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Abstract

In this paper we study the existence and uniqueness of mild solutions to integro-
differential equations in terms of a resolvent operator on the interval [0, 2π] and
on the real line. Moreover, we characterize the spectrum of the resolvent family
that solves the Volterra equation u′ = Au+ (a ∗Au) + f in terms of their mild
periodic solutions.
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1. Introduction

In the classical theory of heat conduction in homogeneous and isotropic
media, the temperature u(x, t) of a point x ∈ Ω ⊂ Rn (n = 1, 2, 3) at time t > 0
satisfies

ut(x, t) = λ∆u(x, t), (1.1)

where ∆ is the Laplacian and λ > 0 is the thermal diffusion coefficient. The
equation (1.1) describes sufficiently well the behavior of the temperature in
different types of homogeneous materials. However, in other type of materials,
such as in materials with fading memory, this description is not satisfactory
because in equation (1.1) is assumed that the thermal disturbance at any point
in the media is felt instantly at every other point, which is not true in this kind
of materials.

The problem of the heat flux in materials with memory was firstly discussed
by Coleman and Gurtin [13], Gurtin and Pipkin [14], and Nunziato [31] among
others. After a linearization, the authors in [13] consider that the density e(x, t)
of the internal energy and the heat flux q are related by

e(x, t) = νu(x, t) +

∫ t

−∞
b(t− s)u(x, s)ds, and
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q(x, t) = −
∫ t

−∞
a(t− s)∇u(x, s)ds,

where ν 6= 0 is a constant, known as the heat capacity, and the positive functions
a, b are the relaxation functions. Moreover, the heat flux can be considered as
a perturbation of the Fourier law, that is,

q(x, t) = −γ∇u(x, t)−
∫ t

−∞
a(t− s)∇u(x, s)ds, (1.2)

where γ > 0 is the constant of thermal conduction. The heat relaxation function

a is assumed to be in L1(R+). A typical choice of a is a(t) = α t
µ−1

Γ(µ) e
−βt, where

α > 0, β ≥ 0 and µ > 0, see [37, Chapter I, Section 5] and the references therein.
With these equations the heat equation with memory reads

ν∂tu(x, t) = γ∆u(x, t) +

∫ t

−∞
a(t− s)∆u(x, s)ds+ F (x, t), t ∈ R,

where F (x, t) is an appropriate function. This equation can be written in the
abstract form

u′(t) = Au(t) +

∫ t

−∞
a(t− s)Au(s)ds+ f(t), t ∈ R, (1.3)

where A : D(A) ⊂ X → X is a closed linear operator defined in a Banach space
X, a ∈ L1(R+) and f is a suitable function.

On the other hand, the Volterra equation

u′(t) = Au(t) +

∫ t

0

a(t− s)Au(s)ds+ f(t), t ∈ [0, l] (1.4)

where A, a and f are defined as before and l > 0, also describes several problems
in mathematical physics and biology such as electrodynamics with memory,
population models, among others.

Integro-differential equations in the form of (1.3) and (1.4) arise in several
applied fields, like viscoelasticity or heat conduction with memory. In such
applications the operator A is typically the Laplacian, the elasticity operator or
the Stokes operator, among others, see for instance [37].

We observe that if a ≡ 0, then the equations (1.3) and (1.4) read

u′(t) = Au(t) + f(t), t ∈ R, (1.5)

and
u′(t) = Au(t) + f(t), t ∈ [0, l], (1.6)

respectively. The problem of the existence and uniqueness of mild solutions to
equations (1.5) and (1.6) has been considered by several authors in the last years.
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See for instance [2, 5, 22, 36, 39] and the references therein. More specifically,
a function u is called a mild solution to (1.5) if there exists y ∈ X such that

u(t) = y +A

∫ t

0

u(s)ds+

∫ t

0

f(s)ds, t ∈ R.

In [39, Theorem 1.1] the author shows that if for any f ∈ BUC(R, X) (where
BUC(R, X) denotes the space of all bounded and uniformly continuous func-
tions on R with values in X) the equation (1.5) has a unique mild solution,
then iη ∈ ρ(A) for all η ∈ R and there exists a constant C > 0 such that
‖(iη − A)−1‖ ≤ C, for all η ∈ R. In the case of the Lp(R, X) space (for
1 ≤ p < ∞) the author in [5] shows that the equation (1.5) has a unique
mild solution if and only if iη ∈ ρ(A) for all η ∈ R and {(iη−A)−1}η∈R defines
an Lp-multiplier in Lp(R, X). See also [7] for the second order problem.

On the other hand, if l = 2π in equation (1.6), then a function u ∈ Lp([0, 2π], X)
(where Lp([0, 2π], X) denotes the space of all 2π-periodic and p-integrable func-
tions with values in X) is called a 2π-periodic mild solution to (1.6) if u(0) =
u(2π) and

u(t) = u(0) +A

∫ t

0

u(s)ds+

∫ t

0

f(s)ds, t ∈ [0, 2π].

In this case, the authors in [2] and [22] show, by using some results on vector-
valued Fourier multipliers, that equation (1.6) has a unique mild solution for all
f ∈ Lp([0, 2π], X) if and only if ik ∈ ρ(A) for all k ∈ Z and {(ik − A)−1}k∈Z
is an Lp-multiplier in Lp([0, 2π], X). Similar results hold for the second order
problem [22] and for the fractional order problem in [6, 35].

Now, if we assume that A is the generator of a C0-semigroup {T (t)}t≥0, then
the mild solution to (1.5) and (1.6) are given, respectively by

u(t) =

∫ t

−∞
T (t− s)f(s)ds, t ∈ R. (1.7)

and

u(t) = T (t)u(0) +

∫ t

0

T (t− s)f(s)ds, t ∈ [0, l] (1.8)

In the space Lp(R, X) the author in [30] shows that if A generates a C0-
semigroup and (1.5) has a unique mild solution for every f ∈ Lp(R, X), where
1 ≤ p <∞, then iη ∈ ρ(A) for all η ∈ R and there exists a constant C > 0 such
that ‖(iη −A)−1‖ ≤ C

1+|η| for all η ∈ R.
On the other hand, in [36] the author shows that if A generates a C0-

semigroup, then the equation (1.6) has a unique 2π-periodic mild solution for
all f ∈ C([0, 2π], X) if and only if 1 ∈ ρ(T (2π)), where ρ(T (2π)) denotes the
resolvent set of the operator T (2π). Similar results hold for the second order
problem [38] and for the equation of higher order [1, 25].

We remark that in the above mentioned papers, the authors study the exis-
tence of mild solutions to the first, second and fractional order problem on the
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interval [0, 2π] or on the real line. The problem of the well-posedness of abstract
integro-differential equations, in the sense of the existence of a unique strong
solution, has been studied by several authors in the last years, see for instance
[2, 8, 9, 10, 19, 20, 21, 29, 32, 33, 34] and the references therein. However, to
the best of our knowledge, the problem of the existence and uniqueness of mild
solution to integro-differential equations in the form of (1.3) and (1.4) in terms
of some resolvent family (in the sense that the mild solution can be written by
using this resolvent family) has not been considered in the existing literature.

In this paper we are able to give several results on the existence of mild
solutions to the integro-differential equations (1.3) and (1.4). More specifically
we give, among others, the following results

1. If for all f ∈ Lp([0, 2π], X) there exists a unique mild solution to (1.3), then
ik ∈ ρa(A) for all k ∈ Z and {(ik − (1 + ak)A)−1}k∈Z is an Lp-multiplier.
Here the equation (1.3) is considered on [0, 2π];

2. If for all f ∈ BUC(R, X) there exists a unique mild solution u ∈ BUC(R, X)
to equation (1.3), then iη ∈ ρa(A) for all η ∈ R, and there exists a constant

M such that ‖ [iη − (1 + aη)A]
−1 ‖ ≤M for all η ∈ R, and

3. If A is the generator of a resolvent family {R(t)}t≥0, then 1 ∈ ρ(R(2π))
if and only if for any f ∈ C([0, 2π], X) the equation (1.4) (with l = 2π)
admits precisely one 2π-periodic mild solution.

Here, for a kernel a ∈ L1
loc(R+), the resolvent set ρa(A) is defined by ρa(A) :=

{λ ∈ C : (λ− (1 + ã(λ))A) : D(A)→ X is invertible and (λ− (1 + ã(λ))A)−1 ∈
B(X)}, where ã denotes the Laplace transform of a, ak = ã(ik) (for k ∈ Z) and
aη = â(η) (for η ∈ R), where â denotes the Hilbert transform of a ∈ L1

loc(R+)
defined on R as a(t) = 0, for t < 0.

The paper is organized as follows. Section 2 is devoted to the Preliminaries.
In Section 3, we study the existence and uniqueness of 2π-periodic mild solutions
to the integro-differential equations (1.3) and (1.4). In Section 4 we introduce
a concept of mild solution to (1.3) and (1.4) on the real line and we give a
necessary condition for existence and uniqueness of such solutions. Finally, in
Section 5 we assume that the operator A in equations (1.3) and (1.4) generates
a resolvent family {R(t)}t≥0 and we study the existence and uniqueness of mild
solutions to equations (1.3) and (1.4).

2. Preliminaries

Let X,Y be Banach spaces. We denote by B(X,Y ) the space of all bounded
and linear operators from X into Y. If X = Y, then we write simply B(X). Given
a closed linear operator A defined on X, D(A) and ρ(A) denote, respectively, its
domain and its resolvent set. By [D(A)] we denote the domain of A equipped
with the graph norm.
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2.1. Preliminaries on Lp-periodic spaces

Now, we recall some preliminaries Lp-periodic space. For 1 ≤ p < ∞,
Lp([0, 2π], X) denotes the space of all 2π-periodic Bochner measurable and p-
integrable X-valued functions. For a function f ∈ L1([0, 2π], X) we denote by

f̂(k), the k-th Fourier coefficient of f, that is

f̂(k) =
1

2π

∫ 2π

0

e−iktf(t)dt,

for all k ∈ Z. Observe that the Fourier coefficients of f determine completely the
function f , that is, f̂(k) = 0 for all k ∈ Z if and only if f(t) = 0 a.e. The space
C([0, 2π], X) denotes the Banach space of all continuous function on [0, 2π] with
values in X.

Definition 2.1. [2] For 1 ≤ p <∞, we say that a sequence {Mk}k∈Z ⊂ B(X,Y )
is an Lp-multiplier if, for each f ∈ Lp([0, 2π], X), there exists u ∈ Lp([0, 2π], Y )
such that

û(k) = Mkf̂(k) for all k ∈ Z.

For further details on Fourier multipliers we refer the reader to [17, 18].
For j ∈ N, rj denotes the j-th Rademacher function on [0, 1] i.e. rj(t) =
sgn(sin(2jπt)), where sgn is the sign function. For x ∈ X, rj ⊗ x, denotes the
vector valued function t 7→ rj(t)x.

Definition 2.2. A family of operators T ⊂ B(X,Y ) is called R-bounded, if
there is a constant Cp > 0 and p ∈ [1,∞) such that for each N ∈ N, Tj ∈
T , xj ∈ X, j = 1, ..., N the inequality∥∥∥∥∥∥

N∑
j=1

rj ⊗ Tjxj

∥∥∥∥∥∥
Lp((0,1),Y )

≤ Cp

∥∥∥∥∥∥
N∑
j=1

rj ⊗ xj

∥∥∥∥∥∥
Lp((0,1),X)

(2.1)

is valid.

For more details on R-bounded families of operators we refer to the reader
to [16, Section 3], [17, Section 5.3] and [18, Chapter 8]. Now, we recall a class
of Banach spaces, the so-called UMD spaces, which share similar properties
with Hilbert spaces and include also the Lp-spaces for 1 < p < ∞. A Banach
space X is said to be UMD, if the Hilbert transform is bounded on Lp(R, X)
for some (and then all) p ∈ (1,∞). Here the Hilbert transform H of a function
f ∈ S(R, X), the Schwartz space of rapidly decreasing X-valued functions, is
defined by

(Hf)(t) := lim
ε→0

1

π

∫
|y−t|>ε

f(y)

t− y
dy.

Some examples of UMD-spaces include Hilbert spaces, Sobolev spacesW s
p (Ω)

1 < p < ∞, Lebesgue spaces Lp(Ω, µ), 1 < p < ∞, Lp(Ω, µ;X), 1 < p < ∞,
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whether X is a UMD-space. Moreover, a UMD-space is reflexive and there-
fore, L1(Ω, µ), L∞(Ω, µ) and the Hölder space Cs([0, 2π];X) can not be UMD
spaces. More information on UMD spaces can be found in [4, 11, 12] and [17,
Chapter 4].

For a kernel a ∈ L1
loc(R+) and a function g ∈ Lp([0, 2π], X) (extended by

periodicity to R) we obtain, under appropriate assumptions on a(t), that for

(a∗̇g)(t) :=

∫ t

−∞
a(t− s)g(s)ds, (2.2)

and k ∈ Z, the Fourier coefficients of (a∗̇g) verify (̂a∗̇g)(k) = ã(ik)ĝ(k), where
ã(ik) is the Laplace transform of a evaluated at ik (see for instance [19]) In
what follows, we use the following notation:

ak := ã(ik), k ∈ Z, (2.3)

and we assume that ak 6= 1 for all k ∈ Z. Finally, from [23] we recall the concept
of 1-regular sequences.

Definition 2.3. A sequence {ck}k∈Z ⊂ C \ {0} is said to be 1-regular, if the

sequence
{
k

(ck+1 − ck)

ck

}
k∈Z

is bounded.

2.2. Preliminaries on Cα(R;X) spaces.

Let 0 < α < 1 be fixed. We denote by Cα(R;X) the space of all X-valued
functions f on R, such that

‖f‖α = sup
t6=s

‖f(t)− f(s)‖
|t− s|α

<∞.

If we define ‖f‖Cα := ‖f‖α + ‖f(0)‖, then (Cα(R;X), ‖ · ‖Cα) is a Banach
space.

Now, the Fourier transform of a function f ∈ L1(R;X) is defined by f̂(η) :=∫
R e
−iηtf(t)dt, for η ∈ R. If a ∈ L1(R+), we will always identify a with its

extension on R by letting a(t) = 0 for t < 0. In such way, when a ∈ L1(R+),
the Fourier transform â(η) makes sense for all η ∈ R.

In what follows, we always assume that â(η) 6= −1, for all η ∈ R, and we use
the following notation:

aη := â(η), η ∈ R. (2.4)

Now, we recall the notion of regular kernels (see [37, p. 69]).

Definition 2.4. Let a ∈ L1
loc(R+) be of subexponential growth and k ∈ N. The

kernel a(t) is called k-regular if there is a constant c > 0 such that

|λn[ã(λ)](n)| ≤ c|ã(λ)|, for all Re(λ) > 0, 0 ≤ n ≤ k.
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We denote by L1(R+, t
αdt) the set of all functions a ∈ L1

loc(R+) such that∫∞
0
|a(t)|tαdt <∞, where 0 < α < 1. Then, as a consequence, such a is always

in L1(R+). Given a bounded function v and a ∈ L1(R+), we write

(a∗̇v)(t) :=

∫ t

−∞
a(t− s)v(s)ds =

∫ ∞
0

a(s)v(t− s)ds. (2.5)

Remark 2.5. We use the same notation in (2.2) and (2.5) to the integral
∫ t
−∞ a(t−

s)g(s)ds. Moreover, if η ∈ R, then the Fourier transform of (a∗̇g) is given by

(̂a∗̇g)(η) = aη ĝ(η).

3. Periodic mild solutions

In this section, we study the existence of mild solutions to the equations
u′(t) = Au(t) +

∫ t

−∞
a(t− s)Au(s)ds+ f(t), t ∈ [0, 2π]

u(0) = u(2π),

(3.6)

and 
u′(t) = Au(t) +

∫ t

0

a(t− s)Au(s)ds+ f(t), t ∈ [0, 2π]

u(0) = u(2π),

(3.7)

where A is a closed linear operator defined in a Banach space X, a ∈ L1
loc(R+)

and f : [0, 2π]→ X is a given function.
Given a kernel a ∈ L1

loc(R+), the resolvent set ρa(A) is defined by ρa(A) :=
{λ ∈ C : (λ− (1 + ã(λ))A) : D(A)→ X is invertible and (λ− (1 + ã(λ))A)−1 ∈
B(X)}, where ã denotes the Laplace transform of a. Moreover, if k ∈ Z, then
we notice that ik ∈ ρa(A) if and only if {ik/(1 + ak)}k∈R ∈ ρ(A).

From [19, Theorem 2.12] we recall that a function u is called a strong solution
to equation (3.6) if u(t) ∈ D(A) and (3.6) holds for all t ∈ [0, 2π] and we have
the following result.

Theorem 3.6. Let X be a UMD space and let A : D(A) ⊂ X → X be a closed
linear operator. Assume that the sequence {ak}k∈Z is a 1-regular sequence.
Then, the following assertions are equivalent for 1 < p <∞.

(i) For every f ∈ Lp([0, 2π];X), there exists a unique strong Lp-solution of
(3.6);

(ii) {ik}k∈Z ⊂ ρa(A) and {ik(ik − (1 + ak)A)−1}k∈Z is an Lp-multiplier; and

(iii) {ik}k∈Z ⊂ ρa(A) and {ik(ik − (1 + ak)A)−1}k∈Z is R-bounded.

In order to study mild solutions to equation (3.6) and (3.7), we introduce
the following notation. The function g1 is defined by g1(t) = 1 for all t ∈ [0, 2π].
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The usual convolution on [0, 2π] between the functions f and g, denoted by
(f ∗ g)(t), is defined by

(f ∗ g)(t) =

∫ t

0

f(t− s)g(s)ds,

for all t ∈ [0, 2π]. Observe that

(g1 ∗ f)(t) =

∫ t

0

f(s)ds

for all t ∈ [0, 2π].

Definition 3.7. Let f ∈ L1
loc(R, X). A function u ∈ C([0, 2π], X) is called a

mild solution to (3.6) if u(0) = u(2π), (g1 ∗ u)(t) + (g1 ∗ (a∗̇u))(t) ∈ D(A), for
all t ∈ [0, 2π] and

u(t) = u(0) +A[(g1 ∗ u)(t) + (g1 ∗ (a∗̇u))(t)] + (g1 ∗ f)(t), (3.8)

for all t ∈ [0, 2π].

Observe that if a(t) ≡ 0, then this concept of mild solution is the same as in
the case of the first order problem u′(t) = Au(t) + f(t), see [2].

Lemma 3.8. Let a ∈ L1(R+) and f ∈ L1([0, 2π], X). Define the function Gaf
by Gaf (t) := (g1 ∗ (a∗̇f))(t), t ∈ [0, 2π]. Then, the Fourier coefficients of Gaf are
given by

Ĝaf (k) = − 1

ik
a0f̂(0) +

1

ik
akf̂(k), k ∈ Z \ {0}.

Proof. It follows similarly to [20, Lemma 4.2].

As in Theorem 3.6, the next result characterizes the existence of mild solu-
tions in terms of the operator ((ik)− (1 + ak)A) for all k ∈ Z.

Theorem 3.9. Let f ∈ L1([0, 2π], X) and u ∈ C([0, 2π], X). Assume that
D(A) = X. Then u is a mild solution to problem (3.6) if and only if

û(k) ∈ D(A) and ((ik)− (1 + ak)A)û(k) = f̂(k), (3.9)

for all k ∈ Z.

Proof. Assume that u is a mild solution to (3.6). From [2, Lemma 3.1] and
hypothesis it follows that û(k) ∈ D(A) for all k ∈ Z and by (3.8) we obtain
(with t = 2π) that

0 = A[(g1 ∗ u)(2π) +Gau(2π)] + (g1 ∗ f)(2π)

that is
0 = A[û(0) + a0û(0)] + f̂(0). (3.10)
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Let w(t) = u(t) − u(0) − (g1 ∗ f)(t). Since ̂(g1 ∗ f)(k) = − 1
ik f̂(0) + 1

ik f̂(k),
we have

ŵ(k) = û(k) +
1

ik
f̂(0)− 1

ik
f̂(k). (3.11)

On the other hand,

ŵ(k) = A[ ̂(g1 ∗ u)(k) + ̂(g1 ∗ (a∗̇u))(k)]

= A

[
− 1

ik
(û(0) + a0û(0)) +

1

ik
(û(k) + akû(k))

]
. (3.12)

Therefore, (3.10)-(3.12) imply

((ik)− (1 + ak)A)û(k) = f̂(k),

for all k ∈ Z.
Conversely, suppose that (3.9) holds for all k ∈ Z. We shall prove that for

all x∗ ∈ D(A∗), where A∗ denotes the adjoint operator of A, we have

〈(g1 ∗ u)(t) + (g1 ∗ (a∗̇u))(t), A∗x∗〉 = 〈u(t), x∗〉 − 〈u(0), x∗〉 − 〈(g1 ∗ f)(t), x∗〉.
(3.13)

In fact, if w(t) := 〈u(t) + (a∗̇u)(t), A∗x∗〉+ 〈f(t), x∗〉, then by (3.9) we have

ŵ(k) = 〈(1 + ak)û(k), A∗x∗〉+ 〈f̂(k), x∗〉
= ik〈û(k), x∗〉.

In particular ŵ(0) = 0. Define the function v(t) := (g1 ∗w)(t)−〈u(t), x∗〉. Then

v̂(k) =
1

ik
ŵ(k)− 〈û(k), x∗〉 = 0,

for all k ∈ Z \ {0}. Then, the function v(t) is constant, that is v(t) = v(0) =
−〈u(0), x∗〉, for all t ∈ [0, 2π], which implies (3.13). On the other hand, if t = 2π
in (3.13) we obtain

0 = 2π〈(1 + a0)Aû(0) + f̂(0), x∗〉 = 〈u(2π), x∗〉 − 〈u(0), x∗〉

for all x∗ ∈ X∗ and therefore u(0) = u(2π). This finishes the proof of the
Theorem.

We denote by σap(A) :=
{
λ ∈ C : λ

1+â(λ) is an eigenvalue of A
}
. As a conse-

quence of Theorem 3.9, we have the following result.

Corollary 3.10. The following assertions are equivalent:

(i) For all f ∈ L1([0, 2π], X) there exists at most one mild solution of (3.6);
and

(ii) iZ ∩ σap(A) = ∅.
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Proof. Assume that for all f ∈ L1([0, 2π], X) there exists at most one mild
solution u of (3.6). Since (1+ak) 6= 0, the Theorem 3.9 implies (with f ≡ 0) that
û(k) ∈ D(A) and (ik/(1 + ak)−A) û(k) = 0, for all k ∈ Z, but the hypothesis
implies that u ≡ 0, and therefore iZ ∩ σap(A) = ∅.

Conversely, suppose that iZ∩σap(A) = ∅. Let f be a function in L1([0, 2π], X)
and assume that u and v are mild solutions to (3.6). By Theorem 3.9 we have

û(k), v̂(k) ∈ D(A) and ((ik)− (1 + ak)A)û(k) = f̂(k) = ((ik)− (1 + ak)A)v̂(k),

for all k ∈ Z. Since (1 + ak) 6= 0, we obtain (ik/(1 + ak)−A) ̂(u− v)(k) = 0,

for all k ∈ Z. The hypothesis implies that ̂(u− v)(k) = 0 for all k ∈ Z, and thus
u(t) = v(t) a.e., by the uniqueness of the Fourier coefficients.

The next Proposition gives a generalization of [2, Proposition 3.4].

Proposition 3.11. Let X be a Banach space and 1 ≤ p < ∞. Assume that
D(A) = X. If for all f ∈ Lp([0, 2π], X) there exists a unique mild solution to
(3.6), then {ik}k∈Z ⊂ ρa(A) and {(ik − (1 + ak)A)−1}k∈Z is an Lp-multiplier.

Proof. We first notice that in the proof of (i)⇒ (ii) in Theorem 3.6 the UMD
condition on the Banach space X is not necessary. Therefore, we can prove
similarly to Theorem 3.6 that ik

1+ak
∈ ρ(A) for all k ∈ Z. Take f ∈ Lp([0, 2π], X).

Let u be the unique mild solution to (3.6). From (3.9) it follows that û(k) =

(ik− (1+ak)A)−1f̂(k) for all k ∈ Z, which implies that {(ik− (1+ak)A)−1}k∈Z
is an Lp-multiplier by [2, Proposition 1.1].

It is not known whether the converse of Proposition 3.11 is true in general:
If the converse holds, then for f, u ∈ Lp([0, 2π], X) we have û(k) = (ik − (1 +

ak)A)−1f̂(k) for all k ∈ Z. However, it is not clear in general whether the
function u is continuous.

Now, we study mild solutions to equation (3.7). We first introduce its defi-
nition.

Definition 3.12. Let f ∈ L1
loc(R, X). A function u ∈ C([0, 2π], X) is called a

mild solution to (3.7) if u(0) = u(2π), (g1 ∗ u)(t) + (g1 ∗ a ∗ u)(t) ∈ D(A), for
all t ∈ [0, 2π] and

u(t) = u(0) +A[(g1 ∗ u)(t) + (g1 ∗ a ∗ u)(t)] + (g1 ∗ f)(t), (3.14)

for all t ∈ [0, 2π].

Theorem 3.13. Let f ∈ L1([0, 2π], X) and u ∈ C([0, 2π], X). Assume that
D(A) = X. Then u is a mild solution to problem (3.7) if and only if

û(k) ∈ D(A) and ((ik)− (̂a ∗ u)(k)A) = f̂(k),

for all k ∈ Z.

10



Proof. If u is a mild solution to (3.7), then taking t = 2π in (3.14) we obtain

0 = A

[∫ 2π

0

u(s)ds+

∫ 2π

0

(a ∗ u)(s)ds

]
+

∫ 2π

0

f(s)ds,

which is equivalent to 0 = A[û(0)+(̂a ∗ u)(0)]+f̂(0). And then, the proof follows
similarly to the proof of Theorem 3.9. We omit the details.

Remark 3.14. Since a ∈ L1
loc(R+) is not a 2π-periodic function, then (̂a ∗ u)(k) 6=

â(k)û(k). We notice that if a ∈ L1([0, 2π], X) and we consider the integro-
differential equation

u′(t) = Au(t) +
1

2π

∫ 2π

0

a(t− s)Au(s)ds+ f(t), t ∈ [0, 2π] (3.15)

with the periodic conditions u(0) = u(2π), then the same method of proof of
Theorem 3.13 allows to prove that if D(A) = X, then u is a mild solution to
problem (3.15) if and only if

û(k) ∈ D(A) and ((ik)− â(k)û(k)A) = f̂(k),

for all k ∈ Z.

4. Mild solutions on the real line

In this section we study mild solution to the following equation on the real
line

u′(t) = Au(t) +

∫ t

−∞
a(t− s)Au(s)ds+ f(t), t ∈ R (4.16)

where A is a closed linear operator defined on a Banach space X and a ∈
L1

loc(R+). We notice that for f ∈ Cα(R, X) we have the following result [20, 34].

Theorem 4.15. Let 0 < α < 1. Let X be a Banach space and let A : D(A) ⊂
X → X be a closed linear operator. Assume that a ∈ L1(R+, t

αdt) and is a
2-regular kernel. Then the following assertions are equivalent

(i) For every f ∈ Cα(R;X), there exists a unique strong Cα-solution of
(4.16);

(ii) {iη}η∈R ⊂ ρa(A) and supη∈R ‖iη(iη − (1 + aη)A)−1‖ <∞.

In this section, we introduce a concept of mild solution to equation (4.16)
and we give necessary conditions for its existence and uniqueness.

Now we use the same notation to define the function g1 on the real line.
Thus, g1(t) = 1 for all t ∈ R. The convolution between the functions f and g,
denoted by (f ∗ g)(t), is defined by

(f ∗ g)(t) =

∫ t

0

f(t− s)g(s)ds,
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for all t ∈ R. Observe that

(g1 ∗ f)(t) =

∫ t

0

f(s)ds,

for all t ∈ R. By BUC(R, X) we denote the space of all bounded and uniformly
continuous functions on R with values in X equipped with the norm ‖ · ‖∞.

Definition 4.16. Let f ∈ BUC(R, X). A function u ∈ BUC(R, X) is called a
mild solution to (4.16) if (g1 ∗ u)(t) + (g1 ∗ (a∗̇u))(t) ∈ D(A), for all t ∈ R and
there exists y ∈ X such that

u(t) = y +A[(g1 ∗ u)(t) + (g1 ∗ (a∗̇u))(t)] + (g1 ∗ f)(t), (4.17)

for all t ∈ R.

We observe that the vector y in this definition is unique, and that if a ≡ 0,
then this concept of mild solution coincides with the notion of mild solution
to the first order problem on the real line u′(t) = Au(t) + f(t), t ∈ R, see [3,
Chapter 3] and [39].

Now, we consider the problem of the existence and uniqueness of mild so-
lution to equation (4.16) on the real line. On the space BUC(R, X) we de-
fine the linear operator L : BUC(R, X) → BUC(R, X) which takes a function
f ∈ BUC(R, X) into the solution u ∈ BUC(R, X) of equation (4.16). The
operator L is well-defined by [39, Section 1]. If such solution u is unique for
each function f, then by the closed graph theorem L is a bounded operator.
Moreover, we notice that if the mild solution u is once differentiable, that is,
u ∈ C1(R, X), then u is a classical solution to (4.16).

The next result gives necessary conditions for the existence and uniqueness
of mild solutions to (4.16). Its proof follows similarly to [39, Theorem 2.5].

Theorem 4.17. Let a ∈ L1(R+). Let A : D(A) ⊂ X → X be a closed linear
operator defined in a Banach space X. Assume that for every f ∈ BUC(R, X)
there exists a unique mild solution u ∈ BUC(R, X) to equation (4.16). Then
iη ∈ ρa(A) for all η ∈ R, and there exists a positive constant M such that

‖ [iη − (1 + aη)A]
−1 ‖ ≤M for all η ∈ R.

Proof. We first prove that [iη−(1+aη)A] is surjective. We take arbitrary η ∈ R
and y ∈ X. For s, t ∈ R, we define the function fs(t) := eiη(t+s)y = eiηsf0(t) =
f0(t+ s) where f0(t) := eiηty. Since fs ∈ BUC(R, X) there exists a unique mild
solution us ∈ BUC(R, X) to (4.16). We claim that

us(t) = eiηsu0(t) = u0(s+ t) (4.18)

for all s, t ∈ R. In fact, since us is a mild solution to equation (4.16) with fs,
there exists ys ∈ X such that

us(t) = ys +A[(g1 ∗ us)(t) + (g1 ∗ (a∗̇us))(t)] + (g1 ∗ fs)(t), (4.19)
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for all t ∈ R. Multiplying both sides by e−iηs we obtain

e−iηsus(t) = e−iηsys +A

[∫ t

0

e−iηsus(r)dr +

∫ t

0

e−iηs(a∗̇us)(r)dr
]

+

∫ t

0

e−iηsfs(r)dr.

Then, e−iηsus(t) is a mild solution to (4.16) with f0, since

e−iηs(a∗̇us)(r) =

∫ r

−∞
a(r−w)e−iηsus(w)dw and

∫ t

0

e−iηsfs(r)dr =

∫ t

0

f0(r)dr.

From the uniqueness, we obtain e−iηsus(t) = u0(t) for all s, t ∈ R and thus we
get the first equality in (4.18).

On the other hand, since u0 is a mild solution of (4.16) with f0, there exists
y0 ∈ X such that

u0(t) = y0 +A[(g1 ∗ u0)(t) + (g1 ∗ (a∗̇u0))(t)] + (g1 ∗ f0)(t),

for all t ∈ R. Then

u0(s+ t) = y0 +A[(g1 ∗ u0)(s+ t) + (g1 ∗ (a∗̇u0))(s+ t)] + (g1 ∗ f0)(s+ t),

and

u0(s) = y0 +A[(g1 ∗ u0)(s) + (g1 ∗ (a∗̇u0))(s)] + (g1 ∗ f0)(s),

which implies

u0(s+ t)− u0(s) = A
[
(g1 ∗ u0)(s+ t)− (g1 ∗ u0)(s)

+(g1 ∗ (a∗̇u0))(s+ t)− (g1 ∗ (a∗̇u0))(s)
]

+[(g1 ∗ f0)(s+ t)− (g1 ∗ f0)(s)]. (4.20)

From (4.19) and (4.20) we have

[us(t)− u0(s+ t)] = [ys − u0(s)] +A
[
(g1 ∗ us)(t)− (g1 ∗ u0)(s+ t)

+(g1 ∗ u0)(s) + (g1 ∗ (a∗̇us))(t)− (g1 ∗ (a∗̇u0))(s+ t)

+(g1 ∗ (a∗̇u0))(s)
]

+[(g1 ∗ fs)(t)− (g1 ∗ f0)(s+ t) + (g1 ∗ f0)(s)]. (4.21)

Let U(t) := us(t)− u0(s+ t). Easy computations show that

[(g1 ∗ us)(t)− (g1 ∗ u0)(s+ t) + (g1 ∗ u0)(s)] = (g1 ∗ U)(t)

[(g1 ∗ (a∗̇us))(t)− (g1 ∗ (a∗̇u0))(s+ t) + (g1 ∗ (a∗̇u0))(s)] = (g1 ∗ (a∗̇U))(t)

13



and

[(g1 ∗ fs)(t)− (g1 ∗ f0)(s+ t) + (g1 ∗ f0)(s)] = 0.

From (4.21) we obtain

U(t) = [ys − u0(s)] +A[(g1 ∗ U)(t) + (g1 ∗ (a∗̇U))(t)].

Therefore, U is a mild solution to the homogeneous equation u′(t) = Au(t) +
(a∗̇Au)(t). By uniqueness, we conclude that U(t) = 0 for all t ∈ R and therefore
us(t) = u0(s+ t). The claim is proved.

Now, we take x = u0(0). By the claim, we have u0(t) = u0(0 + t) = u0(t +
0) = eiηtu0(0) = eiηtx, that is, u0(t) = eiηtx. Note that u0(·) ∈ C1(R, X) and
therefore u is a classical solution of (4.16) with f0(t), that is

u′0(t) = Au0(t) + (a∗̇Au0)(t) + f0(t)

for all t ∈ R. In particular, if t = 0 then x ∈ D(A) and we obtain

[iη − (1 + aη)A]x = f0(0) = y,

which implies that [iη − (1 + aη)A] is surjective for all η ∈ R.
In order to prove the injectivity, let η ∈ R and suppose that for x ∈ D(A)

[iη − (1 + aη)A]x = 0. (4.22)

Let u(t) = eiηtx. Then, u is a classical solution (and then a mild solution) to
(4.16) with f ≡ 0, because (a∗̇Au)(t) = eiηtaηAx. From (4.22) we obtain

u′(t)−Au(t)− (a∗̇Au)(t) = eiηt[iη − (1 + aη)A]x = 0. (4.23)

and from the uniqueness it follows that u(t) = 0 for all t ∈ R and thus x = 0.
Therefore, [iη − (1 + aη)A] is injective.

Finally, we take arbitrary η ∈ R and y ∈ X. Define x := [iη− (1 +aη)A]−1y.
Then u0(t) = eiηtx is a classical solution to (4.16) with f0(t) = eiηty, since

u′(t)−Au(t)− (a∗̇Au)(t) = eiηt[iη − (1 + aη)A]x = eiηty = f0(t).

On the other hand, observe that ‖[iη − (1 + aη)A]−1y‖X = ‖x‖X = ‖u0‖∞ and
‖y‖X = ‖f0‖∞. Since the linear operator L is bounded we obtain

‖[iη − (1 + aη)A]−1y‖X = ‖x‖X = ‖u0‖∞ = ‖Lf0‖∞ ≤ ‖L‖ ‖f0‖∞ = ‖L‖ ‖y‖X .

Therefore, there exists a constant M := ‖L‖ such that

‖ [iη − (1 + aη)A]
−1 ‖ ≤M,

for all η ∈ R. Therefore, we conclude that iη ∈ ρa(A) for all η ∈ R.
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5. A resolvent family approach

In this section we study mild solutions to equations (3.6), (3.7) and (4.16)
in terms of resolvent families. The concept of resolvent family was introduced
by Da Prato and Ianelli in [15, Definition 1] as an extension of the notion of
C0-semigroups to study the existence of mild solutions to the following integro-
differential equations

u′(t) =

∫ t

0

k(t− s)Au(s)ds, u(0) = u0, (5.24)

where t ≥ 0, A is a closed linear operator defined in a Banach space X, u0 ∈ X
and k ∈ L1

loc(R+). The existence of a resolvent family {S(t)}t≥0 to problem
(5.24) ensures a solution to the inhomogeneous problem

u′(t) =

∫ t

0

k(t− s)Au(s)ds+ f(t), u(0) = u0, (5.25)

for any continuous function f, since in this case the solution to (5.25) is given
in terms of its resolvent family as

u(t) = S(t)u0 +

∫ t

0

S(t− s)f(s)ds.

We notice that the resolvent family {S(t)}t≥0 verifies

S(t)x = x+

∫ t

0

κ(t− s)AS(s)xds,

for all x ∈ X, where κ(t) = (g1 ∗ k)(t). The theory of resolvent families had a
rapid development. For example, the Volterra equation

u(t) = f(t) +

∫ t

0

k(t− s)Au(s)ds (5.26)

is well-posed (in the sense that it has a unique solution) if and only if the
equation (5.26) admits a resolvent (now also called in the literature as resolvent
family) {U(t)}t≥0, see for instance [37, Chapter 1]. In this case, the family
{U(t)}t≥0 verifies

U(t)x = x+

∫ t

0

k(t− s)AU(s)xds,

for all x ∈ X, and if f is differentiable, then the solution to (5.26) is given by

u(t) = U(t)f(0) +

∫ t

0

U(t− s)f ′(s)ds.

Some other general concepts such as cosine and sine families [3], integrated
semigroups [3], α-times resolvent [26], (a, k)-regularized families [27], convoluted
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semigroups [24], among others, can be considered as resolvent families, since
they have an important role in the representation of the solutions to certain
abstract integro/differential equations.

Now, we introduce a definition of resolvent family to the equation (4.16).

Definition 5.18. Let A be closed linear operator with domain D(A) defined in
a Banach space X. We say that A is the generator of a resolvent family, if there
exists ω ≥ 0 and a strongly continuous function R : [0,∞) → B(X) such that∫ t

0
R(s) ds is exponentially bounded,

{
λ

1+â(λ) : Reλ > ω
}
⊂ ρ(A), and for all

x ∈ X,

1

1 + â(λ)

(
λ

1 + â(λ)
−A

)−1

x =

∫ ∞
0

e−λtR(t)xdt, Reλ > ω.

In this case, {R(t)}t≥0 is called the resolvent family generated by A.

Comparing Definition 5.18 with the concept of regularized families intro-
duced in [27] we observe that the resolvent {R(t)}t≥0, is in fact a (b, g1)-
regularized family, where b(t) := g1(t) + (g1 ∗ a)(t). Moreover, the function
R(t) satisfies the following functional equation (see [28]):

R(s)(b ∗R)(t)− (b ∗R)(s)R(s) = (b ∗R)(t)− (b ∗R)(s),

for all t, s ≥ 0, and, if the operator A, with domain D(A), is the infinitesimal
generator of a resolvent family {R(t)}t≥0, then for all x ∈ D(A) we have

Ax = lim
t→0+

R(t)x− x
(g1 ∗ b)(t)

.

For example, if a(t) = 0 for all t ≥ 0, then R(t) corresponds to a C0-semigroup.
We have also the following result.

Proposition 5.19. [27] Let {R(t)}t≥0 be a resolvent family generated by A.
Then the following holds:

(i) R(t)x ∈ D(A) and R(t)Ax = AR(t)x for all x ∈ D(A) and t ≥ 0.

(ii) If x ∈ D(A) and t ≥ 0, then

R(t)x = x+

∫ t

0

b(t− s)AR(s)xds (5.27)

(iii) If x ∈ X and t ≥ 0, then
∫ t

0
b(t− s)R(s)xds ∈ D(A), and

R(t)x = x+A

∫ t

0

b(t− s)R(s)xds.

In particular, R(0) = I.

16



Now, we introduce a different concept of mild solution to (4.16) in case of
when A generates a resolvent family.

Definition 5.20. Let A be the generator of a resolvent family {R(t)}t≥0. We
say that u ∈ C(R, X) is a mild solution to (4.16) if

u(t) =

∫ t

−∞
R(t− s)f(s)ds, (5.28)

for all t ∈ R.

Observe that if f(t) ∈ D(A) for all t ∈ R, then u defined in (5.28) is differ-
entiable and

u′(t) = (R′∗̇f)(t) + f(t), (5.29)

because R(0) = I. Now, if we integrate (5.29) on the interval [0, t], then we
obtain

u(t)− u(0) = (g1 ∗ (R′∗̇f))(t) + (g1 ∗ f)(t).

Since b(0) = 1 and b′(t) = a(t), from Proposition 5.19 (ii) we have R′(t)x =
(b′ ∗AR)(t)x+ b(0)AR(t)x = (a ∗AR)(t)x+AR(t)x for all x ∈ D(A) and t ≥ 0.
Thus

u(t) = u(0) + (g1 ∗ ((a ∗AR)∗̇f))(t) + (g1 ∗ (AR∗̇f))(t) + (g1 ∗ f)(t)

= u(0) +A[(g1 ∗ ((a ∗R)∗̇f))(t) + (g1 ∗ u)(t)] + (g1 ∗ f)(t).

On the other hand, an easy computation shows that ((a ∗R)∗̇f)(t) = (a∗̇u)(t).
Therefore,

u(t) = u(0) +A[(g1 ∗ (a∗̇u))(t) + (g1 ∗ u)(t)] + (g1 ∗ f)(t),

for all t ∈ R. We have proved the following Proposition.

Proposition 5.21. Let A be the generator of a resolvent family {R(t)}t≥0. If
f(t) ∈ D(A) for all t ∈ R, then the function u defined by (5.28) is a mild
solution to equation (4.16) according to Definition 4.16 with y = u(0).

Definition 5.22. Let A be the generator of a resolvent family {R(t)}t≥0. We
say that u ∈ C([0, 2π], X) is a mild solution to equation (3.7) if u(0) = u(2π)
and

u(t) = R(t)u(0) +

∫ t

0

R(t− s)f(s)ds, (5.30)

for all t ∈ R.

The next result relates the Definitions 5.22 and 3.12 of mild solution to
equation (3.7) in the case that A is the generator of a resolvent family.
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Proposition 5.23. Let A be the generator of a resolvent family {R(t)}t≥0.
Then, the function u defined by (5.30) is a mild solution to equation (3.7) if
and only if it is a mild solution according to Definition 3.12.

Proof. Suppose that u defined by (5.30) is a mild solution to equation (3.7)
according to Definition 5.22. By Proposition 5.19 (iii) we have (b ∗ R)(t)x ∈
D(A) for all t ≥ 0, x ∈ X, and R(t)x = x + A(b ∗ R)(t)x for all x ∈ X. By [3,
Proposition 1.1.7], we get (b ∗R ∗ f)(t) ∈ D(A) and

(R∗f)(t) = (g1∗f)+A(b∗R∗f)(t) = (g1∗f)+A[(g1∗R∗f)(t)+(g1∗a∗R∗f)(t)].
(5.31)

Since u verifies (5.30) we obtain

(b ∗ u)(t) = (b ∗R)(t)u(0) + (b ∗R ∗ f)(t), (5.32)

and therefore (b ∗ u)(t) ∈ D(A) for all t ≥ 0. By using (5.31)-(5.32) and Propo-
sition 5.19 (iii), we have

A[(g1 ∗ u)(t) + (g1 ∗ a ∗ u)(t)] = A(b ∗ u)(t)

= A[(b ∗R)(t)u(0) + (b ∗R ∗ f)(t)]

= R(t)u(0)− u(0) + (R ∗ f)(t)− (g1 ∗ f)(t)

= u(t)− u(0)− (g1 ∗ f)(t),

that is, u is a mild solution according to Definition 3.12.
Conversely, if u is a mild solution according to Definition 3.12, then (g1 ∗

u)(t)+(g1∗a∗u)(t) = (b∗u)(t) ∈ D(A) and u(t) = u(0)+A(b∗u)(t)+(g1∗f)(t).
Let v be the function defined by

v(t) := (g1 ∗ u)(t)− (g1 ∗R)(t)u(0)− (g1 ∗R ∗ f)(t). (5.33)

Then (a ∗ v)(t) = (g1 ∗ a ∗ u)(t)− (g1 ∗ a ∗R)(t)u(0)− (g1 ∗ a ∗R ∗ f)(t) for all
t, which implies that

v(t) + (a ∗ v)(t) = [(g1 ∗ u)(t) + (g1 ∗ a ∗ u)(t)]

−[(g1 ∗R)(t) + (g1 ∗ a ∗R)(t)]u(0)

−[(g1 ∗R ∗ f)(t) + (g1 ∗ a ∗R ∗ f)(t)]

= (b ∗ u)(t)− (b ∗R)(t)u(0)− (b ∗R ∗ f)(t).

By Proposition 5.19, (b ∗ R)(t)u(0), (b ∗ R ∗ f)(t) ∈ D(A) and by hypothesis
(b ∗ u)(t) ∈ D(A) and thus v(t) + (a ∗ v)(t) ∈ D(A) for all t ≥ 0.

Since v(t) + (a ∗ v)(t) ∈ D(A) and b(t) = g1(t) + (g1 ∗ a)(t) we obtain by
(5.31) that

v′(t) = u(t)−R(t)u(0)− (R ∗ f)(t)

= u(0) +A(b ∗ u)(t) + (g1 ∗ f)(t)−R(t)u(0)− (R ∗ f)(t)

= −A(b ∗R)(t)u(0) +A(b ∗ u)(t)−A(b ∗R ∗ f)(t)

= A
[
− (g1 ∗R)(t)u(0)− (g1 ∗ a ∗R)(t)u(0) + (g1 ∗ u)(t) + (g1 ∗ a ∗ u)(t)

−(g1 ∗R ∗ f)(t)− (g1 ∗ a ∗R ∗ f)(t)
]

= A[v(t) + (a ∗ v)(t)].
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On the other hand, if S(t)y := (b ∗R)(t)y for y ∈ X, then S(t)y ∈ D(A) by
Proposition 5.19 and AS(t)y = R(t)y−y for all y ∈ X. Let w(s) := S(t−s)v(s)
for 0 ≤ s ≤ t. Then S′(t)y = (b′ ∗R)(t)y + b(0)R(t)y = (a ∗R)(t)y +R(t)y and

w′(s) = −S′(t− s)v(s) + S(t− s)v′(s)
= −R(t− s)v(s)− (a ∗R)(t− s)v(s) +AS(t− s)[v(s) + (a ∗ v)(s)]

= −(a ∗R)(t− s)v(s)− v(s) +R(t− s)(a ∗ v)(s)− (a ∗ v)(s).

Moreover, w(t) = S(0)v(t) = 0 and w(0) = S(t − 0)v(0) = 0. Thus, w(t) =
w(0) = 0. Therefore,

0 = w(t) =

∫ t

0

w′(s)ds

= −((a ∗R) ∗ v)(t)− (g1 ∗ v)(t) + (R ∗ (a ∗ v))(t)− (g1 ∗ (a ∗ v))(t)

= −(g1 ∗ v)(t)− (g1 ∗ a ∗ v)(t)

for all t ≥ 0, which implies that 0 = v(t) + (a ∗ v)(t). Since v′(t) = A[v(t) + (a ∗
v)(t)] we conclude that v is constant. But v(0) = 0 and thus v(t) = 0 for all
t ≥ 0. Differentiating function v in (5.33) we obtain u(t) = R(t)u(0) + (R ∗f)(t)
for all t ≥ 0. We conclude that u is a mild solution according to Definition
5.22.

The next result extends [36, Theorem 1] for C0-semigroups.

Theorem 5.24. Let X be a Banach space and {R(t)}t≥0 the resolvent family
in X generated by A. Then 1 ∈ ρ(R(2π)) if and only if for any f ∈ C([0, 2π], X)
the equation (3.7) admits precisely one 2π-periodic mild solution.

Proof. We first assume that 1 ∈ ρ(R(2π)). Let f ∈ C([0, 2π], X). For t ∈ [0, 2π],
we define

u(t) = R(t)u(2π) + (R ∗ f)(t), (5.34)

where
u(2π) = (I −R(2π))−1(R ∗ f)(2π). (5.35)

If t = 0 in (5.34), then u(0) = u(2π), because R(0) = I. Since u(0) is uniquely
determined by (5.35), we obtain that u defined by (5.34) is the unique 2π-
periodic mild solution to equation (3.7).

Conversely, assume that for any f ∈ C([0, 2π], X) the equation (3.7) ad-
mits precisely one 2π-periodic solution. We first notice that the operator K :
C([0, 2π], X) → C([0, 2π], X) which takes any function f into the unique 2π-
periodic mild solution u to (3.7), that is (Kf)(t) = u(t) is linear and bounded
by the closed graph theorem.

Now, suppose that (I−R(2π))x = 0 for some x ∈ X. Let u(t) = R(t)x. Then
u(0) = u(2π) and hence u is a 2π-periodic mild solution to (3.7) with f ≡ 0. The
uniqueness implies u(t) = 0 for all t ∈ [0, 2π]. Thus, 0 = u(2π) = R(2π)x = x.
We conclude that (I −R(2π)) is injective.
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Next we prove the surjectivity. Let y ∈ X. We need to find x ∈ X such that
(I−R(2π))x = y. If fact, we first notice that from Definition 5.18, we have that

the Laplace transform of R(t) verifies R̃(λ) = (λ− (1 + ã(λ))A)
−1
. Therefore,

dR̃(λ)

dλ
= −R̃(λ)

[
R̃(λ)− ã(λ)′AR̃(λ)

]
, (5.36)

for all λ > ω. If c(t) := −ta(t), then c̃(λ) = dã(λ)
dλ = ã(λ)′. The equation (5.36)

implies
tR(t) = (R ∗R)(t)− (R ∗ c ∗AR)(t)

for all t ≥ 0. If we define H(t) := R(t) − (c ∗ AR)(t) then tR(t) = (R ∗H)(t).
Now, we consider the function h ∈ C([0, 2π], X) defined by h(t) = H(t)y. Then
tR(t)y = (R ∗ h)(t). By hypothesis, there exists a unique 2π-periodic mild so-
lution v when f = h. Thus (Kh)(t) = v(t). Let z := 1

2π (Kh)(0) = 1
2πv(0). By

(5.35) we have

(I −R(2π))(z + y) = (I −R(2π))z + y −R(2π)y

=
1

2π
(R ∗ h)(2π) + y −R(2π)y

= R(2π)y + y −R(2π)y

= y.

Therefore, (I − R(2π)) is surjective. Since A is a closed operator, we conclude
that 1 ∈ ρ(R(2π)).
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