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Abstract. In this paper we investigate the existence, asymptotic behavior and uniform p-integrability of
fractional resolvent families generated by sectorial operators in Banach spaces. As a consequence, we obtain

properties on the behavior of mild solutions to abstract fractional Cauchy problems for the Caputo and
Riemann-Liouville fractional derivatives.

1. Introduction

In this paper is the study the asymptotic behavior of the solutions to the fractional Cauchy problems

(1.1) ∂α
t u(t) = Au(t) + f(t), t ≥ 0, u(0) = x, u′(0) = y,

and

(1.2) ∂αu(t) = Au(t) + f(t), t ≥ 0, (g2−α ∗ u)(0) = x, (g2−α ∗ u)′(0) = y,

where f is a suitable function, A is a closed and linear operator defined in a Banach space X, x, y ∈ X, for
1 < α < 2, ∂α

t and ∂α denote, respectively, the Caputo and Riemann-Liouville fractional derivatives, and
for µ > 0, gµ(t) := tµ−1/Γ(µ) (here Γ(·) is the Gamma function) and ∗ denotes the usual finite convolution.

Fractional differential equations arise in many areas of applied sciences such as, anomalous diffusion,
fractional generalization of the kinetic equation, random walks, fluid flow, rheology, electrical networks,
control theory of dynamical systems, viscoelasticity, chemical physics, optics and signal processing, among
others, see for instance [5, 8, 11, 17, 23].

As in ordinary differential equations of first or second order, a useful method to solve fractional differential
equations is the Laplace transform method, see for instance [18]. This means that if we take Laplace transform
in (1.1) and (1.2) then, the mild solution to (1.1) and (1.2) are, respectively, given by

u(t) = Sα,1(t)x+ Sα,2(t)y +

∫ t

0

Sα,α(t− s)f(s)ds, t ≥ 0, and(1.3)

u(t) = Sα,α−1(t)x+ Sα,α(t)y +

∫ t

0

Sα,α(t− s)f(s)ds, t ≥ 0,(1.4)

where, for α, β > 0, Sα,β(t) :=
1

2πi

∫
γ
eλtλα−β(λα − A)−1dλ, t ≥ 0, and γ is a suitable complex path where

the resolvent operator (λα −A)−1 is well defined.
The family of operators {Sα,β(t)}t≥0 it is well-known in some cases. By the uniqueness of the Laplace

transform {S1,1(t)}t≥0 corresponds to a C0-semigroup generated by A, whereas {S2,1(t)}t≥0 and {S2,2(t)}t≥0

are, respectively, the cosine and sine family generated by A, see [3] for further details. If 1 ≤ α ≤ 2 and
β = 1, then {Sα,1(t)}t≥0 is an α-times resolvent [12]. In this case, {Sα,1(t)}t≥0 interpolates between the
semigroup (α = 1) and the cosine (α = 2) case. Thus, if A is the second order operator, then {Sα,1(t)}t≥0

interpolates the parabolic problem of first order (heat equation) and the hyperbolic problem of second order
(wave equation). Finally, the case 1 ≤ α = β ≤ 2 corresponds to an α-order resolvent (see [13]) and if α = 1
and β = n+ 1, n ∈ N, then we get an n-times integrated semigroup, see [3] for more details.

If A = ρI (where I is the identity operator), ρ ∈ C, then Sα,β(t) corresponds to the function sα,β(t) :=

tβ−1Eα,β(ρt
α), where for α, β > 0, z ∈ C, Eα,β(z) is the Mittag-Leffler defined by Eα,β(z) :=

∑∞
k=0

zk

Γ(αk+β) ,

whose Laplace transform L, verifies L(tβ−1Eα,β(ρt
α))(λ) = λα−β

λα−ρ , for all ρ ∈ C,Reλ > |ρ|1/α.
It is a well-known fact that the Mittag-Leffler function arises naturally in the representation of solutions

to ordinary fractional differential equations, see for instance [11]. Moreover, the properties of this function
sα,β(t) (see [10]) are particularly useful to study the properties of solutions to this class of equations. However,
in an abstract setting, that is, when A is a closed linear operator defined in a Banach space, many properties
of Sα,β(t) (for α, β > 0) remain as a not addressed subject in the literature.

The existence of mild solutions to fractional differential equations has been widely studied in the last
years, see for instance [2, 4, 5, 8, 12, 21, 22].
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The variation of constants formulas (1.3) and (1.4) suggest that if we know, for example, asymptotic (or
integrability) properties of t 7→ Sα,β(t) then, we could obtain some asymptotic (or integrability) properties
of the solution u to problems (1.1) and (1.2), respectively. If A is a ω-sectorial operator defined in a
Banach space X (see its Definition in Section 2) and 1 < α < 2, then the mild solution to the problem

v′(t) =
∫ t

0
(t−s)α−2

Γ(α−1) Av(s) + f(t), t ≥ 0, under the initial condition v(0) = v0 ∈ X, is given by v(t) =

Sα,1(t)v0 +
∫ t

0
Sα,1(t − s)f(s)ds, t ≥ 0, and there exists C > 0 such that ∥Sα,1(t)∥ ≤ C/(1 + |ω|tα) for all

t ≥ 0, which implies that ∥Sα,1(t)∥ → 0 as t → ∞, see [6, 7]. This asymptotic behavior of Sα,1(t) provides
several tools to obtain interesting consequences on the solutions to some fractional (and integral) differential
equations. See for instance [2, 19, 20, 21, 24] for further details. On the other hand, the asymptotic behavior
of Sα,1(t) and Sα,α(t) for 0 < α < 1, has been recently studied in [1, 22]. These works treat the asymptotic
behavior for sectorial and almost sectorial operators A, and as consequence, the authors obtain several
properties on the solution to the Caputo fractional Cauchy problem in case 0 < α < 1.

However, the asymptotic behavior of Sα,1(t) (for 1 < α < 2) does not allows to obtain asymptotic
properties of the solutions u to problems (1.1) and (1.2), because the variation of constants formulas (1.3)
and (1.4) involve the function Sα,β(t) for β ̸= 1. To the best of our knowledge, the asymptotic behavior of
Sα,β(t) is an untreated topic in the existing literature on fractional differential equations in Banach spaces.

In this paper, we study the asymptotic behavior and uniform integrability of t 7→ Sα,β(t), for sectorial
operators A, where 1 < α < 2, and β ≥ 1 are such that α − β + 1 > 0. As consequence, we obtain several
results on the properties of the solutions to the fractional Cauchy problems (1.1) and (1.2). We remark that,
we study simultaneously the case of the Riemann-Liouville and Caputo fractional derivatives.

The paper is organized as follows. Section 2 provides the Preliminaries. Section 3 is devoted to a generation
theorem and to the asymptotic behavior and p-integrability of Sα,β(t). Finally, the Section 4 presents results
on the regularity of solutions to Problems (1.1) and (1.2). More concretely, we study conditions on α, β and
f ensuring that the mild solution u to (1.1) (and (1.2)) belongs to C0(R+, X) or Lp(R+, X) (for 1 < p < ∞).

2. Preliminaries

Let (X, ∥·∥) be a Banach space. We denote by B(X) the space of all bounded linear operators from X into
X. If A is a closed linear operator on X, we denote by ρ(A) the resolvent set of A and R(λ,A) = (λ−A)−1

to its resolvent operator, which is defined for all λ ∈ ρ(A).
A strongly continuous family {S(t)}t≥0 ⊂ B(X) is said to be exponentially bounded if there exist M > 0

and w ∈ R such that ∥S(t)∥ ≤ Mewt, for all t ≥ 0. Moreover, {S(t)}t≥0 ⊂ B(X) is called uniformly p-

integrable, 1 ≤ p < ∞, if ∥S∥p :=
(∫∞

0
∥S(t)∥pdt

)1/p
< ∞. For 1 ≤ p < ∞, Lp(R+, X) denotes the space of

all Bochner measurable functions g : R+ → X such that ∥g∥p :=
(∫∞

0
∥g(t)∥pdt

)1/p
< ∞.

We say that a closed and densely defined operator A, defined on a Banach space (X, ∥ · ∥), is said to
be ω-sectorial of angle ϕ, if there exist ϕ ∈ [0, π/2) and ω ∈ R such that its resolvent exists in the sector
ω+Σϕ :=

{
ω + λ : λ ∈ C, | arg(λ)| < π

2 + ϕ
}
\ {ω} and ∥R(λ,A)∥ ≤ M

|λ−ω| , for all λ ∈ ω+Σϕ. In case ω = 0

we say that A is sectorial of angle ϕ+ π/2. More details on sectorial operators can be found in [9].
For µ > 0, n := ⌈µ⌉ denotes the smallest integer greater than or equal to µ. The finite convolution of f

and g is defined by (f ∗ g)(t) :=
∫ t

0
f(t− s)g(s)ds.

Definition 2.1. Let α > 0 and n = ⌈α⌉. The Caputo and Riemann-Liouville fractional derivative of order α

of u are defined, respectively, by ∂α
t u(t) :=

∫ t

0
gn−α(t− s)u(n)(s)ds, and ∂αu(t) := dn

dtn

∫ t

0
gn−α(t− s)u(s)ds.

Denoting by f̂ (or L(f)) to the Laplace transform of f, we have for 1 < α < 2 that

(2.1) ∂̂α
t u(λ) = λαû(λ)− λα−1u(0)− λα−2u′(0), and ∂̂αu(λ) = λαû(λ)− λ(g2−α ∗ u)(0)− (g2−α ∗ u)′(0).

3. Asymptotic Behavior and Uniform Integrability of the resolvent family

In this section we define a resolvent family of operators generated by an operator A. We also present a
generation result and we study the asymptotic behavior and uniform integrability of this family.

Definition 3.2. Let A be closed linear operator with domain D(A), defined on a Banach space X, 1 ≤ α ≤ 2
and 0 < β ≤ 2. We say that A is the generator of an (α, β)-resolvent family, if there exists ω ≥ 0 and a
strongly continuous and exponentially bounded function Sα,β : [0,∞) → B(X) such that {λα : Reλ > ω} ⊂
ρ(A), and for all x ∈ X,

λα−β (λα −A)
−1

x =

∫ ∞

0

e−λtSα,β(t)xdt, Reλ > ω.

In this case, {Sα,β(t)}t≥0 is called the (α, β)-resolvent family generated by A.
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Comparing Definition 3.2 with the notion of (a, k)-regularized families in [14] we observe that t 7→ Sα,β(t),
is a (gα, gβ)-regularized family. Moreover, the function Sα,β(t) satisfies the functional equation (see [13, 15]):
Sα,β(s)(gα ∗ Sα,β)(t)− (gα ∗ Sα,β)(s)Sα,β(t) = gβ(s)(gα ∗ Sα,β)(t)− gβ(t)(gα ∗ Sα,β)(s), for all t, s ≥ 0, and,
if an operator A with domain D(A) is the infinitesimal generator of an (α, β)-resolvent family, then for all

x ∈ D(A) we have Ax = limt→0+
Sα,β(t)x−gβ(t)x

gα+β(t)
. For example, S1,1(t) corresponds to a C0-semigroup, S2,1(t)

to a cosine family and S2,2(t) is a sine family. We notice that in the scalar case, that is, when A = ρI,
where ρ ∈ C and I denotes the identity operator, then by the uniqueness of the Laplace transform, Sα,β(t)
corresponds to the function tβ−1Eα,β(ρt

α).
We have also the following result. Its proof follows similarly as in [13, Proposition 3.7].

Proposition 3.3. Let 1 ≤ α, β ≤ 2. Let Sα,β(t) be the (α, β)-resolvent family generated by A. Then:

(1) Sα,β(t)x ∈ D(A) and Sα,β(t)Ax = ASα,β(t)x for all x ∈ D(A) and t ≥ 0.
(2) If x ∈ D(A) and t ≥ 0, then

Sα,β(t)x = gβ(t)x+

∫ t

0

gα(t− s)ASα,β(s)xds(3.2)

(3) If x ∈ X, t ≥ 0, then
∫ t

0
gα(t−s)Sα,β(s)xds ∈ D(A) and Sα,β(t)x = gβ(t)x+A

∫ t

0
gα(t−s)Sα,β(s)xds.

In particular, Sα,β(0) = gβ(0)I.

The next generation result (analogous to the Hille-Yosida Theorem for C0-semigroups) is contained in
[14, Theorem 3.4]. See also [13, Section 3].

Theorem 3.4. Let A be a closed linear densely defined operator in a Banach space X. Suppose that 1 < α < 2
and β ≥ 1 such that α− β + 1 > 0. Then the following assertions are equivalent.

(1) The operator A generates an (α, β)-resolvent family {Sα,β(t)}t≥0 that satisfies ∥Sα,β(t)∥ ≤ Meµt for
all t ≥ 0 and for some constants M > 0 and µ ∈ R.

(2) There exist constants µ ∈ R and M > 0 such that λα ∈ ρ(A) for all λ with Reλ > µ and H(λ) :=

λα−β (λα −A)
−1

satisfies ∥H(n)(λ)∥ ≤ Mn!
(λ−µ)n+1 , for all Reλ > µ and n ∈ N0.

The next result gives sufficient conditions on α, β and A to obtain generators of (α, β)-resolvent families.

Theorem 3.5. Let 1 < α < 2 and β ≥ 1 such that α − β + 1 > 0. Assume that A is ω-sectorial of angle
(α−1)π

2 , where ω < 0. Then A generates an exponentially bounded (α, β)-resolvent family.

Proof. We will show that λα ∈ ρ(A) for all λ with Reλ > 0, and there exists a constant C > 0 such that the

function H(λ) := λα−β (λα −A)
−1

, satisfies the estimate ∥λH(λ)∥ + ∥λ2H ′(λ)∥ ≤ C, for all Reλ > 0. In
fact, let h(λ) := λα where λ = reiθ with |θ| < π

2 and r > 0. We notice that

arg(h(reiθ)) = Im(ln(h(reiθ))) = Im

∫ θ

0

d

dt
ln(h(reit))dt = Im

∫ θ

0

h′(reit)ireit

h(reit)
dt.

Since λh′(λ)
h(λ) = α, we obtain

∣∣∣Im ∫ θ

0
h′(reit)ireit

h(reit) dt
∣∣∣ ≤

∫ θ

0

∣∣∣h′(reit)ireit

h(reit)

∣∣∣ dt ≤ αθ ≤ (α−1)π
2 + π

2 . Therefore,

h(λ) ∈ Σ (α−1)π
2

for all Reλ > 0, and H is well defined. Since A is ω-sectorial operator, there exists M > 0

such that ∥λH(λ)∥ ≤ M |λ|α−β+1

|λα−ω| , for all Reλ > 0. Since β ≥ 1 and α− β + 1 > 0, we obtain ∥λH(λ)∥ ≤ M.

A simple computation gives λ2H ′(λ) = (α− β)λH(λ) + α2λH(λ)λα(λα −A)−1, and thus

∥λ2H ′(λ)∥ ≤ |α− β|∥λH(λ)∥+ α2∥λH(λ)λα(λα −A)−1∥ ≤ |α− β|M +
α2M2|λ|α

|λα − ω|
≤ (|α− β|+ α2M)M.

Therefore, ∥λH(λ)∥+ ∥λ2H ′(λ)∥ ≤ M + |α−β|M +α2M2, for all Reλ > 0. We conclude by [21, Propositon
0.1] and Theorem 3.4 that the operator A generates an exponentially bounded (α, β)-resolvent family. �

The next Theorem is one of the main results in this paper.

Theorem 3.6. Let 1 < α < 2 and β ≥ 1 such that α − β + 1 > 0. Assume that A is ω-sectorial of angle
(α−1)

2 π, where ω < 0. Then, there exists a constant C > 0, depending only on α and β, such that

∥Sα,β(t)∥ ≤ Ctβ−1

1 + |ω|tα
, for all t > 0.(3.3)

Proof. Since A is ω-sectorial of angle θ := (α−1)
2 π it follows from Theorem 3.5 that h(λ) := λα ∈ ρ(A) for

all Reλ > 0, and ∥(λα −A)−1∥ ≤ M
|λα−ω| , for all λ ∈ C,Reλ > 0. Next, we write

Sα,β(t) =
1

2πi

∫
γ

eλtλα−β(λα −A)−1dλ,(3.4)
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where γ is a positively oriented path lying inside the sector ω+Σθ, whose support Γ is the set of λ ∈ C such
that λα belongs to the boundary of Bδ, where Bδ := {δ + |ω|+Σθ}+ {δ +Σϕ}, with δ > 0 and 0 < ϕ < θ.
With this definition of γ, (λα−A)−1 is well defined and the representation (3.4) of Sα,β(t) makes sense. We
split γ into two part γ1, γ2, whose supports Γ1 and Γ2 are the sets formed by the complex numbers λ such
that λα lies on the intersection of Γ and the boundaries of |ω|+ 1/tα +Σθ and 1/tα +Σϕ respectively, i.e.

Γ1 = Γ ∩
{
|ω|+ 1

tα
+Σθ

}
and Γ2 = Γ ∩

{
1

tα
+Σϕ

}
.

Therefore, Γ = Γ1 ∪ Γ2 and Sα,β(t) = I1(t) + I2(t), for t ≥ 0, where Ij(t) :=
1

2πi

∫
γj

eλtλα−β(λα − A)−1dλ,

for j = 1, 2. We now estimate the integrals I1(t) and I2(t). For the integral I1(t) we have

∥I1(t)∥ ≤ 1

2π

∫
γ1

|eλt||λ|α−β∥(λα −A)−1∥|dλ| ≤ M

2π

∫
γ1

|eλt| |λ|α−β

|λα − ω|
|dλ|.

Now, we define λmin as the complex λ ∈ C such that Im(λ) > 0, and |λα
min − ω| = dist(L, ω), where L is

the line passing by (|ω|+ 1/tα, 0) and the intersection of Γ1 and Γ2. For λ ∈ Γ1 we have that

|λα
min − ω| ≤ |λα − ω| and cos(θ) = sin(

π

2
− θ) =

|λα
min − ω|
|ω|+ 1

tα

≤ |λα − ω|
|ω|+ 1

tα

.

Therefore, if λ ∈ Γ1 then 1
|λα−ω| ≤

tα

cos(θ)(1+|ω|tα) . Hence,

∥I1(t)∥ ≤ Mtα

2π cos(θ)(1 + |ω|tα)

∫
γ1

|eλt||λ|α−β |dλ| ≤ Mtα

π cos(θ)(1 + |ω|tα)

∫ ∞

0

e−t cos(θ)ssα−βds =
Cθt

β−1

(1 + |ω|tα)
,

where Cθ = MΓ(α−β+1)
π(cos(θ))α−β+2 . Similarly, if λ ∈ Γ2, then

1
|λα−ω| ≤

tα

cos(ϕ)(1+|ω|tα) , t ≥ 0, and therefore

∥I2(t)∥ ≤ Mtα

2π cos(ϕ)(1 + |ω|tα)

∫
γ1

|eλt||λ|α−β |dλ| ≤ Mtα

π cos(ϕ)(1 + |ω|tα)

∫ ∞

0

e−t cos(ϕ)ssα−βds =
Cϕt

β−1

(1 + |ω|tα)
,

where Cϕ := MΓ(α−β+1)
π(cos(ϕ))α−β+2 . Therefore, there exists a constant C > 0, depending only on α and β, such that

∥Sα,β(t)∥ ≤ C tβ−1

(1+|ω|tα) for all t ≥ 0. �

Definition 3.7. The family {S(t)}t≥0 ⊂ B(X) is called asymptotically stable if ∥S(t)∥ → 0 as t → ∞.

Corollary 3.8. Let (X, ∥ · ∥) be a Banach space. If 1 < α < 2 and β ≥ 1 are such that α− β + 1 > 0, and

A is ω-sectorial operator of angle θ = (α−1)
2 π, where ω < 0, then {Sα,β(t)}t≥0 is asymptotically stable.

Proof. It follows from (3.3) in Theorem 3.6. �

Corollary 3.9. Let (X, ∥ · ∥) be a Banach space. If 1 ≤ β < α < 2 and A is ω-sectorial of angle θ = (α−1)
2 π,

where ω < 0, then {Sα,β(t)}t≥0 is uniformly 1−integrable.

Proof. By Theorem 3.6 there exists a constant C > 0, depending only on α and β, such that ∥Sα,β(t)∥ ≤
Ctβ−1

(1+|ω|tα) for all t ≥ 0. Therefore, if B(·, ·) denotes de Beta function, then we obtain
∫∞
0

∥Sα,β(t)∥dt ≤∫∞
0

Ctβ−1

1+|ω|tα dt =
C
α |ω|

−β/αB
(

β
α , 1−

β
α

)
< ∞. �

4. Asymptotic behavior of mild solutions

We recall that C0(R+, X) is the space of all continuous functions g : R+ → X such that limt→∞ ∥g(t)∥ = 0.
The following results show that the solutions to the fractional Cauchy problem (for the Caputo and Riemann-
Liouville derivatives) belong to C0(R+, X).

Let A be a closed linear operator defined in X, x, y ∈ X, and 1 < α < 2. First, we consider the initial
value problem for the Caputo fractional derivative

(4.5)

 ∂α
t u(t) = Au(t) + f(t), t ≥ 0

u(0) = x
u′(0) = y,

Taking Laplace transform in (4.5) we obtain by (2.1) that

u(t) = Sα,1(t)x+ Sα,2(t)y +

∫ t

0

Sα,α(t− s)f(s)ds, t ≥ 0.(4.6)

By a mild solution to problem (4.5) we understand a function u : [0,∞) → X satisfying (4.6). Similarly, for
the Riemann-Liouville fractional derivative, if we take Laplace in the problem

(4.7)

 ∂αu(t) = Au(t) + f(t), t ≥ 0
(g2−α ∗ u)(0) = x
(g2−α ∗ u)′(0) = y,
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then

u(t) = Sα,α−1(t)x+ Sα,α(t)y +

∫ t

0

Sα,α(t− s)f(s)ds, t ≥ 0.(4.8)

And, analogously, a mild solution to problem (4.7) is a function u : [0,∞) → X satisfying (4.8).
The following results give some asymptotic properties of the solutions to problems (4.5) and (4.7).

Proposition 4.10. Let 1 < α < 2, ω < 0 and A is ω-sectorial of angle θ = (α−1)
2 π defined on a Banach

space (X, ∥ · ∥). If f ∈ L1(R+, X) and y ∈ X, then the mild solution u to problem

(4.9)

 ∂αu(t) = Au(t) + f(t), t ≥ 0
(g2−α ∗ u)(0) = 0
(g2−α ∗ u)′(0) = y,

belongs to C0(R+, X).

Proof. The mild solution to problem (4.9) is given by

u(t) = Sα,α(t)y +

∫ t

0

Sα,α(t− s)f(s)ds, t ≥ 0.(4.10)

The Theorems 3.4 and 3.5 show that the family {Sα,α(t)}t≥0 is strongly continuous. By Corollary 3.8 and
[3, Proposition 1.3.5] it follows that the convolution Sα,α ∗ f belongs to C0(R+, X). Therefore, by Corollary
3.8, ∥u(t)∥ ≤ ∥Sα,α(t)∥ ∥y∥+ ∥(Sα,α ∗ f)(t)∥ → 0, as t → ∞. �

We remark that the problem (4.9) has been widely studied in the last years, see for instance [13, 16] and
the references therein. In the next result, we consider a non-zero vector in the first initial condition.

Proposition 4.11. Let 1 < α < 2, ω < 0 and A is ω-sectorial of angle θ = (α−1)
2 π defined on a Banach

space (X, ∥ · ∥). If f ∈ L1(R+, X), then the mild solution to problem (4.5) belongs to C0(R+, X).

Proof. The mild solution to (4.5) is given by u(t) = Sα,1(t)x+ Sα,2(t)y +
∫ t

0
Sα,α(t− s)f(s)ds, t ≥ 0. As in

the proof of Proposition 4.10, we have that the convolution Sα,α ∗ f belongs to C0(R+, X), and by Corollary
3.8, ∥u(t)∥ ≤ ∥Sα,1(t)∥ ∥x∥+ ∥Sα,2(t)∥ ∥y∥+ ∥(Sα,α ∗ f)(t)∥ → 0, as t → ∞. Therefore, u ∈ C0(R+, X). �

Theorem 4.12. Let (X, ∥ · ∥) be a Banach space and 1 < p < ∞. Let 1 < α < 2, and β ≥ 1 such that

p(α − β + 1) > 1. If A is ω-sectorial of angle θ = (α−1)
2 π, with ω < 0, then {Sα,β(t)}t≥0 is uniformly

p−integrable. In particular, {Sα,α(t)}t≥0 is uniformly p−integrable.

Proof. By Theorem 3.6 there exists a constant C > 0 such that ∥Sα,β(t)∥ ≤ Ctβ−1

(1+|ω|tα) for all t ≥ 0. The

assumptions on α, β and p imply that∫ ∞

0

∥Sα,β(t)∥pdt ≤
∫ ∞

0

Cpt(β−1)p

(1 + |ω|tα)p
dt =

Cp

α

1

|ω|(β−1)p/α+1/α−1
B

(
(β − 1)p

α
+

1

α
, p(1− β

α
) +

1

α
(p− 1)

)
.

�

In the following results, we obtain Lp-regularity of the solutions to Problem (4.9).

Corollary 4.13. Let 1 < p < ∞, 1 < α < 2, ω < 0 and A is ω-sectorial of angle θ = (α−1)
2 π defined on

a Banach space (X, ∥ · ∥). If f ∈ Lq(R+, X), 1/p + 1/q = 1, then the solution u to Problem (4.9) verifies
∥u(t)∥ → 0, as t → ∞.

Proof. Since {Sα,α(t)}t≥0 is uniformly p-integrable by Theorem 4.12 and f ∈ Lq(R+, X) we obtain that
Sα,α ∗ f ∈ C0(R+, X) (see [3, Proposition 1.3.5]). Since that the solution to problem (4.9) is given by (4.10),
the Corollary 3.8 implies that u ∈ C0(R+, X). �

Corollary 4.14. Let 1 < p < ∞, 1 < α < 2, ω < 0 and A is ω-sectorial of angle θ = (α−1)
2 π defined on a

Banach space (X, ∥ · ∥). If f ∈ L1(R+, X) then the solution u to Problem (4.9) belongs to Lp(R+, X).

Proof. By Young’s inequality (see [3, Proposition 1.3.5]) and Theorem 4.12 it follows that ∥Sα,α ∗ f∥p ≤
∥f∥1

(∫∞
0

∥Sα,α(t)∥pdt
)1/p

< ∞, that is, Sα,α ∗ f ∈ Lp(R+, X). Since the solution of problem (4.9) is given
by (4.10), the Theorem 4.12 implies that u ∈ Lp(R+, X). �

As in the previous results, for the Caputo fractional Cauchy problem (4.5) we have the following corollaries.

Corollary 4.15. Let 1 < p < ∞, 1 < α < 2, ω < 0 and A is ω-sectorial of angle θ = (α−1)
2 π defined on

a Banach space (X, ∥ · ∥). If f ∈ Lq(R+, X), 1/p + 1/q = 1, then the solution u to Problem (4.5) verifies
∥u(t)∥ → 0, as t → ∞.
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Corollary 4.16. Let 1 < p < ∞, 1 < α < 2, ω < 0 and A is ω-sectorial of angle θ = (α−1)
2 π defined on a

Banach space (X, ∥ · ∥). If f ∈ L1(R+, X) and p(α− 1) > 1, then the solution u to Problem (4.5) belongs to
Lp(R+, X).

Proof. As in the proof of Corollary 4.14, Sα,α ∗ f ∈ Lp(R+, X). The assumption p(α − 1) > 1 implies that
Sα,1 and Sα,2 belong to Lp(R+, X) by Theorem 4.12. Therefore, u ∈ Lp(R+, X). �

Now, consider again the Riemann-Liouville case (see Problem (4.7)). Since 1 < α < 2, the Theorem 3.6
does not allow us to conclude that ∥Sα,α−1(t)∥ → 0 as t → ∞. However, we can prove the following result.

Proposition 4.17. Let 3
2 < α < 2, ω < 0 and A is ω-sectorial of angle θ = (α−1)

2 π defined on a Banach

space (X, ∥ · ∥). If f ∈ L1(R+, X), then the mild solution u to Problem (4.7) satisfies ∥(gα−1 ∗ u)(t)∥ → 0 as
t → ∞.

Proof. First, observe that for all Reλ > 0, we have L(gα−1∗Sα,α−1)(λ) =
1

λα−1λ(λ
α−A)−1 = λα−(2α−2)(λα−

A)−1 = L(Sα,2α−2)(λ). By the uniqueness of the Laplace transform we conclude that (gα−1 ∗ Sα,α−1)(t) =
Sα,2α−2(t). Since 3/2 < α < 2, we can apply Corollary 3.8 to conclude that ∥(gα−1 ∗ Sα,α−1)(t)∥ → 0 as

t → ∞. Analogously, L(gα−1 ∗Sα,α)(λ) = λα−(2α−1)(λα −A)−1 and therefore (gα−1 ∗Sα,α)(t) = Sα,2α−1(t).
The Corollary 3.8 implies that (gα−1∗Sα,α)(t) → 0 as t → ∞. Finally, the convolution gα−1∗Sα,α∗f belongs
to C0(R+, X) by [3, Proposition 1.3.5], and by (4.8), we obtain that gα−1 ∗ u goes to 0 as t → ∞. �

The above Proposition says that in order to guarantee the convergence to zero of the solution u of problem
(4.7) we need to integrate (α− 1)-times the function u.

Acknowledgements. The author thanks to the anonymous referees for their carefully reading of the man-
uscript and for making suggestions which have improved the previous version of this paper.
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[22] R. Wang, D. Chen, T. Xiao, Abstract fractional Cauchy problems with almost sectorial operators, J. Diff. Equations 252

(2012), 202-235.

[23] J. Wang, Y. Zhou, Mittag-Leffler-Ulam stabilities of fractional evolution equations, Appl. Math. Lett. 25 (2012), 4, 723-728.
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