DISCRETE SUBDIFFUSION EQUATIONS WITH MEMORY.

RODRIGO PONCE

ABSTRACT. In this paper, we study a discrete subdiffusion equation with memory. Based on the backward operator and the theory of fractional resolvent families, we find a discrete fractional resolvent sequence which allows to write the solution to this discrete subdiffusion equation as a variation of constant formula.

1. INTRODUCTION

The problem of the heat conduction in materials with memory, was firstly studied by Coleman and Gurtin [12] and Gurtin and Pipkin [21], where the authors deduced a differential equation of first order with memory, which can be written in the form of

(1.1)
$$\begin{cases} u'(t) = Au(t) + \int_0^t a(t-s)Au(s)ds + f(t), \ t \ge 0\\ u(0) = x, \end{cases}$$

where A is a closed operator (typically is the second order operator) defined in a Banach space X, the initial condition x belongs to X, a is a locally integrable kernel known as the heat relaxation function, and f is a suitable continuous function. Typical choices of kernels a are given by $a(t) = \rho \frac{t^{\mu-1}}{\Gamma(\mu)} e^{-\beta t}$, where $\rho \in \mathbb{R}, \beta \ge 0$ and $\mu > 0$, see for instance [49]. The existence and uniqueness of solutions to equation (1.1) has been widely studied in the last five decades, see for instance the monographs [17, 20, 49] and the references therein. More concretely, it is well known that if $a \in W^{1,1}(\mathbb{R}_+)$ (for instance for $\mu > 1$) and A is the generator of a C_0 -semigroup, then the problem (1.1) has a unique solution u, see for instance [17, Chapter VI, Section 7]. But, if $a \notin W^{1,1}(\mathbb{R}_+)$ (for instance for $0 < \mu < 1$), then the classical theory of C_0 -semigroups does not allow to ensure the existence of such solutions. However, if A generates a resolvent family $\{S^a(t)\}_{t\geq 0}$ (see [15, 52]), then there exists a unique mild solution u to (1.1) given by the variation of constants formula

(1.2)
$$u(t) = S^{a}(t)x + \int_{0}^{t} S^{a}(t-s)f(s)ds, \quad t \ge 0.$$

Here, the Laplace transform $\hat{\cdot}$, of $S^a(t)$ verifies $\widehat{S^a}(\lambda) = \frac{1}{1+\hat{a}(\lambda)} \left(\frac{\lambda}{1+\hat{a}(\lambda)} - A\right)^{-1}$ for all $\lambda \in \mathbb{C}$ such that $\frac{\lambda}{1+\hat{a}(\lambda)} \in \rho(A)$. We notice that if a(t) = 0 for all $t \geq 0$, (that is, the problem of the heat conduction without memory) then $S^a(t)$ is precisely the C_0 -semigroup generated by the operator A.

On the other hand, in the last two decades, fractional calculus have been used in many mathematical models to describe a wide variety of phenomena, including problems in viscoelasticity, signal and image processing, engineering, fractional Brownian motion, fractional stochastic differential equations, economics, epidemiology and among others. See [9, 23, 26, 29, 44, 45, 51] and the references therein. More specifically, the subdiffusion equation

(1.3)
$$\begin{cases} \partial_t^{\alpha} u(t) = Au(t) + f(t), \ t \ge 0\\ u(0) = x, \end{cases}$$

²⁰¹⁰ Mathematics Subject Classification. Primary 34A08; Secondary 47D06, 65J08, 65M22,65M60.

Key words and phrases. Fractional differential equations, equation with memory, resolvent families, backward operator.

where A is a closed linear operator defined in X, $x \in X$, f is a suitable continuous function and, for $0 < \alpha < 1$, $\partial_t^{\alpha} u$ denotes the Caputo fractional derivative of u of order, has been studied both in abstract and applied settings. The mild solution to (1.3) can be written again as a variation of constant formula:

(1.4)
$$u(t) = S_{\alpha,1}(t)x + \int_0^t S_{\alpha,\alpha}(t-s)f(s)ds,$$

where, for $\alpha, \beta > 0$, $S_{\alpha,\beta}(t)$ is the fractional resolvent family generated by A which can be defined as $S_{\alpha,\beta}(t) := \frac{1}{2\pi i} \int_{\gamma} e^{\lambda t} \lambda^{\alpha-\beta} (\lambda^{\alpha} - A)^{-1} d\lambda, t \ge 0$, where, γ is a suitable complex path where the resolvent operator $(\lambda^{\alpha} - A)^{-1}$ is well-defined. We notice that the function $S_{\alpha,\beta}(t)$ corresponds precisely to a generalization of the scalar Mittag-Leffler function, which is defined by $E_{\alpha,\beta}(z) := \sum_{k=0}^{\infty} z^k / \Gamma(\alpha k + \beta) = \frac{1}{2\pi i} \int_{Ha} e^{\mu} \mu^{\alpha-\beta} (\mu^{\alpha} - z)^{-1} d\mu, \alpha, \beta > 0, z \in \mathbb{C}$, where, Ha is a Hankel path, i.e. a contour which starts and ends at $-\infty$ and encircles the disc $|\mu| \le |z|^{1/\alpha}$ counterclockwise.

Several different time discretizations of integro-differential equations with memory terms of convolution type in the form of (1.1) have been considered by many authors in the last decades. For example, the authors in [50] take the operator A as an unbounded positive-definite self-adjoint operator with dense domain in a Hilbert space and the operator, in [43], the authors consider A as closed linear operator in a Banach space satisfying the resolvent estimate $||(z - A)^{-1}|| \leq M_{\delta}/(1 + |z|)$, for $z \in \Sigma_{\delta} := \{z \neq$ $0, |\arg(z)| < \delta\} \cup \{0\}$ for some $\delta \in (\frac{1}{2}\pi, \pi)$, where M_{δ} is a positive constant, and the kernel a verifies appropriate conditions. See also [10, 11, 14] for a different approach to the scalar case. A typical kernel satisfying such conditions is $a(t) = \rho e^{-\beta t}$ with $\rho \in \mathbb{R}$ and $\beta \geq 0$, see [43, Section 2]. In the case of the kernel a defined by $a(t) = t^{\alpha-1}/\Gamma(\alpha)$, time discretizations in Banach spaces have been studied, for example, in [42] for $0 < \alpha < 1$ (where A verifies the same resolvent estimate above) and in [13] for $1 < \alpha < 2$ (where A is a sectorial operator). Finally, very recently, in [38] the authors study a time discretization of (1.1) where A is assumed to be the generator of a resolvent family $\{S^a(t)\}_{t\geq 0}$ for the discrete time step $\tau = 1$ via the Poisson transform [35].

In addition, there is a recent and extensive literature on time discretization of fractional differential equations in the form of (1.3). See for instance [39, 40] for a classical point of view. In [5, 6, 16, 18] the authors study scalar fractional differential equations in the form of (1.3). The authors in [27] study discrete maximal regularity of fractional evolution equations for the Caputo and Riemann-Liouville fractional derivatives on Banach spaces with the UMD property. In [36, 37] the authors develop a method based on operator-valued Fourier multipliers for the well possedness of fractional difference equations in Banach spaces. On the other hand, in [2, 24, 35] the authors study the existence of solutions to fractional difference equations (for $0 < \alpha < 1$) in the form of

(1.5)
$$_C \nabla^{\alpha} u^n = A u^{n+1}, \quad n \in \mathbb{N},$$

with the initial condition $u^0 = u_0 \in X$, where $_C \nabla^{\alpha} u^n$ is an approximation of the Caputo fractional derivative $\partial_t^{\alpha} u(t)$ (at time t = n). By using a subordination principle and a discretization via the Poisson transform ([35]), the authors define a discrete fractional resolvent family $\{S_{\alpha}(n)\}_{n\in\mathbb{N}_0}$ generated by the operator A, and then the authors proved that the solution to this equation can be written in terms of the resolvent $\{S_{\alpha}(n)\}_{n\in\mathbb{N}_0}$. The case $1 < \alpha < 2$ has been recently studied by using similar methods in [4]. We notice that (1.5) corresponds to a time discretization of the fractional differential equation (1.3) given by the Poisson transformation [35] for the discrete time step size $\tau = 1$. Finally, in [47] the author studies time discretization to (1.3) for a time step size $\tau > 0$ and finds interesting connections between $\{S_{\alpha,\beta}(t)\}_{t\geq 0}$, a discrete fractional resolvent sequence $\{S_{\alpha,\beta}^n\}_{n\in\mathbb{N}_0}$ and the solution to discrete fractional differential equation (1.3) differential equations in the form of

(1.6)
$$_{C}\nabla^{\alpha}u^{n} = Au^{n} + f^{n}, \quad n \in \mathbb{N},$$

where $_{C}\nabla^{\alpha}u^{n}$ is an approximation of the Caputo fractional derivative $\partial_{t}^{\alpha}u(t)$ (at time $t = \tau n$). More concretely, in [47] has been proved that the solution to (1.6) under the initial condition $u^{0} = x$, is given by the variation of constant formula $u^{n} = S_{\alpha,1}^{n}x + \tau(S_{\alpha,\alpha} \star f)^{n}, n \in \mathbb{N}$, where, for $\alpha, \beta > 0$, and $n \in \mathbb{N}_{0}$, the fractional resolvent sequence $\{S_{\alpha,\beta}^n\}_{n\in\mathbb{N}_0}$ is defined by $S_{\alpha,\beta}^n := \int_0^\infty \rho_n^\tau(t) S_{\alpha,\beta}(t) dt$, and for a fixed $\tau > 0$, $\rho_n^\tau(t) := e^{-\frac{t}{\tau}} \left(\frac{t}{\tau}\right)^n \frac{1}{\tau n!}, \ (S_{\alpha,\alpha} \star f)^n = \sum_{j=0}^n S_{\alpha,\alpha}^{n-j} f^j$ and $f^j := \int_0^\infty \rho_j^\tau(t) f(t) dt$. On the other hand, the subdiffusion equation with memory

(1.7)
$$\begin{cases} \partial_t^{\alpha} u(t) = Au(t) + \int_0^t \kappa(t-s)Au(s)ds + f(t), \ t \ge 0\\ u(0) = x, \end{cases}$$

where $0 < \alpha < 1$, A is a closed linear operator defined in a Banach space X, $x \in X$ and κ is suitable kernel has been studied recently in [1, 30, 31, 32] and [48]. Again, the function $\kappa(t) = e^{-\rho t} \frac{t^{\mu-1}}{\Gamma(\mu)}$ where $\rho \geq 0$ and $0 < \mu \leq 1$ corresponds to a typical example of such kernels. However, to the best of our knowledge, there is not literature on time discretization of (1.7) for $0 < \alpha < 1$.

In this paper, we study the discrete subdiffusion equation with memory

(1.8)
$$_{C}\nabla^{\alpha}u^{n} = Au^{n} + \tau \sum_{j=0}^{n} \kappa^{n-j}Au^{j} + f^{n}, \quad n \in \mathbb{N},$$

under the initial condition $u^0 = x$. Observe that this equation corresponds to a time discretization (for a time step size $\tau > 0$ of (1.7) which can be obtained by multiplying the subdiffusion equation with memory (1.7) by $\rho_{\pi}^{\tau}(t)$, and next integrating over $[0,\infty)$ (see Section 2). Based on the theory of fractional resolvent families for linear and closed operators and on the properties of the function $\rho_n^{\tau}(t)$ for a time step size $\tau > 0$ (known as *Poisson distribution*), in this paper we study the existence and representation of the solutions to problem (1.8). More precisely, we will show that the solution to equation (1.8) can be written as a variation of parameter formula in terms of certain discrete fractional resolvent family similarly to the case of the equation (1.6). We notice that for $\alpha = 1, C \nabla^1 u^n$ corresponds to the backward Euler difference $(u^n - u^{n-1})/\tau$ and therefore the discrete equation with memory (1.8) generalizes the integro-differential equations proposed in [38, 42, 43, 50], and if $\kappa(t) = 0$ for all $t \ge 0$ and $0 < \alpha < 1$, then (1.8) corresponds to a time discretization of the fractional subdiffusion (1.1).

The paper is structured as follows. In Section 2 we recall the definition of resolvent families and we give some preliminaries on continuous and discrete fractional calculus. In Section 3 we study the discrete fractional subdiffusion equation with memory (1.8). Here, by assuming that A is the generator of a resolvent family, we prove that the equation (1.8) under the initial condition $u^0 = x$ has a unique solution, which can be written as a variation of constant formula. Finally, in Section 4, assuming that $A = \rho I$ for some $\rho > 0$ or A is a self-adjoint operator on $L^2(\Omega)$ (where $\Omega \subset \mathbb{R}^N$ is a bounded open set) with compact resolvent, we give an explicit representation of solutions to (1.8).

2. Resolvent families and continuous and discrete fractional calculus

For a given a Banach spaces $(X, \|\cdot\|)$, the Banach space of all bounded and linear operators from X into X is denoted by $\mathcal{B}(X)$. If A is a closed linear operator defined in X, then $\rho(A)$ denotes the resolvent set of A and $R(\lambda, A) = (\lambda - A)^{-1}$ is its resolvent operator, which is defined for all $\lambda \in \rho(A)$.

We say that a family of operators $\{S(t)\}_{t\geq 0} \subset \mathcal{B}(X)$ is exponentially bounded if there exist real numbers M > 0 and $\omega \in \mathbb{R}$ such that

$$||S(t)|| \le M e^{\omega t}, \quad t \ge 0.$$

In this case, the Laplace transform of S(t), $\hat{S}(\lambda)x := \int_0^\infty e^{-\lambda t} S(t)x dt$, is well defined for all $\operatorname{Re} \lambda > \omega$. Given $\alpha > 0$, the function g_α is defined by $g_\alpha(t) := \frac{t^{\alpha-1}}{\Gamma(\alpha)}$, where $\Gamma(\cdot)$ denotes the Gamma function. We note that if $\alpha, \beta > 0$, then $g_{\alpha+\beta} = g_{\alpha} * g_{\beta}$, where (f * g) is the usual finite convolution (f * g)(t) = $\int_0^t f(t-s)g(s)ds$. For a locally integrable function $f:[0,\infty)\to X$, we define the Laplace transform of f, denoted by $\hat{f}(\lambda)$ (or $\mathcal{L}(f)(\lambda)$) as

$$\hat{f}(\lambda) = \int_0^\infty e^{-\lambda t} f(t) dt, \quad \mathrm{Re}\lambda > \omega$$

whenever the integral is absolutely convergent for $\operatorname{Re} \lambda > \omega$.

Definition 2.1. Let A be a closed and linear operator defined in a Banach space X and $a \in L^1_{loc}(\mathbb{R}_+)$. We say that A is the generator of a resolvent family, if there exist M > 0, $\omega \ge 0$ and a strongly continuous function $S^a : [0, \infty) \to \mathcal{B}(X)$ such that $\|S^a(t)\| \le M e^{\omega t}$ for all $t \ge 0$, $\{\frac{\lambda}{1+\hat{a}(\lambda)} : \operatorname{Re} \lambda > \omega\} \subset \rho(A)$ and for all $x \in X$.

$$\frac{1}{1+\hat{a}(\lambda)} \left(\frac{\lambda}{1+\hat{a}(\lambda)} - A\right)^{-1} x = \int_0^\infty e^{-\lambda t} S^a(t) x dt, \quad \text{Re}\lambda > \omega.$$

In this case, $\{S^a(t)\}_{t>0}$ is called the resolvent family generated by A.

Now, we notice that if A is the generator of the resolvent family $\{S^a(t)\}_{t>0}$, and c(t) := 1, b(t) :=1 + (1 * a)(t), then $\{S^a(t)\}_{t>0}$ corresponds to a (b, c)-regularized family according to [34]. This implies that if $a \equiv 0$, then $\{S^a(t)\}_{t>0}$ is the C₀-semigroup generated by A. Moreover, it is a well-known fact that if A generates a resolvent family $\{S^a(t)\}_{t>0}$, then solution u to (1.1) is given by the variation of parameters formula (1.2).

Definition 2.2. Let A be a closed and linear operator defined on a Banach space X and $\kappa \in L^1_{loc}(\mathbb{R}_+)$. Given $\alpha, \beta > 0$ we say that A is the generator of an (α, β) -resolvent family, if there exist $\omega \geq 0$ and a strongly continuous function $S_{\alpha,\beta}^{\kappa}: (0,\infty) \to \mathcal{B}(X)$ such that $S_{\alpha,\beta}^{\kappa}(t)$ is exponentially bounded, $\left\{ \frac{\lambda^{\alpha}}{1+\hat{\kappa}(\lambda)}: \mathrm{Re}\lambda > \omega \right\} \subset \rho(A), \text{ and for all } x \in X,$

(2.9)
$$\frac{\lambda^{\alpha-\beta}}{1+\hat{\kappa}(\lambda)} \left(\frac{\lambda^{\alpha}}{1+\hat{\kappa}(\lambda)} - A\right)^{-1} x = \int_0^\infty e^{-\lambda t} S^{\kappa}_{\alpha,\beta}(t) x dt, \quad \text{Re}\lambda > \omega.$$

In this case, $\{S_{\alpha\beta}^{\kappa}(t)\}_{t\geq 0}$ is called the (α,β) -resolvent family generated by A.

We observe that if $\alpha = \beta = 1$, then a (1, 1)-resolvent family $\{S_{1,1}^{\kappa}(t)\}_{t\geq 0}$ corresponds to the resolvent family $\{S^{\kappa}(t)\}_{t>0}$ according to Definition 2.1. Moreover, a closed linear operator A generates a unique (α,β) -resolvent family, and if $c(t) := g_{\alpha}(t) + (\kappa * g_{\alpha})(t)$ and A is the generator of an (α,β) -resolvent family $\{S_{\alpha,\beta}^{\kappa}(t)\}_{t>0}$ then $\{S_{\alpha,\beta}^{\kappa}(t)\}_{t>0}$ is a (c,g_{β}) -regularized family as well (according to [34]), and then we can prove the following result, see [34] for further details. See also [1, Definition 2.3 and Remark 2.4] and [3, Section 4]

Proposition 2.3. If $\alpha, \beta > 0$ and A generates an (α, β) -resolvent family $\{S_{\alpha\beta}^{\kappa}(t)\}_{t>0}$, then

- (1) $\lim_{t \to 0^+} \frac{S_{\alpha,\beta}^{\kappa}(t)x}{g_{\beta}(t)} = x, \text{ for all } x \in X,$ (2) $S_{\alpha,\beta}^{\kappa}(t)x \in D(A) \text{ and } S_{\alpha,\beta}^{\kappa}(t)Ax = AS_{\alpha,\beta}^{\kappa}(t)x \text{ for all } x \in D(A) \text{ and } t > 0$
- (3) For all $x \in D(A)$,

$$S_{\alpha,\beta}^{\kappa}(t)x = g_{\beta}(t)x + \int_{0}^{t} c(t-s)AS_{\alpha,\beta}^{\kappa}(s)xds,$$

(4) $\int_0^t c(t-s) S_{\alpha,\beta}^{\kappa}(s) x ds \in D(A)$ and

$$S_{\alpha,\beta}^{\kappa}(t)x = g_{\beta}(t)x + A \int_{0}^{t} c(t-s)S_{\alpha,\beta}^{\kappa}(s)xds,$$

for all $x \in X$,

where $c(t) := g_{\alpha}(t) + (\kappa * g_{\alpha})(t)$.

For $\alpha, \beta > 0$ and $z \in \mathbb{C}$, the Mittag-Leffler function $E_{\alpha,\beta}$ is defined by

$$E_{\alpha,\beta}(z) := \sum_{j=0}^{\infty} \frac{z^j}{\Gamma(\alpha j + \beta)}.$$

Given $\alpha > -1, \beta \in \mathbb{C}$ and $z \in \mathbb{C}$, the Wright function $W_{\alpha,\beta}$ is defined by

$$W_{\alpha,\beta}(z) := \sum_{j=0}^{\infty} \frac{z^j}{j! \Gamma(\alpha j + \beta)}.$$

If $\beta \geq 0$, then for all $z \in \mathbb{C}$ and $\alpha > -1$, we have (see [41]) that

$$W_{\alpha,\beta}(z) = \frac{1}{2\pi i} \int_{H_a} \mu^{-\beta} e^{\mu + z\mu^{-\alpha}} d\mu,$$

where H_a denotes the Hankel path defined as a contour that begins and $t = -\infty - ia$ (a > 0), encircles the branch cut that lies along the negative real axis, and ends up at $t = -\infty + ib$ (b > 0), see for instance [41].

Definition 2.4. [3, Definition 3.1] For $0 < \alpha < 1$ and $\beta \ge 0$, we define the function $\psi_{\alpha,\beta}$ in two variables by

$$\psi_{\alpha,\beta}(t,s) := t^{\beta-1} W_{-\alpha,\beta}(-st^{\alpha}), \quad t > 0, s \in \mathbb{C}$$

By [3, Theorem 3.2] it follows that if $0 < \alpha < 1$ and $\beta \ge 0$, then $\psi_{\alpha,\beta}(t,s) \ge 0$ for t, s > 0 and

(2.10)
$$\int_0^\infty e^{-\lambda t} \psi_{\alpha,\beta}(t,s) dt = \lambda^{-\beta} e^{-\lambda^\alpha s}, \text{ for } s, \lambda > 0.$$

Moreover, there exists an interesting connection between $S^a(t)$ and $S^{\kappa}_{\alpha,\beta}(t)$. In fact, let $0 < \alpha < 1$ and $\varepsilon \geq 0$, and let $\kappa \in L^1_{\text{loc}}(\mathbb{R}_+)$ be a given kernel and assume that there exist $a \in L^1_{\text{loc}}(\mathbb{R}_+)$ and $\nu \leq 0$ and such that $\hat{a}(\lambda^{\alpha}) = \hat{\kappa}(\lambda)$ for all $\text{Re}(\lambda) > \nu$. Suppose that A is the generator of a resolvent family $\{S^a(t)\}_{t>0}$. Then, A is also the generator of the $(\alpha, \alpha + \varepsilon)$ -resolvent family $\{S^{\kappa}_{\alpha,\alpha+\varepsilon}(t)\}_{t>0}$ defined by

$$S^{\kappa}_{\alpha,\alpha+\varepsilon}(t)x := \int_0^\infty \psi_{\alpha,\varepsilon}(t,s)S^a(s)xds, \quad t > 0, x \in X$$

where $\psi_{\alpha,\varepsilon}$ is the Wright type function given in Definition 2.4. Moreover, if $\varepsilon > 0$, then $S_{\alpha,\alpha+\varepsilon}^{\kappa}(t)x = (g_{\varepsilon} * S_{\alpha,\alpha}^{\kappa})(t)x$, for all $x \in X$ and t > 0.

In particular, if we take $\varepsilon = 0$ and $\varepsilon = 1 - \alpha$, then we obtain the following subordination result.

Proposition 2.5. [48] Let $0 < \alpha < 1$. Let $\kappa \in L^1_{loc}(\mathbb{R}_+)$ be a given kernel. Assume that there exist $a \in L^1_{loc}(\mathbb{R}_+)$ and $\nu \leq 0$ such that $\hat{a}(\lambda^{\alpha}) = \hat{\kappa}(\lambda)$ for all $\operatorname{Re}(\lambda) > \nu$. Suppose that A is the generator of a resolvent family $\{S^a(t)\}_{t\geq 0}$ such that $\|S^a(t)\| \leq Me^{\omega t}$ for all $t \geq 0$, where $M, \omega \geq 0$. Then, A is the generator of the resolvent families $\{S^{\kappa}_{\alpha,\alpha}(t)\}_{t\geq 0}$ and $\{S^{\kappa}_{\alpha,1}(t)\}_{t> 0}$ which are, respectively, defined by

(2.11)
$$S_{\alpha,\alpha}^{\kappa}(t)x := \int_0^\infty \psi_{\alpha,0}(t,s)S^a(s)xds, \quad t > 0,$$

and

(2.12)
$$S_{\alpha,1}^{\kappa}(t)x := \int_0^\infty \psi_{\alpha,1-\alpha}(t,s)S^a(s)xds, \quad t > 0.$$

We notice that if $\kappa(t) = 0$ for all $t \ge 0$, then a kernel *a* satisfying the above conditions is a(t) = 0for all $t \ge 0$. Therefore, if *A* is the generator of a resolvent family $\{S^a(t)\}_{t\ge 0}$ (with $a \equiv 0$), that is, *A* generates a C_0 -semigroup $\{T(t)\}_{t\ge 0}$, then *A* also generates the resolvent families

$$S_{\alpha,\alpha}^{\kappa}(t)x := \int_0^\infty \psi_{\alpha,0}(t,s)T(s)xds, \quad \text{and} \quad S_{\alpha,1}^{\kappa}(t)x := \int_0^\infty \psi_{\alpha,1-\alpha}(t,s)T(s)xds, t > 0,$$

These last relations are known as subordination principles, see for instance [3, 7, 8, 28].

For $0 < \alpha < 1$, the Caputo fractional derivative of order α of a function f is defined by

$$\partial_t^{\alpha} f(t) := (g_{1-\alpha} * f')(t) = \int_0^t g_{1-\alpha}(t-s)f'(s)ds$$

It is well known that if $\alpha = 1$, then $\partial_t^1 = \frac{d}{dt}$. For further details on fractional calculus we refer to the reader to [41]. Moreover, an easy computation shows that $\hat{g}_{\alpha}(\lambda) = \frac{1}{\lambda^{\alpha}}$ for all $\operatorname{Re}(\lambda) > 0$ and applying the properties of the Laplace transform, we obtain

(2.13)
$$\widehat{\partial_t^{\alpha} f}(\lambda) = \lambda^{\alpha} \widehat{f}(\lambda) - \lambda^{\alpha - 1} f(0)$$

for $0 < \alpha \leq 1$. Here, the power λ^{α} is uniquely defined by $\lambda^{\alpha} := |\lambda|^{\alpha} e^{i \arg(\lambda)}$, with $-\pi < \arg(\lambda) < \pi$.

Now, we review some details on discrete fractional calculus. We refer the reader to [19, 47] for further details. We denote the set of all non-negative integers by \mathbb{N}_0 and the non-negative real numbers by \mathbb{R}_0^+ . Give $\tau > 0$ fixed and $n \in \mathbb{N}_0$, we define

$$\rho_n^{\tau}(t) := e^{-\frac{t}{\tau}} \left(\frac{t}{\tau}\right)^n \frac{1}{\tau n!}$$

An easy computation shows that $\rho_n^{\tau}(t) \ge 0$, $\rho_n^{\tau}(t) = \tau^{-1}\rho_n(t/\tau)$ where $\rho_n(t) := e^{-t}t^n/n!$, and

$$\int_0^\infty \rho_n^\tau(t) dt = 1, \quad \text{ for all } \quad n \in \mathbb{N}_0.$$

For a bounded and locally integrable function $u : \mathbb{R}_0^+ \to X$, we define the sequence $(u^n)_n$ (known as *Poisson transformation*, see [35]) by

$$u^n := \int_0^\infty \rho_n^\tau(t) u(t) dt, \quad n \in \mathbb{N}_0$$

We observe that for $\tau > 0$ small enough, the function $\rho_n^{\tau}(t)$ behaves like a delta function at $t_n := \tau n$ and then, u^n corresponds to an approximation of u at t_n .

Given the Banach space $X, \mathcal{F}(\mathbb{R}^+_0; X)$ denotes the vector space of all vector-valued functions $v : \mathbb{R}^+_0 \to X$. The backward Euler operator $\nabla_{\tau} : \mathcal{F}(\mathbb{R}^+_0; X) \to \mathcal{F}(\mathbb{R}^+_0; X)$ is defined by

$$\nabla_{\tau} v^n := \frac{v^n - v^{n-1}}{\tau}, \quad n \in \mathbb{N}.$$

For $m \geq 2$, we define recursively $\nabla^m_\tau : \mathcal{F}(\mathbb{R}^+_0; X) \to \mathcal{F}(\mathbb{R}^+_0; X)$ as

(2.14)
$$\nabla_{\tau}^{m} v^{n} := \begin{cases} \nabla_{\tau}^{m-1} (\nabla_{\tau} v)^{n}, & n \ge m \\ 0, & n < m, \end{cases}$$

where $\nabla_{\tau}^1 \equiv \nabla_{\tau}$ and ∇_{τ}^0 is the identity operator. The operator ∇_{τ}^m is called the *backward difference* operator of order m. It is easy to see that if $v \in \mathcal{F}(\mathbb{R}^+_0; X)$, then

$$(\nabla_{\tau}^{m}v)^{n} = \frac{1}{\tau^{m}} \sum_{j=0}^{m} \binom{m}{j} (-1)^{j} v^{n-j}, \quad n \in \mathbb{N}.$$

Now, we define the sequence

(2.15)
$$k_{\tau}^{\alpha}(n) := \tau \int_{0}^{\infty} \rho_{n}^{\tau}(t) g_{\alpha}(t) dt, \quad n \in \mathbb{N}_{0}, \alpha > 0$$

An easy computation shows that

$$k_{\tau}^{\alpha}(n) = \frac{\tau^{\alpha}\Gamma(\alpha+n)}{\Gamma(\alpha)\Gamma(n+1)} = \tau \frac{\Gamma(\alpha+n)}{\Gamma(n+1)} g_{\alpha}(\tau), \quad n \in \mathbb{N}_{0}, \alpha > 0.$$

Definition 2.6. Let $0 < \alpha < 1$. The α^{th} -fractional sum of $v \in \mathcal{F}(\mathbb{R}; X)$ is defined by

(2.16)
$$(\nabla_{\tau}^{-\alpha}v)^n := \sum_{j=0}^n k_{\tau}^{\alpha}(n-j)v^j, \quad n \in \mathbb{N}_0.$$

Definition 2.7. Let $0 < \alpha < 1$. The Caputo fractional backward difference operator of order α of v, $_{C}\nabla^{\alpha} : \mathcal{F}(\mathbb{R}_{+}; X) \to \mathcal{F}(\mathbb{R}_{+}; X)$, is defined by

$$(_C \nabla^{\alpha} v)^n := \nabla_{\tau}^{-(1-\alpha)} (\nabla_{\tau}^1 v)^n, \quad n \in \mathbb{N}.$$

As in [19, Chapter 1, Section 1.5] we define by convention $\sum_{j=0}^{-k} v^j = 0$, for all $k \in \mathbb{N}$.

If $\alpha = 1$, then the fractional backward difference operator $_{C}\nabla^{\alpha}$ is defined as the backward difference operator ∇_{τ} . From [47] we have that if $0 < \alpha < 1$ and $n \in \mathbb{N}$, then $_{C} \nabla^{\alpha+1} v^{n} = _{C} \nabla^{\alpha} (\nabla^{1} v)^{n}$, and moreover, we have the following result that relates the Caputo fractional derivative and the Caputo difference operator.

Proposition 2.8. Let $0 < \alpha < 1$. If $u : [0, \infty) \to X$ is differentiable and bounded, then $\int_0^\infty \rho_n^\tau(t) \partial_t^\alpha u(t) dt = 0$ $_{C}\nabla^{\alpha}u^{n}$, for all $n \in \mathbb{N}$.

Thus, $_{C}\nabla^{\alpha}v^{n}$, corresponds to an approximation of the Caputo fractional derivative $\partial_{t}^{\alpha}u(t)$ at the point $t_n = n\tau$.

Now, given a family of operators $\{S(t)\}_{t\geq 0} \subset \mathcal{B}(X)$, we define the sequence

$$S^n x := \int_0^\infty \rho_n^\tau(t) S(t) x dt, \quad n \in \mathbb{N}_0, x \in X.$$

Similarly, if $c: \mathbb{R}_+ \to \mathbb{C}$ is a continuous and bounded function, we define $c^n := \int_0^\infty \rho_n^\tau(t) c(t) dt, n \in \mathbb{N}_0$, and the discrete convolution is defined by

$$(c \star S)^n := \sum_{k=0}^n c^{n-k} S^k, \quad n \in \mathbb{N}_0.$$

The next result summarizes several properties of the sequences defined above. We refer the reader to [35] and [47] for further details.

Proposition 2.9. Let $\tau > 0$ be fixed. Let $\{S(t)\}_{t \ge 0} \subset \mathcal{B}(X)$ be strongly continuous and Laplace transformable such that $\hat{S}(1/\tau)$ exists.

(1) If $c : \mathbb{R}_+ \to \mathbb{C}$ is Laplace transformable such that $\hat{c}(1/\tau)$ exists, then

$$\int_0^\infty \rho_n^\tau(t)(c*S)(t)xdt = \tau(c*S)^n x, \quad n \in \mathbb{N}_0, \text{ for all } x \in X.$$

(2) If
$$0 < \alpha < 1$$
, then

$$\int_0^\infty \rho_n^\tau(t)(g_\alpha * S)(t)xdt = \sum_{j=0}^n k_\tau^\alpha(n-j)S^jx, \quad n \in \mathbb{N}_0, \text{ for all } x \in X.$$

(3) If $f : \mathbb{R}_+ \to X$ is Laplace transformable such that $\hat{f}(1/\tau)$ exists, then

$$\int_0^\infty \rho_n^\tau(t)(S*f)(t)xdt = \tau(S\star f)^n x = \tau \sum_{j=0}^n S^{n-j} f^j, \quad n \in \mathbb{N}_0.$$

Finally, we have the following Lemma.

Lemma 2.10. Let $\{S(t)\}_{t>0} \subset \mathcal{B}(X)$ be a family of exponentially bounded linear operators such that $\hat{S}(1/\tau)$ exists. If $f: \mathbb{R}_+ \to X$, $a: \mathbb{R}_+ \to \mathbb{C}$, and $\hat{a}(1/\tau)$ and $\hat{f}(1/\tau)$ exist, then

$$\tau^2(a \star S \star f)^n = \int_0^\infty \rho_n^\tau(t)(a \star S \star f)(t)dt,$$

for all $n \in \mathbb{N}_0$, where $(a \star S \star f)^n := (a \star (S \star f))^n$. Moreover, $(a \star (S \star f))^n = ((a \star S) \star f)^n$ for all $n \in \mathbb{N}_0$. *Proof.* Since (a * S * f)(t) = (a * (S * f))(t) for all $t \ge 0$, the Proposition 2.9 and the definition of discrete convolution imply that

$$\int_{0}^{\infty} \rho_{n}^{\tau}(t)(a \ast S \ast f)(t)dt = \tau(a \star (S \ast f))^{n} = \tau \sum_{k=0}^{n} a^{n-k}(S \ast f)^{k} = \tau^{2} \sum_{k=0}^{n} a^{n-k}(S \star f)^{k} = \tau^{2}(a \star (S \star f))^{n},$$

for all $n \in \mathbb{N}_{0}$

for all $n \in \mathbb{N}_0$.

3. Solutions to a discrete fractional differential equation with memory

Now, for $0 < \alpha < 1$, we consider the equation

(3.17)
$$_{C}\nabla^{\alpha}u^{n} = Au^{n} + \tau \sum_{j=0}^{n} \kappa^{n-j}Au^{j} + f^{n}, \quad n \in \mathbb{N},$$

under the initial condition $u^0 = x$. The main result in this section is the following theorem.

Theorem 3.11. Let $\tau > 0$ and $0 < \alpha < 1$. Let A be the generator of an (α, α) -resolvent family $\{S_{\alpha,\alpha}^{\kappa}(t)\}_{t\geq 0}$ exponentially bounded with $\|S_{\alpha,\alpha}(t)\| \leq Me^{\omega t}$. If $x \in X$ and f is bounded, then the fractional difference equation (3.17) under the initial condition $u^0 = x$ has a unique solution given by

(3.18)
$$u^n = S^{\kappa,n}_{\alpha,1} x + \tau (S^\kappa_{\alpha,\alpha} \star f)^n$$

for all $n \in \mathbb{N}$, where $S_{\alpha,1}^{\kappa}(t) := (g_{1-\alpha} * S_{\alpha,\alpha}^{\kappa})(t)$ and

$$S_{\alpha,1}^{\kappa,n} := \int_0^\infty \rho_n^\tau(t) S_{\alpha,1}^\kappa(t) dt$$

Proof. As in the proof of [35, Theorem 4.4] it is easy to see that $S_{\alpha,1}^{\kappa,n} x \in D(A)$ for all $n \in \mathbb{N}_0$ and $x \in X$. From Proposition 2.3 we know that

$$S_{\alpha,1}^{\kappa}(t)x = x + A \int_0^t c(t-s) S_{\alpha,1}^{\kappa}(s) x ds = x + A(c * S_{\alpha,1}^{\kappa})(t)x,$$

for all $t \ge 0$ and $x \in X$, where $c(t) = g_{\alpha}(t) + (\kappa * g_{\alpha})(t)$. Multiplying this equality by $\rho_j^{\tau}(t)$ and integrating over $[0, \infty)$ we conclude (by Proposition 2.9) that

(3.19)
$$S_{\alpha,1}^{\kappa,j}x = x + \tau A \sum_{l=0}^{j} c^{j-l} S_{\alpha,1}^{\kappa,l}x$$

for all $j \ge 0$ and $x \in X$. Now, for all $n \in \mathbb{N}$ we have by definition that

$${}_{C}\nabla^{\alpha}(S_{\alpha,1}^{\kappa}x)^{n} = \nabla_{\tau}^{-(1-\alpha)}\nabla_{\tau}^{1}(S_{\alpha,1}^{\kappa}x)^{n} = \sum_{j=0}^{n} k_{\tau}^{1-\alpha}(n-j)(\nabla_{\tau}^{1}S_{\alpha,1}^{\kappa}x)^{j}$$

and by (3.19) we get

$$(\nabla_{\tau}^{1} S_{\alpha,1}^{\kappa} x)^{j} = \frac{1}{\tau} (S_{\alpha,1}^{\kappa,j} x - S_{\alpha,1}^{\kappa,j-1} x) = A \sum_{l=0}^{j} c^{j-l} S_{\alpha,1}^{\kappa,l} x - A \sum_{l=0}^{j-1-l} c^{j-1-l} S_{\alpha,1}^{\kappa,l} x$$

for all $j \ge 1$. Let $R(t) := (c * S_{\alpha,1}^{\kappa})(t)$. By Proposition 2.9 we have

$$R^j = \tau \sum_{l=0}^j c^{j-l} S_{\alpha,1}^{\kappa,l},$$

which implies that

$$\sum_{j=0}^{n} k_{\tau}^{1-\alpha}(n-j) \sum_{l=0}^{j} c^{j-l} S_{\alpha,1}^{\kappa,l} x = \frac{1}{\tau} \sum_{j=0}^{n} k_{\tau}^{1-\alpha}(n-j) R^{j} x = \frac{1}{\tau} \int_{0}^{\infty} \rho_{n}^{\tau}(t) (g_{1-\alpha} * R)(t) x dt.$$

Since $c(t) = g_{\alpha}(t) + (\kappa * g_{\alpha})$ and $(g_{\alpha} * g_{1-\alpha})(t) = g_1(t)$, we have by definition of R that

$$(g_{1-\alpha} * R)(t) = (g_{1-\alpha} * c * S_{\alpha,1}^{\kappa})(t) = (g_1 * S_{\alpha,1}^{\kappa})(t) + (g_1 * \kappa * S_{\alpha,1}^{\kappa})(t),$$

and then, the Proposition 2.9 implies again that

$$\begin{split} \int_{0}^{\infty} \rho_{n}^{\tau}(t)(g_{1-\alpha}*R)(t)xdt &= \int_{0}^{\infty} \rho_{n}^{\tau}(t)(g_{1}*S_{\alpha,1}^{\kappa})(t)xdt + \int_{0}^{\infty} \rho_{n}^{\tau}(t)(g_{1}*\kappa*S_{\alpha,1}^{\kappa})(t)xdt \\ &= \sum_{j=0}^{n} k_{\tau}^{1}(n-j)S_{\alpha,1}^{\kappa,j}x + \sum_{j=0}^{n} k_{\tau}^{1}(n-j)(\kappa*S_{\alpha,1}^{\kappa})^{j}x. \end{split}$$

Since $k_{\tau}^{1}(n) = \tau$ for all $n \in \mathbb{N}$, and by Proposition 2.9

$$(\kappa * S_{\alpha,1}^{\kappa})^{j} x = \int_{0}^{\infty} \rho_{j}^{\tau}(t) (\kappa * S_{\alpha,1}^{\kappa})(t) x dt = \tau \sum_{l=0}^{j} \kappa^{j-l} S_{\alpha,1}^{\kappa,l} x,$$

we conclude that

$$\sum_{j=0}^{n} k_{\tau}^{1-\alpha}(n-j) \sum_{l=0}^{j} c^{j-l} S_{\alpha,1}^{\kappa,l} x = \sum_{j=0}^{n} S_{\alpha,1}^{\kappa,j} x + \tau \sum_{j=0}^{n} \sum_{l=0}^{j} \kappa^{j-l} S_{\alpha,1}^{\kappa,l} x.$$

Since $\sum_{j=0}^{-l} v^j = 0$ for all $l \in \mathbb{N}$, we can prove similarly that

$$\sum_{j=0}^{n} k_{\tau}^{1-\alpha}(n-j) \sum_{l=0}^{j-1} c^{j-1-l} S_{\alpha,1}^{\kappa,l} x = \sum_{j=0}^{n-1} S_{\alpha,1}^{\kappa,j} x + \tau \sum_{j=0}^{n-1} \sum_{l=0}^{j} \kappa^{j-l} S_{\alpha,1}^{\kappa,l} x.$$

Hence,

$$\begin{split} {}_{C}\nabla^{\alpha}(S_{\alpha,1}^{\kappa}x)^{n} &= A\sum_{j=0}^{n}k_{\tau}^{1-\alpha}(n-j)\sum_{l=0}^{j}c^{j-l}S_{\alpha,1}^{\kappa,l}x - A\sum_{j=1}^{n}k_{\tau}^{1-\alpha}(n-j)\sum_{l=0}^{j-1}c^{j-1-l}S_{\alpha,1}^{\kappa,l}x \\ &= A\sum_{j=0}^{n}S_{\alpha,1}^{\kappa,j}x - A\sum_{j=0}^{n-1}S_{\alpha,1}^{\kappa,j}x + \tau A\left[\sum_{j=0}^{n}\sum_{l=0}^{j}\kappa^{j-l}S_{\alpha,1}^{\kappa,l}x - \sum_{j=0}^{n-1}\sum_{l=0}^{j}\kappa^{j-l}S_{\alpha,1}^{\kappa,l}x\right] \\ &= AS_{\alpha,1}^{\kappa,n}x + \tau A\sum_{j=0}^{n}\kappa^{n-j}S_{\alpha,1}^{\kappa,j}x \\ &= AS_{\alpha,1}^{\kappa,n}x + \tau A(\kappa \star S_{\alpha,1}^{\kappa})^{n}x, \end{split}$$

for all $n \in \mathbb{N}$ and $x \in X$. Therefore

$${}_C \nabla^{\alpha} (S_{\alpha,1}^{\kappa})^n x = A S_{\alpha,1}^{\kappa,n} x + \tau A (\kappa \star S_{\alpha,1}^{\kappa})^n x.$$

On the other hand,

(3.20)

$${}_{C}\nabla^{\alpha}((S_{\alpha,\alpha}^{\kappa}\star f)^{n}) = \nabla_{\tau}^{-(1-\alpha)}\nabla_{\tau}^{1}(S_{\alpha,\alpha}^{\kappa}\star f)^{n}$$

$$= \sum_{j=0}^{n}k_{\tau}^{1-\alpha}(n-j)\nabla_{\tau}^{1}(S_{\alpha,\alpha}^{\kappa}\star f)^{j}$$

$$= \frac{1}{\tau}\sum_{j=0}^{n}k_{\tau}^{1-\alpha}(n-j)(S_{\alpha,\alpha}^{\kappa}\star f)^{j} - \frac{1}{\tau}\sum_{j=1}^{n}k_{\tau}^{1-\alpha}(n-j)(S_{\alpha,\alpha}^{\kappa}\star f)^{j-1}$$

By Proposition 2.9 we deduce that

(3.21)
$$(S_{\alpha,\alpha} \star f)^j = \frac{1}{\tau} (S_{\alpha,\alpha} \star f)^j,$$

and, for all $t \ge 0$ and $x \in X$ we have, by Proposition 2.3, that

$$S_{\alpha,\alpha}^{\kappa}(t)x = g_{\alpha}(t)x + A(c * S_{\alpha,\alpha}^{\kappa})(t)x = g_{\alpha}(t)x + A(g_{\alpha} * S_{\alpha,\alpha}^{\kappa})(t)x + A(g_{\alpha} * \kappa * S_{\alpha,\alpha}^{\kappa})(t)x.$$

Hence

$$(S_{\alpha,\alpha}^{\kappa}*f)(t) = (g_{\alpha}*f)(t) + A(g_{\alpha}*S_{\alpha,\alpha}^{\kappa}*f)(t) + A(g_{\alpha}*\kappa*S_{\alpha,\alpha}^{\kappa}*f)(t).$$

Multiplying this equality by $\rho_j^\tau(t)$ and integrating over $[0,\infty)$ we get

$$(S_{\alpha,\alpha}^{\kappa}*f)^{j} = (g_{\alpha}*f)^{j} + A(g_{\alpha}*S_{\alpha,\alpha}^{\kappa}*f)^{j} + A(g_{\alpha}*\kappa*S_{\alpha,\alpha}^{\kappa}*f)^{j}.$$

By Proposition 2.9, Lemma 2.10 and equation (3.21), this last equality is equivalent to

$$\tau(S^{\kappa}_{\alpha,\alpha}\star f)^{j} = \sum_{l=0}^{j} k^{\alpha}_{\tau}(j-l)f^{l} + \tau A \sum_{l=0}^{j} k^{\alpha}_{\tau}(j-l)(S^{\kappa}_{\alpha,\alpha}\star f)^{l} + \tau^{2}A \sum_{l=0}^{j} k^{\alpha}_{\tau}(j-l)(\kappa\star S^{\kappa}_{\alpha,\alpha}\star f)^{l}.$$

Hence,

$$\begin{split} {}_{C}\nabla^{\alpha}((S^{\kappa}_{\alpha,\alpha}\star f)^{n}) &= \frac{1}{\tau}\sum_{j=0}^{n}k^{1-\alpha}_{\tau}(n-j)\bigg[\frac{1}{\tau}\sum_{l=0}^{j}k^{\alpha}_{\tau}(j-l)f^{l} + A\sum_{l=0}^{j}k^{\alpha}_{\tau}(j-l)(S^{\kappa}_{\alpha,\alpha}\star f)^{l} \\ &+\tau A\sum_{l=0}^{j}k^{\alpha}_{\tau}(j-l)(\kappa\star S^{\kappa}_{\alpha,\alpha}\star f)^{l}\bigg] \\ &- \frac{1}{\tau}\sum_{j=1}^{n}k^{1-\alpha}_{\tau}(n-j)\bigg[\frac{1}{\tau}\sum_{l=0}^{j-1}k^{\alpha}_{\tau}(j-1-l)f^{l} + A\sum_{l=0}^{j-1}k^{\alpha}_{\tau}(j-1-l)(S^{\kappa}_{\alpha,\alpha}\star f)^{l} \\ &+\tau A\sum_{l=0}^{j-1}k^{\alpha}_{\tau}(j-1-l)(\kappa\star S^{\kappa}_{\alpha,\alpha}\star f)^{l}\bigg]. \end{split}$$

As before, we can prove that

$$\begin{split} \sum_{j=0}^{n} k_{\tau}^{1-\alpha}(n-j) \sum_{l=0}^{j} k_{\tau}^{\alpha}(j-l) f^{l} &= \tau \sum_{j=0}^{n} f^{j}, \quad \sum_{j=1}^{n} k_{\tau}^{1-\alpha}(n-j) \sum_{l=0}^{j-1} k_{\tau}^{\alpha}(j-1-l) f^{l} &= \tau \sum_{j=0}^{n-1} f^{j}, \\ \sum_{j=0}^{n} k_{\tau}^{1-\alpha}(n-j) \sum_{l=0}^{j} k_{\tau}^{\alpha}(j-l) (S_{\alpha,\alpha}^{\kappa} \star f)^{l} &= \tau \sum_{j=0}^{n} (S_{\alpha,\alpha}^{\kappa} \star f)^{l}, \\ \sum_{j=1}^{n} k_{\tau}^{1-\alpha}(n-j) \sum_{l=0}^{j-1} k_{\tau}^{\alpha}(j-1-l) (S_{\alpha,\alpha}^{\kappa} \star f)^{l} x &= \tau \sum_{j=0}^{n-1} (S_{\alpha,\alpha}^{\kappa} \star f)^{l}, \\ \sum_{j=0}^{n} k_{\tau}^{1-\alpha}(n-j) \sum_{l=0}^{j} k_{\tau}^{\alpha}(j-l) (\kappa \star S_{\alpha,\alpha}^{\kappa} \star f)^{l} &= \tau \sum_{j=0}^{n} (\kappa \star S_{\alpha,\alpha}^{\kappa} \star f)^{l}, \end{split}$$

and

$$\sum_{j=1}^{n} k_{\tau}^{1-\alpha} (n-j) \sum_{l=0}^{j-1} k_{\tau}^{\alpha} (j-1-l) (\kappa \star S_{\alpha,\alpha}^{\kappa} \star f)^{l} x = \tau \sum_{j=0}^{n-1} (\kappa \star S_{\alpha,\alpha}^{\kappa} \star f)^{l}.$$

Hence,

$${}_{C}\nabla^{\alpha}((S_{\alpha,\alpha}\star f)^{n}) = \frac{1}{\tau} \left[\sum_{j=0}^{n} f^{j} - \sum_{j=0}^{n-1} f^{j} \right] + A \left[\sum_{j=0}^{n} (S_{\alpha,\alpha}^{\kappa} \star f)^{l} - \sum_{j=0}^{n-1} (S_{\alpha,\alpha}^{\kappa} \star f)^{l} \right]$$
$$+ \tau A \left[\sum_{j=0}^{n} (\kappa \star S_{\alpha,\alpha}^{\kappa} \star f)^{l} - \sum_{j=0}^{n-1} (\kappa \star S_{\alpha,\alpha}^{\kappa} \star f)^{l} \right]$$
$$= \frac{1}{\tau} f^{n} + A (S_{\alpha,\alpha}^{\kappa} \star f)^{n} + \tau A (\kappa \star S_{\alpha,\alpha}^{\kappa} \star f)^{n},$$

for all $n \in \mathbb{N}$. Therefore,

(3.22)
$$_{C}\nabla^{\alpha}(\tau(S_{\alpha,\alpha}\star f)^{n}) = f^{n} + \tau A(S_{\alpha,\alpha}^{\kappa}\star f)^{n} + \tau^{2}A(\kappa\star S_{\alpha,\alpha}^{\kappa}\star f)^{n},$$
for all $n \in \mathbb{N}$.

By (3.20) and (3.22) we conclude that if $u^n := S_{\alpha,1}^{\kappa,n} x + \tau (S_{\alpha,\alpha}^{\kappa} \star f)^n$, then

$${}_{C}\nabla^{\alpha}(u^{n}) = {}_{C}\nabla^{\alpha}\left(S^{\kappa,n}_{\alpha,1}x + \tau(S^{\kappa}_{\alpha,\alpha}\star f)^{n}\right)$$

$$= {}_{A}S^{\kappa,n}_{\alpha,1}x + \tau A(\kappa\star S^{\kappa}_{\alpha,1})^{n}x + \tau A(S^{\kappa}_{\alpha,\alpha}\star f)^{n} + \tau^{2}A(\kappa\star S^{\kappa}_{\alpha,\alpha}\star f)^{n} + f^{n}$$

$$= {}_{A}\left[S^{\kappa,n}_{\alpha,1}x + \tau(\kappa\star S^{\kappa}_{\alpha,1})^{n}x + \tau(S^{\kappa}_{\alpha,\alpha}\star f)^{n} + \tau^{2}(\kappa\star S^{\kappa}_{\alpha,\alpha}\star f)^{n}\right] + f^{n}.$$

This implies that

(3.23)
$$_{C}\nabla^{\alpha}(u^{n}) = Au^{n} + A\left[\tau(\kappa \star S^{\kappa}_{\alpha,1})^{n} + \tau^{2}(\kappa \star S^{\kappa}_{\alpha,\alpha} \star f)^{n}\right] + f^{n}.$$

Now, we notice that

$$\begin{split} \tau \sum_{j=0}^{n} \kappa^{n-j} A u^{j} &= \tau A \sum_{j=0}^{n} \kappa^{n-j} \left[S_{\alpha,1}^{\kappa,j} x + \tau (S_{\alpha,\alpha}^{\kappa} \star f)^{j} \right] \\ &= \tau A (\kappa \star S_{\alpha,1}^{\kappa})^{n} x + \tau^{2} A \sum_{j=0}^{n} \kappa^{n-j} (S_{\alpha,\alpha}^{\kappa} \star f)^{j} \\ &= \tau A (\kappa \star S_{\alpha,1}^{\kappa})^{n} x + \tau^{2} A (\kappa \star S_{\alpha,\alpha}^{\kappa} \star f)^{n}. \end{split}$$

Replacing this last equality in (3.23) we conclude that

$$_{C}\nabla^{\alpha}(u^{n}) = Au^{n} + \tau \sum_{j=0}^{n} \kappa^{n-j} Au^{j} + f^{n},$$

which means that u^n solves the equation (3.17). The uniqueness, follows from the uniqueness of the resolvent family $\{S_{\alpha,\alpha}^{\kappa}(t)\}_{t\geq 0}$ generated by A.

In the next result we use the subordination principle given in Proposition 2.5.

Theorem 3.12. Let $\kappa \in L^1_{loc}(\mathbb{R}_+)$ be a given kernel. Assume that there exist $a \in L^1_{loc}(\mathbb{R}_+)$ and $\nu \leq 0$ such that $\hat{a}(\lambda^{\alpha}) = \hat{\kappa}(\lambda)$ for all $\operatorname{Re}(\lambda) > \nu$. Suppose that A is the generator of a resolvent family $\{S^a(t)\}_{t\geq 0}$ such that $\|S^a(t)\| \leq Me^{\omega t}$ for all $t \geq 0$, where $M, \omega \geq 0$. Then, the solution to (3.17) under the initial condition $u^0 = x$, is given by

$$u^n = S_{\alpha,1}^{\kappa,n} x + \tau (S_{\alpha,\alpha}^{\kappa} \star f)^n,$$

where

$$(3.24) \quad S_{\alpha,1}^{\kappa,n} = \int_0^\infty \int_0^\infty \rho_n^\tau(t)\psi_{\alpha,1-\alpha}(t,s)S^a(s)dsdt \quad and \quad S_{\alpha,\alpha}^{\kappa,n} = \int_0^\infty \int_0^\infty \rho_n^\tau(t)\psi_{\alpha,0}(t,s)S^a(s)dsdt.$$

Proof. By Proposition 2.5, the operator A generates the resolvent families $\{S_{\alpha,1}^{\kappa}(t)\}_{t>0}$ and $\{S_{\alpha,\alpha}^{\kappa}(t)\}_{t>0}$ defined, respectively, by (2.11) and (2.12). Hence,

$$S_{\alpha,1}^{\kappa,n}x = \int_0^\infty \rho_n^\tau(t)S_{\alpha,1}^\kappa(t)xdt = \int_0^\infty \int_0^\infty \rho_n^\tau(t)\psi_{\alpha,1-\alpha}(t,s)S^a(s)xdsdt,$$

for all $n \in \mathbb{N}_0$, and $x \in X$. Analogously,

$$S_{\alpha,\alpha}^{\kappa,n} = \int_0^\infty \int_0^\infty \rho_n^\tau(t)\psi_{\alpha,0}(t,s)S^a(s)xdsdt.$$

Therefore, the result follows from Theorem 3.11.

Remark 3.13. Observe that if $\kappa(t) = 0$ for all $t \ge 0$, then a(t) = 0 satisfies the condition in Theorem 3.12 and therefore $\{S^a(t)\}_{t\ge 0}$ corresponds to the C_0 -semigroup generated by A. Thus, by [2, Theorem 3.5] the operator A generates a discrete α -resolvent family according to [2, Definition 3.1] which coincides with the discrete resolvent family $\{S^{\kappa,n}_{\alpha,\alpha}\}_{n\in\mathbb{N}_0}$ defined in (3.24).

Corollary 3.14. Let $\kappa \in L^1_{loc}(\mathbb{R}_+)$ be a given kernel. Assume that there exist $a \in L^1_{loc}(\mathbb{R}_+)$ and $\nu \leq 0$ such that $\hat{a}(\lambda^{\alpha}) = \hat{\kappa}(\lambda)$ for all $\operatorname{Re}(\lambda) > \nu$. Suppose that A is the generator of a resolvent family $\{S^a(t)\}_{t\geq 0}$ such that $\|S^a(t)\| \leq Me^{\omega t}$ for all $t \geq 0$, where $M, \omega \geq 0$. Then, the sequences $\{S^{\kappa,n}_{\alpha,1}\}_{n\in\mathbb{N}_0}$ and $\{S^{\kappa,n}_{\alpha,\alpha}\}_{n\in\mathbb{N}_0}$ can be written as

$$S_{\alpha,1}^{\kappa,n} = \frac{1}{\tau^{n+1}} \int_0^\infty r^{\alpha n} E_{\alpha,\alpha n+1}^{n+1} \left(-\frac{r^\alpha}{\tau}\right) S^a(r) dr$$

and

$$S_{\alpha,\alpha}^{\kappa,n} = \frac{1}{\tau^{n+1}} \int_0^\infty r^{\alpha(n+1)-1} E_{\alpha,\alpha(n+1)}^{n+1} \left(-\frac{r^\alpha}{\tau}\right) S^a(r) dr,$$

where, for p, q, r > 0, $E_{p,q}^{r}(z)$ is the generalized Mittag-Leffler function defined by

$$E_{p,q}^r(z) = \sum_{j=0}^{\infty} \frac{(r)_j z^j}{j! \Gamma(pj+q)}, \quad z \in \mathbb{C},$$

where $(r)_j$ denotes the Pochhammer symbol defined by $(r)_j := \frac{\Gamma(r+j)}{\Gamma(r)}$.

Proof. In fact, by Theorem 3.12 and Fubini's theorem, we have

$$S_{\alpha,1}^{\kappa,n} = \int_0^\infty \int_0^\infty \rho_n^\tau(t)\psi_{\alpha,1-\alpha}(t,r)S^a(r)dsdt = \int_0^\infty \int_0^\infty \rho_n^\tau(t)\psi_{\alpha,1-\alpha}(t,r)dtS^a(r)dr.$$
Proposition 2.11 we have

Now, by [1, Proposition 2.1], we have

$$\int_0^\infty \rho_n^\tau(t)\psi_{\alpha,1-\alpha}(t,r)dt = \int_0^\infty e^{-\frac{1}{\tau}t} \left(\frac{t}{\tau}\right)^n \frac{1}{\tau n!}\psi_{\alpha,1-\alpha}(t,r)dt$$
$$= \frac{1}{\tau^{n+1}} \int_0^\infty e^{-\frac{1}{\tau}t} g_{n+1}(t)\psi_{\alpha,1-\alpha}(t,r)dt$$
$$= \frac{1}{\tau^{n+1}} r^{\alpha n} E_{\alpha,\alpha n+1}^{n+1} \left(-\frac{1}{\tau}r^\alpha\right).$$

And, similarly,

$$\int_0^\infty \rho_n^\tau(t)\psi_{\alpha,0}(t,r)dt = \frac{1}{\tau^{n+1}} r^{\alpha(n+1)-1} E_{\alpha,\alpha(n+1)}^{n+1} \left(-\frac{1}{\tau} r^\alpha\right).$$

Remark 3.15. By [33, Formula (3.8) in Corollay 3.3] and [33, Corollay 3.3 (b)], we notice that the Wright type functions $\psi_{\alpha,0}$ and $\psi_{\alpha,1-\alpha}$ in Theorem 3.12 can be written, respectively as

$$\psi_{\alpha,0}(t,s) = \frac{1}{\pi} \int_0^\infty e^{t\rho\cos\theta - s\rho^\alpha\cos\alpha\theta} \cdot \sin(t\rho\sin\theta - s\rho\sin\alpha\theta + \theta)d\rho,$$

for $\pi/2 < \theta < \pi$ and

$$\psi_{\alpha,1-\alpha}(t,s) = \frac{1}{\pi} \int_0^\infty \rho^{\alpha-1} e^{-s\rho^\alpha \cos\alpha(\pi-\theta) - t\rho\cos\theta} \cdot \sin\left(t\rho\sin\theta - s\rho^\alpha\sin\alpha(\pi-\theta) + \alpha(\pi-\theta)\right) d\rho,$$

for $\theta \in (\pi - \frac{\pi}{2\alpha}, \pi/2).$

In Theorem 3.12 and Corollary 3.14, we need to assume that the operator A is the generator of a resolvent family $\{S^a(t)\}_{t\geq 0}$. In the following result, which is a direct consequence of [48, Theorem 3], we study such conditions. We recall that a linear operator $A : D(A) \subset X \to X$ is said to be ω -sectorial of angle θ if there are constants $\omega \in \mathbb{R}$, M > 0 and $\theta \in (\pi/2, \pi)$ such that $\rho(A) \supset \Sigma_{\theta,\omega} := \{z \in \mathbb{C} : z \neq \omega : |\arg(z-\omega)| < \theta\}$ and $||(z-A)^{-1}|| \leq M/|z-\omega|$ for all $\in \Sigma_{\theta,\omega}$. If A is 0-sectorial of angle θ , we write $A \in \text{Sect}(\theta, M)$. These operators have been studied widely, both in abstract settings (see for instance [22]) and for their applications in the study of linear and nonlinear integro/differential equations, see for example [13, 28, 46, 53].

12

On the other hand, a kernel $b \in L^1_{loc}(\mathbb{R}_+)$ is called 1-*regular* (of constant c) if there is a constant c > 0 such that

(3.25)
$$|\lambda \hat{b}'(\lambda)| \le c|\hat{b}(\lambda)|, \text{ for all } \operatorname{Re}(\lambda) > 0,$$

where $\hat{b}'(\lambda)$ is the derivative of $\hat{b}(\lambda)$ with respect to λ . For further details and properties on regular kernels, we refer the reader to [49, Chapter I, Section 3].

Proposition 3.16. Let $A \in \text{Sect}(\theta, M)$ be a sectorial operator, $\kappa \in L^1_{\text{loc}}(\mathbb{R}_+)$ and $\frac{1}{2} < \alpha < 1$. Assume that there exist $a \in L^1_{\text{loc}}(\mathbb{R}_+)$ and $\nu \leq 0$ such that $\hat{a}(\lambda^{\alpha}) = \hat{\kappa}(\lambda)$ for all $\text{Re}(\lambda) > \nu$. Suppose that κ is a 1-regular kernel and that the constant c in (3.25) satisfies $(1 + \frac{c}{\alpha})\frac{\pi}{2} \leq \theta$. Then, the problem (3.17) under the initial condition $u^0 = x$, has a unique solution.

Proof. By [48, Theorem 3], the operator A generates a resolvent family $\{S^a(t)\}_{t\geq 0}$. And, by Theorem 3.12 the equation (3.17) has a unique solution, which is given by (3.18), where the sequences $\{S_{\alpha,1}^{\kappa,n}\}_{n\in\mathbb{N}_0}$ and $\{S_{\alpha,\alpha}^{\kappa,n}\}_{n\in\mathbb{N}_0}$ are given in (3.24).

4. Examples

Suppose that $A = \rho I$ for some $\rho > 0$, and assume that $\rho, \mu > 0, \gamma \in \mathbb{R} \setminus \{0\}$ and $\frac{1}{2} < \alpha < 1$. Let $\kappa(t) = \gamma \frac{t^{\mu-1}}{\Gamma(\mu)} e^{-\rho t}$. Assume that f is a bounded function. Since

$$\begin{split} \kappa^n &= \int_0^\infty \rho_n^\tau(t)\kappa(t)dt \\ &= \gamma \int_0^\infty e^{-\frac{t}{\tau}} \left(\frac{t}{\tau}\right)^n \frac{1}{\tau n!} \frac{t^{\mu-1}}{\Gamma(\mu)} e^{-\rho t} dt \\ &= \frac{\gamma}{\tau^{\mu+n}} \frac{\Gamma(n+\mu)}{\Gamma(\mu)\Gamma(n+1)} \int_0^\infty e^{-(\frac{1}{\tau}+\rho)t} g_{n+\mu}(t) dt \\ &= \frac{\gamma}{\tau} k_\tau^\mu(n) \frac{1}{(1+\rho\tau)^{n+\mu}}, \end{split}$$

where $k_{\tau}^{\mu}(n)$ is the sequence defined in (2.15), the homogeneous discrete subdiffusion problem (3.17) under the initial condition $u^0 = x$ reads

(4.26)
$$_{C}\nabla^{\alpha}u^{n} = \varrho u^{n} + \gamma \varrho \sum_{j=0}^{n} k^{\mu}_{\tau}(n-j) \frac{1}{(1+\rho\tau)^{n-j+\mu}} u^{j} + f^{n}, \quad n \in \mathbb{N}.$$

Since the Laplace transform of $\hat{\kappa}(\lambda) = \frac{\gamma}{(\lambda+\rho)^{\mu}}$, for all $\lambda > -\rho$, the kernel *a* in Theorem 3.12 satisfying $\hat{a}(\lambda^{\alpha}) = \gamma/(\lambda+\rho)^{\mu}$, is given by (see for instance [25, Formula (11.13)])

(4.27)
$$a(t) = \gamma t^{\frac{\mu}{\alpha} - 1} E^{\mu}_{\frac{1}{\alpha}, \frac{\mu}{\alpha}}(-\rho t^{\frac{1}{\alpha}}), \quad t \ge 0.$$

If $0 < \mu < \frac{1}{2}$, then by [48, Section 3], the operator A generates the resolvent family $\{S^a(t)\}_{t\geq 0}$ given by

(4.28)
$$S^{a}(t) = \sum_{i=0}^{\infty} \frac{\varrho^{i} \gamma^{i}}{i!} \int_{0}^{t} (t-s)^{i} e^{\varrho(t-s)} s^{\frac{\mu i}{\alpha} - 1} E^{\mu i}_{\frac{1}{\alpha}, \frac{\mu i}{\alpha}} (-\rho s^{\frac{1}{\alpha}}) ds$$

and, the solution to the problem

$$\begin{cases} u'(t) = \varrho u(t) + \varrho \int_0^t a(t-s)u(s)ds + f(t), \quad t > 0, \\ u(0) = x, \end{cases}$$

is given by $u(t) = S^{a}(t)x + (S^{a} * f)(t)$. Moreover, we have the following result.

Proposition 4.17. Suppose that $\rho > 0$, $\gamma \in \mathbb{R}$ and $\frac{1}{2} < \alpha < 1$. If $0 < \mu < \frac{1}{2}$, then the unique solution u to the scalar Problem (4.26) under the initial condition $u^0 = x$ is given by

(4.29)

$$\begin{split} u^{n} &= \sum_{i=0}^{\infty} \frac{\varrho^{i} \gamma^{i}}{i!} \int_{0}^{\infty} \int_{0}^{\infty} \rho_{n}^{\tau}(t) \psi_{\alpha,1-\alpha}(t,s) \int_{0}^{s} (s-r)^{i} e^{\varrho(s-r)} r^{\frac{\mu i}{\alpha}-1} E_{\frac{1}{\alpha},\frac{\mu i}{\alpha}}^{\mu i}(-\rho r^{\frac{1}{\alpha}}) x dr ds dt \\ &+ \tau \sum_{j=0}^{n} \sum_{i=0}^{\infty} \frac{\varrho^{i} \gamma^{i}}{i!} \int_{0}^{\infty} \int_{0}^{\infty} \rho_{n}^{\tau}(t) \psi_{\alpha,0}(t,s) \int_{0}^{s} (s-r)^{i} e^{\varrho(s-r)} r^{\frac{\mu i}{\alpha}-1} E_{\frac{1}{\alpha},\frac{\mu i}{\alpha}}^{\mu i}(-\rho r^{\frac{1}{\alpha}}) f^{j} dr ds dt, \quad n \in \mathbb{N}, \end{split}$$

where $\psi_{\alpha,1-\alpha}, \psi_{\alpha,0}$ are given in Definition 2.4.

Proof. Since A generates the resolvent family $\{S^a(t)\}_{t\geq 0}$, by Theorem 3.12 we conclude that the solution to (4.26) is given

$$u^{n} = S^{\kappa,n}_{\alpha,1}x + \tau (S^{\kappa}_{\alpha,\alpha} \star f)^{n}$$

=
$$\int_{0}^{\infty} \int_{0}^{\infty} \rho^{\tau}_{n}(t)\psi_{\alpha,1-\alpha}(t,s)S^{a}(s)xdsdt + \tau \sum_{j=0}^{n} \int_{0}^{\infty} \int_{0}^{\infty} \rho^{\tau}_{n-j}(t)\psi_{\alpha,0}(t,s)S^{a}(s)dsdtf^{j},$$

can be written as (4.29) by (4.28).

which can be written as (4.29) by (4.28).

Now, let -A be a non-negative and self-adjoint operator on the Hilbert space $L^2(\Omega)$, where $\Omega \subset \mathbb{R}^N$ is a bounded open set. Assume that A has a compact resolvent. Then -A has a discrete spectrum and the corresponding eigenvalues satisfy $0 \le \lambda_1 \le \lambda_2 \le \cdots \le \lambda_n \le \cdots$ with $\lim_{n\to\infty} \lambda_n = \infty$.

If ϕ_n denotes the normalized eigenfunction associated with λ_n , then $\{\phi_n : n \in \mathbb{N}\}$ is an orthonormal basis for $L^2(\Omega)$, and for all $v \in D(A)$ we can write

$$-Av = \sum_{k=1}^{\infty} \lambda_n \langle v, \phi_n \rangle_{L^2(\Omega)} \phi_n.$$

Proposition 4.18. Let A be an operator as above. Suppose that $\kappa(t) = \gamma \frac{t^{\mu-1}}{\Gamma(\mu)} e^{-\rho t}$, where $\gamma \in \mathbb{R} \setminus \{0\}$. Assume that $f(t, \cdot) \in L^2(\Omega)$ for all $t \ge 0$. If $0 < \mu < \frac{1}{2}$ and $\frac{1}{2} < \alpha < 1$, then the unique solution u to the $semidiscrete\ Problem$

(4.30)
$$_{C}\nabla^{\alpha}u^{n}(x) = Au^{n}(x) + \sum_{j=0}^{n} \kappa^{n-j}Au^{j}(x) + f^{n}(x)$$

where $x \in \Omega$, under the initial condition $u^0 = u_0(x)$ and $u_0 \in L^2(\Omega)$ is given by

$$(4.31) \quad u^{n} = \sum_{m=1}^{\infty} \sum_{i=0}^{\infty} \frac{(-\lambda_{m})^{i} \gamma^{i}}{i!} \int_{0}^{\infty} \int_{0}^{\infty} \rho_{n}^{\tau}(t) \psi_{\alpha,1-\alpha}(t,s) \times \int_{0}^{s} (s-r)^{i} e^{-\lambda_{m}(s-r)} r^{\frac{\mu i}{\alpha} - 1} E_{\frac{1}{\alpha},\frac{\mu i}{\alpha}}^{\mu i}(-\rho r^{\frac{1}{\alpha}}) u_{0,m} \phi_{m}(x) dr ds dt + \tau \sum_{m=1}^{\infty} \sum_{j=0}^{n} \sum_{i=0}^{\infty} \frac{(-\lambda_{m})^{i} \gamma^{i}}{i!} \int_{0}^{\infty} \int_{0}^{\infty} \rho_{n}^{\tau}(t) \psi_{\alpha,0}(t,s) \times \int_{0}^{s} (s-r)^{i} e^{-\lambda_{m}(s-r)} r^{\frac{\mu i}{\alpha} - 1} E_{\frac{1}{\alpha},\frac{\mu i}{\alpha}}^{\mu i}(-\rho r^{\frac{1}{\alpha}}) f_{m}^{j} \phi_{m}(x) dr ds dt,$$

for all $n \in \mathbb{N}$, where for $m \in \mathbb{N}$, $u_{0,m} := \langle u_0(\cdot), \phi_m(\cdot) \rangle_{L^2(\Omega)}$, and $f_m(t) := \langle f(t, \cdot), \phi_m(\cdot) \rangle_{L^2(\Omega)}$. *Proof.* Consider the problem

(4.32)
$$\begin{cases} \partial_t^{\alpha} u(t,x) = Au(t,x) + \int_0^t \kappa(t-s)Au(s,x)ds + f(t,x), \ t \ge 0, x \in \Omega \\ u(0,x) = u_0(x), \quad x \in \Omega. \end{cases}$$

14

Multiplying both sides of (4.32) by $\phi_m(x)$ and integrating over Ω we obtain

(4.33)
$$\begin{cases} \partial_t^{\alpha} u_m(t) = -\lambda_m u_m(t) - \lambda_m \int_0^t \kappa(t-s) u_m(s) ds + f_m(t), \ t > 0, \\ u_m(0) = u_{0,m}, \end{cases}$$

for all $m \in \mathbb{N}$, where the functions u_m , ϕ_m and f_m are defined by $u_m(t) := \langle u(t, \cdot), \phi_m(\cdot) \rangle_{L^2(\Omega)}$, $u_{0,m} := \langle u_0(\cdot), \phi_m(\cdot) \rangle_{L^2(\Omega)}$, and $f_m(t) := \langle f(t, \cdot), \phi_m(\cdot) \rangle_{L^2(\Omega)}$. Multiplying (4.33) by $\rho_n^{\tau}(t)$ and integrating over $[0, \infty)$ we get

(4.34)
$$_{C}\nabla^{\alpha}u_{m}^{n} = -\lambda_{j}u_{m}^{n} - \lambda_{m}\gamma\sum_{l=0}^{n}k_{\tau}^{\mu}(n-l)\frac{1}{(1+\rho\tau)^{n-l+\mu}}u_{m}^{l} + f_{m}^{n}, \quad n \in \mathbb{N}$$

By Proposition 4.17, the solution u_m^n to (4.34) under the initial condition $u^0 = u_{0,m}$ is given by (4.29), where ρ is replaced by $-\lambda_m$, x by $u_{0,m}$ and f by f_m .

On the other hand, an easy computation shows that κ is a 1-regular kernel of a constant μ and $\hat{a}(\lambda^{\alpha}) = \hat{\kappa}(\lambda)$ for all $\operatorname{Re}(\lambda) > -\rho$, where *a* is defined in (4.27). Since $0 < \mu < \frac{1}{2}$ and $A \in \operatorname{Sec}(\theta, 1)$ for all $\theta \in (\pi/2, \pi)$, we obtain $(1 + \mu/\alpha)\frac{\pi}{2} \leq \theta$. Since $u(t, x) = \sum_{m=1}^{\infty} u_m(t)\phi_m(x)$, we obtain for all $x \in \Omega$ that

$$u^{n}(x) = \int_{0}^{\infty} \rho_{n}^{\tau}(t)u(t,x)dt = \sum_{m=1}^{\infty} \int_{0}^{\infty} \rho_{n}^{\tau}(t)u_{m}(t)dt\phi_{m}(x) = \sum_{m=1}^{\infty} u_{m}^{n}\phi_{m}(x),$$

which can be written as (4.31).

Acknowledgements. The author thanks the anonymous referees for reading the manuscript and for making suggestions that have improved the previous version of this paper.

References

- [1] L. Abadías, E. Álvarez, Fractional Cauchy problem with memory effects, Math. Nachr. 293 (2020), no. 10, 1846-1872.
- [2] L. Abadías, C. Lizama, Almost automorphic mild solutions to fractional partial difference-differential equations, Applicable Analysis, 95 (6) (2016), 1347-1369.
- [3] L. Abadías, P. J. Miana, A Subordination Principle on Wright Functions and Regularized Resolvent Families, J. of Function Spaces, Volume 2015, Article ID 158145, 9 pages.
- [4] L. Abadías, C. Lizama, P. J. Miana, M. Velasco, On well-posedness of vector-valued fractional differential-difference equations, Discrete Contin. Dyn. Syst. 39 (2019), no. 5, 2679-2708.
- [5] T. Abdeljawad, On Riemann and Caputo fractional differences, Comput. Math. Appl. 62 (2011), no. 3, 1602-6111.
- [6] F. Atici, P. Eloe, Initial value problems in discrete fractional calculus, Proc. Amer. Math. Soc. 137 (2009), no. 3, 981-989.
- [7] E. Bazhlekova, Fractional evolution equations in Banach spaces, Ph.D. thesis, Eindhoven University of Technology, 2001.
- [8] E Bazhlekova, Subordination principle for a class of fractional order differential equations, Mathematics 3 (2015), no. 2, 412-427.
- [9] E Bazhlekova, B. Jin, R. Lazarov, Z. Zhou, An analysis of the Rayleigh-Stokes problem for a generalized second-grade fluid, Numer. Math. 131 (2015) 1-31.
- [10] F. Bernardo, C. Cuevas, H. Soto, Qualitative theory for Volterra difference equations, Math. Methods Appl. Sci. 41 (2018), no. 14, 5423-5458.
- [11] C. Chen, T. Shih, Finite element methods for integrodifferential equations, World Scientific, Singapore, 1997.
- [12] B. Coleman, M. Gurtin. Equipresence and constitutive equation for rigid heat conductors, Z. Angew. Math. Phys. 18 (1967), 199-208.
- [13] E. Cuesta, Asymptotic behaviour of the solutions of fractional integro-differential equations and some time discretizations, Discrete Contin. Dyn. Syst. 2007, Dynamical Systems and Differential Equations. Proceedings of the 6th AIMS International Conference, suppl., 277-285
- [14] C. Cuevas, M. Choquehuanca, H. Soto, Asymptotic analysis for Volterra difference equations, Asymptot. Anal. 88 (2014), no. 3, 125-164.
- [15] G. Da Prato, M. Iannelli, Linear integrodifferential equations in Banach space, Rend. Sem. Mat. Univ. Padova 62, 207-219 (1980).
- [16] J. Diethelm, N. Ford, A. Freed, Y. Luchko, Algorithms for the fractional calculus: A selection of numerical methods, Comput. Methods Appl. Mech. Engrg. 194 (2005) 743-773.

- [17] K. Engel, R. Nagel, One-parameter semigroups for linear evolution equations. GTM vol. 194, 2000.
- [18] C. Goodrich, Existence and uniqueness of solutions to a fractional difference equation with nonlocal conditions, Comput. Math. Appl. 61 (2011), no. 2, 191-202.
- [19] C. Goodrich, A. Peterson, Discrete fractional calculus, Springer, Cham, 2015.
- [20] G. Gripenberg, S-O Londen, O. Staffans, Volterra Integral and Functional Equations. Encyclopedia of Mathematics and Applications, 34, Cambridge University Press, Cambridge-New York, 1990.
- [21] M. Gurtin, A Pipkin, A general theory of heat conduction with finite wave speeds, Arch. Ration. Mech. Anal., 31, 113-126, (1968).
- [22] M. Haase, The functional calculus for sectorial operators, Operator Theory: Advances and applications, 169, Birkäuser Verlag, Basel, 2006.
- [23] Y. Han, Y. Hu, J. Song, Maximum principle for general controlled systems driven by fractional Brownian motions, Appl. Math. Optim. 67 (2013), no. 2, 279-322.
- [24] J. He, C. Lizama, Y. Zhou, The Cauchy problem for discrete-time fractional evolution equations, J. of Computational and Applied Mathematics, 370 (2020), 112683.
- [25] H. Haubold, A. Mathai, R. Saxena. Mittag-Leffler Functions and Their Applications, J. of Appl. Math., Article ID 298628.
- [26] R. Hilfer, Applications of fractional calculus in physics, World Scientific Publishing Co., Inc., River Edge, NJ, (2000).
- [27] B. Jin, B. Li, Z. Zhou, Discrete maximal regularity of time-stepping schemes for fractional evolution equations, Numer. Math. 138 (2018), no. 1, 101–131.
- [28] V. Keyantuo, C. Lizama, M. Warma, Spectral criteria for solvability of boundary value problems and positivity of solutions of time-fractional differential equations, Abstr. Appl. Anal. 2013, Art. ID 614328, 11 pp.
- [29] A. Kilbas, H. Srivastava, J. Trujillo. Theory and applications of fractional differential equations, North-Holland Mathematics studies 204, Elsevier Science B.V., Amsterdam, 2006.
- [30] M. Krasnoschok, V. Pata, N. Vasylyeva, Semilinear subdiffusion with memory in the one-dimensional case, Nonlinear Analysis, TMA, 165, 1-17, (2017).
- [31] M. Krasnoschok, V. Pata, N. Vasylyeva, Solvability of linear boundary value problems for subdiffusion equations with memory, J. Integral Equations and Appl., 30, 417-445, (2018).
- [32] M. Krasnoschok, V. Pata, N. Vasylyeva, Semilinear subdiffusion with memory in multidimensional domains, Math. Nachr. 292 (2019), no. 7, 1490–1513.
- [33] M. Li, C. Chen, F. Li, On fractional powers of generators of fractional resolvent families, J. Funct. Anal. 259 (2010) 2702-2726.
- [34] C. Lizama, Regularized solutions for abstract Volterra equations, J. Math. Anal. Appl. 243 (2000), 278-292.
- [35] C. Lizama, The Poisson distribution, abstract fractional difference equations, and stability, Proc. Amer. Math. Soc. 145 (2017), no. 9, 3809–3827.
- [36] C. Lizama, M. Murillo-Arcila, Maximal regularity in l_p-spaces for discrete time fractional shifted equations, J. Differential Equations 263 (2017), no. 6, 3175-3196.
- [37] C. Lizama, M. Murillo-Arcila, Discrete maximal regularity for Volterra equations and nonlocal time-stepping schemes, Discrete Contin. Dyn. Syst. 40, (2020), 509-528.
- [38] C. Lizama, R. Ponce, Solutions of abstract integro-differential equations via Poisson transformation, To appear in Math. Methods in Applied Sciences, (2020), DOI:10.1002/mma.6042. See http://inst-mat.utalca.cl/~rponce/
- [39] Ch. Lubich, Discretize fractional calculus, SIAM J. Math. Anal., 17 (1986), 704-719.
- [40] Ch. Lubich, Convolution quadrature and discretized operational calculus. I, Numer. Math., 52 (1988), 129-145.
 [41] F. Mainardi, Fractional calculus and waves in linear viscoelasticity: An introduction to mathematical models, Imperial
- [41] F. Mainardi, Fractional calculus and waves in linear viscoelasticity. An introduction to mathematical models, imperial College Press, 2010.
- [42] W. McLean, V. Thomée, Time discretization of an evolution equation via Laplace transforms, IMA J. of Numerical Analysis 24 (2004), 439-463.
- [43] W. McLean, I. Sloan, V. Thomée, Time discretization via Laplace transformation of an integro-differential equation of parabolic type, Numer. Math. 102 (2006), no. 3, 497-522.
- [44] R. Metzler, J. Klafter, The random walk's guide to anomalous diffusion: a fractional dynamics approach, Phys. Rep., 339 (2000), 1-77.
- [45] K. Miller, B. Ross, An Introduction to the fractional calculus and fractional differential equations, Wiley, New York 1993.
- [46] R. Ponce, Hölder continuous solutions for fractional differential equations and maximal regularity, J. Differential Equations 255 (2013), 3284-3304.
- [47] R. Ponce, Time discretization of fractional subdiffusion equations via fractional resolvent operators, Comput. Math. Appl., 80 (2020), 69-92.
- [48] R. Ponce, Subordination Principle for subdiffusion equations with memory, J. of Integral Equations and Applications, 2020, to appear.
- [49] J. Prüss, Evolutionary Integral Equations and Applications, Monographs Math., 87, Birkhäuser Verlag, 1993.
- [50] I. Sloan, V. Thomée, Time discretization of an integro-differential equation of parabolic type, SIAM J. Numer. Anal. 23 (1986), no. 5, 1052-1061.

- [51] P. Tamilalagan, P. Balasubramaniam, The solvability and optimal controls for fractional stochastic differential equations driven by Poisson jumps via resolvent operators, Appl. Math. Optim. 77 (2018), no. 3, 443-462.
- [52] G. Webb, An abstract semilinear Volterra integrodifferential equation, Proc. Amer. Math. Soc. 69 (1978), no. 2, 255-260.
- [53] D. Xu, Uniform l¹ convergence in the Crank-Nicolson method of a linear integro-differential equation for viscoelastic rods and plates, Math. Comp. 83 (2014), no. 286, 735-769.

UNIVERSIDAD DE TALCA, INSTITUTO DE MATEMÁTICAS, CASILLA 747, TALCA-CHILE. *E-mail address*: rponce@inst-mat.utalca.cl