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Abstract

In this manuscript, by properties on some corresponding resolvent operators and
techniques in multivalued analysis, we establish some results for solution sets of
Sobolev type fractional differential inclusions in the Caputo and Riemann-Liouville
fractional derivatives with order 1 < α < 2, respectively. We show that the solution
sets are nonempty, compact, contractible and thus arcwise connected under some suit-
able conditions. We remark that our results are directly established through resolvent
operators instead of subordination formulas usually applied, and the existence and
compactness of E−1 is not necessarily needed. Some applications are also given in the
final.
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1 Introduction

Differential inclusions are usually applied to deal with differential equations with a
discontinuous right-hand side or an inaccurately known right-hand side, which can be
seen as a generalization of the notion of ordinary differential equations [18, 39]. On the
other hand, differential inclusions are also closely related to control theory, for example,
considering the following control problem

x′ = f(x, u), u ∈ U,

where u is known as a control parameter. It finds that the above control system and the
following differential inclusion

x′ ∈ f(x, U) =
⋃
u∈U

f(x, u)
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has the same trajectories. If the set of controls depends upon the state x, i.e. U = U(x),
then the following differential inclusion can be obtained

x′ ∈ F (x, U(x)).

It is noted that the above mentioned equivalence between a control system and the cor-
responding differential inclusion plays a key role in establishing existence theorems in
optimal control theory. Differential inclusion has found its wide applications to models
arising in different disciplines, and thus it has been considerably investigated by lots of
scholars in last decades, see for instance [1, 7, 9, 20, 21, 24, 25, 33, 39] and references
therein. We especially address that in the monograph [20], properties of solution sets for
various differential inclusions of integer order such as higher-order differential inclusions,
neutral differential inclusions, hyperbolic differential inclusions and impulsive differential
inclusions have been discussed in details.

Fractional calculus can be seen a generalization of the ordinary differentiation and
integration to arbitrary non-integer order, which has been recognized as one of the most
powerful tools to describe long-memory processes in the last decades. Many phenomena
from physics, chemistry, mechanics, electricity et al can been modelled by ordinary and
partial differential equations involving fractional derivatives, we refer to [2, 3, 4, 19, 29, 30,
38, 43, 44, 46, 48] and references therein for more details. We also notice that properties
of solution sets for fractional differential inclusions have also been increasingly concerned
recently, see for instance [11, 12, 45, 46] and references therein.

Motivated by the above mentioned work, the main purpose of this manuscript is to
investigate properties of solution sets for Sobolev type semilinear fractional differential
inclusions in Banach spaces. Concretely, let A be a closed linear operator defined on a
Banach space (X, ‖ · ‖), u0, u1 ∈ X. Denote P(X) = {Y ⊆ X : Y 6= ∅}. Now, we consider
properties of solution sets for the following semilinear fractional differential inclusions of
Sobolev type {

Dα
t (Eu)(t) ∈ Au(t) + F(t, u(t)),
Eu(0) = u0, (Eu)′(0) = u1

(1.1)

and {
Dα(Eu)(t) ∈ Au(t) + F(t, u(t)),
E(g2−α ∗ u)(0) = u0, (E(g2−α ∗ u))′(0) = u1,

(1.2)

where t ∈ I := [0, b], the order 1 < α < 2, the notations Dα
t and Dα denote, respectively,

the Caputo and Riemann-Liouville fractional derivatives, and the operator pair (A,E)
generates a resolvent family {SEα,β(t)}t≥0 (see definition below, Section 2.1) for suitable
α, β > 0, the multivalued term F : I ×X → P(X) and the function g?(·) is also specified
by (2.1) in Section 2.

Sobolev type fractional differential inclusions are naturally applied to the control of
dynamical system when the controlled system or the controller is described by a Sobolev
type fractional differential equation. It is noted that there are already some interesting
results on abstract fractional differential equations of Sobolev type with the order 0 < α <
1, see for example [8, 15, 16, 23, 26, 40, 41] and the references therein. The main techniques
in these mentioned work are based upon the following assumptions: a). the existence of
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E−1 as a bounded operator, or b). D(E) ⊂ D(A), E is bijective and E−1 : X → D(E)
is a compact operator. Under these circumstances, the change of variable w(t) = Eu(t)
or subordination formulas can be used to deal with solution representations and related
problems. It should be pointed out that another method to deal with abstract Sobolev
type fractional differential equation with the order 0 < α < 1 is developed in [26, 41],
where solution representations are derived from subordination formulas of propagation
family (see [27]) without the above assumptions a) and b).

To the best of our knowledge, properties of solution sets for general systems (1.1) and
(1.2) in case 1 < α < 2 (and E 6= I, identity operator) have not been addressed in the
existing literature. In present paper, we shall deal with properties of solution sets for Eq.
(1.1) and Eq. (1.2) respectively based upon properties on resolvent operator generated by
the pair (A,E) and techniques in multivalued analysis. We shall show that the solution
sets are nonempty, compact, contractible and thus arcwise connected under some suitable
conditions. We remark that our results are directly established through resolvent operators
generated by the pair (A,E) instead of subordination formulas usually applied, and thus
previous assumptions a) or b) is not necessarily needed. Finally, some applications are
also given to illustrate our main results.

The rest of this paper is organized as follows. Section 2 is involved in Preliminaries.
Section 3 is devoted to investigate properties of solution sets for Eq. (1.1) and Eq. (1.2),
respectively. Section 4 is involved in some applications, and Section 5 is Conclusions.

2 Preliminaries

In this section, we list some definitions, notations and recall some basic results which
are used throughout this paper.

2.1 Basic results on fractional calculus and resolvent operator

In this subsection, we recall some basic results on fractional calculus and list some
properties on fractional resolvent operators. Most of these results can be found in mono-
graphs [4, 19, 29, 48], papers [1, 2, 3, 5, 6, 11, 12, 14, 22, 28, 32, 33, 35, 36, 37, 38, 42, 43, 45]
and references therein.

Let (X, ‖ · ‖), Z be Banach spaces. We denote by B(X,Z) the space of all bounded
linear operators from X into Z, and denote by B(X) the space of all bounded linear
operators from X into itself. For a closed and linear operator A : D(A) ⊂ X → X, where
D(A) is the domain of A, we denote by ρ(A) its resolvent set and by R(λ,A) its resolvent
operator, that is, R(λ,A) = (λ−A)−1 which is defined for all λ ∈ ρ(A).

For µ > 0, we define

gµ(t) =


tµ−1

Γ(µ)
, t > 0,

0, t ≤ 0,
(2.1)

where Γ(·) is the Gamma function. We also define g0 ≡ δ0, the Dirac delta. For µ > 0,
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n = dµe denotes the smallest integer n greater than or equal to µ. The finite convolution

of f and g is denoted by (f ∗ g)(t) =

∫ t

0
f(t− s)g(s)ds.

Definition 2.1 Let α > 0. The α-order Riemann-Liouville fractional integral of u is
defined by

Jαu(t) :=

∫ t

0
gα(t− s)u(s)ds, t ≥ 0.

Also, we define J0u(t) = u(t). Because of the convolution properties, the integral operators
{Jα}α≥0 satisfy the following semigroup law: JαJβ = Jα+β for all α, β ≥ 0.

Definition 2.2 Let α > 0. The α-order Caputo fractional derivative is defined

Dα
t u(t) :=

∫ t

0
gn−α(t− s)u(n)(s)ds,

where n = dαe.

Definition 2.3 Let α > 0. The α-order Riemann-Liouville fractional derivative of u is
defined

Dαu(t) :=
dn

dtn

∫ t

0
gn−α(t− s)u(s)ds,

where n = dαe.

It is clear Dm
t = Dm =

dm

dtm
if α = m ∈ N.

Let f̂ (or L(f)) denote the Laplace transform of f , we have the following facts for the
fractional derivatives

D̂αu(λ) = λαû(λ)−
n−1∑
k=0

(gn−α ∗ u)(k)(0)λn−1−k (2.2)

and

D̂α
t u(λ) = λαû(λ)−

n−1∑
k=0

u(k)(0)λα−1−k, (2.3)

where n = dαe and λ ∈ C. For α, β > 0 and z ∈ C, the generalized Mittag-Leffler function
is defined by

eα,β(z) :=
∞∑
k=0

zk

Γ(αk + β)
,

and its Laplace transform L satisfies

L(tβ−1eα,β(ρtα))(λ) =
λα−β

λα − ρ
, ρ ∈ C,Reλ > |ρ|1/α.
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The E-modified resolvent set of A, ρE(A), is defined by

ρE(A) := {λ ∈ C : (λE −A) : D(A) ∩D(E)→ X

is invertible and (λE −A)−1 ∈ B(X, [D(A) ∩D(E)])}.

The operator (λE −A)−1 is called the E-resolvent operator of A.
A strongly continuous family {T (t)}t≥0 ⊆ B(X) is said to be of type (M,ω) or expo-

nentially bounded if there exist constants M > 0 and ω ∈ R, such that ‖T (t)‖ ≤Meωt for
all t ≥ 0. Observe that, without loss of generality, we can assume ω > 0 in the sequel.

Definition 2.4 Let A : D(A) ⊆ X → X, E : D(E) ⊆ X → X be closed linear operators
defined on a Banach space X satisfying D(A) ∩D(E) 6= {0}. Let α, β > 0. We say that
the pair (A,E) is the generator of an (α, β)-resolvent family, if there exist ω ≥ 0 and
a strongly continuous function SEα,β : [0,∞) → B(X) such that SEα,β(t) is exponentially
bounded, {λα : Reλ > ω} ⊂ ρE(A), and for all x ∈ X,

λα−β (λαE −A)−1 x =

∫ ∞
0

e−λtSEα,β(t)xdt, Reλ > ω.

In this case, {SEα,β(t)}t≥0 is called the (α, β)-resolvent family generated by the pair (A,E).

Definition 2.5 The resolvent family {SEα,β(t)}t≥0 ⊂ B(X) is to be compact if for every

t > 0, the operator SEα,β(t) is a compact operator.

Next we give some results on the norm continuity and compactness of SEα,β(t) for given
α, β > 0. The proofs of these results can be conducted similarly to [36, Lemma 3.12,
Theorem 3.14, Propositions 3.16-3.17, Proposition 7.1], we can also refer to [13] for details.

Lemma 2.1 Let α > 0 and 1 < β ≤ 2. Suppose that {SEα,β(t)}t≥0 is the (α, β)-resolvent

family of type (M,ω) generated by (A,E). Then the function t 7→ SEα,β(t) is continuous
in B(X) for all t > 0.

Lemma 2.2 Suppose that the pair (A,E) generates an (α, β)-resolvent family {SEα,β(t)}t≥0
of type (M,ω). If γ > 0, then (A,E) also generates an (α, β + γ)-resolvent family of type(
M

ωγ
, ω

)
.

Lemma 2.3 Let α > 0, 1 < β ≤ 2 and {SEα,β(t)}t≥0 be an (α, β)-resolvent family of type
(M,ω) generated by (A,E). Then the following assertions are equivalent

i) SEα,β(t) is a compact operator for all t > 0.

ii) (µE −A)−1 is a compact operator for all µ > ω1/α.

Lemma 2.4 Let 1 < α ≤ 2 and {SEα,α(t)}t≥0 be an (α, α)-resolvent family of type (M,ω)
generated by (A,E). Then the following assertions are equivalent:
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i) SEα,α(t) is a compact operator for all t > 0.

ii) (µE −A)−1 is a compact operator for all µ > ω1/α.

Lemma 2.5 Let 1 < α < 2, and {SEα,1(t)}t≥0 be the (α, 1)-resolvent family of type (M,ω)

generated by (A,E). Suppose that SEα,1(t) is continuous in the uniform operator topology
for all t > 0. Then the following assertions are equivalent

i) SEα,1(t) is a compact operator for all t > 0.

ii) (µE −A)−1 is a compact operator for all µ > ω1/α.

Lemma 2.6 Let
3

2
< α < 2, and {SEα,α−1(t)}t≥0 be the (α, α−1)-resolvent family of type

(M,ω) generated by (A,E). Suppose that SEα,α−1(t) is continuous in the uniform operator
topology for all t > 0. Then the following assertions are equivalent

i) SEα,α−1(t) is a compact operator for all t > 0.

ii) (µE −A)−1 is a compact operator for all µ > ω1/α.

2.2 Basic results on multivalued analysis

In this subsection, we recall some basic definitions and lemmas on multivalued analysis.
The following facts can be found in monographs [9, 10, 18, 20, 24, 25, 39], papers [5, 7,
21, 37, 42, 45] and references therein.

Let (X, ‖ · ‖) be a Banach space. Denote Pcl(X) = {Y ∈ P(X) : Y closed}, Pb(X) =
{Y ∈ P(X) : Y bounded}, Pcp(X) = {Y ∈ P(X) : Y compact}, and Pcv(X) = {Y ∈ P(X) :
Y convex}. The notation L1(I,X) = {v : I → X|v is Bochner integrable} on a compact

interval I of R with the norm ‖v‖L1 =

∫
I
‖v(t)‖dt.

A multivalued map G : X → P(X) has convex (closed) values if G(x) is convex (closed)

for all x ∈ X. G is bounded on bounded sets if G(B) =
⋃
x∈B

G(x) is bounded in X for all

B ∈ Pb(X), i.e. sup
x∈B
{sup {‖y‖ : y ∈ G(x)}} <∞.

The multivalued map G : X → P(X) is called upper semicontinuous (u.s.c.) on X
if for each x0 ∈ X, the set G(x0) is a nonempty, closed subset of X, and if for each
open set N of X containing G(x0), there exists an open neighborhood N0 of x0 such that
G(N0) ⊆ N. G is called lower semi-continuous (l.s.c.) if the set {x ∈ X : G(x)

⋂
A } is

open for any open subset A ⊆ X. Also, G is said to be completely continuous if G(B) is
relatively compact for every B ∈ Pb(X). G has a fixed point if there exists x ∈ X such
that x ∈ G(x).

If the multivalued map G is completely continuous with nonempty compact values,
then G is u.s.c. if and only if G has a closed graph, i.e., xn → x∗, yn → y∗, yn ∈
G(xn) imply y∗ ∈ G(x∗).
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Definition 2.6 The multivalued map G : I ×X → P(X) is said to be L1-Carathéodory
if
(i) t 7→ G(t, x) is measurable for each x ∈ X;
(ii) u 7→ G(t, x) is u.s.c on X for almost all t ∈ I;
(iii) For each r > 0, there exists ϕr ∈ L1(I,R+) such that

‖G(t, x)‖P(X) := sup {‖v‖ : v ∈ G(t, x)} ≤ ϕr(t),

for all ‖x‖ ≤ r and for a.e. t ∈ I.

Definition 2.7 A space X is said to be contractible if and only if there exists a point
x0 ∈ X such that IX ∼ ψ (homotopically equivalent), where ψ : X → X is defined by
ψ(x) = x0 for each x ∈ X, and I denotes the identity operator.

We remark that a contractible space is arcwise connected.

Lemma 2.7 Let X be a Banach space. Let G : I×X → Pcp,cv(X) be an L1-Carathéodory
multivalued map with

SG,x =
{
f ∈ L1(I,X) : f(t) ∈ G(t, x(t)), for a.e. t ∈ I

}
6= ∅,

and let Γ be a linear continuous mapping from L1(I,X) to C(I,X), then the operator

Γ ◦ SG : C(I,X)→ Pcp,cv(C(I,X)), x 7→ (Γ ◦ SG)(x) := Γ(SG,x)

is a closed graph operator in C(I,X)× C(I,X).

Lemma 2.8 Let {Kn}n∈N ⊂ K ⊂ X be a subset of sequences where K is compact in the
separable Banach space X. Then

conv

(
lim sup
n→∞

Kn

)
=
⋂
n0>0

conv

 ⋃
n≥n0

Kn

.
Lemma 2.9 Let Ξ be a bounded and convex set in Banach space X. Υ : Ξ→ P(Ξ) is an
u.s.c., condensing multivalued map. If for every x ∈ Ξ, Υ(x) is a closed and convex set in
Ξ, then Υ has a fixed point in Ξ.

3 Properties of solution sets

In this section, we will prove our main results. We always assume that X is a separable
Banach space in the following.
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3.1 The Caputo case–Eq. (1.1)

Let us list the following assumptions.

(A1) The pair (A,E) generates the (α, 1)-resolvent family {SEα,1(t)}t≥0 of type (M,ω), the

operator (λαE −A)−1 is compact for all λα ∈ ρE(A) with λ > ω
1
α and {SEα,1(t)}t≥0

is norm continuous for all t > 0.

(A2) F : I ×X → Pcp,cv(X) satisfies the following conditions:
(a) For a.e. t ∈ I, F(t, ·) is u.s.c, and for each x ∈ X, F(·, x) is measurable. And
for each x ∈ C(I,X), SF ,x is nonempty;
(b) There exists a function φ ∈ L1(I,R+) such that

‖F(t, x)‖P ≤ φ(t)‖x‖,∀t ∈ I, x ∈ C(I,X).

Definition 3.1 For each u0, u1 ∈ X, a function u ∈ C(I,X) is said to be a mild solution
to Eq. (1.1) if there exists v ∈ L1(I,X) such that v(t) ∈ F(t, u(t)) a.e. on I and u verifies
the following integral equation

u(t) = SEα,1(t)u0 + SEα,2(t)u1 +

∫ t

0
SEα,α(t− s)v(s)ds.

Remark 3.1 (i) By the uniqueness of the Laplace transform, it is clear that the mild
solution to Eq. (1.1) can expressed as

u(t) = SEα,1(t)u0 + (g1 ∗ SEα,1)(t)u1 +

∫ t

0
(gα−1 ∗ SEα,1)(t− s)v(s)ds.

(ii) In view of Lemma 2.5, the condition (A1) implies {SEα,1(t)} is compact for all t > 0.

Theorem 3.1 If assumptions (A1)-(A2) and the following relation

Meωb

ωα−1
‖φ‖L1 < 1 (3.1)

hold, then Eq. (1.1) admits at least one mild solution on I.

Proof: Consider the operator N : C(I,X)→ P(C(I,X)) defined by

N(u) =
{
h ∈ C(I,X) : h(t) = SEα,1(t)u0 + (g1 ∗ SEα,1)(t)u1

+

∫ t

0
(gα−1 ∗ SEα,1)(t− s)v(s)ds, t ∈ I

}
,

where v ∈ SF ,u. Clearly, the fixed points of N are mild solutions to Eq. (1.1). We shall
show that N satisfies all the hypothesis of Lemma 2.9. The proof will be given in several
steps.
Step 1. There exists a positive number r such that N(Br) ⊆ Br, where Br = {u ∈
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C(I,X) : ‖u‖∞ ≤ r}. If it is not true, then for each positive number r, there exists a
function ur such that hr ∈ N(ur) but ‖hr(t)‖ > r for some t ∈ I,

hr(t) = SEα,1(t)u0 + (g1 ∗ SEα,1)(t)u1 +

∫ t

0
(gα−1 ∗ SEα,1)(t− s)vr(s)ds,

where vr ∈ SF ,ur . However, on the other hand, we have

r <

∥∥∥∥SEα,1(t)u0 + (g1 ∗ SEα,1)(t)u1 +

∫ t

0
(gα−1 ∗ SEα,1)(t− s)vr(s)ds

∥∥∥∥
≤ Meωt‖u0‖+

M

ω
eωt‖u1‖+

M

ωα−1

∫ t

0
eω(t−s)φ(s)‖u‖ds

≤ Meωb‖u0‖+
M

ω
eωb‖u1‖+

Mreωb

ωα−1

∫ t

0
e−ωsφ(s)ds

≤ Meωb‖u0‖+
M

ω
eωb‖u1‖+

Mreωb

ωα−1
‖φ‖L1 .

Dividing both sides by r and and taking the lower limit as r →∞, we obtain

1 ≤ Meωb

ωα−1
‖φ‖L1 ,

which contradicts the relation (3.1).
Step 2. N(u) is convex for each u ∈ C(I,X).

Indeed, if h1, h2 ∈ N(u), then there exist v1, v2 ∈ SF ,u such that for each t ∈ I, we
have

hi(t) = SEα,1(t)u0 + (g1 ∗ SEα,1)(t)u1 +

∫ t

0
(gα−1 ∗ SEα,1)(t− s)vi(s)ds, i = 1, 2.

Let θ ∈ (0, 1). Then for each t ∈ I, we have

(θh1 + (1− θ)h2)(t) = SEα,1(t)u0 + (g1 ∗ SEα,1)(t)u1

+

∫ t

0
(gα−1 ∗ SEα,1)(t− s)[θv1(s) + (1− θ)v2(s)]ds.

Since F has convex values and thus SF ,u is convex, θh1 + (1− θ)h2 ∈ N(u).
Step 3. N(u) is closed for each u ∈ C(I,X).

Let{hn}n≥0 ∈ N(u) such that hn → h in C(I,X). Then h ∈ C(I,X) and there exist
{vn} ∈ SF ,u such that for each t ∈ I

hn(t) = SEα,1(t)u0 + (g1 ∗ SEα,1)(t)u1 +

∫ t

0
(gα−1 ∗ SEα,1)(t− s)vn(s)ds.

Due to the fact that F has compact values, we may pass to a subsequence if necessary to
get that vn converges to v in L1(I,X) and hence v ∈ SF ,u. Then for each t ∈ I,

hn(t)→ h(t) = SEα,1(t)u0 + (g1 ∗ SEα,1)(t)u1 +

∫ t

0
(gα−1 ∗ SEα,1)(t− s)v(s)ds.
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Thus, h ∈ N(u).
Step 4. N is u.s.c.
(i) N(Br) is obviously bounded.
(ii) N(Br) is equicontinuous.

Indeed, let u ∈ Br, h ∈ N(u) and take t1, t2 ∈ I with t2 < t1. Then there exists a
selection v ∈ SF ,u such that

h(t) = SEα,1(t)u0 + (g1 ∗ SEα,1)(t)u1 +

∫ t

0
(gα−1 ∗ SEα,1)(t− s)v(s)ds, t ∈ I.

Then

‖h(t1)− h(t2)‖ ≤ ‖
(
SEα,1(t1)− SEα,1(t2)

)
u0‖+ ‖

(
(g1 ∗ SEα,1)(t1)− (g1 ∗ SEα,1)(t2)

)
u1‖

+

∫ t1

t2

‖(gα−1 ∗ SEα,1)(t1 − s)v(s)‖ds

+

∫ t2

0
‖
(
(gα−1 ∗ SEα,1)(t1 − s)− (gα−1 ∗ SEα,1)(t2 − s)

)
v(s)‖ds

:= I1 + I2 + I3 + I4.

For the term I1, we have

I1 ≤ ‖(SEα,1(t1)− SEα,1(t2))‖ ‖u0‖.

By the norm continuity of SEα,1(t) in assumption (A1), we get lim
t1→t2

I1 = 0.

For the term I2, we have (g1 ∗ SEα,1)(t) = SEα,2(t) for all t ≥ 0 due to the uniqueness of the

Laplace transform and Lemma 2.2. Meanwhile, the Lemma 2.1 implies that (g1 ∗ SEα,1)(t)
is continuous in B(X). Hence

I2 ≤ ‖(g1 ∗ Sα,1)(t1)− (g1 ∗ Sα,1)(t2)‖ ‖u0‖ → 0, as t1 → t2.

For the term I3, as t1 → t2, we have

I3 ≤
Meωb

ωα−1

∫ t1

t2

e−ωsφ(s)‖u(s)‖ds ≤ Mreωb

ωα−1

∫ t1

t2

φ(s)ds→ 0.

Finally for the term I4, we have

I4 ≤
∫ t2

0

∥∥[(gα−1 ∗ SEα,1)(t1 − s)− (gα−1 ∗ SEα,1)(t2 − s)
]∥∥ ‖v(s)‖ds

≤
∫ t2

0

∥∥[(gα−1 ∗ SEα,1)(t1 − s)− (gα−1 ∗ SEα,1)(t2 − s)
]∥∥φ(s)‖u(s)‖ds

≤ r

∫ t2

0

∥∥[(gα−1 ∗ SEα,1)(t1 − s)− (gα−1 ∗ SEα,1)(t2 − s)
]∥∥φ(s)ds.

Now taking into account that

‖(gα−1 ∗ SEα,1)(t1 − ·)− (gα−1 ∗ SEα,1)(t2 − ·)‖φ(s) ≤ 2
Meωb

ωα−1
φ(s) ∈ L1(I,R+),
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(gα−1 ∗ SEα,1)(t) = SEα,α(t) for all t ≥ 0 (see Lemma 2.2) and Sα,α(t) is norm continuous

(see Lemma 2.1), we have (gα−1 ∗ SEα,1)(t1 − s) − (gα−1 ∗ SEα,1)(t2 − s) → 0 in B(X) as
t1 → t2. By the Lebesgue’s dominated convergence theorem, we conclude lim

t1→t2
I4 = 0.

(iii) H(t) = {h(t) : h(t) ∈ N(Br)} is relatively compact in X.
Clearly, H(0) is relatively compact in X. For u ∈ Br and v ∈ SF ,u, we define

N2(u) =

{
m ∈ C(I,X) : m(t) =

∫ t

0
(gα−1 ∗ SEα,1)(t− s)v(s)ds, t ∈ I

}
,

Now, let 0 < t ≤ b and ε be a real number satisfying 0 < ε < t, we further introduce

mε(t) =

∫ t−ε

0
(gα−1 ∗ SEα,1)(t− s)v(s)ds, t ∈ I.

The assumption (A1) and Lemma 2.4 imply the compactness of (gα−1 ∗SEα,1)(t) = SEα,α(t)
for all t > 0. Therefore the set Kε := {(gα−1∗Sα,1)(t−s)v(s) : 0 ≤ s ≤ t−ε} is compact for

all ε > 0. Then conv(Kε) is also a compact set by Mazur Theorem. In view of Mean-Value
Theorem for the Bochner integrals, we have mε(t) ∈ tconv(Kε) for all t ∈ I. Thus the
set Mε(t) = {mε(t) : mε(t) ∈ N2(Br)} is relatively compact in X for every ε, 0 < ε < t.
Moreover, for m ∈ N(Br),

‖m(t)−mε(t)‖ ≤
∥∥∥∥∫ t

t−ε
(gα−1 ∗ SEα,1)(t− s)v(s)ds

∥∥∥∥
≤ Mreωb

ωα−1

∫ t

t−ε
e−ωsφ(s)ds.

Since s 7→ e−ωsφ(s) belong to L1([t− ε, t],R+), we conclude by the Lebesgue Dominated
Convergence Theorem that lim

ε→0
‖m(t) −mε(t)‖ = 0. Thus, let ε → 0, we see that there

are relatively compact sets arbitrarily Mε(t) close to the set M(t) = {m(t) : m(t) ∈
N2(Br)}. Hence, the set M(t) = {m(t) : m(t) ∈ N2(Br)} is relatively compact in X.
The compactness of SEα,1(t) and (g1 ∗ SEα,1)(t) = SEα,2(t) (see Lemma 2.5 and Lemma 2.3)
imply that H(t) = {h(t) : h(t) ∈ N(Br)} is relatively compact in X. As a consequence
of the above steps and the Arzela-Ascoli theorem, we can deduce that N is completely
continuous.
(iv) N has a closed graph.

Let un → u∗, hn ∈ N(un) and hn → h∗. We shall show that h∗ ∈ N(u∗). Now
hn ∈ N(un) implies that there exists vn ∈ SF ,un such that for each t ∈ I

hn(t) = SEα,1(t)u0 + (g1 ∗ SEα,1)(t)u1 +

∫ t

0
(gα−1 ∗ SEα,1)(t− s)vn(s)ds.

We need to prove that there exists v∗ ∈ SF ,u∗ such that for each t ∈ I

h∗(t) = SEα,1(t)u0 + (g1 ∗ SEα,1)(t)u1 +

∫ t

0
(gα−1 ∗ SEα,1)(t− s)v∗(s)ds.



12 Y.-K. Chang, R. Ponce, and X.-S Yang

Consider the linear continuous operator defined by

Υ : L1(I,X) → C(I,X),

v 7→ (Υv)(t) =

∫ t

0
(gα−1 ∗ SEα,1)(t− s)v(s)ds.

From Lemma 2.7 it follows that Υ ◦ SF is a closed graph operator. Moreover, we have

hn(t)− SEα,1(t)u0 − (g1 ∗ SEα,1)(t)u1 ∈ Υ(SF ,un).

Since un → u∗, it again follows from Lemma 2.7 that

h∗(t)− SEα,1(t)u0 − (g1 ∗ SEα,1)(t)u1 ∈ Υ(SF ,u∗).

Thus, there exists v∗ ∈ SF ,u∗ such that

h∗(t) = SEα,1(t)u0 + (g1 ∗ SEα,1)(t)u1 +

∫ t

0
(gα−1 ∗ SEα,1)(t− s)v∗(s)ds.

Therefore, N is completely continuous and u.s.c. By the fixed point theorem Lemma 2.9,
there exists a fixed point u(·) for N on Br . Thus, Eq. (1.1) admits a mild solution.

For u0, u1 ∈ X, define the following set

S(u0, u1) = {u ∈ C(I,X) : u is a mild solution of Eq. (1.1)} .

Theorem 3.2 Suppose X is a reflexive Banach space. If assumptions (A1)-(A2) and the
inequality (3.1) are satisfied, then the set S(u0, u1) is compact in C(I,X).

Proof: In view of Theorem 3.1, the set S(u0, u1) 6= ∅, and there exists r > 0 such that
for each u ∈ S(u0, u1), ‖u‖∞ ≤ r. Owing to N : C(I,X) → P(C(I,X)) is completely
continuous, the set N(S(u0, u1)) is relatively compact. Considering the definition of N ,
we have S(u0, u1) ⊂ N(S(u0, u1)). It remains to show that S(u0, u1) is closed.

Let un ∈ S(u0, u1) satisfy lim
n→∞

un = u. For each n, there exists vn ∈ SF ,un such that

un(t) = SEα,1(t)u0 + (g1 ∗ SEα,1)(t)u1 +

∫ t

0
(gα−1 ∗ SEα,1)(t− s)vn(s)ds.

Since F is L1-Carathéodory with closed values, its selection set SF ,u is closed and nonempty.
Considering the space X is reflexible, this selection set SF ,u is weakly relatively compact
due to [34, Theorem 6.4.6, Corollary 6.4.11], and hence sequentially weakly relatively com-
pact by Eberlein’s theorem (see [47]). Owing to (A2) and (3.1), ‖vn(t)‖ ≤ φ(t)r. As a
consequence, there exists a subsequence, still denoted by {vn}, which converges weakly
to some limit v(·) ∈ L1. According to Mazur Theorem, there exists a double sequence

{cn,k}n,k∈N such that ∀n ∈ N, ∃k0(n) ∈ N : cn,k = 0,∀k ≥ k0(n),
∞∑
k=n

cn,k = 1, ∀n ∈ N,
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and the sequence of convex combinations ṽn(·) =
∑∞

k=n cn,kv
k(·) converges strongly to

v(·) ∈ L1. By the facts that F takes convex values and Lemma 2.8, we get for a.e. t ∈ I

v(t) ∈
⋂
n≥1
{ṽk(t), k ≥ n} ⊂

⋂
n≥1

conv
{
vk(t), k ≥ n

}

⊂
⋂
n≥1

conv

⋃
k≥n
F
(
t, uk(t)

) = conv

(
lim sup
k→∞

F
(
t, uk(t)

))
. (3.2)

Note that F is u.s.c. with compact values, by [20, Lemma 6.48, Chapter 6], we obtain for
a.e. t ∈ I

lim sup
n→∞

F (t, un(t)) = F(t, u(t)).

This together with (3.2) implies that v(t) ∈ convF(t, u(t)). Since F has closed convex
values, we have v(t) ∈ F(t, u(t)). Let

ũ(t) = SEα,1(t)u0 + (g1 ∗ SEα,1)(t)u1 +

∫ t

0
(gα−1 ∗ SEα,1)(t− s)v(s)ds, t ∈ I.

From the properties of resolvent operators, we have

‖un(t)− ũ(t)‖ ≤
∫ t

0

∥∥(gα−1 ∗ SEα,1)(t− s)
∥∥ ‖vn(s)− v(s)‖ds

≤ Meωb

ωα−1

∫ t

0
e−ωs‖vn(s)− v(s)‖ds

≤ Meωb

ωα−1

∫ b

0
‖vn(s)− v(s)‖ds.

Thus, by the Lebesgue dominated convergence theorem we obtain

‖un − ũ‖∞ ≤
Meωb

ωα−1

∫ b

0
‖vn(s)− v(s)‖ds→ 0, as n→∞.

Therefore, u(t) = ũ(t), t ∈ I, which proves S(·, ·) ∈ Pcp(C(I,X)).

Theorem 3.3 Let X be a reflexive Banach space. Suppose that conditions (A1)-(A2)
and (3.1) are satisfied. Let F : I ×X → Pcp,cv(X) be an mLL-selectionable multivalued
map. Then for each u0, u1 ∈ X, the solution set S(u0, u1) is contractible, and thus it is
arcwise connected.

Proof: Let f ⊂ F be a measurable, locally Lipschitz selection and consider the following
single valued equation {

Dα
t (Eu)(t) = Au(t) + f(t, u(t)),
Eu(0) = u0, (Eu)′(0) = u1.

(3.3)
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Denote u(u0, u1) is the unique mild solution of Eq. (3.3). Taking into account conditions
(A2) and (3.1), this solution exists on the whole interval I. Now we define the homotopy
h : S(u0, u1)× [0, 1]→ S(u0, u1) as following

h(u, τ)(t) =

{
u(t), for 0 ≤ t ≤ τb,
u(t), for τb < t ≤ b.

Particularly,

h(u, τ) =

{
u, for τ = 1,
u, for τ = 0.

Let {(un, τn)} ⊂ S(u0, u1)× [0, 1] be such that (un, τn)→ (u, τ) as n→∞, we shall show
h is a continuous homotopy, i.e. h(un, τn)→ h(u, τ) as n→∞ with

h(un, τn)(t) =

{
un(t), for 0 ≤ t ≤ τnb,
u(t), for τ b < t ≤ b.

Next we divide the proof into different cases:
Case I. If lim

n→∞
τn = 0, then from definition of h we have

h(u, 0)(t) = u(t), t ∈ I.

Thus,

‖h(un, τn)− h(u, τ)‖ ≤ ‖un − u‖ = sup
t∈I
{‖un(t)− u(t)‖},

which approaches 0 as n→∞. The case for limn→∞ τ
n = 1 is treated similarly.

Case II. If lim
n→∞

τn 6= 0 and lim
n→∞

τn = τ < 1, then the following appears:

(1) If t ∈ [0, τb], then, from the fact un ∈ S(u0, u1) there exists vn ∈ SF ,un such that for
t ∈ [0, τb]

un(t) = SEα,1(t)u0 + (g1 ∗ SEα,1)(t)u1 +

∫ t

0
(gα−1 ∗ SEα,1)(t− s)vn(s)ds.

Arguing as in the proof of Theorem 3.2, we can obtain that there exists a subsequence,
still denoted by {vn}, which converges weakly to some limit v(·) ∈ L1, and v(t) ∈
convF(t, u(t)). Since F has closed convex values, we have v(t) ∈ F(t, u(t)). By the
Lebesgue dominated convergence theorem, we obtain that for t ∈ [0, τb]

u(t) = SEα,1(t)u0 + (g1 ∗ SEα,1)(t)u1 +

∫ t

0
(gα−1 ∗ SEα,1)(t− s)v(s)ds.

(2) If t ∈ (τb, b], then

h(un, τn)(t) = h(u, τ)(t) = u(t).

Hence, ‖h(un, τn)(t)− h(u, τ)(t)‖ → 0 as n→∞.
As a consequence of the above cases, we see that h is continuous, and thus S(u0, u1)

is contractible to the point u(u0, u1).
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3.2 The Riemann-Liouville case–Eq. (1.2)

For Eq. (1.2), we need the following hypotheses.

(H1) Let
3

2
< α < 2, and the pair (A,E) generates the (α, α − 1)-resolvent family

{SEα,α−1(t)}t≥0 of type (M,ω), the operator (λαE − A)−1 is compact for all λα ∈ ρE(A)

with λ > ω
1
α and {SEα,α−1(t)}t≥0 is norm continuous for all t > 0.

Definition 3.2 For each u0, u1 ∈ X, a function u ∈ C(I,X) is said to be a mild solution
to Eq. (1.2) if there exists v ∈ L1(I,X) such that v(t) ∈ F(t, u(t)) a.e. on I and u verifies
the following integral equation

u(t) = SEα,α−1(t)u0 + SEα,α(t)u1 +

∫ t

0
SEα,α(t− s)v(s)ds.

Remark 3.2 (i) By the uniqueness of the Laplace transform, it is clear that the mild
solution to Eq. (1.2) can expressed as

u(t) = SEα,α−1(t)u0 + (g1 ∗ SEα,α−1)(t)u1 +

∫ t

0
(g1 ∗ SEα,α−1)(t− s)v(s)ds.

(ii) In view of Lemma 2.6, the condition (H1) implies {SEα,α−1(t)} is compact for all t > 0.

Theorem 3.4 If assumptions (H1), (A2) and the following relation

Meωb

ω
‖φ‖L1 < 1 (3.4)

hold, then Eq. (1.2) admits at least one mild solution on I.

Proof: We define the operator N : C(I,X)→ P(C(I,X)) as

N(u) =
{
h ∈ C(I,X) : h(t) = SEα,α−1(t)u0 + (g1 ∗ SEα,α−1)(t)u1

+

∫ t

0
(g1 ∗ SEα,α−1)(t− s)v(s)ds, v ∈ SF ,u, t ∈ I

}
.

The remainder can be conducted similarly to Theorem 3.1.
We can conclude that there exists a positive number r such that N(Br) ⊆ Br, and

N(u) is convex, closed for each u ∈ C(I,X). Because SEα,α−1(t) is norm continuous for

all t > 0 (see (H1)) and t 7→ (g1 ∗ SEα,α−1)(t) is also norm continuous by Lemma 2.1, we
can similarly prove N(Br) is equicontinuous. The Lemma 2.3 implies the compactness of
(g1 ∗ SEα,α−1)(t) = SEα,α(t) for all t > 0 and therefore the set {

∫ t
0 (g1 ∗ SEα,α−1)(t− s)v(s)ds :

v ∈ SF ,u, u ∈ Br} is relatively compact for all t ∈ I (as in the proof of Theorem 3.1). On
the other hand, from (H1) and Lemma 2.6, we get the compactness of SEα,α−1(t) for all
t > 0. Thus, we show the set H(t) = {h(t) : h(t) ∈ N(Br)} is relatively compact in X.
By the Arzela-Ascoli theorem, we can deduce that N is completely continuous. We can
also show N has a closed graph (see the proof of Theorem 3.1). In the final, we see N
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is u.s.c. and satisfies Lemma 2.9, there exists a fixed point u(·) for N on Br . Thus, Eq.
(1.2) admits a mild solution.

For u0, u1 ∈ X, define the following set

S(u0, u1) = {u ∈ C(I,X) : u is a mild solution of Eq. (1.2)} .

The following results involved in Eq. (1.2) can be proved the same as Theorems 3.2-3.3.

Theorem 3.5 Suppose X is a reflexive Banach space. If assumptions (H1), (A2) and the
inequality (3.4) are satisfied, then the set S(u0, u1) is compact in C(I,X).

Theorem 3.6 Let X be a reflexive Banach space. Suppose that conditions (H1), (A2)
and (3.4) are satisfied. Let F : I ×X → Pcp,cv(X) be an mLL-selectionable multivalued
map. Then for each u0, u1 ∈ X, the solution set S(u0, u1) is contractible, and thus it is
arcwise connected.

4 Applications

As applications of the above results, we consider the following semilinear equation{
Dα
t (Eu)(t) ∈ Au(t) + J2−αF(t, u(t)), t ∈ I,

Eu(0) = u0, (Eu)′(0) = u1,
(4.1)

where u0, u1 ∈ X, X is a separable Banach space, 1 < α < 2, J2−α denotes the Riemann-
Liouville fractional integral operator. Assume the pair (A,E) generates the (α, 1)-resolvent
family {SEα,1(t)}t≥0. The mild solution to Eq. (4.1) is given by

u(t) = SEα,1(t)u0 + (g1 ∗ SEα,1)(t)u1 +

∫ t

0
(g1 ∗ SEα,1)(t− s)v(s)ds, v ∈ SF ,u, t ∈ I.

In view of Theorems 3.1-3.3, we have the following result for Eq. (4.1).

Lemma 4.1 Let X be a reflexive Banach space. Suppose that conditions (A1)-(A2) and
relation and (3.4) hold. Let F : I ×X → Pcp,cv(X) be an mLL-selectionable multivalued
map. Then for each u0, u1 ∈ X, the solution set S(u0, u1) of Eq. (4.1) is nonempty,
compact, contractible, and thus arcwise connected.

On the other hand, for the semilinear equation in Riemann-Liouville fractional derivative{
Dα(Eu)(t) ∈ Au(t) + J2−αF(t, u(t)), t ∈ I,
(E(g2−α ∗ u))(0) = u0, (E(g2−α ∗ u))′(0) = u1,

(4.2)

where u0, u1 ∈ X, X is a separable Banach space,
3

2
< α < 2. Let the pair (A,E) generate

the (α, α− 1)-resolvent family {SEα,α−1(t)}t≥0, then the mild solution to Eq. (4.2) can be
written as

u(t) = SEα,α−1(t)u0 + (g1 ∗ SEα,α−1)(t)u1 +

∫ t

0
(g3−α ∗ SEα,α−1)(t− s)v(s)ds, v ∈ SF ,u, t ∈ I.

Based upon Theorems 3.4-3.6, we can obtain the following result for Eq. (4.2).
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Lemma 4.2 Let X be a reflexive Banach space. Suppose that conditions (H1), (A2) hold

and
Meωb

ω3−α ‖φ‖L1 < 1. Let F : I × X → Pcp,cv(X) be an mLL-selectionable multivalued

map. Then for each u0, u1 ∈ X, the solution set S(u0, u1) of Eq. (4.2) is nonempty,
compact, contractible, and thus arcwise connected.

Example 4.1 In the following, we end this paper with a simple example. Take X =
L2[0, π], (t, x) ∈ [0, 1]× [0, π], consider the following problem

Dα
t [u(t, x)− uxx(t, x)] = −uxx(t, x) + f(t, u(t, x)),

u(t, 0) = u(t, π) = 0, t ∈ [0, 1],
u(0, x) = u0(x), x ∈ [0, π],
ut(0, x) = u1(x), x ∈ [0, π],

(4.3)

where 1 < α < 2, f(t, u(t, x)) :=
e−tu(t, x)

(Cαπ2 + t)(1 + u(t, x))
, Cα > 0 will be defined later.

Define the the operators A : D(A) ⊂ X → X and E : D(E) ⊂ X → X respectively by Au = −∂
2u

∂x2
= −uxx,

Eu = u− uxx,

with the domain D(E) = D(A) := {u ∈ X : u ∈ H2([0, π]), u(t, 0) = u(t, π) = 0}.
It is known that A has discrete spectrum with eigenvalues of the form n2, n ∈ N, and
the corresponding normalized eigenvectors are given by un(s) := ( 2

π )
1
2 sin(ns). Moreover,

{un : n ∈ N} is an orthonormal basis for X, and thus A and E can be written as (see [31])
Au =

∞∑
n=1

n2〈u, un〉un, u ∈ D(A),

Eu =
∞∑
n=1

(1 + n2)〈u, un〉un, u ∈ D(E).

Thus, for any u ∈ X and β = 1, we have

λα−1(λαE −A)−1u =
∞∑
n=1

λα−1

λα(1 + n2) + n2
〈u, un〉un

=

∞∑
n=1

1

n2 + 1

λα−1

λα + n2

n2+1

〈u, un〉un (4.4)

=

∫ ∞
0

e−λt
∞∑
n=1

1

n2 + 1
hnα,1(t)dt〈u, un〉un,

where the function hnα,1(t) := eα,1

(
− n2

n2+1
tα
)

satisfying ĥnα,1(λ) =
λα−1

λα + n2

n2+1

for all λ > 0.

Therefore, the (α, 1)-resolvent family {SEα,1(t)}t≥0 generated by the pair (A,E) can be
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given by

SEα,1(t)u =
∞∑
n=1

1

n2 + 1
hnα,1(t)〈u, un〉un, for all u ∈ X.

From the continuity of eα,1(·) and the convergence of series
∞∑
n=1

1

n2 + 1
, we can conclude

that SEα,1(t) is norm continuous. From (4.4) and the fact lim
n→∞

1

n2 + 1

λα−1

λα + n2

n2+1

= 0 for all

λ > 0, we can also deduce that (λαE − A)−1 is a compact operator on the Hilbert space
X. Furthermore, for each u ∈ X we have (see[17])

‖SEα,1(t)u‖ ≤
∞∑
n=1

1

n2 + 1
|hnα,1(t)|‖u‖ ≤ Cα

∞∑
n=1

1

n2 + 1

1

1 + n2

n2+1
tα
‖u‖

≤ Cα

∞∑
n=1

1

n2
‖u‖ = Cα

π2

6
‖u‖,

where Cα is a positive constant given in [17, Theorem 1]. Therefore, SEα,1(t) is of type(
Cα

π2

6
, 1

)
, i.e. M = Cα

π2

6
and ω = 1.

Let F =: {f}, I := [0, 1]. We note that Eq. (4.3) can be rewritten in the abstract

form (1.1). We also observe that in this case φ(t) :=
e−t

Cαπ2 + t
, ‖φ‖L1 ≤

1

Cαπ2
, b = ω = 1

and thus
Meωb

ωα−1
‖φ‖L1 :=

e

6
< 1. According to Theorems 3.1-3.3, the solution set of Eq.

(4.3) is nonempty, compact, contractible and arcwise connected.

5 Conclusions.

In this paper, we treats properties of solution sets for Sobolev type fractional differential
inclusions Eq. (1.1) and Eq. (1.2) with the order 1 < α < 2 respectively. We show that
the solution sets are nonempty, compact, contractible and thus arcwise connected under
some suitable conditions. Our main results are directly established through properties
of resolvent operators generated by the operator pair (A,E) instead of subordination
formulas. In particular, the existence or compactness of an operator E−1 is not necessarily
needed here. Some applications are also presented to illustrate obtained results.
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