# DISCRETIZATION OF $C_{0}$-SEMIGROUPS AND DISCRETE SEMIGROUPS OF OPERATORS IN BANACH SPACES. 

$$
\begin{equation*}
41 \tag{1.1}
\end{equation*}
$$

under the initial condition $u(0)=x_{0}$ is given by (see for instance [3, Proposition 3.1.16])

$$
\begin{equation*}
u(t)=T(t) x_{0}, \quad t \geq 0 . \tag{1.2}
\end{equation*}
$$

Now, let $\tau>0$ be a time step-size. Since for each $x \in X$, the function $L:[0, \infty) \rightarrow X$, defined by $L(t):=T(t) x$ is continuous, then a natural way to approximate the function $L$ on an interval $[0, T]$ is to define $L_{\tau}^{n}:=L\left(t_{n}\right)$, where $t_{n}:=\tau n$ and $1 \leq n \leq N$, and $T:=\tau / N$ with $N \in \mathbb{N}$ being a fixed natural number. This means that $L_{\tau}^{n}$ approximates the $C_{0}$-semigroup and therefore it also approximates the solution $u(t)$ at $t_{n}$ on the interval $[0, T]$, that is $L_{\tau}^{n} \simeq T\left(t_{n}\right) x_{0}=u\left(t_{n}\right)$. As $T(t) T(s)=T(t+s)$ for all $t, s \geq 0$, then $\left\{L_{\tau}^{n}\right\}_{n \in \mathbb{N}_{0}}$ satisfies the semigroup law $L_{\tau}^{m+n}=L_{\tau}^{n} L_{\tau}^{m}$ for all $m, n \in \mathbb{N}$.

On the other hand, if we consider the same operator $A$ and the abstract difference equation of first order

$$
\begin{equation*}
\nabla u^{n}=A u^{n}, \quad n \in \mathbb{N}, \tag{1.3}
\end{equation*}
$$

under the initial condition $u^{0}=x_{0}$, where $\nabla u^{n}$ is the backward Euler operator $\nabla u^{n}:=\frac{u^{n}-u^{n-1}}{\tau}$, then (1.3) can be seen as a discretization of equation (1.1). We notice that if $\tau^{-1} \in \rho(A)$, then the solution to the difference equation (1.3) is given by

$$
\begin{equation*}
u^{n}=\tau^{-n}\left(\tau^{-1}-A\right)^{-n} x_{0}, \tag{1.4}
\end{equation*}
$$

for all $n \in \mathbb{N}_{0}$. As $B_{\tau}:=\tau^{-1}\left(\tau^{-1}-A\right)^{-1}$ is a bounded operator and $B_{\tau}^{m} B_{\tau}^{n}=B_{\tau}^{m+n}$ for all $m, n \in \mathbb{N}_{0}$, then $\left\{B_{\tau}^{m}\right\}_{m \in \mathbb{N}_{0}}$ is a discrete semigroup generated by $B_{\tau}$, and the solution to (1.4) can be written as $u^{n}=B_{\tau}^{n} x_{0}$. The problem of the existence of solutions to equation (1.3) for bounded operators $A$ has been studied by many authors, see for instance [ $5,6,7,17,19$ ], and there is an extensive literature on the properties of discrete semigroups generated by bounded operators, see $[4,9,10,11,14,21,23]$ for further details. For closed linear operators and related problems, we refer to the recent papers [2, 18, 22]. But, is there any connection between discrete semigroups and the discretization of semigroups? To the best

[^0]of our knowledge, there are no works connecting discretization of $C_{0}$-semigroups and discrete semigroups generated by closed (possibly unbounded) linear operators $A$.

In this paper, we introduce the notion of $\tau$-discrete semigroups $\left\{T_{\tau}^{n}\right\}_{n \in \mathbb{N}_{0}}$ generated by a closed linear operator $A$ in a Banach space $X$. We study its main properties and we prove that the inhomogeneous problem of first order

$$
\begin{equation*}
\nabla u^{n}=A u^{n}+f^{n}, \quad n \in \mathbb{N}, \tag{1.5}
\end{equation*}
$$

under the initial condition $u^{0}=x_{0} \in X$, where $\left(f^{n}\right)_{n}$ is a given bounded sequence, can be written as a variation of parameters formula, similarly to the continuous case. Moreover, we prove that $\left\{T_{\tau}^{n}\right\}_{n \in \mathbb{N}_{0}}$ is, in fact, a discrete semigroup generated by $B_{\tau}$ and we find a subordination relation between the $C_{0}$ semigroup and a $\tau$-discrete semigroup generated by the same operator $A$. More precisely, we show that if $A$ generates the $C_{0}$-semigroup $\{T(t)\}_{t \geq 0}$, then

$$
T(t) x=\lim _{\tau \rightarrow 0^{+}} \tau \sum_{n=1}^{\infty} q_{n}^{\tau}(t) T_{\tau}^{n} x, \quad t \geq 0 .
$$

for all $x \in X$, where $\left\{T_{\tau}^{n}\right\}_{n \in \mathbb{N}_{0}}$ is the $\tau$-discrete semigroup defined by

$$
T_{\tau}^{0} x:=x, \quad T_{\tau}^{n} x:=\int_{0}^{\infty} q_{n}^{\tau}(t) T(t) x d t, \quad n \in \mathbb{N},
$$

$\sigma$ and $q_{n}^{\tau}(t):=e^{-t / \tau \frac{(t / \tau)^{n-1}}{(n-1)!\tau}}, n \in \mathbb{N}$. As a consequence, we give a characterization of uniform exponential stability of $\{T(t)\}_{t \geq 0}$ in terms of $\left\{T_{\tau}^{n}\right\}_{n \in \mathbb{N}_{0}}$.

The paper is organized as follows. In Section 2 we give the preliminaries. In Section 3 we introduce the $\tau$-discrete semigroups $\left\{T_{\tau}^{n}\right\}_{n \in \mathbb{N}_{0}}$ and we study its main properties. In Section 4, we study a connection between $\{T(t)\}_{t \geq 0}$ and $\left\{T_{\tau}^{n}\right\}_{n \in \mathbb{N}_{0}}$. Moreover, we study the existence and uniqueness of solution to the difference equation of first order (1.5), and we given necessary and sufficient conditions on $\left\{T_{\tau}^{n}\right\}_{n \in \mathbb{N}}$ to obtain uniform exponential stability of $\{T(t)\}_{t \geq 0}$. Finally, in Section 5 we give some examples.

## 2. Preliminaries

We denote the set of non-negative integer numbers by $\mathbb{N}_{0}$. For a fixed $\tau>0$ and $n \in \mathbb{N}$, we define the positive functions $q_{n}^{\tau}$ by

$$
q_{n}^{\tau}(t):=e^{-\frac{t}{\tau}}\left(\frac{t}{\tau}\right)^{n-1} \frac{1}{\tau(n-1)!} .
$$

$$
\begin{equation*}
u^{n}:=\int_{0}^{\infty} q_{n}^{\tau}(t) u(t) d t, \quad n \in \mathbb{N} . \tag{2.6}
\end{equation*}
$$

For $\tau>0$ small enough, we notice that the function $t \mapsto q_{n}^{\tau}(t)$ behaves like a delta function at $t_{n}:=n \tau$, and therefore, $u^{n}$ approximates $u\left(t_{n}\right)$.

For a given Banach space $X, s\left(\mathbb{N}_{0}, X\right)$ denotes the vectorial space consisting of all vector-valued sequences $v: \mathbb{N}_{0} \rightarrow X$. The backward Euler operator $\nabla_{\tau}: s\left(\mathbb{N}_{0}, X\right) \rightarrow s\left(\mathbb{N}_{0}, X\right)$ is defined by

$$
\nabla_{\tau} v^{n}:=\frac{v^{n}-v^{n-1}}{\tau}, \quad n \in \mathbb{N} .
$$

For a given $\alpha>0$, we define the following sequence

$$
\begin{equation*}
k_{\tau}^{\alpha}(n)=\frac{\tau^{\alpha-1} \Gamma(\alpha+n)}{\Gamma(\alpha) \Gamma(n+1)}, \quad n \in \mathbb{N}_{0} . \tag{2.7}
\end{equation*}
$$

1 In particular, we notice that $k_{\tau}^{1}(n)=1$ for all $n \in \mathbb{N}_{0}$. Moreover, as in [22, Corollary 2.9] (see also [1,

$$
\begin{equation*}
k_{\tau}^{\alpha+\beta}(n)=\tau \sum_{j=0}^{n} k_{\tau}^{\alpha}(n-j) k_{\tau}^{\beta}(j) \tag{2.8}
\end{equation*}
$$

For a given discrete sequence of operators $\left\{S^{n}\right\}_{n \in \mathbb{N}_{0}} \subset \mathcal{B}(X)$ and a scalar sequence $c=\left(c^{n}\right)_{n \in \mathbb{N}_{0}}$, we define the discrete convolution $c \star S$ as

$$
(c \star S)^{n}:=\sum_{k=0}^{n} c^{n-k} S^{k}, \quad n \in \mathbb{N}_{0}
$$

$$
\begin{equation*}
\int_{0}^{\infty} q_{n}^{\tau}(t)\left(g_{1} * S\right)(t) x d t=\tau \sum_{j=1}^{n} k_{\tau}^{1}(n-j) S^{j} x=\tau \sum_{j=1}^{n} S^{j} x, \quad x \in X, n \in \mathbb{N} \tag{2.9}
\end{equation*}
$$

where $\{S(t)\}_{t \geq 0} \subset \mathcal{B}(X)$ is a Laplace transformable family of linear operators, the $*$ denotes the usual continuous convolution, that is, $(g * S)(t):=\int_{0}^{t} g(t-r) S(r) d r$, and $S^{j}:=\int_{0}^{\infty} q_{j}^{\tau}(t) S(t) d t$.

The $Z$-transform of a sequence $s \in s\left(\mathbb{N}_{0}, X\right)$ at $z \in \mathbb{C}$, is defined by $\tilde{s}(z):=\sum_{j=0}^{\infty} z^{-j} s^{j}$, where $s^{j}:=s(j)$, and the convergence of this series holds for $|z|>R$, for $R$ large enough. It is a well known fact that if $s_{1}, s_{2} \in s\left(\mathbb{N}_{0}, X\right)$ and $\tilde{s_{1}}(z)=\tilde{s_{2}}(z)$ for all $|z|>R$ for some $R>0$, then $s_{1}^{j}=s_{2}^{j}$ for all $j=0,1, \ldots$ Moreover, the $Z$-transform is a linear operator on $s\left(\mathbb{N}_{0}, X\right)$ and satisfies the finite discrete convolution property

$$
\begin{equation*}
\widetilde{s_{1} \star s_{2}}(z)=\tilde{s_{1}}(z) \tilde{s_{2}}(z), \quad s_{1}, s_{2} \in s\left(\mathbb{N}_{0}, X\right) \tag{2.10}
\end{equation*}
$$

We say that an operator $A: D(A) \subset X \rightarrow X$ is said to be sectorial of angle $\theta$ if there exist $M>0$ and $\theta \in(\pi / 2, \pi)$ such that $\rho(A) \supset \Sigma_{\theta}:=\{z \in \mathbb{C}:|\arg (z)|<\theta\}$ and

$$
\left\|(z-A)^{-1}\right\| \leq \frac{M}{|z|} \quad \text { for all } \quad z \in \Sigma_{\theta}
$$

In this case, we write $A \in \operatorname{Sect}(\theta, M)$. For further details on sectorial operators, see for instance [12].
For a given linear and closed operator $A$ whose resolvent set contains the negative half-line $(-\infty, 0]$, (for example, if $A$ is a sectorial operator) and $0 \leq \varepsilon \leq 1, X^{\varepsilon}$ denotes the domain of the fractional power $A^{\varepsilon}$, that is $X^{\varepsilon}:=D\left(A^{\varepsilon}\right)$ endowed with the graph norm $\|x\|_{\varepsilon}=\left\|A^{\varepsilon} x\right\|$. Hence, $X^{1}$ corresponds to the domain of $A$, and $X^{0}$ to the space $X$. It is a well known fact that if $0<\varepsilon<1$, and $x \in D(A)$, then there exists a constant $K \equiv K_{\varepsilon}>0$ such that (see [20])

$$
\begin{equation*}
\left\|A^{\varepsilon} x\right\| \leq K\|A x\|^{\varepsilon}\|x\|^{1-\varepsilon} \tag{2.11}
\end{equation*}
$$

17 Definition 2.1. A family of linear operators $\{S(t)\}_{t \geq 0} \subset \mathcal{B}(X)$ is said to be exponentially bounded, if

Proposition 2.2. Let $\{S(t)\}_{t \geq 0} \subset \mathcal{B}(X)$ be a family of exponentially bounded linear operators with $\|S(t)\| \leq M e^{\omega t}$, where $M>0$ and $\omega<\frac{1}{\tau}$. Let $x \in X$. If we define the sequence $\left\{S^{n} x\right\}_{n \in \mathbb{N}_{0}}$ by

$$
S^{0} x:=x \quad \text { and } \quad S^{n} x:=\int_{0}^{\infty} q_{n}^{\tau}(t) S(t) x d t, n \in \mathbb{N}
$$

then

$$
\tilde{S}(z) x=\frac{1}{\tau z} \hat{S}\left(\frac{1}{\tau}\left(1-\frac{1}{z}\right)\right) x+x
$$

19 for all $|z|>1$ and $x \in X$.

$$
\begin{equation*}
T_{\tau}^{n} x=x+\tau A \sum_{j=1}^{n} T_{\tau}^{j} x \tag{3.12}
\end{equation*}
$$

Moreover, we define the resolvent operator $R_{\tau}: X \rightarrow D(A)$ by

$$
R_{\tau}:=\tau^{-1}\left(\tau^{-1}-A\right)^{-1}
$$

Proposition 3.4. Let $\left\{T_{\tau}^{n}\right\}_{n \in \mathbb{N}_{0}} \subset B(X)$ be a $\tau$-discrete semigroup generated by $A$. Then,
(1) $\tau^{-1} \in \rho(A)$, and
(2) $T_{\tau}^{n}=R_{\tau}^{n}$ for all $n \in \mathbb{N}_{0}$.

Proof. To prove (1), we notice that by (3.12), we get $T_{\tau}^{1} x=x+\tau A T_{\tau}^{1} x$ for all $x \in X$, which implies that $\left(\tau^{-1}-A\right) T_{\tau}^{1} x=\tau^{-1} x$. Since $A$ and $T_{\tau}^{n}$ commute, we obtain

$$
T_{\tau}^{1}\left(\tau^{-1}-A\right) x=\tau^{-1} T_{\tau}^{1} x-T_{\tau}^{1} A x=\left(\tau^{-1}-A\right) T_{\tau}^{1} x=\tau^{-1} x
$$

for all $x \in X$. As $A$ is a closed linear operator, we obtain that $\tau^{-1} \in \rho(A)$ and for each $x \in X$, $T_{\tau}^{1} x=\tau^{-1}\left(\tau^{-1}-A\right)^{-1} x$. Moreover, this last equality proves (2) for $n=1$. If we assume (2) for $n$, then, by definition, we get

$$
T_{\tau}^{n+1} x=x+\tau A \sum_{j=1}^{n} T_{\tau}^{j} x+\tau A T_{\tau}^{n+1} x
$$

which implies that

$$
\tau\left(\tau^{-1}-A\right) T_{\tau}^{n+1} x=x+A \sum_{j=1}^{n} T_{\tau}^{j} x=T_{\tau}^{n} x=R_{\tau}^{n} x
$$

and hence $T_{\tau}^{n+1} x=\tau^{-1}\left(\tau^{-1}-A\right)^{-1} R_{\tau}^{n} x=R_{\tau}^{n+1} x$ for all $x \in X$.
Corollary 3.5. If $\left\{T_{\tau}^{n}\right\}_{n \in \mathbb{N}_{0}}$ is a $\tau$-discrete semigroup generated by $A$, then $T_{\tau}^{n+m}=T_{\tau}^{n} T_{\tau}^{m}=T_{\tau}^{m} T_{\tau}^{n}$ for all $m, n \in \mathbb{N}_{0}$.

Proof. In fact, by Proposition 3.4, $T_{\tau}^{m+n} x=R_{\tau}^{m+n} x=R_{\tau}^{m} R_{\tau}^{n} x=T_{\tau}^{m} T_{\tau}^{n} x$ and $T_{\tau}^{m} T_{\tau}^{n} x=T_{\tau}^{n} T_{\tau}^{m} x$ for all $m, n \in \mathbb{N}_{0}$ and $x \in X$.

We notice that $A$ is the generator of a $\tau$-discrete semigroup $\left\{T_{\tau}^{n}\right\}_{n \in \mathbb{N}_{0}}$ in the sense of Definition 3.3 if and only if $T_{\tau}^{n} T_{\tau}^{m} x=T_{\tau}^{n+m} x$ for all $m, n \in \mathbb{N}_{0}$ and $x \in X$. In fact, if $\left\{T_{\tau}^{n}\right\}_{n \in \mathbb{N}_{0}}$ is a $\tau$-discrete semigroup generated by $A$, then

$$
\left(\sum_{j=1}^{m} T_{\tau}^{j}\right) T_{\tau}^{n} x=\sum_{j=1}^{m} T_{\tau}^{j} x+\left(\tau A \sum_{j=1}^{m} T_{\tau}^{j}\right)\left(\sum_{j=1}^{m} T_{\tau}^{j} x\right)=\sum_{j=1}^{m} T_{\tau}^{j} x+T_{\tau}^{m} \sum_{j=1}^{n} T_{\tau}^{j} x-\sum_{j=1}^{n} T_{\tau}^{j} x
$$

that is,

$$
\left(\sum_{j=1}^{m} T_{\tau}^{j}\right) T_{\tau}^{n} x-T_{\tau}^{m}\left(\sum_{j=1}^{n} T_{\tau}^{j} x\right)=\sum_{j=1}^{m} T_{\tau}^{j} x-\sum_{j=1}^{n} T_{\tau}^{j} x
$$

for all $x \in X$. As $T_{\tau}^{0}=I$, we can write the last equality as

$$
\left(\sum_{j=0}^{m} T_{\tau}^{j}\right) T_{\tau}^{n} x-T_{\tau}^{n} x-T_{\tau}^{m}\left(\sum_{j=0}^{n} T_{\tau}^{j} x\right)+T_{\tau}^{m} x=\sum_{j=0}^{m} T_{\tau}^{j} x-\sum_{j=0}^{n} T_{\tau}^{j} x
$$

By [4, Example 1.2.1], taking $Z$-transform (in $m$ ) we get

$$
\frac{z}{z-1} \tilde{T}_{\tau}(z) T_{\tau}^{n} x-\frac{z}{z-1} T_{\tau}^{n} x-\tilde{T}_{\tau}(z)\left(\sum_{j=0}^{n} T_{\tau}^{j} x\right)+\tilde{T}_{\tau}(z) x=\frac{z}{z-1} \tilde{T}_{\tau}(z) x-\frac{z}{z-1} \sum_{j=0}^{n} T_{\tau}^{j} x
$$

3 and, next, taking $Z$-transform (in $n$ ) we obtain

$$
\begin{aligned}
\frac{z}{z-1} \tilde{T}_{\tau}(z) \tilde{T}_{\tau}(w) x-\frac{z}{z-1} \tilde{T}_{\tau}(w) x-\frac{w}{w-1} \tilde{T}_{\tau}(z) \tilde{T}_{\tau}(w) x+\frac{w}{w-1} \tilde{T}_{\tau}(z) x= & \frac{z}{z-1} \frac{w}{w-1} \tilde{T}_{\tau}(z) x \\
& -\frac{z}{z-1} \frac{w}{w-1} \tilde{T}_{\tau}(w) x
\end{aligned}
$$

which is equivalent to

$$
(w-z) \tilde{T}_{\tau}(z) \tilde{T}_{\tau}(w) x=w \tilde{T}_{\tau}(z) x-z \tilde{T}_{\tau}(w) x
$$

for all $x \in X$. On the other hand, if we assume $T_{\tau}^{n+m} x=T_{\tau}^{n} T_{\tau}^{m} x$ for all $m, n \in \mathbb{N}_{0}$ and $x \in X$, then taking $Z$-transform in $n$ we have

$$
\sum_{j=0}^{\infty} z^{-j} T_{\tau}^{j+m} x=\tilde{T}_{\tau}(z) T_{\tau}^{m} x
$$

On the other hand, we notice that

$$
\sum_{j=0}^{\infty} z^{-j} T_{\tau}^{j+m} x=z^{m} \tilde{T}_{\tau}(z) x-\sum_{r=0}^{m-1} T_{\tau}^{r} z^{m-r} x=z^{m} \tilde{T}_{\tau}(z) x-\sum_{r=0}^{m} T_{\tau}^{r} z^{m-r} x+T_{\tau}^{m} x
$$

and taking $Z$-transform in $m$, we get by [4, Example 1.2.1]

$$
\frac{w}{w-z} \tilde{T}_{\tau}(z) x-\frac{w}{w-z} \tilde{T}_{\tau}(w) x+\tilde{T}_{\tau}(w) x=\tilde{T}_{\tau}(z) \tilde{T}_{\tau}(w) x
$$

that is,

$$
w \tilde{T}_{\tau}(z) x-z \tilde{T}_{\tau}(w) x=(w-z) \tilde{T}_{\tau}(z) \tilde{T}_{\tau}(w) x
$$

Therefore, we obtain that $A$ is the generator of a $\tau$-discrete semigroup $\left\{T_{\tau}^{n}\right\}_{n \in \mathbb{N}_{0}}$ according to Definition 3.3 if and only if $T_{\tau}^{n} T_{\tau}^{m} x=T_{\tau}^{n+m} x$ for all $m, n \in \mathbb{N}_{0}$ and $x \in X$.

The next result shows that there exists a unique $\tau$-discrete semigroup generated by an operator $A$.
Proposition 3.6. Assume that $\left\{T_{\tau}^{n}\right\}_{n \in \mathbb{N}_{0}}$ and $\left\{Q_{\tau}^{n}\right\}_{n \in \mathbb{N}_{0}}$ are $\tau$-discrete semigroups generated by $A$. Then $T_{\tau}^{n}=Q_{\tau}^{n}$ for all $n \in \mathbb{N}_{0}$.

Proof. Let $x \in X$. Define $h(n):=T_{\tau}^{n} x-Q_{\tau}^{n} x, n \in \mathbb{N}_{0}$. Then, $T_{\tau}^{0} x=Q_{\tau}^{0} x=I$, and by Proposition 3.4 we have $T_{\tau}^{1} x=Q_{\tau}^{1} x=R_{\tau}$, and thus $h(0)=h(1)=0$. Now, by Definition 3.3, we have

$$
h(n)=\tau A \sum_{j=1}^{n} h(j), \quad n \geq 2
$$

which implies that $(I-\tau A) h(n)=\tau A \sum_{j=1}^{n-1} h(j)$. As $\tau^{-1} \in \rho(A)$ (by Proposition 3.4), we get $h(n)=0$ for all $n \geq 2$. Therefore $T_{\tau}^{n} x=Q_{\tau}^{n} x$ for all $n \in \mathbb{N}_{0}$ and $x \in X$.

Proposition 3.7. Let $\left\{T_{\tau}^{n}\right\}_{n \in \mathbb{N}_{0}} \subset B(X)$ be a $\tau$-discrete semigroup generated by $A$. Then, its $Z$-transform satisfies

$$
\begin{equation*}
\widetilde{T}_{\tau}(z) x=\frac{1}{\tau}(I-\tau A)\left(\left(\frac{z-1}{\tau z}\right)-A\right)^{-1} x, \quad \text { for all } x \in X \tag{3.13}
\end{equation*}
$$

Proof. By Proposition 3.4, $T_{\tau}^{n}=R_{\tau}^{n}$ for all $n \in \mathbb{N}_{0}$. Since $R_{\tau}=\tau^{-1}\left(\tau^{-1}-A\right)^{-1}$ is a bounded operator, we get (by [16, Table 18.4]) for all $x \in X$ and $|z|>\left\|R_{\tau}\right\|$ that

$$
\widetilde{T}_{\tau}(z) x=\sum_{n=0}^{\infty} z^{-n} T_{\tau}^{n} x=\sum_{n=0}^{\infty} z^{-n} R_{\tau}^{n} x=z\left(z-\tau^{-1}\left(\tau^{-1}-A\right)^{-1}\right)^{-1} x=\frac{1}{\tau}(I-\tau A)\left(\left(\frac{z-1}{\tau z}\right)-A\right)^{-1} x
$$

6 Proposition 3.8. Let $\tau>0$. If $A$ is a bounded operator with $\tau\|A\|<1$, then $A$ generates the $\tau$-discrete semigroup $\left\{T_{\tau}^{n}\right\}_{n \in \mathbb{N}_{0}}$ defined by

$$
\begin{equation*}
T_{\tau}^{0}:=I, \quad \text { and for } n \geq 1, \quad T_{\tau}^{n}:=\sum_{j=0}^{\infty} \tau^{j} \frac{\Gamma(j+n)}{\Gamma(j+1) \Gamma(n)} A^{j}=\sum_{j=0}^{\infty} \tau^{j}\binom{j+n-1}{j} A^{j} \tag{3.14}
\end{equation*}
$$

Proof. Let $x \in X$ and $n \in \mathbb{N}$. We first notice that

$$
\tau^{j} \frac{\Gamma(j+n)}{\Gamma(j+1) \Gamma(n)}=k_{\tau}^{j+1}(n-1), \quad n \in \mathbb{N}
$$

Since the series in (3.14) converges for $\tau\|A\|<1$ (see [16, Formula 8.328]) we get by (2.8) that

$$
\tau A \sum_{j=1}^{n} T_{\tau}^{j} x=\sum_{l=0}^{\infty} A^{l+1} \tau \sum_{j=1}^{n} k_{\tau}^{l+1}(j-1) x=\sum_{l=0}^{\infty} A^{l+1} \tau \sum_{m=0}^{n-1} k_{\tau}^{l+1}(m) x=\sum_{l=0}^{\infty} A^{l+1} k_{\tau}^{l+2}(n-1) x
$$

As $k_{\tau}^{1}(m)=1$ for all $m \in \mathbb{N}$, we get

$$
\tau A \sum_{j=1}^{n} T_{\tau}^{j} x=\sum_{j=0}^{\infty} k_{\tau}^{j+1}(n-1) A^{j} x-k_{\tau}^{1}(n-1) x=\sum_{j=0}^{\infty} k_{\tau}^{j+1}(n-1) A^{j} x-x=T_{\tau}^{n} x-x
$$

Next, we recall that for a given bounded operator $L \in \mathcal{B}(X)$, the sequence $\mathcal{L}: \mathbb{N}_{0} \rightarrow \mathcal{B}(X)$ given by $\mathcal{L}(n):=L^{n}$ defines a time-discrete semigroup generated by $L-I$, which satisfies $\mathcal{L}(n+m)=\mathcal{L}(n) \mathcal{L}(m)$ for all $n, m \in \mathbb{N}_{0}$ and $\mathcal{L}(0)=I$, see [4] for more details. Sometimes the operator $L$ is also called the generator of the discrete semigroup $\{\mathcal{L}(n)\}_{n \in \mathbb{N}_{0}}$, see for instance [14].

The next result relates $\tau$-discrete semigroups and discrete semigroups in a Banach space.
Proposition 3.9. Let $\tau>0$. Let $\left\{T_{\tau}^{n}\right\}_{n \in \mathbb{N}_{0}}$ be a $\tau$-discrete semigroup generated by a closed linear operator A. Then, $\left\{T_{\tau}^{n}\right\}_{n \in \mathbb{N}_{0}}$ is a discrete semigroup generated by $L:=\tau^{-1}\left(\tau^{-1}-A\right)^{-1}=R_{\tau}$.

$$
\begin{equation*}
T(t) x=x+A \int_{0}^{t} T(s) x d s=x+A\left(g_{1} * T\right)(t) x, \quad x \in X, t \geq 0 \tag{4.15}
\end{equation*}
$$

where $g_{1}(t):=1$, for all $t \geq 0$. For each $x \in X$, we define $T_{\tau}^{n} x, n \in \mathbb{N}_{0}$, by $T_{\tau}^{0} x:=x$ and $T_{\tau}^{n} x:=$ $\int_{0}^{\infty} q_{n}^{\tau}(t) T(t) x d t$, for $n \in \mathbb{N}$. Multiplying (4.15) by $q_{n}^{\tau}(t)$ and integrating over $[0, \infty)$ we conclude by (2.9) that

$$
T_{\tau}^{n} x=x+A \int_{0}^{\infty} q_{n}^{\tau}(t)\left(g_{1} * T\right)(t) x d t=x+\tau A \sum_{j=1}^{n} T_{\tau}^{j} x
$$

Finally, as $T(t) A x=A T(t) x$ for all $x \in D(A)$, (see [3, Proposition 3.1.9]) multiplying this equality by $q_{n}^{\tau}(t)$ and integrating over $[0, \infty)$, we get $T_{\tau}^{n} A x=A T_{\tau}^{n} x$ for all $n \in \mathbb{N}_{0}$ and $x \in D(A)$.

From the theory of $C_{0}$-semigroups, it is well known that, if $A$ is the generator of $C_{0}$-semigroup in a Banach space $X, x_{0} \in X$, and $f:[0, \infty) \rightarrow X$ belongs to $L^{1}([0, \infty), X)$, then the mild solution to the abstract Cauchy problem

$$
\left\{\begin{align*}
u^{\prime}(t) & =A u(t)+f(t), \quad t>0  \tag{4.16}\\
u(0) & =x_{0}
\end{align*}\right.
$$

is given by the variation of parameters formula

$$
u(t)=T(t) x_{0}+\int_{0}^{t} T(t-s) f(s) d s, \quad t \geq 0
$$

see for instance [3, Proposition 3.1.16] for further details.
In the next result we show the existence and uniqueness of the abstract discrete difference equation of first order, and we show that its solution can be written as a discrete variation of parameters formula, similarly to the continuous case.

Theorem 4.12. Let $\tau>0$. Let $A$ be the generator of a $\tau$-discrete semigroup $\left\{T_{\tau}^{n}\right\}_{n \in \mathbb{N}_{0}}$. If $x_{0} \in X$ and $\left(f^{n}\right)_{n}$ is a bounded vector-valued sequence, then the discrete difference equation of first order

$$
\left\{\begin{align*}
\nabla_{\tau} u^{n} & =A u^{n}+f^{n}, \quad n \geq 1  \tag{4.17}\\
u^{0} & =x_{0}
\end{align*}\right.
$$

$$
\begin{equation*}
v^{n}:=T_{\tau}^{n} x_{0}+\tau \sum_{j=1}^{n} T_{\tau}^{n+1-j} f^{j} \tag{4.18}
\end{equation*}
$$

for all $n \geq 1$, and $v^{0}:=x_{0}$.

Proof. Since $A$ generates the $\tau$-discrete semigroup $\left\{T_{\tau}^{n}\right\}_{n \in \mathbb{N}_{0}}$, we have, by Proposition 3.4 that $T_{\tau}^{n}=R_{\tau}^{n}$ for all $n \in \mathbb{N}$. As $\tau^{-1} \in \rho(A)$ (see Proposition 3.4), the equation (4.17) is equivalent to

$$
\tau\left(\tau^{-1}-A\right) u^{n}=u^{n-1}+\tau f^{n}, \quad n \in \mathbb{N}
$$

that is, $u^{n}=R_{\tau} u^{n-1}+\tau R_{\tau} f^{n}$, for any $n \in \mathbb{N}$. The initial condition implies

$$
u^{n}=R_{\tau}^{n} x_{0}+\tau \sum_{j=1}^{n} R_{\tau}^{n+1-j} f^{j}, \quad n \in \mathbb{N}
$$

which means that, $u^{n}=T_{\tau}^{n} x_{0}+\tau \sum_{j=1}^{n} T_{\tau}^{n+1-j} f^{j}$, for all $n \in \mathbb{N}$. Therefore, the sequence $\left(v^{n}\right)_{n \in \mathbb{N}_{0}}$ defined by

$$
v^{n}:=\left\{\begin{array}{c}
T_{\tau}^{n} x_{0}+\tau \sum_{j=1}^{n} T_{\tau}^{n+1-j} f^{j}, \quad n \geq 1 \\
x_{0}, \quad n=0
\end{array}\right.
$$

solves (4.17). The uniqueness follows from Proposition 3.6.
The next theorem gives a subordination relation between the $C_{0}$-semigroup $\{T(t)\}_{t \geq 0}$ and a $\tau$-discrete semigroup $\left\{T_{\tau}^{n}\right\}_{n \geq 0}$. For a related result, we refer to [13, Theorem 2] and [15].

Theorem 4.13. Let $A$ be the generator of a $C_{0}$-semigroup $\{T(t)\}_{t \geq 0}$. For each $x \in X$, define $T_{\tau}^{n} x$ by

$$
T_{\tau}^{0} x:=x, \quad T_{\tau}^{n} x:=\int_{0}^{\infty} q_{n}^{\tau}(t) T(t) x d t, \quad n \in \mathbb{N}
$$

6 Then,

$$
\begin{equation*}
T(t)=\lim _{\tau \rightarrow 0^{+}} \tau \sum_{n=1}^{\infty} q_{n}^{\tau}(t) T_{\tau}^{n} \tag{4.19}
\end{equation*}
$$

7 uniformly in $t$ in compact subsets of $\mathbb{R}_{+}$.
Proof. We first notice that by Proposition 4.11 the sequence $\left\{T_{\tau}^{n}\right\}_{n \in \mathbb{N}_{0}}$ is a $\tau$-discrete semigroup generated by $A$. Let $x \in X$. By the inversion theorem for the $Z$-transform (see [4, Chapter 1]) and Proposition 2.2 we have

$$
T_{\tau}^{n} x=\frac{1}{2 \pi i} \int_{\Gamma} \tilde{T}(z) z^{n-1} x d z=\frac{1}{2 \pi i} \int_{\Gamma}\left[\frac{1}{\tau} \hat{T}\left(\frac{1}{\tau}\left(1-\frac{1}{z}\right)\right)+I\right] z^{n-1} x d z
$$

where $\Gamma$ is a simple closed contour containing the origin that encloses all the poles of $\tilde{T}(z) z^{n-1}$. We recall here that $\tilde{T}(z)$ denotes the $Z$-transform of the sequence $\left\{T_{\tau}^{n}\right\}_{n \in \mathbb{N}_{0}}$ at $z$, and $\hat{T}$ denotes the Laplace transform of $t \mapsto T(t)$. Now, we introduce the change of variable $\lambda=\frac{1}{\tau}\left(1-\frac{1}{z}\right)$. Then,

$$
T_{\tau}^{n} x=\frac{1}{2 \pi i} \int_{\tilde{\Gamma}} \frac{1}{(1-\tau \lambda)^{n}} \hat{T}(\lambda) x d \lambda+\frac{1}{2 \pi i} \int_{\tilde{\Gamma}} z^{n-1} x d \lambda
$$

where $\tilde{\Gamma}$ is the resulting path under this change of variable. Multiplying the last identity by $q_{n}^{\tau}(t)$ and summing up in $n \in \mathbb{N}$, we get

$$
\tau \sum_{n=1}^{\infty} q_{n}^{\tau}(t) T_{\tau}^{n} x=\frac{1}{2 \pi i} \int_{\tilde{\Gamma}} \tau\left(\sum_{n=1}^{\infty} \frac{1}{(1-\tau \lambda)^{n}} q_{n}^{\tau}(t)\right) \hat{T}(\lambda) x d \lambda+\frac{1}{2 \pi i} \int_{\Gamma} \tau \sum_{n=1}^{\infty} z^{n-1} q_{n}^{\tau}(t) x d \lambda
$$

8 Now, we notice that $\tau \sum_{n=1}^{\infty} z^{n-1} q_{n}^{\tau}(t)=e^{-\frac{t}{\tau}} \sum_{n=1}^{\infty} \frac{\left(\frac{z t}{\tau}\right)^{n-1}}{(n-1)!}=e^{-\frac{t}{\tau}(1-z)}$, and $\lim _{\tau \rightarrow 0^{+}} \tau \sum_{n=1}^{\infty} z^{n-1} q_{n}^{\tau}(t)=$
90 . For $E_{\tau}(t):=\tau\left(\sum_{n=1}^{\infty} \frac{1}{(1-\tau \lambda)^{n}} q_{n}^{\tau}(t)\right)$ where $t \geq 0$, it is easy to see that

$$
\begin{equation*}
\lim _{\tau \rightarrow 0^{+}} E_{\tau}(t)=e^{\lambda t}, \quad t \geq 0 \tag{4.20}
\end{equation*}
$$

1 Therefore, by the inversion theorem for the Laplace transform, we obtain

$$
\begin{aligned}
\lim _{\tau \rightarrow 0^{+}}\left\|T(t) x-\tau \sum_{n=1}^{\infty} q_{n}^{\tau}(t) T_{\tau}^{n} x\right\| & =\lim _{\tau \rightarrow 0^{+}}\left\|\frac{1}{2 \pi i}\left(\int_{\tilde{\Gamma}} e^{\lambda t} \hat{T}(\lambda) x d \lambda-\int_{\tilde{\Gamma}} E_{\tau}(t) \hat{T}(\lambda) x d \lambda-\int_{\Gamma} e^{-\frac{t}{\tau}(1-z)} x d \lambda\right)\right\| \\
& \leq \lim _{\tau \rightarrow 0^{+}} \frac{1}{2 \pi} \int_{\tilde{\Gamma}}\left|e^{\lambda t}-E_{\tau}(t)\right|\|\hat{T}(\lambda) x\||d \lambda|+\lim _{\tau \rightarrow 0^{+}} \frac{1}{2 \pi} \int_{\Gamma}\left|e^{-\frac{t}{\tau}(1-z)}\right|\|x\||d \lambda| \\
& =0,
\end{aligned}
$$

2 for all $t \geq 0$ and $x \in X$. The proof is finished.
The next Corollary gives a different proof to the Yosida's approximation theorem for $C_{0}$-semigroups.
Corollary 4.14 (Yosida's approximation). Let $A$ be the generator of a $C_{0}$-semigroup $\{T(t)\}_{t \geq 0}$ with $D(A)$ dense in $X$. Let $T_{\tau}^{n} x$ defined as in Theorem 4.13. Then,

$$
T(t) x=\lim _{m \rightarrow \infty} e^{m t A(m-A)^{-1}} x
$$ $A\left(\tau^{-1}-A\right)^{-1}$ is bounded, and therefore, if $\tau=1 / m$ in Theorem 4.13, we obtain for $x \in D(A)$ that

$$
\begin{aligned}
T(t) x & =\lim _{m \rightarrow \infty} \frac{1}{m} \sum_{n=1}^{\infty} q_{n}^{\tau}(t)\left(m(m-A)^{-1}\right)^{n} x \\
& =\lim _{m \rightarrow \infty} e^{-t m} m(m-A)^{-1} e^{t m R_{\frac{1}{m}}^{m}} x \\
& =\lim _{m \rightarrow \infty} e^{t m A(m-A)^{-1}} A(m-A)^{-1} x+\lim _{m \rightarrow \infty} e^{t m A(m-A)^{-1}} x
\end{aligned}
$$

Since $\lim _{m \rightarrow \infty} e^{\operatorname{tm} A(m-A)^{-1}} A(m-A)^{-1} x=0$, for all $x \in D(A)$ (see for instance [12, Lemma 3.4]) and


We recall that a $C_{0}$-semigroup $\{T(t)\}_{t \geq 0}$ is called uniformly exponentially stable if there exist $M, \omega>0$ such that $\|T(t)\| \leq M e^{-\omega t}$ for all $t \geq 0$. The next result gives a characterization of uniform exponential stability of the $C_{0}$-semigroup $\{T(t)\}_{t \geq 0}$ in terms of the $\tau$-discrete semigroup $\left\{T_{\tau}^{n}\right\}_{n \in \mathbb{N}_{0}}$.
Proposition 4.15. Let $A$ be the generator of a $C_{0}$-semigroup $\{T(t)\}_{t \geq 0}$. Let $T_{\tau}^{n} x$ defined as in Theorem 4.13. Then, $\{T(t)\}_{t \geq 0}$ is uniformly exponentially stable with $\|T(t)\| \leq M e^{-\omega t}$, where $\omega, M>0$, if and only if

$$
\begin{equation*}
\left\|T_{\tau}^{n}\right\| \leq \frac{M}{(1+\omega \tau)^{n}}, \quad \text { for all } n \in \mathbb{N}_{0}, \tau>0 \tag{4.21}
\end{equation*}
$$

Proof. If $\|T(t)\| \leq M e^{-\omega t}$, then $\left\|T_{\tau}^{n}\right\| \leq \frac{M}{(1+\omega \tau)^{n}}$ for all $n \in \mathbb{N}_{0}$ as in the proof of [18, Proposition 3.7]. Conversely, assume that (4.21) holds. Let $x \in X$. By Theorem 4.13 we obtain for all $x \in X$ that

$$
\|T(t) x\| \leq M \lim _{\tau \rightarrow 0^{+}} \tau \sum_{n=1}^{\infty} e^{-\frac{t}{\tau}}\left(\frac{t}{\tau}\right)^{n-1} \frac{1}{(n-1)!\tau} \frac{1}{(1+\omega \tau)^{n}}\|x\|=M \lim _{\tau \rightarrow 0^{+}} \frac{e^{-\frac{t \omega}{1+\omega \tau}}}{1+\omega \tau}\|x\|=M e^{-\omega t}\|x\|
$$

For a closed operator $A \in \operatorname{Sec}(\theta, M)$, we will consider the following path $\Gamma_{t}$ : For $\frac{\pi}{2}<\theta<\pi$, we take $\phi$ such that $\frac{1}{2} \phi<\frac{\pi}{2}<\phi<\theta$. Next, we define $\Gamma \equiv \Gamma_{t}$ as the union $\Gamma_{t}^{1} \cup \Gamma_{t}^{2}$, where

$$
\Gamma_{t}^{1}:=\left\{\frac{1}{t} e^{i \psi}:-\phi<\psi<\phi\right\} \quad \text { and } \quad \Gamma_{t}^{2}:=\left\{r e^{ \pm i \phi}: \frac{1}{t} \leq r\right\}
$$

The next result follow from [8, Lemma 2].

Lemma 4.16. Let $A \in \operatorname{Sec}(\theta, M)$ and $\Gamma$ be the complex path defined above. If $\mu \geq 0$, then there exists positive constant $C$, such that

$$
\int_{\Gamma}\left|\frac{e^{z t}}{z^{\mu}}\right||d z| \leq C t^{\mu-1}
$$

for all $t>0$, where $C:=\left(2 \phi \int_{-\phi}^{\phi} e^{\cos (\psi)} d \psi+\frac{2}{-\cos (\phi)}\right)$.
The next theorem relates a $\tau$-discrete semigroups and $C_{0}$-semigroup at $t_{n}=\tau n$ for all $n \in \mathbb{N}$.
Theorem 4.17. Let $0<\varepsilon<1$. Suppose that $x \in D\left(A^{\varepsilon}\right)$. Let $A$ be a sectorial operator which generates the $C_{0}$-semigroup $\{T(t)\}_{t \geq 0}$. Let $T_{\tau}^{n} x$ defined as in Theorem 4.13 and $\Gamma$ be the complex path defined above. Then, for each $L>0$ there exists a constant $D>0$ such that, for $0<t_{n} \leq L$,

$$
\begin{equation*}
\left\|T\left(t_{n}\right) x-T_{\tau}^{n} x\right\| \leq D \tau t_{n}^{\varepsilon-1}\|x\|_{\varepsilon} \tag{4.22}
\end{equation*}
$$

Proof. Take a fixed $n \in \mathbb{N}$ such that $0<t_{n} \leq L$, where $t_{n}:=\tau n$. Then, we can write

$$
T\left(t_{n}\right) x-T_{\tau}^{n} x=\int_{0}^{\infty} q_{n}^{\tau}(t)\left[T\left(t_{n}\right)-T(t)\right] x d t
$$

for all $x \in X$, and by the inversion of the Laplace transform, we get

$$
T\left(t_{n}\right) x-T(t) x=\frac{1}{2 \pi i} \int_{\Gamma} \frac{e^{z t_{n}}-e^{z t}}{z} z(z-A)^{-1} x d z
$$

As $z(z-A)^{-1}=A(z-A)^{-1}+I=A^{1-\varepsilon}(z-A)^{-1} A^{\varepsilon}+I$, we obtain

$$
T\left(t_{n}\right) x-T(t) x=\frac{1}{2 \pi i} \int_{\Gamma} \frac{e^{z t}-e^{z t_{n}}}{z} x d z+\frac{1}{2 \pi i} \int_{\Gamma} \frac{e^{z t}-e^{z t_{n}}}{z} A^{1-\varepsilon}(z-A)^{-1} A^{\varepsilon} x d z
$$

It is easy to see that the first integral in the last identity is equal to zero. Since $A$ is a sectorial operator, we have by $(2.11)$ that $\left\|A^{1-\varepsilon}(z-A)^{-1} x\right\| \leq K(M+1)^{1-\varepsilon} \frac{\|x\|}{|z|^{\varepsilon}}$, for all $x \in X$ and therefore

$$
\left\|T\left(t_{n}\right) x-T(t) x\right\| \leq \frac{K(M+1)^{1-\varepsilon}}{2 \pi} \int_{\Gamma} \frac{\left|e^{z t}-e^{z t_{n}}\right|}{|z|} \frac{\left\|A^{\varepsilon} x\right\|}{|z|^{\varepsilon}}|d z|
$$

The mean value for complex-valued functions implies the existence of $t_{0}$, $t_{1}$ with $0<t_{n}<t_{0}<t_{1}<t$ such that

$$
\frac{\left|e^{z t}-e^{z t_{n}}\right|}{|z|} \leq\left(t-t_{n}\right)\left(\left|e^{t_{0} z}\right|+\left|e^{t_{1} z}\right|\right)
$$

As $0<\varepsilon<1$ and $t_{n}<t_{0}<t_{1}$ we have $t_{1}^{\varepsilon-1}<t_{0}^{\varepsilon-1}<t_{n}^{\varepsilon-1}$, and by Lemma 4.16 we get

$$
\left\|T\left(t_{n}\right) x-T(t) x\right\| \leq \frac{K(M+1)^{1-\varepsilon} C}{\pi}\left(t-t_{n}\right) t_{n}^{\varepsilon-1}\left\|A^{\varepsilon} x\right\|
$$

It is easy to see that $\int_{0}^{\infty} q_{n}^{\tau}(t)\left(t-t_{n}\right) d t=\tau$, and therefore, we conclude that

$$
\left\|T\left(t_{n}\right) x-T_{\tau}^{n} x\right\| \leq \int_{0}^{\infty} q_{n}^{\tau}(t)\left\|T\left(t_{n}\right) x-T(t) x\right\| d t \leq \frac{K(M+1)^{1-\varepsilon} C}{\pi} \tau t_{n}^{\varepsilon-1}\left\|A^{\varepsilon} x\right\|=D \tau t_{n}^{\varepsilon-1}\left\|A^{\varepsilon} x\right\|
$$

6 where $D=\frac{K C(M+1)^{1-\varepsilon}}{\pi}$.

Corollary 4.18. Under the assumption of Theorem 4.17, we have

$$
\lim _{\tau \rightarrow 0^{+}}\left\|T\left(t_{n}\right) x-T_{\tau}^{n} x\right\|=0
$$

## Example 5.19.

On $X=L^{2}(0, \pi)$ let $T(t)$ be defined by

$$
T(t)(x(s)):=\sum_{k=0}^{\infty} a_{k}(x) e^{-k^{2} t} \sin (k s), \quad x \in X,
$$

where $a_{k}(x)$ are the Fourier coefficients of $x$, that is, $a_{k}(x)=\sqrt{\frac{2}{\pi}} \int_{0}^{\pi} x(r) \sin (k r) d r, x \in X$. Then,

$$
T_{\tau}^{n}(x(s))=\int_{0}^{\infty} q_{n}^{\tau}(t) T(t)(x(s)) d t=\sum_{k=0}^{\infty} a_{k}(x) \sin (k s) \int_{0}^{\infty} q_{n}^{\tau}(t) e^{-k^{2} t} d t=\sum_{k=0}^{\infty} \frac{1}{\left(1+k^{2} \tau\right)^{n}} a_{k}(x) \sin (k s) .
$$

1 where $f^{n} \in L^{2}(0, \pi)$, under the initial condition $u^{0}=x_{0}(s), x_{0} \in L^{2}(0, \pi)$ is given by $v^{n}(s)=T_{\tau}^{n}\left(x_{0}(s)\right)+$ $\tau \sum_{j=1}^{n} T_{\tau}^{n+1-j}\left(f^{j}(s)\right), n \geq 1$ and $v^{0}(s)=x_{0}(s), s \in(0, \pi)$.

## Example 5.20.

Let $X$ be one of the spaces $L^{p}(\mathbb{R})$ (with $\left.1 \leq p<\infty\right), C_{0}(\mathbb{R})$ or $B U C(\mathbb{R}):=\{f: \mathbb{R} \rightarrow \mathbb{R}$ : $f$ is uniformly continuous $\}$. For each $f \in X$, we define

$$
(T(t) f)(s):=\frac{1}{\sqrt{4 \pi t}} \int_{-\infty}^{\infty} e^{\frac{-(s-r)^{2}}{4 t}} f(r) d r, \quad s \in \mathbb{R}
$$

Then, $T(t)$ is a $C_{0}$-semigroup generated by $A=\frac{\partial^{2}}{\partial x^{2}}$, with domain $D(A)=\left\{f \in X: \frac{\partial^{2} f}{\partial x^{2}} \in X\right\}$, see for instance [3, Example 3.7.6]. Now, we calculate $T^{n}$. By definition and Fubini's theorem we have

$$
T_{\tau}^{n}(f(s))=\int_{0}^{\infty} q_{n}^{\tau}(t)(T(t) f)(s) d t=\frac{1}{\sqrt{4 \pi}} \frac{1}{\tau^{n}(n-1)!} \int_{-\infty}^{\infty} \int_{0}^{\infty} e^{-\frac{1}{\tau} t-\frac{(s-r)^{2}}{4} \frac{1}{t}} t^{\left(n-\frac{1}{2}\right)-1} d t f(r) d r, \quad n \in \mathbb{N}
$$

By [16, Formula 9, p. 368] we have

$$
\int_{0}^{\infty} e^{-\frac{1}{\tau} t-\frac{(s-r)^{2}}{4} \frac{1}{t}} t^{\left(n-\frac{1}{2}\right)-1} d t=2^{-n+\frac{1}{2}+1} \tau^{\frac{n}{2}-\frac{1}{4}}|s-r|^{n-\frac{1}{2}} K_{n-\frac{1}{2}}\left(\frac{|s-r|}{\tau}\right)
$$

where $K_{n-\frac{1}{2}}$ is the modified Bessel function of second kind. By [16, Formula 8.468, p. 925] we can write

$$
K_{n-\frac{1}{2}}\left(\frac{|s-r|}{\tau}\right)=\sqrt{\pi} \tau^{\frac{1}{2}} e^{-\frac{|s-r|}{\tau}} \sum_{k=0}^{n-1} \frac{(n-1+k)!}{k!(n-1-k)!} 2^{-k-\frac{1}{2}}|s-r|^{-k-\frac{1}{2}} \tau^{k}
$$

and, therefore

$$
T_{\tau}^{n}(f(s))=\frac{1}{2^{n-\frac{1}{2}}} \tau^{\frac{n}{2}-\frac{1}{2}} \sum_{k=0}^{n-1} \frac{1}{2^{k}}\binom{n-1+k}{k} \int_{-\infty}^{\infty} q_{n-k}^{\tau}(|s-r|) f(r) d r, \quad f \in X, s \in \mathbb{R} .
$$

We conclude by Proposition 4.11 that $\left\{T_{\tau}^{n}\right\}_{n \in \mathbb{N}_{0}}$ is a $\tau$-discrete semigroup generated by $A$, and thus, $T_{\tau}^{n+m}=T_{\tau}^{n} T_{\tau}^{m}$ for all $m, n \in \mathbb{N}_{0}$.
Acknowledgements. The author thanks the reviewers for their detailed review and suggestions that have improved the previous version of the paper.

Conflict of interest. This work does not have any conflicts of interest.
Funding information. There are no funders to report for this submission.

## References

[1] L. Abadias, E. Álvarez, S. Díaz, Subordination principle, Wright functions and large-time behavior for the discrete in time fractional diffusion equation, J. Math. Anal. Appl. 507, (2022), no. 1, Paper No. 125741, 23 pp.
[2] E. Álvarez, S. Díaz, C. Lizama, C-Semigroups, subordination principle and the Lévy $\alpha$-stable distribution on discrete time, Comm. in Contemporary Mathematics, (2020) 2050063 (32 pages).
[3] W. Arendt, C. Batty, M. Hieber, F. Neubrander, Vector-Valued Laplace transforms and Cauchy problems. Monogr. Math., vol. 96, Birkhäuser, Basel, 2011.
[4] R. Agarwal, C. Cuevas, C. Lizama, Regularity of difference equations on Banach spaces, Springer-Verlag, Cham, 2014. Hardcover ISBN 978-3-319-06446-8.
[5] S. Blunck, Maximal regularity of discrete and continuous time evolution equations, Studia Math. 146 (2) 157-176, (2001).
[6] S. Blunck, Analyticity and Discrete Maximal Regularity on Lp-Spaces, J. of Functional Analysis, 183, 211-230, (2001).
[7] C. Buşe, A. Zada, Dichotomy and boundedness of solutions for some discrete Cauchy problems, Operator Theory: Advances and Applications, Vol. 203, 165-174, 2009.
[8] E. Cuesta, R. Ponce, Hölder regularity for abstract semi-linear fractional differential equations in Banach spaces, Computers and Math. with Applications, 85 (2021), 57-68.
[9] C. Cuevas, C. Lizama, Semilinear evolution equations on discrete time and maximal regularity, J. of Math. Analysis and Appl. 361 (2010) 234-245.
[10] N. Dungey, On time regularity and related conditions for power-bounded operators, Proc. London Math. Soc. (3) 97 (2008) 97-116.
[11] N. Dungey, Subordinated discrete semigroups of operators, Trans. of Amer. Math. Soc. 363, No. 4, (2011), $1721-1741$.
[12] K. Engel, R. Nagel, One-parameter semigroups for linear evolution equations. GTM vol. 194, 2000.
[13] W. Feller, On the generation of unbounded semi-groups of bounded linear operators, Ann. of Math. (2) 58 (1953), 166-174.
[14] A. Gibson, A Discrete Hille-Yosida-Phillips Theorem, J. of Math. Analysis and Appl. 39 (1972), 761-770.
[15] V. Grimm, M. Gugat, Approximation of semigroups and related operator functions by resolvent series, SIAM J. Numer. Anal., 48 (5) (2010), 1826-1845.
[16] I. Gradshteyn, I. Ryzhik, Table of integrals, series and products, Academic Press, New York, 2000.
[17] J. He, C. Lizama, Y. Zhou, The Cauchy problem for discrete-time fractional evolution equations, J. of Computational and Applied Mathematics, 370 (2020), 112683.
[18] C. Lizama, The Poisson distribution, abstract fractional difference equations, and stability, Proc. Amer. Math. Soc. 145 (2017), no. 9, 3809-3827.
[19] C. Lizama, R. Ponce, Solutions of abstract integro-differential equations via Poisson transformation, Math. Methods Appl. Sci. 44 (2021), no. 3, 2495-2505.
[20] A. Lunardi, Analytic semigroups and optimal regularity in parabolic problems, Birkhäuser, Basel, 1995.
[21] A. CS. Ng, Asymptotics of Operator Semigroups and Applications, Phd Thesis, University of Oxford, 2020.
[22] R. Ponce, Time discretization of fractional subdiffusion equations via fractional resolvent operators. Comput. Math. Appl. 80 (2020), no. 4, 69-92.
[23] P. Portal, Maximal regularity of evolution equations on discrete time scales, J. Math. Anal. Appl. 304 (2005), 1-12.
Universidad de Talca, Instituto de Matemáticas, Casilla 747, Talca-Chile.
E-mail address: rponce@inst-mat.utalca.cl, rponce@utalca.cl


[^0]:    Date: August 08, 2022 and, in revised form, December 21, 2022.
    2020 Mathematics Subject Classification. Primary 47D06, Secondary 39A06, 39A12, 47B39.
    Key words and phrases. $C_{0}$-semigroups of linear operators, discrete difference equations, unbounded linear operators.

