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Abstract. Let A be a closed linear operator defined on a complex Banach space X. We show a novel

representation, using strongly continuous families of bounded operators defined on N0, for the unique
solution of the following time-stepping scheme

(∗)

 C∇αun = Aun + fn, n ≥ 2;

u0 = u0;
u1 = u1;

as well as its convergence with rates to the solution of the abstract fractional Cauchy problem

(∗)


∂αt u(t) = Au(t) + f(t), t > 0;

u(0) = u0;
u′(0) = u1;

in the superdiffusive case 1 < α < 2. Here, C∇αun is the Caputo-like fractional difference operator of

order α.

1. Introduction4

The theory of one parameter C0-semigroups of linear operators has many different applications in5

mathematical physics, probability theory, engineering, biological processes, applications in the theory of6

linear and nonlinear partial differential equations, problems in control theory and dynamical systems, and7

in some methods for numerical analysis, among others. Typically, in these applications, the phenomena8

can be described as an abstract evolution equation of first order9

(1.1) u′(t) = Au(t) + F (t), t > 0,

subject to the initial condition u(0) = u0. Here A is a closed linear operator (typically A corresponds
to the Laplacian), F is a linear or nonlinear term and u0 belongs to a Banach space. If A generates a
C0-semigroup of linear operators {T (t)}t≥0, then the solution u to problem (1.1) can be written as the
well known variation of parameters formula

u(t) = T (t)u0 +

∫ t

0

T (t− s)F (s)ds,

see for instance [2] and [11]. This last formula, can be used (according to the properties of T (t)) to study10

the solution u of the problem (1.1), including its asymptotic behavior, its regularity properties or some11

numerical treatments to find an approximation of u. However, there are many interesting phenomena,12

including for example, problems in viscoelasticity, heat conduction in materials with memory, geological13

exploration, problems involving linear viscoelastic rods, beams or plates and many others, where the14

model of a first order evolution equation is not completely satisfactory. Instead, as has been widely15

reported in the last years, fractional differential equations (FDEs) provide a more natural framework16

to describe these phenomena. Unfortunately, the theory of C0-semigroups can no longer be used to17

describe the evolution of FDEs. Therefore, the theory of one-parameter resolvent families of operators18

has become a powerful tool to describe the dynamics of the solution for this class of fractional models.19

See for instance, [12, 17, 24, 28] and references therein.20

Resolvent families of operators, which can be considered as an extension of the theory of semigroups,21

have been marked by an increased interest, mainly due to its applications not only to the study of linear22

and nonlinear FDEs but also integro–differential equations. As we previously intimated, these families23
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of operators can be used to write the solution to FDEs as a variation of parameters formula. More1

specifically, the solution to the superdiffusion equation2

(1.2)

 ∂αt u(t) = Au(t) + f(t), t ≥ 0,
u(0) = u0,
u′(0) = u1,

where 1 < α ≤ 2, f represents a loading term, A is a closed linear operator defined in a Banach space X,3

u0, u1 ∈ X, and, ∂αt denotes the Caputo fractional derivative of u, can be written as4

(1.3) u(t) = Sα,1(t)u0 + (g1 ∗ Sα,1)(t)u1 + (gα−1 ∗ Sα,1 ∗ f)(t), t ≥ 0,

where {Sα,1(t)}t≥0 is the resolvent family generated by A (see [24, Chapter 3]) and for β > 0 the function5

gβ(t) is defined by gβ(t) := tβ−1/Γ(β) (here Γ(·) denotes the Gamma function).6

The problem (1.2) has been widely studied in the last years, since it can adequately capture the7

dynamics of anomalous processes, as for instance in the modeling of mechanical wave propagation in8

viscoelastic media. See for instance [3, 4, 5, 6, 12, 21, 20, 33] and references therein. However, for various9

practical purposes, it is not only useful but necessary to study its discrete version.10

The existence of discrete solutions to abstract fractional difference equations in the form of

C∇αun = Aun + fn, n ∈ N,

where A is a closed linear operator, fn is a given sequence and C∇αun is a discrete counterpart of the11

Caputo fractional derivative, has been marked in the last decades by a great deal of interest. See for12

instance [7, 8, 9, 14, 15, 18, 23, 26, 29, 32] for some developments. Note that the meaning of the fractional13

difference operator C∇αun can vary, depending on the time discretization method used [18].14

Recently, in [30] the author analytically studies the time discretization scheme for the model (1.2) based
on the backward Euler method in the case 0 < α < 1. In [30] it was shown that if A is the generator
of a resolvent family {Sα,α(t)}t≥0, then the analytical solution of the scheme can be represented in
terms of certain resolvent families of operators defined on N0 by a suitable transformation of the family
{Sα,α(t)}t≥0 using the probability mass function, with variance t/τ defined by

ρτn(t) := e−
t
τ

(
t

τ

)n
1

τn!
, t ≥ 0, n ∈ N0,

for a positive step size τ > 0. In addition, error estimates were provided in case A is a sectorial operator.15

However, the extension of the results in [30] for the important case of superdifussion, i.e. 1 < α < 2,16

was left open.17

The objective of this work is to answer this problem. We provide a suitable framework to apply the18

theory of resolvent families of operators in order to find necessary conditions on A to have an analytical19

representation of the solutions of the following scheme20

(∗)

 C∇αun = Aun + fn, n ≥ 2,
u0 = u0,
u1 = u1,

(1.4)

where A is a closed linear operator defined in a Banach space X, the initial conditions u0, u1 belong
to X, 1 < α < 2, and the sequence fn is a given vector-valued sequence. Here, C∇αun represents a
discretization of the Caputo fractional derivative ∂αt u(t) at time t = τn, which is defined by

C∇αun :=

n∑
j=2

k2−α
τ (n− j) (uj+1 − 2uj + uj−1)

τ2
,

where, un :=
∫∞

0
ρτn(t)u(t)dt, and kβτ (n) := τβΓ(β+n)

Γ(β)Γ(n+1) for all n ∈ N0 and β > 0. More concretely, we show

that if A is the generator of a resolvent family {Sα,1(t)}t≥0, then the solution to (1.4) can be written as
(see Theorem 3.16 below)

un = Snα,1u0 + τ(g1 ? Sα,1)nu1 + τ2(gα−1 ? Sα,1 ? f)n,

where Snα,1 is defined as

Snα,1x :=

∫ ∞
0

ρτn(t)Sα,1(t)xdt,
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for all x ∈ X and for β > 0,

(gβ ? Sα,1)nx :=

n∑
j=0

kβτ (n− j)Sjα,1x, n ∈ N0.

We also analyze the difference ‖u(tn)− un‖, where u is the solution to (1.2) and un solves the difference
equation (1.4) and we show that, given suitable conditions on α, there exists a constant C = C(T ) > 0
(independent of the solution, the data and the step size) such that, for 0 < tn ≤ T, there holds

‖u(tn)− un‖ ≤ Cτtαε−1
n (‖Aεu0‖+ ‖Aεu1‖+ ‖Aεf‖) ,

where 0 < ε < 1 satisfies αε < 1 and u0, u1 and f(t) belong to the domain of Aε. Of course, this result1

shows, in particular, that if τ → 0 then ‖u(tn)− un‖ → 0.2

The paper is organized as follows. In Section 2 we give preliminaries on resolvent families, sectorial3

operators and continuous and discrete fractional calculus. Section 3 treats the existence of solutions4

to the Caputo fractional difference equation (1.4). Here, given a time step size τ > 0, we study the5

connection between the continuous and the discrete resolvent families {Sα,1(t)}t≥0 and {Snα,1}n∈N0 , as6

well as, its consequences on the representation of solutions to (1.4). In Section 4 we study error estimates7

for ‖u(tn)− un‖ and we give sufficient conditions on the initial data in order to obtain ‖u(tn)− un‖ → 08

as τ → 0. Finally, in Section 5 we give some numerical experiments to illustrate the theoretical results.9

2. Resolvent families, continuous and discrete fractional calculus10

2.1. Resolvent families. Given a Banach space X ≡ (X, ‖ · ‖), B(X) denotes the Banach space of all
bounded and linear operators from X into X. For a closed linear operator A defined on X, its resolvent
set is denoted by ρ(A), the resolvent operator is defined by R(λ,A) = (λ − A)−1 for all λ ∈ ρ(A) and
σ(A) denotes the spectrum of A. A family of operators {S(t)}t≥0 ⊂ B(X) is called exponentially bounded
if there exist real numbers M > 0 and ω ∈ R such that

‖S(t)‖ ≤Meωt, t ≥ 0.

We observe that if {S(t)}t≥0 ⊂ B(X) is exponentially bounded, then the Laplace transform of S(t)

Ŝ(λ)x :=

∫ ∞
0

e−λtS(t)xdt,

exists for all Reλ > ω.11

In the following we recast the main ingredients of operator theory that we will use. For an up to date12

review of the following concepts and their interplay with fractional differential equations in the continuous13

setting, we refer the reader to the recent reference [24].14

Definition 2.1. Let 1 ≤ α ≤ 2 and 0 < β ≤ 2 be given. A closed linear operator A defined in a Banach
space X is called the generator of an (α, β)-resolvent family if there exist ω ≥ 0 and a strongly continuous
and exponentially bounded function Sα,β : R+ → B(X) such that {λα : Reλ > ω} ⊂ ρ(A) and

λα−β(λα −A)−1x =

∫ ∞
0

e−λtSα,β(t)xdt,

for all Reλ > ω and x ∈ X. The family {Sα,β(t)} is also called the (α, β)-resolvent family generated by15

A.16

Given µ > 0, we define gµ(t) := tµ−1

Γ(µ) for all t > 0, where Γ denotes the Gamma function. If we17

take a(t) := gα(t) and k(t) := gβ(t), where α, β > 0 then the family {Sα,β(t)} corresponds to an (a, k)-18

regularized family according to [22]. Moreover, from [22, Lemma 2.2 and Proposition 2.5] we deduce the19

following properties.20

Proposition 2.2. Let 1 ≤ β ≤ α ≤ 2 be given. Let {Sα,β(t)}t≥0 ⊂ B(X) be the (α, β)-resolvent family21

generated by A. Then,22

(1) Sα,β(0) = I, where I denotes the identity operator in X.23

(2) For all x ∈ D(A) and t ≥ 0 we have Sα,β(t)x ∈ D(A) and ASα,β(t)x = Sα,β(t)Ax.24

(3) For x ∈ X and t ≥ 0 we have
∫ t

0
gα(t− s)Sα,β(s)xds ∈ D(A) and25

(2.5) Sα,β(t)x = gβ(t)x+A

∫ t

0

gα(t− s)Sα,β(s)xds.
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Moreover, the function t 7→ Sα,β(t) satisfies the following functional equation (see [1, 20, 25]):1

Sα,β(s)(gα ∗ Sα,β)(t)− (gα ∗ Sα,β)(s)Sα,β(s) = gβ(s)(gα ∗ Sα,β)(t)− gβ(t)(gα ∗ Sα,β)(s),

for all t, s ≥ 0. If an operator A with domain D(A) generates a resolvent family Sα,β(t), then for all2

x ∈ D(A) we have3

Ax = lim
t→0+

Sα,β(t)x− gβ(t)x

gα+β(t)
.

For example, we notice that if α = β = 1, then S1,1(t) corresponds to a C0-semigroup, and if α = 2, β = 1,4

then S2,1(t) is a strongly continuous cosine family of operators. Analogously, if α = β = 2, then S2,2(t)5

is a strongly continuous sine family. See [2] for further details. If α > 0 and β = 1, then Sα,1(t) is the6

solution operator introduced by Bazhlekova in [3, Definition 2.3].7

Definition 2.3. We say that a function v : R+ → X is a strong solution to equation (1.2) if v(t) ∈ D(A)8

for all t ≥ 0 and satisfies (1.2).9

Taking formally the Laplace transform in (1.2) we obtain

(λα −A)û(λ) = λα−1u0 + λα−2u1 + f̂(λ),

for all Re(λ) > 0. If λα ∈ ρ(A), then10

(2.6) û(λ) = λα−1(λα −A)−1u0 + λα−2(λα −A)−1u1 + (λα −A)−1f̂(λ),

where u0, u1 ∈ X. By the uniqueness of the Laplace transform and Definition 2.1, we obtain that if A11

generates a resolvent family {Sα,1(t)}t≥0, then for all λα ∈ ρ(A) we have12

(1) λα−1(λα −A)−1 = Ŝα,1(λ),13

(2) λα−2(λα −A)−1 = Ŝα,2(λ)⇐⇒ λα−2(λα −A)−1 = 1
λλ

α−1(λα −A)−1 = ĝ1(λ)Ŝα,1(λ), and14

(3) (λα −A)−1 = Ŝα,α(λ)⇐⇒ (λα −A)−1 = 1
λα−1λ

α−1(λα −A)−1 = ĝα−1(λ)Ŝα,1(λ).15

The identity (2.6), the relations (1)-(2) and the uniqueness of the Laplace transform imply that the16

unique solution to (1.2) is given by17

(2.7) u(t) = Sα,1(t)u0 + (g1 ∗ Sα,1)(t)u1 + (gα−1 ∗ Sα,1 ∗ f)(t), t ≥ 0.

We notice that, since u0, u1 merely belong to X, we can not prove (by Proposition 2.2) that the function18

u(t) defined by (2.7) belongs to D(A) in order to obtain a strong solution. Thus, we need to introduce19

the following definition of solution.20

Definition 2.4. Let A be the generator of a resolvent family {Sα,1(t)}t≥0. We say that a function21

u : R+ → X is a mild solution to equation (1.2) if u satisfies (2.7) for all t ≥ 0.22

We recall that a closed linear operator A : D(A) ⊂ X → X is said to be sectorial of angle θ if there
are constants ω ∈ R, M > 0 and θ ∈ (π/2, π) such that ρ(A) ⊃ Σθ,ω := {z ∈ C : z 6= ω : | arg(z−ω)| < θ}
and

‖(z −A)−1‖ ≤ M

|z − ω|
for all z ∈ Σθ,ω.

In this case, we write A ∈ Sect(θ, ω,M). We notice that we may assume, without lost of generality, that23

ω = 0. In fact, otherwise we can take the operator A− ωI, which is also sectorial. In that case, we write24

A ∈ Sect(θ,M) and we denote the sector Σθ,0 as Σθ. More details and further information on sectorial25

operators can be found in [11, 16].26

For a given linear and closed operator A whose resolvent set contains the semi real axis (−∞, 0] and27

0 ≤ ε ≤ 1, Xε will denote the domain of the fractional power Aε, that is Xε := D(Aε) endowed with28

the norm ‖x‖ε := ‖Aεx‖ (see for example the monograph [27]). Examples of such operators are sectorial29

operators with ω ≥ 0. It is a well known fact that if 0 < ε < 1, and x ∈ D(A), then there exists a constant30

κ ≡ κε > 0 such that (see [27])31

‖Aεx‖ ≤ κ‖Ax‖ε‖x‖1−ε.(2.8)
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2.2. Continuous and discrete fractional calculus. For α > 0, let m = dαe be the smallest integer
m greater than or equal to α. Let f : R+ → X be a Cm-differentiable function. The Caputo fractional
derivative of order α is defined by

∂αt f(t) :=

∫ t

0

gm−α(t− s)f (m)(s)ds.

An easy computation shows that if α = m ∈ N, then ∂mt f = dmf
dtm . Moreover, if 1 < α < 2, then the1

Laplace transform of ∂αt f verifies ∂̂αt f(λ) = λαf̂(λ) − λα−1f(0) − λα−2f ′(0). More details on fractional2

calculus can be found in [28].3

The set of non-negative integer numbers is denoted by N0 and the non-negative real numbers by R+
0 .

Define pn(t) := tn

n! e
−t, n ∈ N0. We notice that pn(t) ≥ 0 for all t ≥ 0, n ∈ N0, and∫ ∞

0

pn(t)dt = 1, for all n ∈ N0.

Take τ > 0 fixed and n ∈ N0, and define the corresponding approximation to the identity ρτn by

ρτn(t) :=
1

τ
pn(

t

τ
) = e−

t
τ

(
t

τ

)n
1

τn!
.

Given a bounded and locally integrable function u : R+
0 → X, we define the vector-valued sequence (un)n4

by5

(2.9) un :=

∫ ∞
0

ρτn(t)u(t)dt, n ∈ N0.

It is well known that for each f ∈ L1(R) we have f ∗ρτn → f as τ → 0 in the L1-norm. However, pointwise6

convergence cannot be assured a priori. One of our main results shows that un is an approximation of7

u(tn), where tn is defined by tn = nτ.8

Remark 2.5. A calculation shows that

un = P(uτ )(n),

where uτ (t) := u(τt) and P denotes the Poisson transform [23], which is defined for a vector valued
function f : R+ → X by

P(f)(n) :=

∫ ∞
0

pn(t)f(t)dt.

The space of all vector-valued functions v : R+
0 → X is denoted by F(R+

0 ;X). The backward Euler
operator ∇τ : F(R+

0 ;X)→ F(R+
0 ;X) is defined by

∇τvn :=
vn − vn−1

τ
, n ∈ N.

For m ≥ 2, ∇mτ : F(R+
0 ;X)→ F(R+

0 ;X) is defined recursively as9

(∇mτ v)n := ∇m−1
τ (∇τv)n, n ≥ m(2.10)

where ∇1
τ ≡ ∇τ and ∇0

τ is the identity operator. For n < m, (∇mτ v)n is defined as 0. We call to ∇mτ the
backward difference operator of order m. An easy computation shows that if v ∈ F(R+

0 ;X) then

(∇mτ v)n =
1

τm

m∑
j=0

(
m

j

)
(−1)jvn−j , n ∈ N.

As in [15, Chapter 1, Section 1.5] we define (by convention)

−k∑
j=0

vj = 0

for all k ∈ N.10

Now, we introduce the following sequence11

(2.11) kατ (n) := τ

∫ ∞
0

ρτn(t)gα(t)dt, n ∈ N0, α > 0.
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An easy computation shows that1

(2.12) kατ (n) =
ταΓ(α+ n)

Γ(α)Γ(n+ 1)
= τ

Γ(α+ n)

Γ(n+ 1)
gα(τ), n ∈ N0, α > 0.

Remark 2.6. It is easy to check using (2.11) and a change of variables that

kατ (n) = ταkα(n),

where kα(n) ≡ kα1 (n) in the notation introduced in [23].2

Definition 2.7. [30] Let α > 0. The αth−fractional sum of v ∈ F(N0;X) is defined by3

(2.13) (∇−ατ v)n :=

n∑
j=0

kατ (n− j)vj , n ∈ N0.

Remark 2.8. Using remark 2.6 and the definition of αth−fractional sum ∆−α introduced in [23] (which
corresponds to (2.13) with τ = 1), we observe that

(∇−ατ v)n = (∆−αv)n.

Definition 2.9. [30] Let α ∈ R+ \ N0. The Caputo fractional backward difference operator of order α,

C∇α : F(N0;X)→ F(N0;X), is defined by

(C∇αv)n := ∇−(m−α)
τ (∇mτ v)n, n ∈ N0,

where m− 1 < α < m.4

In this definition, if α ∈ N0, then the fractional backward difference operators C∇α is defined as the5

backward difference operator ∇ατ . Moreover, if 0 < α < 1, then C∇α+1vn = C∇α(∇1v)n. However,6

C∇α+1vn 6= C∇1(C∇αv)n, (see [30, Proposition 2.6]).7

Let u : [0,∞)→ X be a twice differentiable and bounded function. Since

dρτn(t)

dt
=

1

τ

(
ρτn−1(t)− ρτn(t)

)
,

for all n ≥ 1, and u is a bounded function, then the integration by parts implies that

(u′)n =
1

τ
(un − un−1) = ∇τun,

for all n ≥ 1. On the other hand, since ∂α+1
t f = ∂αt ∂

1
t f and C∇α+1vn = C∇α(C∇1v)n, for 0 < α < 1,8

we obtain the following result, which can be obtained directly from [30, Theorem 2.7] and relates the9

Caputo fractional derivative and the Caputo fractional backward difference operator.10

Remark 2.10. In case 0 < α < 1 a calculation shows that for any f : N0 → X with f(−1) = 0 we have
the identity

(C∇αf)n =
1

τα
(∆αf)n−1,

and in case 1 < α < 2 we have

(C∇αf)n =
1

τα
(∆αf)n−2,

under the assumption that f(−1) = f(−2) = 0.11

Proposition 2.11. Let 1 < α < 2. If u : [0,∞)→ X is a twice differentiable and bounded function, then∫ ∞
0

ρτn(t)∂αt u(t)dt = C∇αun,

for all n ∈ N.12

Given a family of operators {S(t)}t≥0 ⊂ B(X), we define the sequence13

(2.14) Snx :=

∫ ∞
0

ρτn(t)S(t)xdt, n ∈ N0, x ∈ X.

On the other hand, if c : R+ → C is a continuous and bounded function we define

cn :=

∫ ∞
0

ρτn(t)c(t)dt, n ∈ N0,
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and the discrete convolution between c and S by

(c ? S)n :=

n∑
k=0

cn−kSk, n ∈ N0.

Similarly, for a vector-valued function f : R+ → X, we define the sequence fn as1

(2.15) fn :=

∫ ∞
0

ρτn(t)f(t)dt, n ∈ N0.

We recall the following result, which corresponds to an extension of [23].2

Theorem 2.12. [30] Let c : R+ → C be Laplace transformable such that ĉ(1/τ) exists, and let {S(t)}t≥0 ⊂
B(X) be strongly continuous and Laplace transformable such that Ŝ(1/τ) exists. Then, for all x ∈ X,∫ ∞

0

ρτn(t)(c ∗ S)(t)xdt = τ(c ? S)nx, n ∈ N0.

Similarly, we have the following results.3

Proposition 2.13. [30] Let α > 0. Let {S(t)}t≥0 ⊂ B(X) be strongly continuous and Laplace trans-

formable such that Ŝ(1/τ) exists. Then, for all x ∈ X,∫ ∞
0

ρτn(t)(gα ∗ S)(t)xdt =

n∑
j=0

kατ (n− j)Sjx, n ∈ N0.

Proposition 2.14. [30] Let f : R+ → X be Laplace transformable such that f̂(1/τ) exists, and let

{S(t)}t≥0 ⊂ B(X) be strongly continuous and Laplace transformable such that Ŝ(1/τ) exists. Then,

(S ∗ f)nx =

∫ ∞
0

ρτn(t)(S ∗ f)(t)xdt = τ(S ? f)nx = τ

n∑
j=0

Sn−jf j , n ∈ N0.

With the above ingredients we can easily prove the following result that we will be useful later.4

Lemma 2.15. Let {S(t)}t≥0 ⊂ B(X) be a family of exponentially bounded linear operators such that

Ŝ(1/τ) exists. If f : R+ → X, a : R+ → C, and â(1/τ) and f̂(1/τ) exist, then

τ2(a ? S ? f)n =

∫ ∞
0

ρτn(t)(a ∗ S ∗ f)(t)dt,

for all n ∈ N0, where (a ?S ? f)n := (a ? (S ? f))n. Moreover, (a ? (S ? f))n = ((a ?S) ? f)n for all n ∈ N0.5

Proof. Since (a ∗ S ∗ f)(t) = (a ∗ (S ∗ f))(t) for all t ≥ 0, the Theorem 2.12, Proposition 2.14 and the
definition of discrete convolution imply that∫ ∞

0

ρτn(t)(a ∗ S ∗ f)(t)dt = τ(a ? (S ∗ f))n = τ

n∑
k=0

an−k(S ∗ f)k = τ2
n∑
k=0

an−k(S ? f)k

= τ2(a ? (S ? f))n,

for all n ∈ N0. �6

3. A fractional difference equation7

In this section we study the following fractional difference equation of order α ∈ (1, 2) :8

(3.16) C∇αun = Aun + fn,

for all n ≥ 2 under the initial condition u0 = u0, and u1 = u1, where u0, u
1 ∈ X.9

We first assume that A is a sectorial operator, u0, u1 ∈ D(A) ∩ ker(A) and f0 = f1 = 0. As u0, u1 ∈
ker(A), by Definition (2.10), (∇2

τu)0 = (∇2
τu)1 = 0, and thus C∇αu0 = ∇−(2−α)(∇2u)0 = 0 and C∇αu1 =

∇−(2−α)(∇2u)1 = 0. Since f0 = f1 = 0, we have

C∇αun = ∇−(2−α)
τ (∇τu)n =

n∑
j=0

k2−α
τ (n− j)(∇2

τu)j

=

n−1∑
j=2

k2−α
τ (n− j)(∇2

τu)j + τ−α(un − 2un−1 + un−2),
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for all n ≥ 2. Therefore, for all n ≥ 2, the scheme (3.16) is equivalent to1

(3.17) (τ−α −A)un = 2τ−αun−1 − τ−αun−2
n−1∑
j=2

k2−α
τ (n− j)(∇2

τu)j + fn.

This is an implicit scheme, which means that to obtain un we need to find un−1, un−2, ..., u0. If order2

to solve (3.17), we need to invert the operator (τ−α − A), which is possible, because A is a sectorial3

operator and therefore, we can take τ small enough (for instance max{0, ω}τα < 1) in order to obtain4

that (τ−α −A) is an invertible operator.5

Using this fact, we can provide an explicit description of the solution in terms of certain sequences of6

bounded and linear operators. This is the content of the following result.7

Theorem 3.16. Let τ > 0. Let A be the generator of a bounded (α, 1)-resolvent family {Sα,1(t)}t≥0 with8

‖Sα,1(t)‖ ≤ Meωt, where ω < 1
τ . If u0, u1 ∈ X and f is bounded, then fractional difference equation9

(3.16) admits a solution given by10

(3.18) un = Snα,1u0 + τ(g1 ? Sα,1)nu1 + τ2(gα−1 ? Sα,1 ? f)n

for all n ≥ 2 and u0 = u0, u
1 = u1.11

Proof. Since {Sα,1(t)}t≥0 is exponentially bounded, we obtain Snα,1x ∈ D(A) for all n ∈ N0 and x ∈ X,
as in the proof of [23, Theorem 4.4] and [30, Theorem 2.8]. On the other hand, Proposition 2.2 implies
that

Sα,1(t)x = x+A

∫ t

0

gα(t− s)Sα,1(s)xds,

for all t ≥ 0 and x ∈ X. Multiplying this identity by ρτj (t) and then integrating over [0,∞) we obtain by
Proposition 2.13 that

Sjα,1x =

∫ ∞
0

ρτj (t)Sα,1(t)xdt =

∫ ∞
0

ρτj (t)xdt+A

∫ ∞
0

ρτj (t)(gα ∗ Sα,1)(t)xdt

= x+A

j∑
l=0

kατ (j − l)Slα,1x,(3.19)

j ≥ 0. Now, by definition we have for all n ≥ 2 that12

(3.20) C∇α(Sα,1x)n = ∇−(2−α)
τ ∇2

τ (Sα,1x)n =

n∑
j=0

k2−α
τ (n− j)(∇2

τSα,1x)j .

By (3.19), we obtain

(∇2
τSα,1x)j =

1

τ2
(Sjα,1x− 2Sj−1

α,1 x+ Sj−2
α,1 x)

=
A

τ2

[
j∑
l=0

kατ (j − l)Slα,1x− 2

j−1∑
l=0

kατ (j − 1− l)Slα,1x+

j−2∑
l=0

kατ (j − 2− l)Slα,1x

]
,

for all j ≥ 2. Next, for t ≥ 0, we define Rα(t) := (gα ∗ Sα,1)(t). By Proposition 2.13 we obtain that

Rjα =

j∑
l=0

kατ (j − l)Slα,1,

for all j ≥ 0.13

Analogously, since (g2−α ∗ gα)(t) = g2(t) = (g1 ∗ g1)(t), we obtain by Proposition 2.13 that14

n∑
j=0

k2−α
τ (n− j)

j∑
l=0

kατ (j − l)Slα,1x =

n∑
j=0

k2−α
τ (n− j)Rjα

=

∫ ∞
0

ρτn(t)(g2−α ∗Rα)(t)xdt

=

∫ ∞
0

ρτn(t)(g2 ∗ Sα,1)(t)xdt

=

n∑
j=0

k1
τ (n− j)(g1 ∗ Sα,1)jx,
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for all n ≥ 2. By definition, we have k1
τ (n) = τ for all n, and, once again, by Proposition 2.13 we obtain

(g1 ∗ Sα,1)jx =

∫ ∞
0

ρτj (t)(g1 ∗ Sα,1)(t)xdt =

j∑
l=0

k1
τ (j − l)Slα,1x = τ

j∑
l=0

Slα,1x,

which implies that1

(3.21)

n∑
j=0

k2−α
τ (n− j)

j∑
l=0

kατ (j − l)Slα,1x = τ2
n∑
j=0

j∑
l=0

Slα,1x.

Since
∑−k
j=0 v

j = 0 for all k ∈ N, by using the function Rα, we have that

n∑
j=0

k2−α
τ (n− j)

j−1∑
l=0

kατ (j − 1− l)Slα,1x =

n∑
j=1

k2−α
τ (n− j)

j−1∑
l=0

kατ (j − 1− l)Slα,1x

=

n∑
j=1

k2−α
τ (n− j)Rj−1

α x.

And, as above we obtain2

(3.22)

n∑
j=0

k2−α
τ (n− j)

j−1∑
l=0

kατ (j − 1− l)Slα,1x = τ2
n−1∑
j=0

j∑
l=0

Slα,1x.

for all n ≥ 2. Similarly, for all n ≥ 2 we have3

(3.23)

n∑
j=0

k2−α
τ (n− j)

j−2∑
l=0

kατ (j − 2− l)Slα,1x = τ2
n−2∑
j=0

j∑
l=0

Slα,1x.

By (3.20)–(3.23) we obtain4

C∇α(Sα,1x)n =
A

τ2

n∑
j=0

k2−α
τ (n− j)

[
j∑
l=0

kατ (j − l)Slα,1x− 2

j−1∑
l=0

kατ (j − 1− l)Slα,1x

+

j−2∑
l=0

kατ (j − 2− l)Slα,1x

]

= A

 n∑
j=0

j∑
l=0

Slαx− 2

n−1∑
j=0

j∑
l=0

Slα,1x+

n−2∑
j=0

j∑
l=0

Slα,1x


= ASnαx,

for all n ≥ 2 and x ∈ X. Therefore5

(3.24) C∇αSnα,1u0 = ASnα,1u0.

On the other hand, by definition we have

C∇α(τ(g1 ? Sα,1)n)x = ∇−(2−α)
τ ∇2

τ (τ(g1 ? Sα,1))nx = τ

n∑
j=0

k2−α
τ (n− j)∇2

τ (g1 ? Sα,1)jx.

Since

∇2
τ (g1 ? Sα,1)j =

1

τ2

[
(g1 ? Sα,1)j − 2(g1 ? Sα,1)j−1 + (g1 ? Sα,1)j−2

]
,

for all j ≥ 2, and

(g1 ? Sα,1)jx =
1

τ

∫ ∞
0

ρjτ (t)(g1 ∗ Sα,1)(t)xdt =
1

τ
(g1 ∗ Sα,1)jx.

(by Theorem 2.12), we have6

(3.25) C∇α(τ(g1 ? Sα,1)n)x =
1

τ2

n∑
j=0

k2−α
τ (n− j)

[
(g1 ∗ Sα,1)jx− 2(g1 ∗ Sα,1)j−1x+ (g1 ∗ Sα,1)j−2x

]
.

Moreover, by Proposition 2.2 we have

(g1 ∗ Sα,1)(t)x = (g1 ∗ g1)(t)x+A(g1 ∗ gα ∗ Sα,1)(t)x,
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for all t ≥ 0 and x ∈ X. Since k1
τ (n) = τ for all n, and gl1 = 1 for all l ≥ 0, (by (2.11)) multiplying this1

equation by ρτj (t) and integrating over [0,∞) we obtain by Proposition 2.13 that2

(g1 ∗ Sα,1)jx =

∫ ∞
0

ρτj (t)(g1 ∗ Sα,1)(t)xdt

=

j∑
l=0

k1
τ (j − l)gl1x+A

j∑
l=0

kα+1
τ (j − l)Slα,1x

= τjx+A

j∑
l=0

kα+1
τ (j − l)Slα,1x,

for all j ≥ 0. Hence,3

(g1 ∗ Sα,1)jx− 2(g1 ∗ Sα,1)j−1x+ (g1 ∗ Sα,1)j−2x = A

[
j∑
l=0

kα+1
τ (j − l)Slα,1x

−2

j−1∑
l=0

kα+1
τ (j − 1− l)Slα,1x

+

j−2∑
l=0

kα+1
τ (j − 2− l)Slα,1x

]
,

for all j ≥ 2. If Qα(t) := (gα+1 ∗ Sα,1)(t) we obtain by Proposition 2.13 that if j ≥ 0, then Qjαx =4 ∑j
l=0 k

α+1
τ (j − l)Slα,1x. Since (g2−α ∗Qα)(t) = (g1 ∗ g1 ∗ g1 ∗ Sα,1)(t) and k1

τ (n) = τ for all n, we obtain5

n∑
j=0

k2−α
τ (n− j)

j∑
l=0

kα+1
τ (j − l)Slα,1x =

n∑
j=0

k2−α
τ (n− j)Qjα

=

∫ ∞
0

ρτn(t)(g2−α ∗Qα)(t)xdt

=

∫ ∞
0

ρτn(t)(g1(g1 ∗ g1 ∗ Sα,1))(t)xdt

=

n∑
j=0

k1
τ (n− j)(g1 ∗ g1 ∗ Sα,1)jx

= τ

n∑
j=0

j∑
l=0

k1
τ (j − l)(g1 ∗ Sα,1)lx

= τ2
n∑
j=0

j∑
l=0

(g1 ∗ Sα,1)lx.

Since
∑−k
j=0 v

j = 0 for all k ∈ N, we obtain as above that

n∑
j=0

k2−α
τ (n− j)

j−1∑
l=0

kα+1
τ (j − 1− l)Slα,1x = τ2

n−1∑
j=0

j∑
l=0

(g1 ∗ Sα,1)lx

and

n∑
j=0

k2−α
τ (n− j)

j−2∑
l=0

kα+1
τ (j − 2− l)Slα,1x = τ2

n−2∑
j=0

j∑
l=0

(g1 ∗ Sα,1)lx.
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Therefore,

C∇α(τ(g1 ? Sα,1)n)x =
A

τ2

n∑
j=0

k2−α
τ (n− j)

[
j∑
l=0

kα+1
τ (j − l)Slα,1x− 2

j−1∑
l=0

kα+1
τ (j − 1− l)Slα,1x

+

j−2∑
l=0

kα+1
τ (j − 2− l)Slα,1x

]

= A

 n∑
j=0

j∑
l=0

(g1 ∗ Sα,1)lx− 2

n−1∑
j=0

j∑
l=0

(g1 ∗ Sα,1)lx+

n−2∑
j=0

j∑
l=0

(g1 ∗ Sα,1)lx


= A(g1 ∗ Sα,1)nx,

for all n ≥ 2 and x ∈ X. Since (g1 ∗ Sα,1)nx = τ(g1 ? Sα,1)nx we obtain1

(3.26) C∇α(τ(g1 ? Sα,1)n)u1 = A(τ(g1 ? Sα,1)nu1), n ≥ 2.

Finally, by definition we have

C∇α(τ2(gα−1 ? Sα,1 ? f)n) = ∇−(2−α)
τ ∇2

τ (τ2(gα−1 ? Sα,1 ? f))n

=

n∑
j=0

k2−α
τ (n− j)∇2

τ (τ2(gα−1 ? Sα,1 ? f)j),

for all n ≥ 2. Since

∇2
τ (gα−1 ? Sα,1 ? f)j =

1

τ2

[
(gα−1 ? Sα,1 ? f)j − 2(gα−1 ? Sα,1 ? f)j−1 + (gα−1 ? Sα,1 ? f)j−2

]
,

for all j ≥ 2 and by Lemma 2.15 we have (gα−1 ?Sα,1 ? f)j = 1
τ2 (gα−1 ∗Sα,1 ∗ f)j for all j ≥ 0. Therefore,

we have

∇2
τ (τ2(gα−1 ? Sα,1 ? f)j) =

1

τ2

[
(gα−1 ∗ Sα,1 ∗ f)j − 2(gα−1 ∗ Sα,1 ∗ f)j−1 + (gα−1 ∗ Sα,1 ∗ f)j−2

]
,

for all j ≥ 2. By Proposition 2.2 we get

(gα−1 ∗ Sα,1 ∗ f)(t) = (gα ∗ f)(t) +A(gα−1 ∗ gα ∗ Sα,1 ∗ f)(t),

and multiplying this equation by ρτj (t) and integrating over [0,∞) we obtain by 2.13 that

(gα−1 ∗ Sα,1 ∗ f)j =

j∑
l=0

kατ (j − l)f l +A

j∑
l=0

kατ (j − l)(gα−1 ∗ Sα,1 ∗ f)l, j ≥ 0.

Hence2

C∇α(τ2(gα−1 ? Sα,1 ? f)n) =

n∑
j=0

k2−α
τ (n− j)∇2

τ (τ2(gα−1 ? Sα,1 ? f)j)

=
1

τ2

n∑
j=0

k2−α
τ (n− j)

[
j∑
l=0

kατ (j − l)f l − 2

j−1∑
l=0

kατ (j − 1− l)f l

+

j−2∑
l=0

kατ (j − 2− l)f l
]

+
A

τ2

n∑
j=0

k2−α
τ (n− j)

[
j∑
l=0

kατ (j − l)(gα−1 ∗ Sα,1 ∗ f)l

− 2

j−1∑
l=0

kατ (j − 1− l)(gα−1 ∗ Sα,1 ∗ f)l

+

j−2∑
l=0

kατ (j − 2− l)(gα−1 ∗ Sα,1 ∗ f)l

]
,

for all n ≥ 2.3
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On the other hand, we notice that defining h(t) := (gα ∗ f)(t), we have hj =
∫∞

0
ρτj (t)(gα ∗ f)(t)dt =∑j

l=0 k
α
τ (j − l)f l, which implies (by similar computations as above) that

n∑
j=0

k2−α
τ (n− j)

j∑
l=0

kατ (j − l)f l = τ2
n∑
j=0

j∑
l=0

f l,

n∑
j=0

k2−α
τ (n− j)

j−1∑
l=0

kατ (j − 1− l)f l = τ2
n−1∑
j=0

j∑
l=0

f l,

and
n∑
j=0

k2−α
τ (n− j)

j−2∑
l=0

kατ (j − 2− l)f l = τ2
n−2∑
j=0

j∑
l=0

f l.

Thus,1

1

τ2

n∑
j=0

k2−α
τ (n− j)

[
j∑
l=0

kατ (j − l)f l − 2

j−1∑
l=0

kατ (j − 1− l)f l +

j−2∑
l=0

kατ (j − 2− l)f l
]

= fn,

for all n ≥ 2. Similarly, if Tα(t) := (gα ∗ (gα−1 ∗ Sα,1 ∗ f))(t) then T jα =
∑j
l=0 k

α
τ (j − l)(gα−1 ∗ Sα,1 ∗ f)l,

and therefore

n∑
j=0

k2−α
τ (n− j)

j∑
l=0

kατ (j − l)(gα−1 ∗ Sα,1 ∗ f)l = τ2
n∑
j=0

j∑
l=0

(gα−1 ∗ Sα,1 ∗ f)l,

n∑
j=0

k2−α
τ (n− j)

j−1∑
l=0

kατ (j − 1− l)(gα−1 ∗ Sα,1 ∗ f)l = τ2
n−1∑
j=0

j∑
l=0

(gα−1 ∗ Sα,1 ∗ f)l,

and
n∑
j=0

k2−α
τ (n− j)

j−2∑
l=0

kατ (j − 2− l)(gα−1 ∗ Sα,1 ∗ f)l = τ2
n−2∑
j=0

j∑
l=0

(gα−1 ∗ Sα,1 ∗ f)l.

Thus,2

A

τ2

n∑
j=0

k2−α
τ (n− j)

[
j∑
l=0

kατ (j − l)(gα−1 ∗ Sα,1 ∗ f)l − 2

j−1∑
l=0

kατ (j − 1− l)(gα−1 ∗ Sα,1 ∗ f)l

+

j−2∑
l=0

kατ (j − 2− l)(gα−1 ∗ Sα,1 ∗ f)l

]
= A(gα−1 ∗ Sα,1 ∗ f)n.

Since (gα−1 ∗ Sα,1 ∗ f)n = τ2(gα−1 ? Sα,1 ? f)n we conclude that3

(3.27) C∇α(τ2(gα−1 ? Sα,1 ? f)n) = fn +A(τ2(gα−1 ? Sα,1 ? f)n),

for all n ≥ 2. We conclude that if we define the sequence (un)n∈N0
by un := Snα,1u0 + τ(g1 ? Sα,1)nu1 +4

τ2(gα−1 ? Sα,1 ? f)n), for n ≥ 2 and u0 := u0, u
1 := u1, then by (3.24), (3.26) and (3.27) we have that5

C∇α(un) = C∇α
(
Snα,1u0 + τ(g1 ? Sα,1)nu1 + τ2(gα−1 ? Sα,1 ? f)n)

)
= ASnα,1u0 +A(τ(g1 ? Sα,1)nu1) + fn +A(τ2(gα−1 ? Sα,1 ? f)n)

= Aun + fn,

for all n ≥ 2, that is, (un)n∈N0
solves the equation

C∇αun = Aun + fn, n ≥ 2,

under the initial conditions u0 = u0, and u1 = u1. �6
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4. Error estimates1

In this section we compare the mild solution u to the Caputo fractional Cauchy problem (1.2) at tn2

and the solution un of one solution of the fractional difference equation (3.16). More concretely, we study3

the norm difference ‖u(tn)−un‖, where u is the mild solution to Problem (1.2) and un solves the discrete4

difference equation (3.16).5

For a closed operator A ∈ Sec(θ,M), we will consider the following path Γt : For π
2 < θ < π, we take

φ such that 1
2φ <

π
2α < φ < θ. Next, we define Γt (see Figure 1) as the union Γ1

t ∪ Γ2
t , where

Γ1
t :=

{
1

t
eiψ/α : −φ < ψ < φ

}
and Γ2

t :=

{
re±iφ/α :

1

t
≤ r
}
.

Figure 1. Plot of path Γt.

The next result will be useful to prove the main theorem in this section. A similar result can be found6

in [10] and [30]. We give its proof for the sake of completeness.7

Lemma 4.17. Let A ∈ Sec(θ,M) and Γ be the complex path defined above. If µ ≥ 0, then there exist
positive constants Cα, depending only on α such that∫

Γt

∣∣∣∣eztzµ
∣∣∣∣ |dz| ≤ Cαtµ−1,

for all t > 0, where

Cα :=

(
2φ

∫ φ

−φ
ecos(ψ/α)dψ +

2

− cos(φ/α)

)
.

Proof. On Γ1
t we have8 ∫

Γ1
t

∣∣∣∣eztzµ
∣∣∣∣ |dz| ≤ 2φ

∫ φ

−φ

e(t
cos(ψ/α)

t )∣∣∣ e(iµψ/α)

tµ

∣∣∣ 1

t
dψ = 2φ

∫ φ

−φ
ecos(ψ/α)dψtµ−1.

On the other hand, since 1
2φ <

π
2α < φ we obtain π

2 < φ
α < π, and thus cos(φ/α) < 0, which implies9

that on Γ2
t we have10 ∫

Γ2
t

∣∣∣∣eztzµ
∣∣∣∣ |dz| ≤ 2

∫ ∞
1
t

ert cos(φ/α)

rµ
dr ≤ 2tµ

∫ ∞
0

ert cos(φ/α)dr = 2
tµ−1

− cos(φ/α)
.

We conclude that ∫
Γt

∣∣∣∣eztzµ
∣∣∣∣ |dz| ≤

(
2φ

∫ φ

−φ
ecos(ψ/α)dψ +

2

− cos(φ/α)

)
tµ−1.

�11
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Take A ∈ Sec(θ,M). If z = 1
t e
iφ/α, then zα = 1

tα e
iφ and arg(zα) = φ < θ. This implies that zα ∈ ρ(A).1

If we take the complex path Γ ≡ Γt defined in Lemma 4.17, then, by the inversion formula of the Laplace2

transform, we can write3

(4.28) Sα,1(t) =
1

2πi

∫
Γ

eztzα−1(zα −A)−1dz, t > 0.

Let 0 < ε < 1 be given. The space of all continuous function f : [0,∞) → D(Aε) endowed with the4

norm ‖f‖ε := supt≥0 ‖f(t)‖ε = supt≥0 ‖Aεf(t)‖ will be denoted by C([0,∞), D(Aε)).5

Our main result is the following theorem.6

Theorem 4.18. Let 1 < α < 2 and A ∈ Sect(θ,M) which generates an (α, 1)-resolvent family {Sα,1(t)}t≥0.7

Let 0 < ε < 1 such that 0 < αε < 1 and α(ε + 1) < 2. Suppose that f ∈ C([0,∞), D(Aε)). Let Γ be the8

complex path defined above. If u0, u1 ∈ D(Aε), then for each T > 0 there exists a constant C = C(T ) > 09

(independent of the solution, the data and the step size) such that, for 0 < tn ≤ T, there holds10

(4.29) ‖un − u(tn)‖ ≤ Cτtαε−1
n (‖u0‖ε + ‖u1‖ε + ‖f‖ε) .

Proof. Since A generates a resolvent family {Sα,1(t)}t≥0, the solution to (1.2) and (3.16) are given,
respectively, by

u(t) = Sα,1(t)u0 + (g1 ∗ Sα,1)(t)u1 + (gα−1 ∗ Sα,1 ∗ f)(t),

and

un = Snα,1u0 + τ(g1 ? Sα,1)nu1 + τ2(gα−1 ? Sα,1 ? f)n.

Now, we fix n ∈ N such that 0 < tn ≤ T, where tn := τn. Then, we have11

‖un − u(tn)‖ ≤ ‖(Sα,1(tn)− Snα,1)u0‖+ ‖((g1 ∗ Sα,1)(tn)− τ(g1 ? S
n
α,1))u1‖

+‖(gα−1 ∗ Sα,1 ∗ f)(tn)− τ2(gα−1 ? Sα,1 ? f)n‖ := I1 + I2 + I3.

Now, we estimate I1, I2 and I3. Since
∫∞

0
ρτn(t)dt = 1, we can write

(Sα,1(tn)− Snα,1)u0 =

∫ ∞
0

ρτn(t)((Sα,1(tn)− Sα,1(t))u0dt,

and therefore

I1 ≤
∫ ∞

0

ρτn(t)‖(Sα,1(t)− Sα,1(tn))u0‖dt.

Now, if Γ = Γtn , by (4.28) we can write

(Sα,1(t)− Sα,1(tn))u0 =
1

2πi

∫
Γ

(ezt − eztn)

z
zα(zα −A)−1u0dz.

On the other hand, we have A(zα −A)−1 = A1−ε(zα −A)−1Aε and12

(4.30) zα(zα −A)−1 = A(zα −A)−1 + I = A1−ε(zα −A)−1Aε + I.

Thus,

(Sα,1(t)− Sα,1(tn))u0 =
1

2πi

∫
Γ

(ezt − eztn)

z
u0dz +

1

2πi

∫
Γ

(ezt − eztn)

z
A1−ε(zα −A)−1Aεu0dz.

The function h(z) := (ezt−eztn )
z has a unique removable singularity at z = 0. Since t ≥ tn, h(z) can be

analytically extended to the region enclosed by the path ΓR := ΓRtn where ΓR is the path given in Figure
2, and therefore

1

2πi

∫
ΓR

(ezt − eztn)

z
u0dz = 0.

Since
1

2πi

∫
Γ

(ezt − eztn)

z
u0dz = lim

R→∞

1

2πi

∫
ΓR

(ezt − eztn)

z
u0dz,

we get

1

2πi

∫
Γ

(ezt − eztn)

z
u0dz = 0.
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Figure 2. Plot of path ΓR.

On the other hand, since A is a sectorial operator, we get by (2.8)1

(4.31) ‖A1−ε(zα −A)−1Aεx‖ ≤ κ(M + 1)
‖Aεx‖
|zα|ε

,

for all x ∈ D(Aε), which implies that

‖(Sα,1(t)− Sα,1(tn))u0‖ ≤
κ(M + 1)

2π

∫
Γ

|ezt − eztn |
|z|

1

|z|αε
|dz|‖Aεu0‖.

The mean value theorem for complex-valued functions ensures the existence of t0, t1 with 0 < tn < t0 <2

t1 < t satisfying3

(4.32)
|ezt − eztn |
|z|

≤ (t− tn)
(
|et0z|+ |et1z|

)
.

By Lemma 4.17 and (4.32) we conclude that

‖(Sα,1(t)− Sα,1(tn))u0‖ ≤
κ(M + 1)

2π
(t− tn)Cα(tαε−1

0 + tαε−1
1 )‖Aεu0‖.

Since 0 < tn < t0 < t1 and 0 < αε < 1 we have tαε−1
1 < tαε−1

0 < tαε−1
n , which implies that

‖(Sα,1(t)− Sα,1(tn))u0‖ ≤
κ(M + 1)

π
Cα(t− tn)tαε−1

n ‖Aεu0‖.

Now, an easy computation shows that4 ∫ ∞
0

ρτn(t)(t− tn)dt =

∫ ∞
0

ρτn(t)tdt− tn = tn+1 − tn = τ,(4.33)

because
∫∞

0
ρτn(t)dt = 1 for all n ∈ N, and thus5

I1 ≤
∫ ∞

0

ρτn(t)‖(Sα,1(t)− Sα,1(tn))u0‖dt ≤ D1t
αε−1
n ‖Aεu0‖

∫ ∞
0

ρτn(t)(t− tn)dt

= D1τt
αε−1
n ‖Aεu0‖,

for all n ∈ N, where

D1 :=
κ(M + 1)

π
Cα.

We conclude that6

(4.34) I1 ≤ D1τt
αε−1
n ‖Aεu0‖.

Now, to estimate I2 we notice that by Theorem 2.12 we can write

‖(g1 ∗ Sα,1)(tn)− τ(g1 ? Sα,1)n‖ =

∥∥∥∥∫ ∞
0

ρτn(t)[(g1 ∗ Sα,1)(tn)− (g1 ∗ Sα,1)(t)]dt

∥∥∥∥ .
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Since ̂(g1 ∗ Sα,1)(z) = 1
z Ŝα,1(z) = 1

z2 z
α(zα − A)−1, the inversion theorem for the Laplace transform and1

(4.30) allow to write2

(g1 ∗ Sα,1)(t)x− (g1 ∗ Sα,1)(tn)u1 =
1

2πi

∫
Γ

(ezt − eztn) ̂(g1 ∗ Sα,1)(z)u1dz

=
1

2πi

∫
Γ

ezt − eztn
z2

u1dz

+
1

2πi

∫
Γ

ezt − eztn
z2

A1−ε(zα −A)−1Aεu1dz.

Since ‖u1‖ ≤ ‖Aεu1‖, by (4.31)-(4.32) and Lemma 4.17, we have3

‖(g1 ∗ Sα,1)(tn)u1 − (g1 ∗ Sα,1)(t)u1‖ ≤
1

2π

∫
Γ

|ezt − eztn |
|z|2

‖u1‖|dz|

+
1

2π

∫
Γ

|eztn − ezt|
|z|

1

|z|
‖A1−ε(zα −A)−1Aεu1‖|dz|

≤ (t− tn)

2π

∫
Γ

|ezt0 |+ |ezt1 |
|z|

‖Aεu1‖|dz|

+
κ(M + 1)

2π

∫
Γ

|eztn − ezt|
|z|

1

|z|
‖Aεu1‖
|z|αε

|dz|

≤ (t− tn)

π
Cα‖Aεu1‖

+
κ(M + 1)

2π
(t− tn)Cα(tαε0 + tαε1 )‖Aεu1‖.

Since αε > 0 and t0 < t1 < t we have

‖(g1 ∗ Sα,1)(tn)u1 − (g1 ∗ Sα,1)(t)u1‖ ≤
(t− tn)

π
Cα‖Aεu1‖+

κ(M + 1)Cα
π

(t− tn)tαε‖Aεu1‖.

On the other hand, an easy computation shows that if γ > 0, then4

(4.35)

∫ ∞
0

ρτn(t)tγdt =
τγ

n!
Γ(n+ γ + 1),

for all n ∈ N, and therefore5 ∫ ∞
0

ρτn(t)(t− tn)tγdt =

∫ ∞
0

ρτn(t)tγ+1dt− tn
∫ ∞

0

ρτn(t)tγdt(4.36)

=
τγ+1

n!
Γ(n+ γ + 2)− τγ

n!
Γ(n+ γ + 1)tn =: cγn.

We notice that cγn can be written as6

cγn =
τγ+1

n!
Γ(n+ γ + 2)− τγ

n!
Γ(n+ γ + 1)tn =

tγ+1
n Γ(n+ γ + 2)

nγ+1 · n!
− tγ+1

n Γ(n+ γ + 1)

nγ · n!

=
tγ+1
n

nγ · n!

(
Γ(n+ γ + 2)

n
− Γ(n+ γ + 1)

)
= τtγn

Γ(n+ γ + 1)

Γ(n+ 1)nγ−1

(
(n+ γ + 1)

n
− 1

)
= τ(γ + 1)(n+ γ)tγn

Γ(n+ γ)

Γ(n+ 1)

1

nγ
.

Since Γ(n+γ)
Γ(n+1) < nγ−1 for all 0 < γ < 1 and n ∈ N (see for instance [13]), we have7

(4.37) cγn < τ(γ + 1)(n+ γ)tγnn
γ−1 1

nγ
= τ(γ + 1)tγn

(
1 +

γ

n

)
≤ 2τ(γ + 1)tγn,
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for all n ∈ N. Hence, if γ = αε, then the hypothesis implies that cαεn ≤ 2τ(αε+1)tαεn = 2τtn(αε+1)tαε−1
n ≤1

2τ(αε+ 1)Ttαε−1
n . Therefore, by (4.33), (4.37) and (4.37) we obtain2

I2 ≤
∫ ∞

0

ρτn(t)‖(g1 ∗ Sα,1)(tn)u1 − (g1 ∗ Sα,1)(t)u1‖dt

≤ Cα
π

∫ ∞
0

ρτn(t)(t− tn)dt‖Aεu1‖+
κ(M + 1)Cα

π

∫ ∞
0

ρτn(t)(t− tn)tβεdt‖Aεu1‖

≤
(
CαT

1−αε

π
+

2κ(M + 1)Cα(αε+ 1)T

π

)
τtαε−1
n ‖Aεu1‖.

We conclude that3

(4.38) I2 ≤ D2τt
αε−1
n ‖Aεu1‖,

where

D2 :=
CαT

1−αε

π
+

2κ(M + 1)Cα(αε+ 1)T

π
.

Finally, we estimate the integral I3. By Lemma 2.15 we can write

I3 =

∥∥∥∥∫ ∞
0

ρτn(t)[(gα−1 ∗ Sα,1 ∗ f)(t)− (gα−1 ∗ Sα,1 ∗ f)(tn)]dt

∥∥∥∥ .
Moreover, we have4

(gα−1 ∗ Sα,1 ∗ f)(t)− (gα−1 ∗ Sα,1 ∗ f)(tn) =

=

∫ t

0

(gα−1 ∗ Sα,1)(t− r)f(r)dr −
∫ tn

0

(gα−1 ∗ Sα,1)(tn − r)f(r)dr

=

∫ tn

0

[(gα−1 ∗ Sα,1)(t− r)− (gα−1 ∗ Sα,1)(tn − r)]f(r)dr +

∫ t

tn

(gα−1 ∗ Sα,1)(t− r)f(r)dr

:= J1 + J2.

To estimate J1 we notice that ̂(gα−1 ∗ Sα,1)(z) = (zα −A)−1, which implies by (4.30) that5

(gα−1 ∗ Sα,1)(t)x− (gα−1 ∗ Sα,1)(s)x =
1

2πi

∫
Γ

(ezt − ezs) ̂(gα−1 ∗ Sα,1)(z)xdz(4.39)

=
1

2πi

∫
Γ

(ezt − ezs)
zα

zα(zα −A)−1xdz

=
1

2πi

∫
Γ

(ezt − ezs)
zα

A1−ε(zα −A)−1Aεxdz

+
1

2πi

∫
Γ

(ezt − ezs)
zα

dz,

for all x ∈ D(Aε) and t > s > 0. Since q(z) := (ezt−ezs)
zα has a unique removable singularity at z = 0, we

can prove that the second integral in this last equality is equal to zero (following the same method used
to prove that

∫
Γ
h(z)u0dz = 0). By (4.31) we obtain

‖(gα−1 ∗ Sα,1)(t)x− (gα−1 ∗ Sα,1)(s)x‖ ≤ κ(M + 1)

2π

∫
Γ

|ezt − ezs|
|z|α(ε+1)

‖Aεx‖|dz|.

Once again,applying the mean value theorem for complex-valued functions, we obtain the existence of
t′0, t

′
1 with 0 < s < t′0 < t′1 < t such that

|ezt − ezs|
|z|

≤ (t− s)
(
|et
′
0z|+ |et

′
1z|
)
.

Hence, by Lemma 4.17 we get6

‖(gα−1 ∗ Sα,1)(t)x− (gα−1 ∗ Sα,1)(s)x‖ ≤ κ(M + 1)

2π
(t− s)

∫
Γ

|ezt′0 |+ |ezt′1 |
|z|α(ε+1)−1

‖Aεx‖|dz|

≤ κ(M + 1)

2π
(t− s)Cα(t

′β(ε+1)−2
0 + t

′β(ε+1)−2
1 )‖Aεx‖.
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By hypothesis, t
′β(ε+1)−2
0 < sβ(ε+1)−2 and t

′α(ε+1)−2
1 < sα(ε+1)−2, because 0 < s < t′0 < t′1 < t. Thus,

‖(gα−1 ∗ Sα,1)(t)x− (gα−1 ∗ Sα,1)(s)x‖ ≤ κ(M + 1)

π
Cα(t− s)sα(ε+1)−2‖Aεx‖,

for all x ∈ D(Aε) and 0 < s < t. Replacing t by t− r and s by tn − r we have1

‖J1‖ ≤
∫ tn

0

‖[(gα−1 ∗ Sα,1)(t− r)− (gα−1 ∗ Sα,1)(tn − r)]f(r)‖dr

≤ κ(M + 1)

π
Cα(t− tn)

∫ tn

0

(tn − r)α(ε+1)−2‖Aεf(r)‖dr

≤ κ(M + 1)

π
Cα(t− tn)‖f‖ε(g1 ∗ gα(ε+1)−1)(tn)Γ(α(ε+ 1)− 1)

=
κ(M + 1)

π
Cα(t− tn)‖f‖ε

t
α(ε+1)−1
n

α(ε+ 1)− 1

=
κ(M + 1)Tα

π(α(ε+ 1)− 1)
Cα(t− tn)‖f‖εtαε−1

n .

By (4.33) we have2

‖J1‖ ≤
∫ ∞

0

ρτn(t)

∫ tn

0

‖[(gα−1 ∗ Sα,1)(t− r)− (gα−1 ∗ Sα,1)(tn − r)]f(r)‖drdt

≤ κ(M + 1)TαCα
π(α(ε+ 1)− 1)

‖f‖ετtαε−1
n .

Now, we estimate J2. For t > 0 and x ∈ D(Aε) we have as in (4.39) that3

(gα−1 ∗ Sα,1)(t)x =
1

2πi

∫
Γ

ezt

zα
A1−ε(zα −A)−1Aεxdz +

1

2πi

∫
Γ

ezt

zα
xdz.

The inequality (4.31) and Lemma 4.17 imply that4

‖(gα−1 ∗ Sα,1)(t)x‖ ≤ κ(M + 1)

2π

∫
Γ

|ezt|
|z|α(ε+1)

‖Aεx‖|dz|+ 1

2π

∫
Γ

|ezt|
|z|α
‖x‖|dz|

≤ κ(M + 1)

2π
Cαt

α(ε+1)−1‖Aεx‖+
Cα
2π

tα−1‖Aεx‖,

for all x ∈ D(Aε) and t > 0. Replacing t by t− r we get5 ∫ t

tn

‖(gα−1 ∗ Sα,1)(t− r)f(r)‖dr ≤ κ(M + 1)

2π
Cα

∫ t

tn

(t− r)α(ε+1)−1‖Aεf(r)‖dr

+
Cα
2π

∫ t

tn

(t− r)α−1‖Aεf(r)‖dr

≤ κ(M + 1)

2π
Cα‖f‖ε

∫ t

tn

(t− r)α(ε+1)−1dr

+
Cα
2π
‖f‖ε

∫ t

tn

(t− r)α−1dr.

Now, we notice that∫ t

tn

(t− r)α(ε+1)−1dr =

∫ t

0

(t− r)α(ε+1)−1dr −
∫ tn

0

(t− r)α(ε+1)−1dr,

and ∫ t

0

(t− r)α(ε+1)−1dr =
1

α(ε+ 1)
tα(ε+1),

for all t ≥ 0. Since the function x 7→ xα(ε+1)−1 is increasing we obtain for tn ≤ t that∫ t

tn

(t− r)α(ε+1)−1dr =
1

α(ε+ 1)
tα(ε+1) −

∫ tn

0

(t− r)α(ε+1)−1dr ≤ 1

α(ε+ 1)
(tα(ε+1) − tα(ε+1)

n ).
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Similarly, we obtain ∫ t

tn

(t− r)α−1dr ≤ 1

α
(tα − tαn).

Thus ∫ t

tn

‖(gα−1 ∗ Sα,1)(t− r)f(r)‖ ≤ κ(M + 1)

2πα(ε+ 1)
Cα‖f‖ε(tα(ε+1) − tα(ε+1)

n ) +
Cα
2πα
‖f‖ε(tα − tαn).

On the other hand, by (4.35)∫ ∞
0

ρτn(t)(tα(ε+1) − tα(ε+1)
n )dt =

τα(ε+1)

n!
Γ(n+ α(ε+ 1) + 1)− tα(ε+1)

n .

Next, we notice that1

dn :=
τα(ε+1)

n!
Γ(n+ 1 + α(ε+ 1)) = ττα(ε+1)−1 Γ(n+ 1 + α(ε+ 1)− 1)

Γ(n+ 2)
×

(n+ 1)(n+ α(ε+ 1))

< tntn+1t
α(ε+1)−2
n+1 + α(ε+ 1)τt

α(ε+1)−1
n+1

for all n ∈ N, because 0 < α(ε+1)−1 < 1 and Γ(n+1+η)
Γ(n+2) < (n+1)η−1 for all n ∈ N and 0 < η < 1.Moreover,

the function x 7→ xα(ε+1)−2 is a decreasing function on [1,∞), and therefore t
α(ε+1)−2
n+1 ≤ tα(ε+1)−2

n for all
n ∈ N. This implies that

t
α(ε+1)−1
n+1 = (n+ 1)τt

α(ε+1)−2
n+1 ≤ (n+ 1)τtα(ε+1)−2

n ≤ tα(ε+1)−1
n + τtα(ε+1)−2

n ≤ 2tα(ε+1)−1
n ,

and thus2

dn < tntn+1t
α(ε+1)−2
n+1 + α(ε+ 1)τt

α(ε+1)−1
n+1 ≤ tn+1t

α(ε+1)−1
n + 2α(ε+ 1)τtα(ε+1)−1

n ,

for all n ∈ N. Since 0 < tn ≤ T and

tn+1t
α(ε+1)−1
n − tα(ε+1)

n = tα(ε+1)
n

(
tn+1

tn
− 1

)
= tα(ε+1)

n

(
tn+1 − tn

tn

)
= τtα(ε+1)−1

n ,

we obtain3 ∫ ∞
0

ρτn(t)(tα(ε+1) − tα(ε+1)
n )dt ≤ dn − tα(ε+1)

n

≤ tn+1t
α(ε+1)−1
n + 2α(ε+ 1)τtα(ε+1)−1

n − tα(ε+1)
n

= τtα(ε+1)−1
n + 2α(ε+ 1)τtα(ε+1)−1

n

≤ (1 + 2α(ε+ 1))τTαtαε−1
n .

Analogously, we can prove that∫ ∞
0

ρτn(t)(tα − tαn)dt ≤ (1 + 2α)τTα(1−ε)tαε−1
n .

Therefore,4

‖J2‖ ≤
∫ ∞

0

ρτn(t)

∫ t

tn

‖(gα−1 ∗ Sα,1)(t− r)f(r)‖drdt

≤ κ(M + 1)

2πα(ε+ 1)
Cα‖f‖ε

∫ ∞
0

ρτn(t)(tα(ε+1) +
Cα
2πα
‖f‖ε

∫ ∞
0

ρτn(t)(tα − tαn)dt

≤ κ(M + 1)

2πα(ε+ 1)
Cα(1 + 2α(ε+ 1))Tατtαε−1

n ‖f‖ε +
(1 + 2α)Cα

2πα
Tα(1−ε)τtαε−1

n ‖f‖ε.

We conclude that5

(4.40) I3 ≤ ‖J1‖+ ‖J2‖ ≤ D3‖f‖ετtαε−1
n ,

where

D3 :=
κ(M + 1)TαCα

π

(
1

(α(ε+ 1)− 1)
+

1 + 2α(ε+ 1)

2α(ε+ 1)

)
+

(1 + 2α)Cα
2πα

Tα(1−ε).
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Summarizing, by (4.34), (4.38) and (4.40), we obtain1

‖un − u(tn)‖ ≤ D1τt
αε−1
n ‖Aεu0‖+D2τt

αε−1
n ‖Aεu1‖+D3‖f‖ετtαε−1

n

≤ C(‖Aεu0‖+ ‖Aεu1‖+ ‖f‖ε)τtαε−1
n ,

where the constant C = C(T ) is defined by

C := max{D1, D2, D3}.

The proof is finished. �2

5. Some Experiments3

In this section, we illustrate the exact solution u(t) at tn to the fractional differential equation (1.2) and
the approximated solution un to the Caputo difference equation (3.16) given in Theorem 3.16. Suppose
that A = ρI for some ρ > 0. Then, the Laplace transform of the resolvent family {Sα,1(t)}t≥0 satisfies

Ŝα,1(λ) =
λα−1

λα − ρ
,

for all Re(λ) > ρ1/α. By [17, Formula 17.6], we obtain that4

(5.41) Sα,1(t) = Eα,1(ρtα),

where, for p, q, r > 0, Ep,q(z) is the Mittag-Leffler defined by

Ep,q(z) :=

∞∑
j=0

zj

Γ(pj + q)
, z ∈ C.

Therefore, the solution to5

(5.42)

 ∂αt u(t) = ρu(t) + f(t), t ≥ 0,
u(0) = u0

u′(0) = u1,

is given by6

(5.43) u(t) = Sα,1(t)u0 + (g1 ∗ Sα,1)(t)u1 + +(gα−1 ∗ Sα,1 ∗ f)(t),

where {Sα,1(t)}t≥0 is given in (5.41). Now, we consider the exact and approximated solution to (5.42)7

on the interval [0, 4]. We take τ = 4/N for N = 40, N = 80 and N = 100. In Figure 3 we have the8

exact solution u to the initial value problem (5.42) given by (5.43) evaluated at tn = nτ, that is, u(tn)9

for 2 ≤ n ≤ N, and the approximated solution (un)Nn=2 given by10

un = Snα,1u0 + τ(g1 ? Sα,1)nu1 + τ2(gα−1 ? Sα,1 ? f)n

=

∫ ∞
0

ρτn(t)
[
Sα,1(t)u0 + (g1 ∗ Sα,1)(t)u1 + (gα−1 ∗ Sα,1 ∗ f)(t)

]
dt.

To illustrate the theoretical results, we take u0 = u1 = 1 and f(t) = t2e−t for all t ∈ [0, 4] and in the11

numerical computations we consider α = 1.5.12
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Figure 3. Exact (line) and approximated (circles) solution u and un, respectively, for
N = 40, N = 80 and N = 100. Here we take α = 1.5.

Next, we illustrate Theorem 4.18 where we compare u(tn) and un for 2 ≤ n ≤ N, where N ∈ N is1

given integer number. In Figure 4 we have the error en := |u(tn)− un| for 2 ≤ n ≤ N, where N = 40, 802

and N = 100. As before, we take α = 1.5, u0 = u1 = 1 and f(t) = t2e−t for all t ∈ [0, 4]. We notice that,3

as in Theorem 4.18, the error en behaves as τ = 4/N.4
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Figure 4. Plot of en for N = 40, N = 80 and N = 100. Here we take α = 1.5.
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[32] I. Sloan, V. Thomée, Time discretization of an integro-differential equation of parabolic type, SIAM J. Numer. Anal.59

23 (5) (1986), 1052-1061.60

[33] R. Wang, D. Chen, T. Xiao, Abstract fractional Cauchy problems with almost sectorial operators, J. Diff. Equations,61

252 (2012), 202-235.62



TIME DISCRETIZATION AND CONVERGENCE TO SUPERDIFFUSION EQUATION 23

Universidad de Santiago de Chile1

E-mail address: carlos.lizama@usach.cl2

Universidad de Talca, Instituto de Matemáticas, Casilla 747, Talca-Chile.3
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