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Abstract. We study the initial value problem

(∗)

 u(n+ 1)− u(n) = Au(n+ 1) +

n+1∑
k=0

a(n+ 1− k)Au(k), n ∈ N0

u(0) = x,

where A is closed linear operator defined on a Banach space X, x belongs to the domain of A and the
kernel a is a particular discretization of an integrable kernel a ∈ L1(R+). Assuming that A generates a

resolvent family, we find an explicit representation of the solution to the initial value problem (∗) as well
as for its inhomogeneous version, and then we study the stability of such solutions. We also prove that
for a special class of kernels a, it suffices to assume that A generates an immediately norm continuous

C0-semigroup. We employ a new computational method based on the Poisson transformation.

1. Introduction

Consider the homogeneous initial value problem

(1.1)

 u′(t) = Au(t) +

∫ t

0

a(t− s)Au(s)ds, t ≥ 0

u(0) = x,

where A is a closed linear operator defined in a Banach space X, x belongs to X and the function
a : [0,∞) → R, known as the relaxation function, is an integrable kernel. This kind of initial value
problems arise, for instance, in the study of the heat conduction in material with fading memory or in
some population models, see [9, 10, 22, 23, 27] for more details. In such applications, the operator A is
typically the Laplacian operator or the elasticity operator and a typical choice of the relaxation function

is a(t) = α tµ−1

Γ(µ) e
−βt for α ∈ R and µ, β > 0.

In order to solve abstract integro-differential equations in the form of (1.1), Da Prato and Ianelli
introduced in [6] the concept of resolvent family {S(t)}t≥0 generated by the operator A (see Section 2
below for its definition). See also the monograph of J. Prüss [23]. By using this concept, the mild solution
to (1.1) can be written as

(1.2) u(t) := S(t)x.

We notice here that the mild solution (1.2) is a classical solution to (1.1) if x ∈ D(A). Now, if we consider
the inhomogeneous initial problem

(1.3)

 u′(t) = Au(t) +

∫ t

0

a(t− s)Au(s)ds+ f(t), t ≥ 0

u(0) = x,
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where A, a and x are as before and the forcing term f is a continuous function, then the mild solution
to problem (1.3) is given by

(1.4) u(t) = S(t)x+

∫ t

0

S(t− r)f(r)dr.

Time discretizations of inhomogeneous integro-differential equations with memory terms of convolution
type have been considered by several authors in the past decades. We mention here some few works. In
[24] the authors considered the equation (1.3) with A being an unbounded positive-definite self-adjoint
operator with dense domain in a Hilbert space and the operator A in the convolution term in (1.3) is
taken as a different operator B with domain D(B) ⊃ D(A) and a and f are smooth functions.

More recently, in [20] was considered the equation (1.3) where A is a closed linear operator in a
complex Banach space satisfying the resolvent estimate ∥(z − A)−1∥ ≤Mδ/(1 + |z|), for z ∈ Σδ := {z ̸=
0, | arg(z)| < δ} ∪ {0} for some δ ∈ ( 12π, π), where Mδ is a positive constant and the kernel a satisfies
some suitable assumptions. A typical example of such kernels is a(t) = κe−νt with κ ∈ R and ν ≥ 0, see
[20, Section 2].

In the paper [17] the authors study discretizations in time for the integro-differential equation

(1.5)

 u′(t) =

∫ t

0

a(t− s)Au(s)ds+ f(t), t ≥ 0

u(0) = x,

in the context of real Hilbert spaces and self-adjoint positive-definite linear operators A. In Banach spaces,
the authors in [18] study time discretizations for the abstract equation (1.5) where a is the weakly singular
function a(t) = tα−1/Γ(α), 0 < α < 1 and the operator A satisfies the same conditions as in [19, 20] and
[21]. In contrast, the case 1 < α < 2 is studied in [5] by assuming that A is an operator of sectorial type.

Unfortunately, it is well known that the numerical discretization result in cumulate errors even in
shortterm domains. It becomes difficult in the realworld applications for longterm issues from the practical
point of view. This paper aims to address this problem and propose a new kind of discretetime Volterra
equation by use of the Poisson transformation on an isolated time scale.

We study abstract Volterra difference equations having the form

(1.6) u(n+ 1)− u(n) = Au(n+ 1) +

n+1∑
k=0

a(n+ 1− k)Au(k), n ∈ N0,

where the scalar sequence a(n) is given in terms of the so-called Poisson transformation [13], and is
defined as follows

a(n) := P(a)(n) :=

∫ ∞

0

pn(t)a(t)dt, pn(t) := e−t t
n

n!
, n ∈ N0,

where a(t) is such that the integral in the right hand side exists. Equation (1.6) arises by application of
the Poisson transformation to the equation (1.1). The Poisson transformation constitutes a new method
of sampling. It was introduced in [13] in the context of fractional abstract difference equations and their
main properties studied in [1, Section 4].

One of the main novelties in this paper is that we consider A as the generator of a resolvent family
{S(t)}t≥0 defined on a Banach space X. In this way, we allow unbounded operators A and, consequently,
our results are applicable to mixed Volterra equations, i.e. where the time variable is discrete but the
space variable is continuous.

It is remarkable that Volterra difference equations in the form (1.6) appears very recently in discrete
chaos [4, 25] and in the analysis of discretetime neural networks [26, Formula (10)]. In such cases,

a(n) = kµ(n) := Γ(n+µ)
Γ(µ)n! are the Cesáro numbers [13]. We notice that this sequence has fundamental

importance in the recent theory of fractional sum and fractional difference operators of order µ. An
account of the main properties of kµ can be found in the recent paper [8]. We recall that in the finite
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dimensional case, i.e. dim(X) <∞, the study of Volterra difference equations in the form (1.6), with A
being a matrix, dates back to many years ago. See e.g. [7] and references therein.

The first and main contributions in this paper shows that if the initial value u(0) = x belongs to D(A),
then an explicit classical solution of the problem (1.6) is given by:

u(n) =

∫ ∞

0

pn(t)S(t)(I − (1 + a(0))A)xdt, n ∈ N.

See Theorem 3.4. Concerning the important issue of stability of the solutions, we consider the special
case:

a(n) =
α

(β + 1)µ+n
kµ(n), n ∈ N0,

where α ∈ R, µ, β > 0. A second contribution is that assuming the following conditions in the parameters
of the kernel a and on the operator A :

(S1) α ̸= 0, β > 0 and µ ≥ 1 such that α+ βµ > 0;
(S2) A generates an immediately norm continuous C0-semigroup on a Banach space X;
(S3) sup{Reλ, λ ∈ C : λ(λ+ β)µ((λ+ β)µ + α)−1 ∈ σ(A)} < 0;

we prove that the solution u(n) of (1.6) exists and satisfies ∥u(n)∥ → 0 as n → ∞. See Theorem 4.7
below.

The plan of the paper is the following: In Section 2 we give some preliminaries on resolvent families and
their main properties. In Section 3, we study the Poisson discretization for the equations (1.1) and (1.3).
In Section 4 we show our main findings on the stability of the solutions, giving explicit representations
in the special case A = ρI where ρ ∈ R and I is the identity operator.

2. Preliminaries

Let (X, ∥ · ∥) be a Banach space. We denote by B(X) the space of all bounded and linear operators
from X into X. If A is a closed linear operator on X we denote by ρ(A) the resolvent set of A and
R(λ,A) = (λ− A)−1 the resolvent operator of A defined for all λ ∈ ρ(A). The spectrum of A is defined
by σ(A) := C \ ρ(A). A family of operators {S(t)}t≥0 ⊂ B(X) is said to be exponentially bounded if there
exist real numbers M > 0 and ω ∈ R such that

(2.7) ∥S(t)∥ ≤Meωt, t ≥ 0.

We notice that if {S(t)}t≥0 ⊂ B(X) is exponentially bounded, then the Laplace transform of S(t), namely

Ŝ(λ)x :=

∫ ∞

0

e−λtS(t)xdt

exists for all Reλ > ω. Observe that if ω = 0, then {S(t)}t≥0 ⊂ B(X) is bounded. On the other hand,
if the constant ω in (2.7) is strictly negative, then {S(t)}t≥0 ⊂ B(X) is called uniformly exponentially
stable.

Let a ∈ L1
loc(R+) be given. In this paper, we will assume that the Laplace transform of a exists and

satisfies 1 + â(λ) ̸= 0 for all Reλ ≥ 0.

Definition 2.1. Let A be a closed and linear operator with domain D(A) defined on a Banach space

X, a ∈ L1
loc(R+) be Laplace transformable and b(t) := 1 +

∫ t

0
a(s)ds. We say that the pair (b, A) is the

generator of a resolvent family if there exist ω ≥ 0 and a strongly continuous function S : R+ → B(X)
such that { 1

b̂(λ)
}Reλ>ω ⊆ ρ(A) and

1

λb̂(λ)

(
1

b̂(λ)
−A

)−1

x =

∫ ∞

0

e−λtS(t)xdt, Reλ > ω, x ∈ X.

In this case the family {S(t)}t≥0 is called a resolvent family generated by A.
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From the general theory [23] it is easy to see that if a resolvent family exists then it is unique. We
notice that by the uniqueness of the Laplace transform, if a(t) = 0 for all t ≥ 0, then the resolvent family

{S(t)}t≥0 is the same as a C0-semigroup. On the other hand, if k(t) = 1 and b(t) := 1 +
∫ t

0
a(s)ds, then

the resolvent family {S(t)}t≥0 is a particular case of the theory of (b, k)-regularized families defined in
[12].

It is easy to show (see [23] or [12, Lemma 2.2 and Proposition 3.1])) that if A generates a resolvent

family {S(t)}t≥0 and b(t) := 1 +
∫ t

0
a(s)ds, then it satisfies the following properties:

(1) S(0) = I.
(2) If x ∈ D(A), then

S(t)x = x+

∫ t

0

b(t− r)S(r)Axdr.

(3) For all x ∈ X,
∫ t

0
S(r)xdr ∈ D(A), and

(2.8) S(t)x = x+A

∫ t

0

b(t− r)S(r)xdr.

(4) For each t ≥ 0, S(t)x ∈ D(A) and S(t)Ax = AS(t)x, for all x ∈ D(A) and t ≥ 0.

We denote by N0 := {0, 1, 2, ...}, the set of non-negative integer numbers. For a given Banach space
X, we denote by s(N0, X) the vectorial space consisting of all vector-valued sequences s : N0 → X. Let
f : R+ → X be a bounded and locally integrable function. We recall from [13] (see also [1]) that the
Poisson transformation of f is the vector-valued sequence defined by

f(n) := P(f)(n) :=

∫ ∞

0

pn(t)f(t)dt, n ∈ N0,

where pn(t) :=
tne−t

n! is the Poisson distribution. For a resolvent family {S(t)}t≥0 ⊂ B(X), we denote

S(n)x := P(S)(n)x :=

∫ ∞

0

pn(t)S(t)xdt, n ∈ N0, x ∈ X.

If c : R+ → C is a continuous and bounded function, we write

c(n) := P(c)(n) :=

∫ ∞

0

pn(t)c(t)dt, n ∈ N0,

and the finite convolution of a scalar-valued sequence s and an operator-valued sequence Q is then defined
as

(s ⋆ Q)(n)x :=

n∑
k=0

s(n− k)Q(k)x, n ∈ N0, x ∈ X.

For further use, we recall one of the following main results in [13].

Theorem 2.2. [13, Theorem 3.4] Let c : R+ → C be Laplace transformable such that ĉ(1) exists, and let

{S(t)}t≥0 ⊂ B(X) be strongly continuous and Laplace transformable such that Ŝ(1) exists. Then for all
x ∈ X,

P(c ∗ S)(n)x = (P(c) ⋆ P(S))(n)x, n ∈ N0.

We recall the sequence

(2.9) kα(n) :=
Γ(α+ n)

Γ(α)Γ(n+ 1)
=

∫ ∞

0

pn(t)gα(t)dt, n ∈ N0, α > 0,

where gα(t) =
tα−1

Γ(α) . This sequence has a strong connection with fractional difference equations, see for

instance [1, 8, 13] and references therein for more details.
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3. Solutions of Volterra difference equations in Banach spaces

Let A be a closed linear operator defined on a Banach space X. Consider the following initial value
problem  u(n+ 1)− u(n) = Au(n+ 1) +

n+1∑
k=0

a(n+ 1− k)Au(k), n ∈ N0

u(0) = x,

(3.10)

We will assume the following hypothesis:
(H1) There exists a(t) such that a = P(a);

(H2) the pair (b, A), where b(t) := 1 +
∫ t

0
a(s)ds, is the generator of a resolvent family {S(t)}t≥0 in X;

(H3) the initial value x belongs to D(A).

Definition 3.3. Given x ∈ X, we say that a vector valued sequence u ∈ s(N0, X) is a classical solution
to (3.10) if u(0) = x and u satisfies the difference equation in (3.10) for all n ∈ N0.

We begin with the following representation of the solutions for the linear problem (3.10).

Theorem 3.4. Suppose that (H1), (H2) and (H3) hold. Then, the Volterra difference equation (3.10)
admits the unique classical solution

u(n) =

∫ ∞

0

pn(t)S(t)(I − (1 + a(0))A)xdt, n ∈ N.

Proof. Following [13, Theorem 4.4] we first prove that if x ∈ X, then S(n)x := P(S)(n)x ∈ D(A) for all
n ∈ N0. In fact, if x ∈ X and n ∈ N0, then by [2, Theorem 1.5.1]

S(n)x =

∫ ∞

0

pn(t)S(t)xdt =
(−1)n

n!
[Ŝ(λ)](n)x |λ=1,

where

Ŝ(λ)x =
1

1 + â(λ)

(
λ

1 + â(λ)
−A

)−1

x := c(λ)(d(λ)−A)−1x,

and the functions c and d are defined by c(λ) := 1/(1 + â(λ)) and d(λ) := λ/(1 + â(λ)). Now, if

R(λ) := (λ−A)−1 then Ŝ(λ) = c(λ)R(d(λ)) and by the Leibniz’s rule for the nth-derivative of a product
we have

[Ŝ(λ)](n)x =

n∑
k=0

(
n

k

)
c(λ)(n−k)[(R ◦ d)(λ)](k).

Moreover, by the rule for the nth-derivative for the composition of functions, we obtain

[(R ◦ d)(λ)](k) =
k∑

j=1

Uj(λ)

j!
[R(λ)](j),

where

Uj(λ) := [d(λ)j ](n) − j

1!
d(λ)[d(λ)j−1](n) +

j(j − 1)

2!
d(λ)2[d(λ)j−2](n) − ...+ (−1)j−1jd(λ)j−1[d(λ)](n).

On the other hand, since [R(λ)](m)x = (λ−A)−(m+1)x for all x ∈ X andm ∈ N0, we obtain [R(λ)](j)x |λ=1=

(I−A)−(j+1)x ∈ D(A) and therefore [(R◦d)(λ)](k)x |λ=1∈ D(A).We conclude that [Ŝ(λ)](n)x |λ=1∈ D(A)
and thus S(n)x ∈ D(A) proving the claim.

Now, we take x ∈ X. Since, by (H2), b(t) = 1+
∫ t

0
a(r)dr we obtain from (H1) that b(n) := P(b)(n) =

1 +
∑n

k=0 a(k) =: 1 + (1 ⋆ a)(n), for each n ∈ N0. From the resolvent identity

S(t)x = x+A

∫ t

0

b(t− r)S(r)xdr, t ≥ 0,
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and taking Poisson transformation, it follows by Theorem 2.2, that

(3.11) S(n)x = x+A(b ⋆ S)(n)x, n ∈ N0.

Therefore, for x ∈ X we obtain

S(n)x = x+A

n∑
k=0

b(n− k)S(k)x = x+A

n∑
k=0

(1 + (1 ⋆ a))(n− k)S(k)x

= x+A

n∑
k=0

S(k)x+A

n∑
k=0

(1 ⋆ a)(n− k)S(k)x = x+A

n∑
k=0

S(k)x+A

n∑
k=0

(1 ⋆ a)(k)S(n− k)x.

Since (1 ⋆ a)(n) =
∑n

k=0 a(k), we obtain

S(n)x = x+A

n∑
k=0

S(k)x+A

n∑
k=0

 k∑
j=0

a(j)

S(n− k)x.(3.12)

Now, by (3.12) we have

S(n+ 1)x− S(n)x = AS(n+ 1)x+A

n+1∑
k=0

 k∑
j=0

a(j)

S(n+ 1− k)x−
n∑

k=0

 k∑
j=0

a(j)

S(n− k)x

 .
And a simply computation shows that

n+1∑
k=0

 k∑
j=0

a(j)

S(n+ 1− k)x−
n∑

k=0

 k∑
j=0

a(j)

S(n− k)x =

n+1∑
k=0

a(k)S(n+ 1− k) = (a ⋆ S)(n+ 1)x,

which implies that for x ∈ X we have S(n+1)x−S(n)x = AS(n+1)x+(a⋆AS)(n+1)x, for all n ∈ N0.
We conclude that S(n)x verifies the difference equation in (3.10).

Now, if x ∈ D(A) we define u(n) := S(n)(I − b(0)A)x, where b(0) = 1 + a(0). It then follows that
u(n) ∈ D(A) for all n ∈ N and u(n) solves the difference equation in (3.10). On the other hand, from
the identity S(0)x = x+ A(b ⋆ S)(0)x = x+ b(0)AS(0)x, it follows that u(0) = S(0)(I − b(0)A)x = x,
which means that u(n) is solution to the Volterra difference equation (3.10). Finally, the uniqueness of
u follows from the uniqueness of the resolvent family {S(t)}t≥0, see [23, Chapter I, Section 1]. �

As a consequence, we prove the following result for the non homogeneous problem.

Theorem 3.5. Suppose that (H1), (H2) and (H3) hold. Then, the following Volterra difference equation

(3.13)

 u(n+ 1)− u(n) = Au(n+ 1) +

n+1∑
k=0

a(n+ 1− k)Au(k) + f(n+ 1), n ∈ N0

u(0) = x,

where f : N0 → X, admits the unique classical solution

u(n) = S(n)(I − (1 + a(0))A)x+ (S ⋆ f)(n), n ∈ N.

Proof. We write y := (I − b(0)A)x, where b(0) = 1 + a(0), and define u(n) := S(n)y + (S ⋆ f)(n) for
n ≥ 1 and u(0) := S(0)(I − b(0)A)x. By (3.11) we have u(0) = x. Moreover, as in the proof of Theorem
3.4 we obtain

u(n+ 1)− u(n) = (S(n+ 1)− S(n))y + (S ⋆ f)(n+ 1)− (S ⋆ f)(n)
= AS(n+ 1)y + (a ⋆ AS)(n+ 1)y + (S ⋆ f)(n+ 1)− (S ⋆ f)(n).

We claim that

(S ⋆ f)(n+ 1)− (S ⋆ f)(n) = A(S ⋆ f)(n+ 1) +A(a ⋆ S ⋆ f)(n+ 1) + f(n+ 1).
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In fact, by (3.11) we obtain

(S ⋆ f)(m) =

m∑
k=0

S(m− k)f(k) =

m∑
k=0

f(k) +A

m∑
k=0

(b ⋆ S)(m− k)f(k) =

m∑
k=0

f(k) +A(b ⋆ S ⋆ f)(m),

for all m ∈ N0. Hence (S ⋆ f)(n+ 1)− (S ⋆ f)(n) = f(n+ 1) +A [(b ⋆ S ⋆ f)(n+ 1)− (b ⋆ S ⋆ f)(n)] . On
the other hand, since b(m) = 1 + (1 ⋆ a)(m) with (1 ⋆ a)(m) =

∑m
j=0 a(j) for all m ∈ N0, we obtain

(b ⋆ S ⋆ f)(n+ 1) − (b ⋆ S ⋆ f)(n) =
n+1∑
k=0

(b ⋆ S)(n+ 1− k)f(k)−
n∑

k=0

(b ⋆ S)(n− k)f(k)

= (S ⋆ f)(n+ 1) +

n+1∑
k=0

(1 ⋆ a)(n+ 1− k)(S ⋆ f)(k)−
n∑

k=0

(1 ⋆ a)(n− k)(S ⋆ f)(k)

= (S ⋆ f)(n+ 1) +

n+1∑
k=0

n+1−k∑
j=0

a(j)

 (S ⋆ f)(k)−
n∑

k=0

n−k∑
j=0

a(j)

 (S ⋆ f)(k)

= (S ⋆ f)(n+ 1) +

n+1∑
k=0

a(n+ 1− k)(S ⋆ f)(k) = (S ⋆ f)(n+ 1) + (a ⋆ S ⋆ f)(n+ 1),

which proves the claim. Therefore,

u(n+ 1)− u(n) = AS(n+ 1)y + (a ⋆ AS)(n+ 1)y +A(S ⋆ f)(n+ 1) +A(a ⋆ S ⋆ f)(n+ 1) + f(n+ 1)

= A[S(n+ 1)y + (S ⋆ f)(n+ 1)] + (a ⋆ AS)(n+ 1)y + (a ⋆ AS ⋆ f)(n+ 1) + f(n+ 1)

= Au(n+ 1) + (a ⋆ Au)(n+ 1) + f(n+ 1),

for all n ∈ N. The uniqueness follows as in Theorem 3.4, proving the Theorem. �

4. Stability Properties

In this section, we study the stability of the solution to the integro-difference equation (3.10). We
recall that a vector-valued sequence u ∈ s(N0, X) is said to be stable if ∥u(n)∥ → 0 as n→ ∞. From [16,
Section 2.3] we recall the following definition.

Definition 4.6. Let X be a Banach space. A strongly continuous function T : R+ → B(X) is said to be
immediately norm continuous if T : (0,∞) → B(X) is continuous.

Now, we consider the equation (3.10) where the kernel a(t) is given by

a(n) =
α

(β + 1)µ+n
kµ(n), n ∈ N0.

with α ∈ R and µ, β > 0. We assume the following hypothesis in the parameters of the kernel a and on
the operator A :

(S1) α ̸= 0, β > 0 and µ ≥ 1 such that α+ βµ > 0.
(S2) A generates an immediately norm continuous C0-semigroup.
(S3) sup{Reλ, λ ∈ C : λ(λ+ β)µ((λ+ β)µ + α)−1 ∈ σ(A)} < 0.

Theorem 4.7. Let x ∈ D(A). Suppose that the hypothesis (S1), (S2) and (S3) hold. Then, there exists
a unique stable solution to the problem (3.10).

Proof. We verify (H1) because a = P(a) where a(t) = α tµ−1

Γ(µ) e
−βt. Since (S1)-(S3) hold, we have by [3,

Proposition 3.1] (see also [14]), that the pair (b, A) generates a resolvent family {Sµ
α,β(t)}t≥0 ⊂ B(X)

where b(t) = 1+α
∫ t

0
rµ−1

Γ(µ) e
−βrdr, and therefore (H3) holds. Moreover, Proposition 3.1 in [3] asserts that
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Sµ
α,β(t) is uniformly exponentially stable, that is, there exist M,ω > 0 such that ∥Sµ

α,β(t)∥ ≤ Me−ωt for
all t ≥ 0. Consequently, by Theorem 3.4 we have

∥u(n)∥ ≤
∫ ∞

0

pn(t)∥Sµ
α,β(t)(I − (1− a(0)A)x∥dt

≤M

∫ ∞

0

pn(t)e
−ωtdt∥(I − (1− a(0)A)x∥ =

M

(ω + 1)n+1
∥(I − (1− a(0)A)x∥ → 0

as n→ ∞. This proves the theorem. �

Now, we consider the scalar case, that is, we assume that A = ρI, where ρ is a real number. In such
case, we will show that we can find an explicit representation of the resolvent families {Sµ

α,β(t)}t≥0 and

Sµ
α,β(n) for all n ∈ N0. In fact, from (2.8) it is not difficult to see that the Laplace transform of the family

{Sµ
α,β(t)}t≥0 is given by

Ŝµ
α,β(λ) =

(λ+ β)µ

(λ+ β)µ+1 − (ρ+ β)(λ+ β)µ − αρ
.

Using the properties of the Laplace transform, we obtain Sµ
α,β(t) = e−βtRµ

α,β(t), where R
µ
α,β(t) is a

function whose Laplace transform is given by

R̂µ
α,β(λ) =

λµ

λµ+1 − (ρ+ β)λµ − αρ
.

Since ∣∣∣∣ (ρ+ β)λµ

λµ+1 − αρ

∣∣∣∣ < 1,

for λ large enough, we obtain by [11, Formula 17.6],

Rµ
α,β(t) =

∞∑
j=0

(ρ+ β)jtjEj+1
µ+1,j+1(αρt

µ+1), t ≥ 0,

where Eγ
p,q(z) :=

∑∞
j=0

kγ(j)zj

Γ(q+pj) is the generalized Mittag-Leffer type function defined for p, q, γ > 0, see

for instance [11, Section 11]. Therefore, we conclude that

(4.14) Sµ
α,β(t) = e−βt

∞∑
j=0

(ρ+ β)jtjEj+1
µ+1,j+1(αρt

µ+1), t ≥ 0.

Now, we compute Sµ
α,β(n) when A = ρI. By (4.14) we have

Sµ
α,β(n) =

∫ ∞

0

pn(t)S
µ
α,β(t)dt =

∫ ∞

0

e−t t
n

n!
e−βt

∞∑
j=0

(ρ+ β)jtjEj+1
µ+1,j+1(αρt

µ+1)dt

=
1

Γ(n+ 1)

∞∑
j=0

(ρ+ β)j
∫ ∞

0

e−(β+1)tt(n+j+1)−1Ej+1
µ+1,j+1(αρt

µ+1)dt.

Observe that the last integral corresponds to the Laplace transform of the function

h(t) := t(n+j+1)−1Ej+1
µ+1,j+1(αρt

µ+1)

evaluated at λ = (β + 1). Using [11, Formula 11.15] we obtain

Sµ
α,β(n) =

1

Γ(n+ 1)

∞∑
j=0

(ρ+ β)j
(β + 1)−(n+j+1)

Γ(j + 1)
2ψ1

[
(j + 1, 1); (n+ j + 1, µ+ 1)
(j + 1, µ+ 1)

∣∣∣∣ αρ

(β + 1)µ+1

]
,
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where 2ψ1[ · |z] is the generalized Wright function. From [11, Formula 8.5] it follows that

2ψ1

[
(j + 1, 1); (n+ j + 1, µ+ 1)
(j + 1, µ+ 1)

∣∣∣∣ αρ

(β + 1)µ+1

]
=

∞∑
r=0

Γ(j + 1 + r)Γ(j + 1 + (µ+ 1)r + n)

Γ(j + 1 + (µ+ 1)r)

(
αρ

(β + 1)µ+1

)r
1

r!

Using the sequence kα defined in (2.9), we can write

Sµ
α,β(n) =

∞∑
j=0

(ρ+ β)j(β + 1)−(n+j+1) ×

∞∑
r=0

Γ(j + 1 + r)

Γ(j + 1)Γ(r + 1)

Γ(j + 1 + (µ+ 1)r + n)

Γ(j + 1 + (µ+ 1)r)Γ(n+ 1)

(
αρ

(β + 1)µ+1

)r

=

∞∑
j=0

(ρ+ β)j

(β + 1)(n+j+1)

∞∑
r=0

kj+1(r)k(j+1)+(µ+1)r(n)

(
αρ

(β + 1)µ+1

)r

.

This gives the claimed representation.
Now, we consider the difference equation

(4.15)

 u(n+ 1)− u(n) = ρu(n+ 1) +
αρ

(β + 1)µ

n+1∑
k=0

kµ(n+ 1− k)

(β + 1)n+1−k
u(k), n ∈ N0

u(0) = x,

Since A = ρI trivially generates an immediately norm continuous C0-semigroup, we obtain the following
result.

Proposition 4.8. Assume the hypothesis (S1) and x ∈ X. Then, the difference equation (4.15) has the
classical solution

u(n) =
(β + 1)µ(1− ρ)− αρ

(β + 1)µ
Sµ
α,β(n)x.

Moreover, ∥u(n)∥ → 0 as n→ ∞.

Proof. An easy computation shows that the pair (a, ρI) generates the resolvent family {Sµ
α,β(t)}t≥0,

where a(t) = α tµ−1

Γ(µ) e
−βt. Since a = P(a) and b(0) = 1 + a(0) = 1 + α

(β+1)µ k
µ(0) = 1 + α

(β+1)µ , we have

(1− b(0)ρ) = (β+1)µ(1−ρ)−αρ
(β+1)µ and the conclusion follows from Theorem 3.4. �

For the next result, we need to recall the following definition.

Definition 4.9. [23, Section 3.2] Let k ∈ N and a ∈ L1
loc(R+). The kernel a is called k-regular if there

is a constant c > 0 such that |λnâ(n)(λ)| ≤ c|â(λ)|, for all Reλ > 0 and 1 ≤ n ≤ k.

We obtain the following criteria for the stability of the solutions for (3.10) in Hilbert spaces.

Proposition 4.10. Let H be a Hilbert space. We assume the following hypothesis:

(P1) a = P(a) where a ∈ L1
loc(R+) is 1-regular.

(P2) the pair (b, A) is the generator of an exponentially bounded resolvent family {S(t)}t≥0 in H.
(P3) 0 ∈ ρ(A)
(P4) 1

b̂(λ)
∈ ρ(A) for all Re(λ) ≥ 0, λ ̸= 0.

(P5) H(λ) := (λ− (1 + â(λ))A)−1 is uniformly bounded in C+ := {λ ∈ C : Re(λ) > 0}.
Then, the classical solution to the difference initial value problem (3.10) exists and is stable.
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Proof. The 1-regularity of the kernel a implies the existence of a constant d > 0 such that |λâ′(λ)| ≤
d|â(λ)|. Since b(t) = 1 + (1 ∗ a)(t), we obtain

|λb̂′(λ)| =
∣∣∣∣− 1

λ
− 1

λ
â(λ) + â′(λ)

∣∣∣∣ ≤ |b̂(λ)|+ d
|â(λ)|
|λ|

≤ |b̂(λ)|+ d
|1 + â(λ)|

|λ|
= (d+ 1)|b̂(λ)|,

for all Reλ > 0, which means that b is a 1-regular kernel. On the other hand, limλ→0 λb̂(λ) = limλ→0(1+
â(λ)) = 1 + â(0) ̸= 0. By [15, Theorem 1] we conclude that the resolvent family {S(t)}t≥0 is uniformly
stable. Then, the dominated convergence theorem shows that limn→∞ ∥S(n)∥ = 0. Finally, an application
of Theorem 3.4 finishes the proof. �
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