^{t} \mu(s)\|u(s)\| d s \\
& \leq M\left(\left\|u_{1}\right\|+G\right)+M r \int_{0}^{t} \mu(s) d s \\
& \leq M\left(\left\|u_{1}\right\|+G\right)+M r\|\mu\|_{\infty} T:=R .
\end{aligned}
$$

Therefore $\Gamma B_{r} \subset B_{R}$.
Step 2. $\Gamma$ is a continuous operator.
Let $u_{n}, u \in B_{r}$ such that $u_{n} \rightarrow u$ in $C(I, X)$. Then we have

$$
\begin{aligned}
\left\|\Gamma u_{n}(t)-\Gamma u(t)\right\| & \leq\left\|S_{\alpha, 2}(t)\right\|\left(\left\|h\left(u_{n}\right)-h(u)\right\|\right)+\int_{0}^{t}\left\|S_{\alpha, \beta}(t-s)\right\|\left\|f\left(s, u_{n}(s)\right)-f(s, u(s))\right\| d s \\
& \leq M L_{h}\left\|u_{n}-u\right\|+M \int_{0}^{t}\left\|f\left(s, u_{n}(s)\right)-f(s, u(s))\right\| d s \\
& \leq M L_{h}\left\|u_{n}-u\right\|+M \int_{0}^{t} \mu(s)\left(\left\|u_{n}(s)\right\|+\|u(s)\|\right) d s \\
& \leq M L_{h}\left\|u_{n}-u\right\|+2 r M \int_{0}^{t} \mu(s) d s
\end{aligned}
$$

We notice that the function $s \mapsto \mu(s)$ is integrable on $I$. By the Lebesgue's Dominated Convergence Theorem, $\int_{0}^{t}\left\|f\left(s, u_{n}(s)\right)-f(s, u(s))\right\| d s \rightarrow 0$ as $n \rightarrow \infty$. Since $u_{n} \rightarrow u$ we obtain that $\Gamma$ is continuous in $C(I, X)$.

Step 3 The operator $\Gamma$ sends bounded sets of $C(I, X)$ into equicontinuous sets of $C(I, X)$. In fact, let $u \in B_{r}$, with $r>0$ and take $t_{1}, t_{2} \in I$ with $t_{2}<t_{1}$. Then we have

$$
\begin{aligned}
\left\|\Gamma u\left(t_{1}\right)-\Gamma u\left(t_{2}\right)\right\| & \leq\left\|\left(S_{\alpha, 2}\left(t_{1}\right)-S_{\alpha, 2}\left(t_{2}\right)\right)\left(u_{1}-h(u)\right)\right\|+\int_{t_{2}}^{t_{1}}\left\|S_{\alpha, \beta}\left(t_{1}-s\right) f(s, u(s))\right\| d s \\
& +\int_{0}^{t_{2}}\left\|\left(S_{\alpha, \beta}\left(t_{1}-s\right)-S_{\alpha, \beta}\left(t_{2}-s\right)\right) f(s, u(s))\right\| d s \\
& :=I_{1}+I_{2}+I_{3} .
\end{aligned}
$$

Observe that

$$
I_{1} \leq\left\|\left(S_{\alpha, 2}\left(t_{1}\right)-S_{\alpha, 2}\left(t_{2}\right)\right)\right\|\left\|\left(u_{1}-h(u)\right)\right\|
$$

13 Using the norm continuity of $t \mapsto S_{\alpha, 2}(t)$ (see Proposition 4.13) we obtain that $\lim _{t_{1} \rightarrow t_{2}} I_{1}=0$.
for all $t \in[0, T]$, which means that $\Omega$ is a bounded set.
Therefore, by Lemma 4.15 we conclude that $\Gamma$ has a fixed point, and the proof of the Theorem is finished.

The same method of proof can be used to prove the next result. We omit the details.
Theorem 4.18. Let $1<\alpha<2$. Assume that A generates the resolvent family $\left\{S_{\alpha, 1}(t)\right\}_{t \geq 0}$. Under assumptions H1-H4, the problem (4.12) has at least one mild solution.

Now, we consider the problem

$$
\begin{cases}\partial_{t}^{\alpha} u(t) & =A u(t)+\partial_{t}^{\alpha-\beta} f(t, u(t)), \quad 0 \leq t \leq T  \tag{4.13}\\ u(0)+g(u) & =u_{0} \\ u^{\prime}(0)+h(u) & =u_{1}\end{cases}
$$

where $g, h: C(I, X) \rightarrow X$ are continuous, $f(0, u(0))=0$ and $u_{0}, u_{1} \in X$. By (2.2) in Theorem 2.6, there exists a constant $M>0$ such that

$$
\begin{equation*}
\left\|S_{\alpha, 1}(t)\right\| \leq \frac{M}{1+|\omega| t^{\alpha}}, \quad\left\|S_{\alpha, 2}(t)\right\| \leq \frac{M t}{1+|\omega| t^{\alpha}}, \quad\left\|S_{\alpha, \beta}(t)\right\| \leq \frac{M t^{\beta-1}}{1+|\omega| t^{\alpha}}, \quad t \geq 0 \tag{4.14}
\end{equation*}
$$

$$
\left\|S_{\alpha, 1}(t)\right\| \leq M, \quad\left\|S_{\alpha, 2}(t)\right\| \leq M T, \quad\left\|S_{\alpha, \beta}(t)\right\| \leq M T^{\beta-1}, \quad t \in[0, T] .
$$

Under the same assumptions H1-H3 and

- H3'. The function $g: C(I, X) \rightarrow X$ is continuous and there exists $L_{g}>0$ such that

$$
\|g(u)-g(v)\|<L_{g}\|u-v\|, \forall u, v \in C(I, X)
$$

we have the following result.
Theorem 4.19. Let $1<\alpha<2$ and $1<\beta<2$ such that $\alpha-\beta+1>0$. Assume that $A$ is an $\omega$-sectorial operator of angle $\theta=\frac{(\alpha-1)}{2} \pi$, where $\omega<0$. Suppose that $M\|\mu\|_{\infty} T^{\beta}<1$ and $M\left(L_{g}+T L_{h}\right)<1$, where $M$ is the constant in (4.15). Assume that $\left(\lambda^{\alpha}-A\right)^{-1}$ is compact for all $\lambda>\nu^{1 / \alpha}$, where $\nu$ is a positive constant. Under assumptions H1-H3 and H3', the problem (4.13) has at least one mild solution.

Proof. By Theorem 2.5, the operator $A$ generates the resolvent family $\left\{S_{\alpha, 1}(t)\right\}_{t \geq 0}$, and $S_{\alpha, 2}(t)=$ $\left(g_{1} * S_{\alpha, 1}\right)(t)$ and $S_{\alpha, \beta}(t)=\left(g_{\beta-1} * S_{\alpha, 1}\right)(t)$ for all $t \geq 0$. Then, the mild solution to problem (4.13) is given by

$$
u(t)=S_{\alpha, 1}(t)\left[u_{0}-g(u)\right]+S_{\alpha, 2}(t)\left[u_{1}-h(u)\right]+\int_{0}^{t} S_{\alpha, \beta}(t-s) f(s, u(s)) d s, \quad t \in[0, T] .
$$

Let $B_{r}:=\{u \in C(I, X):\|u\| \leq r\}$, where

$$
r:=\frac{M\left(\left\|u_{0}\right\|+\|g(u)\|\right)+M T\left(\left\|u_{1}\right\|+\|h(u)\|\right)}{1-M\|\mu\|_{\infty} T^{\beta}} .
$$

On $B_{r}$ we define the operators $\Gamma_{1}, \Gamma_{2}$ by

$$
\begin{aligned}
\left(\Gamma_{1} u\right)(t): & =S_{\alpha, 1}(t)\left[u_{0}-g(u)\right]+S_{\alpha, 2}(t)\left(u_{1}-h(u)\right) \quad t \in[0, T] \\
\left(\Gamma_{2} u\right)(t): & =\int_{0}^{t} S_{\alpha, \beta}(t-s) f(s, u(s)) d s, \quad t \in[0, T]
\end{aligned}
$$

where $u \in B_{r}$. We claim that $\Gamma:=\Gamma_{1}+\Gamma_{2}$ has at least one fixed. To prove this, we will consider several steps.

Step 1. We claim that if $u, v \in B_{r}$, then $\Gamma_{1} u+\Gamma_{2} v \in B_{r}$. In fact,

$$
\left\|\left(\Gamma_{1} u\right)(t)+\left(\Gamma_{2} v\right)(t)\right\| \leq
$$

$$
\begin{aligned}
& \leq\left\|S_{\alpha, 1}(t)\right\|\left\|u_{0}-g(u)\right\|+\left\|S_{\alpha, 2}(t)\right\|\left\|u_{1}-h(u)\right\|+\int_{0}^{t}\left\|S_{\alpha, \beta}(t-s)\right\|\|f(s, v(s))\| d s \\
& \leq M\left(\left\|u_{0}\right\|+\|g(u)\|\right)+M T\left(\left\|u_{1}\right\|+\|h(u)\|\right)+M \int_{0}^{t}(t-s)^{\beta-1} \mu(s)\|v(s)\| d s \\
& \leq M\left(\left\|u_{0}\right\|+\|g(u)\|\right)+M T\left(\left\|u_{1}\right\|+\|h(u)\|\right)+M T^{\beta}\|\mu\|_{\infty} r=r
\end{aligned}
$$

Thus $\Gamma_{1} u+\Gamma_{2} v \in B_{r}$ for all $u, v \in B_{r}$.
Step 2. $\Gamma_{1}$ is a contraction on $B_{r}$. In fact, if $u, v \in B_{r}$, then

$$
\left\|\Gamma_{1} u(t)-\Gamma_{1} v(t)\right\| \leq\left\|S_{\alpha, 1}(t)\right\|\|g(u)-g(v)\|+\left\|S_{\alpha, 2}(t)\right\|\|h(u)-h(v)\| \leq\left(M L_{g}+M T L_{h}\right)\|u-v\|
$$

Since $M\left(L_{g}+T L_{h}\right)<1$, we get that $\Gamma_{1}$ is a contraction.
Step 3. $\Gamma_{2}$ is completely continuous.
Firstly, we prove that $\Gamma_{2}$ is a continuous operator on $B_{r}$. Let $u_{n}, u \in B_{r}$ such that $u_{n} \rightarrow u$ in $B_{r}$. We notice that by (4.14)

$$
\left\|\Gamma_{2} u_{n}(t)-\Gamma_{2} u(t)\right\| \leq \int_{0}^{t}\left\|S_{\alpha, \beta}(t-s)\right\|\left\|f\left(s, u_{n}(s)\right)-f(s, u(s))\right\| d s \leq 2 M r T^{\beta} \int_{0}^{t} \mu(s) d s
$$

Moreover, the function $s \mapsto \mu(s)$ is integrable on $[0, T]$. The Lebesgue's Dominated Convergence Theorem implies that $\int_{0}^{t}\left\|f\left(s, u_{n}(s)\right)-f(s, u(s))\right\| d s \rightarrow 0$ as $n \rightarrow \infty$. Since $u_{n} \rightarrow u$ we obtain that $\Gamma_{2}$ is continuous in $B_{r}$.

Now, we prove that $\left\{\Gamma_{2} u: u \in B_{r}\right\}$ is a relatively compact set. In fact, by the Ascoli-Arzela theorem we only need to prove that the family $\left\{\Gamma_{2} u: u \in B_{r}\right\}$ is uniformly bounded and equicontinuous, and the set $\left\{\Gamma_{2} u(t): u \in B_{r}\right\}$ is relatively compact in $X$ for each $t \in[0, T]$. For each $u \in B_{r}$ we have $\left\|\Gamma_{2} u\right\| \leq M T^{\beta} r\|\mu\|_{\infty}$, which implies that $\left\{\Gamma_{2} u: u \in B_{r}\right\}$ is uniformly bounded.

Next, we prove the equicontinuity. For $u \in B_{r}$ and $0 \leq t_{2}<t_{1} \leq T$ we have

$$
\begin{aligned}
\left\|\Gamma_{2} u\left(t_{1}\right)-\Gamma_{2} u\left(t_{2}\right)\right\| & \leq \int_{t_{2}}^{t_{1}}\left\|S_{\alpha, \beta}\left(t_{1}-s\right) f(s, u(s))\right\| d s \\
& +\int_{0}^{t_{2}}\left\|\left(S_{\alpha, \beta}\left(t_{1}-s\right)-S_{\alpha, \beta}\left(t_{2}-s\right)\right) f(s, u(s))\right\| d s=: I_{1}+I_{2}
\end{aligned}
$$

Observe that for $I_{1}$, by (4.14) we have $I_{1} \leq M T^{\beta} \int_{t_{2}}^{t_{1}} \mu(s)\|u(s)\| d s \leq M T^{\beta} r\|\mu\|_{\infty}\left(t_{1}-t_{2}\right)$, and thus $\lim _{t_{1} \rightarrow t_{2}} I_{1}=0$. On the other hand, for $I_{2}$ we have

$$
I_{2} \leq \int_{0}^{t_{2}}\left\|S_{\alpha, \beta}\left(t_{1}-s\right)-S_{\alpha, \beta}\left(t_{2}-s\right)\right\|\|f(s, u(s))\| d s \leq r \int_{0}^{t_{2}} \mu(s)\left\|S_{\alpha, \beta}\left(t_{1}-s\right)-S_{\alpha, \beta}\left(t_{2}-s\right)\right\| d s
$$

By (4.15) we have $\mu(\cdot)\left\|S_{\alpha, \beta}\left(t_{1}-\cdot\right)-S_{\alpha, \beta}\left(t_{2}-\cdot\right)\right\| \leq 2 T^{\beta-1} M \mu(\cdot) \in L^{1}([0, T], \mathbb{R})$, and by Proposition 4.13 the function $t \mapsto S_{\alpha, \beta}(t)$ is norm continuous. This implies that if $t_{1} \rightarrow t_{2}$, then $\left.S_{\alpha, \beta}\right)\left(t_{1}-s\right)-$ $\left.S_{\alpha, \beta}\right)\left(t_{2}-s\right) \rightarrow 0$ in $\mathcal{B}(X)$. By the Lebesgue's dominated convergence theorem we conclude that $\lim _{t_{1} \rightarrow t_{2}} I_{2}=0$. Therefore, $\left\{\Gamma_{2} u: u \in B_{r}\right\}$ is an equicontinuous family.

Finally, we prove that $H(t):=\left\{\Gamma_{2} u(t): u \in B_{r}\right\}$ is relatively compact in $X$ for each $t \in[0, T]$. Clearly, $H(0)$ is relatively compact in $X$. Now, we take $t>0$. For $0<\varepsilon<t$ we define on $B_{r}$ the operator

$$
\left(\Gamma_{2}^{\varepsilon} u\right)(t):=\int_{0}^{t-\varepsilon} S_{\alpha, \beta}(t-s) f(s, u(s)) d s
$$

By [30, Theorem 14] we have that $S_{\alpha, \beta}(t)$ is a compact operator for all $t>0$. Thus $\underline{\mathcal{K}_{\varepsilon}:=\left\{S_{\alpha, \beta}(t-\right.}$ $\left.s) f(s, u(s)): u \in B_{r}, 0 \leq s \leq t-\varepsilon\right\}$ is a compact set for all $\varepsilon>0$. By Lemma $4.14, \overline{\operatorname{conv}\left(\mathcal{K}_{\varepsilon}\right)}$ is also a compact set. The Mean-Value Theorem for the Bochner integrals (see [15, Corollary 8, p. 48]), implies that $\left(\Gamma_{2}^{\varepsilon} u\right)(t) \in t \overline{\operatorname{conv}\left(\mathcal{K}_{\varepsilon}\right)}$, for all $t \in[0, T]$. Therefore, the set $H_{\varepsilon}(t):=\left\{\left(\Gamma_{2}^{\varepsilon} u\right)(t): u \in B_{r}\right\}$ is relatively compact in $X$ for all $\varepsilon>0$. Since

$$
\left\|\left(\Gamma_{2} u\right)(t)-\left(\Gamma_{2}^{\varepsilon} u\right)(t)\right\| \leq \int_{t-\varepsilon}^{t}\left\|S_{\alpha, \beta}(t-s) f(s, u(s))\right\| d s \leq M T^{\beta-1} r \int_{t-\varepsilon}^{t} \mu(s) d s
$$

and the function $s \mapsto \mu(s)$ belongs to $L^{1}\left([t-\varepsilon, t], \mathbb{R}_{+}\right)$we conclude by the Lebesgue dominated convergence Theorem that $\lim _{\varepsilon \rightarrow 0}\left\|\left(\Gamma_{2} u\right)(t)-\left(\Gamma_{2}^{\varepsilon} u\right)(t)\right\|=0$. Therefore the set $\left\{\Gamma_{2} u(t): u \in B_{r}\right\}$ is relatively compact in $X$ for each $t \in(0, T]$. The Ascoli-Arzela theorem implies that the set $\left\{\Gamma_{2} u: u \in B_{r}\right\}$ is relatively compact. We conclude that $\Gamma_{2}$ is a completely continuous operator. By Lemma 4.16 we have that $\Gamma=\Gamma_{1}+\Gamma_{2}$ has a fixed point on $B_{r}$, and therefore the problem (4.13) has a mild solution.

## 5. Examples

Example 5.20.
On the Banach space $X=\mathbb{C}$, let $A$ be the scalar operator $A=\varrho I$, where $\varrho \in \mathbb{R}$. Consider the multi-term fractional differential equation

$$
\begin{equation*}
\partial^{\alpha} u(t)=A u(t)+\partial^{\alpha-\beta} f(t), \quad t \in \mathbb{R} \tag{5.16}
\end{equation*}
$$

where $1 \leq \beta<\alpha<2$ and $f(t)$ is the almost periodic function $f(t)=\sin (t)+\sin (\sqrt{2} t)$, see [14, p. 80]. By Theorem 3.9 the solution $u$ to (5.16) is an almost periodic function, and it is given by

$$
u(t)=\int_{-\infty}^{t} S_{\alpha, \beta}(t-s) f(s) d s, \quad t \in \mathbb{R}
$$

where $S_{\alpha, \beta}(t)=t^{\beta-1} E_{\alpha, \beta}\left(\varrho t^{\alpha}\right)$. By Theorem 2.6 , we can write

$$
u(t)=\int_{-\infty}^{t} S_{\alpha, \beta}(t-s) f(s) d s=\sum_{k=0}^{\infty} \varrho^{k} \int_{-\infty}^{t} \frac{(t-s)^{\alpha k+\beta-1}}{\Gamma(\alpha k+\beta)} f(s) d s
$$

Now, we notice that if $g(t)=e^{\mu t}$, where $\mu \in \mathbb{C}$ and $\delta>0$, then

$$
\frac{1}{\Gamma(\delta)} \int_{-\infty}^{t}(t-s)^{\delta-1} g(s) d s=\frac{\mu^{1-\delta}}{\Gamma(\delta)} \int_{-\infty}^{t}\left[\mu(t-s)^{\delta-1}\right] e^{\mu s} d s=\frac{\mu^{-\delta}}{\Gamma(\delta)} e^{\mu t} \int_{0}^{\infty} r^{\delta-1} e^{-r} d r=\mu^{-\delta} e^{\mu t}
$$

and therefore, for $h(t)=\sin (a t)=\frac{e^{a i t}-e^{-a i t}}{2 i}$, where $a>0$, we have

$$
\frac{1}{\Gamma(\delta)} \int_{-\infty}^{t}(t-s)^{\delta-1} h(s) d s=a^{-\delta} \sin \left(a t-\frac{\pi}{2} \delta\right)
$$

This implies that

$$
u(t)=\sum_{k=0}^{\infty} \varrho^{k}\left[\sin \left(t-\frac{\pi}{2}(\alpha k+\beta)\right)+\frac{1}{\sqrt{2}^{\alpha k+\beta}} \sin \left(\sqrt{2} t-\frac{\pi}{2}(\alpha k+\beta)\right)\right]
$$

In Figure 1, we have the solution $u$ for (5.16) for $\varrho=-1$ and $\alpha=1.5, \beta=1.3$ on the interval $2[-30,30]$.


Figure 1. Solution $u(t)$ for (5.16) on the interval [ $-30,30]$.

3
Consider the following partial differential equation with fractional temporal derivatives

$$
\left\{\begin{array}{cl}
\partial_{t}^{\alpha} u(t, x) & =\frac{\partial^{2}}{\partial x^{2}} u(t, x)+\partial_{t}^{\alpha-\beta} \sin (u(t, x)), \quad(t, x) \in[0, T] \times \mathbb{R}  \tag{5.17}\\
u(0, x) & =0, \quad x \in \mathbb{R} \\
u^{\prime}(0, x)+\sum_{i=1}^{n} c_{i} u\left(t_{i}, x\right) & =u_{1}(x), \quad x \in \mathbb{R}
\end{array}\right.
$$

where $1<\alpha, \beta<2,0 \leq t_{1}<\ldots<t_{n} \leq T, u_{1} \in L^{2}(\mathbb{R})$, and $c_{i}$ are real constants.
On the Banach space $X=L^{2}(\mathbb{R})$, let $A$ be the second order operator $A v=v^{\prime \prime}$ with domain $D(A)=W^{2,2}(\mathbb{R})$. By [36, Example 1.2 .2, p. 3063], $A$ generates a cosine family $\left\{S_{2,1}(t)\right\}_{t \in \mathbb{R}}$ on $X$,

$$
\begin{equation*}
S_{\alpha, 1}(t) x:=\int_{0}^{\infty} \psi_{\frac{\alpha}{2}, 1-\frac{\alpha}{2}}(t, s) S_{2,1}(s) x d s, \quad t \geq 0, x \in X \tag{5.18}
\end{equation*}
$$

where $\psi_{\frac{\alpha}{2}, 1-\frac{\alpha}{2}}$ is the Wright type function defined by

$$
\begin{aligned}
\psi_{\frac{\alpha}{2}, 1-\frac{\alpha}{2}}(t, s)=\frac{1}{\pi} \int_{0}^{\infty} & \rho^{\frac{\alpha}{2}-1} e^{-s \rho^{\frac{\alpha}{2}} \cos \frac{\alpha}{2}(\pi-\theta)-t \rho \cos \theta} \\
& \times \sin \left(t \rho \sin \theta-s \rho^{\frac{\alpha}{2}} \sin \frac{\alpha}{2}(\pi-\theta)+\frac{\alpha}{2}(\pi-\theta)\right) d \rho
\end{aligned}
$$

for $\theta \in\left(\pi-\frac{2}{\alpha}, \pi / 2\right)$. Define,

$$
\begin{aligned}
u(t) x & =u(t, x) \\
f(t, u(t))(x) & =\sin (u(t, x)) \\
h(u)(x) & =\sum_{i=1}^{n} c_{i} u\left(t_{i}, x\right)
\end{aligned}
$$

Then, (5.17) can be reformulated as the abstract problem (4.12). Moreover, an easy computation shows that the hypotheses H1, H2 and H3 hold with $\mu(t)=1$ and $L_{h}=\sum_{i=1}^{n}\left|c_{i}\right|$. Since

$$
S_{\alpha, \beta}(t)=\left(g_{\beta-1} * S_{\alpha, 1}\right)(t)
$$

we obtain by (2.2) that the set $\mathcal{K}=\left\{S_{\alpha, \beta}(t-s) \sin (s, u(s)): u \in C(I, X), 0 \leq s \leq t\right\}$ is relatively compact for each $t \in I$, and therefore $\mathbf{H} 4$ holds. We conclude, by Theorem 4.18, that the problem 7 (4.12) has at least one mild solution $u$.

Acknowledgements. The authors thank the anonymous referees for reading the manuscript and for making suggestions that have improved the previous version of this paper. This work was partially supported by NSF of Shaanxi Province (2020JM-183).

## References

[1] M. Ali, S. Malik, An inverse problem for a family of two parameters time fractional diffusion equations with nonlocal boundary conditions, Math. Methods Appl. Sci. 40 (2017), no. 18, 7737-7748.
[2] E. Álvarez-Pardo, C. Lizama, Mild solutions for multi-term time-fractional differential equations with nonlocal initial conditions, Electron. J. Differential Equations (2014), No. 39, 10 pp.
[3] D. de Andrade, C. Cuevas, H. Soto, On fractional heat equations with non-local initial conditions. Proc. Edinb. Math. Soc. 59 (2016), 65-76.
[4] D. Araya, C. Lizama, Almost automorphic mild solutions to fractional differential equations, Nonlinear Anal. 69 (2008), 3692-3705.
[5] W. Arendt, C. Batty, M. Hieber, F. Neubrander, Vector-Valued Laplace transforms and Cauchy problems. Monogr. Math., vol. 96, Birkhäuser, Basel, 2011.
[6] L. Byszewski, Theorems about the existence and uniqueness of solutions of a semilinear evolution nonlocal Cauchy problem, J. Math. Anal. Appl. 162 (1991), 494-505.
[7] A. Caicedo, C. Cuevas, G. Mophou, G. N'Guérékata, Asymptotic behavior of solutions of some semilinear functional differential and integro-differential equations with infinite delay in Banach spaces, J. Franklin Inst. 349 (2012), 1-24.
[8] J. Cao, Q. Yang, Z. Huang, Existence of anti-periodic mild solutions for a class of semilinear fractional differential equations, Commun. Nonlinear Sci. Numer. Simul. 17 (2012), 277-283.
[9] P. de Carvalho-Neto, G. Planas, Mild solutions to the time fractional Navier-Stokes equations in $\mathbb{R}^{N}$, J. Differential Equations 259 (2015), 2948-2980.
[10] P. Chen, X. Zhang, Y. Li, Existence and approximate controllability of fractional evolution equations with nonlocal conditions via resolvent operators, Fract. Calc. Appl. Anal. 23 (2020), 268-291.
[11] E. Cuesta, Asymptotic behaviour of the solutions of fractional integro-differential equations and some time discretizations, Discrete Contin. Dyn. Syst. 2007, Dynamical Systems and Differential Equations. Proceedings of the 6th AIMS International Conference, suppl., 277-285
[12] C. Cuevas, C. Lizama, Almost automorphic solutions to a class of semilinear fractional differential equations, Appl. Math. Lett. 21 (2008), 1315-1319.
[13] C. Cuevas, J. de Souza, S-asymptotically $\omega$-periodic solutions of semilinear fractional integro-differential equations, Appl. Math. Lett. 22 (2009), 865-870.
[14] T. Diagana, Almost Automorphic type and almost periodic type functions in abstract spaces, Springer, New York, 2013.
[15] J. Diestel, J. Uhl, Vector measures, Mathematical Surveys, No. 15. American Mathematical Society, Providence, R.I., 1977. xiii +322 pp .
[16] S. Eidelman, A. Kochubei, Cauchy problem for fractional diffusion equations, J. Differential Equations 199 (2004), 211-255.
[17] K. Engel, R. Nagel, One-parameter semigroups for linear evolution equations. GTM vol. 194, 2000.
[18] M. Haase, The functional calculus for sectorial operators, Operator Theory: Advances and applications, 169, Birkäuser Verlag, Basel, 2006.
[19] A. Kilbas, H. Srivastava, J. Trujillo, Theory and applications of fractional differential equations, North-Holland Mathematics studies 204, Elsevier Science B.V., Amsterdam, 2006.
[20] K. Li, J. Peng, J. Jia, Cauchy problems for fractional differential equations with Riemann-Liouville fractional derivatives, J. Funct. Anal. 263 (2012), 476-510.
[21] C. Lizama, Regularized solutions for abstract Volterra equations, J. Math. Anal. Appl. 243 (2000), 278-292.
[22] C. Lizama, Solutions of two-term time fractional order differential equations with nonlocal initial conditions, E. J. Qualitative Theory of Diff. Eq. 82 (2012), 1-9.
[23] C. Lizama, G. M. N'Guérékata, Bounded mild solutions for semilinear integro-differential equations in Banach spaces, Integral Equ. Oper. Theory 68 (2010), 207-227.
[24] C. Lizama, G. M. N'Guérékata, Mild solutions for abstract fractional differential equations, Appl. Anal. 92 (2013), 1731-1754.
[25] K. Miller, B. Ross, An Introduction to the fractional calculus and fractional differential equations, Wiley, New York 1993.
[26] G. Mophou, G. M. N'Guérékata, Existence of the mild solution for some fractional differential equations with nonlocal conditions, Semigroup Forum 79 (2009), 315-322.
[27] G. M. N'Guérékata, Topics in almost automorphy, Springer Verlag, New York, 2005.
[28] R. Ponce, Asymptotic behavior of mild solutions to fractional Cauchy problems in Banach spaces, Appl. Math. Lett. 105 (2020), 106322.
[29] R. Ponce, Bounded mild solutions to fractional integro-differential equations in Banach spaces, Semigroup Forum 87 (2013), 377-392.
[30] R. Ponce, Existence of mild solutions to nonlocal fractional Cauchy problems via compactness, Abstr. Appl. Anal. 2016, Art. ID 4567092, 15 pp.
[31] R. Ponce, Hölder continuous solutions for fractional differential equations and maximal regularity, J. Differential Equations 255 (2013), 3284-3304.
[32] R. Ponce, Subordination principle for fractional diffusion-wave equations of Sobolev type, Fract. Calc. Appl. Anal. 23 (2020), no. 2, 427-449.
[33] X. B. Shu, Q. Wang, The existence and uniqueness of mild solutions for fractional differential equations with nonlocal conditions of order $1<\alpha<2$. Comput. Math. Appl. 64 (2012), 2100-2110.
[34] L. Shu, X. Shu, J. Mao, Approximate controllability and existence of mild solutions for Riemann-Liouville fractional stochastic evolution equations with nonlocal conditions of order $1<\alpha<2$, Fract. Calc. Appl. Anal. 22 (2019), 1086-1112.
[35] B. Torebek, R. Tapdigoglu, Some inverse problems for the nonlocal heat equation with Caputo fractional derivative, Math. Methods Appl. Sci. 40 (2017), no. 18, 6468-6479.
[36] V. Vasilev, S. Piskarev, Differential equations in Banach spaces. II. Theory of cosine operator functions, Functional analysis. J. Math. Sci. (N.Y.) 122 (2004), no. 2, 3055-3174.
[37] G. Wang, X. Ren, Z. Bai, W. Hou, Radial symmetry of standing waves for nonlinear fractional Hardy-Schrödinger equation, Appl. Math. Lett. 96 (2019), 131-137.
[38] R. Wang, T. Xiao, J. Liang, A note on the fractional Cauchy problems with nonlocal initial conditions, Appl. Math. Lett. 24 (2011), 1435-1442.
[39] A. Wiman, Über den Fundamentalsatz in der Teorie der Funktionen $E^{a}(x)$, Acta Math. 29 (1905), no. 1, 191-201.
[40] A. Wiman, Über die Nullstellen der Funktionen $E^{a}(x)$, Acta Math. 29 (1905), no. 1, 217-234.
[41] X.-J. Yang, General fractional derivatives: Theory, methods and applications, New York: CRC Press, 2019
[42] X.-J. Yang, F. Gao, Y. Ju, General fractional derivatives with applications in viscoelasticity, Academic Press, 2020.
[43] X.-J. Yang, New insight into the Fourier-like and Darcy-like models in porous medium, Thermal Science 24 (6A), 3847-3858, 2020.
[44] R. Zacher, A weak Harnack inequality for fractional differential equations, J. Integral Equations Appl. 19 (2007), 209-232.
[45] Y. Zhou, Basic Theory of Fractional Differential Equations, World Scientific, 2014.

1 School of Mathematics and Statistics, Xidian University, Xi’an 710071, Shaanxi, P. R. China.
2 E-mail address: lzchangyk@163.com, ykchang@xidian.edu.cn
3 Universidad de Talca, Instituto de Matemáticas, Casilla 747, Talca-Chile.
E-mail address: rponce@inst-mat.utalca.cl


[^0]:    2010 Mathematics Subject Classification. 33E12; 34A08; 45N05; 47D06; 34K30.
    Key words and phrases. Caputo fractional derivatives, Nonlocal problem, Fractional diffusion equation, Resolvent operators.

