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Chapter I.

INTRODUCTION

Einstein’s theory of General Relativity [1] has proven to be extraordinarily successful, due to

the growing number of observations that support it. These include the observation of gravita-

tional redshift [2], the bending of light by the Sun’s gravitational field [3], the precession of

Mercury’s perihelion [4], confirmation of the existence of gravitational waves [5], and the first

direct image of the shadow of a black hole [6].

The study of black holes is one of the most interesting and surprising applications of General

Relativity. These are derived from Einstein’s field equations, which are extremely complex to

solve due to their non-linear nature. Einstein himself initially believed that exact solutions to

these equations would never be found. However, a few months after presenting his theory, Karl

Schwarzschild managed to obtain the first exact solution [7], which describes a black hole.

Since then, black hole research has continually evolved, revealing extraordinary phenomena

in the universe. These massive objects have such an intense gravitational force that not even

light can escape their attraction, making them true devourers of matter and energy. Further-

more, black holes have played a fundamental role in our understanding of essential concepts in

physics, such as the curvature of space-time and singularities, where the well-established laws

of physics seem to defy their very nature [8].

From the formulation of Schwarzschild’s solution, it is undeniable that the existence of black

holes is closely related to the phenomenon of space-time singularities. In certain energy con-



ditions, classical solutions of General Relativity are widely known to exhibit singularities, as

indicated by singularity theorems [9, 10]. These singularities arise mainly due to the classical

character of the theory. It is therefore hoped that a quantum theory of gravity can address and

potentially rectify these anomalies.

Due to the lack of a comprehensive theory of quantum gravity, it is possible to study black holes

with spacetimes that share global structures with existing solutions, such as Schwarzschild or

Reissner-Nordström [11, 12], but without a central singularity. These types of solutions are

called regular black holes, a concept that has its roots in the pioneering works of Sakharov [13],

Gilner [14] and Bardeen [15]. The latter introduced the first regular black hole model using an

ad hoc metric, meaning that the solution does not arise from a principle of action. Subsequently,

a physical basis for the Bardeen metric was established, demonstrating that it could be derived

from Einstein’s equations with a nonlinear magnetic source [16]. Although the Bardeen metric

was the first example of regular space-time, the first exact solution of this type of black hole was

developed by Ayón-Beato and García [17], who obtained it for Einstein’s equations coupled to

a source of nonlinear electrodynamics.

Models that integrate nonlinear electrodynamics have proven to be highly effective in develop-

ing regular solutions, as can be seen in [18, 19, 20, 21, 22]. In particular, many of these regular

black holes have at their origin a de Sitter nucleus, the regularity of which is guaranteed by a

specific parameter linked to a non-linear electrodynamic charge. It is important to note that this

parameter is not an integration constant, but rather an inherent component of the action of mat-

ter. This aspect has important implications, especially on the thermodynamic properties of the

solutions. For example, thermodynamic properties can vary markedly depending on whether

the regularization parameter is considered variable. To illustrate this point, we can consider the

regular Bardeen black hole, in which the well-known law of entropy, proportional to one-quarter

of the area, is altered if a constant magnetic charge is assumed [23]. However, this law can be

restored if the magnetic charge is treated as a variable [24]. Furthermore, regular analytical

solutions have been identified in certain non-minimally coupled Lagrangians, where both mass

and charge are integration constants [25, 26].

This thesis work is based on [27], where we develop solutions for regular black holes that are
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asymptotically similar to Schwarzschild, without the need to introduce an additional regulariza-

tion parameter into the action. These black holes obtain their regularity thanks to the functional

form of the regularizing function that appears in the solutions, and not by modifying some

action parameter. Specifically, the fall-off of the mass term in our solutions is an analytical

function with a de Sitter kernel at the origin as a consequence of the field equations. The degree

of regularity and its strength are controlled by two parameters: one that determines whether the

nucleus is de Sitter or higher order, and another that regulates the influence of the higher or-

der term with the mass of the black hole. The regular black holes presented are exact solutions

within scalar-tensor theories that extend the formulation originally proposed by Horndeski [28].

The regularizing function defines the scalar degree of freedom of the theory without the need

for additional adjustments.

In scalar-tensor theories, the equations of motion involve higher-order derivatives exempt from

the pathologies associated with Ostrogradsky instability [29, 30]. These theories, known as

Degenerate Higher-Order Scalar Tensor (DHOST) or Extended Scalar Tensor (EST) theories,

have been the subject of detailed study in the literature, particularly in compact object contexts,

for example in [31, 32, 33, 34] and in general reviews [35]. Within this category, we focus

on DHOST theories that are symmetric under displacement and preserve parity, including the

second-order covariant derivatives of the scalar field in action. The action of these theories is

given by:

S[g,φ ] =
∫

d4x
√
−g

{
K(X)+G(X)R+A1(X)

[
φµνφ

µν − (□φ)2]
+A3(X)□φφ

µ
φµν +A4(X)φ µ

φµνφ
νρ

φρ +A5(X)
(
φ

µ
φµνφ

ν
)2
}
,

(1.1)

where φµ = ∂µφ , □φ =∇µ∇µφ and φµν =∇µ∇νφ , and the coupling functions K,G,A1,A3,A4,

and A5 rely only on the kinetic term of the scalar field X = gµν∂µφ∂νφ . Furthermore, to ensure

the absence of the Ostrogradski instability [29, 30], the coupling functions A4 and A5 are chosen
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as follows

A4 =
1

8(G−XA1)
2

{
4G
[
3(−A1 +2GX)

2 −2A3G
]
−A3X2 (16A1GX +A3G)

+4X
[
−3A2A3G+16A2

1GX −16A1G2
X −4A3

1 +2A3GGX
]}

,

A5 =
1

8(G−XA1)
2 [2A1 −XA3 −4GX ] [A1 (2A1 +3XA3 −4GX)−4A3G] .

(1.2)

Recent advances have shown that it is possible to construct regular black hole solutions to

these types of theories, including the Bardeen [15] and Hayward [36] spacetimes, as shown in

[37]. This construction arises as an adaptation of the Kerr-Schild solution generation method to

scalar-tensor theories [37]. A fundamental aspect of the adaptation of this method is to assume

that the kinetic term of the scalar field is invariant under the usual Kerr-Schild transformation.

Furthermore, it is important to note that regular black holes cannot belong to Horndeski’s theory.

Our analysis shows that theories involving regular black holes are derived from conformal and

deformation mapping originating in Horndeski theory and end up belonging to a pure DHOST

theory. This analysis follows the line of recent research exploring singularities in scalar-tensor

theories, as discussed in [38].

The plan of this thesis is organized as follows: The next chapter focuses on regular black holes,

which are solutions to the equations of General Relativity that avoid the presence of singu-

larities. The historical and theoretical motivation for considering these objects is discussed,

highlighting their potential to overcome some limitations of the classical theory of general rela-

tivity. We explore methods for constructing regular black holes, both rotating and non-rotating,

and analyze the energetic conditions associated with them, which are crucial to understanding

their physical viability. In addition, it offers information on the thermodynamic properties of

regular black holes, focusing on entropy and the first law of thermodynamics.

The third chapter discusses modified theories of gravity that expand the general theory of rel-

ativity, to provide a better understanding of black holes and their possible singularities. This

chapter includes discussions of Ostrogradsky instability in theories with higher-order deriva-

tives, Lovelock theory as a generalization of general relativity, and traditional scalar-tensor and

Horndeski theories, detailing their mathematical structure and physical implications.
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In addition to expanding on the previous discussion, chapter four introduces Beyond Horn-

deski’s theories. It examines methods for avoiding Ostrogradsky instability, discusses DHOST

theories, and analyzes their classification and implications. The chapter explicitly demonstrates

how Horndeski’s theories and Beyond Horndeski’s theories are encompassed in DHOST, and

briefly explores the relations between the different DHOST theories.

Finally, the last chapter explores solutions that describe regular black holes with asymptotically

flat geometry within the framework of DHOST theories leading to regular black holes. These

solutions are obtained through a generalization of the Kerr-Schild method. They are character-

ized by depending on a mass integration constant, admitting a soft core of chosen regularity,

and, generically, having an internal and external event horizon. Furthermore, solutions without

horizons and with characteristics similar to those of massive particles are obtained when the

mass is below a certain threshold. Then, using the Euclidean method, we perform a thermo-

dynamic analysis of the solutions and show that the regularity condition is incompatible with

the area law of entropy. Despite this, the first law of thermodynamics holds for these regular

solutions.
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Chapter II.

REGULAR BLACK HOLES

It is undeniable that the notion of a black hole is closely related to the concept of singularities

in spacetime, whose origin dates back to the Schwarzschild solution [7]. Under certain energy

conditions, classical solutions of General Relativity exhibit singularities, as demonstrated in the

singularity theorems [9, 10]. While the existence of these singularities is widely accepted, it is

also a reason to point out the limitations of general relativity as a theory of spacetime at smaller

length scales. This has motivated the search for a more comprehensive theory of gravity that

accounts for quantum effects [39]. The presence of these singularities is a limitation of classical

theory, and it is hoped that a quantum theory of gravity could resolve this issue.

In recent years, numerous efforts have been made to establish a link between the theory of

General Relativity and Quantum Mechanics, with the hope that a resulting theory could solve

the singularity problem. However, formulating a quantum theory of gravity has proven to be a

complex task. In light of this difficulty, another approach has been to study Einstein’s classical

theory and explore the options it offers for eliminating singularities under reasonable condi-

tions.

Since we still do not have a complete theory of quantum gravity, efforts have been made to

search for black hole spacetimes that maintain a global structure similar to well-known solu-

tions, such as the Schwarzschild [7] solution or the Reissner-Nordström solution [11, 12], but in

which the central singularity is absent. These solutions are called regular black holes (RBHs),



and their initial concepts originate from the pioneering works of Sakharov [13], Gliner [14],

and Bardeen [15]. It was Bardeen who presented the first example of a RBH through an ad-hoc

metric, meaning it does not derive from an action principle.

Subsequently, in [16] a physical construction of the Bardeen metric was proposed as a solution

to a given action, demonstrating that this metric can be obtained from the Einstein equations

with a nonlinear magnetic source. Although the Bardeen metric was the first example of a

RBH, the first exact solution of this type of solution was found by Ayón-Beato and García [17],

who coupled the Einstein equations with a specific and nonlinear electrodynamics source. It is

important to note that a high variety of RBH models have been developed using this approach.

This method involves proposing the desired RBH and magnetic monopole solutions first, and

then determining the corresponding action for nonlinear electrodynamics (see, for example,

Refs. [20]). This is different from the traditional approach of finding BH solutions by directly

solving Einstein’s field equations.

Following this logic, it is possible to obtain RBHs with nontrivial (phantom) scalar hairs, as

shown in Refs. [40]. Additionally, these RBHs are considered classical objects as they are solu-

tions to Einstein’s field equations. The method has been extended to interpret all RBH models

with spherical symmetry [41].

The plan of the chapter is organized as follows: In Section 1.1 we perform a detailed analysis

of the construction of RBHs, starting with a review of curvature invariants, which are essential

for the characterization of these objects. Subsequently, we focus on the construction of regular

non-rotating and rotating black holes, explaining in detail the methodologies used. We present

the Newman-Janis algorithm and explain its application and challenges. We also examine the

modified Newman-Janis algorithm, an adaptation that improves the original algorithm to clarify

ambiguities. We conclude with an exploration of the regularity conditions for RBHs, where the

essential criteria to ensure their regularity are discussed.

In the next section, we focus on the interpretation of RBHs. We begin with a discussion of the

nature and relevance of these objects. We then expose the Bardeen Solution, the first known

example of a RBH. Subsequently, physical sources capable of generating non-rotating and ro-

tating RBHs are examined, addressing the challenges associated with identifying sources for
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rotating regular black holes, and highlighting the complexities of this process. Finally, we dis-

cuss the presence of scalar hairs in regular black holes.

In Section 1.3, we examine the energy conditions of regular black holes. The importance of

the Strong Energy Condition in the formation of these objects is discussed. Additionally, the

energy conditions of regular black holes, including weak, null, and dominant energy conditions,

are detailed and their consequences are explored.

Finally, in the last section, we examine the thermodynamics of RBHs. We explore the entropy

of these objects. Additionally, we analyze the First Law of Thermodynamics applied to regular

black holes, discussing its implementation and the associated challenges.

2.1 Construction of regular black holes

RBH models can be developed through two distinct methodologies. The first approach involves

resolving Einstein’s field equations tied to specific types of sources, such as matter with partic-

ular spatial distributions [42, 43, 44, 45]. Alternatively, the second pathway involves generating

RBHs through quantum adjustments to traditional black holes that contain singularities. This is

achieved through techniques like loop quantum gravity and the asymptotic safety method [46,

47, 48, 49, 50], allowing us to circumvent singularities and preserving regularity. When RBHs

are constructed using the first method, they display semi-classical characteristics. However,

when they are derived from the second method, these RBH models demonstrate quantum prop-

erties. Essentially, RBHs serve as a means to explore the quantum limit of classical black holes,

given the current absence of a fully fleshed-out quantum gravity theory.

In this section, we will summarize the approaches used for identifying both non-rotating and

rotating RBHs. However, before that, we will analyze the minimum set of curvature invariants

necessary to judge a RBH.

2.1.1 Curvature Invariants
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The curvature invariants consist of a group of independent scalars that are constructed using

a Riemann tensor Rµνσραβ and a metric gµν [51]. For example, some of these invariants are

the Ricci curvature R = gµνRµν , the contraction of two Ricci tensors R2 = RµνRµν , and the

Kretschmann scalar K = Rµναβ Rµναβ .

The importance of curvature invariants lies in their ability to provide an intrinsic description

of the geometric properties of spacetime, regardless of the coordinate system used. This is es-

pecially useful given that the choice of coordinates can vary widely depending on the specific

problem or spacetime symmetry.

A strategy for determining an RBH involves examining the spacetime with finite curvature in-

variants everywhere, particularly at the black hole center [17, 42, 52]. This methodology is

intricately tied to Markov’s conjecture on limiting curvature, which posits a universal thresh-

old beyond which curvature invariants should not exceed [53]. However, this strategy fails in

the Taub-NUT black hole, as null and timelike geodesics are incomplete at the horizon [54,

55]. This also contradicts the alternative strategy that involves determining a regular space-

time based on geodesic completeness [56, 57]. However, this way also has limitations, as there

are counterexamples where the geodesics are complete, but the curvature invariants are diver-

gent, contradicting Markov’s limiting curvature conjecture [58, 59]. Consequently, it becomes

imperative for these two strategies to synergize, complementing each other in the pursuit of

identifying and characterizing RBHs.

In certain cases, such as spherically symmetric black holes characterized by a singular shape

function, the conditions mentioned earlier are equivalent. However, in general, as we have seen,

this is not the case. Therefore, it is necessary to consider both finite curvature invariants and

geodesic completeness as independent conditions for determining whether a black hole is regu-

lar. In the context of black holes, there are two independent necessary conditions for checking

whether they are regular: finite curvature invariants and geodesic completeness. These condi-

tions are generally not equivalent to each other. The former is coordinate-independent, meaning

it does not show coordinate singularities in curvature invariants. On the other hand, the latter

involves the choice of a coordinate system to eliminate the coordinate singularity.
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In the Rinder spacetime, given by

ds2 =−z2dt2 +dx2 +dy2 +dz2, (2.1)

it is not possible to extend the geodesics along the z-direction because the corresponding affine

parameter has a finite value at z = 0. This indicates that the point z = 0 is a singularity in this

spacetime. However, applying a coordinate transformation of the form

t → tanh−1
(

T
Z

)
, x → X , y → Y, z →

√
Z2 −T 2, (2.2)

the original metric transforms into that of Minkowski spacetime. This transformation shows

that z = 0 is a coordinate singularity. This proves the advantage of the condition of finite curva-

ture invariants, which doesn’t require selecting appropriate coordinates. However, the criterion

of finite curvature invariants raises two questions. Firstly, can the curvature invariants reveal the

singularity of spacetime? Secondly, how many curvature invariants are necessary to determine

an RBH if the first question’s answer is positive?

The components of Riemann tensors cannot describe spacetime because they depend on the co-

ordinate systems chosen [60]. However, curvature scalars allow us to investigate singularities;

they are thought to describe the primary properties of spacetime, determining the existence of

singularities.

By considering the independent components of Riemann tensors and metrics, as well as the

constraints imposed by coordinate transformations, one can construct 14 curvature scalars in

a four-dimensional spacetime [51]. This number is derived from the 20 independent compo-

nents of the Riemann tensor and 10 independent components of the metric tensor, minus 16

constraints from general coordinate transformations. In simpler scenarios, only three curvature

scalars emerge, which notably correspond to the Ricci decomposition. These three scalars are

the Ricci scalar R, the Kretschmann scalar K, and the contraction of two Ricci tensors R2.

In more complex scenarios that involve matter, the set of 14 scalars is not enough for a complete

description of spacetime geometry, as a more extensive set is required. The completeness of the

set refers to the minimal number of invariants needed to describe all configurations of spacetime
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curvature, classified into Petrov types and Segrè types [61]. It has been demonstrated that the

complete set of curvature invariants should contain 17 elements, known as Zakhary-Mcintosh

(ZM) invariants [62].

In this way, the questions mentioned above can be rephrased as: Can ZM invariants determine

spacetime singularities? And if so, how many elements are needed in this set?

The answer to the second question has been studied for different cases. For example, four

scalars are required for rotating RBHs [63], while only two scalars are sufficient for non-rotating

ones [64]. However, the answer to the first question is more complex, and there is no definitive

answer available at this time.

As a pedagogical example, consider the Taub-NUT black hole, which is an interesting space-

time structure that expands our comprehension of gravitational fields. This spacetime is not

asymptotically flat and incorporates an additional parameter to the mass known as the NUT

charge. The Taub-NUT spacetime is of the form:

ds2 =− f (r) [dt +2ncos(θ)dφ ]2 +
dr2

f (r)
+ζ

2 [dθ
2 + sin2(θ)dφ

2] , (2.3)

with

f (r) =
∆

ζ 2 , ∆ = r2 −2Mr−n2, ζ
2 = r2 +n2, (2.4)

where M represents the mass, the NUT parameter n is positive and is denominated as magnetic

mass. The horizon, denotes as rH , is located at

rH = M+
√

M2 +n2.

The Taub-NUT black hole is viewed as the electromagnetic duality of Schwarzschild black

holes [65, 66], where the Ricci tensor vanishes, i.e., Rµν = 0, while that the expression for the

Kretschmann scalar, given by

K ≈ 48(n2 −M2)

n6 +O(r),
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remains bounded as r approaches zero, indicating that it is finite at this limit. Similarly, the

scalar R2 is also finite when r tends to zero. Consequently, in the context of the Taub-NUT BH

spacetime, the three curvature invariants R, K, and R2 are finite. This finiteness extends to the

horizon as well, where an examination of R, K, and R2 reveals no singularities.

Additionally, the investigation confirms that the ZM invariants exhibit regular behavior through-

out the Taub-NUT BH spacetime. However, despite their finite nature, these curvature invari-

ants do not ensure the completeness of geodesics, as demonstrated by their incompleteness at

the horizon [55, 67]. This observation suggests that the ZM curvature invariants might not fully

capture the nuances of spacetime singularities. This raises the possibility that a more extensive

set of invariants, beyond the ZM collection, may be necessary to adequately reflect spacetime

singularities. The definitive resolution of these considerations remains an open question for

further research.

2.1.2 Construction of non-rotating regular black holes

For black holes with spherical symmetry, calculating ZM invariants becomes simple despite

their complexity. Regular black holes with this symmetry have two types of metrics. The first

type involves one shape function and has the following line element

ds2 =− f (r)dt2 +
dr2

f (r)
+ r2dΩ

2, (2.5)

where dΩ2 = dθ 2 + sin2(θ)dφ 2. It is common to express the shape function in the following

manner

f (r) = 1− 2Mσ(r)
r

, (2.6)

where M represents the mass of a black hole and σ(r) is a function dependent on the radial

variable.

To examine the regularity, we extend σ(r) by the power series around r = 0, which reads

σ(r) = σ1r+σ2r2 +σ3r3 +O(r4), (2.7)
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where the coefficients σi’s are constants.

Using equations (2.5)- (2.7), we can calculate the ZM invariants and deliver the conditions of

finite curvature. This computation indicates that the coefficients σ1 and σ2 must disappear. To

illustrate, we consider the typical behaviors of three common candidates out of the seventeen

(ZM) invariants in the vicinity r = 0. The Ricci R scalar, the Weyl W = Wαβ µνW αβ µν scalar,

where Wαβ µν is the Weyl tensor, and the Kretschmann K scalar have the asymptotic behaviors

for RBHs:

R = 24Mσ3 +O(r), W = O(r2), K = 96M2
σ

2
3 +O(r). (2.8)

An alternative form is from the set of seventeen ZM invariants, choose three specific curvature

invariants and express σ(r), σ ′(r), and σ ′′(r) as functions of these chosen curvatures. This

approach is valid because the ZM invariants contain σ(r) and only its first and second-order

derivatives. By enforcing that these three curvature invariants remain finite, we can deduce the

required behavior of σ(r) in the vicinity of the central point r = 0. Specifically, σ(r) must not

diminish more slowly than r3 as r approaches zero. Failure to adhere to this constraint would

result in the divergence of some ZM invariants at r = 0, as indicated by reference [68].

The second type involves two shape functions and has the following line element

ds2 =− f (r)dt2 +
A(r)2dr2

f (r)
+ r2dΩ

2. (2.9)

Defining the next change of variable

ξ =
∫

drA(r), (2.10)

the metric given by (2.9) is equivalent to

ds2 =− f (ξ )dt2 +
dξ 2

f (ξ )
+ r2(ξ )dΩ

2. (2.11)

For this type of RBHs characterized by two shape functions, we employ a methodology similar

to the one described previously. This involves expanding both functions, A(r) and f (r), using

13



power series representations,

A(r) = A0 +A1r+A2r2 +O(r3),

f (r) = B0 +B1r+B2r2 +O(r3).

(2.12)

Using the above equations, and eq. (2.9), we can calculate the ZM invariants and obtain the

conditions of finite curvature, where

A0 = B0, A1 = B1 = 0, (2.13)

showing us that in the power series expansions, the first-order term in r must be omitted.

As an example, we present three curvature invariants for RBHs as r approaches zero,

R =
6(A2 −2B2)

A0
+O(r), W = O(r2), S =

3A2
2

A2
0
+O(r), (2.14)

where S = SµνSµν is the contraction of the tensor Sµν , defined as Sµν := Rµν − R
4 gµν (see Ref.

[69]).

In this way, we have seen that the RBHs represented by the two types of metrics have finite

curvature invariants.

2.1.3 Construction of rotating regular black holes

Obtaining rotating RBH solutions from Einstein’s field equations is challenging due to the sig-

nificant increase in complexity when rotation is introduced, as opposed to the static scenario. A

widely used method for constructing rotating black holes is the Newman-Janis algorithm NJA

[70]. This approach arose by recognizing the relationship between static and rotating black

holes. For a more detailed description of the Newman-Janis algorithm, see Appendix IV. This

appendix provides a concise explanation of the algorithm and presents an interesting applica-

tion.

The Einstein field equations in the electrovacuum are known to yield the solutions of the

Schwarzschild, Reissner-Nordström, Kerr, and Kerr-Newman black holes, each of which pro-
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vides well-understood physical properties.

Delving deeper, Newman and Janis meticulously dissected the metrics underlying these black

holes, formulating the NJA, and providing a mathematical framework to describe the transfor-

mation from spherically symmetric Schwarzschild black holes to axially symmetric Kerr black

holes. Furthermore, the algorithm can also describe the transformation process from Reissner-

Nordström black hole to Kerr-Newman black hole, showing its usefulness in exploring the

dynamics of rotating black holes within the scope of General Relativity.

2.1.3.1 The Newman-Janis algorithm: Beginnings and some complica-
tions

To better understand the complex challenges faced by the NJA, it is helpful to start with the

specific mathematical transformation that introduces these difficulties. The transformation in-

volves changing r and u of the advanced null coordinates (u,r,θ ,φ), adding and subtracting a

complex term. Explicitly:

r → r+ iacosθ , u → u− iacosθ , (2.15)

where a represents the rotation parameter.

The goal of this transformation is to modify a static spherically symmetric metric function into

one that is rotational and axially symmetric and ensure that the resulting function remains real

and does not become complex. However, the rules guiding this transformation are not clearly

defined, leading to ambiguity.

To better understand the discussion around the transformation rules used in the NJA, we will

start by taking the tt-component of the Reissner-Nordström metric, denoted as g(RN)tt , and

applying the complex transformation given by (2.15). In this way,

g(RN)tt = 1− 2M
r

+
q2

r2 , (2.16)
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using the transformation rule

r2 = rr̄=(r+ iacosθ)(r− iacosθ) = r2 +a2 cos2
θ ,

1
r
=

1
2

(
1
r
+

1
r̄

)
=

1
2

(
1

r+ iacosθ
+

1
r− iacosθ

)
=

r
r2 +a2 cos2 θ

,
(2.17)

it allows us to obtain the tt-component of the Kerr-Newman metric (g(KN)tt), which reads:

g(KN)tt = 1− 2Mr
r2 +a2 cos2 θ

+
q2

r2 +a2 cos2 θ
. (2.18)

where M represents the mass of the black hole, q its charge, and a the rotation parameter.

However, when applying this rule to more complex metrics like the black-bounce regular space-

time, which introduces a regularization parameter l [71], discrepancies arise. The tt-component

of the black-bounce spacetime metric g(BB)tt takes the form

g(BB)tt = 1− 2M√
r2 + l2

, (2.19)

which simplifies to the Schwarzschild spacetime when l = 0. Consequently, in an ideal sce-

nario, applying the rotation transformation to this metric should yield a result that reduces to

the Kerr metric when the regularization parameter vanishes. However, the tt-component for the

rotating black-bounce metric, under the transformation (2.17) is of the form,

g(rBB)tt = 1− 2M√
r2 +a2 cos2 θ + l2

. (2.20)

which does not simplify the tt-component of the Kerr metric g(K)tt , given by

g(K)tt = 1− 2Mr
r2 +a2 cos2 θ

, (2.21)

when l vanishes.

This inconsistency indicates that the standard conversion rule does not apply the black-bounce

spacetime. The challenge is to develop a more versatile rule that can accommodate such com-

plexities.
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2.1.3.2 Modified Newman-Janis algorithm

Intending to avoid the ambiguity arising from the complex transformation, Azreg-Aïnou per-

formed modifications to the NJA, as detailed in [72, 73]. For this, a general static metric is

considered as follows:

ds2 =−G(r)dt2 +
dr2

F(r)
+H(r)dΩ

2, (2.22)

then advanced null coordinates (u,r,θ ,φ) are introduced, defined by

du = dt − dr√
FG

, (2.23)

and the expression for the metric gµν is expressed through a null tetrad in its contravariant form,

gµν =−lµ lν −nµnν +mµm̄ν +mνm̄µ , (2.24)

where each vector has the following definition

lµ = δ
µ
r ,

nµ =

√
F
G

δ
µ
u − F

2
δ

µ
r ,

mµ =
1√
2H

(
δ

µ

θ
+

i
sinθ

δ
µ

φ

)
.

(2.25)

It can be verified that these contravariant vectors satisfy

lµ lµ = mµmµ = nµnµ = lµmµ = nµmµ = 0,

lµnµ =−mµm̄µ = 1,
(2.26)

and the rotation is introduced by using the complex transformation defined previously in equa-

tion (2.15), under which δ
µ

ν change as a vector:

δ
µ
u → δ

µ
u , δ

µ
r → δ

µ
r ,δ

µ

θ
→ δ

µ

θ
+ iasin(δ µ

u −δ
µ
r ), δ

µ

φ
→ δ

µ

φ
. (2.27)

17



While this transformation is effective for singular black holes, it encounters difficulties when

applied to RBHs, as discussed in the section before. Consequently, it is assumed that the func-

tions G,F and H transform to A,B, and ψ , respectively

{G(r),F(r),H(r)}→ {A(r,θ ,a),B(r,θ ,a),ψ(r,θ ,a)}. (2.28)

where A,B,ψ are real functions to be determined. To ensure that these functions properly

converge to their static equivalents as the rotation parameter a approaches zero, the following

conditions are established:

lim
a→0

A(r,θ ,a) = G(r), lim
a→0

B(r,θ ,a) = F(r), lim
a→0

ψ(r,θ ,a) = H(r). (2.29)

Using equations (2.27) and (2.28), we can determine that the null tetrad becomes

lµ = δ
µ
r , (2.30)

nµ =

√
B
A

δ
µ
u − B

2
δ

µ
r , (2.31)

mµ =
1√
2ψ

(
δ

µ

θ
+ iasin(δ µ

u −δ
µ
r )+

i
sinθ

δ
µ

φ

)
, (2.32)

and consequently, the metric that incorporates the rotation is given by

ds2 =−Adu2 −2

√
A
B

dudr−2asin2
θ

(√
A
B
−A

)
dudφ +2asin2

θ

√
A
B

drdφ

+ψdθ
2 + sin2

θ

[
ψ +a2 sin2

θ

(
2

√
A
B
−A

)]
dφ

2.

(2.33)

The above metric is then rewritten using Boyer-Lindquist coordinates, allowing the metric to

have only one off-diagonal component, gtφ . To achieve the goal, we apply the coordinate trans-

formation

du = dt +λ (r)dr, dφ = dΦ+χ(r)dr, (2.34)

where the integrability of the transformation is guaranteed if λ (r) and χ(r) depend only on r.

Considering the previously defined transformation (2.28), certain requirements must be met for
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λ (r) and χ(r) to exist. This results in the following constraints to A,B, λ and χ:,

A(r,θ ,a) =
(FH +a2 cos2 θ)ψ

(K +a2 cos2 θ)2 ,

B(r,θ ,a) =
FH +a2 cos2 θ

ψ
,

λ (r) =−
(

K +a2

FH +a2

)
,

χ(r) =
a

FH +a2 ,

(2.35)

where K(r) is defined by

K(r) :=

√(
F(r)
G(r)

)
H(r). (2.36)

Finally, defining

ρ
2 := K +a2 cos2

θ , 2 f (r) := K −FH,

∆(r) := FH +a2, and Σ := (K +a2)2 −a2
∆sin2

θ .

(2.37)

we obtain the metric to rotate RBHs with the Kerr-like form

ds2 =
ψ

ρ2

[
−
(

1− 2 f
ρ2

)
dt2 +

ρ2

∆
dr2 − 4a f sin2

θ

ρ2 dtdΦ+ρ
2dθ

2 +
Σsin2

θ

ρ2 dΦ
2
]
. (2.38)

In the context of the metric presented before, the function ψ(r,θ ,a) is undetermined and open

to interpretation, depending on the physical properties of the source. For example, if one con-

siders the source as an imperfect fluid rotating around the z−axis, ψ must satisfy the Einstein

field equations as specified in [72]. However, solving ψ directly from these equations is very

challenging due to its complexity. In practice, for RBH metrics as discussed in Section 2.1.2, a

common approach is to adopt a simpler form for ψ

ψ(r,θ ,a) = H(r)+a2 cos2
θ . (2.39)

This choice, although it may lack physical justification, must be evaluated on a case-by-case

basis to determine whether this simplification reduces the physical relevance of the model.

While it is true that eq. (2.39) can be used to construct a rotating RBH and is consistent with
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the NJA, it is still not clear if this is the only option.

2.1.3.3 The regularity conditions of rotating regular black holes

In this section, we analyze the necessary conditions to guarantee the regularity of the rotation

of RBHs using the NJA. The metric for such black holes, when starting from a seed metric

characterized by a single shape function, using the NJA is expressed as

ds2 =− ∆

ρ2 (dt −asin2
θdφ)2 +

ρ2

∆
dr2 +ρ

2dθ
2 +

sin2
θ

ρ2 (adt − (r2 +a2)dφ)2, (2.40)

where

ρ
2 = r2 +a2 cos2

θ , ∆ = r2 −2Mσ(r)r+a2. (2.41)

The metric presented here is a generalization of the Kerr and Kerr-Newman. This is because

the Kerr spacetime is recovered when σ(r) = 1, while the Kerr Newman spacetime is obtained

when σ(r) = 1−q2/(2Mr).

The metric given by the equation (2.40) is algebraically special and is classified as Petrov type

D, because the only non-zero Weyl scalar is ψ2. The full details of this classification are present

in Appendix V. The regularity of this type of spacetime is determined by the behavior of a

complete set of second-order invariants, namely R, I, I6 and K [63, 74]. If these invariants do

not diverge anywhere, the metric is regular. These invariants are integral components within the

realm of the seventeen ZM invariants. Here, R denotes, as before, the scalar curvature, while

the remaining elements are defined as follows:

I =
1

24
C̄αβγδC̄αβγδ , I6 =

1
12

Sα
β Sβ

α , K =
1
4

C̄αγδβ Sγδ Sαβ , (2.42)

where Sα
β = Rα

β − 1
4δα

β R and C̄αβγδ = (Cαβγδ + i∗Cαβγδ )/2 is the complex conjugate of

the self dual Weyl tensor, which reads as ∗Cαβγδ = εαβ µνCµν
γδ/2.

From the set of invariants, it can be deduced that the necessary and sufficient condition for the
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regularity of the metric (2.40)-(2.41) is obtained if σ(r) is a C3 function, which satisfies

σ(0) = 0, σ
′(0) = 0, σ

′′(0) = 0. (2.43)

Currently, there is no general analytical method available to determine the regularity conditions

of rotating RHs for the seed metric that has two shape functions. As a result, in most cases, we

can only verify the regularity by calculating R and K [75, 76].

2.2 Interpretation of regular black Holes

A comprehensive understanding of RBHs involves interpretations from quantum gravity the-

ories, such as loop quantum gravity and the asymptotic safety method, as well as from clas-

sical field theory perspectives, particularly in the context of developing gravitational sources.

This section delves into RBHs starting with coordinate transformation concepts, followed by

an overview of methodologies to devise gravitational sources for both non-rotating and rotating

RBHs. Furthermore, we touch upon the significance of scalar hair in RBHs, highlighting its

connection to classical field interpretations.

2.2.1 Nature of regular black Holes

The existence of RBHs as natural phenomena has been the subject of debate. Are they part of

the physical reality that surrounds us, or are they simply the result of elaborate mathematical

constructions? For example, references [71, 77] describe the construction of a RBH using what

appears to be a coordinate transformation. This debate centers on the fundamental nature of

RBHs: Do they represent entire spacetimes or are they simply a convenient representation in a

coordinate system that fails to capture the entirety of spacetime in the radial direction?

To explore this, let’s consider the Schwarzschild Black Hole. The construction of a RBH in-

volves a downward shift of the coordinate system through an r → r′(ξ ) transformation, ensuring

that the singularity is excluded from the domain of the new coordinate system. This transforma-
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tion, where r →
√

ξ 2 + l2 with l > 0, effectively relegates the singularity r = 0 to a non-physical

domain within the new coordinates when ξ varies from 0 to infinity. Furthermore, it effectively

eliminates the singularity, thus making spacetime regular.

However, this transformation does not change the topology of spacetime; rather, it simply re-

stricts the variety to a smaller region. This leads to the Schwarzschild BH in the transformed

coordinates being designated as a fake RBH.

2.2.1.1 Bardeen’s Solution

In contrast to Schwarzschild’s solution, we will present the first spacetime describing a RBH so-

lution, proposed by Bardeen [15]. This result was significant because it avoided the problematic

singularities predicted by classical theories of general relativity. Although fully understanding

this solution presented challenges for a time, it was recognized that it represented a concrete

example of a broader class of BHs, in which singularities can be avoided.

The model proposed by Bardeen incorporates a parameter g, which initially lacked physical

relevance. However, it was thanks to the work of Ayón-Beato and García [16] that it was pos-

sible to establish that this parameter represents the charge corresponding to a self-gravitating

magnetic monopole.

Bardeen spacetime can be expressed as follows

ds2 =−

[
1− 2Mr2

(r2 +g2)
3
2

]
dt2 +

[
1− 2Mr2

(r2 +g2)
3
2

]−1

dr2 + r2dΩ
2. (2.44)

This solution is an interesting extension of the Schwarzschild spacetime, which is directly ap-

preciable when considering g = 0. Furthermore, the Bardeen solution is well-defined for any

value of the radial coordinate. This aspect is very relevant since it ensures that the solution

extends to the entire spacetime domain, thus avoiding the presence of singularities.

We can also observe that this metric is asymptotically flat and that when we consider small

values of the radial coordinate r it behaves like the de Sitter (dS) metric, which describes a

universe with a positive cosmological constant. In effect, through a Taylor expansion for r → 0,
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we obtain that

f (r) = 1− 2M
g3 r2 +O

(
r4) , (2.45)

so we obtain dS asymptotic spacetime with a cosmological constant Λ given by

Λ =
6M
g3 . (2.46)

On the other hand, when carrying out the analysis on the necessary condition for the existence

of event horizons, which is established by the equation f (r) = 0, that is,

1− 2Mr2

(r2 +g2)
3
2
= 0, (2.47)

through an algebraic rearrangement of the terms, we obtain a cubic equation for r2. Explicitly

r6 +
(
3g2 −4M2)r4 +3r2g4 +g6 = 0. (2.48)

Since the discriminant of a cubic equation ax3 +bx2 + cx+d = 0 is

∆ = 18abcd −4b3d +b2c2 −4ac3 −27a2d2,

For our case, we get that

∆ ∝ g2
(
−27+16

(
M2

g2

))
, (2.49)

from which we can see that for different values of (M/g), it is possible to have situations where

f (r) disappears once or twice. This will give us information about the number of event horizons

present in the solution. In fact, when the following inequality is satisfied:

g2 ≤
(

16
27

)
M2 (2.50)

we will have two real roots and therefore two horizons. On the other hand, if g2 = 16
27M2,

both horizons will merge into one, corresponding to an extremal BH, similar to the Reissner-

Nordström case.
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On the other hand, by calculating the Ricci scalar R, squared Ricci scalar RµνRµν , and Kretschmann

scalar K, we can observe that all these curvature invariants are regular in all spacetime and have

the following form

RB =
6M
(
4g4 −g2r2)

(g2 + r2)
7/2 ,

(
RµνRµν

)
B =

18g4M2 (−4g2r2 +8g4 +13r4)
(g2 + r2)

7 ,

KB =
12M2 (−4g6r2 +47g4r4 −12g2r6 +8g8 +4r8)

(g2 + r2)
7 ,

(2.51)

where the sub-index denotes that we are working on the Bardeen solution. Now let’s observe

that by replacing r2 → ξ 2 −g2, the metric (2.44) becomes

ds2 =− f dt2 +
ξ 2

f (ξ 2 −g2)
dξ

2 +(ξ 2 −g2)dΩ
2, (2.52)

where

f = 1− 2M(ξ 2 −g2)

ξ 3 . (2.53)

The metric determined by equations (2.52) and (2.53) suggests a singularity at ξ = 0, because

Kretschmann diverges in this region:

KB ≈ 900g8M2

ξ 14 +O
(

1
ξ 13

)
. (2.54)

However, this is not possible as ξ can never be smaller than g. If it were, the signature in the

equation (2.52) would change in such a way that the line element would represent a manifold

with two-time dimensions and two space dimensions, and the integral measure
√
−g would

become complex.

These two examples, the Bardeen and Schwarzschild spacetimes, highlight the limitations of

using coordinate transformations to fully address singularities in BHs, which is consistent with

the essence of singularities.

24



2.2.2 Finding sources of non-rotating regular black holes

A study by Gliner [14] explored an algebraic characteristic of a four-dimensional energy-

momentum tensor, which using Segre notation can be denoted as [(1111)], where the symbol 1

corresponds to a diagonal component of the energy moment tensor and the parentheses imply

equal components [61, 78]. This configuration of matter [(1111)], called µ-vacuum, exhibits

a metric similar to that of dS, thus avoiding singularities. Later research extended Gliner’s

findings, identifying four general algebraic configurations for spherically symmetric [42, 79] ,

[(1111)], [(11)(11)], [11(11)], [(111)1].

An interesting application of these algebraic properties of matter is that they can generate RBHs.

For example, the Ref. [42] shows a RBH with the property [(11)(11)]. This algebraic property

can usually be found in each RBH with the metric equation (2.5) because the Einstein tensor

has the following form

G0
0 = G1

1 =
f ′(r)

r
+

f (r)
r2 − 1

r2 ,

G2
2 = G3

3 =
f ′′(r)

2
+

f ′(r)
r

.

(2.55)

Assuming that Gµ
ν = 8πT µ

ν , the algebraic properties of the energy-momentum tensor can be

discussed through the Einstein tensor.

Another example, given in Ref. [71], shows the property [11(11)]. In this case, the components

of the Einstein tensor for the given metric in eq. (2.11) are

G0
0 =

f ′ρ ′

ρ
+

f ρ ′2

ρ2 +
2 f ρ ′′

ρ
− 1

ρ2 ,

G1
1 =

f ′ρ ′

ρ
+

f ρ ′2

ρ2 − 1
ρ2 ,

G2
2 = G3

3 =
f ′ρ ′

ρ
+

f ′′

2
+

f ρ ′′

ρ
,

(2.56)

note that when ρ is proportional to r, the equations G0
0 and G1

1 are the same. Consequently,

[11(11)] reduces to [(11)(11)].

In the context of the energy-momentum tensor exhibiting the algebraic property [(1111)], there

is an example in Refs. [50, 80]. This specific algebraic configuration implies that the compo-
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nents of the Einstein tensor satisfy G0
0 = G2

2 = G3
3.

At first glance, the algebraic properties of the energy-momentum tensor might seem of little

help in constructing RBHs. However, upon closer examination, it becomes apparent that these

properties are very significant. The reason for their importance lies in their connection with a

methodology employed in the construction of these configurations. To understand the signifi-

cance of these algebraic properties, it is essential to delve into the details of how they influence

the construction process of RBHs.

The formulation of a complete theory for RBHs generally adheres to one of two fundamental

methodologies. The first, known as the bottom-up approach, involves deriving metrics char-

acterized by finite curvature invariants from the First Principle, based on theories such as loop

quantum gravity or asymptotic safety. The second methodology, called the top-down approach,

starts with the assumption of a specific metric that possesses finite curvature invariants or com-

plete geodesics, and then the classical field responsible for that metric is identified. Conse-

quently, in the top-down approach, a deep understanding of the algebraic properties of the

gravitational field is very important in identifying suitable matter sources.

For example, while a RBH described by metric (2.5) cannot be explained by a scalar phantom

field that depends solely on the radial coordinate, a RBH characterized by metric (2.11) can

be explained by it, due to the consistency of the Einstein tensor components with the algebraic

properties of the scalar phantom field.

Moreover, the relevance of algebraic properties depends on gravitational theories. For example,

within the framework of Einstein’s general relativity, a metric given by equation (2.5) has an

algebraic structure of the form [(11)(11)]. However, this structure changes when considering

alternative gravitational theories, such as F(R) theory, where as before R is the scalar curvature.

For example, if we take the lagrangian of Starobinsky [81, 82]

F(R) = R+αR2, (2.57)

then we have the following equations of motion:

G µ

ν = F ′(R)Rµ
ν −

1
2

F(R)gµ
ν − (∇µ

∇ν +gµ
ν□)F ′(R) = 8πT µ

ν , (2.58)
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where for this notations F ′(R) = dF/dR. The tensor G µ
ν for the metric given by equation (2.5)

has the following components

2r4G 0
0 =−4a0 −2r3 f ′

(
2α f ′′+αr f (3)−1

)
+4αr2 f ′2 +αr4 f ′′2 −20α f 2 −2r2

+2 f
[
12α −2αr2

(
r2 f (4)+6r f (3)+2 f ′′

)
+8αr f ′+ r2

]
,

2r4G 1
1 =−4α −2r3 f ′

(
2α f ′′+αr f (3)−1

)
+4αr2 f ′2 +αr4 f ′′2 +28α f 2 −2r2

+2 f
[
−12α −4αr2

(
4 f ′′+ r f (3)

)
+8αr f ′+ r2

]
,

2r4G 2
2 = 2r4G 3

3 = 4α +2r f ′
[
−12α −2αr2

(
5 f ′′+ r f (3)

)
+ r2

]
+8αr2 f ′2 −28α f 2

+ r4 f ′′
(
1−α f ′′

)
+4α f

[
2r2 f ′′− r3

(
5 f (3)+ r f (4)

)
+8r f ′+6

]
.

(2.59)

The algebraic structure [11(11)] is what we have in general. This implies that matter character-

ized by this configuration can lead to the formation of a RBH. Similarly, the following action

causes the change of algebraic structures to occur in conformal gravity [83].

S =
∫

d4x
√
−gW, (2.60)

where two Weyl tensors are contracted to define the Weyl scalar W .

The gravitation-dependent field, Bµ
ν , known as the Bach tensor, is obtained from the variation

of the action. Using the equation (2.5), we have:

24r4B0
0 =−4 f

[
r
(

r2 f (4)− f ′′+3r f (3)
)
+2 f ′

]
+ r2 (r f ′′−2 f ′

)2

−2r4 f (3) f ′+4 f 2 −4,

24r4B1
1 =−2r3 f (3)

(
r f ′−2 f

)
+
[
r
(
r f ′′−2 f ′

)2
+2 f

]2
−4,

24r4B2
2 = 24r4B3

3 =−r2 (r f ′′−2 f ′
)2

+2r4 f (3) f ′−4 f 2 +4

+2r f
[
r
(

r2 f (4)−2 f ′′+2r f (3)
)
+4 f ′

]
,

(2.61)

which also has an algebraic structure of the form [11(11)].
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2.2.3 Challenges in identifying sources of rotating regular black
holes

When studying regular rotating BHs, it is important to understand their physical interpretation,

which must be consistent with that of their static equivalents, called seed metrics. A seed

metric defined by one shaped function is interpreted primarily from two perspectives: that of an

imperfect fluid and that of a gravitational field interacting with nonlinear electrodynamics.

In spacetimes endowed with electromagnetic fields, the most widespread interpretation holds

that a gravitational field is intertwined with nonlinear electrodynamics. However, adapting this

view to rotating spacetimes poses significant challenges. The main obstacle is that rotation

increases the number of non-zero components of the electromagnetic tensor Fµν from one to

four, since F01, F02, F13 and F23 are not trivial [84]. These components, defined by Fµν =

∂µAν −∂νAµ , for the metric presented in equation (2.40), satisfy the relations,

F31 = asin2
θF10, aF23 = (r2 +a2)F02. (2.62)

The action that describes the gravitational field coupled to nonlinear electrodynamics is given

by:

S =
1

16π

∫
d4x

√
−g [R−L (F)] , (2.63)

where F = FµνFµν is denoted as the Maxwell invariant. Via the Einstein equations

Gµν = 2LFFµαF α
ν − 1

2
gµνL , (2.64)

it is possible to determine L and LF , where LF = dL /dF . To find Fµν , we use dynamical

equations obtained by varying the action with respect to Aµ :

∇µ(LFFµν) = 0, ∇µ (∗Fµν) = 0, (2.65)
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where ∗Fµν = 1
2εµναβ Fαβ , and ε0123 = −1/

√
−g. The following equations are thus satisfied

by the non-zero components of Fµν ,

∂r
[
(r2 +a2)sinθLFF10

]
+∂θ [sinθLFF20] = 0,

∂r [asinθLFF10]+∂θ

[
1

asinθ
LFF20

]
= 0,

∂rF20 −∂θ F10 = 0,

∂θ

[
a2 sin2

θF10
]
−∂r

[
(r2 +a2)F20

]
= 0,

(2.66)

where ∂aF = ∂F/∂a. The solutions to these equations are very difficult to obtain due to the

complexity of LF and its considerable non linearity. For this reason, the aim is not to solve

the equations directly, but rather to explore the nonlinear dynamics of electromagnetic fields

through the change of the gauge field Aµ under the NJA [85, 86]. The gauge potential Aµ varies

as follows [87] when the Reissner-Nordström metric is transformed into the Kerr-Newman met-

ric.

The vector potential Aµ can be expressed in the Reissner-Nordström metric as

Aµ =
q
r

δ
u
ν , (2.67)

with q an integration constant, while its contravariant form is

Aµ =−q
r

δ
µ
r =−q

r
lµ , (2.68)

where lµ satisfies eqs. (2.25)-(2.26). The gauge potential is transformed under equations (2.17)

and (2.27) as follows

Ãµ =− qr
ρ2 δ

µ
r . (2.69)

Also, its 1-form is given by

Ãµ =
qr
ρ2 (du−asin2

θdθ), (2.70)
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and considering the coordinate transformation

du = dt − ρ2

∆
dr,

this can be expressed as

Ãµ =
qr
ρ2

(
dt − ρ2

∆
dr−asin2

θdθ

)
. (2.71)

Since the factor qr
ρ2 depends only on r, the term of dr can be removed by a gauge transformation.

As a result, the final formulation of the gauge potential can be simplified to

Ãµ =
qr
ρ2 (dt −asin2

θdθ). (2.72)

However, this approach faces challenges with respect to NJA. The problem arises because the

conversion rule for the equation (2.17) may not apply to gauge potentials in RBHs. For example,

consider the gauge field of spherically symmetric RBHs having magnetic charge Qm, which is

given by Aµ = Qm cosθδ
φ

µ . In such cases, by applying the above method, the gauge field

becomes [86].

Aµ =−Qmacosθ

ρ2 δ
t
µ +

Qm(r2 +a2)cosθ

ρ2 δ
φ

µ . (2.73)

However, the LF derived from the equation (2.73) differs from that obtained through the equa-

tion (2.64), indicating the need to modify the method for RBHs.

2.2.4 Scalar hairs in regular black holes

Singular black holes are subject to the non-scalar-hair theorem [88]. Concerning RBHs, ad-

vances in their understanding show that the situation is improving (see Refs. [50, 89]). As an

example, the conformal metric for RBHs in [83] is the following

ds2 =

(
1+

L2

r2

)2n(
− f dt2 +

dr2

f
+ r2dΩ

2
)
, (2.74)
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where L represents a regularization parameter with dimensional units of length, and the metric

function f is defined as f = 1− 2M
r . This model is derived from an action that introduces a

scalar field φ , given by

S =−1
2

∫
d4x

√
−gφ

(
1
6

Rφ −□φ

)
. (2.75)

The equation of motion for the scalar field φ is:

□φ − 1
6

Rφ = 0, (2.76)

from where the solution takes the form[90]:

φ(r) = c2

(
r2

r2 +L2

)n[ c1

2M
ln
(

1− 2M
r

)
+ c2

]
, (2.77)

where c1 and c2 are integration constants.Given the divergence of this solution at the horizon

rH = 2M, it necessitates to impose c1 = 0, simplifying the solution to

φ(r) = c2

(
r2

r2 +L2

)n

. (2.78)

With n ≥ 1, the scalar field φ remains bounded between 0 < φ < c2. This shows us the presence

of a non-trivial scalar hair due to the non-minimal coupling, as indicated in [88].

We can find another example given in Refs. [50, 40], where they consider a model of Einstein’s

gravity minimally coupled with a scalar field, described by the action

S =
∫

d4x
√
−g[R−∂µφ∂

µ
φ −2V (φ)], (2.79)

where V (φ) is a potential. Considering the metric (2.11), we obtain a regular solution of the

black hole given by

f (ρ) = 1− ρ0(πb2 −2bρ +πρ2)

2b3 +
ρ0(b2 +ρ2)

b3 tan−1
(

ρ

b

)
, (2.80)
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applying the condition 2bc = −πρ0 with ρ0 > 0 and b > 0, to substitute c from the original

equation in Refs. [50, 40]. The potential is then expressed as

V (φ) =− ρ0

2b3

[
2
√

2φ +3sin(
√

2φ)+(π −
√

2φ)cos(
√

2φ)−2π

]
, (2.81)

which leads to

φV ′(φ) = φ

(
dV
dφ

)
=

ρ0φ

2b3

[
(
√

2π −2φ)sin(
√

2φ)−2
√

2cos
(

1+
√

2φ

)]
. (2.82)

Since that φV ′(φ) is not always positive, the model circumvents the constraints of the no-hair

theorem, allowing for the existence of a non-trivial scalar-hair solution, which is represented as

φ =±
√

2tan−1
(

ρ

b

)
+φ0, (2.83)

where φ0 is integration constant, bounded by |φ −φ0|< π√
2
.

2.3 Exploring the energy conditions of regular black
holes

In the study of RBHs, energy conditions are very important, because they are fundamental to

understanding their formation and evaluating their realism. This section delves into these two

aspects.

2.3.1 The role of the strong energy condition in the formation
of regular black holes

The genesis of RBHs has historically been associated with the replacement of the central singu-

larity by a dS nucleus [42, 91], suggesting a breakdown of the strong energy condition (SEC).

This break exempts RBHs from the restrictions of the Penrose singularity theorem, as can be
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seen from the Raychaudhuri equation [92],

dΘ

dτ
=−Rµνuµuν , (2.84)

where τ represents proper time, uµ denotes four-velocity and Θ is the expansion of geodesic

congruence. For simplicity in equation (2.84), the higher-order terms related to expansion,

rotation, and shear have been neglected. Furthermore, setting uµ = (1,0,0,0), we obtain

dΘ

dτ
=−R00 =−4πG

(
ρ +

3

∑
i=1

pi

)
, (2.85)

where ρ is the energy density and pi are three pressure components. This indicates that the vio-

lation of the SEC, characterized by ρ +∑
3
i=1 pi < 0, leads to a repulsive interaction, evidenced

by an increase in Θ at the appropriate time. However, later discoveries have revealed that RBHs

can also have a flat or an AdS core [93, 94]. For example, a RBH model with an AdS core is

described by the metric [95],

ds2 = −
[

1− r4

r4 +2qQ2
m

(
2M
r

− Q2
m

r2

)]
dt2 +

[
1− r4

r4 +2qQ2
m

(
2M
r

− Q2
m

r2

)]−1

dr2

+ r2dΩ
2, (2.86)

where Qm is an integration constant related to a magnetic charge, q is a positive parameter

characterizing the non-minimal coupling of Yang-Mills fields, and, to emphasize the essentials,

the cosmological constant is set to zero. By observing the following asymptotic relations,

f (r)≃ 1+
r2

2q2 +O(r3), R ≃− 6
q2 +O(r), (2.87)

the anti-de Sitter (AdS) nature of the core becomes evident as r approaches zero. Furthermore,

in Refs. [71, 96], a spherically symmetric RBH with a flat core is shown.

Given that the AdS and Minkowski spacetimes satisfy the SEC, these two examples comply

with the SEC in the cores.

This raises the question: if the SEC is not violated, implying attractive gravity at the core: How

can collapse be avoided? An interesting solution involves the concept of Tolman mass, seen as
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an integral SEC [97, 98],

mT =
1

4π

∫ √
−gR00d3x =

∫
r2R00dr. (2.88)

The integral SEC breaks at the core (r ∈ [0,r−]), where r− is the innermost horizon if the

Tolman mass is negative. Due to the negative Tolman mass in the model described by eq. (2.86)

and in the model presented in Refs. [97, 98], the two models violate the SEC integral at their

cores.

In summary, the violation of the SEC is a necessary condition for the formation of RBHs from

gravitational collapse [99]. However, it is not important whether the cores of RBHs are dS,

AdS, or flat.

2.3.2 Energy conditions of regular black holes

The investigation on the formation of RBHs has advanced significantly thanks to the SEC, since

as we have seen it responds to how they form. On the other hand, in the context of classical

matter properties, the realism of RBHs is studied by examining the applicability of the three

additional energetic conditions [100, 101]: the Weak Energy Condition (WEC), the Zero or Null

Energy Condition (NEC), and the Dominant Energy Condition (DEC). These three conditions

can be reduced to the following differential inequalities for RBHs with one shape function (2.6):

WEC : σ
′ ≥ 0 ∪ rσ

′′ ≤ 2σ
′,

NEC : rσ
′′ ≤ 2σ

′,

DEC : σ
′ ≥ 0 ∪ −2σ

′ ≤ rσ
′′ ≤ 2σ

′,

(2.89)

where the derivative with respect to r is denoted by prime. The relation between the energy

conditions is as follows

NEC ⊆ WEC ⊆ DEC. (2.90)

In the case of RBHs described by two shape functions, the complexity increases due to intro-

ducing an additional function r(ξ ), into the differential inequalities that are unsolvable without
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specific additional constraints. This complexity limits the direct application of energy condi-

tions in these cases.

It should be noted that certain models of RBHs violate energy conditions. For example, the

spacetimes of Bardeen and Hayward break the DEC [102, 103]. To address these violations, the

literature suggests modifying the shape function [104], proposing a deformed formulation that

encompasses these models. For a generic function σ , its deformed formulation is the following

σ =
Mµν−3r3

(rµ +qµ)ν
, (2.91)

where q is the regularization parameter, M represents mass and Mµν−3r3 is used to balance the

dimension. It is important to note that this parameterization is not unique.

This formulation contains the Bardeen and Hayward BHs as special cases. Moreover, it meets

the three energy conditions if the parameters µ and ν lie in the following regions

2
ν
< µ ≤ 1

2

√
49ν +96

ν
− 7

2
when

2
5
< ν ≤ 3;

2
ν
< µ ≤ 3

ν
when ν > 3.

(2.92)

2.4 Thermodynamics of regular black holes

The study of the thermodynamics of RBHs presents a complex challenge, mainly due to addi-

tional terms in the first law of BH mechanics, which complicate the correlation between me-

chanical and thermodynamic magnitudes. This section aims to shed light on these complexities

within the framework of Einstein’s gravity along with nonlinear electrodynamics.

2.4.1 Entropy of regular black holes

There are discrepancies in the literature regarding the entropy of RBHs due to some research

suggests that the entropy of this type of configuration includes a deflection term [105, 106].

This means that entropy breaks the area law, S ̸= A/4, while others question this study [41,
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107]. These inconsistencies affect the application of the first law of thermodynamics to RBHs

and complicate the interpretation of these objects, introducing ambiguous deviation terms for

the first case and complicating the validation of Hawking’s quantum theory in the second.

For instance, considering the Hayward BH, defined by the shape function:

f (r) = 1− 2M
r

+
r3

r3 +2Ml2 , (2.93)

where l represents a length scale introduced for regularization purposes. The entropy can be

derived from the first law of thermodynamics, dM = T dS,

S =
∫ r+

r−

dM
T

= SBH +∆S, (2.94)

with r+ and r− denoting the outer and inner horizons, respectively. The Bekenstein-Hawking

entropy SBH and the deviation term ∆S, are given by

SBH = π(r2
+− r2

−),

∆S =
πl4(r2

+− r2
−)

(r2
−− l2)(r2

+− l2)
+2πl2 ln

[
r2
+− l2

r2
−− l2

]
.

(2.95)

Given that r+ > r− > l it follows that ∆S > 0, implying the existence of horizons. If entropy

continues to be calculated using equation (2.95), the area law, S ̸=A/4 does not hold, even when

a pressure term P is added [108, 109]. Explicitly

P =− 3
8πl2 , (2.96)

Note that the pressure given by eq. (2.96) applies to a dS spacetime, rather than to an AdS

spacetime, due to the presence of a negative sign implying an outward pressure from the center

of the BHs. By considering a variable cosmological constant, it is possible to define its asso-

ciated pressure in both AdS and dS spacetime. This is because the thermodynamic equations

related to BHs maintain their mathematical coherence [109, 110]. Specifically, the Hayward

BH is characterized by a dS core, which is significant for two reasons: First, the dS core is

related to a length scale that acts as a regularization parameter in eq. (2.93), and second, it is
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associated with the pressure described by the dS radius in eq. (2.96). Due to the uniqueness of

the cosmological constant, it can be inferred that the length scales in eqs. (2.93) and (2.96) are

equivalent.

Furthermore, the interpretation of the metric in equation (2.5) as a spacetime generated by a

field of magnetic Dirac monopoles leads to the derivation of entropy using the integral Hawk-

ing path method for a specific RBH as described in eq. (2.5).

To begin this analysis, we consider the full action (2.63), where F = FµνFµν = 2q2/r4 repre-

sents the electromagnetic tensor contraction, and q denotes the magnetic charge.

The Lagrangian L (F) may be found by taking one of Einstein’s equations [41],

L

2
− 2Mσ ′(r)

r2 = 0, (2.97)

and substituting r = [F/(2q)]1/4.

To derive the entropy, we employ the path-integral approach within the zero-loop approximation

[111], we begin with the partition function,

Z =
∫

DgDAe−I ≃ e−Ip , (2.98)

where the full Euclidean action, denoted as Ip, is composed of the sum of four different compo-

nents. Explicitly

Ip = IEH + IGHY − I0 + IM. (2.99)

Here, the Einstein-Hilbert action is denoted by IEH , the Gibbons-Hawking-York boundary term

by IGHY , and the subtraction term by I0, given by

IEH =− 1
16π

∫
M

d4x
√
−gR, IGHY =− 1

8π

∫
∂M

d3x
√
−hK, I0 =− 1

8π

∫
∂M

d3x
√
−hK0,

(2.100)

where the extrinsic curvatures of surface and background reference are denoted by K and K0

respectively, while the matter action of a nonlinear electrodynamic source is denoted by IM.
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Considering the metric given by the eq. (2.5), we obtain

IEH =
β

2
(rH −M)−πr2

H ,

IGHY =
M
2

β (rσ
′+3σ)− rβ ≈ 3M

2
β − rβ ,

I0 =−rβ

(
1− 2Mσ

r

)
≈−rβ +Mβ +O(r−1),

(2.101)

with β = T−1 being the inverse of the BH temperature T . The last two asymptotic relations

are derived under the assumption that the RBH asymptotically approaches the Schwarzschild

solution. The matter action is deduced from (2.97),

IM = βM− β rH

2
. (2.102)

We obtain the total Euclidean action by substituting the eqs. (2.101)-(2.102) into the eq. (2.99),

which reads:

Ip = βM−πr2
H . (2.103)

In the context of thermodynamics for the canonical set, where F = M − T S and F = T Ip

represent the Helmholtz free energy, the entropy S is deduced as S = πr2
H from equation (2.103),

adhering to the entropy area law established for black holes. This result can also be obtained

using Wald’s Noether charge formalism [112].

However, the complexity of this problem should not be underestimated. The above calculation

depends on the interpretation of the metric, in particular its nonlinear magnetic representation,

as illustrated in equation (2.103). If the source is reinterpreted as dyons, the path integral

methodology becomes inapplicable due to the absence of adequate action for the dyons [41]. In

addition, alternative gravitational theories, such as gravity f (R), could modify the established

entropy-area relationship, complicating the analysis.

2.4.2 First law of thermodynamics for regular black holes
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RBHs exhibit different mechanical properties compared to singular BHs [113]. Specifically,

the first mechanical laws of RBHs incorporate additional terms, whose presence and number

depend on the parameters defined in the Lagrangian of matter. For example, the Lagrangian

that determines the Bardeen BH involves two parameters: the mass M and the magnetic charge

q, which leads to the first mechanical law being given by [113]:

dM =
κ

8π
dA+ΨHdq+KMdM+Kqdq, (2.104)

where κ represents the surface gravity, ΨH denotes the magnetic potential and the last two terms

are additional contributions. This modification poses challenges in the formulation of the first

law, particularly in determining the correspondence between mechanical and thermodynamic

variables, and in defining the dimension of the thermodynamic phase space.

To address these problems, Fan and Wang [41] introduced an additional parameter α within the

action for nonlinear electrodynamics. The first thermodynamic law for Bardeen’s BH (2.44),

using his methodology, can be written as follows

dE = T dS+ΨHdQm +Πdα, (2.105)

with the thermodynamic variables given by

E = M, Qm =

√
Mq
2

, and α =
q3

M
=

8Q6
m

M4 . (2.106)

Considering that these variables are not independent of each other within the phase space, the

phase space dimension is two because α is a redundant dimension. The other thermodynamic

and mechanical variables are related as follows:

T ↔ κ

2π
, S ↔ A

4
. (2.107)

However, when considering eq. (2.105) we encounter a problem, since the integral S ̸=
∫

dM/T

is not equal to the entropy S, under the restrictions dQm = 0 = dα , which implies that the mass

M is constant. Therefore,
∫

dM/T = 0.
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In the case where dQm = 0 is the only fixed parameter, we have

S =
A
4
=
∫ dM

T

(
1+

32Q6
mΠ

M5

)
̸=
∫ dM

T
. (2.108)

Therefore, the first law of thermodynamics does not hold. This discrepancy calls into question

its applicability in the context of RBHs.

If the first law of thermodynamics is not followed in the procedure described above, it is not

possible to calculate the entropy S. The most problematic aspect is that the results obtained

from Wald’s entropy formula [112] and Hawking’s path integral [114] do not agree with the

broken area-entropy relation. Therefore, it makes sense to ask what is the correct form of the

first law of thermodynamics. These are some of its most important features:

• Entropy must comply with the area law, S = A/4, if we are to explain RBHs in the context

of Einstein’s theory of gravity. In general, the entropy calculated from Hawking’s path in-

tegral or Wald’s entropy formula should be consistent with the entropy of the first law of

thermodynamics.

• Each thermodynamic variable must maintain its independence from the first law of thermo-

dynamics, which implies that its determination should not depend on that law. However, the

thermodynamic relationship given by S =
∫

dE/T must be satisfied. There are some cases

where this does not occur, such as when the temperature is not independent [24] or when

there is a deviation in the internal energy that is also not independent [115].

• It is also important that each thermodynamic variable be independent of each other. For

example, if α = M and β = T M, then the formula dM = T dS+K1dα +K2dβ + . . . is ill-

defined because α and β depend on M in the thermodynamic phase space.

To formulate a first consistent thermodynamic law for regular two-parameter black holes, such

as the Bardeen black hole, we consider [116],

dU = T dS−P+dV, (2.109)
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where V is the volume, P+ is the thermodynamic pressure, and U is the total internal energy,

V =
4
3

πr3
+, P+ =

Gr
r

8π

∣∣∣∣
r=r+

and U =
r+
2
. (2.110)
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Chapter III.

MODIFIED THEORIES OF GRAVITY

Modified gravity theories refer to alternative approaches that suggest adjustments to the grav-

itational laws established by the theory of General Relativity. These theories aim to explain

observed phenomena that cannot be fully described by the standard gravitational model [35].

Some of the reasons why it has been considered necessary to propose modified gravity theories

are the following:

• The theory of General Relativity describes gravity in terms of the geometry of spacetime,

while Quantum Physics describes the behavior of subatomic particles. Quantum Physics

has successfully described the other three fundamental forces (electromagnetism, strong nu-

clear force, and weak nuclear force), but a quantum formulation of gravity has not yet been

achieved, suggesting that a new theory unifying both perspectives may be required [117].

• The discovery of the accelerated expansion of the Universe was a great surprise for observa-

tional cosmology [118]. Astronomical research has shown that the amount of visible matter

in the Universe is not enough to explain the observed expansion rate. The existence of dark

matter has been postulated, a form of matter that is not directly detected but interacts gravita-

tionally with visible matter. Furthermore, the existence of dark energy has been proposed, a

mysterious form of energy that appears to be accelerating the expansion of the universe [119].

Unfortunately, General Relativity does not provide a satisfactory explanation for the nature



of dark matter and dark energy, necessitating a modified or new theory that can address these

phenomena.

• General Relativity predicts the existence of singularities, regions where the density and cur-

vature of spacetime become infinite, making it difficult to apply conventional physical laws.

These singularities are found in the Big Bang and, in general, in black holes. The need for a

more complete theory that avoids singularities and provides an accurate description of black

holes is an area of active research [120].

Relativity can be modified, taking into account that this theory is based on four fundamental

properties. Firstly, the theory considers a four-dimensional spacetime. The second property

establishes that the only field that describes gravitational effects is the metric field, which is

characterized by having no mass. Third, the equations of motion are second order. Finally,

General Relativity is invariant under diffeomorphisms.

When modifying the theory of relativity, it is crucial to maintain invariance under diffeomor-

phism, since we are looking for a theory in which the choice of a coordinate system is not

decisive in the description of physical phenomena. However, the dimension of spacetime and

the uniqueness of the massless metric field are characteristics that can be modified when for-

mulating a new theory.

According to Lovelock’s theorem [121, 122], Einstein’s equations with a cosmological con-

stant are the only second-order Euler-Lagrange equations, that can be derived from a four-

dimensional Lagrangian scalar density constructed solely from the metric. However, to expand

the theory of gravity, it is necessary to relax the assumptions of this theorem. A simple way

to do this is to add a new, different degree of freedom to the metric, such as a scalar field.

Therefore, modifying gravity involves changing the degrees of freedom. One way to do this is

through scalar-tensor theories, which describe different modifications of gravity.

This chapter is structured as follows: We begin with a detailed analysis of the Ostrogradsky

instability, illustrating with classical mechanics how higher-order derivatives can lead to phys-

ical instabilities, and how these can be systematically addressed. Subsequently, we present

Lovelock’s theory, highlighting that it preserves the second-order nature of the field equations,
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despite including higher-order curvature terms in the gravitational action. The following sub-

section provides an overview of scalar-tensor theories, starting with traditional approaches and

moving toward Horndeski’s theory. We detail how Horndeski’s theory extends previous theo-

ries and avoids unwanted degrees of freedom. What is notable about this theory is that despite

allowing the inclusion of a scalar field and higher-order terms in the gravitational action, the

resulting equations of motion are, at most, second-order. Finally, the chapter concludes by

showing how Horndeski’s general theory can be factored into specific conditions.

3.1 Ostrogradsky Instability

One of the important points to consider when seeking to modify severity is to avoid the instabil-

ity of Ostrogradsky [123, 124]. This instability manifests itself when the higher-order temporal

derivatives in the action are considered. In such cases, the equations of motion will include

additional terms, that represent undesired degrees of freedom. These additional degrees of free-

dom, known as Ostrogradsky ghosts, can lead to solutions that are unstable or not physically

acceptable, because the equations of motion will include terms that have a not bounded below

or negative kinetic energy, which could imply a violation of principles of fundamental physics,

such as energy conservation.

3.1.1 Ostrogradsky Instability in Classical Mechanics

This section addresses Ostrogradsky’s instability within the realm of classical mechanics, fo-

cusing on the study of non-degenerate one-dimensional Lagrangians associated with a dynamic

variable x(t). To facilitate understanding, we will divide the analysis into three distinct situa-

tions:

• We will first examine the standard Lagrangian which depends on the first temporal derivative

of the dynamic variable.

• Then we will study the Lagrangians which can include up to the second temporal derivative
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of the variable.

• Finally, we will address the more general case where the Lagrangians can depend on the first

N− temporal derivatives of the dynamic variable.

3.1.1.1 Standard Lagrangian

In classical mechanics, a one-dimensional standard Lagrangian depends on a dynamical variable

x(t) and its time velocity ẋ(t); that is, L = L(x, ẋ). Extreme action produces the well-known

Euler-Lagrange equations of motion:

∂L
∂x

− d
dt

(
∂L
∂ ẋ

)
= 0. (3.1)

A Lagrangian is considered non-degenerate if it satisfies the condition

det
∣∣∣∂ 2L
∂ ẋ2

∣∣∣ ̸= 0. (3.2)

Because of the non-degeneracy, eq. (3.1) has a well-posed initial value problem with a single

solution and ∂L/∂x depends only on ẋ. The above implies also that equations of motion (3.1)

can be rewritten in Newtonian form:

ẍ = F(x, ẋ)⇒ x(t) = X(t,x0, ẋ0), (3.3)

where x0 and ẋ0 represent the initial conditions of the system. Given that the solution depends

on these two initial conditions, two canonical coordinates named Q and P are introduced, which

are generally defined as

Q = x, P =
∂L
∂ ẋ

. (3.4)

The concept of non-degeneration allows us to invert the eq. (3.1). For this reason, it is possible

to express ẋ as a function of the variables Q and P. In this context, we introduce a new variable,
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V (Q,P) defined through the relation

P =
∂L
∂ ẋ

∣∣∣∣
x=Q, ẋ=V

. (3.5)

The next step in our analysis involves the canonical Hamiltonian, which is derived from the

Lagrangian function L(x, ẋ) via a Legendre transformation applied to ẋ. This transformation

leads us to

H(Q,P) = Pẋ−L, (3.6)

substituting ẋ for V (Q,P), we have

H(Q,P) = PV (Q,P)−L(Q,V (Q,P)). (3.7)

Now let us observe that, taking the Euler-Lagrange equations, we obtain

Q̇ =
∂H
∂P

=V +P
(

∂V
∂P

)
−
(

∂L
∂Q

)(
∂V
∂P

)
=V,

Ṗ =−∂H
∂Q

=−P
(

∂V
∂Q

)
+

(
∂L
∂V

)(
∂V
∂Q

)
+

∂L
∂Q

=
∂L
∂Q

.

(3.8)

The equations given in (3.8) show how the Hamiltonian dictates the time evolution of the sys-

tem. Furthermore, when the Lagrangian does not depend explicitly on time, then it is associated

with the energy of the system. Let us also note that the possibility of the Hamiltonian having a

lower bound depends on the explicit form of the Lagrangian, as shown in eq. (3.7).

3.1.1.2 Lagrangians dependent at most on second-order derivatives

To observe the effect of higher order derivatives, we will consider a Lagrangian that depends on

x, ẋ, ẍ, i.e., L = L(x, ẋ, ẍ). In this case, the equations of motion are fourth-order and are given

by
∂L
∂x

− d
dt

(
∂L
∂ ẋ

)
+

d2

dt2

(
∂L
∂ ẍ

)
= 0. (3.9)
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The non-degeneracy of a Lagrangian dependent on ẍ requires that

det
∣∣∣∂ 2L
∂ ẍ2

∣∣∣ ̸= 0 (3.10)

Thus, the eq. (3.9) for a non-degenerate system takes the following form

....x = F(x, ẋ, ẍ, ...x )⇒ x(t) = X(t,x0, ẋ0, ẍ0,
...x0). (3.11)

Four canonical coordinates are defined because the solution, in this case, depends on four initial

conditions [123], which read

Q1 = x, Q2 = ẋ, P1 =
∂L
∂ ẋ

− d
dt

(
∂L
∂ ẍ

)
, P2 =

∂L
∂ ẍ

. (3.12)

Due to the non-degeneracy of the Lagrangian, it is possible to invert the phase space transfor-

mation, thus allowing to express ẍ in terms of Q1,Q2 and P2. In this context, a new variable

is defined, called acceleration, and represented by A(Q1,Q2,P2), which depends only on three

canonical coordinates, because L = L(x, ẋ, ẍ) depends on only three coordinates of the configu-

ration space. Also:
∂L
∂ ẍ

∣∣∣∣
x=Q1, ẋ=Q2, ẍ=A

= P2. (3.13)

The Ostrogradsky Hamiltonian is derived by a Legendre transformation, following a procedure

analogous to that used in the standard approach. Considering ẋ= x(1) y ẍ= x(2) the Hamiltonian

is defined as

H(Q1,Q2,P1,P2) =
2

∑
i=1

Pix(i)−L

= P1Q2 +P2A(Q1,Q2,P2)−L
(

Q1,Q2,A(Q1,Q2,P2)
)
.

(3.14)

Regarding the equations that describe the temporal evolution of the system, these are given by

the following relations

Q̇i =
∂H
∂Pi

and Ṗi =− ∂H
∂Qi

. (3.15)
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Following a procedure analogous to that carried out in the standard case, we will continue

verifying the obtaining of the equations that describe the temporal evolution of the canonical

variables. Specifically for Q1, the temporal dynamics is given by

Q̇1 =
∂H
∂P1

= Q2, (3.16)

which corresponds to the phase transformation ẋ = Q2. Similarly, the evolution of Q2 is deter-

mined by

Q̇2 =
∂H
∂P2

= A+P2

(
∂A
∂P2

)
−
(

∂L
∂A

)(
∂A
∂P2

)
= A. (3.17)

On the other hand, the dynamics of the canonical coordinate P2 is expressed as

Ṗ2 =− ∂H
∂Q2

=−P1 −P2
∂A

∂Q2
+

∂L
∂Q2

+

(
∂L
∂A

)(
∂A

∂Q2

)
=−P1 +

∂L
∂Q2

, (3.18)

which reproduces the phase space transformation for

P1 =
∂L
∂ ẋ

− d
dt

(
∂L
∂ ẍ

)
. (3.19)

Finally, the equation for the time evolution of P1 is

Ṗ1 =− ∂H
∂Q1

=−P2
∂A

∂Q1
+

∂L
∂Q1

+

(
∂L
∂A

)(
∂A

∂Q1

)
=

∂L
∂Q1

, (3.20)

which represents the Euler-Lagrange equation (3.9) [35].

The linear dependence of P1 evidenced in the Hamiltonian (3.14) indicates an inherent insta-

bility. This term implies the absence of a lower bound on the Hamiltonian, regardless of the

specific structure of the Lagrangian. This feature is typical of Hamiltonians associated with

Ostrogradsky ghost fields.

3.1.1.3 Lagrangians dependent on the first N-th temporal derivatives
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In this part, we extend the study of the previous result by analyzing a Lagrangian that depends

on the first N temporal derivatives x(t). As we incorporate consecutive derivatives of the me-

chanical variable into the Lagrangian, we find an increase in the complexity of the problem

associated with the instability of the Hamiltonian. To address this problem, we examine a La-

grangian expressed as L = L(x, ẋ, . . . ,x(N)), which depends on the first N temporal derivatives

of x(t). In the case that the Lagrangian is not degenerate with respect to the N-th derivative,

x(N), the Euler-Lagrange equation is linear in the 2N-th derivative x(2N):

N

∑
i=0

(
− d

dt

)i
∂L

∂x(i)
= 0. (3.21)

This formulation implies that the phase space of the system is composed of 2N canonical coor-

dinates. Following the approach proposed by Ostrogradsky [123], Qi coordinates and conjugate

moments Pi are defined as

Qi = x(i−1) and Pi =
N

∑
j=i

(
− d

dt

) j−i
∂L

∂x( j)
. (3.22)

The non-degeneracy condition allows us to express x(N) in terms of PN and Qi. Defining

A(Q1, . . . ,QN ,PN) such that
∂L

∂x(N)

∣∣∣∣
x(i−1)=Qi,x(N)=A

= PN , (3.23)

Ostrogradsky’s Hamiltonian is then formulated as

H =
N

∑
i=1

Pix(i)−L

= P1Q2 +P2Q3 + . . .+PN−1QN +PNA−L(Q1, . . . ,QN ,A),

(3.24)

and the temporal evolution of the canonical variables is determined by the equations:

Q̇i =
∂H
∂Pi

, Ṗi =− ∂H
∂Qi

. (3.25)
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The reproduction of both canonical relations defined above by the evolution equations is easily

verified. In particular, for QN , we obtain that:

Q̇N = A+PN

(
∂A
∂PN

)
−
(

∂L
∂A

)(
∂A
∂PN

)
= A. (3.26)

The equations of evolution for the moments Pi reproduce the definition of the moments Pi−1,

Ṗi =−Pi−1 −PN
∂A
∂Qi

+
∂L

∂QN
+

(
∂L
∂A

)(
∂A
∂Qi

)
=−Pi−1 +

∂L
∂QN

,

(3.27)

and the evolution of P1 recovers the Euler-Lagrange equation

Ṗ1 =−PN
∂A

∂Q1
+

∂L
∂Q1

+

(
∂L
∂A

)(
∂A

∂Q1

)
=

∂L
∂Q1

. (3.28)

In this general context, it is observed that the Hamiltonian described by equation (3.23) depends

linearly on (N − 1)− conjugate moments, which leads to the presence of (N − 1)− unstable

directions in the system. This is because a linear dependence indicates that the Hamiltonian

has no lower bound. In this way, it follows that the inclusion of second-order or higher-order

derivatives leads to the appearance of instabilities that increase with the order of the derivatives.

This instability phenomenon does not depend on the specific form of the theory considered, it

has only been assumed that the Lagrangian L is not degenerate.

3.1.1.4 A concrete example of Ostrogradsky instability

To exemplify the above, it is instructive to consider a toy model given in [35], which establishes

the following Lagrangian

L =
a
2

φ̈
2 −V (φ), (3.29)
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where φ represents a scalar field, V (φ) is an arbitrary potential, and a is a constant. The equa-

tions of motion obtained from eq.(3.29), which are of fourth order, are given by

a
....
φ − dV

dφ
= 0, (3.30)

Therefore, to solve (3.30) four initial conditions are needed, which means that there are two

dynamic degrees of freedom. As established by Ostrogradsky’s theorem, one of them must be

a ghost.

By introducing an auxiliary variable ψ , the Lagrangian (3.29) can be equivalently written as

follows:
L = aψφ̈ − a

2
ψ

2 −V (φ)

=−aψ̇φ̇ − a
2

ψ
2 −V (φ)+a

d
dt
(ψφ̇),

(3.31)

which reproduces the original Lagrangian (3.29) after substituting in the equations of motion

ψ = φ̈ . The last term of the second line does not contribute to the Euler-Lagrange equation. By

defining new variables given by

q =
(φ +ψ)√

2
,

Q =
(φ −ψ)√

2
,

(3.32)

the Lagrangian (3.31) can be rewritten as

L =−a
2

q̇2 +
a
2

Q̇2 −U(q,Q), (3.33)

where all terms in q and Q have been absorbed in the potential. It is clear that the Lagrangian

contains two dynamic degrees of freedom, however, they have a negative relative sign. So

regardless of the sign of a, there is a ghostly degree of freedom, which in turn gives rise to

instability.

3.2 Lovelock theory
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Lovelock theory, proposed by David Lovelock in 1971 [121], is a natural extension of General

Relativity, in which higher-order curvature terms in gravitational action are considered. Clearly,

in four-dimensional spacetime, the Lovelock action reduces to the Einstein-Hilbert action to-

gether with a cosmological constant. However, in higher dimensions, higher-order curvature

terms contribute significantly and can have important effects on gravitational dynamics.

One of the notable features of Lovelock’s theory is that the equations of motion are second or-

der, which means that there are no higher-order time derivatives in the field equations. This is

important because it prevents the appearance of Ostrogradsky’s ghosts and ensures the coher-

ence of the theory. An outline of how the theory was constructed is as follows:

The Einstein equations are given by

Gµν = κTµν , (3.34)

where Gµν and Tµν are the Einstein tensor and the energy-momentum tensor respectively, κ is

a constant, and the main idea is to obtain a generalization. Because the right side of eq. (3.34)

describes the behavior of matter, the problem reduces to finding a more general tensor, denoted

as Aµν , which satisfies

Aµν = κTµν , (3.35)

which enjoys the following properties:

• Aµν must be symmetrical and free of divergences, that is

Aµν = Aνµ ,

∇λ Aµν = 0,
(3.36)

where ∇ denotes the covariant derivative.

• Aµν must be a function of the metric and its first two derivatives, i.e.

Aµν = Aµν

(
gµν ;∂λ gµν ;∂λ ∂ρgµν

)
, (3.37)
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where ∂λ gµν =
∂gµν

∂xλ
.

It is interesting to note that there is no restriction on the dimension of spacetime.

Theorem: (Lovelock 1971)

The only tensor Aµν that satisfies the above conditions is [121]

Aµ

ν =
[D/2]

∑
p=1

apδ
µα1...α2p
νβ1...β2p

Rβ1β2
α1α2 · · ·R

β2p−1β2p
α2p−1α2p +aδ

µ

ν . (3.38)

In addition, the associated Lagrangian can be written as

L =
[D/2]

∑
p=1

2apδ
µα1...α2p
νβ1...β2p

Rβ1β2
α1α2 · · ·R

β2p−1β2p
α2p−1α2p +2aδ

µ

ν , (3.39)

where a and ap are arbitrary constants.

Note that, as was shown before, the only possible theory in four dimensions, under the above

conditions, is given by the Einstein-Hilbert action with a cosmological constant.

Considering this result, when seeking to modify General Relativity, there are, fundamentally,

three options to consider. The first option is to work in dimensions other than the conventional

four dimensions. The second option involves considering derivatives higher than second-order

derivatives in the metric. Finally, the third option is to use additional fields, in addition to the

metric field.

3.3 Scalar-Tensor theory

As was shown previously, one of the main motivations for considering scalar-tensor theories is

their ability to explain the accelerated expansion of the universe without resorting to dark en-

ergy. These modified gravity theories include an additional degree of freedom represented by a

scalar field and have been developed to explore the possibility of a description beyond standard

General Relativity.

This type of theory has been extensively studied in the literature [125]. One of the first times a

scalar field was introduced into a gravitational theory was in the pioneering works of Theodor
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Kaluza [126] and Oskar Klein [127], known in the literature as Kaluza-Klein theory. In their

attempt to unify gravitation and electromagnetism, they proposed a theory that involved addi-

tional dimensions and a scalar field. The inclusion of the scalar field aroused the interest of

Pascual Jordan in 1949, who was the first to formalize scalar-tensor theories. These theories

replaced Newton’s constant with a time-dependent scalar field [128].

Later, in 1961, Robert Dicke and Carl Brans [129] took up Jordan’s work to find a gravitational

theory in which the masses of the objects present completely determined the metric properties

of spacetime. His work represented a significant advance in the development of scalar-tensor

theories.

On the other hand, among the various scalar-tensor theories studied in recent years, Horndeski’s

theory stands out [28]. This theory is notable because it allows a wide range of modifications to

General Relativity while maintaining the second-order equations of motion. This implies that

no additional unwanted degrees of freedom are introduced.

3.3.1 Traditional scalar-tensor theories

Traditional scalar-tensor theories are characterized by the Lagrangian depending, at most, on

the first derivative of the field. Furthermore, they typically include non-minimal couplings

with gravity. These theories were initially proposed by Jordan [130], who developed them by

embedding a four-dimensional curved manifold within a five-dimensional spacetime, set within

the context of the Kaluza-Klein theory [126, 127]. The Lagrangian introduced is

L j = φ
γ

j

(
R−ω j

1
φ 2

j
gµν

∂µφ j∂νφ j

)
+Lmatter(Ψ,φ j), (3.40)

where the term φ
γ

j R, is called non-minimal coupling. Furthermore, φ j represents the Jordan

scalar, R denotes the Ricci scalar, while that γ and ω j are constants.

The difficulty we find in the Lagrangian (3.40) is that the term associated with matter violates

the principle of weak equivalence, because of the coupling between the Lagrangian of matter
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and φ [131]. This problem led to the proposal of a new Lagrangian, given by

LBD = φR−ω
1
φ

gµν
∂µφ∂νφ +Lmatter, (3.41)

which is known as the Brans-Dicke (BD) prototype model [129]. Through a redefinition of the

scalar field given by [125],

φ =
ξ

2
ϕ

2,

with ξ a dimensionless constant, the Lagrangian (3.41) can be expressed in its canonical form,

LBD =
ξ

2
ϕ

2R− ε

2
gµν

∂µϕ∂νϕ +Lmatter, (3.42)

where the original symbol ω re-expressed in terms of ξ defined by

ε

ξ
= 4ω.

Here, ε = ±1 = Sign(ω), so that ξ is always positive. Also, when ε = 1 the theory is free of

ghosts.

3.3.2 Horndeski theory

As previously mentioned, Lovelock gravity is considered the most natural extension for space-

times of dimensions higher than Einstein’s gravity. However, it is interesting to consider

whether other theories incorporate additional fields, such as a scalar field, with properties simi-

lar to Lovelock’s theory. The answer to this question was provided by Horndeski in 1974 [28].

Horndeski developed a theory involving the metric field, a scalar field, and its derivatives in

a four-dimensional spacetime. The remarkable thing about this theory is that even though the

Lagrangian contains higher-order derivatives, the resulting equations of motion are, at most,

second-order. Consequently, Horndeski’s theory allows for the inclusion of a scalar field and

higher-order terms in gravitational action, without generating higher-order equations of motion.
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3.3.2.1 From Galileon to Horndeski theory

To provide a clear introduction to Horndeski’s theory, we will begin with an overview of

Galileon’s theory [132], which is characterized with a scalar field φ that exhibits symmetry

under a transformation

φ → φ +bµxµ + c.

This symmetry is known as Galilean shift symmetry because of its analogy concerning the

Galilei transformation in classical mechanics. To avoid phantom instabilities, we need to en-

sure that the equation of motion for φ is second-order. The most general four-dimensional

Lagrangian that satisfies the above is as follows [132],

L = c1φ + c2X − c3X□φ

+
c4

2
[
X
(
(□φ)2 −∂µ∂νφ∂

µ
∂

ν
φ
)
+∂

µ
φ∂

ν
φ∂µ∂νφ□φ −∂µX∂

µX
]

+
c5

15
[
−2X

(
(□φ)3 −3□φ∂µ∂νφ∂

µ
∂

ν
φ +2∂µ∂νφ∂

ν
∂

σ
φ∂σ ∂

µ
φ
)

+3∂
ν
φ∂µX [(□φ)2 −∂µ∂νφ∂

µ
∂

ν
φ ]+6∂µX∂

µX□φ −6∂
µ

∂
ν
φ∂µX∂νX

]
,

(3.43)

where X = −1
2∂ µφ∂µφ and c1, . . . ,c5 are constants. This can be written in a more compact

form by making use of integration by parts as

L = c1φ + c2X − c3X□φ + c4X
(
(□φ)2 −∂µ∂νφ∂

µ
∂

ν
φ
)

− c5

3
X
(
(□φ)3 −3□φ∂µ∂νφ∂

µ
∂

ν
φ +2∂µ∂νφ∂

ν
∂

σ
φ∂σ ∂

µ
φ
)
.

(3.44)

It should be noted that although the Lagrangian depends on the field’s second derivatives, the

field equation is of second order.

The Lagrangian described above (eq. (3.44)) determines a scalar field theory established within

Minkowski spacetime. To integrate gravitational effects and achieve a covariant form of the

Lagrangian, we can consider moving from the Minkowski metric ηµν to the metric tensor gµν

and replacing the partial derivatives ∂µ with the covariant derivatives ∇µ . However, due to the

non-commutative nature of the covariant derivatives, can introduce higher-order derivatives into

the field equations. For example, the terms associated with the coefficient c4 could give rise to
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derivatives of the Ricci tensor Rµν in the scalar-field equations of motion

c4X∇
µ [∇µ∇ν∇

ν
φ −∇ν∇µ∇

ν
φ ] =−c4X∇

µ(Rµν∇
ν
φ). (3.45)

By suitably introducing curvature-dependent components to eq. (3.44), such higher derivative

terms can be canceled. As for the scalar field and the metric, the Ref. [133] provides the

covariant form of (3.44) that leads to second-order field equations. Explicitly, we have:

L = c1φ + c2X − c3X□φ +
c4

2
X2R+ c4X [(□φ)2 −φ

µν
φµν ]

+ c5X2Gµν
φµν −

c5

3
X [(□φ)3 −3□φφ

µν
φµν +2φ

µν
φναφ

α
µ ],

(3.46)

where, as before, the Einstein tensor is denoted by Gµν and the Ricci tensor by R. Also,

X = −1
2∇µφ∇µφ is the kinetic term, and for simplicity, we have defined φµ = ∇µφ and

φµν = ∇µ∇νφ .

Here, the “counter terms” included to eliminate higher derivatives in the field equations are the

first term in the second line and the fourth term in the first line from eq. (3.46). As the field

equations obtained from this Lagrangian contain the first derivatives of φ , the theory breaks the

Galilean shift symmetry. Is for this reason that we refer to this theory as the covariant Galileon.

The covariant Galileon theory (3.46) in the process of covariantization, retains the second-order

nature of equations of motion. This essential feature ensures that the equations that govern

scalar field dynamics remain free of the complexities associated with higher-order derivatives.

Although the covariant Galileon theory was initially established in a four-dimensional space-

time, it can be expanded to higher dimensions (see Ref. [134]).

Another extension of the covariant Galileon [133, 134] that maintains second-order field equa-

tions is the generalized Galileon [135]. This theory is obtained by determining the most general

scalar field theory on a fixed Minkowski background, that produces a second-order field equa-

tion, assuming that the Lagrangian is polynomial in ∂µφ∂ µφ and that it includes at most second

derivatives of φ . In the next step, through the same method as before, the theory is promoted to

a covariant notation by including appropriate and unique counterterms that ensure that the field

equations are second-order for both φ and the metric. This procedure can be performed in any
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dimension of spacetime. In four dimensions, the Lagrangian is given by [135]:

L = G2(φ ,X)−G3(φ ,X)□φ +G4(φ ,X)R+G4X [(□φ)2 −φ
µν

φµν ]

+G5(φ ,X)Gµν
φµν −

G5X

6
[(□φ)3 −3□φφ

µν
φµν +2φ

µν
φναφ

α
µ ],

(3.47)

where G2,G3,G4, and G5 are arbitrary functions that depend of φ and X .

The generalized Galileon, as described in equation (3.46), is now known as Horndeski theory

[28], which is the most general four dimensional scalar-tensor theory with second-order field

equations. However, it is important to note that Horndeski developed the theory based on differ-

ent assumptions than those used to derive the generalized Galileon. The initial representation

of the Lagrangian, as stated in Ref. [28], is the following:

L = δ
αβγ

µνσ

[
κ1φ

µ

α Rβγ
νσ +

2
3

κ1X φ
µ

α φ
ν

β
φ

σ
γ +κ3φαφ

µRβγ
νσ +2κ3X φαφ

µ
φ

ν

β
φ

σ
γ

]
+δ

αβ

µν

[
(F +2W )Rαβ

µν +2FX φ
µ

α φ
ν

β
+2κ8φαφ

µ
φ

ν

β

]
−6
(
Fφ +2Wφ −Xκ8

)
□φ +κ9,

(3.48)

where we have defined the notations fX = ∂ f/∂X and fφ = ∂ f/∂φ . Together with the above,

δ
α1α2...αn
µ1µ2...µn = n!δ [α1

µ1 δ
α2
µ2 . . .δ

αn]
µn denotes the generalized Kronecker delta, while that the coeffi-

cients κ1,κ3,κ8 and κ9 are arbitrary functions that depend on the scalar field φ and its kinetic

term X . Note that other functions are introduced: F = F(φ ,X) and W =W (φ). The first must

satisfy the condition FX = 2(κ3 + 2Xκ3X − κ1), indicating that it is not independent. On the

other hand, the W function can be absorbed in the redefinition of F = Fold + 2W → Fnew. As

a result, we have the same number of free functions of X and φ as in the generalized Galileon

theory. However, establishing a direct equivalence between these two theoretical frameworks is

not obvious. The reference [136] shows how the generalized Galileon theory can be mapped to
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Horndeski’s theory by identifying Gi(φ ,X) as follows:

G2 = κ9 +4X
∫ X

dX ′ (
κ8φ −2κ3φφ

)
,

G3 = 6Fφ −2Xκ8 −8Xκ3φ +2
∫ X

dX ′ (
κ8 −2κ3φ

)
,

G4 = 2F −4Xκ3,

G5 =−4κ1,

(3.49)

and integrating by parts.

Given the equivalence of the generalized Galileon theory with Horndeski’s theory, the more

general scalar-tensor theory with second-order field equations can be represented by eq. (3.47).

It is important to note that while the generalized Galileon is constructed for arbitrary dimen-

sions, the extension of Horndeski’s theory to higher dimensions remains unknown. It is unclear

whether the generalized Galileon theory provides the more general second-order scalar-tensor

theory in higher dimensions. Likewise, it is worth noting that the lower-dimensional version of

Horndeski’s theory can be easily obtained (see Ref. [28]).

3.3.2.2 The original derivation of the Horndeski theory

Although Horndeski’s theory was originally formulated in 1974, it remained forgotten until its

rediscovery in 2011 by [137]. This section aims to provide a brief overview of the original

derivation of Horndeski’s theory, which begins by considering a general action given by

S =
∫

d4x
√
−gL (gµν ,∇λ1gµν , . . . ,∇λp . . .∇λ1gµν ,φ ,∇λ1φ , . . . ,∇λq . . .∇λ1φ), (3.50)

where the indices p and q are greater than or equal to 2 in four dimensions. This approach is

different from the one seen in the previous section, as it starts from a more general Lagrangian,

but limits the analysis to four dimensions.

By varying the action with respect to the metric and the scalar field, we obtain the following
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equations of motion:

Eµν :=
2√
−g

δS
δgµν

= 0, Eφ :=
1√
−g

δS
δφ

= 0, (3.51)

where it is assumed that E µν and Eφ involve at most second derivatives of gµν and φ . The

diffeomorphism invariance of the action ensures the validity of the Bianchi identity

∇
νEµν =−∇µφEφ . (3.52)

In general, ∇νEµν should be expected to involve third-order derivatives of gµν and φ , but the

constraint that the right-hand side contains only second-order derivatives requires that ∇νEµν

also be second-order, even though Eµν is second-order. This condition imposes a significant

constraint on the structure of Eµν .

The next step is to construct the tensor Aµν that satisfies this constraint. After an extensive

derivation process, the general form of Aµν is established, using the assumption of the space-

time dimension. Furthermore, the form of the tensor Aµν requires that ∇νAµν be proportional

to ∇φ as implied by eq. (3.52). In this way, the tensor Aµν obtained is Eµν .

The last step is to identify the Lagrangian that leads to the Euler-Lagrange equations Eµν = 0

and Eφ = 0. Surprisingly, the Euler-Lagrange equations, derived from the Lagrangian L =

gµνEµν , faithfully reflect the structure of both Eµν and Eφ . Consequently, the Lagrangian spec-

ified in eq. (3.48) is obtained.

To illustrate a complex and interesting example, we will consider non-minimal coupling to the

Gauss-Bonnet term, given by

Gφ := ξ (φ)(R2 −4RµνRµν +Rµνρσ Rµνρσ ). (3.53)

This specific term does not appear explicitly in the lagrangians above (3.47) and (3.48). How-

ever, we know that it gives second-order equations. Therefore, it should be obtainable as a

particular case of Horndeski theory, because, as mentioned above, Horndeski theory is the most

general scalar tensor theory with second-order field equations. In fact, this term can be found
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by considering [136]

G2 = 8ξ
(4)X2(3− lnX),

G3 = 4ξ
(3)X(7−3lnX),

G4 = 4ξ
(2)X(2− lnX),

G5 =−4ξ
(1) lnX ,

(3.54)

where ξ (n) := ∂ nξ/∂φ n.

Proving equivalence between eqs. (3.53)- (3.54) at the action level is a considerable challenge.

However, this equivalence becomes more evident when studied through equations of motion.

3.3.2.3 Factorization of general Horndeski theory

In this part, we delve into the exploration of Horndeski’s general theory, to determine a "simple"

factorization of Einstein’s equations under a spherical ansatz. The main equation analyzed is

simplified under certain conditions which facilitates the integration of the scalar field, without

explicit need for the metric. To achieve this factorization, specific conditions are introduced

and the Horndeski functions are redefined for convenience. Furthermore, the effectiveness of

factoring is illustrated with an example. Let us consider the general Horndeski theory given by

the Lagrangian (3.47). The main objective is to identify the most general class of Horndeski

theory that permits a simple factorization of the Einstein equations Eµν = 0, this is, permits to

integration of the scalar field without knowing explicitly the metric. Specifically, we will focus

on the difference Et
t −Er

r = 0, under a spherical ansatz of the form

ds2 =− f (r)dt2 +
dr2

f (r)
+ r2dΩ

2. (3.55)
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Let us note that Et
t −Er

r = 0 produces in total generality the expression:

(φ ′)2
{[

2G3φ −G2X −2G4φφ

]
r2 +2

[
G5φ −G4X

]
−2
[
G5φ −G4X +2X

(
G5φX −G4XX

)]
f

+2
[
G3X +G5φφ −4G4φX

]
r f φ

′
}
−φ

′′
{[

2G4φ −2X
(

G3X −2G4φX

)]
r2

−2
[
G5φ −G4X +X

(
G5φX −2G4XX

)]
r f φ

′−2X
[
−3G5X −2XG5XX

]
f −XG5X

}
= 0.

(3.56)

It is interesting to note that the above equation can be factored provided that the following

conditions hold

2G3φ −G2X −2G4φφ = 2G4φ −2X
(

G3X −2G4φX

)
G3X +G5φφ −4G4φX =−2G5φ +2G4X −2X

(
G5φX −2G4XX

)
,

X(−3G5X −2XG5XX) = G5φ −G4X +2X
(

G5φX −G4XX

)
,

G5φ −G4X =−XG5X ,

(3.57)

allowing us to obtain the following factorization

(
φ
′2 −φ

′′
){[

2G4φ −2X
(

G3X −2G4φX

)]
r2 +2X

[
3G5X +2XG5XX

]
f −XG5X

−2
[
G5φ −G4X +X

(
G5φX −2G4XX

)]
r f φ

′
}
= 0,

(3.58)

It is wise to define G5 as G5 = D5XX for later convenience. As a result, the prior conditions

given in eq. (3.57) become

G4 = XD5XX −D5X +D5Xφ +F4,

G3 =−2XD5XX +2D5X +6XD5XXφ −6D5Xφ +4X2D5XXX +3D5Xφφ +F3,

G2 = 16X2D5XXφ −38XD5Xφ +44D5φ +12XD5Xφφ −24D5φφ −12X2D5XX

+24XD5X −24D5 +8X3D5XXX +X
(
−2F4φ +2F3φ −2F4φφ

)
+4D5φφφ +F2,

(3.59)
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where F4,F3 and F2 are functions only of φ .

Under these last conditions, the factorization (3.58) becomes:

(
φ
′2 −φ

′′
){

2
[
XD5XXφ −D5Xφ +D5Xφφ +F4φ −6X2D5XXX −4X2D5XXXφ

−4X3D5XXXX −XD5XXφφ

]
r2 +4X

[
D5XXXφ +3D5XXX +2XD5XXXX

]
r f φ

′

+2X
[
3D5XXX +2XD5XXXX

]
f −2XD5XXX

}
= 0.

(3.60)

To illustrate that factorization is effective, we will consider the Ref. [138], where the authors

take a generalized Kaluza-Klein action that includes arbitrary Horndeski potentials, given by

S =
∫

d4x
√
−g
{
(1+W (φ))R− 1

2
Vk(φ)(∇φ)2 +Z(φ)+V (φ)G

+V2(φ)Gµν
∇µφ∇νφ +V3(φ)(∇φ)4 +V4(φ)□φ(∇φ)2

}
,

(3.61)

where W,V,Z,Vk,V2,V3, and V4 are arbitrary potentials. Also, G =R2−4RµνRµν +Rµνρσ Rµνρσ

is the Gauss-Bonnet curvature scalar.

The Horndeski functions are:

G2 = Z +XVk +4X2V3 +8X2
(

3− ln(X)

)
Vφφφφ ,

G3 = 2XV4 +4X
(

7−3ln(X)

)
Vφφφ ,

G4 = 1+W +4X
(

2− ln(X)

)
Vφφ ,

G5 =−4Vφ ln(X)−
∫

V2dφ ,

(3.62)

while that, considering the following potentials [138],

W =−β4e2φ −β5e3φ , Z =−2λ4e4φ −2λ5e5φ −2Λ, V =−α4φ −α5eφ ,

Vk =−2Wφ −2Wφφ , V2 =−4Vφ −4Vφφ , V4 =−4Vφ −6Vφφ −2Vφφφ ,

V3 =−2Vφ −5Vφφ −4Vφφφ −Vφφφφ ,

(3.63)
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where Λ is the cosmological constant, while that β4,β5,λ4,λ5,α4, and α5 are coupling con-

stants. Since we have defined G5 = D5XX , we obtain

D5 = 2α4X2 ln(X)−3α4X2 +2α5eφ X2 ln(X)−7α5eφ X2. (3.64)

Consequently, the Horndeski functions take the following form

G2 =−2Λ+8X2
(

α4 +3α5eφ

)
+12X

(
β4e2φ +2β5e3φ

)
−2
(

λ4e4φ +λ5e5φ

)
+8α5eφ X2 ln(X),

G3 = 8α4X +4α5eφ X(3ln(X)−1),

G4 = 1−β4e2φ −β5e3φ +4α4X +4α5eφ X(ln(X)−2),

G5 =−8α5eφ +4
(

α4 +α5eφ

)
ln(X).

(3.65)

In this way, we obtain the factorization given by [138]

(
φ
′2 −φ

′′
)[

r2Wφ +4(1− f )Vφ +2 f rV2φ
′+ f r2V4

(
φ
′)2
]
= 0. (3.66)

Here, we can observe the feasibility of a simple factorization of the Einstein equation under

specific conditions, allowing the integration of the scalar field without prior knowledge of the

metric. By applying constraints to the Horndeski functions, it is possible to achieve such fac-

torization, allowing us to simplify the analysis of solutions in extended gravitational theories.
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Chapter IV.

THEORIES BEYOND HORNDESKI

In the previous section, we focused our analysis on the Horndeski theory, which was considered

for a time to be the most general theory for a four-dimensional spacetime free of pathologies.

However, as we will see in the following lines, it is possible to expand the horizons of this

theory by introducing an extra ligature from the degeneration condition.

Recent research has shown that the formulation of this theory, as presented in equation (3.47),

is not the most general. This is because it is possible to incorporate a pair of functions F4 and

F5, within the framework of the generalized Galileon theory, which enriches the theoretical

structure by integrating dynamics of interaction and self-interaction of the field, and introduces

us to the realm of the so-called "healthy theories beyond Horndeski" [139, 140]. These theories

are generally characterized by higher-order field equations that are implicitly, at most, second-

order [141]. The action that these theories describe is given by:

S[gµν ,φ ] =
∫

d4x
√
−g

[
5

∑
i=2

1
8πGN

Li(gµν ,φ)+Lm(gµν ,ψM)

]
, (4.1)

where Lm denotes a generic Lagrangian in which any type of coupling of the field ψM with the

metric gµν is found. Explicitly, the Lagrangians Li’s are

L2 = G2(φ ,X), L3 =−G3(φ ,X)□φ ,



L4 = G4(φ ,X)R+G4X
[
(□φ)2 −φ

µν
φµν

]
+F4(φ ,X)εµνρ

δ ε
αβγδ

φµφαφνβ φργ ,

L5 = G5(φ ,X)Gµνφ
µν − 1

6
G5X

[
(□φ)3 −3(□φ)φ µν

φµν +2φ
ν
µ φ

α
ν φ

µ

α

]
+F5(φ ,X)εµνρσ

ε
αβγδ

φµφαφνβ φργφσδ .

(4.2)

Here, Gi(φ ,X) and Fi(φ ,X) represent arbitrary functions with respect to the scalar field φ and

the kinetic term X , GiX denotes the partial derivative of Gi with respect to X , while that εαβγδ

corresponds to the Levi-Civita tensor.

Generally, the described action propagates an additional degree of freedom. To restrict this

behavior, the following condition is set [141],

2XG5X F4 =−3F5(G4 +4XG4X +XG5φ ), (4.3)

where this condition generally applies when considering nonlinear terms beyond Horndeski.

These theories mark the beginning of research into advanced models that expand Horndeski’s

theory, in which the relaxation of the non-degeneration hypothesis of Ostrogradsky’s theorem

[35] is required. The development of theories beyond Horndeski corresponds to the first attempt

to construct degenerate theories that incorporate the dependence of the second derivative of the

Lagrangian and that provide equations of motion and evolution of at most second order in four-

dimensional spacetime.

This chapter is structured as follows: Initially, it discusses how these theories address Ostro-

gradsky instability through appropriate degeneracy conditions. Subsequently, two toy models

are analyzed that exemplify how to avoid this instability within the framework of degenerate

theories. The next section addresses degenerate higher-order scalar tensor (DHOST) theories,

which generalize Horndeski’s and beyond Horndeski’s theories. We detail how these theories

evade the Ostrogradsky instability and present a complete classification of quadratic DHOST

theories. Finally, we explore how theories of Horndeski and beyond Horndeski are contained in

DHOST, and how the latter respond to disformal transformations.

4.1 A concrete example of how to avoid Ostrograd-
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ski instability

We will begin by considering a toy model proposed in reference [35]. Through this model, we

will observe how a degenerate theory that includes a second derivative can produce second-

order equations of motion, once the degeneration of the system is considered. The Lagrangian

is next,

L =
a
2

φ̈
2 +bφ̈ q̇+

c
2

q̇2 +
1
2

φ̇
2 − 1

2
φ

2 − 1
2

q2, (4.4)

where a,b,c are constants. The Euler-Lagrange equations are of a higher order, explicitly:

a
....
φ +b ...q − φ̈ −φ = 0, (4.5)

b
...
φ + cq̈+q = 0. (4.6)

Let’s note that the system has an Ostrogradsky ghost because it has an extra degree of freedom.

However, if the kinetic matrix obtained using higher order derived terms is degenerate, i.e. the

determinant of the matrix

M =

a b

b c

 , (4.7)

given by ac−b2 is null. Then, the system contains only 2 degrees of freedom. Let us observe

that, multiplying equation (4.5) by c and subtracting b by the time derivative of (4.6), we obtain:

φ̈ +
b
c

q̇+φ = 0. (4.8)

Furthermore, deriving the above equation and substituting into (4.6), we find

(
1− b2

c2

)
q̈− b

c
φ̇ +

1
c

q = 0. (4.9)

As a result, for φ and q, we obtain two second-order equations of motion given in equations

(4.8) and (4.9) respectively. This shows that, despite the higher-order Euler-Lagrange equa-

tions, the degenerate system is healthy because it is free of the Ostrogradsky ghost.

67



Let us also note that by introducing a new variable Q = φ̇ , we can obtain an equivalent formu-

lation of the Lagrangian given in the equation (4.4), which reads:

L =
a
2

Q̇2 +bQ̇q̇+
c
2

q̇2 +
1
2

Q2 −V (φ ,q)−λ (Q− φ̇), (4.10)

where V (φ ,q) = 1
2φ 2 + 1

2q2 and λ is a Lagrange multiplier.

4.1.1 Hamiltonian Dynamics

The Hamiltonian formulation represents the most rigorous approach for identifying the number

of physical degrees of freedom and examining the stability of a system. In this framework,

the configuration variables and their respective conjugate momenta satisfy the Poisson brackets

[29],

{P,Q}= 1, {pi,q j}= δ
j

i , {πφ ,φ}= 1, (4.11)

with all remaining Poisson brackets being zero.

Let us observe that the conjugate moments for each variable of the system described by the

Lagrangian (4.10) are

P =
∂L
∂ Q̇

= aQ̇+bq̇, p =
∂L
∂ q̇

= bQ̇+ cq̇ and πφ =
∂L
∂ φ̇

= λ . (4.12)

Consequently, we obtain the following relation

M

Q̇

q̇

=

P

p

 , (4.13)

where M is the kinetic matrix M (4.7). In this way, the Hamiltonian associated with the system

H = PQ̇+ pq̇+πφ Q−L, (4.14)
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can be written as follows:

H = (P p)M−1

P

q

+πφ Q− 1
2

Q2 +V (φ ,q). (4.15)

This Hamiltonian involves six variables and, therefore, possesses three degrees of freedom. The

additional degree of freedom originates from the linear dependence of the Hamiltonian on πφ ,

which represents a phantom degree of freedom. As we saw above, to eliminate this extra degree

of freedom, the theory must be degenerate.

To determine whether the inclusion of the constraint imposed by the degeneration condition,

allows the system to propagate its degrees of freedom correctly, we begin by defining a vector

v⃗ such that Mv⃗ = 0⃗. This vector is the following:

v⃗ =

−1

b
c

 . (4.16)

It is straightforward to verify that Mv⃗ = 0⃗. Multiplying the equation (4.13) by the transpose

vector of v⃗, we obtain a new expression that relates p and P, given by

Ω :=
(

b
c

)
p−P ≈ 0. (4.17)

Here, the symbol ≈ indicates that the expression is null under the imposed restriction, so this

relation constitutes a first constraint.

Taking into account the primary constraint, after some algebraic manipulations, it is possible to

obtain the following expression of the Hamiltonian in terms of the canonical variables,

HT =
p2

2c
+πφ Q− 1

2
Q2 +V (φ ,q)+µΩ, (4.18)

where µ is a Lagrange multiplier. Next, we will determine if more ligatures are needed to keep

Ω = 0 at all times. This involves calculating the time derivative of Ω using the Poisson bracket.
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Thus, we obtain a second constraint given by:

Ψ := Ω̇ = {Ω,HT}=−Q+πφ −
b
c

q ≈ 0. (4.19)

By calculating the Poisson bracket between the primary and secondary constraints, it can be

determined whether the time evolution of Ψ gives rise to a tertiary constraint. Let us note that

{Ω,Ψ}=
(

1− b2

c2

)
. (4.20)

Let us note that considering
(

1− b2

c2

)
= 0 would eliminate the kinetic term associated with the

variable q in the reduced system (4.9). Therefore, it is not necessary to impose that {Ω,Ψ} ≈ 0.

In this way, we have determined that the Hamiltonian depends on six canonical coordinates,

minus the two restrictions found. Consequently, we manage to eliminate an additional degree

of freedom, known as the phantom degree of freedom.

4.1.2 A more general example of how to avoid the Ostrograd-
ski instability

In this section, we explore a toy model that is more complex and general than the one presented

previously. This model aims to develop a systematic methodology applicable to Lagrangians

that depend, at most, on second derivatives of the field, and seeks to avoid the complications

associated with Ostrogradsky’s theorem. The analyzed Lagrangian models a system composed

of point particles that exhibit higher order derivatives. These particles are coupled to n regular

degrees of freedom. The dynamics is governed by the following Lagrangian [29]

L =
1
2

aφ̈
2 +

1
2

k0φ̇
2 +

1
2

ki jq̇iq̇ j +biφ̈ q̇i + ciφ̇ q̇i −V (φ ,q), (4.21)

where qi(t),with (i = 1, ...,n), has n degrees of freedom. Furthermore, we consider a,k0,bi,ci as

constants and the matrix ki j as invertible. However, the model can be extended to any function of

φ . As mentioned above, in non-degenerate Lagrangians that include dependence on the second
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derivatives of the field, an additional phantom degree of freedom arises. The Euler-Lagrange

equations are

a
....
φ − k0φ̈ +bi

...q i − ciq̈i −Vφ = 0,

ki jq̈ j +bi
...
φ + ciφ̈ +Vi = 0,

(4.22)

where Vφ = ∂V/∂φ and Vi = ∂V/∂qi. Since they are higher-order equations, the corresponding

Hamiltonian has no bounded lower limit. Consequently, the resulting theory is unhealthy, as

it presents an Ostrogradsky ghost [29]. However, as in the previous case, this ghost can be

avoided.

To calculate the number of degrees of freedom, it is advantageous to reformulate the theory so

that the explicit higher-order time derivative in the Lagrangian is eliminated. To do this, a new

variable Q is introduced, which is equivalent to the time derivative of φ . Consequently, the new

Lagrangian can be written as follows

L =
1
2

aQ̇2 +
1
2

ki jq̇iq̇ j +
1
2

k0Q2 −V (φ ,q)+(biQ̇+ ciQ)q̇i −λ (Q− φ̇), (4.23)

where λ is a Lagrange multiplier. Now, the equations of motion are:

aQ̈+biq̈i = ciq̇i + k0Q−λ ,

biQ̈+ ki jq̈ j =−Vi − ciQ̇,

φ̇ = Q, λ̇ =−Vφ ,

(4.24)

As was established in the previous example, it is essential to modify the non-degeneration

condition established by the Ostrogradsky theorem. For this reason, we introduce the kinetic

matrix M of the new Lagrangian (4.23), this is:

M =

a bi

bi ki j

 . (4.25)

If M is invertible, the first two equations of (4.24) can be used to express the second-order

derivatives Q̈ and q̈i, using the first order derived variables. Furthermore, according to the third
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equation of (4.24), the differential system requires initial conditions for Q, Q̇, qi, q̇i, λ and φ .

The above means that a total of 2(n+ 2) initial conditions are needed. This indicates that the

system has n+ 2 degrees of freedom, including the additional degree of freedom linked to the

Ostrogradsky ghost. Thus, when the kinetic matrix M is invertible, the system (4.23) shows a

ghost.

We have observed that the kinetic matrix M must be degenerate to avoid the presence of an

extra degree of freedom. We also require that this degeneracy comes from the sector φ and its

coupling with the sector qi, and not just from the sector qi, so we assume that the matrix ki j is

invertible [29]. The determinant of M is

det(M) = det(k)(a−bib j(k−1)i j), (4.26)

The matrix M can degenerate in various ways. The simplest way is to consider a = 0 and

bi = 0, ∀i. This would be the trivial case, all higher-order derivatives disappear in the original

Lagrangian and the system describes n+1 degrees of freedom as usual.

In this study, we will consider the case where a ̸= 0 and bi ̸= 0. Thus, it can be shown that

thanks to degeneracy, the equations of evolution are second-order at most. Another way to

check whether M is degenerate is to identify a non-zero eigenvector associated with a zero

eigenvalue, i.e.

Mv⃗ = 0⃗. (4.27)

It can be verified that the vector that satisfies the previous equation is of the form

v⃗ =

v0

vi

=

 −1

(k−1)i jb j

 . (4.28)

Substituting the degeneracy conditions into the first two equations of (4.24), we obtain

ci(q̇i + viQ̇)+ k0Q+ viVi = λ . (4.29)
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The above equation suggests using the variables xi := qi + viQ, instead of qi. By defining xi in

this way, and replacing it in the equations of motion, the system is simplified. In this way, we

get

ciẋi + k0Q+ viVi = λ ,

ki jẍ j + ciQ̇+Vi = 0.
(4.30)

Calculating the time derivative of the first equation above and eliminating λ and Q using the

third equation given in (4.24), we have the following equivalent system:

(k0 − viv jVi j)φ̈ + ciẍi =−(viVi j)ẋ j − (viViφ )φ̇ −Vphi,

ciφ̈
i + ki jẍ j =−Vi,

(4.31)

where Vi j = ∂Vi/∂q j = Vji and Viφ = ∂Vi/∂φ = Vφ i. Thus, we have obtained a system of

equations of motion that involves derivatives of up to second order for the variables xi and φ .

This implies that the theory requires 2(n+1) initial conditions to be solved. It should be noted

that the new system degenerates when the new kinetic matrix M̃ is not invertible, which reads:

M̃ =

k0 − viv jVi j ci

ci ki j

 (4.32)

This occurs if its determinant,

det(M̃) = ∆det(k) with ∆ = k0 − v jviVi j − (k−1)i jcic j, (4.33)

is zero, which means that since k is invertible, ∆ = 0. A detailed analysis of this particular case

would show that, in such a situation, the theory allows fewer physical degrees of freedom [29].

Now, we suppose that ∆ does not cancel and that the potential V is generic.

4.1.2.1 Hamiltonian Dynamic: Most general example
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Similarly to what was done in the previous example, it is possible to establish that the moments

P and pi are related to Q̇ and q̇i as follows:

P

pi

= M

Q̇

q̇ j

+

 0

Qci

 , (4.34)

where M is the kinetic matrix (4.25).

The system described by equation (4.34) can be inverted when the matrix M is invertible. In

such cases, the velocities, Q̇ and q̇i, can be expressed explicitly in terms of the momenta, P and

pi. Thus, the Hamiltonian is given by

H = PQ̇+ piq̇i +πφ φ̇ −L

=
1
2
(P pi −Qci)M−1

 P

p j −Qc j

+V (φ ,q)− 1
2

k0Q2 +πφ Q.
(4.35)

where πφ := ∂L/∂ φ̇ = λ .

We can observe that the Hamiltonian depends on 2(n+2) canonical variables, these are (Q, Q̇,φ)

and their conjugate moments (P, pi,πφ ), corresponding to n+ 2 degrees of freedom. Further-

more, the Hamiltonian is not lower-bounded, since the Lagrangian is linear in πφ . As mentioned

above, this feature is indicative of Ostrogradsky instability.

As in the previous example, to avoid the Ostrogradsky ghost, we must assume that the matrix M

is degenerate. This condition has an immediate consequence since a first constraint is needed:

Ω = vi(pi −Qci)−P ≈ 0. (4.36)

After a few algebraic operations, considering the primary constraint, the Hamiltonian may be

expressed in terms of the canonical variables as follows:

HT =
1
2
(k−1)i j(pi −Qci)(p j −Qc j)−

1
2

k0Q2 +V (φ ,q)+πφ Q+µΩ, (4.37)

74



where µ is a Lagrange multiplier.

A second constraint arises from the invariance under the time evolution of the Ω constraint

Ψ = Ω̇ = {Ω,HT}= ci(k−1)i j(p j −Qc j)+ k0Q+ viVi −πφ ≈ 0. (4.38)

As done above, computing the Poisson bracket between the primary and secondary constraints

is sufficient to determine if the temporal development of Ψ results in a third constraint

{Ω,Ψ}= k0 − viv jVi j − (k−1)i jcic j = ∆, (4.39)

In this way, we obtain the expression ∆ given in equation (4.33). We exclude the special case

∆ = 0 because it would further reduce the number of physical degrees of freedom.

By removing P and πφ from the Hamiltonian using the second constraint, we obtain the follow-

ing associated Hamiltonian

Hphys =
1
2
(k−1)i j pi p j +

1
2
(k0 − (k−1)i jcic j)Q2 +QviVi +V (φ ,q). (4.40)

The Hamiltonian described by (4.40) no longer exhibits a linear dependence on the canonical

momentum πφ , thanks to the constraint Ψ. Consequently, the Ostrogradsky ghost has been

eliminated due to the degeneracy of the kinetic matrix M. It should be noted that other forms of

instabilities, such as a phantom instability brought on by a negative eigenvalue of ki j, may also

exist in the theory and are not the subject of this analysis, which focuses only on the Ostrograd-

sky instability. Therefore, further analysis of the specific choice of Lagrangian coefficients and

the potential to ensure the absence of any other instability is necessary [29].

From these examples, we can see that the key to avoiding the presence of an Ostrogradsky

ghost lies in the degeneration of the kinetic matrix. This degeneration leads to the presence of

constraints that reduce the number of degrees of physical freedom. In addition, the linear depen-

dence of the Hamiltonian on one of the moments, which is a characteristic of the Ostrogradsky

instability, is eliminated.
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4.2 Degenerate Higher-Order Scalar-Tensor theo-
ries

DHOST theories were introduced in 2015 by David Langlois and Karim Noui [29] . They

constitute an important advance in the field of modified gravity because they represent a gen-

eralization of Beyond Horndeski theories. This type of theory is characterized by the fact that,

although the Lagrangian incorporates higher order derivatives, it is possible to avoid the Ostro-

dradsky instability thanks to the degeneracy condition [142].

DHOST theories were initially developed and classified completely up to quadratic order [29],

and later up to cubic order [143]. The corresponding Lagrangians can be expressed as follows

S[g,φ ] =
∫

d4x
√
−g
[
F(2)(X ,φ)(4)R+P(X ,φ)+Q(X ,φ)□φ

+
5

∑
i=1

Ai(X ,φ)L(2)
i +F(3)(X ,φ)Gµνφ

µν +
10

∑
i=1

Bi(X ,φ)L(3)
i

]
,

(4.41)

where (4)R is the four-dimensional Ricci scalar. The five quadratic elementary Lagrangians are

of the form

L(2)
1 = φµνφ

µν , L(2)
2 = (□φ)2, L(2)

3 = (□φ)φ µ
φµνφ

ν ,

L(2)
4 = φ

µ
φµρφ

ρν
φν , L(2)

5 = (φ µ
φµνφ

ν)2.

(4.42)

while the ten cubic Lagrangians are

L(3)
1 = (□φ)3, L(3)

2 = (□φ)φµνφ
µν , L(3)

3 = φµνφ
νρ

φ
µ

ρ ,

L(3)
4 = (□φ)2

φµφ
µν

φν , L(3)
5 =□φφµφ

µν
φνρφ

ρ , L(3)
6 = φµνφ

µν
φρφ

ρσ
φσ ,

L(3)
7 = φµφ

µν
φνρφ

ρσ
φσ , L(3)

8 = φµφ
µν

φνρφ
ρ

φσ φ
σλ

φλ , L(3)
9 =□φ

(
φµφ

µν
φν

)2
,

L(3)
10 =

(
φµφ

µν
φν

)3
.

(4.43)

The quadratic and cubic Lagrangians mentioned above encompass all possible combinations

involving contractions between second-order derivatives, denoted as φ µν , the metric gµν , and

scalar field gradients, denoted as φµ [142].
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The action described in equation (4.41) incorporates 19 functions dependent on X and φ . How-

ever, these cannot be selected arbitrarily if a DHOST theory is to be formulated. Except for

the P and Q functions, which are arbitrary, the other functions must satisfy certain degeneracy

conditions to ensure that the resulting theory exhibits a single scalar mode. These degeneracy

conditions impose restrictions on the functions F(2), Ai, F(3) and the Bi’s, ∀i. Under these re-

strictions, it is possible to classify all theories of the form (4.41), whose functions must satisfy,

according to [143], the following:

1. Purely Quadratic Theories: These theories exclude cubic terms, meaning F3 and all the Bi’s

are zero. There are 7 subclasses within this category:

• Four subclasses, where F(2) ̸= 0,

• Three subclasses, where F(2) = 0.

2. Purely Cubic Theories: These theories exclude quadratic terms, so F2 and all the Ai’s are

zero. This category comprises 9 subclasses:

• Two subclasses, where F(3) ̸= 0,

• Seven subclasses, where F(3) = 0.

3. Mixed Quadratic and Cubic Theories: Combining elements of both quadratic and cubic

terms results in 25 degenerate subclasses, from a potential total of 63 (7×9). It is important

to note that the combination of two degenerate Lagrangians does not necessarily result in a

degenerate Lagrangian.

4.2.1 Constructing quadratic DHOST theories

Illustrated by the case of quadratic DHOST theories, this section aims to show how the La-

grangians of DHOST theories can be constructed systematically. The construction up to the

third order is presented in detail in [143]. The content of this section is mainly based on refer-

ences [29] and [144].
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The most general Lagrangian governing the dynamics of quadratic DHOST theories is

S[g,φ ] =
∫

d4x
√
−g
[
F(X ,φ)R+Cµν ,ρσ

φµνφρσ

]
, (4.44)

Let us note that, because the linear components φµ and φµν do not contribute to the kinetic

matrix, they are not considered in the Lagrangian described by (4.44). Furthermore, the tensor

Cµνρσ depends only on φ , φµ , and the metric gµν . This tensor can be decomposed into its

symmetrical and antisymmetric parts. However, only the symmetric part of the tensor will

contribute when contracted with the second covariant derivatives of the field that constitute a

symmetric tensor. For this reason, it is reasonable to impose, without loss of generality, the

following symmetries:

Cµν ,ρσ =Cνµ,ρσ =Cµν ,ρσ =Cρσ ,µν . (4.45)

Consequently, this tensor can always be expressed as

Cµν ,ρσ =
1
2

A1 (gµρgνσ +gµσ gνρ)+A2gµνgρσ +
1
2

A3 (φ
µ

φ
νgρσ +φ

ρ
φ

σ gµν)

+
1
4

A4 (φ
µ

φ
ρgνσ +φ

ν
φ

ρgµσ +φ
µ

φ
σ gνρ +φ

ν
φ

σ gµρ)+A5φ
µ

φ
ν
φ

ρ
φ

σ ,

(4.46)

where the Ai are arbitrary functions that depend on the field φ and the kinetic term X .

In this way, we can express the scalar part of the Lagrangian, which depends on the second-

order derivatives of φ , in terms of the five quadratic elementary Lagrangians given in (4.42)

Lφ =Cµν ,ρσ
φµνφρσ =

5

∑
i=1

AiL
(2)
i . (4.47)

4.2.2 Kinetic Lagrangian

As we saw in the previous section, it is essential to identify the kinetic matrix to establish the

degeneration conditions. This requires performing a 3+1 spatio-temporal decomposition, dis-

tinguishing between temporal and spatial derivatives. Spacetime is assumed to be divided into
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three-dimensional spatial hypersurfaces, and its unit normal vector na is introduced, which is

similar to time and satisfies the normalization condition nana := −1 [142]. This configura-

tion allows inducing a three-dimensional metric on spatial hypersurfaces, which is expressed

through the projection tensor,

hab = gab +nanb. (4.48)

Furthermore, we define a time direction vector ta = ∂

∂ t corresponding to a time coordinate t that

labels the spatial hypersurfaces. This vector ta can always be decomposed in the following way:

ta = Nna +Na, (4.49)

where N is the lapse function and Na is the shift vector orthogonal to na.

Next, it is convenient to introduce a new variable Qµ = ∇µφ and consider its decomposition

into normal and spatial projections. These projections are defined by

Q∗ := Qana, Q̂a := ha
bQb. (4.50)

Following what was done in the reference [29], we define the ”time derivative” of any spatial

tensor as the spatial projection of its Lie derivative with respect to ta. In this way, in particular,

we have

Q̇∗ := ta
∇aQ∗,

˙̂Qa := hb
aLtQ̂b = hb

a(t
c
∇cQ̂b + Q̂c∇btc). (4.51)

The 3+ 1 covariant decomposition of ∇aQb is produced using the above definitions and the

property ∇aQb = ∇bQa. Consequently, we have:

∇aQb = DaQ̂b −Q∗Kab +na(KbcQ̂c −DbQ∗)+nb(KacQ̂c −DaQ∗)

+
1
N

nanb(Q̇∗−NcDcQ∗−NQ̂cac),
(4.52)

where Da represents the three-dimensional covariant derivative associated with the spatial met-

ric hab, ab = nc∇cnb denotes the "acceleration", and Kab is the extrinsic curvature tensor, which

is expressed as

Kab =
1

2N
(ḣab −DaNb −DbNa). (4.53)

79



The only terms in equation (4.52) that contain time derivatives and are therefore relevant to the

kinetic part of the Lagrangian are

(∇(aQb))kin = λabQ̇∗+Λab
cdKcd, (4.54)

where we have introduced the tensors

λab =
1
N

nanb, Λab
cd =−Q∗hc

(ahd
b)+2n(ah(cb)Q̂

d). (4.55)

It is interesting to note that only the time derivative ḣab in (4.53) is relevant to the kinetic part

of the action. However, we keep Kab for convenience [142].

In this way, it can be obtained that the kinetic part of the Lagrangian is written in the form

Lkin = A Q̇2
∗+2BabQ̇∗Kab +C ab,cdKabKcd. (4.56)

This Lagrangian is analogous to the one presented in (4.10), where Q∗ takes the role of Q and

Kab or ḣab that of q̇. The coefficients corresponding to a, b and c in (4.10) are given by:

A :=Ce f ,gh
λe f λgh,

Bab := 2FX
Q∗
N

hab +Ce f ,gh
Λe f

ab
λgh,

C ab,cd :=
1
2

F
(

hachbd +hadhbc −2habhcd
)
+2FX

(
Q̂aQ̂bhcd + Q̂cQ̂dhab

)
+Ce f ,gh

Λe f
ab

Λgh
cd.

(4.57)

It is interesting to note that the scalar curvature term F(3)R contributes to the coefficients Bab

and C ab,cd . In the context of the Horndeski Lagrangian, there is a cancellation between the

Ricci term and the quadratic terms in φµν , resulting in Bab being zero. This is consistent

with Horndeski’s theories, which are designed to produce second-order equations of motion. In

contrast, non-zero Bab leads to higher-order equations [142].

4.2.3 Degeneration conditions
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As before, in the examples presented above, we explore the degeneration conditions by exam-

ining the kinetic matrix  A Bcd

Bab C ab,cd

 . (4.58)

Degeneracy occurs if there is an eigenvector corresponding to a zero eigenvalue. Specifically,

we look for v0 and Vcd that satisfy

v0A +BcdVcd = 0, v0B
ab +C ab,cdVcd = 0, (4.59)

where Vcd is a symmetric second-order tensor, given by

Vcd = v1hcd + v2Q̂cQ̂d. (4.60)

The contraction between Cab,cd with Vcd follows a similar decomposition along hcd and Q̂cQ̂d .

This setup allows us to view the kinetic matrix as a 3×3 matrix [142]. Using Q̂aQ̂a = X +Q2
∗,

the condition for the determinant to disappear leads to

D0(X)+D1(X)Q2
∗+D2(X)Q4

∗ = 0, (4.61)

where the components are defined as:

D0(X) :=−4(A1 +A2)
[
XF (2A2 +XA4 +4FX)−2F2 −8X2F2

X
]
,

D1(X) := 4
[
X2A2 (3A1 +A2)−2F2 −4XFA1

]
A4 +4X2F (A1 +A2)A5

+8XA3
2 −4(F +4XFX −6XA1)A2

2 −16(F +5XFX)A1A2

+4X (3F −4XFX)A2A3 −X2FA2
3 +32FX (F +2XFX)A1

−16FFX A2 −8F (F −XFX)A3 +48FF2
X ,

D2(X) := 4
[
2F2 +4XFA1 −X2A2 (3A1 +A2)

]
A5 +4(2A1 −XA3 −4FX)A2

2

+4A3
2 +3X2A2A2

3 −4XFA2
3 +8(F +XFX)A2A3 −32FX A1A2

+16F2
X A2 +32F2

X A1 −16FFX A3.

(4.62)
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For the theory to be degenerate, the determinant must disappear for arbitrary values of Q∗,

consequently

D0(X) = 0, D1(X) = 0, D2(X) = 0. (4.63)

By not considering the dynamics of gravity, the system depends only on the variables of the

scalar field and degenerates when A = 0 [142]. Applying the explicit expression for A :

A =
1

N2 [A1 +A2 − (A3 +A4)Q2
∗+A5Q4

∗], (4.64)

the following conditions are obtained:

A1 +A2 = 0, A3 +A4 = 0, A5 = 0. (4.65)

It is interesting to note that the Lagrangians from Horndeski and beyond Horndeski satisfy

these conditions.

4.3 Classification of quadratic DHOST theories

For quadratic DHOST theories, the simplest condition, D0(X) = 0, helps distinguish various

classes. As we can see in (4.62), the condition D0 disappears in two scenarios: if A1 +A2 = 0,

forming the first class of solutions, or if the remaining expression is zero, establishing the second

and third class, the latter being a special case in which F = 0. We will explicitly show only the

first subclass because it includes the theories of Horndeski and Beyond Horndeski [142].

4.3.1 Class I: A2 =−A1

• Subclass Ia (or N-I): F ̸= XA1. The conditions D1(X) = 0 and D2(X) = 0 allow A4 and A5

to be expressed in terms of A2 and A3, given F +XA2 ̸= 0. The subclass is defined by the
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following relations:

A4 =
1

8(F −XA1)2

[
−16XA3

1 +4(3F +16XFX)A2
1 −X2FA2

3

−(16X2FX −12XF)A3A1 −16FX(3F +4XFX)A1

+8F(XFX −F)A3 +48FF2
X
]
,

A5 =
(4FX −2A1 +XA3)(−2A2

1 −3XA1A3 +4FX A1 +4FA3)

8(F −XA1)2 .

(4.66)

Therefore, class Ia degenerate theories depend on three arbitrary functions: A1, A3, and F .

• Subclass Ib (or N-II): F = XA1. In this configuration, A3 =
2(F−2XFX )

X2 , and F , A4, and A5

are arbitrary. The metric sector of this subclass is degenerate.

4.3.2 Class II: F ̸= 0 and A2 ̸=−A1

• Subclass IIa (or N-IIIi): F ̸= XA1. The model is determined by three arbitrary functions:

F , A1, and A2.

• Subclass IIb (or N-IIIii): F = XA1. This subclass also involves three arbitrary functions,

similar to subclass Ib, emphasizing the degenerate nature of the metric sector.

4.3.3 Class III: F = 0

• Subclass IIIa (or M-I): A1 +3A2 ̸= 0. This subclass includes three arbitrary functions: A1,

A2, and A3. It intersects with subclass Ia.

• Subclass IIIb (or M-II): A1 +3A2 = 0. Determined by three arbitrary functions A3, A4, and

A5, this subclass generally has a degenerate metric sector. Another special case is:

F = 0, A1 = 0, (class IIIc)
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which depends on four arbitrary functions. Since F −A1X = 0, this class is also degenerate

in the metric sector.

• Subclass IIIc (or M-III): A1 = 0. This subclass depends on four arbitrary functions and

exhibits a degenerate metric sector, defined by F = XA1 = 0.

It is interesting to note that the theories of Horndeski and Beyond Horndeski belong to subclass

Ia [144]. However, not all theories included in this class are Horndeski or Beyond Horndeski.

Furthermore, in the absence of matter, all Lagrangians belonging to class Ia can be transformed

into a Horndeski Lagrangian by a suitable redefinition of the metric field [142].

4.4 Particular cases: Horndeski and beyond Horn-
deski theories

As mentioned above, DHOST theories manage to generalize Horndeski and Beyond Horndeski

theories. Below, we specifically detail how the necessary identifications are made to include

these theories within the framework of DHOST theories [142].

4.4.1 Horndeski theories

DHOST theories incorporate Horndeski’s theories as a special case, identifying the terms quadratic

and cubic action as follows:

• Quadratic terms: These terms are identified with the following relations:

F(2) = G4, A1 =−A2 = 2G4X , A3 = A4 = A5 = 0.

corresponding to

LH
4 = G4(φ ,X)(4R−2G4X(φ ,X)(□φ

2 −φ
µ

φµ)).
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• Cubic terms: These terms are identified as follows:

F(3) = G5, 3B1 =−B2 =−3
2

B3 = G5X , Bi = 0 with i = 4, ...,10.

determining

LH
5 = G5(φ ,X)(4Gµνφ

µ
φ

ν)+
1
3

G5,X(φ ,X)(□3 −3□φ
µ

φµ +2φ
µ

φµφ
ν
φν).

4.4.2 Beyond Horndeski theories

DHOST theories also include the broader class of Beyond Horndeski theories, with the follow-

ing identifications:

• Quadratic terms: To identify these terms, the following relations are established:

F(2) = G4, A1 =−A2 = 2G4X +XF4, A3 =−A4 = 2F4, A5 = 0.

corresponding to LH
4 +LbH

4 , where

LbH
4 = F4(φ ,X)εµνρ

δ ε
αβγδ

φµφαφνβ φργ .

• Cubic terms: These terms are identified by establishing:

F(3) = G5, 3B1 =−B2 =−3
2

B3 = G5X +3XF5,

−2B4 = B5 = 2B6 =−B7 = 6F5, B8 = B9 = B10 = 0.

determining LH
5 +LbH

5 , where

LbH
5 = F5(φ ,X)εµνρσ

ε
αβγδ

φµφαφνβ φργφσδ .
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4.5 Disformal transformations

Next, we will briefly explore the relations between the different DHOST theories. This topic

has been studied exhaustively in [144], where it was found that all quadratic theories of DHOST

are stable under warp transformations of the metric. These transformations can be written as

follows [145]

g̃µν =C(X ,φ)gµν +D(X ,φ)φµφν . (4.67)

Using this transformation, a new action, S̃, can be derived from an original action, S, defined in

terms of the transformed metric g̃µν and the scalar field φ

S[φ ,gµν ] = S̃[φ , g̃µν =Cgµν +Dφµφν ]. (4.68)

The impact of deformation transformations on quadratic DHOST theories has been extensively

analyzed, showing that all seven subclasses maintain stability under such transformations [144].

The correspondence between these transformations and the extent of stability of the different

subclasses of theories are summarized as follows [142]:

• Horndeski theories remain stable under disformal transformations with factors C(φ) and

D(φ), which depend solely on the scalar field φ , but not on X [146].

• Beyond Horndeski theories show stability under transformations characterized by C(φ) and

D(φ ,X) [139].

• DHOST theories are stable under the most general disformal transformations where C and D

are functions of φ and X [144].
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Chapter V.

REGULAR BLACK HOLES AND GRAV-

ITATIONAL PARTICLE-LIKE SOLUTIONS

IN GENERIC DHOST THEORIES

In this chapter, we address the construction of regular, asymptotically flat black holes within the

framework of higher-order DHOST theories, which are derived using a generalization of the

Kerr-Schild method. These black holes are characterized by depending on a mass integration

constant, admitting a smooth core of chosen regularity and, generically, having an internal and

external event horizon. In particular, we have identified solutions without horizons and with

characteristics similar to massive particles when the mass falls below a certain threshold. We

examine possible observational signatures ranging from weak to strong gravity and explore the

thermodynamics of our regular solutions, comparing them to General Relativity black holes and

their corresponding thermodynamic principles wherever possible.

The results presented in this chapter have been published in the Journal of Cosmology and

Astroparticle Physics (JCAP). For the sake of completeness, the article is included in Appendix

IX.



5.1 Kerr-Schild invariance

It is important to highlight that the DHOST theories we study have several interesting character-

istics. One of them is its behavior under the Kerr-Schild transformation. These transformations

allow many known solutions of black holes in vacuum to be constructed by transforming a seed

metric that corresponds to the asymptotic metric of space-time. The Kerr-Schild ansatz geomet-

rically introduces the mass parameter into a solution, while all other parameters, such as angular

momentum, must be non-trivially encoded in the seed metric It should be noted that the pres-

ence of a matter source generally makes the use of the Kerr–Schild transformation infeasible

due to the incompatibility of these source terms with the anzats. However, in our study we apply

the Kerr-Schild transformation to scalar tensor theories that exhibit displacement symmetry and

a kinetic term, X = ∂ µφ∂µφ , that remains invariant under the Kerr-Schild transformation.

The Kerr-Schild transformation is defined as

gµν = g(0)µν +µa(x)lµ lν , (5.1)

where g(0)µν is the seed metric, µ represents the mass parameter, a(x) is a function to be deter-

mined, and l is a null and geodesic vector field with respect to both metrics

0 = gµν lµ lν = g(0)µν lµ lν , 0 = lµ
∇µ lν = lµ

∇
(0)
µ lν . (5.2)

Considering the static case under spherical symmetry, the seed metric, and the geodesic and

null vector field are of the form

ds2
0 =−h0(r)dt2 +

dr2

f0(r)
+ r2dΩ

2, l = dt − dr√
f0(r)h0(r)

. (5.3)

Thus, the Kerr-Schild metric is given by

ds2 =−(h0(r)+µa(r))dt2 +
h0(r)dr2

f0(r)(h0(r)+µa(r))
+ r2dΩ

2, (5.4)
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where the time coordinate has been redefined

dt → dt +
µa(r)dr√

f0(r)h0(r)(h0(r)+µa(r))
. (5.5)

In this way, the Kerr-Schild transformation has a direct effect on the metric functions, modifying

them in the following way

h0(r)→ h(r) = h0(r)+µa(r), f0(r)→ f (r) =
f0(r)(h0(r)+µa(r))

h0(r)
(5.6)

5.2 Field equations and construction of regular black
holes

We will consider a four-dimensional scalar tensor theory characterized by a metric g and a

single scalar field φ . The dynamics of the system is defined by the action given in equation

(1.1), with specific coupling functions A4 and A5 described in (1.2). Our analysis will focus

on static metrics where the standard kinetic term of the scalar field, X = gµνφµφν , is solely a

function of the radial coordinate r, i.e.

ds2 =−h(r)dt2 +
dr2

f (r)
+ r2 (dθ

2 + sin(θ)2dϕ
2) , X = gµν

φµφν := X(r). (5.7)

The field equations associated with the DHOST action (1.1-1.2) for this ansatz are conveniently

written as

X [2(A1G)X +GA3]+ r2
[
(KH )X +

3
4

KB

]
= 0, (5.8a)

−3(BrX ′)2 +8(BrX ′)H

(
rh′

h
+4
)

−32H

[
Kr2 +2G

f
+2H

(
rh′

h
+1
)]

= 0, (5.8b)
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r2(16BXH +3B2)X ′2 +8H X ′r
(

Br
f ′

f
−16HX

)
+16r2H BX ′′

−64H 2
[(

r f ′

f
+1
)
+

2G+ r2K
2 f H

]
= 0, (5.8c)

where (′) represents the derivative with respect to the radial coordinate r. The subscript X

indicates the derivative with respect to the kinetic term X and we have introduced auxiliary

functions to simplify the notation,

H (X) = A1(X)X −G(X), B(X) = A3(X)X +4GX(X)−2A1(X),

Z (X) = A3(X)+A4(X)+X A5(X). (5.9)

Another interesting note is the Horndeski limit [28] and the beyond Horndeski limit [147, 148]

of our general DHOST theory equations. Indeed, (quartic) Horndeski theory, parameterized

by G4 = G is attained with 2GX = A1 = −A2 and A3 = 0, while quartic beyond Horndeski

is given by 2GX − XF = A1 = −A2 and A3 = −2F . The function F is the quartic beyond

Horndeski term which is in a one to one correspondence with the disformal transformation,

mapping Horndeski to beyond Horndeski theory (see for example the nice analysis in [30]). In

particular, we note that in both cases of quadratic Horndeski and beyond Horndeski we have

B = 0, which means that B in our field equations represents the conformal transformation

mapping beyond Horndeski to pure DHOST theory. We will come back to this observation in a

moment.

In order to be self-contained, we will briefly recall the procedure described in [37] which allows

the construction of regular black hole solutions from simple seed configurations. The first step

is to look for a simple seed solution of the field equations (which does not describe a black hole)

and schematically represent it by

ds2
0 =−h0(r)dt2 +

dr2

f0(r)
+ r2 (dθ

2 + sin(θ)2dϕ
2) , X0 = gµν

(0)φ
(0)
µ φ

(0)
ν := X0(r). (5.10)

Now, as shown in Ref. [37], the equations of motion (5.8) are invariant under a Kerr-Schild
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transformation of the metric, provided that the kinetic term of the scalar field is left invari-

ant. More precisely, it is straightforward to see that the equations (5.8) are invariant under the

following simultaneous transformations

h0(r)→ h0(r)−2µ
m(r)

r
, f0(r)→

f0(r)
h0(r)

(
h0(r)−2µ

m(r)
r

)
, with m(r) = e

3
8
∫

dX B(X)
H (X) ,(5.11)

and X remains unchanged, i. e. X0(r) = X(r). Here µ is a constant that will be shown to be

proportional to the mass of the resulting solution. Our second step is to use this Kerr-Schild

symmetry (5.11) to deduce that the configuration given by,

ds2 =−
(

h0(r)−2µ
m(r)

r

)
dt2 +

h0(r)dr2

f0(r)
(

h0(r)−2µ
m(r)

r

) + r2 (dθ
2 + sin(θ)2dϕ

2) ,
X(r) = gµν

φµφν = X0(r), (5.12)

will satisfy the same equations as those satisfied by the simple seed solution (5.10), provided

that the mass function m(r) is given by

m(r) = e
3
8
∫

dX B(X)
H (X) . (5.13)

Note that in order for the mass term to be non trivial (i.e. with a non-Newtonian fall-off) we

need to venture outside of beyond Horndeski theory, where B ̸= 0. According to the obser-

vation made in the previous paragraph, B is related to the conformal degree of freedom for

pure DHOST theory. This leads us to the conclusion that we must have a combined disformal

and conformal transformation of Horndeski theory to have any hope of constructing a regu-

lar solution. The regular solutions are crucially situated in higher order DHOST theory-not in

Horndeski or beyond Horndeski theory.

To keep things simple we make the following working hypothesis [37]

3B

8H
=

1
X

=⇒ m(r) = X(r), (5.14)

Hence, starting from a seed metric, the “choice” of the mass function m(r), or equivalently of
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the seed kinetic term (5.14) will be key in order to ensure the regularity of the final (massive)

configuration (5.12) at the origin and at infinity. Moreover, once we fix the expression of X0(r)

as an invertible function, we will be able to specify the corresponding DHOST theory (1.1-1.2),

that is to determine the functions K,G,A1 and A3 (as functions of X only) [37]. For example,

in the asymptotically flat case with a seed metric f0 = h0 = 1, the regularity at the origin will

be ensured if m(r) = O(r3). Indeed, in this case the solution is shown to exhibit a de Sitter

core at the origin, ensuring that any invariant constructed out of the Riemann tensor will be

regular at the origin. Given these preliminary requirements we see that it is essential to be in the

context of DHOST theory, in order to find regular black holes in accordance with the discussion

and findings in [38]. Hence, regular black holes are necessarily solutions of a pure DHOST

theory. In other words, such regular solutions would be images of the mapping of a combined

conformal and disformal transformation of a Horndeski solution.

5.2.1 Asymptotically flat regular black holes

We will first focus on the construction of asymptotically regular black holes with a flat seed

metric given by h0 = f0 = 1. In this case, following the results obtained in Ref. [149], one can

easily express H and G as

H =
1

X
(

rX ′
3X −1

) , G =
1
X

(
1− rX ′

X

)
− Kr2

2
.

Now, in order to get the coupling function K, we first write

A3 =−4GX

X
+

2A1

X
+

8H

3X2 , A1 =
H +G

X
(5.15)

and then inserting the expressions (5.15) into Eq.(5.8a), we obtain, after some algebraic manip-

ulations,

2(H G)X + r2(KH )X +
2H

X

(
4
3

G+Kr2
)
= 0. (5.16)
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Finally, the coupling function K is shown to be given by

K =−
2
[
3X (rX ′′+2X ′)+ r2X−1X ′3 −7rX ′2]

rX (rX ′−3X)2 .

We are now ready to construct an explicit family of regular black hole solutions. We will opt

for a (seed) kinetic term,

X(r) = X0(r) =
2
π

arctan(
πrp

2σ p−1 ). (5.17)

The function X depends on the integer p and the bookkeeping parameter σ . In particular, the

limiting case σ → 0 gives us the usual Schwarzschild case. Our choice is motivated from three

essential requirements emanating from the resulting metric function, h(r) = 1− 2µX(r)
r :

• First of all, for r close to the origin we have,

h(r) = 1−2µ

( r
σ

)p−1
+O(r3p−1), (5.18)

and hence, as shown below for p ≥ 3, σ ̸= 0 , the final metric will be regular at the origin.

The de Sitter core is attained for p = 3, and increasing regularity from there on for p > 3.

• Secondly, X asymptotes unity for large r, and as such gives for h a similar behavior at asymp-

totic infinity to the Schwarzschild solution. We have,

h(r) = 1− 2µ

r
+

8µσ p−1

π2rp+1 +O(r3p+1), (5.19)

• Last but not least, the function X(r) is bijective for our coordinate range r ∈ [0,∞[.

Using the latter property one can see that the seed configuration, h0 = f0 = 1, with a kinetic term

given by (5.17), is a solution of the DHOST action (1.1-1.2) with coupling functions, defined
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by [37]

H (X) =− 2
3πX − psin(πX)

,

G(X) =
p2 sin(2πX)−8psin(πX)+6πX

(psin(πX)−3πX)2 , (5.20)

A1(X) =
2psin(πX)(pcos(πX)−3)

X(psin(πX)−3πX)2 ,

K(X) =
[

psin(
π

2
X)

p−2
p cos(

π

2
X)

p+2
p

(
B2 p2 cos(2πX)−B2 p2 −24pX2 cos(πX)

+28BpX sin(πX)−24X2
)]/[

3X2A
2
p (psin(πX)−3πX)2

]
,

A3(X) =
[
B
(
2p2 (5B2 +144X2)cos(2πX)+3p

(
B2 p2 −192X2)cos(πX)

−3B2 p3 cos(3πX)−10B2 p2 +24BpX sin(πX)
(
−23pcos(πX)+2p2 +43

)
−288X2)]/[3X2 (Bpsin(πX)−6X)3

]
,

where A = 2σ p−1

π
and B = 2

π
and σ an unspecified constant, admits the following regular black

hole solution

ds2 =−

1−
2µ arctan

(
πrp

2σ p−1

)
πr

dt2 +
dr2(

1−
2µ arctan

(
πrp

2σ p−1

)
πr

) + r2(dθ
2 + sin2

θdϕ
2),

X(r) =
2
π

arctan
(

πrp

2σ p−1

)
. (5.21)

Crucially, the action functionals are only functions of X , and the theory parameters, σ and p.

The power, p, fixes the solution’s core regularity at the origin. Once p is fixed, the solution is

regular without any fine-tuning of the parameter σ , which has been inserted so as to track down

differences from GR at σ → 0. Using therefore the generalized Kerr-Schild transformation, one

determines that the solution given by

ds2 =−

(
1−

4µ arctan( πrp

2σ p−1 )

rπ

)
dt2 +

dr2(
1−

4µ arctan( πrp

2σ p−1 )

rπ

) + r2 (dθ
2 + sin(θ)2dϕ

2) ,
X(r) =

2
π

arctan(
πrp

2σ p−1 ), (5.22)
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satisfies the field equations of the DHOST action (1.1-1.2) with coupling functions given in

(5.20), which has been additionally verified by inserting this solution directly into the equations

of motion.

Figura 5.1: Metric function g00 for p = 3 and 2σ2 = π . The inner and outer horizons correspond
to the roots of the function, while for smaller masses than µext (black dotted curve) the solution

has no horizon.

Let us now make some comments on the properties of (5.22). First of all, for p > 0, the metric

solution will behave asymptotically (r → ∞) as the Schwarzschild spacetime. For µ > 0 and

p > 0, the metric solution has an inner and an outer event horizon as we see from the plot in

Fig. 5.1. The outer horizon is an event and Killing horizon (for the Killing vector ∂t), which is

manifest by preforming the usual Eddington-Finkestein coordinate transformation. The inner

horizon is a Cauchy horizon for any timelike hypersurface situated in the exterior spacetime

where ∂t is timelike. The solution has a central curvature singularity for 0 < p < 3. However,

for p = 3, the metric solution (5.22) is regular with a de Sitter core, while for p > 3, the family

of solutions are again regular black holes with an increasingly regular core [150]. The region

internal to the inner horizon is spacelike and completely regular at the origin. Setting p = 3

for definiteness and 2σ2 = π we find that for µext ∼ 1.13 we have an extremal black hole. For

µext ≤ µ we have a sequence of regular black holes whereas for smaller masses than µext we

have a regular solution without horizon; spacetime is curved but not sufficiently in order to

create an event horizon. These solutions are gravitational particle-like solutions akin to dark
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matter, provided they are stable.

We now proceed to scan, starting from weak up to strong gravity, the possible notable differ-

ences of our regular solution, as compared to standard GR. We do not aim to be extensive here,

we rather give a first approach that is useful for future studies. Let us first seek the leading PPN

parameters of this solution in order to effectively see how it compares with GR. In order to do

this we effectively find a Cartesian distance coordinate ρ =
√

x2 + y2 + z2 where (x,y,z) are

harmonic coordinates suited for a Newtonian gauge. As an example take p = 3 whereupon we

get,

r = ρ +M− 4µσ2

ρ3 +O(1/ρ
4). (5.23)

This coordinate system is harmonic for large distances compared to the size of the outer event

horizon. Furthermore, to leading order, it agrees with the harmonic radial coordinate of Schwarzschild

(see [151] for clarification on coordinate issues in higher PN calculations). Such distances of

the order of some 1400 Schwarzschild radii correspond to the orbits of stars like S2 orbiting

Sgr*A. Using these coordinates we can quite easily obtain the leading (see for example [152])

PN parameters, β = γ = 1, which end up identical to GR for p ≥ 3.

We can try to go a step further and evaluate directly the precession of a star like S2 orbiting

the massive compact object identified with Sgr A* (see [153] and references within). Star

S2 orbits the central, regular for our purposes, black hole, following timelike geodesics at the

equator θ = π/2. Using the Killing symmetries for rest energy per unit rest mass E and angular

momentum per unit rest mass L we have the standard relations,

E = h(r)
dt
dτ

, L = r2 dφ

dτ
, (5.24)

where τ is the geodesic parameter. Transforming to u = 1/r coordinates and using the above, it

is straightforward to obtain the Binet’s modified equation governing the trajectory of S2,

d2u
dφ 2 +u =

µ

L2 (uXu +X)+3µu2X +µu3Xu, (5.25)

where now u is a function the angular coordinate φ . The above equation gives us precisely
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the GR case of Schwarzschild for X = 1. Binet’s original equation, valid for the Newtonian

limit, is obtained if we take X = 1 and we additionally neglect the higher order 3µu2 term.

This orbital equation is valid for any regular black hole we choose in the face of X and for

classical precession tests of solar system planets. As an example, we can set p = 3 for our

regular solution and Taylor expand for small u (or large r),

X = 1− 4σ2

π2 u3 +O(u9). (5.26)

We get the approximate equation,

d2u
dφ 2 +u =

µ

L2 +
εL2

µ
u2 − 16σ2ε

3µπ2 u3 +O(u5). (5.27)

Here we have introduced ε = 3µ2

L2 as our small1 dimensionless parameter [154]. We are using

the same expansion parameter as for the case of Schwarzschild as we want to point out the

difference with the case of GR. Now expanding u = u0 + εu1, we obtain to zeroth order the

elliptic Kepler trajectory u0 =
µ

L2 (1+ ecosφ), where e is the eccentricity. To linear order in ε ,

keeping only the term with growing contribution we find at the end,

u ∼ µ

L2

[
1+ ecos[φ(1− ε fSP)]

]
, (5.28)

where fSP = 1−8 µσ2

L4π2 (1+ e2

4 ) denotes our correction beyond the GR fSP = 1 value. Constraints

from GRAVITY place fSP ∼ 1.1± 0.2 which in turn constrains our action parameter σ . Note

however, that given our expansion in ε we are assuming that our parameter σ2 is big enough

so as to be of the same order as the Schwarzschild correction. If we adapt our calculation

to the orbit characteristics of the S2 star orbit there will be fine-tuning involved. Generically

fSP = 1 since β = γ = 1 for our background. A similar calculation can be undertaken using

null geodesics for time delay effects akin to pulsars for example (see the review by Johannsen

[155]).

A last interesting point is to consider our solution in the strong field regime. For our generic

1In our geometrized units we have G = c2 = 1 and therefore µ(cm) = 0.742×10−28 cm
g µ(g).
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purposes we will pursue here the light trajectories of photons or massless particles such as neu-

trinos in presence of our regular black hole. Again we follow the standard text book procedure

for equatorial geodesics but now we focus on light rays, defining b = L/E, the apparent impact

parameter, for an observer in the asymptotically flat region. The parameter b can vary up to the

closest distance photons get to the black hole without being necessarily eaten up by the gravi-

tational well of the black hole. The geodesic equation takes a familiar (particle in a potential)

form,
1
2

(
dr
dτ̃

)2

+
h(r)
2r2 =

1
2b2 , (5.29)

where we have rescaled τ̃ = Lτ . Therefore the effective potential takes the form,

Ve f f =
1

2r2

(
1− 2µ

r
X(r)

)
, (5.30)

and critical light rings occur at the zeroes of V ′
e f f = 0 which are the zeroes of the equation,

r+µX ′−3µX = 0. (5.31)

The effective potential and its derivative are depicted in figures 5.2 and 5.3 respectively. Note

the familiar light ring solution at rR = 3µ for Schwarzschild when we set X = 1. Once we have

a zero of (5.31), r = rR we get the maximal impact parameter using (5.29),

bcrit =
rR√
h(rR)

. (5.32)

The critical impact factor can be as well formulated as

bcrit = bSchwar.

(
X(rR)− 1

3X ′(rR)
) 3

2√
X(rR)−X ′(rR)

= bSchwar.

(
rR

3µ

)√
4σ4 +π2r6

R

π2r6
R −24µrRσ2 +4σ4

, (5.33)

where the impact factor for the Schwarzschild solution is given by bSchwar. = 33/2µ . It is easy to

see that (
rR

3µ

)
bSchwar. ≤ bcrit ≤

(
r2

R
3µ

)√
π

πr2
R −6µ

and the lower bound is achieved for σ = 0 (the Schwarzschild limit) and at the limit σ → ∞,
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corresponding to the flat limit.

Figura 5.2: Effective potential (5.30) for different values of σ our theory parameter. In particular,
σ = 0 corresponds to the effective potential of the Schwarzschild solution for which X = 1.
Varying σ > 0 changes the root of the potential and a non-zero value actually changes the

singularity to a minimum. Increasing the value of σ further can even remove the root
corresponding to the absence of an event horizon altogether. The height of the potential

maximum marks 1/b2
crit for each curve of the potential.

The determination of the light ring sets the size of the black hole shadow. The Event Horizon

Telescope (EHT) has obtained the first image of the supermassive M87 black hole. For M87

the size of the shadow was used as a test for GR, estimating the black hole mass [156], [157]

and comparing to the independent calculation for M87’s mass given by stellar dynamics [158].

There are a number of caveats with this calculation as a test of GR that have primarily to do

with the little knowledge of the illuminating accretion flow for M87 or the sheer mass of the

object (see in particular the critical analysis presented in [159]). Rather than putting in the

numbers we will choose here to sketch the different cases for our regular solution as opposed

to Schwarzschild. For definiteness let us fix the mass of the black hole to µ = 1 and vary the

theory parameter σ instead, in order to see how the characteristics of the effective potential

change as we sweep through our theory. Indeed we find that for 0 < σ < σext our effective

potential always has a photon ring (outside of the event horizon) and as σ is increased we have

rσ
R < 3, the GR photon ring case. At the same time, increasing σ , the height of the potential

maximum increases and therefore the critical impact parameter bσ
crit < b0

crit is always below the
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Figura 5.3: Derivative of the effective potential. One can see a small but finite shift of its root, rR,
for different values of σ as a decreasing function of σ .

Schwarzschild one (again see [159]). Note also that once σ > 0 we always have a minimum of

the potential. This scheme continues until we arrive at σext , the case where (for unit mass) we

have an extremal black hole. Beyond this point there is no event horizon anymore, for µ = 1,

and our theories present now two visible critical points, one stable and one unstable. For a region

of impact parameters in between the critical values of the potential, we have bound light orbits

for local light sources at r < 3 or so. This is a distinctive feature of the particle-like solutions

and is something that differentiates them from the regular black hole case. Furthermore, note

that photons starting out from infinity can probe into the gravitational solution to all distances.

Therefore, for σ > σext there is no longer a central shadow, but rather enhanced light rings very

close to the r = 0 center. In summary, for each given theory (where p and σ are fixed) we will

have particle-like solutions for µ < µext and regular black holes for µ > µext .

5.3 Thermodynamics of asymptotically flat regu-
lar black holes with a scalar field source

We now turn to the study of the thermodynamic properties of the regular class of black hole

solutions (5.22). The thermodynamics of regular solutions is one of the aspects that is widely
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studied in the literature, see e.g. [160]. We start by pointing out a difference of our DHOST

solution in comparison to regular black holes with non-linear electrodynamics. In the latter

case the regularization parameter is actually part of the theory, and is usually associated with

a magnetic charge. This means that the latter solution exists for a fixed value of the magnetic

charge, and that to change this value corresponds to changing the theory. A direct consequence

of this is that the regularization parameter cannot be considered as a variable parameter, and

hence must not appear in the equation of the first law of thermodynamics. This aspect obscures

the thermodynamic interpretation of regular solutions. On the contrary in our case, the regularity

of the solution (5.22) is not inherent to the presence of our action bookkeeping parameter σ ,

but rather in the presence of the regularizing arctangent function rendering the metric function

smooth at the origin. In addition, as it can be seen in Eq. (5.22), the regularizing function

comes with a constant µ which is an integration constant, and hence its interpretation as a

thermodynamical variable is not ambiguous.

The thermodynamic analysis of the regular solution (5.22) will be carried out with the Euclidean

approach in which the partition function is identified with the Euclidean path integral in the

saddle point around the classical solution. In practice, we consider a mini superspace with the

following ansatz

ds2 = N(r)2 f (r)dτ
2 +

dr2

f (r)
+ r2dΣ

2
2, φ = φ(r), (5.34)

where τ (in this section) is the Euclidean (periodic) time with 0 < τ ≤ β and, where β is the

inverse of the temperature

β
−1 = T =

1
4π

N(r) f ′(r)|rh, (5.35)

with rh being the radius of the horizon. In the mini superspace defined by the ansatz (5.34), the

Euclidean action IE (using the proper normalization factor) reads

IE =−1
4

β

∫
N
[(

P −2Q′) f −Q f ′+2G+ r2K
]
+BE , (5.36)
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where H ,B and Z are given in (5.9), and where for simplicity we have defined,

Q =
B

4
r2X ′−2rH , P = rX ′B+

r2

4
(X ′)2Z −2H . (5.37)

In the Euclidean action (5.36), the term BE is an appropriate boundary term ensuring that the

solution corresponds to an extremum of the action, and at the same time it codifies all the

thermodynamic properties. After some algebraic manipulations we get,

BE =
β

4
lim
r→∞

{
N(r)Q(r)X(r)

r

}
µ −π

∫
Q(rh)drh. (5.38)

On the other hand, since the Euclidean action is related to the Gibbs free energy G through

IE = β G = β M −S ,

one can easily read off the expressions of the mass M and of the entropy S from the boundary

term,

M =
1
4

lim
r→∞

{
N(r)Q(r)X(r)

r

}
µ, S = π

∫
Q(rh)drh. (5.39)

For the specific regular black hole solution (5.22), these expressions reduce to

M =
1
6

rh

arctan
(1

2πrp
h σ1−p

) , S =
2
3

∫
πrh

arctan
(1

2πrp
h σ1−p

)drh, (5.40)

while the temperature is given by

T =
1

4πrh

1−
2πσ p−1 prp

h(
π2r2p

h +4σ2p−2
)

arctan
(1

2πrp
h σ1−p

)
 .

It is clear from these relations that the mass and the entropy of the regular solution are positive,

and although we do not have a closed form of the entropy we can nonetheless verify the validity

of the first law dM = T dS . We also note that the entropy of the regular solution does not

satisfy the area law. In fact, from the generic expression as obtained in (5.39), the only way
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for the entropy to satisfy the area law is that the function Q, as defined in (5.37), must be

proportional to Q(r) ∝ r. However, it is a simple matter to check that the solutions of the field

equations given by (5.8), and for an ansatz of the form (5.12) will necessarily imply that

Q(r) ∝
r

X(r)
,

and, consequently the entropy will be proportional to one-quarter of the area only for a constant

kinetic term. On the other hand, our analysis shows that a constant kinetic term is incompatible

with the regularity of the solution. Hence, we deduce that for the DHOST theories consid-

ered here the regularity of the solutions fitting our ansatz (5.12) will not be compatible with

the one-quarter area law for the entropy. This is not uncommon for modified gravity theories

and is understood geometrically in certain cases such as Einstein-Gauss-Bonnet theory (see for

example [161]).

Thermodynamic stability of the regular solution is addressed by computing the heat capacity

CH = T ∂S
∂T . From this definition it becomes clear that the heat capacity will provide information

about the thermal stability with respect to the temperature fluctuations, and that a positive heat

capacity is a necessary condition to ensure the local stability of the system. Also, the critical

hypersurfaces, that is those where CH vanishes or diverges, will correspond to the extrema of the

temperature with respect to the entropy. For technical reasons, it is more convenient to express

the heat capacity as

CH = T
∂S

∂T
= T

(
∂S

∂ rh

)(
∂T
∂ rh

)−1

,

and, for the regular black hole solution (5.22) we get

CH =
2πCr2

h

(
r2p

h + 4
π2 σ2p−2

)[(
r2p

h + 4
π2 σ2p−2

)
arctan

(1
2πrp

h σ1−p)− 2
π

σ p−1 prp
h

]
C

,

with
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C = 3arctan
(

1
2

πrp
h σ

1−p
)[

2
π

σ
p−1 p

(
4

π2 σ
2p−2(p−1)− (p+1)r2p

h

)
rp

h

+

(
r2p

h +
4

π2 σ
2p−2

)2

arctan
(

1
2

πrp
h σ

1−p
)]

− 12
π2 σ

2p−2 p2r2p
h .

Due to its lengthy form it is insightful to plot the heat capacities. The heat capacities are shown

in figure 5.4, where we have excluded the part that corresponds to negative temperatures (akin to

the presence of an internal horizon). From this picture, one can see that only small black holes

are locally stable and a critical hypersurface will emerge at some positive radius revealing the

existence of a second order phase transition, as it is the case for the non-linear electrodynamical

regular black holes, see e. g. [160].

Figura 5.4: Heat capacity of the (5.21) black hole for different values of p and σ such that
2σ p−1 = π starting at rExtremal respectively. Note that these correspond to different theories. There
is a second order phase transition at rPT. The asymptotic behavior is like ∝ −r2 at infinity. Setting

p = 0 corresponds to the Schwarzschild solution, which has no phase transition.

Before closing this section, we would like to address the following question: for the DHOST

theory as defined in (5.20), does there exist another solution, and if so, would this allow for a

thermodynamic stability comparison of the two solutions? In order to answer this question, we
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notice that the first equation (5.8a) gives,

0 =
16
[ 2

π
σ p−1 sin

(
π

2 X
)]− 2

p

3π2
[ 2

π
psin

(
π

2 X
)
−6X

]4
X

[
−r2 cos

(
π

2
X
) 2

p
+

(
2
π

σ
p−1 sin

(
π

2
X
)) 2

p
]

F [X ], (5.41)

with F [X ] being an algebraic equation in X given by

F [X ] = 72X2 [p2 cos(2πX)− pcos(πX)−2
]
− 32

π2 p2 sin2 (πX) [pcos(πX)−4]

+
12
π

pX sin(πX)
[
p2 cos(2πX)+3p2 −26pcos(πX)+26

]
.

From this it is easy to see that there are only two possibilities: either X is given by the previous

form (5.22), or X is a constant solving the constraint F [X ] = 0. On the other hand, taking the

difference between (5.8b-5.8c) yields f (r) = h(r), so in the first case we end up with the regular

black hole. After some straightforward computations, we can establish that only the DHOST

theory defined in (5.20) with p = 1 will admit two different solutions, and one of these is a

stealth Schwarzschild black hole configuration given by

h(r) = f (r) = 1− µ

r
, X = 1+2n, (5.42)

where n is an integer number. The thermodynamic quantities of this stealth solution are given

by

M =
rh

3π
, S =

2
3

r2
h, T =

1
4πrh

, CH =−4
3

r2
h, (5.43)

and as stressed before the entropy satisfies the area law because of the constant value of the

kinetic term (5.42). The comparison of the respective heat capacities can be seen in Figure 5.5.

We can now compare the arctan−solution (5.22) for p = 1 with the stealth solution (5.42). Us-

ing the free energy, defined as F =M −TS , one can calculate the difference of the respective
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solutions at equal temperatures

∆F = Fregular −Fstealth = T
∫

F (rh)drh,

F (r) =

{
r
[
−4
(
r2 +1

)
arctan(r)2 +π

(
r2 +1

)
arctan(r)−πr

]
×

[
−2r3 arctan(r)− r2 +

(
r2 +1

)2
arctan(r)2

]}/{
arctan(r)

[(
r2 +1

)
arctan(r)− r

]3}
.

Figura 5.5: Heat capacity of the (5.21) black hole for p = 1 and the stealth Schwarzschild solution.
This time they correspond to the same theories, even though their behaviour looks identical to

before. Further the temperature is positive everywhere, so there is no extremal value of r and the
heat capacities can be plotted from r = 0.

It is easy to notice that the integrand F (r), goes to +∞ for r → 0 and to −∞ for r → ∞. Hence,

one would expect the stealth solution to be thermodynamically favored for small rh, and there

is the possibility that this changes for sufficiently large rh. However, because of its lengthy

integral form it is not possible to make any exact statements about this.
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Chapter VI.

CONCLUSIONS

In this thesis work, we have explored RBHs, objects that challenge the classical notion of space-

time singularities within Einstein’s theory of general relativity. Throughout the study, we have

demonstrated that it is possible to construct models of black holes that avoid singularities using

modified theories of gravity, particularly in DHOST theories.

The first chapter introduced the historical and theoretical motivation for considering RHBs. We

highlighted how these objects can overcome some of the limitations of the classical theory of

General Relativity and established a general framework for their construction.

In Chapter II, we focused on RBHs as solutions to Einstein’s equations. We explored methods

for constructing these kind of configurations and detailing techniques for obtaining rotating and

non-rotating RBHs. In addition, we analyzed the necessary regularity conditions, curvature in-

variants, and geodetic completeness, which are essential elements to guarantee the regularity

of these objects. Another important aspect of this chapter was the study of the thermodynamic

properties of RBHs, such as entropy and the first law of thermodynamics

Chapter III discussed modified theories of gravity that extend General Relativity. We addressed

the Ostrogradsky instability in higher-order derivative theories, Lovelock theory, and traditional

scalar-tensor and Horndeski theories.

The following chapter expanded the discussion to theories beyond Horndeski. We examined

methods for avoiding Ostrogradsky instability, discussed DHOST theories, and analyzed their



classification and implications. This chapter explicitly demonstrated how Horndeski theories

and beyond Horndeski theories are included in DHOST theories, and we briefly explored their

relations.

Finally, in Chapter V we explored solutions that describe RBHs with asymptotically flat ge-

ometry within the framework of DHOST theories. These solutions were obtained through a

generalization of the Kerr-Schild method, as described in [37], and are distinguished by incor-

porating an arctangent regularizing function. Additionally, these solutions have the following

features:

• They are asymptotically flat and are accompanied by a regular scalar field.

• They present a core de Sitter or, increasingly regular, horizons of internal and external events.

• They include regular particle-like solutions, which arise as a function of a mass-related pa-

rameter of the σ theory.

The particle-like solutions could present a different phenomenology than the black holes found,

due to the absence of the horizon. We have explored several of the observable implications of

these solutions, ranging from weaker to stronger gravity: from major post-Newtonnian Edding-

ton parameters to major precession effects to enhanced geodesic light rings.

It is promising to explore beyond our initial analyses to verify, for example, the echoes of our

particle-like solutions, as predicted in [157]. Recent studies have demonstrated such effects in

the context of Einstein-Gauss-Bonnet theories [162] and it would be interesting to apply known

methods to our explicit analytical solutions.

Our RBH solutions are distinguished from existing models in several respects. First, it is im-

portant to note that the DHOST models that allow the existence of RBHs do not depend on

adjustments through a specific regularizing parameter. The regularity in these solutions is ob-

tained directly from the form of the kinetic function X(r). As a direct consequence, the regular

solutions, once the regularity of the core is established, depend exclusively on a single inte-

gration constant, the mass, and on a parameter σ that quantifies the magnitude of higher-order

effects. In the limit where σ → 0, we recover General Relativity. This contrasts notably with
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RBHs derived from nonlinear electrodynamics, in which both the mass and the regularizing

parameter, generally associated with a magnetic charge, are incorporated into the Lagrangian.

Additionally, we observe that the usual area law for entropy is not compatible with the regular-

ity of our solutions due to the modified nature of gravity in the theory. This is quite common

and understood in certain cases due to the higher-order nature of the theory as illustrated in

[161]. However, despite the violation of the area law, we have verified that the first law of ther-

modynamics remains valid in all cases. Our RBHs show a decrease in mass according to the

expression arctan(rp)/r, where p > 0 is a theoretical parameter. Previous examples, such as the

AdS solitons mentioned in [163], have demonstrated similar behaviors.

We have observed that the regular small black holes in our theory are thermodynamically stable

since their heat capacity is positive. Additionally, we have observed second-order phase transi-

tions in all cases within the range of parameters that guarantee regular solutions.

In view of future developments, it would be interesting to investigate whether regularity in

rotating solutions holds within DHOST theories, especially in light of recent advances [164].

Furthermore, extending these solutions to include time-dependent scalar fields could offer new

insights into how regularity affects the trajectories of geodesics.

In this thesis, we have shown that it is possible to construct a special class of RBHs belonging

to the DHOST theory. These solutions not only provide deeper insight into the nature of black

holes and singularities but also open new directions for research in theoretical physics and cos-

mology.

Regular solutions to black holes offer a promising path to resolving spacetime singularities

within the framework of general relativity. However, many open questions remain, especially

regarding the full physical interpretation of these solutions and their relations to a quantum

theory of gravity.
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Appendix VII.

THE NEWMAN JANIS ALGORITHM

Various techniques were developed to find novel solutions to Einstein field equations, including

the Newman-Penrose formalism [165] and a method established by Newman and Janis [70].

This method gives us a very useful algorithm for the generation of exact solutions to Einstein’s

equations and, at the same time, a rather interesting application of the use of complex variables

in general relativity. For this reason, this appendix provides a brief description of the algorithm

and shows an interesting application.

7.1 The Kerr metric

In this section, we apply the NJA to show how it is possible to obtain the Kerr metric from the

Schwarzchild solution. We will build on the original article, in which the first step is to express

the Schwarzschild metric in the Eddington-Finkelstein coordinates [92]. To do this, we perform

the following coordinate transformation

u = t − r−2m ln
( r

2m
−1
)
, r′ = r, θ

′ = θ , φ
′ = φ . (7.1)



In this way, the Schwarzschild metric given by

ds2 =−
(

1− 2m
r

)
dt2 +

(
1− 2m

r

)−1

dr2 + r2(dθ
2 + sin2

θdφ
2), (7.2)

it can be rewritten in advanced Eddington-Finkelstein coordinates as

ds2 =−
(

1− 2m
r

)
du2 −2dudr+ r2(dθ

2 + sin2
θdφ

2). (7.3)

The Schwarzschild spacetime in the Eddington-Finkelstein coordinates can be expressed by the

following null tetrad

lµ = δ
µ

1 , nµ = δ
µ

0 − 1
2

(
1− 2m

r

)
δ

µ

1 ,

mµ =
1√
2r

(
δ

µ

2 +
i

sinθ
δ

µ

3

)
, m̄µ =

1√
2r

(
δ

µ

2 − i
sinθ

δ
µ

3

)
.

(7.4)

The next step is to allow the r coordinate to take complex values. Additionally, certain terms

involving r are conjugated, while others will not change. This step produces the following tetrad

lµ = δ
µ

1 , nµ = δ
µ

0 − 1
2

[
1−m

(
1
r
+

1
r̄

)]
δ

µ

1 ,

mµ =
1√
2r̄

(
δ

µ

2 +
i

sinθ
δ

µ

3

)
, m̄µ =

1√
2r

(
δ

µ

2 − i
sinθ

δ
µ

3

)
.

(7.5)

The fact that the Kerr metric might not be obtained if the conjugation in r were performed

differently reflects the ambiguity of this step.

Performing the following complex coordinate transformation on the null vectors

u → u′ = u− iacosθ , r → r′ = r+ iacosθ

θ → θ
′ = θ , φ → φ

′ = φ ,

(7.6)

where a is a constant, which will have an important physical interpretation as we will see shortly.

We obtain the new tetrad by demanding that r′ and u′ be real, i.e., by viewing the transformations
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as a complex rotation of the plane θ ,φ . Explicitly,

lµ = δ
µ

1 ,

nµ = δ
µ

0 − 1
2

(
1− 2mr′

r′2 +a2 cos2 θ

)
δ

µ

1 ,

mµ =
1√

2(r′+ iacosθ)

[
iasinθ(δ

µ

0 −δ
µ

1 )+δ
µ

2 +
i

sinθ
δ

µ

3

]
,

m̄µ =
1√

2(r′− iacosθ)

[
−iasinθ(δ

µ

0 −δ
µ

1 )+δ
µ

2 − i
sinθ

δ
µ

3

]
.

(7.7)

Using the eq. (8.14) to construct the inverse metric corresponding to this null tetrad and then its

inverse, we obtain

ds2 =−
(

1− 2mr
r2 +a2 cos2 θ

)
du2 −2dudr− 4mrasin2

θ

r2 +a2 cos2 θ
dudφ +2asin2

θdrdφ

+
(
(r2 +a2 cos2

θ)a2 sin2
θ +2mra2 sin2

θ +
(
r2 +a2 cos2

θ
)2
) sin2

θ

r2 +a2 cos2 θ
dφ

2

+
(
r2 +a2 cos2

θ
)

dθ
2,

(7.8)

which corresponds to the solution found by Kerr in 1963 [166].

If we take the limit when at a → 0, we get back Schwarzscihld’s solution; thus, the stationary

rotation of the gravitational source described by Kerr’s solution can be attributed to this param-

eter a. In conclusion, for this case, we see that NJA works successfully in generating a rotating

solution from a non-rotating one.

The Kerr-Newman metric may be obtained from the Reissner-Nordström metric using the same

procedure. The vacuum solution (Kerr) and the electrovacuum solution (Kerr-Newman) are the

first two precise solutions found using the NJA.

It is interesting to note that if the complex coordinate rotation is performed directly in the

Schwarzschild metric in spherical coordinates, instead of in the Eddington-Finkelstein coor-

dinates, the NJA algorithm does not generate the Kerr solution. This might suggest that this

method is highly dependent on the coordinates we are working with.
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Appendix VIII.

TETRAD FORMALISM

The standard way to deal with problems in General Relativity is to consider Einstein’s field

equations on a coordinate basis appropriate to the problem to be solved. In certain cases, it is

advantageous to define a tetrad, which is a set of four linearly independent vectors that estab-

lish a baseline, to project the relevant variables within this new framework and work with the

resulting equations. This method is known as "Tetrad Formalism". The use of this formalism

requires the careful selection of a base tetrad, significantly influenced by the symmetries of the

spacetime under study.

8.1 Representation of Tetrads

At each point in spacetime we establish a base composed of four contravariant vectors, denoted

as ea
µ , where we use Latin indices for the tetrad and Greek indices for the tensor indices. These

contravariant vectors are associated with covariate vectors by the following relationship

eaµ = gµνea
ν , (8.1)

where, gµν represents the metric tensor.

Considering the matrix formed by the vectors ea
µ and defining its inverse eb

µ , the following



relations are established

ea
µeb

µ = δ
b

a y ea
µea

ν = δ
µ

ν . (8.2)

Furthermore, we define

ea
µebµ = ηab, (8.3)

where ηab is a constant matrix. If the base vectors ea
µ are orthogonal to each other, ηab is a

diagonal matrix with components (−1,1,1,1). The inverse of ηab denoted as ηab, satisfies the

relation

η
ab

ηbc = δ
a

c. (8.4)

From the above, it is possible to obtain the following consequences

ηabea
µ = ebµ y η

abeaµ = eb
µ , (8.5)

and more importantly, we obtain that

eaµea
ν = gµν . (8.6)

For any given vector or tensor, we can project it onto the tetrad system to obtain its tetrad

components through the expressions

Aa = eaνAν = ea
νAν ,

Aa = η
abAb = ea

νAν = eaνAν ,

Aµ = ea
µAa = eaµAa.

(8.7)

These equations facilitate the decomposition and reconstruction of vectors and tensors in the

tetrad frame.

8.2 Newman-Penrose Formalism
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The Newman-Penrose formalism, equivalent to the tetrad formalism discussed above, is dis-

tinguished by the choice of a base composed of four null vectors l,n,m, m̄. Within this base,

two vectors are real, represented l and n, and two are complex, denoted by m and its conjugate

m̄. The motivation for the choice of this null base was that Penrose thought that the essential

element of spacetime was its structure of light cones.

The choice of this tetrad as the basis considerably simplifies the equations of general relativity,

thus facilitating their analysis and solution. In particular, for black hole solutions in general

relativity, the Newman-Penrose formalism shows great efficiency in understanding space-time

symmetries.

Given that the vectors chosen are null, it implies that

l · l = n ·n = m ·m = m̄ · m̄ = 0. (8.8)

Additionally, on these vectors, it is imposed that the internal product between real and imaginary

vectors is 0. Therefore, under this formalism, the only products that will have a non-zero value

are those between distinct real vectors and distinct complex vectors. So

l ·n =−1 y m · m̄ = 1. (8.9)

Under the following correspondence

e1 = l, e2 = n, e3 = m, y e4 = m̄, (8.10)

from the equation (8.3), we obtain

ηab =



0 −1 0 0

−1 0 0 0

0 0 0 1

0 0 1 0


(8.11)
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In this way, the correspondence for the covariant base is

e1 =−e2 =−n, e2 =−e1 =−l, e3 = e4 = m̄, y e4 = e3 = m. (8.12)

Applying the relationship between the tetrad formalism and the tensor formalism given by the

equation (8.6), we obtain

gµν =−lµnν −nµ lν +mµm̄ν + m̄µmν , (8.13)

and its contravariant equivalent form is

gµν =−lµnν −nµ lν +mµm̄ν + m̄µmν . (8.14)

8.3 Petrov Classification

The Petrov classification is very important in general relativity because provides a framework

for categorizing spacetime geometries by examining the algebraic properties of the Weyl tensor

[78]. This tensor, denoted as Cκµλν , is an important component in the description of the curva-

ture of spacetime. As the Curvature is a local property of spacetime, the Petrov classification

determines the local algebraic properties of the spacetime geometry.

When considering a 4-dimensional spacetime, the Weyl tensor has 10 independent components

that can be represented in terms of 5 complex scalars. Using the tetrad formalism, the five Weyl

scalars are defined as follows

Ψ0 =C0202 =Cκλ µν lκmλ lµmν ,

Ψ1 =C0102 =Cκλ µν lκnλ lµmν ,

Ψ2 =C0231 =Cκλ µν lκmλ m̄µnν ,

Ψ3 =C0131 =Cκλ µν lκnλ m̄µnν ,

Ψ4 =C0313 =Cκλ µνnκm̄λ nµm̄ν .

(8.15)
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If Ψ0 and Ψ1 can be vanished by carefully choosing the basis of the null tetrad, then the space-

times are considered algebraically special [61]. If such nullification cannot be achieved, space-

time is considered algebraically general and is classified as Petrov type I.

The algebraically special spacetimes, that is, for which Ψ0 = Ψ1 = 0, are classified as follows:

• Petrov type II: When Ψ2, Ψ3, and Ψ4 are all non-zero, the spacetime exhibits certain sym-

metries but lacks the higher degree of symmetry found in types D, III, or N.

• Petrov type III: Characterized by non-zero values of Ψ3 and Ψ4, this type indicates a space-

time with a pronounced directional field, typically associated with outgoing gravitational

radiation.

• Petrov type D: Only Ψ2 non-zero, this type is notable for its symmetry and is often associated

with the exterior fields of isolated, gravitating bodies like black holes.

• Petrov type N: With only Ψ4 non-zero, this classification points to spacetimes with a wave-

like structure, resembling that of plane gravitational waves.

• Petrov type O: The absence of all Weyl scalars (Weyl tensor is identically zero) indicates a

conformally flat spacetime, devoid of free gravitational fields in the vacuum.

8.3.1 The Q matrix and its Segre characteristic

For any given tetrad, a traceless symmetric matrix can be constructed using Weyl scalars. The

matrix is defined as follows [61],

Q =


Ψ2 − 1

2(Ψ0 +Ψ4)
i
2(Ψ4 −Ψ0) Ψ1 −Ψ3

i
2(Ψ4 −Ψ0) Ψ2 +

1
2(Ψ0 +Ψ4) i(Ψ1 +Ψ3)

Ψ1 −Ψ3 i(Ψ1 +Ψ3) −2Ψ2

 (8.16)

The algebraic structure of the matrix Q allows us to determine the type of Petrov spacetime,

as described in Table 8.1. Another method of inducing the Petrov type is to solve a quartic

equation [167], which involves calculating the principal null directions of the Weyl tensor.
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Petrov Segre characteristic Annihilating polynomial

I [111] (Q−λ1I)(Q−λ2I)(Q−λ3I)

II [21] (Q+ 1
2λ I)2(Q−λ I)

III [3] Q3

D [(11)1] (Q+ 1
2λ I)(Q−λ I)

N [(21)] Q2

O Q

Tabla 8.1: The Petrov spacetime type, as described in the first column, is deduced from the
Jordan normal form of the matrix Q, which is characterized by the Segre notation, detailed in the

second column. In addition, the Petrov type can be obtained equivalently from the annihilating
polynomial (minimum), as presented in the third column.

The Petrov type is invariant under conformal transformations, which is evident from its defini-

tion through Weyl scalars. Specifically, a conformal transformation g′µν → Ω2gµν , where Ω is

a space-time function, ensures that the Weyl tensor is transformed as C′α
βγδ

→Cα

βγδ
, while the

Weyl scalars change as Ψ′
n = Ω−2Ψn, n = {0, ...,4}.

The Segre characteristic provides a method for categorizing arrays based on their similarity to

a diagonal form. For any square matrix A, there is a similarity transformation to make it "as

diagonal as possible". To do this, we use a matrix M of the general linear group GL(n,K),

which brings A to its normal Jordan form, denoted as J(A). This form is block-diagonal, and

each block Ji represents a Jordan block associated with the eigenvalue λi,

J(A) = M−1AM =


J1 0

. . .

0 Jm

 , m ≤ n (8.17)
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Each Jordan block Ji has a structure as shown below, where λi are the eigenvalues of A,

Ji =



λi 1 0
. . . . . .

λi 1

0 λi


(8.18)

The Segre characteristic, also known as the Segre symbol, is a set of positive integers enclosed

in brackets that indicates the structure of the Jordan normal form. These integers represent the

size of each Jordan block. If there are multiple Jordan blocks with the same eigenvalue, then

the integers representing the multiplicities of Ji and J j are put in round brackets, enclosed by an

overall square bracket in the Segre characteristic notation.

Given that the Q matrix is a traceless 3×3 matrix, there are specific scenarios for the eigenvalues

λi, leading to distinct Petrov types and associated Segre characteristics:

• When all λi are distinct, each Jordan matrix is just by one matrix (Ji = λi), leading to a Segre

characteristic of type [111], which indicates an algebraically general spacetime. i.e. Petrov

type I.

• If two eigenvalues are identical, say λ1 = λ2, then tracelessness gives 2λ1 = −λ3, the Segre

characteristic can either be [(11)1] or [21], depending on the Jordan block structure. The first

case we obtain when each Jordan matrix is just a one by one matrix (Ji = λi) and the second

case is given by

J1 =

 λ1 1

0 λ1

 , and J2 = λ3. (8.19)

Thus, spacetime is Petrov type D or Petrov II respectively.

• In the special case where λ1 = λ2 = λ3 = 0, different Jordan block arrangements lead to

Petrov types N and III, with Segre characteristics [(21)] and [3] respectively. The correspond-
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ing Jordan matrices are

J1 =

 0 1

0 0

 with J2 = 0, (8.20)

and

J1 =


0 1 0

0 0 1

0 0 0

 (8.21)

In addition, each Jordan block Ji is a scalar matrix, represented simply by Ji = λi, the structure

reduces to a singular value for each block. This implies that J = 0 and consequently Q is

reduced to a null matrix. The Segre characteristic is not applicable, since the matrix lacks a

distinct Jordan structure to classify.

Importantly, Segre notation is also employed for the algebraic categorization of second-order

tensors within a vector space, specifically for the Segre classification of Ricci tensors in general

relativity.

8.4 Segre classification in the analysis of the mat-
ter of regular black holes

In the current context, Segre’s classification helps to identify possible sources of matter in reg-

ular black holes based on a given metric and gravitational theory.

By considering two second-order tensors, R and T , which can also be viewed as matrices, and

taking the λ -matrix, R− λZ, we compute the corresponding elementary divisors. Assuming

that the determining equation det(R−λZ) = 0 produces n distinct roots, the elementary divi-
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sors associated with each eigenvalue λi, are given by

(λ −λi)
p(1)i , ...,(λ −λi)

psi
i , with p(1)i ≤ ...≤ psi

i , (8.22)

where pi j denotes the multiplicity of the eigenvalue λi in the si-th divisor. The Segre notation is

as follows,

[(p(1)1 ...p(s1)
1 )...(p(1)n ...p(sn)

n )]. (8.23)

To analyze a second-order energy-momentum tensor, an orthonormal basis êµ

α [168] is estab-

lished on the space-time manifold (M ,gµν), satisfying

gαβ êα
µ êβ

ν = ηµν , with η = diag{−1,1,1,1}, (8.24)

This basis allows for the decomposition of the energy-momentum tensor as follows

T µν = ρ êµ

0 êν
0 + p1êµ

1 êν
1 + p2êµ

2 êν
2 + p3êµ

3 êν
3 . (8.25)

In this base eµ

α̂
, the energy-momentum tensor is represented as a diagonal matrix, allowing the

application of Segre notation to classify the types of matter that could give rise to both non-

rotating and rotating regular black holes.

The algebraic and physical characteristics of equation (8.25) imply that the multiplicity of the

eigenvalue is unitary. Therefore, the Segre notation considering ρ = p1 and p2 = p3 would

be represented as [(11)(11)], omitting commas to distinguish between temporal and spatial

components.
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Appendix IX.

The work published in JCAP

As was shown previously in Section V, this appendix presents our study on regular black holes

and particle-like solutions in the framework of DHOST theories. In this work, published in

JCAP, we show how to construct regular black holes by using a generalization of the Kerr-

Schild methods. Additionally, we have explored observational signatures ranging from weak to

strong gravity and performed thermodynamic analyses of our solutions. As we will see in the

following lines, this analysis shows outstanding characteristics.
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1 Introduction

It is an undeniable fact, whose origin goes back to the Schwarzschild solution, that the notion
of a black hole is intimately linked to the concept of spacetime singularities. In fact, it is
well-known that, under certain energy conditions, classical solutions of general relativity
exhibit singularities as a direct consequence of the so-called singularity theorems [1, 2]. The
appearance of singularities is essentially due to the classical character of the theory of general
relativity, and a quantum theory of gravity may be expected to cure such pathologies.

However, in the absence of a complete theory of quantum gravity one can search for
black hole spacetimes with a global structure similar to the well-known solutions (like the
Schwarzschild or Reissner-Nordström solutions), but in which the central singularity is absent.
Such solutions are commonly known as regular black holes. These ideas originate from the
pioneering works of Sakharov [3], Gilner [4] and also Bardeen [5] who presented the first
example of a regular black hole as an ad-hoc metric (not originating from an action). A
physical construction of the Bardeen metric as a solution of a given action was finally proposed
much later in [6]. There the authors showed that the Bardeen metric can be obtained from
the Einstein equations with a non-linear magnetic source. Although the Bardeen metric
was the first example of a regular spacetime, the first exact regular black hole solution of a
given theory was found by Ayón-Beato and Garcia [7] for the Einstein equations coupled to
a specific non-linear electrodynamic source.

Models involving non-linear electrodynamics have been fruitful in the construction of
regular solutions, see e.g. refs. [8–12], and also ref. [13] for a review. Many of these regular
black holes present a de Sitter core at the origin, and their regularity is quantified by a reg-
ularizing parameter identified with a non-linear electrodynamic charge. It is also important
to stress that the parameter of regularization is not a constant of integration but is rather an
input of the matter action. This observation has important consequences, for example on the
thermodynamic properties of these regular solutions. Indeed, depending on whether the regu-
larizing parameter is considered as a varying parameter or not, the thermodynamic properties
may be different. In order to illustrate this fact, one can note that for the Bardeen regular
black hole, the one-quarter area law of the entropy is usually violated [14] when considering
a non varying magnetic charge, while this “universal” law can be restored by promoting the
magnetic charge as a variable parameter [15]. Note that in certain non-minimally coupled

– 1 –
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Lagrangians analytic regular solutions were found where the mass and the charge truly are
integration constants [16, 17].

In this work we will construct regular black hole solutions, which are asymptotically
very similar to Schwarzschild, without the need of introducing an additional regularization
parameter inherent to the action. For these black holes, regularity will not be enforced by
the fine tuning of some action parameter, it will rather be achieved due to the functional
form of the regularizing function appearing in the solutions. In other words, the fall-off of
the mass term of our solutions turns out to be an analytic function with a de Sitter core at
the origin as a consequence of the field equations. The degree of regularity and its strength
are monitored by two parameters, one fixing the core to be de Sitter or higher and one fixing
the strength of the higher order term against the mass of the black hole. The regular black
holes found here are exact solutions of scalar tensor theories beyond those initially proposed
by Horndeski [18]. The regularizing function sets, as one would expect, the scalar degree of
freedom without any fine tuning of the theory.

The scalar tensor theories have higher than second derivative equations of motion and
are (still) free of Ostrogradski type pathologies [19–22]. These general Lagrangians have been
dubbed Degenerate Higher Order Scalar Tensor (DHOST) or Extended Scalar Tensor (EST)
theories [19–24], and are widely studied in the literature (see for example [25–33] for their
compact objects and [34] for a review). More precisely, we will consider the following class
of shift symmetric and parity preserving DHOST theories that contain up to second order
covariant derivatives of the scalar field (in the action),

S[g, φ] =
∫
d4x
√−g

[
K(X) +G(X)R+A1(X)

[
φµνφ

µν − (�φ)2
]

+A3(X)�φφµφµνφν

+A4(X)φµφµνφνρφρ +A5(X) (φµφµνφν)2
]
, (1.1)

where the coupling functions K,G,A1, A3, A4 and A5 depend only on the kinetic term of the
scalar field X = gµνφµφν , and where φµ = ∂µφ and φµν = ∇µ∇νφ. The coupling functions
A4 and A5 are chosen to satisfy

A4 = 1
8(G−XA1)2

{
4G

[
3(−A1 + 2GX)2 − 2A3G

]
−A3X

2(16A1GX +A3G)

+4X
[
−3A2A3G+ 16A2

1GX − 16A1G
2
X − 4A3

1 + 2A3GGX
]}
,

A5 = 1
8(G−XA1)2 (2A1 −XA3 − 4GX) (A1(2A1 + 3XA3 − 4GX)− 4A3G) (1.2)

in order to ensure the absence of Ostrogradski ghosts [19–22]. Recently, it has been shown
that regular black hole solutions for this class of theories can be constructed (including
the well known cases of Bardeen [5] or Hayward metrics [35]), see ref. [36]. The algorithm
of construction is a byproduct of extending the Kerr-Schild solution generating method to
scalar tensor theories. The key point in extending this well known method from GR is the
assumption that the kinetic term of the scalar field remains unchanged under the static
(usual) Kerr-Schild transformation. Another crucial observation that we make here is that
regular black holes cannot belong to Horndeski theory. We will see that the theories involving
regular black holes correspond to a conformal and disformal map originating from Horndeski
theory and ultimately belong to a pure DHOST theory. We will trace the reason for this to
the recent interesting work discussing singularities in scalar tensor theories [37].

– 2 –
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We would like to note that although the kinetic term of the scalar field will be assumed
to be only depending on the radial coordinate, this does not exclude the fact that the scalar
field can depend linearly, for example, on the time coordinate, i.e. φ(t, r) = αt+ ψ(r) where
α is a constant. This possibility is attributed to the higher order nature of DHOST theory,
and the shift invariance symmetry of the scalar field. The scalar time dependence was first
used in [38] and has been found recently to be related to the geodesics of spacetime [32]
whenever the kinetic term X is constant. In fact, in the case of higher order scalar tensor
theories, examples of compact objects with a linear time dependent scalar field have been
found, see e.g. [38–45]. In particular, stationary solutions, which are distinctively different
from the Kerr spacetime [46–48], have been recently constructed.

In our search for regular black holes we will focus on a static scalar field where X will
not be a constant function. This is a crucial requirement as X will also play the role of
the regularizing function smoothing out the geometry near the origin. Once we obtain our
regular solution we will discuss its most important properties. We will then proceed to study
its possible observational characteristics scanning from weaker to stronger gravity effects.

The plan of the paper is organized as follows. In the next section, we will explicitly write
the field equations associated to the variation of the DHOST action (1.1)–(1.2). The key steps
of the Kerr-Schild solution generating method [36] will also be outlined, in order to explicitly
construct a family of regular asymptotically flat black holes, that are solutions of some specific
DHOST action (1.1)–(1.2) with coupling functions specified in appendix A. We will analyze
the solutions and discuss the leading Post-Newtonian parameters, precession effects and null
geodesics, scanning through observable signatures. In section 3, the thermodynamic analysis
of these regular solutions will be carried out through the Euclidean method, and we will
show that the regularity condition of the solutions is incompatible with the area law of the
entropy. In spite of this, the first law of thermodynamics is shown to hold for the regular
solutions. Our conclusions will be presented in section 4.

2 Field equations and construction of regular black holes

We will be dealing with a four-dimensional scalar tensor theory described by the metric g
and a single scalar field φ whose dynamics is governed by the action (1.1) and whose coupling
functions A4 and A5 are given by (1.2). We will focus on static metrics with a scalar field
such that its standard kinetic term X = gµνφµφν only depends on the radial coordinate r,
i.e.

ds2 = −h(r) dt2 + dr2

f(r) + r2
(
dθ2 + sin(θ)2dϕ2

)
, X = gµνφµφν := X(r). (2.1)

For this ansatz, the field equations associated with the DHOST action (1.1)–(1.2) are conve-
niently written as

X[2(A1G)X +GA3] + r2
[
(KH)X + 3

4KB
]

= 0, (2.2a)

−3(BrX ′)2 + 8(BrX ′)H
(
rh′

h
+ 4

)
− 32H

[
Kr2 + 2G

f
+ 2H

(
rh′

h
+ 1

)]
= 0, (2.2b)

r2(16BXH+ 3B2)X ′2 + 8HX ′r
(
Brf

′

f
− 16HX

)
+ 16r2HBX ′′

−64H2
[(

rf ′

f
+ 1

)
+ 2G+ r2K

2fH

]
= 0, (2.2c)
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where ( )′ denotes the derivative with respect to the radial coordinate, r, while subscript X
denotes the derivation with respect to the kinetic term X. To simplify the notation, we have
defined the auxiliary functions of the action,

H(X) = A1(X)X −G(X), B(X) = A3(X)X + 4GX(X)− 2A1(X),
Z(X) = A3(X) +A4(X) +X A5(X). (2.3)

Another interesting note is the Horndeski limit [18] and the beyond Horndeski
limit [49, 50] of our general DHOST theory equations. Indeed, (quartic) Horndeski the-
ory, parameterized by G4 = G is attained with 2GX = A1 = −A2 and A3 = 0, while quartic
beyond Horndeski is given by 2GX−XF = A1 = −A2 and A3 = −2F . The function F is the
quartic beyond Horndeski term which is in a one to one correspondence with the disformal
transformation, mapping Horndeski to beyond Horndeski theory (see for example the nice
analysis in [21, 22]). In particular, we note that in both cases of quadratic Horndeski and
beyond Horndeski we have B = 0, which means that B in our field equations represents the
conformal transformation mapping beyond Horndeski to pure DHOST theory. We will come
back to this observation in a moment.

In order to be self-contained, we will briefly recall the procedure described in [36] which
allows the construction of regular black hole solutions from simple seed configurations. The
first step is to look for a simple seed solution of the field equations (which does not describe
a black hole) and schematically represent it by

ds2
0 = −h0(r)dt2 + dr2

f0(r) + r2
(
dθ2 + sin(θ)2dϕ2

)
, X0 = gµν(0)φ

(0)
µ φ(0)

ν := X0(r). (2.4)

Now, as shown in ref. [36], the equations of motion (2.2) are invariant under a Kerr-Schild
transformation of the metric, provided that the kinetic term of the scalar field is left invariant.
More precisely, it is straightforward to see that the equations (2.2) are invariant under the
following simultaneous transformations

h0(r) → h0(r)− 2µm(r)
r

, f0(r)→ f0(r)
h0(r)

(
h0(r)− 2µm(r)

r

)
, with m(r) = e

3
8

∫
dX
B(X)
H(X) ,

(2.5)

and X remains unchanged, i.e. X0(r) = X(r). Here µ is a constant that will be shown to be
proportional to the mass of the resulting solution. Our second step is to use this Kerr-Schild
symmetry (2.5) to deduce that the configuration given by,

ds2 = −
(
h0(r)− 2µ m(r)

r

)
dt2 + h0(r) dr2

f0(r)
(
h0(r)− 2µ m(r)

r

) + r2
(
dθ2 + sin(θ)2dϕ2

)
,

X(r) = gµνφµφν = X0(r), (2.6)

will satisfy the same equations as those satisfied by the simple seed solution (2.4), provided
that the mass function m(r) is given by

m(r) = e
3
8

∫
dX
B(X)
H(X) . (2.7)

Note that in order for the mass term to be non trivial (i.e. with a non-Newtonian fall-
off) we need to venture outside of beyond Horndeski theory, where B 6= 0. According to
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the observation made in the previous paragraph, B is related to the conformal degree of
freedom for pure DHOST theory. This leads us to the conclusion that we must have a
combined disformal and conformal transformation of Horndeski theory to have any hope of
constructing a regular solution. The regular solutions are crucially situated in higher order
DHOST theory-not in Horndeski or beyond Horndeski theory.

To keep things simple we make the following working hypothesis [36]

3B
8H = 1

X
=⇒ m(r) = X(r), (2.8)

Hence, starting from a seed metric, the “choice” of the mass function m(r), or equivalently
of the seed kinetic term (2.8) will be key in order to ensure the regularity of the final (mas-
sive) configuration (2.6) at the origin and at infinity. Moreover, once we fix the expression
of X0(r) as an invertible function, we will be able to specify the corresponding DHOST
theory (1.1)–(1.2), that is to determine the functions K,G,A1 and A3 (as functions of X
only) [36]. For example, in the asymptotically flat case with a seed metric f0 = h0 = 1, the
regularity at the origin will be ensured if m(r) = O(r3). Indeed, in this case the solution is
shown to exhibit a de Sitter core at the origin, ensuring that any invariant constructed out
of the Riemann tensor will be regular at the origin. Given these preliminary requirements
we see that it is essential to be in the context of DHOST theory, in order to find regular
black holes in accordance with the discussion and findings in [37]. Hence, regular black holes
are necessarily solutions of a pure DHOST theory. In other words, such regular solutions
would be images of the mapping of a combined conformal and disformal transformation of a
Horndeski solution.

2.1 Asymptotically flat regular black holes
We will first focus on the construction of asymptotically regular black holes with a flat seed
metric given by h0 = f0 = 1. In this case, following the results obtained in ref. [36], one can
easily express H and G as

H = 1
X
(
rX′
3X − 1

) , G = 1
X

(
1− rX ′

X

)
− Kr2

2 .

Now, in order to get the coupling function K, we first write

A3 = −4GX
X

+ 2A1
X

+ 8H
3X2 , A1 = H+G

X
(2.9)

and then inserting the expressions (2.9) into eq. (2.2a), we obtain, after some algebraic
manipulations,

2(HG)X + r2(KH)X + 2H
X

(4
3G+Kr2

)
= 0. (2.10)

Finally, the coupling function K is shown to be given by

K = −2
[
3X (rX ′′ + 2X ′) + r2X−1X ′3 − 7rX ′2

]

rX (rX ′ − 3X)2 .

We are now ready to construct an explicit family of regular black hole solutions. We will
opt for a (seed) kinetic term,

X(r) = X0(r) = 2
π

arctan
(
πrp

2σp−1

)
. (2.11)
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The function X depends on the integer p and the bookkeeping parameter σ. In particular,
the limiting case σ → 0 gives us the usual Schwarzschild case. Our choice is motivated from
three essential requirements emanating from the resulting metric function, h(r) = 1− 2µX(r)

r :

• First of all, for r close to the origin we have,

h(r) = 1− 2µ
(
r

σ

)p−1
+O(r3p−1), (2.12)

and hence, as shown below for p ≥ 3, σ 6= 0 , the final metric will be regular at the
origin. The de Sitter core is attained for p = 3, and increasing regularity from there
on for p > 3.

• Secondly, X asymptotes unity for large r, and as such gives for h a similar behavior at
asymptotic infinity to the Schwarzschild solution. We have,

h(r) = 1− 2µ
r

+ 8µσp−1

π2rp+1 +O(r3p+1), (2.13)

• Last but not least, the function X(r) is bijective for our coordinate range r ∈ [0,∞[.

Using the latter property one can see that the seed configuration, h0 = f0 = 1, with a kinetic
term given by (2.11), is a solution of the DHOST action (1.1)–(1.2) with coupling functions
reported in appendix A. Crucially, the action functionals are only functions of X, and the
theory parameters, σ and p. The power, p, fixes the solution’s core regularity at the origin.
Once p is fixed, the solution is regular without any fine-tuning of the parameter σ, which
has been inserted so as to track down differences from GR at σ → 0. Using therefore the
generalized Kerr-Schild transformation, one determines that the solution given by

ds2 = −

1−

4µ arctan
(

πrp

2σp−1

)

rπ


 dt2 + dr2

(
1− 4µ arctan

(
πrp

2σp−1
)

rπ

) + r2
(
dθ2 + sin(θ)2dϕ2

)
,

X(r) = 2
π

arctan
(
πrp

2σp−1

)
, (2.14)

satisfies the field equations of the DHOST action (1.1)–(1.2) with coupling functions given
in appendix A, which has been additionally verified by inserting this solution directly into
the equations of motion.

Let us now make some comments on the properties of (2.14). First of all, for p > 0,
the metric solution will behave asymptotically (r → ∞) as the Schwarzschild spacetime.
For µ > 0 and p > 0, the metric solution has an inner and an outer event horizon as
we see from the plot in figure 1. The outer horizon is an event and Killing horizon (for the
Killing vector ∂t), which is manifest by preforming the usual Eddington-Finkestein coordinate
transformation. The inner horizon is a Cauchy horizon for any timelike hypersurface situated
in the exterior spacetime where ∂t is timelike. The solution has a central curvature singularity
for 0 < p < 3. However, for p = 3, the metric solution (2.14) is regular with a de Sitter core,
while for p > 3, the family of solutions are again regular black holes with an increasingly
regular core [51]. The region internal to the inner horizon is spacelike and completely regular
at the origin. Setting p = 3 for definiteness and 2σ2 = π we find that for µext ∼ 1.13 we

– 6 –
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Figure 1. Metric function g00 for p = 3 and 2σ2 = π. The inner and outer horizons correspond to
the roots of the function, while for smaller masses than µext (blue dotted curve) the solution has no
horizon.

have an extremal black hole. For µext ≤ µ we have a sequence of regular black holes whereas
for smaller masses than µext we have a regular solution without horizon; spacetime is curved
but not sufficiently in order to create an event horizon. These solutions are gravitational
particle-like solutions akin to dark matter, provided they are stable.

We now proceed to scan, starting from weak up to strong gravity, the possible notable
differences of our regular solution, as compared to standard GR. We do not aim to be
extensive here, we rather give a first approach that is useful for future studies. Let us
first seek the leading PPN parameters of this solution in order to effectively see how it
compares with GR. In order to do this we effectively find a Cartesian distance coordinate
ρ =

√
x2 + y2 + z2 where (x, y, z) are harmonic coordinates suited for a Newtonian gauge.

As an example take p = 3 whereupon we get,

r = ρ+M − 4µσ2

ρ3 +O(1/ρ4). (2.15)

This coordinate system is harmonic for large distances compared to the size of the outer
event horizon. Furthermore, to leading order, it agrees with the harmonic radial coordinate
of Schwarzschild (see [52] for clarification on coordinate issues in higher PN calculations).
Such distances of the order of some 1400 Schwarzschild radii correspond to the orbits of stars
like S2 orbiting Sgr*A. Using these coordinates we can quite easily obtain the leading (see
for example [53]) PN parameters, β = γ = 1, which end up identical to GR for p ≥ 3.

We can try to go a step further and evaluate directly the precession of a star like S2
orbiting the massive compact object identified with Sgr A* (see [54] and references within).
Star S2 orbits the central, regular for our purposes, black hole, following timelike geodesics
at the equator θ = π/2. Using the Killing symmetries for rest energy per unit rest mass E

– 7 –
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and angular momentum per unit rest mass L we have the standard relations,

E = h(r) dt
dτ
, L = r2dφ

dτ
, (2.16)

where τ is the geodesic parameter. Transforming to u = 1/r coordinates and using the above,
it is straightforward to obtain the Binet’s modified equation governing the trajectory of S2,

d2u

dφ2 + u = µ

L2 (uXu +X) + 3µu2X + µu3Xu, (2.17)

where now u is a function the angular coordinate φ. The above equation gives us precisely
the GR case of Schwarzschild for X = 1. Binet’s original equation, valid for the Newtonian
limit, is obtained if we take X = 1 and we additionally neglect the higher order 3µu2 term.
This orbital equation is valid for any regular black hole we choose in the face of X and for
classical precession tests of solar system planets. As an example, we can set p = 3 for our
regular solution and Taylor expand for small u (or large r),

X = 1− 4σ2

π2 u
3 +O(u9). (2.18)

We get the approximate equation,

d2u

dφ2 + u = µ

L2 + εL2

µ
u2 − 16σ2ε

3µπ2 u
3 +O(u5). (2.19)

Here we have introduced ε = 3µ2

L2 as our small1 dimensionless parameter [55]. We are using
the same expansion parameter as for the case of Schwarzschild as we want to point out the
difference with the case of GR. Now expanding u = u0 + εu1, we obtain to zeroth order the
elliptic Kepler trajectory u0 = µ

L2 (1 + e cosφ), where e is the eccentricity. To linear order in
ε, keeping only the term with growing contribution we find at the end,

u ∼ µ

L2

[
1 + e cos[φ(1− εfSP )]

]
, (2.20)

where fSP = 1 − 8 µσ2

L4π2

(
1 + e2

4

)
denotes our correction beyond the GR fSP = 1 value.

Constraints from GRAVITY place fSP ∼ 1.1 ± 0.2 which in turn constrains our action
parameter σ. Note however, that given our expansion in ε we are assuming that our parameter
σ2 is big enough so as to be of the same order as the Schwarzschild correction. If we adapt our
calculation to the orbit characteristics of the S2 star orbit there will be fine-tuning involved.
Generically fSP = 1 since β = γ = 1 for our background. A similar calculation can be
undertaken using null geodesics for time delay effects akin to pulsars for example (see the
review by Johannsen [56]).

A last interesting point is to consider our solution in the strong field regime. For our
generic purposes we will pursue here the light trajectories of photons or massless particles
such as neutrinos in presence of our regular black hole. Again we follow the standard text
book procedure for equatorial geodesics but now we focus on light rays, defining b = L/E, the
apparent impact parameter, for an observer in the asymptotically flat region. The parameter
b can vary up to the closest distance photons get to the black hole without being necessarily

1In our geometrized units we have G = c2 = 1 and therefore µ(cm) = 0.742× 10−28 cm
g
µ(g).
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Figure 2. Effective potential (2.22) for different values of σ our theory parameter. In particular,
σ = 0 corresponds to the effective potential of the Schwarzschild solution for which X = 1. Varying
σ > 0 changes the root of the potential and a non-zero value actually changes the singularity to a
minimum. Increasing the value of σ further can even remove the root corresponding to the absence
of an event horizon altogether. The height of the potential maximum marks 1/b2

crit for each curve of
the potential.

eaten up by the gravitational well of the black hole. The geodesic equation takes a familiar
(particle in a potential) form,

1
2

(
dr

dτ̃

)2
+ h(r)

2r2 = 1
2b2 , (2.21)

where we have rescaled τ̃ = Lτ . Therefore the effective potential takes the form,

Veff = 1
2r2

(
1− 2µ

r
X(r)

)
, (2.22)

and critical light rings occur at the zeroes of V ′eff = 0 which are the zeroes of the equation,

r + µX ′ − 3µX = 0. (2.23)

The effective potential and its derivative are depicted in figures 2 and 3 respectively. Note
the familiar light ring solution at rR = 3µ for Schwarzschild when we set X = 1. Once we
have a zero of (2.23), r = rR we get the maximal impact parameter using (2.21),

bcrit = rR√
h(rR)

. (2.24)

The critical impact factor can be as well formulated as

bcrit = bSchwar.

(
X(rR)− 1

3X
′(rR)

) 3
2

√
X(rR)−X ′(rR)

= bSchwar.

(
rR
3µ

)√ 4σ4 + π2r6
R

π2r6
R − 24µrRσ2 + 4σ4 , (2.25)
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Figure 3. Derivative of the effective potential. One can see a small but finite shift of its root, rR,
for different values of σ as a decreasing function of σ.

where the impact factor for the Schwarzschild solution is given by bSchwar. = 33/2µ. It is easy
to see that (

rR
3µ

)
bSchwar. ≤ bcrit ≤

(
r2
R

3µ

)√
π

πr2
R − 6µ

and the lower bound is achieved for σ = 0 (the Schwarzschild limit) and at the limit σ →∞,
corresponding to the flat limit.

The determination of the light ring sets the size of the black hole shadow. The Event
Horizon Telescope (EHT) has obtained the first image of the supermassive M87 black hole.
For M87 the size of the shadow was used as a test for GR, estimating the black hole
mass [57, 58] and comparing to the independent calculation for M87’s mass given by stellar
dynamics [59]. There are a number of caveats with this calculation as a test of GR that have
primarily to do with the little knowledge of the illuminating accretion flow for M87 or the
sheer mass of the object (see in particular the critical analysis presented in [60]). Rather
than putting in the numbers we will choose here to sketch the different cases for our regular
solution as opposed to Schwarzschild. For definiteness let us fix the mass of the black hole
to µ = 1 and vary the theory parameter σ instead, in order to see how the characteristics
of the effective potential change as we sweep through our theory. Indeed we find that for
0 < σ < σext our effective potential always has a photon ring (outside of the event horizon)
and as σ is increased we have rσR < 3, the GR photon ring case. At the same time, increasing
σ, the height of the potential maximum increases and therefore the critical impact parameter
bσcrit < b0crit is always below the Schwarzschild one (again see [60]). Note also that once σ > 0
we always have a minimum of the potential. This scheme continues until we arrive at σext,
the case where (for unit mass) we have an extremal black hole. Beyond this point there is no
event horizon anymore, for µ = 1, and our theories present now two visible critical points,
one stable and one unstable. For a region of impact parameters in between the critical values
of the potential, we have bound light orbits for local light sources at r < 3 or so. This is
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a distinctive feature of the particle-like solutions and is something that differentiates them
from the regular black hole case. Furthermore, note that photons starting out from infinity
can probe into the gravitational solution to all distances. Therefore, for σ > σext there is no
longer a central shadow, but rather enhanced light rings very close to the r = 0 center. In
summary, for each given theory (where p and σ are fixed) we will have particle-like solutions
for µ < µext and regular black holes for µ > µext.

3 Thermodynamics of asymptotically flat regular black holes with a scalar
field source

We now turn to the study of the thermodynamic properties of the regular class of black hole
solutions (2.14). The thermodynamics of regular solutions is one of the aspects that is widely
studied in the literature, see e.g. [61–65]. We start by pointing out a difference of our DHOST
solution in comparison to regular black holes with non-linear electrodynamics. In the latter
case the regularization parameter is actually part of the theory, and is usually associated
with a magnetic charge. This means that the latter solution exists for a fixed value of the
magnetic charge, and that to change this value corresponds to changing the theory. A direct
consequence of this is that the regularization parameter cannot be considered as a variable
parameter, and hence must not appear in the equation of the first law of thermodynamics.
This aspect obscures the thermodynamic interpretation of regular solutions. On the contrary
in our case, the regularity of the solution (2.14) is not inherent to the presence of our action
bookkeeping parameter σ, but rather in the presence of the regularizing arctangent function
rendering the metric function smooth at the origin. In addition, as it can be seen in eq. (2.14),
the regularizing function comes with a constant µ which is an integration constant, and hence
its interpretation as a thermodynamical variable is not ambiguous.

The thermodynamic analysis of the regular solution (2.14) will be carried out with the
Euclidean approach in which the partition function is identified with the Euclidean path
integral in the saddle point around the classical solution. In practice, we consider a mini
superspace with the following ansatz

ds2 = N(r)2f(r)dτ2 + dr2

f(r) + r2dΣ2
2, φ = φ(r), (3.1)

where τ (in this section) is the Euclidean (periodic) time with 0 < τ ≤ β and, where β is the
inverse of the temperature

β−1 = T = 1
4π N(r)f ′(r)|rh , (3.2)

with rh being the radius of the horizon. In the mini superspace defined by the ansatz (3.1),
the Euclidean action IE (using the proper normalization factor) reads

IE = −1
4β
∫
N
[(P − 2Q′) f −Q f ′ + 2G+ r2K

]
+BE , (3.3)

where H,B and Z are given in (2.3), and where for simplicity we have defined,

Q = B4 r
2X ′ − 2rH, P = rX ′B + r2

4 (X ′)2Z − 2H. (3.4)

– 11 –



J
C
A
P
0
6
(
2
0
2
1
)
0
2
1

In the Euclidean action (3.3), the term BE is an appropriate boundary term ensuring that
the solution corresponds to an extremum of the action, and at the same time it codifies all
the thermodynamic properties. After some algebraic manipulations we get,

BE = β

4 lim
r→∞

{
N(r)Q(r)X(r)

r

}
µ− π

∫
Q(rh)drh. (3.5)

On the other hand, since the Euclidean action is related to the Gibbs free energy G through

IE = β G = βM−S,

one can easily read off the expressions of the massM and of the entropy S from the boundary
term,

M = 1
4 lim
r→∞

{
N(r)Q(r)X(r)

r

}
µ, S = π

∫
Q(rh)drh. (3.6)

For the specific regular black hole solution (2.14), these expressions reduce to

M = 1
6

rh

arctan
(

1
2πr

p
hσ

1−p
) , S = 2

3

∫
πrh

arctan
(

1
2πr

p
hσ

1−p
)drh, (3.7)

while the temperature is given by

T = 1
4πrh


1− 2πσp−1prph(

π2r2p
h + 4σ2p−2

)
arctan

(
1
2πr

p
hσ

1−p
)


 .

It is clear from these relations that the mass and the entropy of the regular solution are
positive, and although we do not have a closed form of the entropy we can nonetheless verify
the validity of the first law dM = T dS. We also note that the entropy of the regular solution
does not satisfy the area law. In fact, from the generic expression as obtained in (3.6), the
only way for the entropy to satisfy the area law is that the function Q, as defined in (3.4),
must be proportional to Q(r) ∝ r. However, it is a simple matter to check that the solutions
of the field equations given by (2.2), and for an ansatz of the form (2.6) will necessarily
imply that

Q(r) ∝ r

X(r) ,

and, consequently the entropy will be proportional to one-quarter of the area only for a
constant kinetic term. On the other hand, our analysis shows that a constant kinetic term
is incompatible with the regularity of the solution. Hence, we deduce that for the DHOST
theories considered here the regularity of the solutions fitting our ansatz (2.6) will not be
compatible with the one-quarter area law for the entropy. This is not uncommon for modified
gravity theories and is understood geometrically in certain cases such as Einstein-Gauss-
Bonnet theory (see for example [66]).

Thermodynamic stability of the regular solution is addressed by computing the heat
capacity CH = T ∂S

∂T . From this definition it becomes clear that the heat capacity will provide
information about the thermal stability with respect to the temperature fluctuations, and
that a positive heat capacity is a necessary condition to ensure the local stability of the
system. Also, the critical hypersurfaces, that is those where CH vanishes or diverges, will
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Figure 4. Heat capacity of the (A.1) black hole for different values of p and σ such that 2σp−1 = π
starting at rExtremal respectively. Note that these correspond to different theories. There is a second
order phase transition at rPT. The asymptotic behavior is like ∝ −r2 at infinity. Setting p = 0
corresponds to the Schwarzschild solution, which has no phase transition.

correspond to the extrema of the temperature with respect to the entropy. For technical
reasons, it is more convenient to express the heat capacity as

CH = T
∂S
∂T

= T

(
∂S
∂rh

)(
∂T

∂rh

)−1
,

and, for the regular black hole solution (2.14) we get

CH =
2πCr2

h

(
r2p
h + 4

π2σ
2p−2

) [(
r2p
h + 4

π2σ
2p−2

)
arctan

(
1
2πr

p
hσ

1−p
)
− 2

πσ
p−1prph

]

C ,

with

C = 3 arctan
(1

2πr
p
hσ

1−p
)[ 2

π
σp−1p

( 4
π2σ

2p−2(p− 1)− (p+ 1)r2p
h

)
rph

+
(
r2p
h + 4

π2σ
2p−2

)2
arctan

(1
2πr

p
hσ

1−p
)]
− 12
π2σ

2p−2p2r2p
h .

Due to its lengthy form it is insightful to plot the heat capacities. The heat capacities are
shown in figure 4, where we have excluded the part that corresponds to negative temperatures
(akin to the presence of an internal horizon). From this picture, one can see that only small
black holes are locally stable and a critical hypersurface will emerge at some positive radius
revealing the existence of a second order phase transition, as it is the case for the non-linear
electrodynamical regular black holes, see e.g. [61–65].
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Before closing this section, we would like to address the following question: for the
DHOST theory as defined in appendix A, does there exist another solution, and if so, would
this allow for a thermodynamic stability comparison of the two solutions? In order to answer
this question, we notice that the first equation (2.2a) gives,

0 =
16
[

2
πσ

p−1 sin
(
π
2X

)]− 2
p

3π2
[

2
πp sin

(
π
2X

)− 6X
]4
X

[
−r2 cos

(
π

2X
) 2
p

+
( 2
π
σp−1 sin

(
π

2X
)) 2

p

]
F [X], (3.8)

with F [X] being an algebraic equation in X given by

F [X] = 72X2
[
p2 cos (2πX)− p cos (πX)− 2

]
− 32
π2 p

2 sin2 (πX) [p cos (πX)− 4]

+12
π
pX sin (πX)

[
p2 cos (2πX) + 3p2 − 26p cos (πX) + 26

]
.

From this it is easy to see that there are only two possibilities: either X is given by the
previous form (2.14), or X is a constant solving the constraint F [X] = 0. On the other hand,
taking the difference between (2.2b)–(2.2c) yields f(r) = h(r), so in the first case we end up
with the regular black hole. After some straightforward computations, we can establish that
only the DHOST theory defined in appendix A with p = 1 will admit two different solutions,
and one of these is a stealth Schwarzschild black hole configuration given by

h(r) = f(r) = 1− µ

r
, X = 1 + 2n, (3.9)

where n is an integer number. The thermodynamic quantities of this stealth solution are
given by

M = rh
3π , S = 2

3r
2
h, T = 1

4πrh
, CH = −4

3r
2
h, (3.10)

and as stressed before the entropy satisfies the area law because of the constant value of the
kinetic term (3.9). The comparison of the respective heat capacities can be seen in figure 5.
We can now compare the arctan−solution (2.14) for p = 1 with the stealth solution (3.9).
Using the free energy, defined as F = M − TS, one can calculate the difference of the
respective solutions at equal temperatures

∆F = Fregular − Fstealth = T

∫
F(rh)drh,

F(r) =
r
[
−4
(
r2+1

)
arctan(r)2+π

(
r2+1

)
arctan(r)−πr

][
−2r3 arctan(r)−r2+

(
r2+1

)2 arctan(r)2
]

arctan(r) [(r2 + 1) arctan(r)− r]3

It is easy to notice that the integrand F(r), goes to +∞ for r → 0 and to −∞ for r → ∞.
Hence, one would expect the stealth solution to be thermodynamically favored for small rh,
and there is the possibility that this changes for sufficiently large rh. However, because of its
lengthy integral form it is not possible to make any exact statements about this.
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Figure 5. Heat capacity of the (A.1) black hole for p = 1 and the stealth Schwarzschild solution.
This time they correspond to the same theories, even though their behaviour looks identical to before.
Further the temperature is positive everywhere, so there is no extremal value of r and the heat
capacities can be plotted from r = 0.

4 Conclusions

Making use of a generalized Kerr-Schild solution generating method, as described in [36],
we have constructed a family of regular black holes, namely solutions without curvature
singularities. They are characterized by the presence of an arctangent regularizing function,
and are regular solutions of specific higher-order scalar tensor theories known as DHOST
theories. The solutions are asymptotically flat and are accompanied by a regular scalar field.
They are characterized by a de Sitter or, increasingly regular core, inner and outer event
horizons and particle-like regular solutions. The latter appear depending on a certain theory
strength parameter σ (related to the mass) and could have a distinct phenomenology as
compared to black holes due to the absence of the horizon. Indeed we examined a number of
observable consequences of our solutions ranging from weaker to stronger gravity: from the
leading post-Newtonnian Eddington parameters to leading precession effects up to enhanced
geodesic light rings. It would be interesting to go beyond our initial calculations and check
for example echoes of our particle-like solutions as predicted in [67–69]. Very recent similar
studies have shown such effects in the case of Einstein-Gauss-Bonnet theories [70] and it
would be interesting to apply known methods for our analytic explicit solutions.

Our regular black hole solutions differ from existing models of regular solutions in several
ways. First of all, it is important to stress that the DHOST models for which regular black
holes exist are not finetuned by some regularizing parameter, which is usually the case for
regular black holes. Regularity of the solution is achieved directly by the form of the kinetic
X(r) function. As a direct consequence the regular solutions (once regularity of the core is
fixed) only depend on a unique integration constant, mass and a bookkeeping parameter σ
which measures the magnitude of the higher order effects (the limiting case σ → 0 gives GR).
This is a major difference with respect to the regular black holes of non-linear electrodynamic
models, since in those cases the mass, as well as the regularizing parameter (usually associated
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to a magnetic charge), are part of the non-linear electrodynamic Lagrangian. In the present
case, the regular solutions only depend on a unique integration constant, which is shown
to be proportional to the mass. We also note that the “usual” area law for the entropy is
not compatible with the regularity of our solution (2.6)–(2.8) and this is due to the theory’s
modified nature of gravity. This is quite common and understood in certain cases due to the
higher order nature of the theory (see for example [66]). In spite of the violation of the area
law, we have shown that the first law of thermodynamics is always satisfied. The regular
black hole solutions have a mass fall-off of the form arctan(rp)

r , where p > 0 is a parameter
of the theory. Note that examples of black hole solutions with such regular terms at the
origin have been encountered [71] as AdS solitons. We have seen that the small regular black
holes are thermodynamically stable since their heat capacity turns out to be positive and for
the range of values of the parameter ensuring the regularity solution, we have observed the
existence of second order phase transitions for all our regular black holes.

It would be interesting to question if regularity of such solutions in DHOST theories
persists once these are rotating. Given the recent progress in this direction [46–48] there may
be hope in such a direction, even analytically. Furthermore, it would be an interesting first
step to extend regular solutions to the presence of a time dependent scalar field in order to
understand how the picture of geodesics is altered with regularity. These are some of the
possible directions in this exciting field that we hope to pursue in the near future.
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A DHOST models for the regular solution (2.14)

Along the lines of [36], one can show that the DHOST action defined by

H(X)= − 2
3πX − p sin(πX) ,

G(X)= p2 sin(2πX)− 8p sin(πX) + 6πX
(p sin(πX)− 3πX)2 ,

A1(X)= 2p sin(πX)(p cos(πX)− 3)
X(p sin(πX)− 3πX)2 ,

K(X)=
p sin(π2X)

p−2
p cos(π2X)

p+2
p
(
B2p2 cos(2πX)−B2p2−24pX2 cos(πX)+28BpX sin(πX)−24X2)

3X2A
2
p (p sin(πX)− 3πX)2

,

and

A3(X) =
B(2p2(5B2+144X2)cos(2πX)+3p(B2p2−192X2)cos(πX)−3B2p3cos(3πX)−10B2p2+24BpXsin(πX)(−23p cos(πX)+2p2+43)−288X2)

3X2(Bp sin(πX)−6X)3
,
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where A = 2σp−1

π and B = 2
π and σ an unspecified constant, admits the following regular

black hole solution

ds2 = −

1−

2µ arctan
(

πrp

2σp−1

)

πr


 dt2 + dr2

(
1− 2µ arctan

(
πrp

2σp−1
)

πr

) + r2(dθ2 + sin2 θdϕ2),

X(r) = 2
π

arctan
(
πrp

2σp−1

)
. (A.1)
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