
PERIODIC SOLUTIONS TO SECOND-ORDER DIFFERENTIAL EQUATIONS1

WITH FADING MEMORY2

RODRIGO PONCE3

Abstract. We characterize existence and uniqueness of periodic strong and mild solutions to an abstract

second order differential equation with memory in Banach spaces. Using vector-valued Fourier multipliers
we give necessary and sufficient conditions in order to ensure the well-posedness of this equation in

Lebesgue, Hölder and Besov spaces.

1. Introduction4

Let Ω be a bounded open set in Rn (n = 1, 2, 3) with a smooth boundary ∂Ω. Denote by u(x, t) the5

temperature of the point x ∈ Ω at the time t ∈ R. The heat conduction in materials with fading memory6

can be described by the integro-differential equation7

(1.1) cutt(x, t)+α(0)ut(x, t)+

∫ t

−∞
α′(t−s)ut(x, s)ds = β(0)∆u(x, t)+

∫ t

−∞
β′(t−s)∆u(x, s)ds+F (x, t),

where ∆ is the Laplacian, α(t) and β(t) are positive functions called respectively, the heat-flux relaxation8

and the energy relaxation functions, c ̸= 0 is a constant (known as the heat capacity) and F is a suitable9

function, see for instance Gurtin and Pipkin [18]. Typically, the relaxation functions α and β are taken10

as11

α(t) =

m∑
j=1

αie
−pit, β(t) =

M∑
j=1

βie
−qit,

where αi, βi, pi, qi > 0. We observe that equation (1.1) can be written in the abstract form12

(1.2) u′′(t) + λu′(t) +Au(t) +

∫ t

−∞
a(t− s)Au(s)ds+

∫ t

−∞
b(t− s)u(s)ds = f(t) t ∈ R,

where λ = α(0)
c , A = 1

c (α
′(0)I − β(0)∆), a(t) = β(0)−1

c α′(t), b(t) = 1
c [α

′′(t) − β−1(0)α′(0)β′(t)] and13

f(t) = F (·, t).14

The existence of periodic solutions to integro-differential equations in the form of (1.2) has been studied15

by several authors. For instance, if Ω ⊂ H, is a bounded set, where H is a Hilbert space, the existence16

and uniqueness of periodic solutions to equation (1.2) has been studied by Tiehu in [29] in terms of the17

resolvent operator18

(−k2 + iλk + (1 + ak)A+ bkI)
−1 =

−1

1 + ak

(
k2 − iλk − bk

1 + ak
−A

)−1

,

for all k ∈ Z. In the context of general Banach spaces, the existence of periodic solutions to second order19

integro-differential equations has been studied recently by S. Bu and G. Cai in [7, 9, 10, 11, 12].20
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2 RODRIGO PONCE

In this paper, we characterize the existence and uniqueness of strong and mild periodic solutions to1

(1.3) u′′(t) + λu′(t) +Au(t) +

∫ t

−∞
a(t− s)Au(s)ds+

∫ t

−∞
b(t− s)Bu(s)ds = f(t),

under the periodic initial conditions u(0) = u(2π) and u′(0) = u′(2π), where λ ∈ R, A : D(A) ⊂ X → X2

and B : D(B) ⊂ X → X are closed linear operators defined in a Banach space X ≡ (X, ∥ · ∥), the3

functions a, b are suitable kernels and the function f belongs to Lp([0, 2π], X). To achieve this, we use4

a method based in some results on vector-valued Fourier multipliers. We remark that this method has5

been considered by several authors to obtain necessary and sufficient conditions in order to ensure the6

existence and uniqueness of Lp-strong periodic solutions to a variety of abstract differential equations,7

see for instance [2, 8, 15, 19, 20, 21, 22, 23, 24, 25, 26, 27] and the references therein. On the other8

hand, the same method has been used by several authors to characterize the existence of mild periodic9

solutions to first, second and fractional order differential equations in Banach spaces, see for instance in10

[2, 5, 6, 20]. However, to the best of our knowledge, this problem has not been considered in the case of11

integro-differential equations in the form of (1.3).12

The paper is organized as follow. In Section 2, we give the preliminaries and we recall some results13

on vector-valued Fourier multipliers and R-bounded sets. In Section 3, we study Lp-strong solutions to14

equation (1.3). In Section 4, we consider the existence and uniqueness of strong solutions in periodic15

Hölder and Besov spaces. Section 5 deals with periodic mild solutions to equation (1.3). Finally, in the16

last section we give some applications of the abstract results.17

2. Preliminaries18

For 1 ≤ p < ∞, Lp([0, 2π], X) denotes the space of all 2π-periodic Bochner measurable and p-integrable19

X-valued functions. For a function f ∈ L1([0, 2π], X) we denote by f̂(k), the k-th Fourier coefficient of20

f, that is21

f̂(k) =
1

2π

∫ 2π

0

e−iktf(t)dt,

for all k ∈ Z. Observe that the Fourier coefficients of f determine completely the function f , that is,22

f̂(k) = 0 for all k ∈ Z if and only if f(t) = 0 a.e. Let X,Y be Banach spaces. We denote by B(X,Y )23

to the space of all bounded and linear operators from X into Y. If X = Y, then we write simply B(X).24

Finally, given a closed linear operator A defined on X, D(A) and ρ(A) denote respectively, its domain25

and its resolvent set. By [D(A)] we denote the domain of A equipped with the graph norm.26

Now, we recall some preliminaries about operator-valued Fourier multipliers.27

Definition 2.1. [2] For 1 ≤ p < ∞, we say that a sequence {Mk}k∈Z ⊂ B(X,Y ) is an Lp-multiplier if,
for each f ∈ Lp([0, 2π], X), there exists u ∈ Lp([0, 2π], Y ) such that

û(k) = Mkf̂(k) for all k ∈ Z.

Observe that from the uniqueness theorem of Fourier series it follows that u is uniquely determined by f.28

On the other hand, if {Mk}k∈Z ⊂ B(X,Y ) is an Lp-multiplier, then there exists a unique bounded operator29

M : Lp([0, 2π], X) → Lp([0, 2π], Y ) such that M̂f(k) = Mkf̂(k) for all k ∈ Z and f ∈ Lp([0, 2π], X). It30

is easy to see that the set of all Fourier multipliers is a vector space and if X,Y, Z are Banach spaces31

and, {Mk}k∈Z ⊂ B(X,Y ) and {Nk}k∈Z ⊂ B(Y, Z) are Lp-multipliers, then {MkNk}k∈Z ⊂ B(X,Z) is an32

Lp-multiplier as well. Moreover, if {Mk}k∈Z, {Nk}k∈Z ⊂ B(X,Y ) are Lp-multipliers, then {Mk +Nk}k∈Z33

is an Lp-multiplier as well.34

For j ∈ N, rj denotes the j-th Rademacher function on [0, 1] i.e. rj(t) = sgn(sin(2jπt)), where sgn is35

the sign function. For x ∈ X, rj ⊗ x, denotes the vector valued function t 7→ rj(t)x.36
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Definition 2.2. A family of operators T ⊂ B(X,Y ) is called R-bounded, if there is a constant Cp > 01

and p ∈ [1,∞) such that for each N ∈ N, Tj ∈ T , xj ∈ X, j = 1, ..., N the inequality2

(2.4) ∥
N∑
j=1

rj ⊗ Tjxj∥Lp((0,1),Y ) ≤ Cp∥
N∑
j=1

rj ⊗ xj∥Lp((0,1),X)

is valid.3

From Kahane’s inequality it follows that if (2.4) holds for some p ∈ [1,∞) then it holds for all4

p ∈ [1,∞), and therefore the definition of R-boundedness is independent of p. The smallest Cp in (2.4) is5

called R-bound of T , and we denote it by Rp(T ).6

We remark that the notion of R-boundedness is an important tool in the study of multipliers. Moreover,7

a large classes of classical operators are R-bounded, see for instance [17] and reference therein for more8

details. Hence, this assumption is not too restrictive for the applications that we consider in this article.9

Remark 2.3.10

Now, we recall some properties of R-bounded families of operators. We refer to the reader to [16,11

Section 3].12

(a) If T ⊂ B(X,Y ) is R-bounded then it is uniformly bounded, with

sup{∥T∥ : T ∈ T } ≤ Rp(T ).

(b) When X and Y are Hilbert spaces, T ⊂ B(X,Y ) is R-bounded if and only if T is uniformly13

bounded.14

(c) Let X,Y be Banach spaces and T ,S ⊂ B(X,Y ) be R-bounded. Then

T + S = {T + S : T ∈ T , S ∈ S}
is R-bounded as well, and Rp(T + S) ≤ Rp(T ) +Rp(S).15

(d) Let X,Y, Z be Banach spaces, and T ⊂ B(X,Y ) and S ⊂ B(Y, Z) be R-bounded. Then

ST = {ST : T ∈ T , S ∈ S}
is R-bounded, and Rp(ST ) ≤ Rp(S)Rp(T ).16

(e) Let X,Y be Banach spaces and T ⊂ B(X,Y ) be R-bounded. If {αk}k∈Z is a bounded sequence,17

then {αkT : T ∈ T } is R-bounded.18

The following result asserts that any Lp-multiplier is an R-bounded set.19

Theorem 2.4. [2] Let X be a Banach space and {Mk}k∈Z be an Lp-multiplier, where 1 ≤ p < ∞. Then,20

the set {Mk : k ∈ Z} is R-bounded.21

Now, we recall a class of Banach spaces, the so-called UMD spaces, which share similar properties22

with Hilbert spaces and include also the Lp-spaces for 1 < p < ∞. A Banach space X is said to be UMD,23

if the Hilbert transform is bounded on Lp(R, X) for some (and then all) p ∈ (1,∞). Here the Hilbert24

transform H of a function f ∈ S(R, X), the Schwartz space of rapidly decreasing X-valued functions, is25

defined by26

(Hf)(t) := lim
ε→0

1

π

∫
|y−t|>ε

f(y)

t− y
dy.

These spaces are also called HT spaces. It is well known that the set of Banach spaces of class HT27

coincides with the class of UMD spaces. This has been shown by Bourgain [4] and Burkholder [13].28

Some examples of UMD-spaces include the Hilbert spaces, Sobolev spaces W s
p (Ω), 1 < p < ∞, Lebesgue29

spaces Lp(Ω, µ), 1 < p < ∞, Lp(Ω, µ;X), 1 < p < ∞, when X is a UMD-space. Moreover, a UMD-30

space is reflexive and therefore, L1(Ω, µ), L∞(Ω, µ) and the Hölder space Cs([0, 2π];X) are not UMD.31

More information on UMD spaces can be found in [4, 13] and [14].32
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The next result, due to Arendt-Bu [2, Theorem 1.3], gives a converse of Theorem 2.4 and shows that1

under certain conditions, a set of operators is an Lp-multiplier in UMD spaces.2

Theorem 2.5. [2] Let X,Y be UMD spaces and let {Mk}k∈Z ⊆ B(X,Y ). If the sets {Mk}k∈Z and3

{k(Mk+1 −Mk)}k∈Z are R-bounded, then {Mk}k∈Z is an Lp-multiplier for 1 < p < ∞.4

3. Periodic solutions on Lebesgue spaces5

In this section we study the existence of Lp-strong solutions to equation (1.3). For a kernel a and a6

function g we introduce the following notation7

(a∗̇g)(t) :=
∫ t

−∞
a(t− s)g(s)ds.

With this notation, the equation (1.3) reads as8

u′′(t) + λu′(t) +Au(t) + (a∗̇Au)(t) + (b∗̇Bu)(t) = f(t).

If k ∈ Z, then it is easy to prove that (̂a∗̇g)(k) = ã(ik)ĝ(k), where ã(ik) is the Laplace transform of a9

evaluated in ik. In what follows, we use the following notation:10

ak := ã(ik) and bk := b̃(ik), k ∈ Z,

and we assume that ak ̸= 1 for all k ∈ Z.11

Remark 3.6. Note that by the Riemann-Lebesgue lemma, we have that the sequences {ak}k∈Z and { 1
α+ak

}k∈Z12

(α ̸= 0) are bounded.13

Now, from [21] we recall the concept of 1 and 2-regular sequences. The general notion of n-regularity is14

the discrete analogue for the notion of n-regularity related to Volterra integral equations (see [28, Chapter15

I, Section 3.2]).16

Definition 3.7. A sequence {ck}k∈Z ⊂ C \ {0} is said to be17

(a) 1-regular, if the sequence
{
k
(ck+1 − ck)

ck

}
k∈Z

is bounded.18

(b) 2-regular if it is 1-regular and the sequence
{
k2

(ck+1 − 2ck + ck−1)

ck

}
k∈Z

is bounded.19

For example, if a(t) = −te−βt then the sequence defined by ak = ã(ik) = − 1
(ik+β)2 is 1-regular. On20

the other hand, if a(t) := tm−1

Γ(m) where m is an even integer, then {ak}k∈Z is a 2-regular sequence.21

Remark 3.8. Note that if {ck}k∈Z is 1-regular, then lim
|k|→∞

ck+1/ck = 1. On the other hand, {ck}k∈Z is22

1-regular if and only if {1/ck}k∈Z is 1-regular [21, Theorem 4.6], which implies that lim
|k|→∞

ck/ck+1 =23

1 and the sequence k
{

(ck−ck+1)
ck+1

}
k∈Z

is bounded. Finally, since {ck+1/ck}k∈Z and {ck/ck+1}k∈Z are24

bounded, we obtain that lim
|k|→∞

(ck+1 − ck)/ck = lim
|k|→∞

(ck+1 − ck)/ck+1 = 0, and therefore, the sequences25

{(ck+1 − ck)/ck}k∈Z and {(ck+1 − ck)/ck+1}k∈Z are bounded as well.26

For a, b ∈ L1
loc(R+) we define the resolvent set ρa,b(A,B) as27

ρa,b(A,B) = {µ ∈ C : (µ2 + λµ+ (1 + ã(µ))A+ b̃(µ)B) : D(A) ∩D(B) → X

is invertible and (µ2 + λµ+ (1 + ã(µ))A+ b̃(µ)B)−1 ∈ B(X)},

where ã(·) and b̃(·) denote the Laplace transform of a and b respectively.28
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Proposition 3.9. Suppose that {ak}k∈Z and {bk}k∈Z are 1-regular sequences. Let A : D(A) ⊂ X → X1

and B : D(B) ⊂ X → X be closed linear operators defined on a UMD space X with D(A)∩D(B) ̸= {0}.2

Suppose that {ik}k∈Z ⊂ ρa,b(A,B). For each k ∈ Z, define Nk := (−k2+ iλk+(1+ak)A+ bkB)−1. Then,3

the following assertions are equivalent4

(i) The families {k2Nk}k∈Z and {bkBNk}k∈Z are Lp-multipliers for 1 < p < ∞;5

(ii) The families {k2Nk}k∈Z and {bkBNk}k∈Z are R-bounded.6

Proof. By Theorem 2.4 it follows that (i) implies (ii). Conversely, let Mk = −k2Nk, for k ∈ Z. In order7

to prove that {k2Nk}k∈Z is an Lp-multiplier, we need to prove by Theorem 2.5 that {k(Mk+1 −Mk)}k∈Z8

is R-bounded. In fact, the identity (−k2 + iλk + (1 + ak)A + bkB)Nk = I implies that (1 + ak)ANk =9

I + k2Nk − iλkNk − bkBNk = I + k2Nk +
iλ
k Mk − bkBNk and by hypothesis (1 + ak)ANk is R-bounded10

for all k ∈ Z \ {0}. Now, if k = 0, then (1 + a0)AN0 = I − b0BN0 which is R-bounded by hypothesis.11

Therefore, the set {(1 + ak)ANk}k∈Z is R-bounded.12

Now, as akANk = ak

1+ak
(1+ ak)ANk and ANk = 1

1+ak
(1+ ak)ANk, we conclude that {akANk}k∈Z are13

{ANk}k∈Z R-bounded sets by Remarks 2.3 and 3.6.14

On the other hand, an easy computation shows that15

k(Mk+1 −Mk) = − iλ

k + 1
MkMk+1 +Mk

k(ak+1 − ak)

ak
ak+1ANk+1

ak
ak+1

−Mk(1 + ak+1)ANk+1

+
ak+1 − ak

ak+1
ak+1ANk+1Mk − k

k + 1
Mk+1(1 + ak)ANk

+
k(bk+1 − bk)

bk

ak
ak+1

Mkbk+1Nk+1B − k

k + 1
Mk+1bkBNk,

for all k ̸= −1 and −(M0 −M−1) = (−1)2N−1. The hypothesis and Remark 3.8 show that {k(Mk+1 −16

Mk)}k∈Z is R-bounded and therefore {k2Nk}k∈Z is an Lp-multiplier. Similarly, to prove that {akANk}k∈Z17

is an Lp-multiplier, we shall show that {k(Rk+1 − Rk)}k∈Z is R-bounded, where Rk = akANk. Indeed,18

an easy computation gives the identity19

k(Rk+1 −Rk) = −k(ak+1 − ak)

ak+1
ak+1ANk+1Mk +

k(ak+1 − ak)

ak+1
ak+1ANk+1iλkNk

+
k(ak+1 − ak)

ak
ak+1ANk+1ANk +

ak
ak+1

ak+1ANk+1(1− iλ)kNk

+
k(ak+1 − ak)

ak+1
ak+1ANk+1bkBNk − ak

ak+1

k(bk+1 − bk)

bk
ak+1ANk+1bkBNk,

for all k ̸= 0. The 1-regularity of {ak}k∈Z, {bk}k∈Z, Remark 3.8 and hypothesis imply that {k(Rk+1 −20

Rk)}k∈Z is R-bounded and therefore {akANk}k∈Z is an Lp-multiplier by Theorem 2.5. A similar proof21

shows that {bkBNk}k∈Z is an Lp-multiplier. □22

For n ≥ 0, the space Hn,p([0, 2π], X) is defined by23

Hn,p([0, 2π], X) := {v ∈ Lp([0, 2π], X) : ∃w ∈ Lp([0, 2π], X) such that ŵ(k) = (ik)nv̂(k) for all k ∈ Z}.

Given a kernel a and a closed operator A we define the space24

La,p
A ([0, 2π], X) := {v ∈ Lp([0, 2π], [D(A)]) : ∃w ∈ Lp([0, 2π], X) such that ŵ(k) = akAv̂(k) for all k ∈ Z}.

Finally, we define the following solution space:25

S := H2,p([0, 2π], X) ∩ Lp([0, 2π], [D(A)]) ∩ La,p
A ([0, 2π], X) ∩ Lb,p

B ([0, 2π], X).

Definition 3.10. We say that a function u ∈ S is a strong Lp-solution of (1.3) if (1.3) holds for almost26

every t ∈ [0, 2π].27
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Theorem 3.11. Let 1 < p < ∞. Suppose that {ak}k∈Z and {bk}k∈Z are 1-regular sequences. Let1

A : D(A) ⊂ X → X and B : D(B) ⊂ X → X be closed linear operators defined in a UMD space X with2

D(A) ∩D(B) ̸= {0}. Then, the following assertions are equivalent3

(i) For every f ∈ Lp([0, 2π], X), there exists a unique strong Lp-solution of (1.3);4

(ii) {ik}k∈Z ⊂ ρa,b(A,B) and the families {k2Nk}k∈Z and {bkBNk}k∈Z are R-bounded.5

Proof. (ii) ⇒ (i). Let f ∈ Lp([0, 2π], X). By Proposition 3.9 the set {k2Nk}k∈Z is an Lp-multiplier and6

therefore {Nk}k∈Z is an Lp-multiplier as well. Therefore there exists u ∈ Lp([0, 2π], X) such that7

û(k) = Nkf̂(k), for all k ∈ Z.(3.5)

In particular, we conclude that û(k) ∈ D(A) ∩D(B) for all k ∈ Z. Moreover, −k2û(k) = −k2Nkf̂(k) for8

all k ∈ Z and since {k2Nk}k∈Z is an Lp-multiplier, we have by [2, Lemma 2.1] that u ∈ H2,p([0, 2π], X).9

On the other, the identity (1 + ak)ANk = I − bkBNk − iλ
k k2Nk + k2Nk and Proposition 3.9 imply that10

{(1 + ak)ANk}k∈Z is an Lp-multiplier and therefore, there exists v ∈ Lp([0, 2π], X) such that11

v̂(k) = (1 + ak)ANkf̂(k) = (1 + ak)Aû(k),

for all k ∈ Z. In particular u ∈ Lp([0, 2π], [D(A)]) ∩ La,p
A ([0, 2π], X). The uniqueness of the Fourier12

coefficients implies that v(t) = Au(t) + (a∗̇Au)(t) a.e. t ∈ [0, 2π]. Similarly, since {bkBNk}k∈Z is an13

Lp-multiplier by Proposition 3.9, we have that there exists w ∈ Lp([0, 2π], X) such that14

ŵ(k) = bkBNkf̂(k) = bkBû(k),

for all k ∈ Z, which implies that u ∈ Lb,p
B ([0, 2π], X) and w(t) = (b∗̇Bu)(t) a.e. t ∈ [0, 2π]. Finally, since15

iλkNk = iλ
k k2Nk is an Lp-multiplier, there exists z ∈ Lp([0, 2π], X) such that16

ẑ(k) = iλkNkf̂(k) = iλkû(k),

for all k ∈ Z. Moreover, by [2, Lemma 2.1] we have z(t) = λu′(t) a.e. t ∈ [0, 2π]. Now, the identity17

(−k2 + iλk + (1 + ak)A+ bkB)Nkf̂(k) = f̂(k) implies18

−k2Nkf̂(k) + iλkNkf̂(k) + (1 + ak)ANkf̂(k) + bkBNkf̂(k) = f̂(k)

for all k ∈ Z, that is19

−k2û(k) + iλkû(k) + (1 + ak)Aû(k) + bkBû(k) = f̂(k),

which implies by the uniqueness theorem of Fourier coefficients that u′′(t)+λu′(t)+Au(t)+ (a∗̇Au)(t)+20

(b∗̇Bu)(t) = f(t) a.e. t ∈ [0, 2π]. Moreover, the above considerations show that u ∈ S. In order to prove21

the uniqueness, let u ∈ S such that22

u′′(t) + λu′(t) +Au(t) + (a∗̇Au)(t) + (b∗̇Bu)(t) = 0.

Thus, (−k2 + iλk+ (1+ ak)A+ bkB)û(k) = 0 for all k ∈ Z. Since {ik}k∈Z ⊂ ρa,b(A,B) we conclude that23

û(k) = 0 for all k ∈ Z and therefore u(t) = 0 a.e. t ∈ [0, 2π], which proves uniqueness.24

(i) ⇒ (ii). Let k ∈ Z and y ∈ X. Define the function f ∈ Lp([0, 2π], X) by f(t) = eikty. By hypothesis,25

there exists u ∈ S such that26

u′′(t) + λu′(t) +Au(t) + (a∗̇Au)(t) + (b∗̇Bu)(t) = f(t).

Hence27

(−k2 + iλk + (1 + ak)A+ bkB)û(k) = f̂(k) = y,

which means that (−k2 + iλk + (1 + ak)A+ bkB) is surjective. On the other hand, if x ∈ D(A) ∩D(B)28

and (−k2 + iλk + (1 + ak)A+ bkB)x = 0, then u(t) = eiktx defines a strong Lp-solution of29

u′′(t) + λu′(t) +Au(t) + (a∗̇Au)(t) + (b∗̇Bu)(t) = 0,

and by the uniqueness we have u(t) = 0, and therefore x = 0. We conclude that (−k2+ iλk+(1+ak)A+30

bkB) is injective. Now, we need to prove that (−k2+ iλk+(1+ak)A+ bkB)−1 is a bounded operator for31
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all k ∈ Z. Take y ∈ X and k ∈ Z. Let L : Lp([0, 2π], X) → S be the bounded linear operator which takes1

each f ∈ Lp([0, 2π], X) to the unique solution u ∈ S of Equation (1.3). Given the function f(t) = eikty,2

we claim that the function u(t) := eiktx, where x = u(0) ∈ D(A) ∩ D(B) defines such unique strong3

Lp-solution to (1.3). In fact, since (a∗̇Au)(t) =
∫ t

−∞ a(t− s)eiksAxds = akAu(t), we have4

(−k2 + iλk + (1 + ak)A+ bkB)x = −k2u(0) + iλku(0) +Au(0) + akAu(0) + bkBu(0)

= u′′(0) + λu′(0) +Au(0) + (a∗̇Au)(0) + (b∗̇Bu)(0)

= f(0) = y.

Since (−k2 + iλk+ (1+ ak)A+ bkB) is surjective, we obtain x = (−k2 + iλk+ (1+ ak)A+ bkB)−1y and5

therefore6

∥(−k2 + iλk + (1 + ak)A+ bkB)−1y∥ = ∥x∥ = ∥u(0)∥ = ∥Lf(0)∥ ≤ ∥L∥ ∥f(0)∥ = ∥L∥ ∥y∥,

which means that (−k2 + iλk + (1 + ak)A + bkB)−1 is a bounded operator for all k ∈ Z and thus7

{ik}k∈Z ⊂ ρa,b(A,B). Next, we show that {k2Nk}k∈Z and {bkBNk}k∈Z are R-bounded. By Proposition8

3.9 we need to prove that {k2Nk}k∈Z and {bkBNk}k∈Z are Lp-multipliers. In fact, let f ∈ Lp([0, 2π], X).9

By hypothesis, there exists a unique u ∈ S such that10

u′′(t) + λu′(t) +Au(t) + (a∗̇Au)(t) + (b∗̇Bu)(t) = f(t).

Thus, û(k) ∈ D(A) ∩D(B) and11

(−k2 + iλk + (1 + ak)A+ bkB)û(k) = f̂(k).

Since {ik}k∈Z ⊂ ρa,b(A,B) we obtain û(k) = (−k2 + iλk+(1+ ak)A+ bkB)−1f̂(k) = Nkf̂(k). Moreover,12

there exists v ∈ Lp([0, 2π], X) such that v̂(k) = −k2û(k), because u ∈ H2,p([0, 2π], X) and thus v̂(k) =13

−k2û(k) = −k2Nkf̂(k) for all k ∈ Z, which means that {k2Nk}k∈Z is an Lp-multiplier. On the other14

hand, since û(k) ∈ D(A) ∩ D(B) we have bkBû(k) = bkBNkf̂(k). Since u ∈ Lb,p
B ([0, 2π], X) we have15

that the function w(t) := (b∗̇Bu)(t) belongs to Lp([0, 2π], X) and ŵ(k) = bkBNkf̂(k), which implies that16

{bkBNk}k∈Z is an Lp-multiplier. The proof of the Theorem is complete.17

□18

Note that the solution u given in Theorem 3.11 satisfies the following maximal regularity property,19

which is consequence of the closed graph theorem.20

Corollary 3.12. In the context of Theorem 3.11, if condition (ii) is fulfilled, we have that u′′, u′, Au,21

(a∗̇Au), (b∗̇Bu) ∈ Lp([0, 2π], X). Moreover, there exists a constant C > 0 independent of f ∈ Lp([0, 2π], X)22

such that23

∥u′′∥Lp + |λ| ∥u′∥Lp + ∥Au∥Lp + ∥a∗̇Au∥Lp + ∥b∗̇Bu∥Lp ≤ C∥f∥Lp .

Since in Hilbert spaces the concept of R-boundedness and boundedness are equivalent, we have the24

next Corollary.25

Corollary 3.13. Let 1 < p < ∞. Suppose that {ak}k∈Z and {bk}k∈Z are 1-regular sequences. Let26

A : D(A) ⊂ H → H and B : D(B) ⊂ H → H be closed linear operators defined on a Hilbert space H27

with D(A) ∩D(B) ̸= {0}. Then, the following assertions are equivalent28

(i) For every f ∈ Lp([0, 2π], H), there exists a unique strong Lp-solution of (1.3);29

(ii) {ik}k∈Z ⊂ ρa,b(A,B) and30

sup
k∈Z

∥k2Nk∥ < ∞ and sup
k∈Z

∥bkBNk∥ < ∞.
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On the other hand, the Fejer’s Theorem (see [2, Proposition 1.1]) can be used to write the solution
u given in Theorem 3.11. More precisely, if the condition (ii) holds the Theorem 3.11, then for f ∈
Lp([0, 2π], X), the solution u ∈ S of (1.3) is given by

u(t) = lim
n→∞

n∑
k=−n

(
1− |k|

n+ 1

)
eiktNkf̂(k),

where the convergence holds in Lp([0, 2π], X).1

4. Periodic solutions on Hölder and Besov spaces2

In this section, we present some analogous theorems to the above section, in the context of Hölder3

and Besov spaces Bs
p,q([0, 2π], X). Examples of Besov spaces include the Hölder-Zygmund spaces and the4

usual Hölder space Cs([0, 2π], X) = Bs
∞,∞([0, 2π], X) for 0 < s < 1. We first recall the notion of Besov5

spaces.6

Let S(R) be the Schwartz space on R. Let S ′(R) be the space of all tempered distribution on R and7

D([0, 2π]) the space of all infinitely differentiable functions defined on [0, 2π] equipped with the locally8

convex topology given by the seminorms ∥f∥n = supt∈[0,2π] |f (n)(t)| for all n ∈ N0 := N ∪ {0}. Let9

X be a Banach space. Let D′([0, 2π], X) := B(D([0, 2π]), X) be the space of all X-valued 2π-periodic10

distributions. Now we consider the following dyadic-like subset of R :11

I0 := {x ∈ R : |x| ≤ 2} and In := {x ∈ R : 2n−1 < |x| ≤ 2n+1},

for n ∈ N. By Φ(R) we denote the set of all systems ϕ = {ϕj}j∈N0
⊂ S(R) such that supp(ϕj) ⊂ Ij for12

each j ∈ N0,
∑

j∈N0
ϕj(x) = 1 for each x ∈ R and for α ∈ N0, we have supj∈N0,x∈R 2αj |ϕ(α)

j (x)| < ∞. Let13

ϕ = {ϕj}j∈N0
⊂ S(R) be fixed. Denote by (ek ⊗ ϕ) the function defined by (ek ⊗ ϕ)(x) = eikxϕ(x). For14

1 ≤ p, q ≤ ∞, and s > 0, the X-valued periodic Besov space is defined by15

Bs
p,q([0, 2π], X) :=

f ∈ D′([0, 2π], X) : ∥f∥Bs
p,q

:=

∑
j∈N0

2sjq

∥∥∥∥∥∑
k∈Z

ek ⊗ ϕj(k)f̂(k)

∥∥∥∥∥
q

Lp

1/q

< ∞

 ,

with the usual modifications in case q = ∞. The space Bs
p,q([0, 2π], X) is independent of the choice of the16

system ϕ and different choices of ϕ give equivalent norms to ∥ · ∥Bs
p,q

. We summarize here some useful17

properties of Bs
p,q([0, 2π], X). See [3, Section 2] for further details.18

(i) (Bs
p,q([0, 2π], X), ∥ · ∥Bs

p,q
) is a Banach space;19

(ii) If s > 0, then Bs
p,q([0, 2π], X) ↪→ Lp([0, 2π], X), and the natural injection from Bs

p,q([0, 2π], X)20

into Lp([0, 2π], X) is a continuos linear operator;21

(iii) If s1 ≤ s2, then Bs2
p,q([0, 2π], X) ⊂ Bs1

p,q([0, 2π], X);22

(iv) Let s > 0. Then f ∈ Bs+1
p,q ([0, 2π], X) if and only if f is differentiable a.e. and f ′ ∈ Bs

p,q([0, 2π], X).23

This implies that if u ∈ Bs
p,q([0, 2π], X) is such that there exists v ∈ Bs

p,q([0, 2π], X) satisfying24

v̂(k) = ikû(k) for all k ∈ Z, then u ∈ Bs+1
p,q ([0, 2π], X) and u′ = v.25

Now, we recall the definition of operator valued Fourier multipliers in the context of periodic Besov26

spaces.27

Definition 4.14. Let 1 ≤ p, q ≤ ∞, s > 0. A sequence {Mk}k∈Z ⊂ B(X,Y ) is a Bs
p,q-multiplier if for

each f ∈ Bs
p,q([0, 2π], X) there exists a function g ∈ Bs

p,q([0, 2π], Y ) such that

ĝ(k) = Mkf̂(k), k ∈ Z.

We recall the following operator-valued Fourier multiplier theorem in Besov spaces.28
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Theorem 4.15. [3] Let X,Y be Banach spaces and let {Mk}k∈Z ⊆ B(X,Y ). Suppose that1

sup
k∈Z

∥Mk∥ < ∞, sup
k∈Z

∥k(Mk+1 −Mk)∥ < ∞,(4.6)

sup
k∈Z

∥k2(Mk+1 − 2Mk +Mk−1)∥ < ∞.(4.7)

Then for 1 ≤ p, q ≤ ∞, s > 0, {Mk}k∈Z is a Bs
p,q-multiplier.2

We remark that if X is a B-convex space (if X is for instance a UMD space), then the condition (4.6)3

is already sufficient for {Mk}k∈Z to be a Bs
p,q-multiplier. As in the case of Lp-multipliers, we have the4

following properties5

(a) If {Mk}k∈Z ⊆ B(X,Y ) is a Bs
p,q-multiplier, then there exists a bounded operator M, M :6

Bs
p,q([0, 2π], X) → Bs

p,q([0, 2π], Y ) such that M̂f(k) = Mkf̂(k) for all k ∈ Z. In particular,7

supk∈Z ∥Mk∥ < ∞.8

(b) If {Mk}k∈Z and {Nk}k∈Z are Bs
p,q-multipliers, then {Mk + Nk}k∈Z and {MkNk}k∈Z are Bs

p,q-9

multipliers as well.10

By using Theorem 4.15 we can prove the next result in the context of Besov spaces analogously to11

Proposition 3.9. We omit the details.12

Proposition 4.16. Let 1 ≤ p, q ≤ ∞, and s > 0. Suppose that {ak}k∈Z and {bk}k∈Z are 2-regular13

sequences. Let A : D(A) ⊂ X → X and B : D(B) ⊂ X → X be closed linear operators defined in a14

Banach space X with D(A) ∩ D(B) ̸= {0}. Suppose that {ik}k∈Z ⊂ ρa,b(A,B). For each k ∈ Z, define15

Nk := (−k2 + iλk + (1 + ak)A+ bkB)−1. Then, the following assertions are equivalent16

(i) The families {k2Nk}k∈Z and {bkBNk}k∈Z are Bs
p,q-multipliers;17

(ii) {ik}k∈Z ⊂ ρa,b(A,B) and18

sup
k∈Z

∥k2Nk∥ < ∞ and sup
k∈Z

∥bkBNk∥ < ∞.

Now, we study the existence and uniqueness of solutions to equation (1.3) in Bs
p,q([0, 2π], X). Is re-19

markable that in this case, there are no geometrical conditions on the Banach space X. Contrary to the20

Lp case, the multiplier theorems established for vector-valued Besov spaces are valid for arbitrary Banach21

spaces X, see for instance [1] and [3].22

Given a kernel a and a closed operator A we define the Besov-type space Bs
p,q,a,A([0, 2π], X) as23

Bs
p,q,a,A([0, 2π], X) := {v ∈ Bs

p,q([0, 2π], [D(A)]) : ∃w ∈ Bs
p,q([0, 2π], X) such that

ŵ(k) = akAv̂(k) for all k ∈ Z}.
Note that if v ∈ Bs

p,q,a,A([0, 2π], X), then (a∗̇Au) ∈ Bs
p,q([0, 2π], X). Now, we define the following solution24

space:25

Sp,q := Bs+2
p,q ([0, 2π], X) ∩Bs

p,q([0, 2π], [D(A)]) ∩Bs
p,q,a,A([0, 2π], X) ∩Bs

p,q,b,B([0, 2π], X).

Definition 4.17. We say that a function u ∈ Sp,q is a strong Bs
p,q-solution of (1.3) if (1.3) holds for26

almost every t ∈ [0, 2π].27

The next result, compared with Theorem 3.11, does not require any restriction on the Banach space28

X. Its proof follows the same lines as in the proof of Theorem 3.11. We omit the details.29

Theorem 4.18. Let 1 ≤ p, q ≤ ∞, and s > 0. Suppose that {ak}k∈Z and {bk}k∈Z are 2-regular sequences.30

Let A : D(A) ⊂ X → X and B : D(B) ⊂ X → X be closed linear operators defined in a Banach space X31

with D(A) ∩D(B) ̸= {0}. Then, the following assertions are equivalent32

(i) For every f ∈ Bs
p,q([0, 2π], X), there exists a unique Bs

p,q-strong solution of (1.3);33

(ii) {ik}k∈Z ⊂ ρa,b(A,B) and34

sup
k∈Z

∥k2Nk∥ < ∞ and sup
k∈Z

∥bkBNk∥ < ∞.
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Moreover, we have also the next maximal regularity result.1

Corollary 4.19. In the context of Theorem 4.18, if condition (ii) is fulfilled, we have that the solution2

u to (1.3) satisfies u′′, u′, Au, (a∗̇Au), (b∗̇Bu) ∈ Bs
p,q([0, 2π], X). Moreover, there exists a constant C > 03

such that4

∥u′′∥Bs
p,q

+ |λ| ∥u′∥Bs
p,q

+ ∥Au∥Bs
p,q

+ ∥a∗̇Au∥Bs
p,q

+ ∥b∗̇Bu∥Bs
p,q

≤ C∥f∥Bs
p,q

.

For 0 < s < 1, we denote by Cs(R, X) the Hölder space of all continuous functions f : R → X such5

that6

∥f(t)− f(s)∥ ≤ c|t− s|s

for all t, s ∈ R and some c ≥ 0. By Cs([0, 2π], X) we denote the Hölder space of all 2π-periodic functions,7

that is Cs([0, 2π], X) = Cs(R, X) ∩ C([0, 2π], X), where C([0, 2π], X) is the space of all 2π-periodic8

continuous functions. Since Bs
∞,∞([0, 2π], X) = Cs([0, 2π], X) we have the following result in Hölder9

spaces.10

Corollary 4.20. Let 0 < s < 1. Suppose that {ak}k∈Z and {bk}k∈Z are 2-regular sequences. Let A :11

D(A) ⊂ X → X and B : D(B) ⊂ X → X be closed linear operators defined in a Banach space X with12

D(A) ∩D(B) ̸= {0}. Then, the following assertions are equivalent13

(i) For every f ∈ Cs([0, 2π], X), there exists a unique strong of (1.3) with u′′, u′, Au, (a∗̇Au), (b∗̇Bu) ∈14

Cs([0, 2π], X);15

(ii) {ik}k∈Z ⊂ ρa,b(A,B) and16

sup
k∈Z

∥k2Nk∥ < ∞ and sup
k∈Z

∥bkBNk∥ < ∞.

5. Mild periodic solutions17

In this section, we study the existence of mild solutions to equation (1.3). The functions g1 and g218

are defined respectively by g1(t) = 1 and g2(t) = t for all t ∈ [0, 2π]. The usual convolution between the19

functions f and g, denoted by (f ∗ g)(t), is defined by20

(f ∗ g)(t) =
∫ t

0

f(t− s)g(s)ds,

for all t ∈ [0, 2π]. Observe that21

(g1 ∗ f)(t) =
∫ t

0

f(s)ds and (g2 ∗ f)(t) =
∫ t

0

(t− s)f(s)ds,

and (g2 ∗ f)(t) = (g1 ∗ g1 ∗ f)(t) for all t ∈ [0, 2π].22

Definition 5.21. Let f ∈ L1
loc(R, X). A differentiable function u ∈ C([0, 2π], X) at t = 0 is called a mild23

solution to (1.3) if (g2 ∗ u)(t), (g2 ∗ (a∗̇u))(t) ∈ D(A), (g2 ∗ (b∗̇u))(t) ∈ D(B), for all t ∈ [0, 2π] and24

u(t) = u(0) + tu′(0) + λtu(0)− λ(g1 ∗ u)(t)−A(g2 ∗ u)(t)−A(g2 ∗ (a∗̇u))(t)
− B(g2 ∗ (b∗̇u))(t) + (g2 ∗ f)(t),(5.8)

for all t ∈ [0, 2π].25

Observe that if a(t) = b(t) = 0, for all t, λ = 0, then this concept of mild solution is the same that in26

case of the second order problem u′′(t) +Au(t) = f(t).27

It is clear that every Lp-strong solution to equation (1.3) is a mild solution, and conversely, if u is a28

mild solution to (1.3) and u belongs to the solution space S, then u is an Lp-strong solution.29

Lemma 5.22. Let a ∈ L1(R) and a function f. Define the function Ga
f by Ga

f (t) := (g2 ∗ (a∗̇f))(t),30

t ∈ [0, 2π]. Then, the Fourier coefficient of Ga
f are given by31

Ĝa
f (k) = − 1

2πik
Ga

f (2π) +
1

k2
a0f̂(0)−

1

k2
akf̂(k), k ∈ Z \ {0}.
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Proof. It follows similarly to [20, Lemma 4.2]. □1

Theorem 5.23. Let f ∈ L1([0, 2π], X) and u ∈ C([0, 2π], X) be a differentiable function at t = 0. Assume2

that D(A) = X. Then u is a mild solution to problem (1.3) satisfying u′(0) = u′(2π) if and only if3

û(k) ∈ D(A) ∩D(B) and (−k2 + ikλ+ (1 + ak)A+ bkB)û(k) = f̂(k),(5.9)

for all k ∈ Z.4

Proof. Assume that u is a mild solution to (1.3). From (5.8), we obtain (with t = 2π) that5

(5.10) A(g2 ∗ u)(2π) +AGa
u(2π) +BGb

u(2π) = 2πλu(0) + 2πu′(0)− λ(g1 ∗ u)(2π) + (g2 ∗ f)(2π).

Let w(t) = u(t)− u(0)− tu′(0)− λtu(0) + λ(g1 ∗ u)(t)− (g2 ∗ f)(t). From [2, Lemma 3.1] and hypothesis6

it follows that Ĝa
u(k) ∈ D(A), Ĝb

u(k) ∈ D(B), ̂(g2 ∗ u)(k) ∈ D(A) and7

(5.11) ŵ(k) = −AĜa
u(k)−BĜb

u(k)−A ̂(g2 ∗ u)(k).

The Lemma 5.22 implies8

Ĝa
u(k) = − 1

2πik
Ga

u(2π) +
a0
k2

û(0)− ak
k2

û(k) and Ĝb
u(k) = − 1

2πik
Gb

u(2π) +
b0
k2

û(0)− bk
k2

û(k).

Thus9

(5.12) AĜa
u(k) = − 1

2πik
AGa

u(2π) +
a0
k2

Aû(0)− ak
k2

Aû(k),

and10

(5.13) BĜb
u(k) = − 1

2πik
BGb

u(2π) +
b0
k2

Bû(0)− bk
k2

Bû(k).

Moreover, by [20, Lemma 4.2] we have11

(5.14) A ̂(g2 ∗ u)(k) = − 1

2πik
A(g2 ∗ u)(2π) +

1

k2
Aû(0)− 1

k2
Aû(k).

Since ̂(g1 ∗ f)(k) = − 1
ik f̂(0) +

1
ik f̂(k), we have by [20, Lemma 4.2]12

(5.15)

ŵ(k) = û(k) +
1

ik
u′(0) +

λ

ik
u(0) + λ

[
− 1

ik
f̂(0) +

1

ik
f̂(k)

]
−
[
− 1

2πik
(g2 ∗ f)(2π) +

1

k2
f̂(0)− 1

k2
f̂(k)

]
.

On the other hand, the function u is differentiable and13

u′(t) = u′(0) + λu(0)− λu(t)−A(g1 ∗ u)(t)−A(g1 ∗ (a∗̇u))(t)−B(g1 ∗ (b∗̇u))(t) + (g1 ∗ f)(t),

and if t = 2π, then14

0 = −A(g1 ∗ u)(2π)−A(g1 ∗ (a∗̇u))(2π)−B(g1 ∗ (b∗̇u))(2π) + (g1 ∗ f)(2π),

that is,15

(5.16) (1 + a0)Aû(0) + b0Bû(0) = f̂(0).

Therefore, (5.12), (5.13) and (5.14) imply16

− 1

k2
(1 + ak)Aû(k)− 1

k2
bkBû(k) = AĜa

u(k) +BĜb
u(k) +A ̂(g2 ∗ u)(k)

+
1

2πik

[
AGa

u(2π) +BGb
u(2π) +A(g2 ∗ u)(2π)

]
− 1

k2
[a0Aû(0) + b0Bû(0) +Aû(0)] .
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By (5.10) and (5.15), we obtain1

− 1

k2
(1 + ak)Aû(k)− 1

k2
bkBû(k) = AĜa

u(k) +BĜb
u(k) +A ̂(g2 ∗ u)(k)

+
1

2πik
[2πλu(0) + 2πu′(0)− λ(g1 ∗ u)(2π) + (g2 ∗ f)(2π)]

− 1

k2
[a0Aû(0) + bkBû(0) +Aû(0)]

= AĜa
u(k) +BĜb

u(k) +A ̂(g2 ∗ u)(k)

+ ŵ(k)− û(k)− λ

ik
û(k) +

1

k2
f̂(0)− 1

k2
f̂(k)

− 1

k2
[(1 + a0)Aû(0) + b0Bû(0)] .

By using the identities (5.11) and (5.16) we have2

− 1

k2
(1 + ak)Aû(k)− 1

k2
bkBû(k) = −û(k)− λ

ik
û(k)− 1

k2
f̂(k),

which implies (−k2 + ikλ + (1 + ak)A + bkB)û(k) = f̂(k), for all k ∈ Z, k ̸= 0 and this equality is also3

valid for k = 0 by (5.16), and therefore the it holds for all k ∈ Z.4

Conversely, suppose that (5.9) holds for all k ∈ Z. We shall prove that for all x∗ ∈ D(A∗), where A∗
5

denotes the adjoint operator of A, we have6

⟨(g2 ∗ u)(t) + (g2 ∗ (a∗̇u))(t), A∗x∗⟩ = −⟨u(t), x∗⟩+ ⟨u(0), x∗⟩+ ⟨tu′(0), x∗⟩+ ⟨λtu(0), x∗⟩
−⟨λ(g1 ∗ u)(t), x∗⟩ − ⟨B(g2 ∗ (b∗̇u))(t), x∗⟩+ ⟨(g2 ∗ f)(t), x∗⟩.

If w(t) := ⟨u(t) + (a∗̇u)(t), A∗x∗⟩+ ⟨B(b∗̇u)(t), x∗⟩ − ⟨f(t), x∗⟩, then by (5.9) we have7

ŵ(k) = ⟨(1 + ak)û(k), A
∗x∗⟩+ ⟨bkBû(k), x∗⟩ − ⟨f̂(k), x∗⟩

= ⟨k2û(k)− iλkû(k), x∗⟩.
Since ŵ(0) = 0, the function v(t) := (g2 ∗w)(t)+ ⟨u(t), x∗⟩− t⟨u′(0), x∗⟩−λt⟨u(0), x∗⟩+λ⟨(g1 ∗u)(t), x∗⟩8

verifies by [20, Lemma 4.2]9

v̂(k) = − 1

2πik
(g2 ∗ w)(2π) +

1

k2
ŵ(0)− 1

k2
ŵ(k) + ⟨û(k), x∗⟩

+
1

ik
⟨u′(0), x∗⟩+ λ

ik
⟨u(0), x∗⟩ − λ

ik
⟨û(0), x∗⟩+ λ

ik
⟨û(k), x∗⟩

= − 1

2πik
(g2 ∗ w)(2π) +

1

ik
⟨u′(0), x∗⟩+ λ

ik
⟨u(0), x∗⟩ − λ

ik
⟨û(0), x∗⟩,

for all k ̸= 0. Then, the function z(t) := v(t)− t
2π (g2 ∗ w)(2π) + t⟨u′(0), x∗⟩+ λt⟨u(0), x∗⟩ − λt⟨û(0), x∗⟩10

is constant. Since v(0) = ⟨u(0), x∗⟩, z(0) = v(0) and z(0) = z(t) for all t, we obtain11

⟨u(0), x∗⟩ = v(0) = z(0) = z(t) = v(t)− t

2π
(g2 ∗ w)(2π) + t⟨u′(0), x∗⟩+ λt⟨u(0), x∗⟩ − λt⟨û(0), x∗⟩,

which implies12

v(t) =
t

2π
(g2 ∗ w)(2π)− t⟨u′(0), x∗⟩+ ⟨u(0), x∗⟩ − λt⟨u(0), x∗⟩+ λt⟨û(0), x∗⟩.

From the definition of v(t) we have13

(g2 ∗ w)(t) + ⟨u(t), x∗⟩+ λ⟨(g1 ∗ u)(t), x∗⟩ = t

2π
(g2 ∗ w)(2π) + ⟨u(0), x∗⟩+ λt⟨û(0), x∗⟩.(5.17)

Since the function u is differentiable at t = 0, we obtain14

2π[⟨u′(0), x∗⟩+ λ⟨u(0), x∗⟩ − λ⟨û(0), x∗⟩] = (g2 ∗ w)(2π),(5.18)
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and therefore, the equation (5.17) reads1

(g2 ∗ w)(t) + ⟨u(t), x∗⟩+ λ⟨(g1 ∗ u)(t), x∗⟩ = t⟨u′(0), x∗⟩+ ⟨u(0), x∗⟩+ λt⟨u(0), x∗⟩,
which implies (by the definition of w(t))2

⟨u(t), x∗⟩ = ⟨u(0), x∗⟩+ t⟨u′(0), x∗⟩+ λt⟨u(0), x∗⟩ − λ⟨(g1 ∗ u)(t), x∗⟩ − ⟨A(g2 ∗ u)(t), x∗⟩
−⟨A(g2 ∗ (a∗̇u))(t), x∗⟩ − ⟨B(g2 ∗ (b∗̇u))(t), x∗⟩+ ⟨(g2 ∗ f)(t), x∗⟩,

for all x∗ ∈ X∗. Thus, u verifies (5.8). On the other hand, since u is differentiable at t = 0 (and therefore3

at t = 2π) we obtain from (5.17) and (5.18)4

(g1 ∗ w)(2π) + ⟨u′(2π), x∗⟩ = ⟨u′(0), x∗⟩
for all x∗ ∈ X∗. But (g1 ∗ w)(2π) = 2πŵ(0) = 0, which implies ⟨u′(2π), x∗⟩ = ⟨u′(0), x∗⟩ for all x∗ ∈ X∗.5

We conclude that u′(0) = u′(2π). This finishes the proof of the Theorem. □6

6. Some applications7

In this section we discuss some applications to the abstract results presented in the previous sections.8

We consider the second order equation9

(6.19) u′′(t) + λu′(t) +Au(t) +

∫ t

−∞
a(t− s)Au(s)ds+

∫ t

−∞
b(t− s)u(s)ds = f(t),

where λ ∈ R, A is self-adjoint dissipative operator defined in a Hilbert space H, the kernels a, b ∈ L1(R+)10

define the 1-regular sequences {ak}k∈Z, {bk}k∈Z and f ∈ Lp([0, 2π], H). We recall that ak = ã(ik) and11

bk = b̃(ik) and we always assume that ak ̸= 1 for all k ∈ Z. If B = I, that is, B is the identity operator12

in H, then13

(−k2 + iλk + (1 + ak)A+ bkI)
−1 =

−1

1 + ak

(
k2 − iλk − bk

1 + ak
−A

)−1

(6.20)

for all k ∈ Z. Assume that a(0) ̸= λ and a′ ∈ L1(R+). For each k ∈ Z, define µk := k2−iλk−bk
1+ak

and14

suppose that µk ̸∈ σ(A) for all k ∈ Z, where σ(A) denotes the spectrum of A. Then, by [29, Lemma 2.2]15

there exists a constant C > 0 (independent of k) such that16

∥(µk −A)−1∥ ≤ C

1 + |k|
.(6.21)

The next result gives a different approach to [29, Theorem 2.1] in the Lp-context.17

Proposition 6.24. Let 1 < p < ∞ and assume the above conditions. Suppose that Im(µk) ̸= 0 for all18

k ∈ Z. If f ∈ Lp([0, 2π], H), then there exists a unique Lp-strong solution to equation (6.19).19

Proof. According to Theorem 3.11 (or Corollary 3.13) we need to prove that supk∈Z ∥k2Nk∥ < ∞ and20

supk∈Z ∥bkNk∥ < ∞, where Nk := (−k2 + iλk + (1 + ak)A + bkI)
−1. In fact, we first notice that as21

(1 + ak)Nk = −(µk −A)−1 and A(µk −A)−1 = µk(µk −A)−1 − I we obtain by (6.21) that22

∥akANk∥ =
|ak|

|1 + ak|
∥(1 + ak)ANk∥ ≤ |ak|

|1 + ak|
+

C

|1 + ak|
|ak| |µk|
1 + |k|

.

By the Riemann-Lebesgue lemma we have23

∥akANk∥ ≤ C1 + C2
|ak| |µk|
1 + |k|

,

for all k ∈ Z and certain constants C1, C2. We write ak = αk + iβk and bk = pk + iqk to estimate24

(|ak| |µk|)/(1 + |k|). Observe that25

|ak| |µk|
1 + |k|

≤ |αk| |µk|
|k|

+
|βk| |µk|

|k|
.
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To estimate (|αk| |µk|)/|k| we notice that1

|αk| |µk|
|k|

≤ |αk| |Re(µk)|
|k|

+
|αk| |Im(µk)|

|k|
and by [29, Lemma 2.1]2

lim
|k|→∞

|Im(µk)|
|k|

= a(0)− λ

and therefore, by the Riemann-Lebesgue lemma the sequence {|αk| |Im(µk)|/|k|}k∈Z is bounded. On the3

other hand,4

Re(µk) =
k2(1 + αk)− pk(1 + αk)− λβkk − βkqk

(1 + αk)2 + β2
k

and therefore5

|αk|
|Re(µk)|

|k|
≤ |kαk(1 + αk)|

(1 + αk)2 + β2
k

+ |αk|
|pk(1 + αk)− λβkk − βkqk|

|k|((1 + αk)2 + β2
k)

.

Since a′ ∈ L1(R+), the sequence {kαk}k∈Z is bounded. Similarly, since a, b ∈ L1(R+), the sequences6

{αk}k∈Z, {βk}k∈Z, {pk}k∈Z and {qk}k∈Z are bounded as well. We conclude that {|αk| |Re(µk)|/|k|}k∈Z is7

bounded. Therefore8

sup
k∈Z

∥akANk∥ < ∞.

Now, by the Riemann-Lebesgue lemma and (6.21) we have9

∥bkNk∥ ≤ |bk|
|1 + ak|

∥(µk −A)−1∥ ≤ |bk|C
|1 + ak|(1 + |k|)

,

which implies10

sup
k∈Z

∥bkNk∥ < ∞.

In order to prove that k2Nk is uniformly bounded, we first notice the identity11

−k2Nk = I − iλkNk − (1 + ak)ANk − bkNk,(6.22)

for all k ∈ Z. Moreover, by (6.21) it follows that12

sup
k∈Z

∥λkNk∥ < ∞.

On the other hand, since A is a self-adjoint dissipative operator, then A is sectorial operator with13

σ(A) ⊂ (−∞, 0]. Since Im(µk) ̸= 0 for all k ∈ Z, there exists a constant M such that14

∥µk(µk −A)−1∥ ≤ M

for all k ∈ Z. Moreover, the identity (1 + ak)ANk = −A(µk −A)−1 = I − µk(µk −A)−1 implies15

∥(1 + ak)ANk∥ ≤ 1 +M.

Finally, by (6.22) we conclude that16

sup
k∈Z

∥k2Nk∥ < ∞.

We conclude by Theorem 3.11 (or Corollary 3.13) that, if f ∈ Lp([0, 2π], H), (for 1 < p < ∞) then there17

exists a unique Lp-strong solution u to (6.19). Moreover, by Corollary 3.12 the solution u verifies the18

regularity u′′, u′, Au, (a∗̇Au), (b∗̇u) ∈ Lp([0, 2π], H), and the maximal regularity property19

∥u′′∥Lp + |λ| ∥u′∥Lp + ∥Au∥Lp + ∥a∗̇Au∥Lp + ∥b∗̇u∥Lp ≤ C∥f∥Lp ,

where C > 0 is a constant. □20
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The proof of the next result follows similarly to Proposition 6.24, which is consequence of Corollary1

4.20. We omit the details.2

Proposition 6.25. Let 1 < s < 1 and assume the conditions in Proposition 6.24, but with {ak}k∈Z and3

{bk}k∈Z being 2-regular sequences. If Im(µk) ̸= 0 for all k ∈ Z and f ∈ Cs([0, 2π], H), then there exists4

a unique Cs-strong solution to equation (6.19).5

Example 6.26.6

Let Ω be a bounded domain in R3 with a smooth boundary ∂Ω. By [29], the equation of heat flow in7

materials with memory8

(6.23) cutt(x, t)+α(0)ut(x, t)+

∫ t

−∞
α′(t−s)ut(x, s)ds = β(0)∆u(x, t)+

∫ t

−∞
β′(t−s)∆u(x, s)ds+F (x, t),

with the boundary condition u = 0 in Ω× R, can be written in the abstract form9

(6.24) u′′(t) + λu′(t) +Au(t) +

∫ t

−∞
a(t− s)Au(s)ds+

∫ t

−∞
b(t− s)u(s)ds = f(t) t ∈ R,

with λ = α(0)
c , A = 1

c (α
′(0)I − β(0)∆), a(t) = β(0)−1

c α′(t), b(t) = 1
c [α

′′(t) − β−1(0)α′(0)β′(t)] and10

f(t) = F (·, t). Assume that c > 0 and α(j), β(j) ∈ L1(R+), j = 0, 1, 2, with11

α(0) < 0, and β(0) > 0

(−1)jα(j)(t) ≥ 0 and (−1)jβ(j)(t) ≥ 0, t ∈ R.

Under these conditions, the operator A, with domain D(A) = H2(Ω) ∩H1(Ω) is self-adjoint dissipative12

in H = L2(Ω). Moreover, Im(µk) ̸= 0 for all k ∈ Z (see [29, Theorem 2.1]). By Proposition 6.24, if13

f ∈ Lp([0, 2π], L2(Ω)), then the equation (6.23) has a unique Lp-strong solution u.14

Example 6.27.15

Now, we consider the following equation, which describes the one-dimensional longitudinal motions of16

a viscoelastic bar17

(6.25) utt(x, t) = α(0)uxx(x, t) +

∫ t

−∞
α′(t− s)uxx(x, s)ds+ f(x, t), (x, t) ∈ (0, 1)× R,

with boundary conditions u(x, t) = 0 for x = 0, 1 and t ∈ R.18

We assume that α(t) = α∞ + α1(t), where α∞ > 0 is a constant, α1(0) > 0, α(j) ∈ L1(R+), j = 0, 1,19

with (−1)jα(j)(t) ≥ 0. Under these assumptions, the equation (6.25) can be written as (see [29, Theorem20

3.2])21

utt(x, t)− c2∆u(x, t)−
∫ t

−∞
α′
1(t− s)∆u(x, s)ds = f(x, t),

where c2 = α∞ + α1(0), and therefore a(t) = c−2α′
1(t), b(t) = λ = 0, and A = −c2∆ with A and D(A)22

defined as in Example 6.26. Moreover Im(µk) ̸= 0 for all k (see [29, Theorem 3.2]) and therefore by23

Proposition 6.24 the equation (6.25) has a unique Lp-strong solution u for each f ∈ Lp([0, 2π], H).24

Acknowledgements. The author thanks the reviewer for the detailed review and suggestions that have25

improved the previous version of the paper.26
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