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Introduction

Theoretical physics is about the study of mathematical models aiming to describe nat-

ural phenomena. Mathematics, through the use of numbers, representing physical quanti-

ties, answers to a requirement of precision. For example, if we speak about length the most

precise and understandable notion the human mind has developed is to compare, using a

numerical ratio, everything to a fully apprehended object. No adjectives, like short, big, or

huge, would be ever more precise and direct than "1.86m". The clear advantage of the num-

ber is that it can accurately describe infinitely many different situations, whereas it appears

cumbersome to invent infinitely many words to do the same job. Here the meter is a univer-

sal object which serves as reference for all distances; it is called a physical unit. Hence, with

an adequate set of physical units - and the same amount of numbers - we can precisely de-

scribe any physical object, and the human mind have found no better way to express these

accurate descriptions.

Precisely describing a physical object is already very useful but we want more. We

want to be also able to foresee his movement, to predict his future behaviour; or simply

speaking, we want to describe his evolution. This evolution is expressed by the values the

physical quantities, describing the object under consideration, will take in the future. All

the relations between these past, present and future physical quantities are given through

mathematical laws forming what is called a physical model. Although one could think that

each model applies to a particular situation, in fact a same model can describe a variety of

apparently completely different phenomena. Hence the study of physical models as purely

mathematical objects has become a field of interest in its own, and is the heart of theoretical

physics.

As one of the most famous and studied model of physics, general relativity is the mod-

ern theory describing the forces of gravity. It is one of the most solid theory, in terms of

experimental verification, of today’s physics. However, it is the only fundamental theory of

classical physics which has no quantum counterpart, and this is interpreted as a problem by

many physicists; a problem already in Weinberg’s book [Wei72], and still actively discussed

nowadays [Gid]. Many ideas has been proposed to tackle this problem. Among them, the

Loop Quantum Gravity theory, developed by Carlo Rovelli and its collaborators [Rov04], or

String theories. String theories gave birth to a plethora of proposals for fundamental or ef-

fective actions and models in theoretical physics, we refer to [Str13] for an introduction. A

peculiar aspect of string theory, is that it generally requires, in order to define a well-behaved

quantum theory, higher dimensions. A second aspect is that it eventually requires a theory

7
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called supersymmetry, forming a sub-classes of string theories called superstring theories.

Supersymmetry is a theory that propose that any fundamental particle of nature posses a

kind of a dual particle, a so-called supersymmetric partner. Supersymmetry has been intro-

duce in the aim of finding a fundamental theory unifying the theories of electroweak and

strong interactions. An excellent book on supersymmetry, detailing all these ideas and more,

is [Wei00]. Some of string theories apply supersymmetry to gravity as well, the most famous

one doing it might be the M-theory [Wit95]. At low energy and large scale, quantum effects

are negligible, hence superstring theories give rise to classical theories combing gravity and

supersymmetry: supergravity. The study of supergravity theories on their own have been

then an important field of research, and have lead to many new mathematical ideas. our

main reference for general supergravity theories is [FV12].

In this manuscript, following a first part devoted to the exposition of some mathematical

concepts used in the research area surrounding supergravity, we will present three different

works we actively took part in. The first one present a model which describe electroweak

theory and gravity together, in the sense that it enjoys the same gauge invariance as these

two theories, where all fundamental fields involved are part of a unique super-connection,

following the spirit of [AVJ11]. This theory contains more fields than necessary to describe

uniquely the electroweak and gravity interactions, hence can be seen as a "mother model",

where standard physics should live in a restricted sector. The delimitation of this interest-

ing sector is sought with the help of the notions of symmetry, super-symmetry, spontaneous

symmetry breaking, and partially using the field equations of some exotic fields. In fact, a

parameterized class of effective theories is obtained and studied. The second work present

a family of Chern-Simons supergravity theories, involving a maximal amount of so-called

super-charges, for all odd dimensions, in direct continuation of [HR08]. In this theories too,

the fundamental fields are all part of a single super-connection. The super-algebras are ob-

tained through an expansion method inspired from [JO03], method which is revisited and

geometrically interpreted in the first part of the manuscript. The maximality of these Chern-

Simons supergravity theories is carefully shown and their geometric properties allowing for

a compact notation enlighted. The third work answer a problematic of [Bag+18], where a

tensionless limit of the Polyakov action, describing a string theory, is obtained. In the afore-

mentioned article, no clear path from the standard Polyakov action to its tensionless limit,

keeping a Majorana representation of the spinor fields, has been obtained. We show how

to obtain these wanted representations, by carefully examining the tensionless limit for all

mathematical object involved. A parametrized family of Clifford algebra, Majorana represen-

tation, super-field and action are built and shown to all possess a well defined tensionless

limit.



CHAPTER 1

Algebra

1. Presentation of the different types of algebras

1.1. Standard definitions.

Let K be a field. An algebra is a vector space A together with a bilinear map m : A × A →
A. There can also be algebra defined over rings, but we will not use any of them in this

manuscript. A morphism between two algebras (A,mA) and (B ,mB ) is a linear map f : A → B

such that

∀a,b ∈ A, f (mA(a,b)) = mB ( f (a), f (b)). (1.1)

An isomorphism A → A is called an automorphism of A. The set of automorphism of A is

denoted by Aut(A). It is a group for the composition. A subalgebra B of an algebra A is a

subvector space B ⊂ A such that m(B ,B) ⊂ B . An ideal I of an algebra A is a subvector space

satisfying m(A, I ) ⊂ I . An ideal is in particular always a subalgebra. If I is an ideal of A, then

the quotient vector space A⧸I inherits of a structure of algebra given by

m(a,b) = m(a,b) (1.2)

where we have used the notation a = a + I to denote the equivalent class of a. Furthermore,

the projection map (A,m) → (A⧸I ,m) is a morphism of algebra. Conversely, let A,B be alge-

bras and ψ : A → B be an algebra morphism. Then :

(1) Ker(ψ) is an ideal of A,

(2) Im(ψ) is a subalgebra of B,

(3) Im(ψ) ≃ A⧸Ker(ψ).

An algebra A is unital if it contains a unit, i.e. an element 1 such that

∀a ∈ A, m(1, a) = a. (1.3)

It is associative if

∀a,b,c ∈ A, m(m(a,b),c) = m(a,m(b,c)). (1.4)

It is commutative if associative and

∀a,b ∈ A, m(a,b) = m(b, a). (1.5)

9



10 CHAPTER 1. ALGEBRA

Let A be an algebra and B be a subalgebra of A. The normalizer of B in A, denoted by

NA(B) is the largest subalgebra of A in which B is an ideal. The set of elements commuting

with all elements of A is called the center of A and denoted by Z(A).

DEFINITION 1. Let A be an algebra. A representation of A is a pair (V ,ρ) where V is a

vector space and ρ a linear map ρ : A → End(V )

Let A be an algebra. A derivation of A is a linear map d : A → A such that

d(ab) = d(a)b +ad(b). (1.6)

The set of derivation of A is denoted by Der(A).

PROPOSITION 1. Let D be a nilpotent derivation of an algebra A. Them eD .=∑
n

Dn

n! is an

automorphism of A

1.2. Tensor algebra and tensor product.

There exists a universal associative algebra, i.e. given a vector space V , there exists an al-

gebra, the tensor algebra over V , denoted T (V ), satisfying the following universal property:

there exists an injective linear map i : V → T (V ) such that, for any linear map f from V

into an algebra (A,m), there exists a unique algebra morphism f̃ : T (V ) → A such that the

following diagram commutes:

V

i
��

f

''
T (V )

f̃
// A

(1.7)

The product of the tensor algebra is called the tensor product and denoted ⊗. Its unit is the

empty vector . The universal property above assert that any associative algebra is the quo-

tient of T (V ) by an ideal identified with Ker( f̃ ), the product being given by f̃ (a ⊗b). Hence,

another definition of an algebra is: an algebra is a vector space V together with a linear map

m : A⊗ A → A.

Tensor product between different vector spaces can also be formed. Following the pre-

ceding definition through the use of a universal property, given two vector spaces V , W over

the same field K, the tensor product V ⊗W , together with a bilinear map

⊗ : V ×W →V ⊗W, (1.8)

(v, w) 7→ v ⊗w, (1.9)

is the unique (up to isomorphism) such pair satisfying the following property: for any bilin-

ear map b : V ×W →K, there is a unique linear map b̃ : V ⊗W →K such that b = b̃ ◦⊗. In

other words we have the commutative diagram:

V ×W

⊗
��

b

''
V ⊗W

b̃
// K

(1.10)
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There is a natural isomorphism between V ⊗W and W ⊗V given by, for generic v ∈ V and

w ∈W ,

τ : v ⊗w 7→ w ⊗ v. (1.11)

1.3. Topological algebras and topological tensor product.

We have seen that the tensor product of two vector spaces A, B is the set of the finite sums∑
ai ⊗bi . (1.12)

where the ai ’s belong to A and the bi ’s to B . We can extend these notions to infinite sums by

adding a topology and requiring convergence. An algebra in which convergent infinite sum

are allowed is called a topological algebra.

An example of topological algbera is a Banach algebra. A Banach algebra is an algebra

with a norm, denoted ∥.∥, the topology is induced by the norm and as topological space it is

complete. Given two Banach algebras A, B of infinite dimension, the tensor product A⊗B is

an algebra admitting in general several different norms induced by the norms of A and B . A

common one is the so-called π-norm

∀x ∈ A⊗B , π(x) = inf

{
n∑

i=1
∥ai∥∥bi∥

/
x =

n∑
i=1

ai ⊗bi

}
(1.13)

Secondly, the normed algebra so obtained is not complete, i.e. contains Cauchy sequences

not converging to an element of A⊗B . Hence it is usual to denote by

A⊗̂πB (1.14)

the topological algebra completed with respect to the norm (1.13). Our typical topological

algebra is C∞(Rn), endowed with the sup norm ∥∥∞. In this case, the choice of the π-norm

(1.13) for the completion leads to the satisfying isomorphism:

C∞(Rn)⊗̂πC∞(Rm) ≃ C∞(Rn+m). (1.15)

1.4. Coalgebra.

The dual notion of an algebra is a coalgebra. A coalgebra is a vector space C together with a

linear map ∆ : C → C ⊗C , called the coproduct. It is common to use Sweedler’s notation for

the coproduct ∆:

∆(c) =∑
c1 ⊗ c2, (1.16)

where the sum is always finite. A counit for a coalgebra C is a map ϵ : C →K such that

(Id⊗ϵ)◦∆= (ϵ⊗ Id)◦∆= Id. (1.17)

A coalgebra C is coassociative if ∆⊗ Id = Id⊗∆, cocommutative if coassociative and

∀c ∈C ,∆(c) =∑
c1 ⊗ c2 =

∑
c2 ⊗ c1. (1.18)

Given an algebra of finite dimension A, there is a natural structure of coalgebra on its linear

dual A∗, thanks to the isomorphism (A⊗ A)∗ ≃ A∗⊗ A∗. The coproduct on A∗ is defined by

∀ f ∈ A∗, ∀a,b ∈ A,∆( f )(a ⊗b) = f (m(a,b)). (1.19)
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When the algebra is of infinite dimension, this definition does not hold in general. It works

however on the restricted vector space of linear form vanishing on ideal of finite codimen-

sion, called the finite dual, denoted A◦. We would like to explain this fact with a simple

example. Consider the algebra of polynomial over R, R[X ]. As a vector space, it admits the

basis

{1, X , X 2, X 3, . . . , X n , . . . }. (1.20)

Hence, a linear form is uniquely defined by its values on each of the X n , thus the dual of

R[X ] is the vector space of series in one variable R[[X ]], and a basis for a linear form is {tk }

tk (X n) =
 1 ifk = n

0 ifk ̸= n
. (1.21)

∆(tk ) can be easily computed using the notion of dual coalgebra. Given two polynomials

P =∑
pi X i , Q =∑

q j X j ,

tk (PQ) = ∑
i+ j=k

pi q j , (1.22)

hence

∆(tk ) = ∑
i+ j=k

ti ⊗ t j . (1.23)

Now given a linear form f , ∆( f ) would be a finite sum if and only if the expansion f =∑
fk tk

is finite, which is precisely the same as asking that f vanishes on a ideal of finite codimen-

sion. Indeed, if f =∑K
k=0 fk tk , f vanishes at least on the ideal generated by X k+1.

Let C be a coalgebra. A sub-coalgebra D of C is a sub-vector space D ⊂C satisfying

∆(D) ⊂ D ⊗D (1.24)

A coideal J of C is a sub-vector space J ⊂C satisfying

∆(J ) ⊂ J ⊗C +C ⊗ J (1.25)

In particular, any sub-coalgebra is a coideal. If J is a coideal of C , the quotient vector space
C⧸J equipped with the map ∆ defined by

∆(c) =∆(c) (1.26)

turn C⧸J into a coalgebra, and the projection map (C ,∆) → (C⧸J ,∆) is a coalgebra morphism.

Let A be a finite dimensional algebra. Suppose A = A0⊕A1 where A0 is a subalgebra. Then for

the dual coalgebra, A∗ = A∗
0 ⊕A∗

1 and A∗
1 is a coideal of A∗. Reciprocally, if A∗

1 is a coideal, A0

is a subalgebra. In the same fashion, if A0 is an ideal, A∗
1 is a sub-coalgebra and reciprocally.

It also means that the dual coalgebra of the subalgebra A0 is the quotient coalgebra A∗
⧸A∗

1

(in the case A0 is a subalgebra) and the dual coalgebra of the quotient algebra A⧸A0
is A∗

1 (in

the case A0 is an ideal).
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1.5. Tensor product of algebras and coalgebras.

Let (A,mA) and (B ,mB ) be two algebras. Then there is a natural structure of algebra on (A⊗B)

with product defined as

mA⊗B = (mA ⊗mB )(Id⊗τ⊗ Id) (1.27)

If (C ,∆C ) and (D,∆D ) are two coalgebras, there is a natural coproduct

∆C⊗D = (Id⊗τ⊗ Id)(∆C ⊗∆D ) (1.28)

turning C⊗D into a coalgebra. If A and B are finite dimensional, (A∗⊗B∗,mA⊗B
∗) is the dual

coalgebra of (A ⊗B ,mA⊗B ). If I is an ideal (resp. a subalgebra) of A, I ⊗B is an ideal (resp. a

subalgebra) of A ⊗B ; if J is a coideal (resp. a sub-coalgebra) of C , J ⊗D is a coideal (resp. a

sub-coalgebra) of C ⊗D .

1.6. Lie algebras.

A Lie algebra (over K) g is a K-algebra such that product is antisymmetric and for any a ∈ g,

left multiplication is a derivation of the algebra. As everywhere else in the literature, we write

the product of a Lie algebra with a bracket [, ]. The definition above means that

∀x, y ∈ g, [x, y] =−[y, x] (1.29)

∀x, y, z ∈ g, [x, [y, z]] = [[x, y], z]+ [y, [x, z]] (1.30)

1.7. Lie algebras and derivations.

Let A be an algebra. Then (Der(A),[,]) is a Lie algebra with

[d1,d2] = d1 ◦d2 −d2 ◦d1 (1.31)

A specificity of Lie algebras it that their products define derivations. We let Inn(g) ⊂ Der(g)

the set of inner derivations, i.e. the one of the form

a 7→ [b, a] (1.32)

for a,b ∈ g. Inn(g) is an ideal of Der(g).

1.8. Bialgebra, Hopf Algebra.

A bialgebra is a vector space endowed with both an unital associative algebra structure and a

counital coassociative coalgebra structure, denoted alltogether (A,m,1A ,∆,ϵ). Furthermore

a relation of compatibility between the two structure is required. They are the following:

(1) ∆ and ϵ are morphism of coalgebra.

(2) m is a morphism of coalgebra and ∆(1A) = 1A ⊗1A .

(3) ϵ(1A) = 1

A Hopf algebra is a bialgebra (A,m,1A ,∆,ϵ) endowed with an antipode, i.e. a map S : A → A

satisfying:

m ◦ (S ⊗ Id)◦∆= m ◦ (Id⊗S)◦∆= 1Aϵ (1.33)
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1.9. Hopf algebras and Groups.

Let G be a group, and H(G) be the set of function from G to a field K. Then H(G) is a Hopf

K-algebra whose structure is as follows (in the list, f refers to an element of H and g refers to

an element of G):

multiplication: mH( f1 ⊗ f2)(g ) = f1(g ) f2(g ),

unit: 1H : g 7→ 1K,

comultiplication: ∆H f (g1 ⊗ g2) = f (g1g2),

counit: ϵH : 1K 7→ 1H,

antipode: SH( f )(g ) = f (g−1).

Conversly, given a Hopf algebra H over a field K, the set of functions G(H) = { f : H→K}

as a natural group structure given by:

∀g1, g2, g ∈G(H),∀h ∈H, (g1 · g2)(h) = mK(g1 ⊗ g2)∆H(h) , (1.34)

g−1(h) = g (SH(h)) . (1.35)

This equivalence is a fundamental result in the theory of algebraic group: [Wat79]

THEOREM 1. Let K be a field. There is an equivalence between the category of affine group

scheme over K and the category of Hopf algebras over K.

1.10. Grading.

Let (G ,+) be an abelian group (we have in mind Z, Z2, eventually Zp ). A G-graded vector

space is a vector space V that decompose as

V = ⊕
g∈G

Vg (1.36)

An element of v ∈ Vg is called homogeneous of degree g . We denote this degree by |v |. A

morphism of G-graded vector spaces is a linear map f : V → W , with V , W two G-graded

vector spaces, preserving the degree of homogeneous elements:

∀v ∈Vg , |v | = | f (v)|. (1.37)

It is possible to extend these morphisms by allowing them to have a degree as well. The

set of these extended morphisms is what is called an inner Hom functor in the categorical

vocabulary. Practically, we add the degree of the morphism to the degree of the elements it

is applied to. With the preceding notations, if we suppose f has now degree | f | we have

| f (v)| = | f |+ |v |. (1.38)

A G-graded algebra is an algebra (A,m) such that A is a G-graded vector space and such that

m(Ag1 ⊗ Ag2 ) ⊂ Ag1+g2 (1.39)

A G-graded coalgebra is an algebra (C ,∆) such that C decompose as

C = ⊕
g∈G

Cg (1.40)
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and such that

∆(Cg ) ⊂ ⊕
g1+g2=g

Cg1 ⊗Cg2 (1.41)

Subalgebras or ideals of graded algebras or coalgebras are also naturally graded.

If A and B are two G-graded algebras (resp. coalgebras), then A⊗B is itself a G-graded algebra

(resp. coalgebra), with

(A⊗B)g = ⊕
g1+g2=g

Ag1 ⊗Bg2 (1.42)

There is another grading one can consider for the tensor product of two algebras, namely

(A⊗B)g = Ag ⊗Bg (1.43)

Note however, that
⊕

g∈G (A⊗B)g is now only a subalgebra of A⊗B .

1.11. Super-linear algebra.

A super vector space is a Z2-graded vector space : V = V0 ⊕V1. We use the notation |v | ∈
Z2 to denote the degree of an homogeneous vector v . The super-linear morphism we will

consider are the extended morphism, with degree, that we described earlier. There is a subtle

point differing from the theory of standard graded vector space. Indeed, usually the natural

isomorphism between the tensor product of two vector spaces (1.11) is replaced in the super-

linear case by the following: for homogeneous v, w we have

τ̃ : v ⊗w 7→ (−1)|v ||w |w ⊗ v. (1.44)

This is the sign rule, central in super-linear algebra, which can be resumed by the following

sentence : We add a minus sign whenever we interchange two odd symbols. This rules applies

to vectors as well as morphisms between them. A super-algebra is simply an algebra built

over a super-vector space and where the rule (1.44) is used instead of (1.11). For example, an

algebra (A,mA) was commutative when we had the equality

mA = mA ◦τ. (1.45)

Hence an algebra (A,mA) is super-commutative if

mA = mA ◦ τ̃, (1.46)

which can be succinctly written, for a,b ∈ A,

ab =−ba. (1.47)

As another example, a super-Lie algebra is an algebra G, [, ] such that, forall x, y, z ∈G,

[x, y] = (−1)|x||y |[y, x], (1.48)

[x, [y, z]] = [[x.y], z]+ (−1)|x||y |[y, [x, z]]. (1.49)

To give an example with a morphism, a super-derivation δ for a super-algebra A with homo-

geneous degree |δ| is a super-linear map satisfying

δ(ab) = δ(a)b + (−1)|δ||a|aδ(b). (1.50)

References about super-linear algebras are [CCF10] or [Tuy].
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1.12. Real Lie super-algebras.

By a complex Lie super-algebra, we mean a Z2-graded complex vector space G over C with

a linear map

[, ] :G⊗G→G, (1.51)

satisfying

∀g1, g2, g3 ∈ G, [g1, g2] = (−1)1+|g1||g2|[g2, g1], (1.52)

[g1, [g2, g3]] = [[g1, g2], g3]+ (−1)|g1||g2|[g2, [g1, g3]]. (1.53)

By a real structure on a complex Lie super-algebra G, we mean an anti linear map

J :G→G, (1.54)

such that

∀z ∈ C, ∀g ∈ G, J(zg ) = z∗J(g ), (1.55)

∀g1, g2 ∈ G, [J(g1), J(g2)] = J([g1, g2]), (1.56)

J2 = Id. (1.57)

The real form associated to the real structure J is by definition the set of fixed points of J.

A real form comes naturally with the structure of a real vector space. By a real Lie super-

algebra we mean the real form associated to a real structure defined on a complex Lie super-

algebra. Real Lie super-algebras have been studied and classified in [Kac77], [Par80]. There

is a generalization of the notion of real structure in which the condition (1.57) is relaxed to

J2|G0 = Id (1.58)

J2|G1 =±Id (1.59)

In this case, the notion of real Lie super-algebra is better understood with functors, see

[Pel03].

2. Expansion of algebras

2.1. Expanding algebras.

Let K[λ] be the algebra of polynomial in one variable λ over K. Let A be an algebra. We

first form K[λ]⊗ A. Expansion of the algebra A will be obtained as adequate quotient or

subalgebra of K[λ]⊗ A. For example, the first and natural quotient to consider is

K[λ]⧸λNK[λ]⊗ A
.= A(N ) (2.1)

As a vector space, it is given by N copies of A. Let B be a subalgebra of A. Then K[λ]⊗B is a

subalgebra of K[λ]⊗ A. One can also form B(N ) which is a subalgebra of A(N ). Also remark

that λ
MK[l ]⧸λNK[λ], M < N , is an ideal (hence a subalgebra) of K[l ]⧸λNK[λ], thus one can

form
λMK[l ]⧸λNK[λ]⊗ A

.= A(N , M) (2.2)
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Combining both subalgebra one forms

B(M)+ A(N , M) ⊂ A(N ) (2.3)

which is a subalgebra of A(N ). It structure can be understand as follows: up to order M , one

has the structure of B , after order M , one enlarge it to the one of A. One can also consider a

tower of subalgebra

B1 ⊂ B2 ⊂ ·· · ⊂ Bn ⊂ A (2.4)

and a succession of integers

0 < M1 < M2 < ·· · < Mn < N (2.5)

and form the subalgebra

B(M1)+B(M2, M1)+·· ·+B(Mn , Mn−1)+ A(N , Mn) (2.6)

If A is Z graded, one can use the natural Z grading on K[λ], given by powers of λ to form

interesting subalgebras of A(N ). For example (K[λ]⊗ A)0. One observes that the grading

goes well into the quotient, thus one can consider A(N )0. This construction can be done

conjointly with the one we just exposed. One can also consider⊕
n∈Z

λnK⊗ An . (2.7)

We can also consider a decomposition

A = A0 ⊕ A1 ⊕·· ·⊕ An (2.8)

with

m(Ap ⊗ Aq ) ⊂ ⊕
k≤p+q

Ak (2.9)

In that case, ⊕
q≤n

λq
⊕
p≤q

Ap
.=A (2.10)

is a subalgebra of K[λ]⊗ A, and, provided n < N , of A(N ) (once quotiented). One can thus

consider the subalgebra A+ A(N ,n), which can be understood as follows: an element of Ap

will always appears with power at least p. It is also possible to quotient some higher degree

terms in A(N ). The easiest case being if one has a decomposition A = A0 ⊕ A1 with A1 an

ideal. Then the highest degree subspace λN−1 A1 is an ideal and one can form the quotient

algebra A(N )⧸λN−1 A1
.

2.2. Equivalent expansion for coalgebras.

Let A be an finite dimensional algebra. We would like to show that the constructions we

made in the preceding paragraph can be seen as expansion of the dual coalgebra, i.e. the

coalgebra defined over the finite dual. In particular A(N ) is dual to

A∗[N ]
.=K[λ]≤N ⊗ A∗ (2.11)

and all subalgebra of A(N ) we obtained are dual to quotient algebras of A∗[N ], and can

be constructed directly as such. In particular, all constructions of [JO03] are just some of

the construction of this coalgebra method, presented differently. In this article, the authors
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wanted to find an expansion in the spirit of the original article of Wigner and Inönü [IW53].

In their constructions, they interpret the indeterminate λ as a deformation parameter. How-

ever their presentation is far less direct than our. Furthermore, we will find a geometrical

interpretation of this construction at the end of the section devoted to jets.

3. Theory of Lie algebras

We have already defined Lie algebras. We now wish to present some further aspects on

their theory. The references we are using for this sections are mainly [Boe63], [Hum72] and

lectures notes taught by Victor Kac.

3.1. Nilpotent, solvable, semisimple and simple Lie algebras.

Let g be a Lie algebra. Then the series of ideals

g(0) = g⊇ g(1) = [g,g(0)] ⊇ g(2) = [g,g(1)] ⊇ ... ⊇ g(n) = [g,g(n−1)] ⊇ ...

is called the lower central series and the series of ideals

g0 = g⊇ g1 = [g0,g0] ⊇ g2 = [g1,g1] ⊇ ... ⊇ gn = [gn−1,gn−1] ⊇ ...

is called the derived series. An algebra for which g(n) = 0 for some n is called nilpotent and

an algebra for which gn = 0 for some n is called solvable. A Lie algebra is semisimple if

it contains no solvable ideals. A Lie algebra is simple if its only ideals are 0 and itself. A

well-known proposition states that a semisimple Lie algebra is a direct product of simple Lie

algebras

3.2. Killing form.

A standard representation of a Lie algebra g is through real- or complex-valued matrices,

where the Lie bracket of two of its elements is computed by

∀a,b ∈ g, [a,b] = ab −ba. (3.1)

However another representation always exists for Lie algebras. Indeed the Lie algebra g itself

is a vector space, and the map

ad : g→ End(g), (3.2)

a 7→ [a,−]
.= ada , (3.3)

define a representation of g on itself called the adjoint representation. Using this adjoint

representation, we can define a bilinear map

K : g×g→K, (3.4)

K (a,b) = Tr(adaadb), (3.5)

called the Killing form of the Lie algebra g. It is symmetric, and invariant in the sense

K ([a,b],c) = K (a, [b,c]).
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PROPOSITION 2. Let g be a finite dimensional complex Lie algebra. g is semisimple if and

only if its Killing form is non degenerate. Furthermore, if g is semisimple and h is an ideal of g,

then the Killing form of g restricted to h is non degenerate and coincides with the Killing form

of h.

3.3. Rank of a Lie algebra.

Let g be a Lie algebra. For a ∈ g consider the characteristic polynomial of ada

pada (λ) =λn + cn−1(a)λn−1 + ...+ c0(a). (3.6)

The rank of a Lie algebra is the smallest integer r such that

∃a ∈ g cr (a) ̸= 0. (3.7)

An element a ∈ g is called regular if cr (a) ̸= 0 and singular otherwise. There are other equiv-

alent ways to define the rank of a Lie algebra.

3.4. Weights.

Given a vector space V over C (or any algebraically closed field) and an endomorphism f ∈
End(V). Then V decomposes as

V =⊕Vλ Vλ = {v ∈V /∃n ∈N/( f −λI dV )n(v) = 0} (3.8)

In the case of a Lie algebra g with a representation (V ,ρ), for any given element a ∈ g we write

V a
λ

for the decomposition with respect to the endomorphism ρ(a). For example, given a Lie

algebra g and a ∈ g, and ρ is the adjoint representation, we use the notation

g=⊕ga
λ. (3.9)

However a more interesting case happens when λ is not a number but a linear form λ ∈ g∗,

g∗ the vector space dual of a Lie algebra g. In this case, the subspace

Vλ = {v ∈V /∀a ∈ g,ρ(a)v =λ(a)v}, (3.10)

is called a weight space. If Vλ ̸= {0} then λ is called a weight of the representation (V ,ρ). This

allows some kind of simultaneous decomposition of V .

The existence of weights is ensured by the following theorem:

THEOREM 2 (Lie’s theorem).

Let g be a solvable complex Lie algebra and (V ,ρ) a finite dimensional representation of it.

There exists a non zero weight space.

3.5. Cartan’s subalgebra.

Let g be a Lie algebra. A Cartan’s subalgebra of g is a subalgebra h which satifies

(1) h is nilpotent

(2) Ng(h) = h.

A well-known proposition states that a Cartan’s subalgebra is a maximal nilpotent subalge-

bra.
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THEOREM 3. Cartan’s theorem

Let g be a finite dimensional Lie algebra over C (or any algebraically closed field of character-

istic 0). Let a ∈ g be a regular element. Then ga
0 is a Cartan subalgebra of g.

As a remark, we have dim(ga
0 ) = r =rank(g). This is simply because the dimension of ga

0

is equal to the power of the factor X in the characteristic polynomial p(X ) of ada , which is

equal to the rank of g since a is regular. As a second remark, we have that any Lie algebra

posses at least one Cartan subalgebra.

PROPOSITION 3. Let g be a finite dimensional complex Lie algebra and h a Cartan subal-

gebra of g. Let

g= ⊕
λ∈h∗

gλ (3.11)

be the weight space decomposition of the adjoint representation of h on g. Then g0 = h.

Proof : On the one hand, as h is nilpotent, ∀a ∈ h, ada |h is nilpotent showing h⊂ g0. On

the other hand, suppose h ̸= g0. Then

g0⧸h

is not zero so we can consider the quotient representation ad of h on it. As it consist only of

nilpotent operators, ∀a ∈ h, by first Engel’s theorem, there exist

b ∈ g0⧸h

such that

∀a ∈ h,ada(b) = 0

Let b be a preimage of b in g. Then we have ada(b) ∈ h - i.e. b ∈ Ng(h) and b ∉ h, which

contradict the fact that h is a Cartan subalgebra.

□
The next theorem shows that all Cartan subalgebra are equivalent from a theore tical point

of view.

THEOREM 4. Chevalley’s theorem

Let g be a finite dimensional Lie algebra over C and let

G =
{

eadx , x ∈ g, adx is nilpotent
}

. (3.12)

Any two Cartan subalgebra of g are conjugated by an element of G.

3.6. Roots space decomposition.

DEFINITION 2. Let g be a finite dimensional complex Lie algebra and h a Cartan subalge-

bra. A weight of the adjoint representation of h on g is called a root. The decomposition

g= h⊕ ⊕
α∈h∗\{0}

gα (3.13)
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is called the root space decomposition. We call

∆=
{
α ∈ h∗ \ {0}

/
gα ̸= {0}

}
. (3.14)

the set of roots, a name that will be explained in the next paragraph. Just before we would

like to present some properties of the root space decomposition:

PROPOSITION 4. Keeping the notation of definition 2,

a) h is a maximal abelian subalgebra,

b) ∀a ∈ h, ada is diagonalizable.

c) dim(gα) = 1,

d) If α,β,α+β ∈∆, then [gα,gβ] ⊂ gα+β,

e) If α ∈∆, then nα ∈∆⇔ n =±1.

In particular, we see that gα⊕g−α⊕[gα,g−α] forms an sl2 subalgebra. In fact, this propo-

sition shows that the whole structure of the Lie algebra is encoded in its root space decom-

position. For example, given two elements a ∈ gα, b ∈ gβ, their bracket [a,b] in non vanishing

if and only if α+β is either 0 or a root, in which case it belongs to gα+β (or h if α=−β).

3.7. Root system.

The name "root space" for ∆ linked to a mathematical concept called "root system". Let V

be a finite dimensional vector space with a non degenerate symmetric bilinear form 〈,〉. A

root system ∆ in V is a finite subset of V satisfying the following properties:

(1) Vect(∆) =V ,

(2) ∀α ∈∆, λα ∈∆⇔λ=±1,

(3) ∀α,β ∈∆, β−2 〈β,α〉
〈α,α〉α ∈∆,

(4) ∀α,β ∈∆, 2 〈β,α〉
〈α,α〉 ∈Z.

The link between root space and root system is made by the following celebrated theo-

rem.

THEOREM 5. Let g be a semisimple finite dimensional complex Lie algebra, g= h⊕⊕
α∈∆gα.

Then ∆ is a root system of h∗.

In order to see ∆ as a root system, we need a non degenerate symmetric bilinear form. It

is given by the dual K ∗ of the Killing form K of g. In details, we define first the isomorphism

ν : h→ h∗, (3.15)

a 7→ K (a,−). (3.16)

abd then K ∗ by

K ∗ : h∗×h∗ →K, (3.17)

K ∗(α,β) = K (ν−1(α),ν−1(β)). (3.18)

Conversely, proposition (4) (and a bit of work) shows that any root system give rise to a Lie

algebra; in other words the correspondence between root system and Lie algebras is 1-1.
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Root systems can be used to apprehend the structure of semisimple Lie algebras. For exam-

ple, a root system ∆ is called decomposable whenever it can be written ∆ = ∆1 ∪∆2, with

〈∆1,∆2〉∗ = 0. Otherwise it is called indecomposable. Applied to the root space of a semisim-

ple Lie algebra, this notion gives:

THEOREM 6. Let g be a semisimple finite dimensional complex Lie algebra and ∆ its root

system. g is simple if and only if ∆ is indecomposable.

Hence, in order to classify all simple Lie algebras, it is sufficient to classify all root sys-

tems.

3.8. Simple roots.

Let V be a finite dimensional vector space and ∆ a root system in V . Let f ∈ V ∗ be a linear

form such that f does not vanish on any element of ∆. Then f separate ∆ in two subsets; ∆+
containing the elements α for which f (α) > 0, called positive roots, and ∆− those α for which

f (α) < 0 called negative roots. We can give a partial order on the set of roots. We say that a

root α is bigger than another root β, and we write α≻β, if α−β is a root and if it is positive.

A positive root is said decomposable if it is possible to write it as a sum of two other positive

roots. A non decomposable positive root is called simple. The set of simple roots form a basis

of the surrounding vector space V , and hence of the root system ∆. Given a set (α1, . . . ,αn)

of simple roots of an indecomposable root system, the matrix C whose entries are

Ci j =
2〈αi ,α j 〉
〈α j ,α j 〉

, (3.19)

is called the Cartan matrix of the root system. Cartan matrices are independent of the linear

form f used to define the positive roots. Two roots system with the same Cartan matrix are

isomorphic (the definition of isomorphism for root systems can be found in [Hum72]) and

give rise to the same simple Lie algebra. Hence the classification of Cartan matrices is equiv-

alent to the classification of simple Lie algebras. There are rules to build Cartan matrices, see

[Hum72]. Cartan matrices can be represented by drawings called Dynkin diagrams.

3.9. Weights and irreducible representations of Lie algebra.

We have already given a definition of weights in paragraph 3.4. In view of the next theorem,

we give a second definition.

DEFINITION 3. Let g be a simple Lie algebra, h a Cartan subalgebra, ∆⊂ h∗ the root space.

A weight is a vector λ ∈ h∗ such that, ∀α ∈∆,

2〈α,λ〉
〈α,α〉 is an integer. (3.20)

A weight is called (strongly) dominant if (3.20) is a (strictly) positive integer. Weights are

partially ordered by the following relation

λ1 <λ2 if and only if λ2 −λ1 is a sum of positive roots. (3.21)
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The fundamental weights are the weights dual to the simple roots; i.e. they are those weights

λi satisfying

2〈α j ,λi 〉
〈α j ,α j 〉

= δi j , (3.22)

where δi j is the Kronecker symbol and {α j } the set of simple roots. The next two theorems

show the correspondence between weights in the sense of (3) and irreducible representations

THEOREM 7. Let (V ,ρ) be an irreducible representation of a simple Lie algebra g and h

a Cartan subalgebra of g. Then there exists a dominant weight λ such that Vλ is a weight

subspace of V , has dimension 1 and V decompose as a direct sum of weight spaces Vµ. Fur-

thermore each weight is of the form µ= λ−∑
kiαi , where ki are integers and αi simple roots.

In other words, λ is higher than any other weight µ.

In the above theorem, λ is called the highest weight of the representation.

THEOREM 8. Let g be a simple Lie algebra, and λ a dominant weight. There exists, up two

isomorphism, one and only one representation whose highest weight is λ.

We write V (λ) for the irreducible representation with highest λ. Finally, it is possible to

show that, given two dominant weights λ, µ

V (λ+µ) ⊂V (λ)⊗V (µ). (3.23)

Hence, it is possible to construct any irreducible representation from the fundamental rep-

resentations V (λi ), where the λi are the fundamental weights.

3.10. Structure of so(2n).

This section present the root space decomposition of the complex Lie algebra so(2n), i.e. the

set of complex matrices a ∈ M2n(C) satisfying

T a +a = 0. (3.24)

We define the matrices

E =
 0 i

−i 0

 X =
 1 i

−i 1

 (3.25)

Y =
 1 −i

−i −1

 Z =
1 i

i −1

 (3.26)

Let

h=




h1E

h2E
. . .

hnE

 , (h1,h2, . . .hn) ∈Cn


. (3.27)
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h is a Cartan subalgebra of so(2n). We define εi ∈ h∗ by

εi


h1E

h2E
. . .

hnE

= hi (3.28)

Next we define, for i < j ,

Aεi−ε j =


X

−T X


, (3.29)

with X at the (i , j )-th entry and T X at the ( j , i )-th one. Similarly, still for i < j ,

A−εi+ε j =


T X

−X


, (3.30)

Aεi+ε j =


Y

−T Y


, (3.31)

A−εi−ε j =


Z

−T Z


. (3.32)

We can check that for any H ∈H,

[H , Aα] =α(H)Aα, α=±εi ±ε j (3.33)

The set of roots of so(n), n even is thus

∆= {±εi ±ε j }. (3.34)

To define the set of positive roots, we can take the linear form

f : h∗ →C, (3.35)

εi 7→ n − i . (3.36)
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Thus the positive roots are

{εi +ε j }i ̸= j ∪ {εi −ε j }i< j . (3.37)

The simple roots are

{ε1 −ε2,ε2 −ε3, . . . ,εn−1 −εn ,εn−1 +εn}. (3.38)

Because Tr(E) = 2, we have

ν(hi E) = 1

2
εi , (3.39)

where ν is the isomorphism defined in (3.16). Thus

K ∗(εi ,ε j ) = 1

2
δi j (3.40)

(δ is the Kronecker symbol). We can compute the Cartan matrix

C =



2 −1 0 . . . 0 0 0

−1 2 −1
. . . 0 0 0

0 −1 2
. . . 0 0 0

...
. . .

. . .
. . .

...
...

...

0 0 0 . . . 2 −1 −1

0 0 0 . . . −1 2 0

0 0 0 . . . −1 0 2



(3.41)

The fundamental weights are

{ε1,ε1 +ε2,ε1 +ε2 +ε3, . . . ,ε1 +ε2 +·· ·+εn−2,

1

2
(ε1 +ε2 +·· ·+εn−1 +εn),

1

2
(ε1 +ε2 +·· ·+εn−1 −εn)}. (3.42)

3.11. Spin representations.

The representations associated to the fundamental weights {ε1,ε1 +ε2, . . . ,ε1 +ε2 +·· ·+εn−2}

can all be obtained from the defining representation (3.24). However, the representations as-

sociated to 1
2 (ε1 +ε2 +·· ·+εn−1 +εn) and 1

2 (ε1 +ε2 +·· ·+εn−1 −εn) can not. They are called

"spin representations". A similar spin representation exists for the Lie algebra so(2n + 1).

These spin representation play a crucial role in physics. Indeed in quantum mechanics,

physical objects are described mathematically through states, which are elements of pro-

jective Hilbert spaces (A projective Hilbert space is the set of line of an Hilbert space). As

dynamical objects, these physical states must belongs to some representation of the Lorentz

group; a projective representation. The projective representations of the Lorentz group are

obtained thanks to the spin representations of it ([Wei96] [Bar54]). One of the aim of su-

pergravity is precisely to combine gravity with these physical spin representations, called

spinors. The spin representations are themselves obtained as subrepresentation of Clifford

algebras, which is the topic of our next chapter.





CHAPTER 2

Clifford algebras and their representations

This Chapter is devoted to the classification of Clifford algebra and their representa-

tions, as well as deriving symmetry properties of these representations. Our main reference

is [Fig19]

1. Construction

1.1. Quadratic form.

Let K = R or C. Let V be a finite dimensional vector space over K. Let B be a symmetric

bilinear form

B : V ×V → K. (1.1)

The associated quadratic form is

Q(x) = B(x, x). (1.2)

Reciprocally, if Q is a quadratic form, the associated symmetric bilinear form is

B(x, y) = 1

2
(Q(x + y) −Q(x) − Q(y)). (1.3)

The pair (V,Q) is called a quadratic vector space.

1.2. Definition.

Let (V,Q) be a quadratic vector space. We already have the tensor algebra T (V ) over V . We

define the Clifford algebra as a quotient of this tensor algebra by

Cl(V ,Q)
.= T (V )⧸〈x ⊗x −Q(x)〉. (1.4)

where 〈x ⊗x −Q(x)〉 is the ideal generated by all elements of the form (x ⊗x −Q(x)).

1.3. Universal property.

Let (V,Q) be a quadratic vector space and A be a unital associative algebra over K. The K-

linear map φ : V → A is called Clifford if it satisfies

φ(x)2 =−Q(x)1A . (1.5)

The Clifford algebra is universal in the sense that if such a map exists, then there is a mor-

phism of algebras

f : Cl(V ,Q) → A (1.6)

27
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such that the following diagram commutes

V

i
��

φ

''
Cl(V ,Q)

f
// A

(1.7)

where i : V → Cl(V ,Q) denotes the canonical inclusion inherited from V ,→ T (V ).

1.4. Basis.

Let {ei } be a basis of V diagonalizing B and n = dim(v); we write γi = i (ei ). For a general

vector v ∈ V , v =∑n
i=1 vi ei , we write /v = i (v) =∑n

i=0 viγi . As a quotient of the tensor algebra,

the Clifford algebra is generated by {γi }. A vector space basis of the Clifford algebra is given

by

{1,γi ,γi1i2 , ...,γi1...,in }, (1.8)

with

γi1...ip = 1

p !

∑
σ∈Sp

γσ(i1)...γσ(ip ). (1.9)

It has dimension 2n .

2. Pin group, Spin group and spinorial representations

As the Clifford algebra is unital associative it contains a multiplicative group formed by in-

vertible elements called the Clifford group. We denote this group by Cl×(V ,Q). Any element

of this group define an inner automorphism by

Cl×(V ,Q) → Aut(Cl(V ,Q)) (2.1)

x 7→ [y 7→ x y x−1]

Let v, w ∈ V with Q(v) ̸= 0. We check that /v is invertible (with inverse − v
Q(v) ) and that

−/v /w /v−1 = /w −2
B(v, w)

Q(v)
/v

So /v /w /v−1 belongs to i (V ) and as i is injective it is possible to send this element back to

V . Doing so, we define a linear isomorphism of V, that we will denote by Ãdv . One check

that Ãdv is in fact the reflection with respect to the hyperplan orthogonal to v , so that Ãdv ∈
O(V ,Q) (i.e. Ãdv preserve the quadratic form Q : Q(Ãdv (w)) =Q(w)).

DEFINITION 4. We define the following subgroups of Cl×(V ,Q) :

a) P̃ (V ,Q) = {x ∈ Cl×(V ,Q)/∀v ∈ V , Ãdx (/v) ∈ i (V )}

b) P (V ,Q), the group generated by {/v} with Q(v) ̸= 0.

c) Pin(V ,Q), the group generated by {/v} with Q(v) =±1.

d) Spin(V ,Q) = Pin(V ,Q)∩Cl0(V ,Q)
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These definitions are made to clarify the different definitions that one can find in the

literature. In fact it is possible show that P̃ (V ,Q) take values in O(V ,Q) and its kernel is

K×1Cl(V ,Q), with K× are the non zero elements of K and where K = R or C is the field over

which V is a vector space. It is also possible to show that P (V ,Q) → O(V ,Q) has the kernel

K×1Cl(V ,Q) ∩P (V ,Q). The next step is to show that Ker
(
Pin(V ,Q) → O(V ,Q)

) = ±1Cl(V ,Q) and

that Pin(V ,Q) is a double cover of O(V ,Q). Finally, using Cartan-Dieudonné theorem, one

shows that Spin(V ,Q) is sent to SO(V ,Q) by Ãd.

3. Classification of Clifford algebras

From now on, the quadratic form Q will be assumed non degenerate.

3.1. The low dimensional real Clifford algebras.

We start with the classification of real Clifford algebras, which means that K=R. In the

diagonalizing basis {ei }, B take the form1s

−1t

 . (3.1)

We call Cl(s,t) the associated Clifford algebra.

Cl(0,0) is the algebra consisting of scalar multiples of 1. So it is isomorphic to R.

Cl(1,0) is the algebra generated by 1 and γ satisfying γ2 = −1. It isomorphic to C

with isomorphism x1+ yγ 7→ x + i y.

Cl(0,1) is the algebra generated by 1 and γ satisfying γ2 = 1. We define Γ± = 1±γ
2 .

Γ± are complementary projectors satisfying Γ2
± = Γ±, Γ+Γ− = 0. It isomorphic to

R⊕R with isomorphism xΓ++ yΓ− 7→ (x, y).

Cl(2,0) is the algebra generated by 1, γ1 and γ2 satisfying γ1
2 = γ2

2 = −1, γ1γ2 =
−γ2γ1. It isomorphic to H with isomorphism

x1+ yγ1 + zγ2 +wγ1γ2 7→ x + i y + j z +kw.

Cl(1,1) is the algebra generated by 1, γ1 and γ2 satisfying γ1
2 = −1, γ2

2 = 1, γ1γ2 =
−γ2γ1. It isomorphic to M2(R) with isomorphism

x1+ yγ1 + zγ2 +wγ1γ2 7→
 x + z y +w

−y +w x − z

 .

Cl(0,2) is the algebra generated by 1, γ1 and γ2 satisfying γ1
2 = γ2

2 = 1, γ1γ2 =
−γ2γ1. It isomorphic to M2(R) with isomorphism

x1+ yγ1 + zγ2 +wγ1γ2 7→
 x + y z +w

z −w x − y

 .
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3.2. Two propositions regarding matrices.

PROPOSITION 5. For K = R, C or H, ∀ m,n ∈ N*,

Mn(K) ⊗R Mm(R) ≃ Mmn(K).

In particular

Mn(K) ≃K⊗RMn(R).

Proof : For the second statement, note that the matrices E i
j , with 0 everywhere except

at the (i,j)-entry which is 1, form a basis of Mn(K) which makes the isomorphism trivial (k ⊗
E i

j 7→ kE i
j ). So we just need to show Mn(R)⊗Mm(R) = Mnm(R). This follows from the fact

that the tensor product of matrices is the Kronecker product and that

E i
j ⊗E k

l =


i
...

j . . . E k
l

 .

PROPOSITION 6.

a)C⊗RH≃ M2(C), (3.2)

b)H⊗RH≃ M4(R), (3.3)

c)C⊗RC≃C⊕C.

Proof :

a Consider H as a C-vector space with basis {1, j }. Let Φ : C×H → LC(H) defined

by Φ(z, q)(x) = zxq̄ . Φ is R bilinear so it define a linear map Φ̃ : C⊗RH → LC(H).

Writing any quaternion as q = z1 + z2 j we have a natural isomorphism LC(H) ≃
M2(H). Check that Φ̃ is a morphism of R-algebra which is injective, and that C⊗RH
and M2(C) have the same real dimension.

b Define Φ ∈H×H→ LR(H) by Φ(q1, q2)(x) = q1xq̄2 and use the same argument.

c Define p± = (1⊗ 1± i ⊗ i ). Use p±2 = p±, p+p− = 0, p+ + p− = Id. This gives an

isomorphism C⊕C→ C⊗RC, explicitely (z1, z2) 7→ z1p++ z2p−.

3.3. Classification of all real Clifford algebras.

PROPOSITION 7. For all n,s,t we have the following isomorphisms:

a)Cl(n,0)⊗Cl(0,2) ≃ Cl(0,n +2),

b)Cl(0,n)⊗Cl(2,0) ≃ Cl(n +2,0) ,

c)Cl(s, t )⊗Cl(1,1) ≃ Cl(s +1, t +1).
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Proof : For a) let {e1,e2} the standard basis of R(0,2) and γ1,γ2 their image in Cl(0,2).

Accordingly discompose R(0,n+2) = R(0,n) ⊕Re1 ⊕Re2 and define a map

φ : R(0,n+2) → Cl(n,0)⊗Cl(0,2), (3.4)

x 7→ /x ⊗γ1γ2, (3.5)

ei 7→1⊗γi . (3.6)

Then we have

(φ(x +λe1 +µe2))2 = (/x ⊗γ1γ2 +λ1⊗γ1 +µ1⊗γ2)2, (3.7)

=−/x2 ⊗1+λ21⊗1+µ21⊗1+λ/x ⊗ (γ1γ2γ1 +γ1γ1γ2), (3.8)

+µ/x ⊗ (γ1γ2γ2 +γ2γ1γ2)+λµ1⊗ (γ1γ2+γ2γ1), (3.9)

= (QR(n,0) (x)−QR(0,2) (λe1 +µe2))1⊗1, (3.10)

=−QR(0,n+2) (x +λe1 +µe2)1⊗1. (3.11)

So φ is a Clifford map. Hence there is a unique morphism

f : Cl(0,n +2) → Cl(n,0)⊗Cl(0,2). (3.12)

All the generators {γi⊗1}n
i=1∪1⊗γ1∪1⊗γ2 are in the image of φ (note that γi⊗1=φ(γiγn+1γn+2).

Furthermore the two algebras have the same dimension, finishing the proof. The proofs of

b) and c) follow the same line (use the same morphism).

Now with these 2 propositions and the classification of low dimensional Clifford algebras

we made before, one get the following table

t
s 0 1 2 3

0 R C H H⊕H
1 R⊕R M2(R) M2(C) M2(H)

2 M2(R) M2(R)⊕M2(R) M4(R) M4(C)

3 M2(C) M4(R) M4(R)⊕M4(R) M8(R)

4 M2(H) M4(C) M8(R) M8(R)⊕M8(R)

5 M2(H)⊕M2(H) M4(H) M8(C) M16(R)

6 M4(H) M4(H)⊕M4(H) M8(H) M16(C)

7 M8(C) M8(H) M8(H)⊕M8(H) M16(H)
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t
s 4 5 6 7

0 M2(H) M4(C) M8(R) M8(R)⊕M8(R)

1 M2(H)⊕M2(H) M4(H) M8(C M16(R)

2 M4(H) M4(H)⊕M4(H) M8(H) M16(C)

3 M8(C) M8(H) M8(H)⊕M8(H) M16(H)

4 M16(R) M16(C) M16(H) M16(H)⊕M16(H)

5 M16(R)⊕M16(R) M32(R) M32(C) M32(H)

6 M32(R) M32(R)⊕M32(R) M64(R) M64(C)

7 M32(C) M64(R) M64(R)⊕M64(R) M128(R)

In order to complete the table, one uses the following isomorphism

PROPOSITION 8. a) Cl(n+8,0) ≃ Cl(n,0) ⊗M16(R),

b) Cl(0,n+8) ≃ Cl(0,n) ⊗M16(R),

c) Cl(s+4,t+4) ≃ Cl(s,t) ⊗M16(R).

Proof : For a) we use

Cl(n +8,0) ≃ Cl(2,0)⊗Cl(0,2)⊗Cl(2,0)⊗Cl(0,2)⊗Cl(n,0), (3.13)

≃H⊗M2(R)⊗H⊗M2(R)⊗Cl(n,0), (3.14)

≃ M16(R)⊗Cl(n,0).

and similarly for b. For c the proof uses

Cl(s +4, t +4) ≃ Cl(1,1)⊗4 ⊗Cl(s, t ) ≃ M16(R)⊗Cl(s, t ).

Corollary :

Cl(s +8, t ) ≃ Cl(s +8− t ,0)⊗Cl(1,1)⊗t ≃ Cl(s − t ,0)⊗Cl(1,1)⊗t ⊗M16(R), (3.15)

≃ Cl(s, t )⊗M16(R), (3.16)

Cl(s, t +8) ≃ Cl(s, t )⊗M16(R). (3.17)

Using this corollary and recording that Cl(1,1) = M2(R) so that tensoring with it does not

change the type of the algebra, we get the following table(n = s + t).

s - t [8] Cl(s,t)

0 M
2

n
2

(R)

1 M
2

n−1
2

(C)

2 M
2

n−2
2

(H)

3 M
2

n−3
2

(H)⊕M
2

n−3
2

(H)

4 M
2

n−2
2

(H)

5 M
2

n−1
2

(C)

6 M
2

n
2

(R)

7 M
2

n−1
2

(R)⊕M
2

n−1
2

(R)
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3.4. The subalgebra Cl0(V ,Q).

The tensorial algebra T (V ) is Z-graded and thus Z2-graded. The ideal

IQ
.= 〈x ⊗x −Q(x)〈, (3.18)

is homogeneous for the Z2-grading so the Clifford algebra inherits a Z2-gradation. Accord-

ingly we decompose

Cl(V ,Q) = Cl0(V ,Q)⊕Cl1(V ,Q). (3.19)

Note that Cl0(V ,Q) is a subalgebra of Cl(V ,Q). Its basis is given by the even elements of

the basis of Cl(V ,Q), hence its dimension is 2n

2 = 2n−1.

PROPOSITION 9.

Cl(s, t ) ≃ Cl0(s +1, t ) ≃ Cl0(t , s +1).

In particular Cl0(s, t ) ≃ Cl0(t , s).

Proof : Let

φ :
R(s,t ) → Cl0(s +1, t )

x 7→ /x ⊗γs+1
. (3.20)

φ is a Clifford map, hence it extends to a morphism of algebras Cl(s, t ) → Cl0(s + 1, t ). The

image of this extension contains all the generators γi j so that it is surjective and that both

algebras have the same dimension. The proof of the second isomorphism follows the same

lines.

3.5. Classification of Cl0(V ,Q).

With the help of the preceding isomorphism, it is easy to classify the algebras Cl0(s, t ). (the

following classification fails only for (s,t) = (0,0), in which case Cl0(s, t ) ≃R.

s - t [8] Cl0(s, t )

0 M
2

n−2
2

(R)⊕M
2

n−2
2

(R)

1,7 M
2

n−1
2

(R)

2,6 M
2

n−2
2

(C)

3,5 M
2

n−3
2

(H)

4 M
2

n−4
2

(H)⊕M
2

n−4
2

(H)

3.6. Complex Clifford algebras.

If (V,Q) is a real quadratic vector space, its complexification (VC,QC) is given by

VC =V ⊗C (3.21)

QC(v ⊗ z) = z2Q(v)

PROPOSITION 10. (VC,QC) ≃ Cl(V ,Q)⊗C

Proof : The map V ×C→ Cl(V ,Q)⊗RC ; (v, z) 7→ /v ⊗R z is R-bilinear, from what we get a

linear map φ : V o ×RC→ Cl(V ,Q)⊗RC ;

φ(v ⊗R z) = /v ⊗R z = (/v ⊗R 1)z =φ(v ⊗R 1)z
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and thus φ is also C-linear. Finally

φ(v ⊗R 1)2 = (/v ⊗R 1)2 =−Q(v)(1⊗R 1)

so the application is Clifford, whence it extends uniquely to a morphism of complex algebras

Φ : Cl(VC,QC) → Cl(V ,Q)⊗RC

The generating set {/v ⊗1} is in the image of Φ and both algebras have the same dimension,

so Φ is an isomorphism.

3.7. Notations.

If (V,Q) is a real quadratic vector space, we call ClC(V ,Q) the associated complex Clifford

algebra. If (V ,Q) is a real quadratic vector space, we can always find a basis of VC in which

BC is the identity. So there is no signature for complex quadratic forms. Accordingly, complex

Clifford algebras are uniquely determined by their dimensions. We will denote them ClC(n).

3.8. The 2-periodicity of complex Clifford algebras.

PROPOSITION 11. ∀n ∈ N, there is an isomorphism

ClC(n +2) ≃ ClC(n)⊗CM2(C). (3.22)

Proof : Let Cn+2 = Cn ⊕Ce1 ⊕Ce2. Define

φ :

Cn+2 → ClC(n)⊗CM2(C)

x 7→ /x ⊗Cσ1

e1 7→ 1⊗C iσ2

e2 7→ 1⊗C iσ3

, (3.23)

where x ∈ Cn and

{σi } =


0 1

1 0

 ;

0 −i

i 0

 ;

1 0

0 −1

 , (3.24)

are the Pauli matrices. Then we check that

φ(x +λe1 +µe2)2 = /x2 ⊗Cσ1
2 +λ21⊗C (iσ2

2)+µ2 ⊗C (iσ3)2 +λ/x ⊗C i (σ1σ2 +σ2σ1),

+µ/x ⊗C i (σ1σ3 +σ3σ1)−λµ1⊗C (σ2σ3 +σ3σ2) (3.25)

=−Q(x +λe1 +µe2), (3.26)

so the map φ is Clifford. Thus it extends to a morphism

Φ : ClC(n +2) → ClC(n)⊗CM2(C). (3.27)

This map is surjective as its image contains the generators of the target algebra, and both

algebras have the same dimension.
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3.9. Classification of complex Clifford algebras.

Using complexification of real Clifford algebras we obtain the first two complex Clifford al-

gebras

ClC(0) ≃R⊗RC≃C,

ClC(1) ≃ (R⊕R)⊗RC≃C⊕C.

Then we use the preceding theorem to get

ClC(2n) ≃ M2n (C),

ClC(2n +1) ≃ M2n (C)⊕M2n (C).

3.10. ClC,0(n).

As well as for their real equivalent, complex Clifford algebras admit aZ2-grading, whose even

part ClC,0 is a subalgebra. Furthermore we have

ClC,0(n) ≃ ClC(n −1) (3.28)

A proof of this result can easily be obtain by complexifying real Clifford algebras. From the

preceding classification of complex Clifford algebras one obtains the following classification

ClC,0(2n) ≃ M2n−1 (C)⊕M2n−1 (C),

ClC,0(2n +1) ≃ M n
2 (C).

4. Classification of representation of Clifford Algebras

4.1. Matrix rings and their representation.

Let R be a ring and M be a R-module. M is simple if and only if the only submodules of M

are M and 0

LEMMA 1. Schur’s Lemma.

Let R be a ring and M, N be simple R-modules. If φ : M → N is a morphism of R-modules,

then φ = 0 or φ is an isomorphism. For a simple module M the ring EndR (M) is a division

ring.

Proof : Ker(φ) and Im(φ) are submodules of M and N respectively.

For A ∈ Mn(K), we call

Li j (A) the matrix with all rows being 0 except the jth one which is the ith one of A.

Ci j (A) the matrix with all columns being 0 except the jth one which is the ith one of

A.

PROPOSITION 12. ∀ A ∈ Mn(K),

E i
j A = Li j (A),

E i
j A =C j i (A),

E i
r AE s

j = ar s E i
j .

with ar s the (r,s)-component of A.
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PROPOSITION 13. Mn(K) is a simple ring (its only bilateral ideals are 0 and itself).

Proof : Let J be a non-zero bilateral ideal of Mn(K). Then there exist A ∈ J and (r,s) such

that ar s ̸= 0. Then

∀ (i , j )E i
j = E i

r AE s
j ∈ J , (4.1)

and J = Mn(K).

PROPOSITION 14. Let R = Mn(K) and ei = E i
i .

a Ci = Rei is a left ideal of R. In particular it is a left module of R, and it is simple as

such.

b Any simple left R-module is isomorphic to Kn .

c As a left R-module, R is isomorphic to C1 ⊕C2 ⊕ ...⊕Cn .

Proof : c is a consequence of a and the fact that any matrix is the direct sum of its

columns.

a Let A ∈ Rei . Then A is of the form (0,0,...,C,...,0) where C is some column. Now for

B ∈ R, BA is also of the form (0,0,...,C,...,0) and the first assertion is proved. Now let

J be a non zero submodule of Rei and A ∈ J , A ̸= 0. So there is r such that ar i ̸= 0.

Thus E i
i = 1

ar i
E i

r A ∈ J and thus Rei ⊂ J , which proves the second assertion.

b Let M be a simple left module and m ∈ R, m ̸= 0. Then

1R ·m = (
∑

i
ei )m =∑

i
ei ·m. (4.2)

As m ̸= 0, ∃ i /ei ·m ̸= 0. Fix such an i. Let

φ :
Rei → M

r ·ei 7→ r ·ei m
. (4.3)

φ is an morphism of left R-module and φ ̸= 0 as φ(1R · ei ) ̸= 0. Hence φ is an iso-

morphism. Finally there is an obvious isomorphism of left R-module Ci = R ·ei ≃Kn

given by (0, ...,C , ...,0) 7→ C .

PROPOSITION 15. Let R = Mn(K) ⊕ Mn(K). Then the simple left R-modules are (up to

isomorphism) (Kn ,0) and (0,Kn).

Proof : Let N be a left R-module. Let p1 = (1Mn (K),0) and p2 = (0,1Mn (K)). As p1 and

p2 commutes with any elements of R, p1N and p2N are sub-R-modules of N. As pi
2 = pi ,

p1p2 = 0 and p1 + p2 = 1R , N = p1N ⊕ p2N . Thus if N is simple, N = p1N or N = p2N .

But in that case, N is a left Mn(K)-module, equally simple as such. Thus N ≃ Kn as a left

Mn(K)-module, and this isomorphism can be extended to an isomorphism of left R-module

with appropriate action of pi .

THEOREM 9. Let R = Mn(K). Then any R-module is completely reducible (or semisimple)
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Proof : Let N be a non zero R module and n ∈ N. Let ei be the matrix whose only non-

zero entry is 1 at the (i,i) entry. We know that Rei is a simple left R-module. Let Ni = Rei n,

it is a simple left R-module as well. So N contains at least one non zero semisimple N-

submodule. Let P be the set of all semisimple N-submodule, ordered by inclusion. Then

for any linearly ordered subset Q = {Mi } of P, ⊕i Mi is a maximal element of Q. Thus we can

apply Zorn’s lemma to get a maximal semisimple submodule M of N. If M ̸= N , then N⧸M
is a non trivial R-module. By the above, we can find a simple submodule S of N⧸M . If we

let S be its preimage in N, then S ⊕M is a semisimple submodule of N strictly containing M,

contradicting its maximality. Thus M = N and N is semisimple.

PROPOSITION 16. Let R = Mn(K)⊕ Mn(K). Any left R-module is a direct sum of simple

R-modules.

Proof : The proofs of 15 and 9 together.

PROPOSITION 17. Let A = Mn(K) and B = Mm(K′). Any A-B-bimodule is a direct sum of

simple A-B-modules. Any two A-B simple bimodules are isomorphic.

Proof : Similar, using A = ⊕i Aei and B = ⊕i e ′i B . The simple module is Mn,m(K") where

K" is given by propositions 1 and 2 above. Be careful of the largest commuting subfield of K

and K′.

4.2. Skolem-Noether Theorem. (Originally published in [Sko27].)

THEOREM 10. Let A = Mn(K) and K′ = Z(A). Any K′-linear automorphism of A is inner,

i.e. if f is an automorphism of A, there is an x ∈ A such that ∀a ∈ A, f (a) = xax−1

Proof : Consider A as an A bimodule in two ways, i.e. by (a ⊗ a′) ·m = ama′ and (a ⊗
a′) · f m = am f (a′). Call A f the second bimodule. It is a direct sum of the simple A-bimodule

A, and as both are isomorphic vector space over K′ they are ismorphic as bimodule. Let

φ : A → A f be this isomorphism. In particular, φ is a morphism of left A-module. So

φ(a) = φ(a ·1) = aφ(1) = a · x

Now as φ is an isomorphism, x need to be invertible. As a morphisme of right A-module, we

have

φ(a) = φ(1 ·a) = φ(1) · f a = x f (a)

.

4.3. Real Clifford algebras.

Let A be a real Clifford algebra. The goal of this section is to classify all finite dimensional

representation of A.

DEFINITION 5. A (real) representation of A is a pair (ρ, V) where V is a R-vector space and

ρ is a unital R-linear morphism A → EndR(V ).
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Any representation (ρ,V) of the algebra A gives V a structure of A-module. This leads to

several remarks.

DEFINITION 6. A representation (ρ,V) is called irreducible if the A-module V is simple.

Similarly, a representation (ρ,V) is called completely reducible if the A-module V is semisimple.

From the fact that the Clifford algebras have only semisimple modules, we need only to

determined their irreducible representations.

DEFINITION 7. Let (ρ,V) be a real representation of A. We say that (ρ,V) is of type K if the

set of all automorphism of V commuting with ρ is equal to K.

PROPOSITION 18. In the preceding definition, K is a division ring (if we add 0).

Proof : Suppose V is irreducible. An automorphism of V commuting with the representa-

tion of A is an automorphism of simple A-module. This result is thus Schur’s lemma. Now if

V is not irreducible, it can be written as a direct sum of irreducible one. The requirement of

being an automorphism exclude morphism which will be 0 on some simple summand and

non 0 on another.

We recall the famous Frobenius theorem

THEOREM 11. The only finite dimensional associative division algebras over the real num-

bers are the real numbers themselves R, the complex C and the quaternions H.

It follows that the only possibilities for K are R, C or H. In that case we will say that V

is a K-vector space and ρ has target space EndK(V ). A special attention need to be done on

quaternionic vector spaces. Here scalar act on the right for quaternionic vector spaces and

quaternionic matrices act on the left. Moreover, any irreducible representation is given by

a simple module. Thus from the classification of simple modules we know the form of irre-

ducible representation. When A = Mn(K), this representation is Kn and thus the morphism

ρ is a morphism Mn(K) → Mn(K).

DEFINITION 8. Two K-representations (ρ1,V1), (ρ2,V2) are equivalent if there exist a K-

linear isomorphism φ : V1 → V2 such that

∀a ∈ A, φ◦ρ1(a) = ρ2(a)◦φ

We will start now to classify irreducible representation of Clifford algebras. We begin

with the case A = Mn(K). If K = R or H, we know from Skolem-Noether theorem that any

R-morphism Mn(K) → Mn(K) can be written as ρ(a) = xax−1 i.e. ρ(a)x = xa for some

x ∈ GLn(K). The morphism defined by x is K-linear with our convention that quaternionic

scalars act on the right and quaternionic matrices on the left. Thus any irreducible repre-

sentation of Mn(K) is equivalent to the natural representation of the algebra of matrices on

vectors.
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When K=C, a representation ρ is a R-linear morphism Mn(C) → Mn(C). Any R-linear mor-

phism ρ can be written as the sum of a C-linear one and conjugate C-linear one ρ = Λ+C

with

Λ(a) = ρ(a)− iρ(i a)

2
, (4.4)

C (a) = ρ(a)+ iρ(i a)

2
. (4.5)

ρ is unital so ρ(1) = 1 =Λ(1)+C (1). Also, as algebra isomorphism, ρ needs to preserve the

center. As the center is the field C, ρ restricted to the center is a field automorphism of C

preserving R. There are only two of such, the identity or the complex conjugation. So we

have

ρ(i1) =Λ(i1)+C (i1) = 2iΛ(1)− i1, (4.6)

Λ= ρ if ρ(i1) = i1, (4.7)

Λ= 0 if ρ(i1) =−i1. (4.8)

So either ρ is C-linear or C-antilinear. If ρ is C-linear, we have, by Skolem-Noether theo-

rem ρ(a) = xax−1 for some invertible complex matrix x. Similarly, if ρ is C-antilinear ρ(a) =
y ay−1 for some invertible y. In the first case, the representation is equivalent to the tau-

tological representation ρ(a) = a and in the second case it is equivalent to the conjugate

representation ρ(a) = a. Thus we have two inequivalent representations of the real algebra

Mn(C).

Finally, if A = Mn(K)⊕Mn(K), we know that its simple modules are either (Kn ,0) or (0,Kn).

Then the same analysis applies to these simple modules. As here we only have K = R or

H, there are only two irreducible representations. This ends our classification of irreducible

representations of real Clifford algebras.

4.4. Representations of Complex Clifford Algebras.

Let A be a complex Clifford algebra. We know from the classification above that A ≃ Mn(C)

or A ≃ Mn(C)⊕ Mn(C). Thus the unique simple A-modules are Cn or (Cn ,0) and (0,C). As

a representation of a complex Clifford algebra is now a C-linear map, A admits respectively

only 1 or 2 irreducible representations by Skolem-Noether theorem.

DEFINITION 9. Let V be a complex vector space. A real structure on V is an antilinear map

J such that J 2 = I dV . A quaternionic structure on V is a antilinear map J such that J 2 =−I dV .

From a complex representation of a complex Clifford algebra ClC(n), one can recover the

representations the real algebra Cl(s, t ), where s+t = n, with the help of a real or quaternionic

structure, commuting with the representation. Of course the existence of such operator is

provided only in the case these representations were real or quaternionic respectively.
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5. Representation of complex Clifford algebra

5.1. Generating set.

Let (V ,Q) be a quadratic vector space. Let {ei } be the orthonormal basis of V w.r.t Q (the one

in which B is a diagonal matrix with entry ±1). We suppose we have a map φ : ei 7→ Γi where

{Γi } is the free set of some matrix algebra Mn(K), where the Γi ’s satisfy

ΓiΓ j +Γ jΓi =−2Bi j . (5.1)

Then we can extend this map by linearity to all of V and the map thus obtained is au-

tomatically Clifford. By universality of the Clifford algebra, we have an algebra morphism

Cl(V ,Q) → Mn(K), i.e. a representation. If we are in the case where we already had an irre-

ducible representation (ρ,Kn) of the Clifford algebra Cl(V,Q), with ρ taking value in Mn(K),

and there is only, up to equivalence, one irreducible representation, we know that there is

some matrix X such that Γi = Xρ(γi )X −1. This argument will be use here to obtain represen-

tations enjoying specific symmetry properties.

5.2. Unitary representations.

We will focus on complex Clifford algebra in even dimensions. In that case, we know the

Clifford algebra is isomorphic to Mn(C). We consider an irreducible representation (ρ,Cn) of

this algebra. The γi ’s generate a finite multiplicative group G in the Clifford algebra of order

2n . Also, Cn has a canonical hermitian form h. We define

H(x, y) = 1

2n

∑
g∈G

h(ρ(g )x,ρ(g )y) (5.2)

Any element of G is unitary for the hermitian form H . Any hermitian form can be diago-

nalized (and rescaled), so let Γi the matrix associated to ρ(γi ) in the basis where H is the

identity. the γi ’s define an equivalent representation of ρ. So we have shown

PROPOSITION 19. It is always possible to choose a representation ρ in which every matrix

ρ(γi ) is unitary (with respect to the canonical hermitian form of Cn).

In this paragraph, we have made a distinction between the abstract Clifford element γi

and a matrix representing it Γi = ρ(γi ). We will not make this distinction anymore in the

sequel, and simply write γi for the Clifford generator and its representation, that we assume

to be a unitary matrix. (5.1) implies that γi
2 =±1. So γi =±γi

−1. By unitarity of γi ,

γi =±γi
†. (5.3)

In such a representation, as any other, the γi ’s satisfy (5.1). But then an easy calculation

show that {tγi }, {γ∗i } and −γi
† satisfy also (5.1). By the discussion above, there are invertible
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matrices A, B and C such that

tγi = Aγi A−1 (5.4)

γi
∗ = Bγi B−1 (5.5)

−γi
† =Cγi C−1

5.3. A concrete representation.

We start with complex Clifford algebras. We recall that the Clifford algebra in even dimen-

sion d is M2d/2 (C) and M2(d−1)/2 (C)⊕ M2(d−1)/2 (C) in odd dimension. It is generated by anti-

commuting elements γa , the so-called gamma matrices. In any irreducible representation of

the Clifford algebra they can be chosen to be unitary. Their anticommutation relations imply

γa = γa
† (5.6)

For example, we can use the explicit representation

γ1 =σ1 ⊗1⊗·· ·⊗1, (5.7)

γ2 =σ2 ⊗1⊗·· ·⊗1, (5.8)

γ3 =σ3 ⊗σ1 ⊗1⊗·· ·⊗1, (5.9)

γ4 =σ3 ⊗σ2 ⊗1⊗·· ·⊗1, (5.10)

. . . , (5.11)

γd =σ3 ⊗·· ·⊗σ3 ⊗σ2. (5.12)

for even dimensions. For odd dimension the ultimate γ matrix is

γd =σ3 ⊗·· ·⊗σ3. (5.13)

The σi are the Pauli’s matrices.

5.4. Basis of irreducible representation and the matrix γ∗.

We will use the common notation

γa1...an = 1

n!

∑
σ∈Sn

γaσ(1) . . .γaσ(n) , (5.14)

and

γ∗ = γ1 . . .γd . (5.15)

For an irreducible representation, a basis of M2d/2 (C) is

{1, γa , . . . , γa1...an , . . . , γ∗}, (5.16)

for even d and

{1;γa ; . . . ;γa1...a d−1
2

}, (5.17)

for odd d . γ∗ satisfies the following commutation relation with the other gamma matrices:

γ∗γa1...an = (−)(d−1)nγa1...anγ∗. (5.18)
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In particular in odd dimension it commutes with any other gamma matrices, and ,as they

form a basis of the algebra of matrices, must be proportional to the identity. Now

γ∗2 = (−)
d(d−1)

2 1 (5.19)

so

γ∗ =±i ( d(d−1)
2 )1 (5.20)

In odd dimension there exists two unequivalent irreducible representations of the Clifford

algebra, we will see in a moment that they are characterized by the value of γ∗. One go from

one to the other with the change :

γa →−γa (5.21)

It is obvious that if {γa} generates an irreducible representation, then {−γa} generates one as

well. To see that they are not equivalent, one of them as its γ∗ equal i ( d(d−1)
2 )1. Under the

transformation (5.21), γ∗ is changed to minus itself, and the to γ∗ cannot be similar, as 1 is

not similar to −1.

5.5. Symmetry of gamma matrices.

5.5.1. Existence and unitarity of C.

We start by looking only of the even dimensional case. As {γa
T } satisfies the Clifford relations

γa
Tγb

T +γb
Tγa

T = δab (5.22)

it can be used define an irreducible representation of the Clifford algebra. By uniqueness of

it, there exists some matrix C such that:

CγaC−1 = γa
T (5.23)

By the same argument, there exists also a matrix C̃ such that:

C̃γaC̃−1 =−γa
T (5.24)

From these two relations one infers

Cγa1...an C−1 = (−)
n(n−1)

2 γT
a1...an

(5.25)

C̃γa1...an C̃−1 = (−)
n(n+1)

2 γT
a1...an

(5.26)

Next, on the one hand one has(
Cγa1...an C−1

)† = (−)
n(n−1)

2 (C−1)†γT
a1...an

C † (5.27)

On the other hand (
Cγa1...an C−1

)† = (−)
n(n−1)

2 (γT
a1...an

)† (5.28)

= γa1...an
T (5.29)

= (−)
n(n−1)

2 Cγa1...an C−1 (5.30)

Thus

C †Cγa1...an = γa1...an C †C (5.31)
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So

C †C =α1 (5.32)

C †C is hermitian so α ∈R. It is possible to rescale

C → 1p
α

C (5.33)

So we can always choose C to be unitary. This we will do for the rest of this exposition.

5.5.2. The ϵ-sign, even dimension.

The corollary of γa
† = γa is γa

T = γa
∗. Thus

Cγa1...an C−1 = γ∗a1...an
(5.34)

Using the same argument as above, we find

C∗C = ϵ1 (5.35)

Using the unitarity of C ,

C∗ = 1

ϵ
C−1 = 1

ϵ
C † (5.36)

C = 1

ϵ
C T = 1

ϵ2 C (5.37)

leading to

ϵ=±1 (5.38)

Using this fact we get

Cγa1...an = ϵ(−)
n(n−1)

2 (Cγa1...an )T (5.39)

The same reasoning applies to C̃ i.e. :

C̃ †C̃ =1 (5.40)

C̃ T = ϵ̃C̃ ϵ̃=±1 (5.41)

C̃γa1...an = ϵ̃(−)
n(n+1)

2 γa1...an (5.42)

To find the sign of ϵ, we use the following trick: As for {γa1...an }, {Cγa1...an } form a basis of

the algebra of matrices M2d/2 (C). In particular they are linearly independent. Furthermore

they are either symmetric or antisymmetric. Now the number of antisymmetric matrices is

known to be 2d/2(2d/2−1)
2 . One the other hand, there are

d∑
n=0

1

2

[
1−ϵ(−)

n(n−1)
2

](
d

n

)
(5.43)

antisymmetric matrices among the Cγa1...an . So we have to fix ϵ so that this two numbers are

equal. To compute (5.43) we go as follow. First we decompose

d∑
n=0

(
d

n

)
(−)

n(n−1)
2 =

d⧸2∑
j=0

(
d

2 j

)
(−) j +

d⧸2∑
j=0

(
d

2 j +1

)
(−) j (5.44)
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To compute each sum we compute

(1+ i )d = 2d/2

[
cos(

dπ

4
)+ i sin(

dπ

4
)

]
(5.45)

=
d⧸2∑
j=0

(
d

2 j

)
(−) j + i

(d⧸2)−1∑
j=0

(
d

2 j +1

)
(−) j (5.46)

Taking respectively real and imaginary part of the preceding expressions we obtain

d⧸2∑
j=0

(
d

2 j

)
(−) j = 2d/2 cos(

dπ

4
) (5.47)

(d⧸2)−1∑
j=0

(
d

2 j +1

)
(−) j = 2d/2 sin(

dπ

4
) (5.48)

From what (5.43) is found to be

1

2

2d −2d/2ϵ

(
cos(

dπ

4
)+ sin(

dπ

4
)

) (5.49)

Hence we have

ϵ=
 +1 d ≡ 0,2 [8]

−1 d ≡ 4,6 [8]
(5.50)

For ϵ̃ (5.43) has to be replaced by

d∑
n=0

1

2

[
1− ϵ̃(−)

n(n+1)
2

](
d

n

)
(5.51)

which is equal to

1

2

2d −2d/2ϵ̃

(
cos(

dπ

4
)− sin(

dπ

4
)

) (5.52)

and thus the values for ϵ̃ are:

ϵ̃=
 +1 d ≡ 0,6 [8]

−1 d ≡ 2,4 [8]
(5.53)

5.5.3. The ϵ-sign, odd dimension.

In odd dimension there are two inequivalent irreducible representations of the Clifford al-

gebra. As {γT
a } and {−γT

a } are related by the transformation (5.21), they generate the two

inequivalent irreducible representations. Thus the representation generated by {γa} is either

equivalent to the one generated by {γT
a } or to the one generateedd by {−γT

a } but never both.

This in turn implies that always one of the two matrices C , C̃ exists, but never both. To see

wich one, recall that

γ∗ =±i ( d(d−1)
2 )1 (5.54)

This implies that

γ∗T = γ∗ =Cγ∗C−1 = (−)
d(d−1)

2 γ∗T (5.55)

Forcing

(−)
d(d−1)

2 = 1 =⇒ d ≡ 1 [4] (5.56)
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Thus the matrix C can only exist in dimension d ≡ 1 [4], and therefore C̃ can only exist for

d ≡ 3 [4].

5.5.4. The different signs of ϵ and ϵ̃.

Now we can compute ϵ and ϵ̃ for the dimensions where the matrices C and C̃ exists. We use

the same method as for the even dimension, but in this case we pay attention to the fact that

a basis of M2(d−1)/2 (C) is given by:

{1, γa , . . . , γa1...a d−1
2

} (5.57)

or by

{γa1...a d−1
2

, . . . ,γ∗} (5.58)

To take this into account one has to multiply (5.43) ((5.51) for ϵ̃) by an additional 1
2 factor.

This gives

1

4

d∑
n=0

(
d

n

)[
1−ϵ(−)

n(n−1)
2

]
= 1

4

2d −ϵ2(d/2

(
cos(

dπ

4
)+ sin(

dπ

4
)

) (5.59)

1

4

d∑
n=0

(
d

n

)[
1− ϵ̃(−)

n(n+1)
2

]
= 1

4

2d − ϵ̃2(d/2

(
cos(

dπ

4
)− sin(

dπ

4
)

) (5.60)

Which gives

ϵ=
 +1 d ≡ 1 [8]

−1 d ≡ 5 [8]
ϵ̃=

 +1 d ≡ 7 [8]

−1 d ≡ 3 [8]
(5.61)

5.5.5. Summary.

The following table and formula condensate the above development.

Cγa1, ... , an = ϵ(−)
n(n−1)

2 (Cγa1, ... , an )T (5.62)

C̃γa1, ... , an = ϵ̃(−)
n(n+1)

2 (C̃γa1, ... , an )T (5.63)

d (mod 8) ϵ ϵ̃

0 +1 +1

1 +1

2 +1 -1

3 -1

4 -1 -1

5 -1

6 -1 +1

7 +1

5.6. Change of representation.

We made our calculations assuming the gamma matrices to be hermitian. In an arbitrary

representation,

γ′a = P−1γaP (5.64)
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the matrix C transform as

C ′ = P T C P (5.65)

The relation

C ′T = ϵC ′ (5.66)

is conserved. Exactly the same happens to C̃ .

Finally let us mention that in the explicit representation given in (5.7)-(5.13), one can use∏
i
γ2i

∏
i
γ2i+1 (5.67)

for C and/or C̃ . When the dimension is even, one of the two matrix above is C , the other is

C̃ , when the dimension is odd, both of them are either C or C̃ .

6. Representation of real Clifford algebras

6.1. Generators in a given signature, hermitian conjugates.

In the real case, one has to consider the signature of the bilinear form defining our Clifford

algebra. We will say it has t minus signs and s = d − t plus signs and we will denote it Cl(s, t ).

The set of generators of Cl(s, t ) is obtained by replacing

γa → iγa a = 1 . . . t (6.1)

We have then

γa
† =

 −γa a = 1 . . . t

+γa a = t +1 . . . d
(6.2)

We introduce a new matrix:

A = γ1 . . .γt (6.3)

With it, one can rewrite (6.2) as

γa
† = (−)t Aγa A−1 = (−)

t (t−1)
2 Aγa A (6.4)

This is extended to all gamma matrices:

γ†
a1...an

= (−)nt+ n(n−1)
2 +1 Aγa1...an A−1 (6.5)

Under a similarity transformation (a choice of another equivalent representation), the rela-

tion changes as:

γ′a = P−1γaP (6.6)

γ′a
† = (−)t A′γ′a A′−1 (6.7)

A′ = P † AP (6.8)

The following relation stays true in any representation

A′† = (−)t (t+1)/2 A (6.9)

One can also define the matrix

Ã = γt+1 . . .γd (6.10)
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It satisfies

Ãγa Ã−1 = (−)d−t+1γ†
a =

 (−)t+1γa
† when d is even

(−)tγa
† when d is odd

(6.11)

6.2. The Dirac conjugation.

Let V (that we will identify with Cm) be the irreducible representation like in (6.17), but

whose element are odd (Grassmann). We want to build an hermitian form on V invariant

under the orthogonal group SO(s, t ) associated to the bilinear form defining the Clifford al-

gebra. Such an hermitian form will be of the form:

〈v1, v2〉 = v1
†Dv2 (6.12)

where D satisfy

D† =−D (6.13)

γ†
abD =−Dγab (6.14)

We check that the second condition is always satisfied if we take D proportional to A. In

regard to the first condition, we can take D = i p A, where p is the opposite parity of t (t+1)
2 :

p ≡ t (t +1)

2
+1[2] (6.15)

The Dirac conjugation is defined as

v = v†D (6.16)

6.3. Real and quaternionic structures.

Let V be the vector space defining the irreducible representation. By this we understand that

the representation is given by a C-linear map

ρ : Cl(s, t ) →GL(V ) (6.17)

A real structure for the representation is an antilinear map

J : V →V (6.18)

commuting with ρ and squaring to the identity. A quaternionic structure is the same thing

but it square to minus the identity instead1. We make the identification V = C⌊d/2⌋. The

representation ρ is now given by what we called earlier the gamma matrices and both the

structure we just discussed can be represented by a matrix B :

v 7→ B v∗ v ∈ V (6.19)

where from now on ∗ will denote complex conjugation. One sees that the squaring property

of J implies

BB∗ =1 for a real structure (6.20)

BB∗ =−1 for a quaternionic structure (6.21)

1Physicists often call real representation "Majorana" and quaternionic one "Symplectic-Majorana"
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and the "commuting with the ρ" property implies

γa1...an
∗ = B−1γa1...an B (6.22)

6.4. Under a change of representation, B transforms as

γ′a = P−1γaP (6.23)

B ′ = P−1BP∗ (6.24)

6.5. Existence of real and quaternionic structures.

Suppose such a matrix B exists. Then

γT
a = (−)t B † Aγa(B † A)−1 = (−)d−t+1B † Ãγa(B † Ã)−1 (6.25)

When d is even, one has

γT
a = (−)t B † Aγa(B † A)−1 = (−)t+1B † Ãγa(B † Ã)−1 (6.26)

but when d is odd

γT
a = (−)t B † Aγa(B † A)−1 = (−)t B † Ãγa(B † Ã)−1 (6.27)

which is to be expected because when d is odd, Ã = ±A. Thus when d is odd we see that

there is a limitation. Only one of the two matrices C , C̃ exists, thus B can exist only for

{t ≡ 0 mod 2 and d ≡ 1 mod 4} or {t ≡ 1 mod 2 and d ≡ 3 mod 4. Furthermore, B is unique.

In even dimension however, two B (we call them B and B̃ we they coexist). In other words

d ≡ 0 mod 2, t ≡ 0 mod 2 B = (C A−1)† B̃ = (C̃ Ã−1)

d ≡ 0 mod 2, t ≡ 1 mod 2 B = (C̃ A−1)† B̃ = (C Ã−1)

d ≡ 1 mod 4, t ≡ 0 mod 2 B = (C A−1)†

d ≡ 3 mod 4, t ≡ 1 mod 2 B = (C̃ A−1)†

(6.28)

Next we compute BB∗. We use a standard unitary representation.

(C A−1)†(C A−1)T = AC−1(A−1)T ϵC = ϵA(C−1 AT C )−1 = ϵ(−)
t ()t−1

2 (6.29)

(C̃ A−1)†(C̃ A−1)T = ϵ̃(−)
t (t+1)

2 (6.30)

(C Ã−1)†(C Ã−1)T = ϵ(−)
(d−t )(d−t+1)

2 (6.31)

(C̃ Ã−1)†(C̃ Ã−1)T = ϵ̃(−)
(d−t )(d−t+1)

2 (6.32)
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Leading to

d ≡ 0 mod 4, t ≡ 0 mod 4 BB∗ = ϵ B̃ B̃∗ = ϵ̃
d ≡ 0 mod 4, t ≡ 1 mod 4 BB∗ =−ϵ̃ B̃ B̃∗ =−ϵ
d ≡ 0 mod 4, t ≡ 2 mod 4 BB∗ =−ϵ B̃ B̃∗ =−ϵ̃
d ≡ 0 mod 4, t ≡ 3 mod 4 BB∗ = ϵ̃ B̃ B̃∗ = ϵ
d ≡ 1 mod 4, t ≡ 0 mod 4 BB∗ = ϵ
d ≡ 1 mod 4, t ≡ 2 mod 4 BB∗ =−ϵ
d ≡ 2 mod 4, t ≡ 0 mod 4 BB∗ = ϵ B̃ B̃∗ =−ϵ̃
d ≡ 2 mod 4, t ≡ 1 mod 4 BB∗ =−ϵ̃ B̃ B̃∗ = ϵ
d ≡ 2 mod 4, t ≡ 2 mod 4 BB∗ =−ϵ B̃ B̃∗ = ϵ̃
d ≡ 2 mod 4, t ≡ 3 mod 4 BB∗ = ϵ̃ B̃ B̃∗ =−ϵ
d ≡ 3 mod 4, t ≡ 1 mod 4 BB∗ =−ϵ̃
d ≡ 3 mod 4, t ≡ 3 mod 4 BB∗ = ϵ̃

(6.33)

Even if it has been computed in a specific representation, this result is independent of

it. Also observe that for d ≡ 0 mod 4, ϵ= ϵ̃ while for d ≡ 0 mod 4, ϵ=−ϵ̃. Thus we can resume

the preceding table by:

t BB∗

4k ϵ

4k +1 −ϵ̃
4k+2 −ϵ
4k+3 ϵ̃

For example if we consider the case t = 1, i.e. the Lorentzian signature in the mostly plus

case, we find that real representations exist in dimension d ≡ 2,3,4[8] while if we consider

the mostly minus signature t = d −1 real representations exist for d ≡ 0,1,2[8].

6.6. Majorana conjugation and usual physicist’s conventions.

In standard convention, the Majorana conjugate ψC of a spinor ψ is defined to be

ψC =
 ψT C (in even dimensions)

ψT C̃ (in odd dimensions)
(6.34)

According to the preceding paragraph, for us a Majorana spinor is a spinor which satisfies

ψ= J(ψ) = Bψ (6.35)

while it standard definition is

ψ=ψC (6.36)

In order for both to agree we set

B =
 (DC−1)T (for even t)

(DC̃−1)T (for odd t)
(6.37)

From now on, whenever we speak of a matrix B , it will be the one of (6.37) (no more reference

to α will be made).
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6.7. A last remark.

When a real structure exist, it is always possible to go to a real representation. Indeed, B has

an eigenvector, call it u. Then u∗, and v = u+u∗
2 are also eigenvectors of B . Furthermore, v

satisfies B v∗ = v . We also have

B(γa1...an v)∗ = BB−1γa1...an B v∗ = γa1...an v (6.38)

Thus we can find a basis {vi } such that ∀i , B v∗
i = vi . Let P be the change-of-basis-matrix,

{ei } the original basis and B ′ = P−1BP∗ the B matrix in the new basis. We have:

vi = Pei =⇒ v∗
i = P∗ei =⇒ B−1vi = P∗ei =⇒ vi = BP∗ei (6.39)

=⇒ P−1vi = P−1BP∗ei =⇒ ei = B ′ei =⇒ B ′ = Id (6.40)



CHAPTER 3

Differential Geometry

Differential geometry is the geometrical theory supporting classical field theory. Hence

we shall recall its most basics definitions, like the ones of manifolds and fiber bundles. In

particular, the theory of connection is of central importance, as gauge fields in physics cor-

responds to local connection one-form in differential geometry. Their action on other physi-

cal fields, like vector fields, is expressed through covariant derivatives, another mathematical

object presented in this chapter. We will also present some more advanced topics, like super-

manifolds, used in an attempt of a fully geometric description of super-gravity, see [Ede20],

or as framework of the super-field approach [Del+99], [Cas18].

1. Manifolds

1.1. Introduction.

Manifold refers to certain class of topological spaces. Somehow, these are the nicest topo-

logical spaces after finite dimensional vector spaces and are gluing of them. They have all

properties needed to define differentiability. We will start by the notion of real manifold

1.2. Differentiable map.

Let U be an open subset of Rn . An application f : U →Rm is called differentiable at x ∈Rn if

there exists a linear map Jx :Rn →Rm such that

lim
h→0

|| f (x +h)− f (x)− Jx (h)||
||h|| = 0. (1.1)

(|| · || is the usual euclidean norm). If f is differentiable at every point x ∈U , and Jx is invert-

ible for every x ∈U as well, then f is called a diffeomorphism. f is two times differentiable

if it is differentiable and the application

Rn →Rmn , x 7→ Jx (1.2)

is itself differentiable; the definition goes on for k times differentiable. f is smooth if it is k

times differentiable for any k ∈N.

1.3. Charts and atlases.

Let M be a Hausdorff, secondly countable topological space and let T (M) denotes its topol-

ogy. A local chart on M is a open set U ∈ T (M) together with an homeomorphism φ from

U to some subset of Rn . An atlas A of M is the data of a covering of M by local charts with

the restriction that for any two local charts (U ,φ : U →Rn), (V ,ψ : V →Rm), the dimension

of the target vector space is the same i.e. m = n ; and on any non empty intersection of local

51
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charts, i.e. if U ∩V ̸= ; the map φ ◦ψ−1 : Rn → Rn is a diffeomorphism. In case φ ◦ψ−1 is

smooth with smooth inverse we speak about a smooth manifold. Given two atlases A1, A2 of

M, we say that A2 is a refinement of A1 if any local chart of A1 can covered by local charts of

A∈. This gives a partial ordering ≤ on the set of atlases on M , and, still in the case where A2

id a refinement of A1, we write A1 ≤A2. Two atlases are compatible if there exists an atlas

bigger than both of them, and a atlas is called maximal if it is a maximum with respect to this

ordering. A topological space with a maximal atlas is called a manifold. A choice of a local

chart allows to speak of local coordinates, that we will often denote by {x1, . . . , xn}, which are

the image of the natural coordinates of Rn by the chosen chart.

1.4. Morphisms.

Morphisms of manifolds are applications f : M → N , with M , N two manifolds, such that

for any x ∈ M and local charts (φα,Uα ∋ x), (ψβ,Vβ ∋ f (x), the application ψβ ◦ f ◦φ−1
α is

differentiable (or smooth).

1.5. Partition of the unity.

Let M be a topological space. A partition of the unity on M is a set of continuous maps

{ fα : M →R}

such that

∀x ∈ M , {α/ fα(x) ̸= 0}

is a finite set and ∑
α

fα(x) = 1

We recall that the support of a function f : M →R, denoted supp( f ) is the closure of the set :

{x/ f (x) ̸= 0}

Let M be a manifold. Let (Uα,φα) be an atlas on M and { fβ} a partition of the unity on M. We

say that { fβ} is subordinate to (Uα,φα) if

∀β ∃α /supp( fβ) ⊂Uα

The Hausdorff secondly countable assumptions we imposed in our definition of mani-

folds ensure the following theorem.

THEOREM 12. Let M be a manifold and {(Uα,φα)} an atlas of M. There exists a partition

of the unity subordinate to {(Uα,φα)}.

2. Sheafs

2.1. Definition.

A presheaf O of sets over a topological sapce M is the assignment of a set O(U ) to each open

set U of M such that, for every open set included into another U ⊂ V there is a restriction

map rV ,U : O(V ) →O(U ) subject to the transitivity condition:

U ⊂V ⊂W =⇒ rW,U = rV ,U ◦ rW,V (2.1)
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and rU ,U = IdO(U ). An element sU ∈O(U ) is called a section of O over U . A sheaf is a presheaf

satisfying the additional condition that given an open set U , covered by a family of open sets

(Vi ), and a family of section si ∈O(Vi ), compatible in the sense that they satisfy rVi ,Vi∩V j (si ) =
rV j ,Vi∩V j (s j ), there exist a unique section s ∈O(U ) such that si = rU ,Vi (s).

2.2. Example.

Here a simple example of a presheaf. Consider a topological space M . Define the constant

presheaf C by C(U ) =R for any open set U . This presheaf is not a sheaf. Indeed consider two

disjoint open sets U and V and the sections 1 ∈ C(U ) and 2 ∈ C(V ). There is no section of

C(U ∪V ) whose restriction on U is 1 and whose restriction on V is 2.

2.3. Stalk.

Given a presheaf over a topological space, the stalk Ox are defined as the direct limit lim
x∈U

O(U ),

with order given by reverse inclusion. In other words, an element sx ∈Ox corresponds to an

equivalence class of elements sU ∈OU , with equivalence relation

sU ∼ sV ≡∃W /W ⊂U ∩V /rU ,W (sU ) = rV ,W (sW ). (2.2)

The elements sx ∈Ox are called germs at x of sections of O.

When the sets O(U ) are rings, one speaks about a (pre)sheaf of rings. A topological space

M together with a sheaf of rings is called a ringed space. If furthermore the stalks are local

rings (i.e. they have a unique maximal ideal), one speaks about a locally ringed space.

2.4. Manifolds as locally ringed spaces.

An alternative definition for a manifold is the following. A manifold is a locally ringed space

(M ,O), Hausdorff and second countable, such that for any point x ∈ M , there exist a neigh-

borhood U , x ∈U ⊂ M , and an open space V ⊂Rn , such that O(U ) is isomorphic (as a ring)

to C∞(V ). Under this isomorphisms, the maximal ideal of the stalk Ox is identified with the

set of germs of functions vanishing at x. We denote this ideal by Ix,0. In fact, we have the

isomorphism

Ox ≃R[[X1, . . . , Xn]], (2.3)

where R[[X1, . . . Xn]] denotes the ring of formal series in n = dim(M) variables. This isomor-

phism identifies any germ at x with the Taylor expansion at x of the function it represents.

Thus, we have the decomposition

Ox ≃R⊕Ix,0 (2.4)

and the isomorphism

Ix,0 ≃ (X1 +X2 +·· ·+Xn)R[[X1, . . . Xn]] (2.5)

It is also interesting to pay attention at the finite dual O◦(M) of the ring of global sections

O(M). We recall the definition of the finite dual

O◦(U ) = {φ : O(U ) →R
/
φ vanishes on an ideal of finite codimension}, (2.6)

and that it naturally comes with a structure of coalgebra. We could consider a sheaf of finite

dual O◦, but the restriction 2.6 is so restrictive that such a sheaf would not have great interest.
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Indeed the first element of interests of this dual are the group-like elements, i.e. elements evx

satisfying

∆(evx ) = evx ⊗evx . (2.7)

Are they name suggest, they are exactly the evaluation at a point x of a function, and are thus

in one-to-one correspondence with the points of the manifold. Indeed, the property 2.7 is

equivalent to say that such an evx preserves the multiplication:

evx ( f g ) = evx ( f )evx (g ), (2.8)

for some functions f , g . And it is a well-known proposition, called "Milnor’s exercise" that

only evaluation at points satisfies this property.

2.5. Super-manifold.

This alternative definition of manifold is perfectly suited for generalisation of manifolds. In-

deed, we see that we a natural generalisation of the concept of manifold is obtained after ex-

tending the ring isomorphic to O(U ). A supermanifold is thus a locally ringed space (M ,O),

Hausdorff and second countable, such that for any point x ∈ M , there exist a neighborhood

U , x ∈U ⊂ M , and an open space V ⊂Rn , such that

O(U ) ≃ C∞(V )⊗Λ(θ1, . . .θp ), (2.9)

where Λ(θ1, . . .θp ) is the exterior algebra generated by {θ1, . . .θp }. In other words, Λ(θ1, . . .θp )

is the exterior algebra of a vector space whose one possible basis is {θ1, . . .θp }.

3. Tangent space

3.1. Tangent space at a point.

Let M be a manifold of dimension n, and γ : R → M a curve, whose parameter is called

t . We choose a system local chart (φ,U ) and write φ ◦ γ(t ) = {xµ(t )}. The tangent vector

at t = 0 of this curve in Rn is d
d t φ ◦ γ|t=0. We want to define the abstract tangent vector

γ̇(0) = d
d t γ|t=0 independently of the chosen chart. For this we introduce the equivalence

relation "∼x " among the curves satisfying γ(0) = x, with γ1 ∼x γ2 if and only if there is a chart

(U ,φ) with x ∈U such that d
d t φ◦γ1|t=0 = d

d t φ◦γ2|t=0, and we set γ̇(0) = [γ]∼x , the equivalence

class for ∼x . The tangent space at x, denoted Tx M is the set of all tangent vector at x. The

(total) tangent space is T M =⋃
x∈M Tx M . It is a manifold as well.

3.2. Vector field.

An application which send (smoothly) to each x ∈ M a vector of Tx M is called a (smooth)

vector field. (We will always assume our vector fields to be smooth.) If this application is

only defined on an open subset U ⊂ M , we speak of a local vector field, by opposition to

global vector fields. The choice of local coordinates {xi } gives a local basis (sometimes called

natural basis, although this denomination has nothing to do with naturality in the categorical

sense) for vector fields ∂
∂xi

.= ∂i . In other words any vector field (global or local) can locally

be written as

X (x) = X i (x)∂i , x in some open set U (3.1)
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Given a function f and a vector field X , we form a new function X ( f ), over which we can

apply a new vector field Y to form Y (X ( f )). One then shows that although Y ◦ X , defined

by (Y ◦X )( f ) = Y (X ( f )), is not a vector field (it does not define a derivation), the Lie bracket

[X ,Y ] = X ◦Y −Y ◦ X does. Hence the set of vector field over a given manifold define a Lie

algebra.

3.3. Functoriality.

Any morphism of manifold f : M → N extends to a morphism of vector bundle T f : T M →
T N , such that T ( f ◦ g ) = T f ◦T g . In local coordinates {xi } ⊂ M , {y j } ⊂ N T f is expressed as

T f ({xi }, {X i }) = ({ f j (x1, . . . , xn),∂i f j X i } (3.2)

3.4. Sheaf definition.

Let (M ,O) be a manifold with its local ring, as presented above. We can alternatively define

Tx M as the set of derivation of the stalks Ox , i.e. linear maps X : Ox →R satisfying

∀u, v ∈Ox , X (uv) = X (u)v +uX (v), (3.3)

i.e. Tx M ≃ Der(Ox ). More algebraically, we can say that tangent vectors are the elements X

of the finite dual O◦(M) satisfying

∆X = X ⊗evx +evx ⊗X , (3.4)

i.e. a tangent vector at x is a primitive element with respect to one evx . Now we can define

the tangent space T M as the union of the tangent spaces Tx M properly topologized, and

vector fields as smooth maps as above, but the sheaf structure allows for a more direct def-

inition. We define the sheaf Der(O) of derivation of O with values in O. More precisely, for

any open set U ⊂ M , we let Der(O)(U ) be the set of R-linear maps O(U ) →O(U ) satisfying

the derivation property (3.3, but adapted for u, v in O(U ) instead). A (local) vector field is a

section of that sheaf. One then show that the stalk of Der(O) at some x ∈ M coincide with

the space Tx M defined just above.

3.5. Tangent space of super-manifolds.

This definition admits a straightforward generalization in the case of supermanifolds: the

super-tangent space of a supermanifold (M ,O) is the space of super-derivations of the stalk

of it defining sheaf at a given point; (local) super-vector fields are section of the sheaf of

super-derivations of the structure sheaf O of the supermanifold with values in O. In local

coordinates O(U ) ∼ C∞(V )⊗ΛRp , U ⊂ M , V ⊂Λ(θ1, . . .θp ) both open, U sufficiently small, it

can be shown that a super-vector field X ∈ Der(O)(U ) admit an expansion similar to (3.1):

X (x) = X i ∂

∂xi
+Xα ∂

∂θα
. (3.5)

3.6. Submersions and immersions.

A smooth map π : M → N is called a submersion if the tangent map π∗ : T M → T N is sur-

jective. A smooth map ι : M → N is called an immersion if the tangent map ι∗ : T M → T N is

injective.



56 CHAPTER 3. DIFFERENTIAL GEOMETRY

4. Lie groups and Super-Lie groups

4.1. Lie groups.

A Lie group is a set G which is at the same time a group and a manifold, with the additional

assumption that the multiplication mG : G ×G → G and the inverse i : G → G are morphism

of (smooth) manifolds. The unit of the group is commonly written e.

4.2. Fundamental vector fields.

The multiplication on the left by an element g being a smooth map Lg : G →G , it gives rise to

a tangent map Lg∗ : TG → TG . Given any vector tangent at the identity X ∈ TeG , we can use

this tangent map to define a vector field X̃ by X̃ (g ) = Lg∗X . This vector field is called a left

fundamental vector field, because it is defined using a left action. Similarly, there exists right

fundamental vector fields. The tangent space at the identity, thus isomorphic to a particular

sub-Lie algebra of vector fields, (either left fundamental or right fundamental) is called the

Lie algebra of the Lie group. The left fundamental vector fields X̃ ’s are left invariant, in the

sense that Lg∗ X̃ = X̃ , and similarly for right fundamental vector fields.

4.3. Sheaf definition and super-Lie groups.

A Lie group is a manifold (G ,O) whose structure sheaf is not only a sheaf of rings but a sheaf

of Hopf algebra. As explained in the section "Hopf algebras and groups", the product and

inverse of the Lie group are given respectively through the coproduct, denoted ∆m in the

sequel, and the antipode, denoted S in the sequel, of the Hopf algebra structure. A super-

Lie group is a super-manifold (G ,O) whose structure sheaf is a sheaf of super-commutative

graded Hopf algebras.

4.4. The super-Lie algebra of a super-Lie group.

The standard left-invariance property of vector fields is given in the sheaf point of view by

(1⊗X ) =∆m X . (4.1)

The left invariant vector fields of a (super-)Lie group form a (super-)Lie algebra. This (super-

)Lie algebra is also related to the tangent space at the identity e by

TeG ∋ Xe 7→ (1⊗Xe )∆m ∈ Lie(G) (4.2)

where Lie(G) is the (super-)Lie algebra of left invariant vector fields. A similar construction

holds for right-invariant vector fields. For more information on this topic, including a de-

tailed proof of this last fact, see [CCF10], chapter 7.

5. Fiber bundle

5.1. Definition.

A fiber bundle is a collection (P, M ,F,π) of three manifolds (P, M ,F ) and a surjective submer-

sion π : P → M such that ∀x ∈ M , π−1(x) ≃ F . Furthermore, P is required to fulfill the local

trivialization property: for any x ∈ M , there is a neighborhood Uα of x such that there is a

(smooth) diffeomorphism ψα : π−1(Uα)
∼−→ Uα×F . ψα is called a local trivialisation and we
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say that P is locally trivialised over Uα. Whenever x ∈Uα∩Uβ, the (smooth) diffeomorphism

gαβ(x) =ψα|x ◦ψβ|−1
x : F → F is called a transition function. A fibre bundle is called trivial if

admit a trivialisation of the form P ≃ M ×F .

5.2. Principal and Vector bundles.

We are interested mainly in two types of fibre bundles: vector bundles and principal bundles.

A vector bundle is a fibre bundle (P, M ,F,π) for which the fibre F is a vector space and such

that the transition function gαβ(x) : F → F belongs to GL(F ) for any x ∈Uα∩Uβ. A principal

bundle is a fibre bundle such that the fibre is a Lie group G , called the structure group, and

such that there is a right action of G on P preserving the fibre. The two notions are related.

First, for any vector bundle (P, M ,V ,π) we can construct a principal bundle (P, M ,GL(V ), π̄) in

the following manner. Let {Uα} be a cover of M over which P is locally trivialised. Consider

the disjoint union
⊔
αUα×G form the quotient space under the equivalence relation (x, g )α ∼

(x, gαβg )β. This quotient space is a principal bundle with structure group GL(v). On the

other hand, given a principal bundle (P, M ,G ,π) and a representation (ρ,V ) of G on a vector

space V , one can construct the associated vector bundle P ×V⧸∼ρ , where the equivalence

relation is (z, v) ∼ρ (zg ,ρ(g−1)v).

5.3. Sections.

Let (P, M ,F,π) be a fiber bundle and U an open set in M . A local section is a continuous

map s : U → P such that π ◦ s = IdU . From now on, we will always assume our sections to

be smooths. A global section is a local section with U = M . A principal bundle is trivial if it

admits a global section. A vector bundle is trivial if it admits n linearly independent global

section, with n the dimension of the fiber. We denote by Γ(P ) the space of smooth sections

M → P .

5.4. Morphisms.

A morphism of fiber bundle f : (P, M ,F,π) → (Q, N , H ,τ) is a morphism of manifold f : P →Q

sending fibers onto fibers and such that the induced map f̄ : M → N , f̄ (x) = τ ◦ f ◦π−1(x)

is a morphism of manifold as well. Here π−1 denotes any section M → P . In the section

"Characteristic classes", we will furthermore ask that the morphism induces an isomorphism

between the fibers.

5.5. Building new fiber bundles from old ones.

Let (P, N ,F,π) be a fiber bundle and f : M → N a morphism. It is possible to construct a

new bundle over M , called pullback bundle of P by f and denoted f ∗P . It consists of pairs

(x, z), x ∈ M , z ∈ P such that f (x) = π(z). If (E1, M ,V1,π1) and (E2, M ,V2,π2) are two vector

bundles over the same base manifold, one can constructs their Whitney sum E1 ⊕M E2 with

fiber V1 ⊕V2 and tensor product E1 ⊗M E2 with fiber V1 ⊗V2. As sets, they correspond to the

disjoint unions
⊔

x∈M E1x ⊕E2x ,
⊔

x∈M E1x ⊕E2x respectively. They are then topologized so

that they become fiber bundle over M , by constructing the base for their topologies using

the bases of E1 and E2 so that the local trivialization conditions are satisfied. Using tensor
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product, it is possible to build any "associative algebra bundle" as quotient of a finite tensor

algebra bundle E⊗n . In particular, we will be able to construct the bundle of differential form

as an exterior algebra bundle, the Clifford algebra bundle, or a symmetric algebra bundle as

the space for pseudo-Riemannian metrics.

5.6. Sheaf definition of a vector bundle.

The sheaf counterpart of vector bundle is a rank-r locally free sheaf. Let (M ,O) be a manifold

with its structure sheaf. A sheaf F on M is called locally free of rank r if, for any x ∈ M , there

is a neighborhood U ∋ x such that the restriction of F to U , F |U , is a sheaf of free module

of rank r of O|U , i.e., for all open subsets V ⊂ U , F(V ), is isomorphic (as O(V )-module) to

O(V )r . If (E , M ,π) is a standard vector bundle, then for any open set U ⊂ M we can define a

set of smooth sections C∞(U ,E), which has naturally the structure of a C∞(U )-module. As U

varies through the open set of M , we can give the family C∞(U ,E) the structure of a locally

free sheaf. We denote by ΣE this sheaf. Thus we have shown that any vector bundle structure

(E , M ,π) give rise to a locally free sheaf over M of constant rank. Conversely, given a manifold

(M ,O) and a locally free sheaf of constant rank r Σ, we can use the locally free condition on

a sufficiently fine open cover {Uα} of M to obtain transition functions gαβ : Σ(Uα ∩Uβ) →
Σ(Uα→Uβ). We can then use this transition function to patch together the different Uα⊗Rr .

The above definition does not mimic the traditional case given by two manifolds and a

projective submersion P
π−→ M , or only indirectly. Hence we can also define a vector bundle

as a triple {(P,OP ), (M ,OM ),π}, where {(P,OP )} and {M ,OM } are differentiable manifolds, π :

P → M is a projective submersion and we have the local triviality condition: fro each z in

P , there exists an open U ⊂ M with z ∈ V
.= π−1(V ) and an isomorphism of manifold φ :

(V ,OP |V ) ≃ (U ×Rn ,OM |U ⊗̂C∞), where C∞ is the natural sheaf of C∞ functions on Rn .

5.7. Sheaf definition of principal bundles.

We can similarly define a principal bundle. First we need the notion of action of a group.

Let (G,OG) be a Lie group. A right action of (G,OG) on a manifold (M ,OM ) is a map r :

(M ,OM )× (G,OG) → (M ,M) such that the morphism of commutative algebra r∗ : OM (M) →
OM (M)⊗̂OG(G) endows OM (M) with a structure of right OG(G)-comodule. In term of coalge-

bra structures, this can be written by the equalities:

(Id⊗∆G)◦ r∗ = (r∗⊗ Id)r∗, (Id⊗ϵG)◦ r∗ = Id. (5.1)

A right action r : (M ,OM )× (G,OG) → (M ,M) is said free if for each x ∈ M the morphism

rx∗ : (G,O(G))◦ → (M ,OM )◦ is injective. We recall that OM (M)◦ is the finite dual of OM (M).

We are ready to state the definition of a principal bundles in terms of sheafs. Let (G,OG)

be a Lie group. A G-principal bundle is a quadruple {(P,OP ), (M ,OM ),π,r } where (P,OP ) and

(M ,OM ) are manifolds, π : (P,OP ) → (M ,OM ) is a projective submersion, r : (P,OP )×(G,OG) →
(P,OP ) is a free right action, and we have the local triviality condition: for each z ∈ P , there

exists an open U ⊂ M such that z ∈ V
.= π−1(U ) and an isomorphism φ : (V ,OP |V ) ≃ (U ×
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G,OM |U ⊗̂OG), such that furthermore the isomorphism of algebra φ∗ is an isomorphism of

OG(G)-comodules. The comodule structure of OM (U )⊗̂OG(G) is given by i d ⊗∆G .

5.8. Tangent and cotangent bundle.

A natural vector bundle that we can consider over any manifold M is the tangent bundle

T M previously described. It is a natural bundle in the sense that it defines a functor T from

the category of manifolds to the category of vector bundles. The image of a smooth map f

by this functor is called the (associated) tangent map or pushforward, denoted T f or more

frequently here f∗. The projection π : T M → M assign x to the pair (x, v), where v ∈ Tx M .

Vector fields are simply section of this tangent bundle.

The tangent space Tx M is a vector space, hence we can consider its dual space, called cotan-

gent space, denoted T ∗
x M . It naturally admits the structure of vector bundle over M as well,

and T ∗ can be seen as a contravariant functor from the category of manifolds to the category

of vector bundles, i.e. it reverses the direction of the morphisms. The image of a smooth map

f by this functor is called (associated) cotangent map or pullback; and can be written T ∗ f

or f ∗.

5.9. The frame bundle.

Another natural bundle over any manifold M is the frame bundle LM . The fiber Lx M over

x ∈ M consists in all possible basis of the tangent space Tx M and is isomorphic to GLm(R),

m = dim(M). It is a principal bundle and T M is a vector bundle associated to it.

5.10. Differential form.

From the cotangent bundle one form the exterior algebra ΛT ∗M . It is the vector bundle over

M whose fiber over x is ΛT ∗
x M , and it is the Whitney’s sum of the Λk T ∗M . A smooth section

of Λk T ∗M is called a differential k-form or simply k-form. The space of differential k-form

is denoted by Ωk (M) and the total space of differential form simply Ω(M).

5.11. Exterior derivative.

The pairing between a k-form ω and k vector fields X1, . . . Xk defines a new function ω(X1, . . . Xk ) :

M → R, over which we can apply another vector field X0, forming yet another function

X0(ω(X1 . . . Xk )). This action is used to define the exterior derivative d. We recall its formula:

for vector fields v1, . . . vk+1 and a k-form ω we have

dω(v1, . . . , vk+1) =
k+1∑
i=1

vi
(
ω(v1, . . . , v̂i , . . . vk+1)

)
(5.2)

+ ∑
1≤i< j≤k+1

(−)i+ jω([vi , v j ], v1, . . . , v̂i , . . . v̂ j , . . . vk+1).

An important property of the exterior derivative is that it commutes with pullback

5.12. Sheaf definition and super-differential form.

Let ΛDer(O) the exterior algebra built out of the algebra Der(O). A differential form is an

element of Hom(ΛDer(O),O), where morphism here are O-module morphisms. The exterior

derivative d can be define exactly as in (5.2).
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5.13. Form with values in a vector space.

Let V , W be vector spaces. A linear map V →W is the same tings as an element of V ∗⊗W ,

where V ∗ is the (linear) dual of V . Hence by tensoring T ∗
x M with a vector space V , for each

x ∈ M , we obtain a collection of linear maps Tx M →V . We can form the bundle T ∗M ⊗V , an

element of which is called a one-form with values in V. We can go further and consider the

bundle ΛT ∗M ⊗V , whose sections are called differential forms with values in V . We denote

by Ω(M ,V ) the space of differential form with values in V .

5.14. Maurer-Cartan form.

As an example of a famous one form with values in a vector, we describe the Maurer-Cartan

one-form θ of a Lie group G . It is a one-form taking values in the Lie algebra g of the group.

We said earlier that any Lie group admits left fundamental vector fields X̃(g ) = Lg∗X for some

X ∈ g. By definition

θ(g )(X(g )) = X . (5.3)

The Maurer-Cartan form is then extended by linearity. In other words, for a vector V ∈ Tg G ,

the Maurer-Cartan form is given by

θ(g )(V ) = Lg−1∗V. (5.4)

5.15. Tensors.

The tensor bundle construction explained above applied to the tangent and cotangent bun-

dle form what we will simply call tensor bundles. They are of the form

T ∗⊗n M ⊗T ⊗p M , (5.5)

for some positive integers n, p ∈N. Its sections are called tensors. These tensors can be seen

as maps, at each x ∈ M , from T ⊗n
x M to T ⊗p

x M .

5.16. Metrics.

As an example of tensor is the metric gµν. It is a symmetric rank two tensor, a section of

T ∗⊗2M . It is non degenerate: the determinant of the dim(M)×dim(M) matrix gab(x) never

vanishes, whatever x ∈ M . Here gab denotes the expression of the matrix in some local basis

{ea} which cam be thought as a local section of LM . It is always possible to choose this local

section such that

gab =


±1

±1
. . .

±1

 . (5.6)

If all the ±1 are +1, we call the metric Riemannian. Often, in mathematical works, metrics

are required to have only +1 in the diagonal, while the ones with one or several −1 are called

pseudo metrics; but we won’t use this denomination, and instead speak of Riemannian met-

rics for the "true" ones and just simply metrics for the "pseudo" ones. A manifold with a

Riemannian metric is called a Riemannian manifold. The number of + and − signs in (5.6)
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is called the signature of the metric, hence a metric of signature (p, q) is a metric which can

be put in the form 1p

−1q

 . (5.7)

Riemannian metrics are thus those metrics of signature (m,0). Metrics of signature (m−1,1)

or (1,m −1) are called Lorentzian metrics.

5.17. Volume form and Hodge operator. Let ea be a local basis in which the metric gab

takes the form 5.6, and ea the dual basis. The n−form (n =dim(m))

ω= e1 ∧e2 ∧·· ·∧en , (5.8)

is called the volume form. (This appellation is abusive as it is a local object, we should call

it "a local volume form".) Because the space of top form Ωn(M) is "one dimensional", the

volume form allows us to define a pairing

Ωk (M)×Ωn−k (M) → C∞(M),

(α, β) 7→λ, with λ defined through α∧β=λω. (5.9)

This pairing gives an isomorphism

Ωk (M) ≃Ωn−k (M)⋆ (5.10)

Now the (inverse) metric also induces an isomorphism

Ωk (M) →Ωk (M)⋆,

αµ1...µk d xµ1 ∧·· ·∧d xµk 7→ gν1µ1 . . . gνkµkαµ1...µk∂ν1 ∧·· ·∧∂νk . (5.11)

with {∂ν} a dual local basis of {d xµ}. The successive application of the first isomorphism and

the inverse of the second one leads to an isomorphism

∗ :Ωk (M) →Ωn−k (M) (5.12)

called Hodge isomorphism.

6. Homology and cohomology of manifolds - Orientation

6.1. Homology.

A complex C• is a sequence of abelian groups indexed by integers

. . .
∂n+1−−−→ Cn+1

∂n−→ Cn
∂n−1−−−→ Cn−1

∂n−2−−−→ Cn−2
∂n−3−−−→ . . . (6.1)

with boundary maps ∂n : Cn+1 → Cn such that ∂n ◦∂n−1 = 0. (n denotes an integer.) In fact,

we will see these abelian groups Cn as R-modules for some ring R. The homology groups

associated to such a complex are the groups

Hn = Im(∂n+1)⧸Ker(∂n) (6.2)



62 CHAPTER 3. DIFFERENTIAL GEOMETRY

The homology groups of a topological space M are defined to be those associated to the

complex of singular simplices. The standard n-simplex is

∆n = {(x1, x2, . . . , xn) ∈Rn/0 ≤ xi ≤ 1∀i } (6.3)

A singular n-simplex is (an abstract sum of) continuous maps form the standard n simplex

to the topological space M under consideration. Given a ring R, the complex of singular sim-

plices is formed by the free R-modules Cn with one generator for each singular n-simplex.

The ring R is called a coefficient ring. The boundary map of a singular n-simplex σ is ob-

tained by restricting σ to the boundary of ∆n .

Using standard method it is possible to show for example that homology groups of the

sphere Sn are

Hn(Sn ,Z) = H0(Sn ,Z) =Z, Hi (Sn ,Z) = 0 if i ̸= n,0. (6.4)

6.2. Cohomology.

Given a complex C• of R-modules with boundary maps ∂•, we can look at the complex of

cochains C•

. . .
dn−1−−−→ Cn−1 dn−→ Cn dn+1−−−→ Cn+1 dn+2−−−→ . . . , (6.5)

formed by their dual

Cn .= HomR (Cn ,R), (6.6)

and the coboundary maps dn : Cn−1 → Cn defined by

∀u ∈ Cn−1,∀a ∈ Cn , dnu(a) = u(∂n a) (6.7)

It is straightforward to show that

dn+1 ◦dn = 0. (6.8)

The cohomolgy groups of such complex are

H n(Cn ,R) = Ker(dn+1)⧸Im(dn) (6.9)

In fact, any complex of cochain of the form (6.5) with coboundary map satisfying 6.8 give

rise to cohomology groups through (6.9).

6.3. Functoriality.

An important fact about homology is that the construction is natural in the sense it defines

a functor from the category of topological spaces and continuous maps to the category of

abelian groups and group morphisms. In particular map, any continuous map f : M → N

between two topological spaces M and N give rise to a group morphism fa st : Hn(M) →
Hn(N ). Sometimes we also write Hn( f ) or H•( f ) instead of fa st . The same remark holds for

cohomology. But in the case cohomology, arrows go in the opposite direction : f gives rise

to f a st : H n(N ) → H (M). f ∗ can also be written H n( f ) or H•( f ).
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6.4. Homotopical invariance of homology.

Let M and N be two topological spaces and f , g : M → N two continuous maps. An ho-

motopy between f and g is a continuous map h : [0,1]× M → N such that h(0,−) = f and

h(1,−) = g . If there exists an homotopy between f and g we say that f and g are homotopic.

Homology (as well as cohomology) is invariant under homotopy in the sense that if f and g

are two homotopic maps then H•( f ) = H•(g ) (and H•( f ) = H•(g )). For example a contrac-

tile space is a topological space M such that there is an homotopy between the identity map

IdM and a constant map x0 : M → M ; x 7→ x0. Homotopy invariance of homology implies in

this case that the homology of M is equal to the homology of the space {x0} which is, with R

the coefficient ring, H0(x0,R) = R and Hn(x0,R) = 0 ∀n ̸= 0. This is the case for example for

Rn where an homotopy between IdRn and the map 0Rn sending any point to 0. Let (E , M ,π)

be a vector bundle with fiber Rn . Let σ0 be the zero section of E . Then the homotopy be-

tween IdRn and 0Rn extend to an homotopy between the identity of E and σ0 ◦π, showing

the isomorphism of cohomology H n(E ,R) ≃ H n(M ,R) for any n.

6.5. Relative Homology.

Let M be a topological space, A ⊂ M a subspace and consider the quotient

Cn(M)⧸Cn(A). (6.10)

Because the boundary of a singular n-simplex in A is a singular (n − 1)-simplex in A the

boundary map

∂n : Cn(M) →Cn−1(M) (6.11)

passes well to the quotient and defines a boundary map

∂n : Cn(M)⧸Cn(A) →Cn−1(M)⧸Cn−1(A) (6.12)

The homology groups of the complex so obtained are called relative homology groups and

denoted Hn(X , A) or Hn(X , A;R) if we specify the coefficient ring. Exactly the same definition

holds for cohomology.

6.6. Cup product.

The front n-face of the standard (n +m)-simplex is {(x1, x2, . . . , xn+m) ∈ ∆n+m/xn+1 = xn+2 =
·· · = xn+m = 0}. Similarly its back m-face is {(x1, x2, . . . , xn+m) ∈ ∆n+m/x1 = x2 = ·· · = xn = 0}.

Let αn be the projection to the front n-face and βm the projection to the back m-face. Let

c1 ∈ C n(M), c2 ∈ C m(M) be two cocycles representing the cohomology classes [c1], [c2] and

σ ∈Cn(M) a cycle representing an homology class [σ]. We define the cup product ∪ by

([c1]∪ [c2])(σ) = c1(σ◦αn) · c2(σ◦βm). (6.13)

The cohomology complex H•(M) =⊕
n H n(M) already had the structure of an abelian group,

with the sum of two cohomology classes being the class of the sum of any two of their rep-

resentative if they belongs to the same H n(M) or just their abstract sum if they belong to

different H n(M), H m(M). The addition of the cup product turn H•(M) into a ring.
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6.7. Orientation for a Manifold.

Whereas homology is a device to extract global information about a given topological space

M , relative homology is a way to extract local information. For example, the relative homol-

ogy group Hn(M , M \ x) only depends of the local topology around the point x ∈ M . If M is a

manifold of dimension m, we know that this local topology is equal to the local topology of

Rm around 0, hence the isomorphism Hn(M , M \ x) ≃ Hn(Rm ,Rm \ {0}). Using the long exact

sequence of relative homology, and the fact that Rm \ {0} is homotopic to Sm , it is straight-

forward to show that Hn(Rm ,Rm \ {0};Z) is 0 when n ̸= m and isomorphic to Z when n = m.

A generator µx ∈ Hn(M , M \ x;Z) is called a local orientation around x. An orientation of M

is an assignment x 7→ µx , µx a generator of Hn(M , M \ {x};Z) such that ∀x ∈ M , there ex-

ists a compact neighborhood K of x and a class µK ∈ Hn(M , M \ K ) such that the restriction

rK ,x (µK ) =µx . Here, the restriction map rK ,x , is derived from the canonical inclusion

Cn(X )⧸Cn(U ) ,→Cn(X )⧸Cn({x}). (6.14)

This definition of orientation should be understood in the following way. An orientation of

Rn is the choice of an ordered basis that we can see as the edges of ∆n . Because locally M

is like Rn , we can look at a singular simplex with image around x ∈ M as a map Rn → Rn .

The one with non vanishing determinant fall into two classes, choosing the generator µx is

exactly like choosing which one has positive determinant.

6.8. Orientation for vector bundle.

Let (E , M ,π) be a vector bundle with fiber Rn . An orientation for E is a choice of an ori-

entation for each of the fiber in a continuous way. The orientation of the fiber is given by a

homology class µF ∈ Hn(Rn ,Rn \{0},Z). The locality condition is that for any trivializing chart

π−1(U ) ≃U ×Rn there should exist an homology class µU ∈ Hn(π−1(U ),π−1(U )0;Z) such that

under restriction to any fiber, µU is mapped to µF . Here π−1(U )0 means π−1(U ) minus the

0 section. When a possible choice for an orientation of E exists, we say that E is orientable.

A proposition states that a manifold is orientable (as a manifold) if and only if its tangent

bundle is orientable (as a vector bundle).

6.9. De Rahm Cohomology.

Let M be a manifold. Then the differential forms on M form a complex of cochain

0
d−→Ω0(M)

d−→Ω1(M)
d−→ . . .

d−→Ωdim(M)(M)
d−→ 0 (6.15)

whose coboundary map is the exterior derivative. The cohomology groups H n
dR (M) of this

complex are called de Rahm cohomology group, named after Georges de Rahm, who proved,

among other things, that for compact manifolds these de Rahm cohomology groups are iso-

morphic to the singular cohomology groups [Rah31]. The isomorphism is still valid for para-

compact manifold, as has been shown by Weil [Wei52]. However the coefficient ring of the

de Rahm cohomology groups is necessarily R because the space of differential form Ω(M) is

a real vector space. Furthermore, under this isomorphism, the cup product is mapped to the
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wedge product, turning it into an isomorphism of graded ring

H•(M ;R) ≃ H•
dR (M) (6.16)

6.10. Orientation with Differential form.

We have seen that the orientation of a manifold can be defined by an ordering of the basis

∂1,∂2, . . .∂n associated to a local frame (x1, x2, . . . xn). Now, the space ΛmT ∗M , m = dim(M)

is one-dimensional. If {x̃i } denotes another local basis, we have

dx̃1 ∧dx̃2 ∧·· ·∧dx̃n = det( f ) dx1 ∧dx2 ∧·· ·∧dxn , (6.17)

where f is the endomorphism sending {xi } to {x̃i }. {x̃i } defines the same orientation as {x̃i }

if and only if det( f ) is positive. From this remark, we understand that a nowhere vanishing

top form ω ∈Ωm(M) defines an orientation at any point. If ω′ is another nowhere vanishing

top form, then there is a nowhere vanishing function F ∈ C∞(M) such that ω′ = F ·ω. If

F is positive, ω′ defines the same orientation as ω, if F is negative, it defines the reverse

orientation.

6.11. Orientation with de Rahm Cohomology.

A top form ω defining an orientation does not necessarily define a non trivial cohomology

class in H m
dR(M). Indeed, the prototype of orientable manifold of dimension m is Rm and

H m
dR(Rm) = 0. (6.18)

As explained earlier, what has to be considered is compactly supported cohomology

H m
dR,c (M) = lim−→

K⊂M

H m
dR(M , M \ K ) (6.19)

represented by form vanishing outside some compact K ⊂ M . We will simply say that for a

smooth paracompact manifold of dimension m,

H n
dR,c (M) =

 R if M is orientable,

0 if M is not orientable.
(6.20)

For any compact K of M with inclusion map ιK : K ,→ M , the top form ω defining the orien-

tation is mapped to a generator of H m
dR(M , M \K ) by ι∗Kω, linking orientation defined through

top form with orientation defined through homology.

7. Reduction of principal bundle

7.1. Reductive subgroup.

Let G be a Lie group and H ⊂G a sub-Lie group. H is called reductive if there exist a decom-

position of the Lie algebra g of G :

g= h⊕m (7.1)

as the direct sum of the Lie algebra h of H and an AdH -invariant subspace m⊂ g.
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7.2. Example.

The pseudo-orthogonal group SO(p, q), p + q = n is a reductive subgroup of GLn(R), the

group of invertible m ×m real matrices. Indeed, let η be the standard bilinear form on Rn

of signature (p, q) and let t denote the matrix transposition with respect to it, i.e., for any

M ∈ Mn(R), u, v ∈Rn ,

η(u, M v) = η(t Mu, v) (7.2)

the Lie algebra gln(R) = Mn(R) of GLn(R) can be decomposed as

gln(R) = so(p, q)⊕s′ (7.3)

with s′ the set of matrices symmetric with respect to η. s′ is indeed AdSO(p,q)-invariant, as,

for any M ∈ s′, O ∈ SO(p, q),

t (OMO−1) = t (OM t O) =Ot M t O =OMO−1 (7.4)

7.3. Reduction.

Let (P, M ,π,G) be a principal bundle and H a subgroup of G . In general, an H-reduction, or

simply reduction, is a subspace Q ⊂ P such that (Q, M ,π|Q , H) is a principal H-bundle. We

denote by iQ→P the canonical inclusion map. In this thesis, we will impose the supplemen-

tary condition that H is a reductive subgroup of G .

7.4. Reduction as a section of an associated bundle.

PROPOSITION 20. A reduction Q ⊂ P as described above is equivalent to the data of a

global section σ : M → P ×G
G⧸H.

Proof : Suppose Q ⊂ P is an H-reduction. Define a map σ̄ : P →G⧸H by σ̄(q) = eH for all

q ∈Q, and σ̄(zg ) = g−1σ̄(z) for all z ∈ P and g ∈G . We get a global section σ : M → P ×G
G⧸H

by defining

σ(x) = [z, σ̄(z)], π(z) = x (7.5)

where [z, σ̄(z)] denote the equivalence class {zg , g−1σ(z)}g∈G .

Conversely suppose given a global section σ : M → P ×G
G⧸H . Taking equations (7.5) as a

reverse definition, we obtain a G-equivariant map σ̄ : P → G⧸H , and a reduction Q ⊂ P by

setting Qσ̄−1(eH). It remains to show that Q is an principal H-bundle. Let q1, q2 ∈ Q such

that π(q1) = π(q2). Because q1, q2 are in the same fiber of P , there exists g ∈ G such that

q1 = q2g . Hence we just need to show that g ∈ H . This follows from σ̄(q1) = g−1σ̄(q2) = eH .

The number of + and minus − signs is called the signature of the metric.

7.5. Reduction for Riemannian Manifolds.

The frame bundle LM of a Riemannian manifold admits a natural reduction to SO(M), a

principal bundle with structure group SO(m), m = dim(M). We can decompose LM into

local trivializing charts {Uα ×GL(m)}. On each Uα, we can choose, using the Riemannian

metric, local orthonormal frame {ea
α}. We can order these frames so that they respect the
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manifold’s orientation. On overlaps Uα ∩Uβ, the transition maps gαβ sending {ea
α} to {ea

β
}

belongs to SO(m) and satisfy the cocycle property

gαβ ◦ gβγ ◦ gγα = IdUα∩Uβ∩Uγ , (7.6)

so we can use them to define the reduced principal bundle SO(M). The local orthonormal

frames {ea
α} are called "vielbein" or "tetrad". We can use them to define local orthonormal

basis of the tangent or cotangent manifolds through

ea(x) = ea
α(x)d xα ∈ T ∗

x M , Ea(x)ea
α(x) = ∂α ∈ Tx M (7.7)

7.6. The tangent space of a reduction.

Let Q ⊂ P be a reduction and iQ→P the canonical inclusion. The pullback bundle i∗Q→P (T P ) =
T P ×P Q, which can be understood as the restriction of T P to Q, admits a canonical decom-

position

i∗Q→P (T P ) = TQ ⊕V . (7.8)

V can be seen as generated by the fundamental vector fields associated to m in the decom-

position g= h⊕m. In particular, any vector field P → T P decomposes, once restricted to Q,

to a vector field tangent to Q and a transverse vector field.

8. Lie derivative

8.1. Flow.

Let M be a manifold and X a vector field over M . At each point x ∈ M , there is an interval

Ix ⊂R and a curve γ(x) : I → M satisfying

∀ t ∈ I ,
d

d s
γ(x)(s)|t=s = X(γ(x)(t )). (8.1)

This is the theorem about existence of solution of differential equation in manifolds, whose

proof can be found in many books, including [Lan02]. Let I be the infimum, with respect

to the order defined by inclusion, infx∈M (Ix ). We can define an automorphism ΦX
t , for each

t ∈ I , by

ΦX
t (x) = γ(x)(t ). (8.2)

The theory of ordinary differential equations insures that, for t1, t2 ∈ I such that t1 + t2 ∈ I

ΦX
t1
◦ΦX

t2
=ΦX

t1+t2
, (8.3)

a result which follows directly from the unicity of the solution of ordinary differential equa-

tion. This turn the set {ΦX
t }t∈I almost into a 1-parameter group, the group law being the

composition, the identity being ΦX
0 and the inverse of ΦX

t being ΦX
−t . {ΦX

t }t∈I is group only

when I is itself an additive group, i.e. when I =R or I = {0}. In this case, {ΦX
t }t∈I is called a

1-parameter group. If M is compact, then it is possible to take I =R.

The map t 7→ ΦX
t , t ∈ I , is called the flow of the vector field X . The map t 7→ ΦX

t (x), t ∈ Ix

is called the local flow. The local flow always is always defined for sufficiently small t > 0,

which is all what we need for the next paragraph.
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8.2. Lie derivatives.

Keeping the same notation, the Lie derivative by the vector field X LX of a function f : M →
R is

LX ( f )
.= d

d t
|t=0 f ◦ΦX

t . (8.4)

A small computation shows this definition leads to

LX ( f ) = X ( f ). (8.5)

The Lie derivative LX of another vector field Y is

LX (Y )
d

d t
|t=0Φ

X
−t∗Y ◦ΦX

t . (8.6)

This definition leads to

LX (Y ) = [X ,Y ]. (8.7)

The Lie derivative LX of a one-form ω is

LX (ω)
.= d

d t t=0
ΦX∗

−t ω◦ΦX
t (8.8)

Lie derivatives are, as their name suggests, derivations. This means that, for f , g ∈ C∞(M),

X ,Y vector fields and ω a one-form,

LX ( f g ) =LX ( f )g + f LX (g ), (8.9)

LX ( f Y ) =LX ( f )Y + f LX (Y ), (8.10)

LX ( f ω) =LX ( f )ω+ f LX (ω). (8.11)

8.3. Lie derivatives of tensors.

Lie derivatives extend well to tensors. For example, the Lie derivative of Y1 ⊗ ·· ·⊗Yn ⊗ω1 ⊗
·· ·⊗ωp ∈ T M⊗n ⊗T ∗M⊗p is

LX (Y1 ⊗·· ·⊗Yn ⊗ω1 ⊗·· ·⊗ωp ) = d

d t
(ΦX

−t∗Y1 ⊗·· ·⊗ΦX
−t∗Yn ⊗ΦX∗

−t ω1 ⊗·· ·⊗ΦX∗
−t ωp )◦ΦX

t ,(8.12)

=LX Y1 ⊗·· ·⊗LX Yn ⊗LXω1 ⊗·· ·⊗LXωp . (8.13)

This formula shows that Lie derivatives are derivations for the tensor product.

Lie derivatives for sections of sub-bundles of tensor bundles are also well defined, by the

same above formula. For example, we can compute Lie derivatives of sections of the frame

bundle, which is a sub-bundle of T M⊗2. However we have to keep in mind that these Lie

derivatives may not stay inside this sub-bundle. Hence, the Lie derivative of a smooth frame

can be computed, but may not be a frame.

8.4. Lie derivatives for algebra bundles. Lie derivative of sections of algebra bundles

defined as quotient of tensor bundles, i.e. bundles of the type

T M⊗n ⊗T ∗M⊗p
⧸I , (8.14)

I an ideal, can be defined if and only if Lie derivatives of sections of I , seen as a sub-bundle of

T M⊗n ⊗T ∗M⊗p , stay in I . For example, differential form are sections of the exterior algebra
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of the cotangent bundle; it is a quotient T ∗M⊗m , m = dim(M), by the ideal IΛ generated by

{ω1 ⊗ω2 +ω2 ⊗ω1}. Because

LX (ω1 ⊗ω2 +ω2 ⊗ω1) = (LXω1 ⊗ω2 +ω2 ⊗LXω1)+ω1 ⊗LXω2 +LXω2 ⊗ω1 (8.15)

the Lie derivative of a section of IΛ is a section of IΛ, consequently Lie derivatives pass well

to quotient, and thus we can define Lie derivative of differential forms. However, in the case

of the Clifford bundle, the ideal IC defining it is generated by Y1 ⊗Y2 +Y2 ⊗Y1 − 2g (Y1,Y2),

with g the metric. In that case the Lie derivative of a section of IC is not a section of IC , as

can be seen from

LX (Y1 ⊗Y2 +Y2 ⊗Y1 −2g (Y1,Y2)) =LX Y1 ⊗Y2 +Y2 ⊗LX Y1 −2g (LX Y1,Y2)

+Y1 ⊗LX Y2 +LX Y2 ⊗Y1 −2g (Y1,LX Y2)−2(LX g )(Y1,Y2). (8.16)

The appearance of the Lie derivative of the metric prevent any satisfying definition for Lie

derivative of sections of the Clifford bundle.

Because Lie derivatives are derivations for the tensor product, they are also derivation for all

other product obtained from it by quotient. In particular, they are derivations for the exterior

product of differential forms. Concretely, for ω1,ω2 two differential forms,

LX (ω1 ∧ω2) =LX (ω1)∧ω2 +ω1 ∧LX (ω2). (8.17)

8.5. The Cartan’s formula.

Let X be a vector field. We define a map ιxω
k (M) →ωk−1(M)), called insertion by X , by

ιXω(Y1, . . .Yk−1)
.=ω(X ,Y1, . . .Yk−1). (8.18)

Using the insertion map, we have the very famous Cartan’s formula.

PROPOSITION 21. Let ω be a differential form and X be vector field, then

LXω= (dιX + ιX d).ω (8.19)

8.6. Lie derivatives for super-manifolds.

The formulas (8.5), (8.7) and (8.19) are so simple that they usually serve as definition in

super-differential geometry, together with their property of super-derivations. More precisely

if M ,O is a super-manifold, f , g ∈O(M), X ,Y ∈ DerO(M), ω ∈Ω(M), all supposed homoge-

neous, the following equalities serve as definitions

LX ( f ) = X ( f ), LX ( f g ) =LX ( f )g + (−1)|X || f | f LX (g ), (8.20)

LX (Y ) = [X ,Y ] LX ( f Y ) =LX ( f )Y + (−1)|X || f | f LX (Y ), (8.21)

LX (ω) = (dιX + ιX d)ω LX ( f ω) =LX ( f )ω+ (−1)|X || f | f LX (ω), (8.22)

LX (Y ⊗ω) =LX (Y )⊗ω+ (−1)|X || f |Y ⊗LX (ω). (8.23)
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9. Connections

9.1. Distributions.

Given a smooth manifold M , a distribution is a the data, for each x ∈ M , of a subspace

Ex ⊂ Tx M . We will call a distribution regular if all the subspaces Vx have the same dimen-

sion. A distribution {E = ⊔Ex } is called smooth if for every x ∈ M there exists some smooth

vector fields X1, . . . , Xn defined in a neighborhood of x such that for each y in this neighbor-

hood X1(y), . . . , Xn(y) span Ey . An integral manifold for a distribution V in a manifold M is

a pair (N , ι) where N is a manifold and ι : N → M is an immersion such that for each x ∈ N ,

ι∗(Tx N ) = Eι(x). An integral manifold is called maximal if it is maximal with respect to the or-

der defined by inclusions. A distribution is called integrable if for any point x ∈ M there is an

integrable manifold containing it. A distribution is called involutive if the Lie brackets of any

two vector fields of the distribution is again a vector field of the distribution. The Froebenius

theorem states that a smooth regular distribution is integrable if and only if it is involutive.

For supermanifolds, we say that a distribution is regular if their even and odd dimensions

are separately constant.

9.2. Vertical, horizontal and G-invariant distributions.

Let (P, M ,π) be a fiber bundle. The set V = Ker(π∗) ⊂ T P form a smooth regular integrable

distribution called the vertical distribution. Its integral manifolds are simply the fiber of the

fibration. The choice of complementary space Hz of Vz form what is called an horizontal

distribution, also named connection. It is automatically regular, and is usually required to be

smooth. If (P, M ,π,G) is a principal fiber bundle with right action r , we say that a distribution

E is G-equivariant (sometimes also called G-invariant) if Exg = rg∗Ex . A principal connection

is a smooth G-equivariant horizontal distribution. Still in the case of a principal bundle, the

right action r : P ×G → P give rise, when restricted to a fixed z ∈ P , to an isomorphism rz

between G and the fiber containing z. The tangent map at the identity of this isomorphism

defines another isomorphism rz∗|e , between the Lie algebra g of G and the vertical subspace

Vz . Those vertical and horizontal subspaces can be respectively regrouped into two new

bundle, denoted V P and HP . The construction of V P can be extended to any bundle, not

necessarily principal. For HP we can extend it generically if we forget about G-equivariance,

or we can define it on associated bundle using the associated structure.

9.3. Connection one-forms.

The choice of an horizontal distribution Hz at z is equivalent to the choice of a projection

Φz : Tz P →Vz , (9.1)

with Hz = Ker(Φz ). Φz can be seen as an element of T ∗
z P ⊗Vz . When the horizontal distribu-

tion is smooth, the assignment z 7→Φz define a one-form Φ with values in V : Φ ∈Ω(P,V P ),

and reciprocally. In the case of a principal bundle, we can use the isomorphism rz∗|e defined

above to have a connection one-form with values in g instead of V P

Φ̃ : z 7→ (rz∗|e )−1 ◦Φz . (9.2)
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Using pullback of sections, we define a connection one-form over the base manifold

A = s∗Φ̃, s : M → P a section. (9.3)

This connection one-form may be defined only locally, if s is a local section. It is this defi-

nition that we will mainly use in this thesis, and that we will refer to simply as "connection"

and we will also always assume that the connection is G-equivariant.

9.4. Gauge transformations of the connection.

Because this definition of the connection A depends on the choice of a section, it is impor-

tant to understand how A changes when we change this choice. Given two sections s1, s2,

defining two connections A1 = s1
∗Φ̃, A2 = s2

∗Φ̃, the principal bundle structure ensures the

existence of a smooth map g : M →G such that

s2 = s1 · g . (9.4)

Hence we have to relate s∗1 Φ̃ with (s1 ·g )∗Φ̃. We start a digression. Suppose we have a smooth

map f : M×N → P between three smooth manifolds M , N ,P . Let l ix and r i y be the left- and

right-insertion map

l ix : N → M ×N , y 7→ (x, y), (9.5)

r i y : M → M ×N , x 7→ (x, y). (9.6)

Their tangent maps are given by, at some y0 ∈ N , x0 ∈ M ,

l ix∗|y0 : Ty0 N → Tx M ×Ty0 N , Y 7→ (0,Y ), (9.7)

r i y∗|x0 : Tx0 M → Tx0 M ×Ty N , X 7→ (X ,0). (9.8)

Thus the tangent map of f at (x, y) is

f∗|(x,y)(X ,Y ) = ( f ◦ l ix )∗|y (Y )+ ( f ◦ r i y )∗|x (X ) (9.9)

Applying this observation to the right action r of G on P we obtain that

(r ◦ (s1, g ))∗ = rg∗ ◦ s1∗+ rs1∗ ◦ g∗, (9.10)

where we have used the short-hand notation rg = r ◦ r ig , rs1 = r ◦ l is1 . Dualizing, we get

(s1 · g )∗ = s∗1 rg
∗+ g∗rs1

∗ (9.11)

This equality simply reflect the derivation rule:

∂i (s1(x) · g (x)) = (∂i s1(x)) · g (x)+ s1(x) · (∂i g (x)). (9.12)

Note that the above formula requires a well defined action (we have denoted it · as well) of G

on the tangent space Ts1(x)P and of the tangent space Tg (x)G on P . This would be the case,

for example, if G is a matrix group, see below.

The gauge invariance of the connection is by definition the equality

rg∗Hz = Hzg . (9.13)
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This means that given a tangent vector X , its decomposition X = X vert +X hor is preserved by

the tangent map rg∗

rg∗(X vert) = (rg∗X )vert, rg∗(X hor) = (rg∗X )hor. (9.14)

For the one-form Φ, this last equality implies, for any tangent vector X , rg∗Φ(X ) =Φ(rg∗X ),

or simply

rg∗Φ= rg
∗Φ. (9.15)

Now let X̄ be a vector in the Lie algebra g= TeG . From

rg∗|z rz∗|e (X̄ ) = d

d t
(rg (ze t X̄ )) = d

d t
(zg g−1e t X̄ g ) (9.16)

we obtain the equality

rg∗|z rz∗|e (X̄ ) = rzg∗|e (Adg−1 X̄ ). (9.17)

To follow carefully the end of the computation, we denote be Φ(z) the value of Φ at z, i.e.

Φ(z) ∈ T ∗
z P . By definition Φ(z) = rz∗|eΦ̃(z), hence

rg∗|zΦ(z) = rg∗|z rz∗|eΦ̃(z), (9.18)

= rzg∗|e Adg−1Φ̃(z). (9.19)

Using equation (9.15), we get

rg
∗|zgΦ(zg ) = rzg∗|e Adg−1Φ̃(z). (9.20)

Finally, applying rzg∗|e−1 on both sides of the preceding equation, we obtain rg
∗|zg Φ̃(zg ) =

Adg−1Φ̃(z) or simply, as this equality hold for all z ∈ P ,

rg
∗Φ̃= Adg−1Φ̃. (9.21)

Hence we have worked out the first part of the computation

A2 = Adg−1 A1 + g∗rs1
∗Φ̃. (9.22)

For any vector X(g ) ∈ Tg G ,

rz
∗|zg Φ̃(zg )(X(g )) = rz

∗|zg rz∗|e−1Φ(zg )(X(g )), (9.23)

= rz∗|e−1Φ(zg )(rg∗|g X(g )) (9.24)

= rz∗|e−1rg∗|g X(g ), (9.25)

where the last equality holds because rg∗|g X(g ) is a vertical vector. Now of course

rz∗|e−1rg∗|g X(g )rz∗|e−1rg∗|g l̃g∗|e l̃g−1∗|g X(g ), (9.26)

where l̃g denotes the left multiplication by g . Because r is a group action rz (g1g2) = rzg1 (g2),

or, in other words, rzg = rz ◦ l̃g . Hence

rz
∗|zg Φ̃(zg )(X(g )) = l̃g−1 (X(g )) (9.27)



9. CONNECTIONS 73

showing that rz
∗Φ̃ is simply the Maurer-Cartan form of G . Hence the second term in 9.22 is

the pullback of the Maurer-Cartan form by the map g : M →G . Hence

A2 = Adg−1 A1 + g∗θ (9.28)

Now suppose G is a matrix group, in which we can multiply tangent vectors with group ele-

ments. Then, for a vector X ∈ Tx M ,

g∗θ(X ) = θ(g (x))(g∗X ) = Lg−1(x)∗g∗X = g−1(x)∂i g (x)X i (9.29)

Hence we arrive to the physicist’s notation of gauge transformation

A2 = Adg−1 A1 + g−1dg (9.30)

9.5. Local description.

Let (P, M ,π) be any bundle with fiber F , Φ a connection one-form and φα : P →Uα×F a local

trivializing chart. In this chart, a tangent vector Xz at z ∈ P can be decomposed as a tangent

vector of M and a tangent vector of f :

φα∗(Xz ) = (Xx , X f ), φα(z) = (x, f ), Xx ∈ Tx M , X f ∈ T f F. (9.31)

The vertical vectors are those tangent to the fiber, i.e. the "X f ’s". Hence applying the con-

nection one form, we have

φα∗Φφ−1
α∗(Xx , X f ) = (0x , Γ̂(x, f )(Xx +X f )). (9.32)

For a linear homomorphism Γ̂(x, f ) : Tx M ⊕T f F → T f F . This homomorphism is a projection

onto the T f F , hence

Γ̂(x, f )(Xx +X f ) = Γ(x, f )(Xx )+X f . (9.33)

Thus a connection can also be defined charts by charts, by saying how much a vector tangent

to M in a chart is vertical, which is precisely what Γ(x, f )(Xx ) tells. In the case (P, M ,π,G) is a

principal bundle, the equivariance of the connection is the expressed through Γ by

rg∗Γ(x,g̃ ) = Γ(x,g̃ g ). (9.34)

In the case, the link between Γ and Aα is given by

Aα = lg−1
α ∗(Γx,gα + gα∗). (9.35)

In this last equation, the section sα defining Aα is given in local coordinates by

φα ◦ sα(x) = (x, gα(x)), (9.36)

and lgα∗ denotes the pushforward of the left multiplication by gα in G .

9.6. Connections and reductions.

If (P, M ,π,G) is a principal bundle, Aα a connection form on P (rigorously, we should write

{Aα}, associated with some cover {Uα} of M), and (Q, M , π̃, H) a reduced principal bundle,

with Q ⊂ P and H a subgroup of G , then Aα defines a connection on Q if and only its image

is in the Lie algebra h⊂ g of H .
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9.7. Connections on associated bundles.

If (P, M ,π,G) is a principal bundle, Φ a G-equivariant connection on P and E = P ×G F a

associated bundle, it is possible to construct a connection for E . We will do it locally on

trivializing charts using the form Γ of the previous paragraph. For simplicity, we will write

the right action of G on P and its left action on F using dots. We will also not write explicitly

the charts map φα as well as their pushforward, and indentify P ≃ Uα×G , Uα ⊂ M . In this

set-up the quotient map defining E takes the form

Uα×G ×F ≃ P ×F → E ≃Uα×F, (9.37)

(x, g , v) 7→ (x, g · v). (9.38)

At the level of tangent spaces,

T P ×TG T F → T E , (9.39)

(x, g , v ; Xx , Xg , Xv ) 7→ (x, g · v ; Xx , Xg · v + g ·Xv ). (9.40)

hence a tangent vector of E can be written as an equivalence class

(x, v ; Xx , Xv ) = [(x, g , g−1 · v ; Xx , Xg , g−1 ·Xv − g−1 ·Xg · g−1 ·V )]. (9.41)

What we can do is apply the connection Φ to any vector of this equivalence class to obtain

its vertical part, express it in terms of the G-equivariant Γ and apply the quotient map (9.40).

We obtain a local definition for a connection form ΦE on E

ΦE (x, v ; Xx , Xv ) = (x, v ;0x ,ΓE
(x,v)(Xx )+Xv ), (9.42)

ΓE
(x,v)(Xx ) = Γx,g (Xx ) · g−1 · v. (9.43)

9.8. Covariant derivatives.

The covariant derivative correspond the "horizontal projection after taking exterior deriva-

tive". So far we have defined Φ : T P → V P . Equivalently, we have the horizontal projection

h =Φ− Id : T P → HP . The dual endomorphism acts on differential forms h∗ :Ω(P ) →Ω(P ),

whose image are those differential forms which vanish on vertical vectors. The covariant

derivative ∇ is the composition of h∗ with d

∇ .= h∗ ◦d. (9.44)

It is a derivation as d is a derivation and h∗ is an endomorphism for the exterior algebra of

forms.

9.9. Basic forms.

Suppose we have a representation ρ : G → F of G onto a vector space F and consider the

differential form with values in F , Ω(P,F ) ∋ω. Among these forms, horizontal forms are the

one satisfying

h∗ω=ω. (9.45)

Invariant forms are the one satisfying

r∗
g ω= ρ(g−1) ·ω. (9.46)
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A form which is at the same time horizontal and invariant will be called basic, their space will

be denoted ΩBas(P,F ). Basic forms are related to form with values in the space of sections of

the associated bundle P ×G F through the isomorphism

ΩBas(P,F ) ≃Ω(M ,P ×G F ) (9.47)

where Ω(M ,P ×G F ) = Ω(M ,Γ(P ×G F )) = Ω(M) ⊗ Γ(P ×G F ). We will refer to elements of

Ω(M ,P ×G F ) as forms-sections.

Proof : Let ω = ωa ⊗ fa ∈ ΩBas(P,F ). We cover M by local patches {Uα} such that we have a

local section sα on each patch. We define ω ∈Ω(M ,P ×G F ) by

ω(x) = (
s∗αω

a)
(x)⊗ [sα(x), fa] if x ∈Uα, (9.48)

where [sα(x), fa] denotes the equivalence class defining an element of P ×G F over x. We

show that this definition does not depends on the chosen section sα, which will at the same

time show that ω is single-valued on overlap Uα∩Uβ. Let s̃α be another local section defined

on Uα. Then there exists a map gα : M →G such that s̃α = sα · gα. Using (9.11),(
(sα · gα(x))∗ωa)

(x)⊗ [sα(x) · gα(x), fa] =(
(s∗αr∗

gα + g∗
αr∗

sα )ωa
)

(x)⊗ [sα(x)gα(x), fa]. (9.49)

Because ω is horizontal, r∗
sαω= 0. Using invariance of ω, we have(

s̃∗αω
a)

(x)⊗ [s̃α(x), fa] = (
s∗αω

a)
(x)⊗ [sα(x)gα,ρ(g−1

α )b
a fb], (9.50)

which is what was needed to be shown.

Conversely suppose given ω ∈Ω(M ,P ×G F ). Then we define ω(z) ∈ΩBas(P,F ) by the formula

ωa(z)⊗ fa =π∗
zω

a(π(z))⊗ [z, fa], (9.51)

where π∗
z is the pullback T ∗

π (z)M → T ∗
z P . This form is horizontal because of π∗. Its invari-

ance follows form the equalities π∗
zg = r∗

g π
∗
z and [z, fa] = [zg ,ρ(g−1)b

a fb].

9.10. Covariant derivatives of basic forms.

Let ω ∈ΩBas(P,F ) be a basic form, ρ the action of G on F , Φ a connection and ∇ the covariant

derivative. Then

∇ω= dω+ρ∗(Φ̃)∧ω. (9.52)

We show this equality following [KolMicSlo]. We calculate what gives the two sides of the

equality when applied to k vectors (X1, . . . , Xk ) supposing ω is a differential form of degree

k −1. We separate in two cases: when all vectors are horizontal and when at least one vector

is vertical. In the first case,

∇ω(X1, . . . Xk ) = h∗dω(X1, . . . , Xk ), (9.53)

= dω(X1 . . . , Xk ), (9.54)

= dω(X1 . . . , Xk )+ρ∗(Φ̃)∧ω(X1 . . . , Xk ), (9.55)
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since Φ̃ applied on any horizontal vector gives 0. The second case is equivalent to applying

ιX to both side of the equation, where X is a vertical vector and ι the insertion operator.

Because X is vertical, and both ω and ∇ω are horizontal,

ιXω= ιX ∇ω= ιX h∗dω= 0. (9.56)

Using Cartan’s formula, we have

ιX dω= (ιx d+dιX )ω=LXω (9.57)

We can write X = r∗
e a for some a ∈ g. So

LXωz = d

dt
|t=0Φ

X∗
−t ωΦX

t (z), (9.58)

= d

dt
|t=0r∗

e−t aωze t a , (9.59)

= d

dt
|t=0ρ(e t a)ωze t a , (9.60)

= ρ∗(a)ωz , (9.61)

= ρ∗(Φ̃(X ))ωz . (9.62)

Hence

h∗dω(X , . . . ) = ιX h∗dω(. . . ) = (9.63)

9.11. Covariant exterior derivatives in associated bundles.

The isomorphism between basic forms and and forms-sections, together with the formula

for covariant derivative of basic forms, lead to a natural definition for covariant derivative of

forms-sections. Let ω = ωa sa be a form-section. Using the notation of the preceding para-

graph, e.g. sa = [sα, fa], we perform the following transformations

Ω(M ,P ×G F ) ∋ωa ⊗ [sα, fa] 7→π∗
sαω

a ⊗ fa ∈ΩBas(P,F ), (9.64)

π∗
sαω

a ⊗ fa 7→ ∇(π∗
sαω

a ⊗ fa) = dπ∗
sαω

a ⊗ fa + (−1)kπ∗
sαω

a ∧ρ∗Φ̃ fa , (9.65)

where k is the degree of ωa (assuming it is of homogeneous degree) and the (−1)k comes

from the inversion of Φ̃ and ωa . We continue

dπ∗
sαω

a ⊗ fa + (−1)kπ∗
sαω

a ∧ρ∗Φ̃ fa ,

7→ s∗αdπ∗
sαω

a ⊗ [sα, fa]+ (−1)k s∗απ
∗
sαω

a ∧ [sα,ρ∗s∗αΦ̃ fa]. (9.66)

The operator d commutes with pullbacks, s∗απ∗
sα =Id and s∗α is Aα by definition. Hence, after

simplification, we obtain our definition for covariant derivative of forms-sections:

∇ω .= dω+ρ∗Aα∧ω, ω ∈Ω(Uα,P ×G F ) (9.67)

This last formula is widely used in physics, because what we call forms-sections are usually

used to describe matter fields. It also explains why the connection expressed in its local form

Aα is preferred by physicists (rather than the global Φ).
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9.12. The covariant derivative is a derivation.

It is direct to show from (9.67) that the covariant derivative fulfill a derivative property. If

ω ∈Ω(M) is a k-form and σ ∈Ω(M ,P ×G F ) is a p-form-section, then ω∧σ is a k +p-form-

section and

∇(ω∧σ) = dω∧σ+ (−1)kω∧∇σ. (9.68)

9.13. Matrix form of the connection.

In this part we assume that the representation ρ of G on F is transitive. Let {ea} be a local

basis of E , i.e. {ea)(x)} is a basis of the fiber Ex for all x in some open subset of M . Then we

can write ea in the form

ea(x) = [sα(x), fa], (9.69)

for some local section sα of P . The preceding development shows that

∇ea = (Aα)b
aeb , (9.70)

where (Aα)b
a is the matrix form of ρ∗(Aα). If σ ∈Ω(M ,E) is any local form-section, then we

can decompose σ = σaea with σa ∈ Ω(M) and by the derivation property of the covariant

derivative

∇σ= (dσa)ea +σa(∇ea), (9.71)

=
(
dσa + (Aα)a

bσ
b
)

ea . (9.72)

We can write down the form indices as well, in which case we have, for 0- and 1-forms-

sections,

∇µσa = ∂µσa + Aa
bµσ

b , (9.73)

(∇σa)µν = ∂µσa
ν−∂νσa

µ+ Aa
bµσ

b
ν− Aa

bνσ
b
µ, (9.74)

We have introduced a convention that we will keep throughout this manuscript: matrix in-

dices are written before form indices. We also recall the convention that for a 2-form ω,

ω= 1

2
ωµνd xµ∧d xν. (9.75)

10. Curvature

10.1. Definition.

For any fiber bundle (P, M ,π), the vertical distribution is an integrable distribution, because

of the formula, for X ,Y ∈ Γ(V P ),

π∗([X ,Y ]) = [π∗(x),π∗(Y )]. (10.1)

However the horizontal distribution is not necessarily integrable; the vertical part of the Lie

bracket of two horizontal vector fields is correspond to the curvature of the distribution.

More precisely, we define the curvature two form R at x ∈Wα ⊂ P , for two local vector fields

x,Y ∈ Γ(T Wα) defined around x, by

Rx (X ,Y ) =Φ([h(X ),h(Y )])x . (10.2)
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Intuitively, this definition of the curvature can be understood in the following way. Pick two

horizontal direction, say west and north, and let’s imagine the vertical direction is the alti-

tude. If there is non a vanishing curvature, making first an infinitesimal step to the west then

an infinitesimal step to the north versus making first an infinitesimal step to the north and

then an infinitesimal step to the west (this would represent a Lie bracket [XWest,YNorth]) will

lead you to the same location but not at the same altitude. This difference of altitude is the

curvature and it is precisely the quantity expressed by (10.2). A short calculation shows that

the definition (10.2) is equivalent to

R = h∗dΦ. (10.3)

10.2. Standard Formula for curvature.

We assume (P, M ,π,G) is a principal G-bundle and the connection one-form Φ is a principal

connection. We show that our definition is equivalent to the standard curvature’s formula

R = dΦ+ 1

2
[Φ∧Φ]. (10.4)

The notation [∧] denotes the product obtained from the tensor product of the two algebras

Ω(M) and the Lie algebra of vector fields, recall ref(EARLIER). The proof of (10.4) is given in

[SpinJMF] and consists in deriving the equality

h∗dΦ(X ,Y ) = dΦ(X ,Y )+ 1

2
Φ(X )∧Φ(Y ), (10.5)

in three cases:

i) X and Y both horizontal,

ii) X vertical and Y horizontal,

iii) X and Y both vertical.

In case i ), both sides of (10.5) are equal to

dΦ(X ,Y ). (10.6)

In case i i ), the left-hand-side of (10.5) vanishes whereas its right-hand-side equals to

dΦ(X ,Y ) = X (Φ(Y ))−Y (Φ(X ))+Φ([X ,Y ]). (10.7)

X (Φ(Y )) and Y (Φ(Y )) both vanishes because Φ is constant on both the horizontal and verti-

cal subspaces: it is either the Identity or the 0 map there. [X ,Y ] is horizontal because of the

G-equivariance of the connection

[X ,Y ] =LX (Y ) = d

d t
|t=0Φ

X
t∗(Y ) = d

d t
|t=0re t a∗Y , (10.8)

where we have assumed that X is a fundamental vector field generated by a ∈ g. The push-

forward of the right action of G on P sends horizontal vectors to horizontal vectors, hence

the right hand side of (10.5) vanishes as well in case i i ). In case i i i ), the left-hand-side of

(10.5) vanishes, and the right-hand-side is equal to

−Φ([X ,Y ])+Φ∧Φ(X ,Y ), (10.9)
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where XΦ(Y ) = Y Φ(X ) = 0 for the same reason as in case i i ). The Lie bracket of two vertical

vector fields is vertical hence

Φ([X ,Y ]) = [X ,Y ] (10.10)

The definition of the wedge product implies

Φ∧Φ([X ,Y ]) = [Φ(X ),Φ(Y )], (10.11)

which is equal to [X ,Y ] as well as X and Y are vertical, finishing the proof.

10.3. Local curvature.

We gives the formula for the curvature in terms of the local form for the connection Aα. So

let (P, M ,π,G) be a principal fiber bundle witch connection Φ, a local section sα : Uα → M

defined on a an open Uα ∈ M and Aα the "physicist’s" connection. Applying s∗αrsα∗|−1
e to both

sides of equation (10.4), we obtain a formula expressing the curvature in terms of Aα

Fα = dAα+ 1

2
[Aα∧ Aα]. (10.12)

where we have defined

Fα
.= s∗αrsα∗|−1

e R. (10.13)

It this version of the curvature that we will mostly use. In the case G and its Lie algebra g are

a matrix group and a matrix algebra respectively, and writing explicitly the matrix and form

indices, and forgetting the local section index α, the last equation becomes

F a
bµν = ∂µAa

bν−∂νAa
bµ+

1

2

(
Aa

cµAc
bν− Aa

cνAc
bµ

)
(10.14)

10.4. Equivariance of the curvature.

The curvature satisfies the same equivariance property as the connection

r∗
g R = rg∗R, ∀g ∈G . (10.15)

Indeed, equivariance of Φ implies equivariance of h, hence h∗ commutes with r∗
g . d com-

mutes with pullbacks hence commutes with r∗
g . Using these two properties and equivariance

of Φ in R = h∗dΦ shows the result. Express in term of the g-valued connection

R̃z = rz∗|−1
e R = h∗dΦ̃, (10.16)

this property is written

r∗
g R̃ = Adg−1 R̃, (10.17)

showing that the curvature R̃ is a basic form R̃ ∈ ΩBas(P,g). Hence Fα is the expression on

local patch of section 2-form of the associated bundle P ×AdG g.



80 CHAPTER 3. DIFFERENTIAL GEOMETRY

10.5. Bianchi Identity.

The Bianchi identity expresses the fact that the covariant derivative of the curvature vanishes

h∗dR = 0. (10.18)

This is shown by direct calculation using (10.3). Because R̃ is a basic form, formula (9.52)

directly shows that

dR̃ + [Φ̃∧ R̃] = 0. (10.19)

Similarly, for Fα,

dF̃α+ [Aα∧Fα] = 0. (10.20)

10.6. Covariant derivative and curvature.

Let (P, M ,π,G) be a principal bundle and E = P×G F an associated bundle with ρ : G →GLn(F )

the defining representation. Let Aα be a connection on P and ∇ the associated covariant

derivative on E . Let ω ∈Ω(Uα,E) be a (locally defined) form-section. Using (9.67) two times

we have

∇∇ω= d2ω+ρ∗(Aα)∧dω+dρ∗(Aα)∧ω (10.21)

−ρ∗(Aα)∧dω+ρ∗(Aα)∧ρ∗(Aα)∧ω (10.22)

= ρ∗(dAα+ 1

2
[Aα∧ Aα])∧ω, (10.23)

hence,

∇∇ω= ρ∗(Fα)∧ω. (10.24)

Another link between the curvature and the covariant derivative can be expressed through

the operator

∇X
.= ιX ∇, (10.25)

where X is a vector field on M . Using the derivation property of ιX and d, two vector fields

X ,Y on M and a form-section ω, a computation of ∇X ∇Y ω shows that

ιY ιY Fα = [∇X ,∇Y ]−∇[X ,Y ]. (10.26)

10.7. Connection and curvature for super-manifolds. We end this section by briefly

presenting how the theory of connection and curvature extends to the case of super-manifold.

We follow [Sta98], and we refer to it for further details. However here we call "super" what

the author of the aforementioned article calls "graded". Let (M ,O) be a super-manifold. A

super-distribution is a subsheaf D of Der(O) of constant graded dimension i.e. the dimen-

sion of the even and odd part of D are separately constant. The distribution is called regular

if the dimension of the even and odd part of the stalk Dx , x ∈ M are also separately constant.

In [Sta98] is shown

THEOREM 13. Let (P,OP ) be a super-principal bundle over the super manifold (M ,OM )

with structure group G ,OG . The action of (G ,OG ) on (P,OP ) induces a regular super-distribution

of vertical derivations that we denote Ver.
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A graded connection is then defined as a regular distribution Hor ⊂ Der(OP ) of (even

and odd) dimensions equal to the ones of M ,OM such that

1) Hor⊕Ver = Der(OP ),

2) Hor is (G ,OG ) invariant,

where we recall that the action of (G ,OG ) on Hor is given by the comodule structure of OP .

Later it is shown that such a distribution can be equivalently described by a one-form ω with

values in the super-Lie algebra g of G of total Z2 degree 0,

ω=ωa
(0)Xa(0) +ωα1 Xα(1), (10.27)

where ωa
(0) (resp. ωα(1)) is a purely even (resp. odd) 1-form and Xa(0) (resp. Xα(1)) is a generator

of the even (resp. odd) part of g. From ω, it is possible to define a super-covariant derivative

and a super-curvature exactly as in formulas (9.67) and (10.12).

11. Riemannian Geometry

11.1. Riemannian Manifold.

Stricto sensu, a Riemannian manifold is an orientable manifold M together with a Riemann-

ian metric. However, in this work we will usually call "Riemannian manifolds" orientable

manifolds with pseudo metrics. We recall some notation regarding Riemannian manifolds

and introduce some new ones. First the metric is denoted

g = gµνd xµ⊗d xν. (11.1)

However, when expressed in a local orthonormal basis {ea} we denote the coefficients by ηab

g = ηabea ⊗eb (11.2)

We shall always use greek indices to refer to coefficients expressed in a natural frame while

latin indices refer to coefficients expressed in an orthonormal frame. The orthonormal dual

basis ea is called vielbein, as well a the matrix ea
µ relating it to the natural basis d xµ. E a

µ

denotes the inverse matrix of ea
µ. If we summarize

ea = ea
µd xµ, Ea = Eµ

a∂µ, (11.3)

Eµ
a ea

ν = δµν , Eµ
a eb

µ = δa
b , (11.4)

ηabea
µeb

ν = gµν, gµνEµ
a Eν

b = ηab . (11.5)

The orthonormal tangent vectors Ea as well as the coefficients Eµ
a are also called "inverse

vielbein". There is also an inverse metric g−1, with upper indices.

g−1 = gµν∂µ⊗∂ν = ηabEa ⊗Eb . (11.6)

We don’t write the power −1 for the coefficient, hence the reader should remember that a gµν

(or ηab) with upper indices refers to the inverse metric.
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11.2. Connections for manifolds.

Let M be a manifold. We will call a connection on M a connection on LM , the frame bundle

of M. This kind of connection gives rise to a covariant derivative on T M . Let us recall that

for any vector field X , and any point x ∈ M , ∇X is an element of Tx M ⊗T ∗
x M . Thus we can

expand it in the natural basis {∂ν⊗d xµ}

∇X = (∇X )νµ ∂ν⊗d xµ. (11.7)

In particular, applying this formula to the vector field ∂ρ itself

(∇∂ρ) = (∇∂ρ)νµ ∂ν⊗d xµ
.= Γνρµ ∂ν⊗d xµ (11.8)

In equation (11.8), we have define the coefficient of the linear connection Γνρµ expressed in a

natural basis. It is important for the reader to remember that whenever he sees the connec-

tion expressed with greek indices and denoted by the letter Γ, we refer to formula (11.8). It

may also be important to remember that the convention we adopt is that the first two indices

are the matrix indices while the last one is the form index.

11.3. The spin connection.

In the Riemannian case, we have access to the orthonormal frame Ea , hence we can express

the matrix coefficients of the connection in this basis. Doing an analysis similar to the one

of the preceding paragraph, but using the orthonormal frame as basis of the tangent space

(but keeping the natural frame as basis of the cotangent space), we get

∇Ea = (∇Ea)b
µ Eb ⊗d xµ =ωb

aµ Eb ⊗d xµ (11.9)

Expressed in this basis, we always denotes the connection-form ωa
bµ. ωa

bµ is sometimes

called the spin connection. The relation between Γνρµ and ωa
bµ is obtained by expending

Ea = Eν
a∂ν in (11.9). Using the derivation property of the covariant derivative

∇(Eν
a∂ν) = dEν

a∂nu +Eν
a∇∂ν, (11.10)

we arrive at

ωa
bµEν

a = ∂µEν
b +Eρ

bΓ
ν
ρµ. (11.11)

This equation is sometimes called "vielbein postulate" in the literature.

11.4. Connection for Riemannian manifolds.

Let M be a Riemannian manifold, with metric g . and connection form A. We recall that the

metric induces of the principal frame bundle LM to the (pseudo-)orthonormal frame bundle

SO(M). The connection A is called "compatible with the metric" if it define a connection for

the reduced bundle SO(M), in other words, if A takes values in the Lie subalgebra so(p, q) ⊂
gl(p + q). In term of ωa

b , the fact that the image of the connection is inside so(p, q) can be

written

ηacω
c

b +ηbcω
c

a = 0 (11.12)

Because η is constant, this last relation immediately implies that

∇g = dηab +ωc
aηca +ωc

bηac = 0 (11.13)
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But this relation must hold in any basis, hence we have

∇µgνλ = ∂µgνλ−Γρσµgρλ−Γρλµgσρ = 0. (11.14)

11.5. Torsion.

A particularity of the tangent space in the whole family of tangent bundle, is that the fron-

tier between form-sections and tensors is not so clear. In fact, the same object can be seen

through different angle, but the way we look at it is important when we compute its covariant

derivative. Among those objects, the identity of the tangent space

Id : T M → T M , (11.15)

can be seen as a 1-form with values in T M , i.e. an object of Ω(M ,T M). When so considered,

it is called the soldering form. We can write it

e = ea ⊗Ea . (11.16)

The covariant derivative of e need not to vanish; in fact this covariant derivative is called the

torsion of the connection and is denoted T

T =∇e = T a
µνd xµ∧d xν⊗Ea , (11.17)

T a
µν = 1

2

(
∂µea

ν −∂νea
µ+ωa

bµeb
ν −ωa

bνeb
µ

)
. (11.18)

11.6. Levi-Civita Connection.

THEOREM 14. Let M be a Riemannian manifold. There exist on M a unique metric com-

patible connection whose torsion vanishes at every point, called the Levi-Civita connection.

In term of the metric, the Levi-Civita connection is given by

Γµνλ =
1

2
gµρ

(
∂νgρλ+∂λgρν−∂ρgνλ

)
(11.19)

11.7. Riemann, Ricci and scalar curvature.

The Riemann curvature is by definition the curvature of the Levi-Civita connection. We de-

note it

R = 1

2
Rµ

νλρ
∂µ⊗d xν⊗d xλ∧d xρ . (11.20)

The matrix coefficient of the Riemann curvature can also be expressed in the orthonormal

frame, in which case we write them Ra
bλρ or even

Rab
λρ

.= ηbc Ra
cλρ . (11.21)

Because the µ and the λ of (11.20) are dual to each other, we can pair them, obtaining a trace

leading to the Ricci tensor

Ricνρ = Rµ
νµρ , (11.22)

where we have used Einstein’s summation convention. Finally, the scalar curvature is

R= gµνRicµν. (11.23)
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In some physical models, we shall sometimes also use an arbitrary SO(p, q) connection. We

will still write it Γ or Γµνλ, and still call the tensors defined by equations (11.20), (11.22) and

(11.23) using this arbitrary Γ in the right-hand side the Riemann, Ricci and scalar curvature.

12. Lie derivatives of spinor fields

12.1. The strategy.

A natural definition for Lie derivative of spinors fields would have been to see them as section

of a bundle associated to the Clifford bundle, if we had a natural definition for Lie derivative

of sections of this Clifford bundle. However we have seen this is not the case, hence we need

another idea. The method we will use is to see the spinor bundle as a bundle associated to

the spin bundle, i.e. the principal bundle whose structure group is the spin group. The spin

bundle however is not a natural bundle, in the sense it is not a sub-bundle of a tensor bun-

dle. But the (pseudo)-orthogonal bundle is; and the 2-to-1 covering Spin → SO is sufficiently

simple, so that we can "lift" the definition of Lie derivatives on SO(M) to Spin(M). Once we

have a definition of Lie derivatives on Spin(M), we have one for the spinor-bundle by the

associated bundle construction.

12.2. Projectable vector fields.

Let (F, M ,π) be a fiber bundle. A vector field X : F → T F is vector field satisfying π∗Xz1 =
π∗Xz2 whenever π(z1) = π(z2). In that case, denoting ξ = π∗X (π∗X is taken at any point of

the fiber), we say that X is projectable over ξ.

12.3. The vertical vector bundle.

Let (E , M ,π) be a vector bundle. Then the vertical bundle V E is isomorphic to E×M E ,i.e. the

Whitney sum of E with itself, the canonical isomorphism vE being given by

vE : E ×M E →V E (12.1)

(x,ux , vx ) 7→ d

d t
|t=0(x,ux + t vx ) (12.2)

12.4. Lie derivatives for general vector bundles.

Let (E , M ,π) be a vector bundle and σ : M → E a section. Let X : M → T M be a vector field

and ξ : E → T E a projectable vector field over M . Then the expression σ∗X −ξ ◦σ define a

section of the vertical bundle V E . Indeed, π∗σ∗ = Id and π∗ξ= X at any point of E , showing

that π∗(σ∗X −ξ◦σ) = 0. Using the preceding observation, we have, for all x ∈ M ,

σ∗X −ξ◦σ(x) = (σ(x),Lξ,X (σ)(x)) ∈ E ×M Ex . (12.3)

Lξ,X (σ)(x) is the generalized Lie derivative of σ with respect to (ξ, X ). Hence the generaliza-

tion needs the additional data of a projectable vector field over X .
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12.5. Recovering the standard definition.

When the vector bundle is E = T M and the section σ is a vector field Y , we have a natural

projectable vector field X∗ ∈ T T M over X . We then recover that LX (Y ) is the second compo-

nent of Y∗X −X∗Y in the decomposition (12.3). The same remark applies for Lie derivatives

of one forms (where the projectable vector field is X ∗) or Lie derivatives general tensors.

12.6. General Lie derivatives.

We now give the general definition of the Lie derivative of any map f : M → N between two

manifolds, with respects to two vector fields X : M → T M , ξ : N → T N ,

L̃ξ,X ( f ) = f∗X −ξ◦ f . (12.4)

12.7. Kosmann Lift.

Let M be a manifold, and X : M → T M a vector field. There is a natural lift of X to the frame

bundle LM defined as follows. Let ΦX
t the flow of X and (x; (e1, . . . ,em)) a point of LM , i.e.

{ea}m
a=1 is a local basis of Tx M , where m = dim(M). We can extend ΦX

t to Φ̃X
t by

Φ̃X
t ((x; (e1, . . . ,em)))

.= (ΦX
t (x); (ΦX

t∗e1, . . . ,ΦX
t∗em)), (12.5)

which define a one-parameter group of diffeomorphism of LM . Differentiating with respect

Φ̃X
t to t at t = 0, we obtain a vector field X̃ : LM → T LM . In local coordinates,

X̃ (x; {ea}) = [(x; {ea}); (X (x);ea(X b)
∂

∂X a
b

)]. (12.6)

This natural lift is invariant under the action of GL(m). From it, it is quite simple to construct

a natural orthonormal lift, called Kosmann lift,

XK (x; {ea}) = (X (x),
1

2
(ηac ec (X b)−ηbc ec (X a))Jab) (12.7)

where

Jab = 1

2
(ηbc

∂

∂X a
c
−ηac

∂

∂X b
c

) (12.8)

denote a set of generators of so(p, q). An important point is that the Kosmann lift is SO(p, q)-

invariant. We recall that a vector field X : P → T P on a principal bundle P with structure

group G is G-invariant if

∀(z, g ) ∈ P ×G , rg∗X (z) = X (zg ). (12.9)

12.8. Covering projection.

We recall that, given two topological space A,B , a covering projection is a surjective map

p : B → A such that, for all a ∈ A, there exists an open subset Ua ⊂ A and a discrete space D

(not depending on a) such that

p−1(Ua) = ⊔
d∈D

Vd ,a , (12.10)

where each Vd ,a is homeomorphic to a. When such p exists, B is called a covering space for

A. As a matter of facts, a covering space of a manifold is a manifold, a covering space of a Lie

group is a Lie group.
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12.9. Covering lift of vector fields.

Let M be a manifold, G a Lie group and p : G̃ → G a covering projection such that Ker(p) is

normal in G̃ (equivalently, ker(p) is contained in the center of G̃). Let (P, M ,G ,π), (P̃ , M ,G̃ , π̃)

be principal bundle over M such that we have a map p : P̃ → P satisfying

∀z̃ ∈ P̃ , ∀g̃ ∈ G̃ , p(z̃ · g̃ ) = p(z̃) ·p(g̃ ). (12.11)

In this set-up, it holds that any G-invariant vector field of P is projectable over a vector field

of M , and can be lifted uniquely to a G̃-invariant vector field of P̃ . In particular, if we consider

the principal spin bundle Spi n(M), covering the orthonormal bundle SO(M) as in (12.11),

then the Kosmann lift (12.7) can be lifted again to a Spi n(p, q)-invariant vector field, that

we still call Kosmann lift. From the practical point of view, this Kosmann lift to the spin

manifold takes the same form as (12.7), but with the generators Jab being now generators of

the spin(p, q) Lie algebra, typically represented by 1
2γab , the γa ’s being the generators of the

Clifford algebra.

12.10. Lie derivative of spinor fields.

If (P, M ,π,G) is a principal vector bundle and E = P ×G F an associated vector bundle, then a

G-invariant vector field XP defines a vector field XE on E through

XE (e) = [(z, XP (z)), (e,0)], (12.12)

where [, ] denote the equivalence class defining T E as the associated bundle T E = T P×T G T F ,

and reciprocally. Hence if SM denotes a spinor bundle ψ : M → SM a spinor field and X a

vector field on M , we obtain a vector field XK (ψ(x)) projecting on X (x), using the Kosmann

lift XK for XP in (12.12). Applying (12.3), we obtain

LX (ψ)(x) ≡LXK ,X (ψ)(x) = X aea(ψ)+ 1

8
(ηac ec (X b)−ηbc ec (X a))γabψ. (12.13)

13. Characteristic classes

This whole section is a resumé of [MS74] until the paragraph "Chern-Weil Homomor-

phism". Then we use [Nak91].

13.1. Thom isomorphism theorem.

It is also possible to define orientation in term of cohomology rather than homology. Exactly

like homology, we have that H n(Rn ,Rn \ {0};Z) =Z, and an orientation is given by the con-

tinuous choice of a generator uF for this cohomology group at each fiber F in accordance

with local trivializing charts like in the homological definition. For oriented vector bundle

we have the Thom isomorphism theorem

THEOREM 15. Let (E , M ,π) be a vector bundle with fiber Rn . Then H i (E ,E0;Z) = 0 for

i < n and H n(E ,E0;Z) contains one and only one class u such that for any fiber Rn iF
,−→ F ⊂ E,

i∗F u = uF ∈ H n(Rn ,Rn \ {0};Z), (13.1)
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where uF is the preferred generator at F defining the orientation. Furthermore the application

H k (E ;Z) ∋ a 7→ a ∪u ∈ H k+n(E ,E0,Z), (13.2)

define an isomorphism H k (E ;Z) ≃ H k+n(E ,E0,Z).

Finally because H k (E ,Z) ≃ H k (M ,Z), ∪u leads to an isomorphism between H k (M ,Z)

and H k (E ;Z) ≃ H k+n(E ,E0,Z).

13.2. Euler class.

Keeping the same notations, the inclusion ι : (E , ) ,→ (E ,E0) gives a morphism H k (E ,E ;
0Z)

ι∗
,−→

H k (E ;Z)
π∗−−→∼ H k (M ;Z). The image of the orientation u just defined under this morphism is

called the Euler class, we denote it "e". The Euler class is our first example of a characteristic

class: a cohomological class of the base manifold but describing a certain type of vector

bundle. The Euler class fulfill some important properties among which we find:

i) The Euler class is natural: If f : M → M ′ is a smooth map covered by a morphism of

vector bundle f̃ E → E ′, then e(E) = f ∗e(E ′).

ii) The Euler class of a Whitney sum is e(E ⊕E ′) = e(E)∪e(E ′).

Here a morphism of vector bundle means a morphism of manifold such that its restriction to

any fiber defines an isomorphism Rn →Rn . The first property implies that the Euler class of

a trivial vector bundle vanishes. Indeed, if (E , M ,π) is such a bundle, there is a morphism of

vector bundle sending E to Rn covering a map sending M to a point (and the cohomology of

a point is trivial). The second property implies that if (E , M ,π) admits a nowhere vanishing

section, its Euler class is trivial. Indeed, in that case we can decompose E = E ′⊕L where L is

the trivial line bundle defined by this nowhere vanishing section. Then e(E) = e(E ′)∪ e(L) =
e(E ′)∪0.

13.3. Complex vector bundle.

By a complex vector bundle, we mean here a vector bundle (A, M ,π,F ) such that each fiber F

is isomorphic the the complex vector space Cn for some n. The realification AR of a complex

vector bundle A is the real vector bundle with the same total space A but whose fiber are

now the real vector spaces Cn
R
≃ R2n . The complexification EC of a real vector bundle E is

the vector bundle obtained form E whose each fiber have been complexified F 7→ F ⊗RC. If

(E , M ,π) is a real vector bundle, a complex structure on E is a continuous assignment x 7→ Jx ,

x ∈ M where Jx : Fx → Fx , Fx the fiber over x, is a real linear map squaring to −Id. A real

vector bundle can be turned into a complex one, by declaring on each fiber the action of C

to be

(a + i b) · vx = a · vx +b · Jx vx , vx ∈ Fx , a + i b ∈C. (13.3)

If (A, M ,π) is a complex vector bundle, its realification admits a canonical complex structure

induced by the multiplication by i . A word of cautious: for the real vector bundle (T M , M ,π),

what we have presented as a complex structure is called an almost complex structure. It

is only when this almost complex structure is integrable, i.e. when it allows to see M as a
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complex manifold, that this almost complex structure is called simply a complex structure.

But in this case the complex-real duality which is studied concern the base manifold itself,

not the vector bundle, hence the discrepancy in the denomination.

If (A, M ,π) is a complex vector bundle, its realification AR is orientable. Indeed, consider any

basis a1, . . . , an of the fiber Cn . Declaring the basis a1, i a1, a2, i a2, . . . , an , i an of R2n ≃ Cn
R

to

be ordered in this sequence does define an order on R2n . This order does not depends on

the chosen basis of Cn because mainly a permutation of any two ai ’s will lead into permuting

simultaneously two elements of the induced real basis.

13.4. Grassmann Manifold and universal bundle.

The Grassmann manifold Gn(Rn+k ) is the set of n-planes in Rn+k . It is a direct generalization

of the projective space PRn = G1(Rn+1), the set of lines in Rn . The Grassmann manifold

Gn(Rn+k ) is a compact manifold of dimension nk. The infinite Grassmann is the direct limit

G∞
n = ⋃

k∈N∗
Gn(Rn+k ), (13.4)

(N∗ is the set of strictly positive integers), where each Gn(Rn+k ) is seen as a subset of the

bigger Gn(Rn+k ′
), k ≤ k ′, thanks to the canonical inclusion Rn+k ⊂Rn+k ′

. In other words we

have

Gn(Rn) ⊂Gn(Rn+1) ⊂Gn(Rn+2) ⊂ ·· · ⊂G∞
n (13.5)

and a set in G∞
n is open if and only if its intersection with any Gn(Rn+k ) is open. G∞

n is an

infinite dimensional paracompact "manifold" (we will not define infinite dimensional mani-

fold). A paracompact space is an Hausdorff topological space such any cover admits a locally

finite refinement. A cover is locally finite if each point meets only finitely many open set of

the cover. Over each Gn(Rn+k ), and over G∞
n we define a vector bundle γn+k

n (or γ∞n ), with

fiber Rn through

point in γn+k
n = (n −plane in Rn+k , point in that n −plane). (13.6)

The fact that γn+k
n and γ∞n respect the local triviality condition can be found in []. In a com-

pletely analogous way we can Gn(Cn+k ), G∞
n,C, γn+k

n,C , γ∞n,C where R is everywhere replaced by

C. (E.g. γn+k
n,C is the set of (n −plane in Cn+k , point in that n −plane)), etc.)

13.5. Universality of γ∞n .

The bundle γ∞n is universal in the following sense :

THEOREM 16. Let E be a vector bundle over a paracompact base with fiber isomorphic to

Rn . Then there is, up to homotopy, a unique morphism of vector bundle from E to γ∞n .

The same theorem holds if we replace R by C. The existence of such a morphism of

vector bundle means that we can see E as the pullback bundle

E = f̄ ∗(γ∞n ) (13.7)
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where f̄ in the underlying map f̄ : M → G∞
n . In other words, a vector bundle over M with

fiber Rn is nothing but an homotopy class of a smooth map [ f̄ : M →Gn]. Also, this theorem

implies that for any real vector bundle E with fiber Rn there is a morphism

f ∗
E : H•(γ∞n ) → H•(E) (13.8)

13.6. Chern Classes.

This paragraph presents one possible definition of the Chern classes c1,c2, . . . . Let (A, M ,π,Cn)

be a complex vector bundle. The top Chern class is defined as the Euler class of the underly-

ing real vector bundle

cn(A)
.= e(AR) (13.9)

For the next one, we define an n −1-vector bundle over A whose fiber over (x, v) ∈ A, x ∈ M ,

v ∈ F ≃Cn is C n
⧸〈v〉. The Chern class cn−1 is defined as the Euler class of the realification of

this bundle. The n−2, n−3, etc Chern classes are defined with iteration of this construction.

The total Chern class is the sum

c = 1+ c1 + c2 +·· ·+cn (13.10)

With this construction we can see directly that the Chern classes tells us how many indepen-

dent nowhere vanishing sections of A we can find. If there exists one, cn vanishes, if there

exist two, cn−1 vanishes, etc.

13.7. Universality of Chern classes.

Chern classes are universal because of the following properties:

(1) Chern classes are natural: Given two vector bundles E , E ′ and a morphism of vector

bundle f : E → E ′, we have ci (E) = f ∗ci (E ′).

(2) Chern classes generates the ring H•(γ∞n,C).

In other words, any cohomology class of H•(γ∞n,C) can be written as a polynomial in the

ci (γ∞n,C). If any cohomology class would be a universal class among the complex vector bun-

dles, by universality of γ∞n,C, it would need be a cohomology class of H•(γ∞n,C), because of

the naturality property and the universality of γ∞n,C, and hence be expressed as a polynomial

of the Chern classes. Finally, we can add that there are no polynomial relations for Chern

classes.

13.8. Pontrjagin classes.

We have seen that Chern classes are all the characteristic classes for complex vector bun-

dles. For real vector bundles; the story slightly more complicated because not all real vector

bundles are orientable. For example the projective space RP n is not orientable when n is

even, hence the direct copy paste of the construction of Chern classes will not leads to uni-

versal cohomology class with integral coefficient. But for orientable real vector bundle, we

can define characteristic classes as Chern classes of their complexification i.e. something like

c̃i (E) = ci (EC). We remark that this definition gives c̃i (E) ∈ H 2i (E ;Z). One more fact: Chern
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classes are independent elements and we would like to keep this property. Let A be a com-

plex vector bundle; we denote its complex conjugate by A, which is the set of all (x, v̄) with

(x, v) ∈ E . It is possible to show that Chern classes satisfies

ci (A) = (−1)i ci (A) (13.11)

But if E is a real vector bundle, then EC = E , showing that 2ci (EC) = 0 in that case, leading

to the following definition. Let (E , M ,π) be a real vector bundle. The Pontrjagin class pi (E) ∈
H 4i (M ;Z) are

pi (E)
.= (−1)i c2i (EC) (13.12)

The total Pontrjagin class is

p = 1+p1 +p2 +·· ·+pn (13.13)

for a bundle of fiber dimension n. The Pontrjagin classes are natural because Chern classes

are, i.e. f ∗(pi (E ′)) = pi (E) for any morphism of vector bundle f : E → E ′. Like the Chern

classes, the Pontrjagin classes generates a universal cohomology ring, but not H•(γ∞n ,Z). In-

deed the torsion two elements c2i+1(EC) cannot be generated by the Pontrjagin classes, but

we can get rid of it using a coefficient ring in which 2 is invertible, like Z[ 1
2 ] or R. Fur-

thermore, γ∞n has to be replaced γ̃∞n , the universal oriented vector bundle, in order for the

property to hold. Finally, in even dimension, the top Pontrjagin has to be replaced by the

Euler class in the set of generators. because in that case

pn = e2. (13.14)

If we resume, let R be a ring containing 1
2

{p1(γ̃∞n ), p2(γ̃∞n ), . . . , pn(γ̃∞n )} generates H•(G̃∞
n ) if n is odd,

{p1(γ̃∞n ), p2(γ̃∞n ), . . . , pn−1(γ̃∞n ),e(γ̃∞n )} generates H•(G̃∞
n ) if n is even.

13.9. Stiefel-Whitney classes.

Another type of characteristic classes in the real case can be obtained by changing the coef-

ficient ring by Z2. Indeed, in that case H n(Rn ,Rn \ {0};Z2) has a unique generator (equiva-

lently: all manifolds are Z2-orientable). This leads to the Thom isomorphism:

THEOREM 17. Let (E , M ,π) be a real vector bundle and E0 the obtained from E after re-

moving the image of the 0-section. The cohomology groups H i (E ,E0;Z2) are all 0 for i < n,

and H n(E ,E0;Z2) is generated by a unique class u, whose restriction to any fiber gives the

unique generator of H n(R,Rn \ {0}). The map

H k (B ;Z2) → H k (E ;Z2) → H n+k (E ,E0,Z2), (13.15)

a 7→π∗(a) 7→π∗(a)∪u. (13.16)

is an isomorphism, called Thom isomorphism.

It is then possible to construct the Stiefel-Whitney classes from the class u of the the-

orem. We won’t detail the construction. Let us say that we obtain one class wi (Z2). These
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classes contains global information about the vector bundle. For example (E , Mπ) is ori-

entable if and only if w1(E) = 0 and, if it is the case, admits a spin structure if and only if

w2(E) = 0.

13.10. Gauss-Bonnet theorem.

The perhaps most famous link between cohomology and differential form is the Gauss-Bonnet

theorem which relates the Euler characteristic χ(M) of a Riemann surface to the integral of

its Gaussian curvature K .

χ(M) =
∫

d2xK . (13.17)

The Euler characteristic is simply the Euler class evaluated on the fundamental homology

class µM defining the orientation

χ(M) = 〈e,µm〉. (13.18)

The direct generalization of the Gauss-Bonnet theorem, the Chern-Gauss-Bonnet theorem,

states that the for a 2n dimensional Riemannian manifold M , with Riemann curvature R, the

Euler class is

e = 1

(2π)n Pf(R). (13.19)

The Pfaffian "Pf" is like the square root of the determinant. For a 2n ×2n skew symmetric

matrix X it is defined by

P f (X ) = (−1)n

2nn!

∑
σ∈S2n

(−1)|σ|Xσ(1)σ(2)Xσ(3)σ(4) . . . Xσ(2n−1)σ(2n). (13.20)

13.11. Chern Weil homomorphism.

The equivalent of Chern classes in de Rahm cohomology can be computed as integral of

certain polynomials in the curvature of any connection. This fact is a consequence of the

Chern-Weil homomorphism which states the following: let (E , M ,π) be a vector bundle, as-

sociated to a principal bundle whose structure group is G ; then any AdG -invariant polyno-

mial define a de Rahm cohomology class by evaluating it on the curvature of any covariant

derivative of E . Here we will consider polynomials P (X ) with the indeterminate X evaluated

in a (super-)Lie algebra g. In order for this to make sense, we see g as a subalgebra of an

algebra of (super-)matrices. In this setting, and with G a group whose Lie algebra is g, P is

called AdG invariant if

P (AdG X ) = P (X ). (13.21)

If (E , M ,π) is a vector bundle, ∇= d+A a covariant derivative on E , F the associated curvature

and G the group such that A takes values in g = Lie(G), we can evaluate a polynomial in F

using the product rule

F 2 = Fα∧Fβ⊗XαXβ. (13.22)

Xα, Xβ are Lie algebra elements and their product is the matrix product as just said. If P is

an AdG -invariant polynomial, then

(1) P (F ) is closed i.e. dP (F ) = 0,
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(2) If A′ is another connection with curvature F ′, then P (F ′)−P (F ) is exact, i.e. is the

exterior derivative of a differential form.

In other words, P (F ) define a de Rahm cohomology class, which does not depend on the

choice of the connection one-form A.

13.12. Proof of the Chern-Weil homomorphism.

Let us prove this statement as we will need a result from the proof of the second statement.

It is sufficient to prove the proposition for homogeneous polynomial, so suppose P is homo-

geneous of degree r and write

P (F ) = Pr (F,F, . . . ,F︸ ︷︷ ︸
r−times

). (13.23)

Pr , called the polarization of P , is the symmetric polynomial which, when all its argument

are identical, gives P . Infinitesimal AdG invariance implies, for X ∈ g

Pr ([X ,F ],F, . . . ,F )+Pr (F, [X ,F ], . . . ,F )+·· ·+Pr (F,F, . . . , [X ,F ]) = 0. (13.24)

Because d is a derivation, we have

dPr (F,F . . . ,F ) = Pr (dF,F, . . . ,F )+Pr (F,dF, . . . ,F )+·· ·+Pr (F,F . . . ,dF ), (13.25)

= Pr (dF,F, . . . ,F )+Pr (F,dF, . . . ,F )+·· ·+Pr (F,F . . . ,dF ) (13.26)

+Pr ([A,F ],F, . . . ,F )+Pr (F, [A,F ], . . . ,F )+·· ·+ (13.27)

+Pr (F,F, . . . , [A,F ]), (13.28)

= Pr (∇F,F, . . . ,F )+Pr (F,∇F, . . . ,F )+·· ·+ (13.29)

+Pr (F,F . . . ,∇F )+Pr ([A,F ],F, . . . ,F ) = 0, (13.30)

using the Bianchi identity ∇F = 0. For the second statement, define interpolating connection

and curvature

At = A+ t A∆, A∆ = A′− A, (13.31)

Ft = F + t∇A∆+ t 2 A∆
2. (13.32)

In this calculation, ∇= d+ A∧ is the covariant derivative with respect to A. Then

P (F ′)−P (F ) =
∫ 1

0
dt

d

dt
P (F ) = r

∫ 1

0
dtPr (

d

dt
Ft ,Ft , . . .Ft ) (13.33)

= r
∫ 1

0
dt

(
Pr (∇A∆,Ft , . . .Ft )+2tPr (A∆

2,Ft . . .Ft )
)

. (13.34)

Using Bianchi identity and invariance of P a short calculation gives

dPr (A∆,Ft , . . .Ft ) =∇Pr (∇A∆,Ft , . . .Ft )+ (r −1)tPr (A∆, [Aδ,Ft ],Ft , . . . ,Ft ). (13.35)

Invariance of P again implies

2Pr (A∆
2,Ft . . .Ft )+ (r −1)Pr (A∆, [Aδ,Ft ],Ft , . . . ,Ft ) = 0. (13.36)
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Hence

Pr (F ′)−Pr (F ) = dr TP (A, A′), (13.37)

TP (A, A′) =
∫ 1

0
dtPr (A′− A,Ft , . . .Ft ) (13.38)

The form TP (A, A′) is called a transgression form.

13.13. Analytical Chern and Pontrjagin classes.

Let (E , M ,π) be a complex vector bundle of rank n, with a covariant derivative ∇ and the

associated curvature F . Then the total Chern class c(E) is equal to

c(E) = det(Id+ F

2πi
) (13.39)

Expanding the determinant, we obtain the Chern classes ci . For example

c1(E) = i

2π
F, (13.40)

c2(E) = 1

4π2 (Tr(F ∧F )−Tr(F )∧Tr(F )), (13.41)

cn(E) =
(

i

2π

)n

det(F ). (13.42)

Now if (E , M ,π) is a real vector bundle, with covariant derivative ∇ and curvature F , the total

Pontrjagin class is given by

p(E) = det(A+ F

2π
). (13.43)

The expansion of this formula gives

p1(E) =− 1

8π2 Tr(F 2), (13.44)

p2(E) = 1

128π4

((
Tr(F 2)

)2 −2Tr(F )4
)

, (13.45)

... (13.46)

p⌊n/2⌋ =
(

1

2π

)n

det(F ). (13.47)

13.14. Proof for Chern classes.

Let us outline the proof of (13.39). The first step is to prove it for a compact complex line

bundle L. This is done using the Gauss-Bonnet theorem, which links the Euler class to the

Riemannian curvature. This ends the first step as in that case c = 1+e. The second step is to

prove it for arbitrary Whitney sum of compact complex line bundles E = L1 ⊕L2 ⊕·· ·⊕Ln . In

this case we can write a connection as a sum of connections on each Line bundle, leading to

a diagonal curvature

F =


F1

F2

. . .

Fn

 (13.48)
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Then the property of Chern classes with respect to Whitney sum

c(E1 ⊕E2 ⊕·· ·⊕Ek ) = c(E1)∪ c(E2)∪·· ·∪c(En) (13.49)

is used to show that (13.39) holds in this case. The last step is to show that the pullback of

the morphism of vector bundle

f : γ∞1,C⊕γ∞1,C⊕·· ·⊕γ∞1,C︸ ︷︷ ︸
n−times

→ γ∞n,C, (13.50)

maps H•(γ∞n,C,C) monomorphically into H•(γ∞1,C ⊕ ·· · ⊕γ∞1,C). As a consequence, the result

holds for γ∞n,C. Because the pullback of the Chern classes are the Chern classes of the pull-

back, and that the pullback of a curvature 2-form is a curvature 2-form, if the result holds for

γ∞n,C, it holds for any bundle.

13.15. Chern-Simons forms.

Let P be a 2k-form associated with a characteristic class. Because P is closed, there ex-

ists, at least locally, a (2k − 1)-form Q whose exterior derivative is P . Such a form is called

a Chern-Simons form. Chern-Simons forms can be constructed explicitly using the trans-

gression form TP . Indeed, putting A′ = 0 in (13.37), we obtain

Q = k
∫ 1

0
P (A,Ft , . . .Ft ), (13.51)

with now

Ft = tF + (t 2 − t )A∧ A. (13.52)

As an example, the Chern-Simons form associated to the second Chern-Class is

Q3 = 1

8π2 Tr(AδA+ 2

3
A∧ A∧ A) (13.53)

where Tr denotes an invariant bilinear form of the Lie algebra in which the connection-form

A takes values, like the trace for a faithful irreducible representation.

14. Jets

14.1. Multi-index notation.

A mutli-index is a finite sequence of positive integer which we will denote using an underbar

µ= {µ1, . . .µn}. (14.1)

It will serve for example to denote succinctly derivatives with respect to multiple variables

∂µ
.= ∂µ1 . . .∂µn . (14.2)

Given a multi-index µ, we denote by |µ| the sum of all index it contains

|µ| =µ1 +µ2 +·· ·+µn . (14.3)
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14.2. Jets.

Let M and N be two manifolds. We define equivalence classes indexed by positive integers

∼k on the set of functions from x ∈ M to y ∈ N by the following. Two functions f , g : M → N ,

f (x) = g (x) = y are equivalent, and we write it f ∼k g if and only if for any function ψ : R→ M

with ψ(0) = x and any real-valued function φ defined on a neighborhood of y , the derivatives

of φ ◦ f ◦ψ and φ ◦ g ◦ψ at 0 coincides up to order k. An equivalence class for this relation

is called a k-jet at x, denoted by j k
x f (or sometimes only j 1 f if the origin x is clear), and

the set of all these jets, which is easily seen as a vector space, is denoted J k
x (M , N )y . By an

abuse of language, we can say that two function define the same k-jet at x if their respective

Taylor expansions at x agree up to order k. The following simple proposition should make

the reader’s mind clear:

PROPOSITION 22. Two functions defines the same germ at x if and only if they define,

∀k ∈N, the same k-jet at x.

14.3. Tangent vectors and jets.

Given a manifold M and a point x ∈ M , we can identify the tangent space at x Tx M and the

Jet space from R to M J 1
0 (R, M)x . Hence we can easily extend the notion of tangent vectors

to second-order, third-order, k-order tangent vectors as elements of J 1
0 (R, M)x , J 2

0 (R, M)x and

J k
0 (R, M)x respectively. We can also speak of tangent bi-vectors, or second-order tangent tri-

vectors as elements of J 1
0 (R2, M)x and J 2

0 (R3, M)x respectively. This suggests the notation

T k
r x M for the space J k

0 (Rr , M)x . The union of all the spaces T k
r x M form a bundle over M ,

denoted T k
r M . Its typical fiber is the space Lk

r m
.= J k

0 (Rr ,Rm)0.

There is a natural pairing between J 1
0 (R, M)x and J 1

x (M ,R)0 given by

〈 j 1 f , j 1g 〉 = d

d t
( f ◦ g )(t )|t=0, (14.4)

showing that the space J 1
x (M ,R)0 can be identified with the cotangent space T ∗

x M . Analo-

gously of what is done for the tangent space, we will denote by T ∗k
r x the space J k

x (M ,Rr )0 and

T ∗k
r M the bundle over M their union form. Its typical fiber is the space Lk

mr .

14.4. The group Gk
m .

We define the group Gk
m of k-jets of diffeomorphism φ :Rm →Rm sending 0 to 0, i.e. Gk

m is a

subset of J k
0 (Rm ,Rm)0. The group multiplication is given by composition:

∀ j k f , j k g ∈Gk
m , j k f · j k g = j k ( f ◦ g ) (14.5)

The group Gk
m can be identified with the group of polynomial functions from Rm to Rm with

at most degree k or equivalently to

GL(m)[X1, . . . , Xm]⧸I, (14.6)

where

I .= (
∑

|µ|=k+1
X µ)GL(m)[X1, . . . , Xm] (14.7)

is the ideal generated by elements of total polynomial degree strictly bigger than k.
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14.5. Jet prolongation of manifolds.

Jet prolongation of manifolds are defined as jet prolongation of the local charts. Hence we

define F k M , the bundle of k-jets of smooth diffeomorphism from Rm to M . It is a principal

bundle whose structure group is Gk
m . The right action is given by composition of representa-

tives.

r : F k M ×Gk
m → F k M (14.8)

( j kφ, j kψ) 7→ j k (φ◦ψ). (14.9)

As notation suggest, this bundle is the natural extension of the frame bundle F M . The bun-

dles T k
r M , T ∗k

r M defined above can be seen as associated bundles of the principal bundles

F k M , exactly like the tangent bundle is a bundle associated to the frame bundle. The left

actions of the structure group Gk
m on the typical fibers Lk r m, Lk mr are given respectively by

ρ1 : Gk
m ×Lk

r m → Lk
r m (14.10)

( j kφ, j kψ) 7→ j k (φ◦ψ), (14.11)

ρ2 : Gk
m ×Lk

mr → Lk
mr (14.12)

( j kφ, j kψ) 7→ j k (ψ◦φ−1). (14.13)

14.6. Geometrical interpretation of Lie algebra expansions.

If (G ,mG , i ,e) is a Lie group, then the tangent group (TG ,TmG ,T i , (e,0)) is a Lie group as well.

This fact is still valid for the extended tangent spaces T kG . Let g be the Lie algebra of G and

g[k] the one of T kG . Then

g[k] = g[X ]⧸〈X k+1〉. (14.14)

Let us show it. The first point is to compute the prolongation j k m of the multiplication law

of the Lie group. In order to avoid complicated notation, we will write everything as if we

were in the case of a matrix Lie group. The notation can then be adapted by the reader to the

general case. Hence let

(g1, X1, A1, . . .U1), (g2, X2, A2, . . . ,Uk ) ∈ T k
m(G). (14.15)

Then there are two local curves ϕ1,ϕ2 : [−1,1] →G such that

g1 =ϕ1(0) g2 =ϕ2(0), (14.16)

X1 = d

d t
|t=0ϕ1 X2 = d

d t
|t=0ϕ2, (14.17)

A1 = d 2

d t 2 |t=0ϕ1 A1 = d 2

d t 2 |t=0ϕ2, (14.18)

. . . (14.19)

U1 = d k

d t k
|t=0ϕ1 U2 = d k

d t k
|t=0ϕ2. (14.20)
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The result of the sought product is obtained by computing the k-first derivatives of m(ϕ1,ϕ2).

Hence

j k m
(
(g1, X1, A1, . . .U1) ; (g2, X2, A2, . . . ,Uk )

)
,= (g1 · g2, g1 ·X2 +X1 · g2,

g1 · A2 + A1 · g2 +2X1 ·X2, . . . , g1 ·U2 +U1 · g2 + . . . ). (14.21)

We have not write the full product at the kth element for the sake of clarity. Next we compute

the tangent of the left multiplication l [k] associated with this product. We need an element

a of the Lie algebra g[k] expressed as a derivative

a = d

d t
|t=0(e t W, tY , tB , . . . , tV ). (14.22)

We have

l [k]
(g ,X ,A,...U ),∗(a) = d

d t
|t=0

[
l [k]

(g ,X ,A,...U )(e t W, tY , tB , . . . , tV )
]

, (14.23)

= (g ·W, g ·Y +X ·W, g ·B + A ·W +2X ·Y , . . . , g ·V +U ·W + . . . ).(14.24)

We can similarly compute the tangent of the right multiplication r [k]∗. The last step is to

compute the Lie bracket of two elements a,b ∈ g[k] using

[a,b]g[k] = ada(b) = d

d t
|t=0Adg (t )(b), (14.25)

a = d

d t
|t=0g (t ), (14.26)

Adg = l [k]
g∗ ◦ r [k]

g∗. (14.27)

The result is[
(W1, X1, A1, . . . ,U1), (W2, X2, A2, . . . ,U2)

]
g[k] =

(
[W1,W2]g, [W1, X2]g+ [X1,W2]g

[W1, A2]g+ [W2, A1]g+2[X1, X2]g, . . . [W1,U2]g+ [U1,W2]g+ . . .
)

, (14.28)

where we have denoted by []g the Lie bracket of g. Hence the Lie bracket []g[k] is the exactly

the one of g⧸〈X k+1〉.

14.7. Jet prolongation of fiber bundles.

There are two kinds of jet prolongation of fiber bundle. The first category consists in pro-

longing the sections. Hence, given a fiber bundle (F, M ,π) we define the set J k F whose ele-

ments are k-jets j k
xσ of sections σ : M → F defined around a point x ∈ M . There is a natural

structure of nested fiber bundles

M
π←− F

p1,0←−− J 1F
p2,1←−− . . .

pr,r−1←−−−− J r F, (14.29)

where the projection pr,r−1 is just given by the truncation of the Taylor expansion. These

jets bundle are the one to consider in field theory. Indeed, when we consider a Lagrangian

depending on fields and its derivatives

L(φ,∂µφ, . . . ) (14.30)
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it is an interesting point of view to see in fact the fields and its derivatives as jets, as they are

like simple coordinates, and the whole lagrangian as a function

L : J r F →λm M (14.31)

instead of a functional

L̃ : S(M ,F ) →λm M (14.32)

where S(M ,F ) denotes here the space of smooth sections. The former point of view simplify

the formalism, in particular when we consider the Euler-Lagrange derivatives

∂L
∂φ

−∂µ ∂L
∂(∂µφ)

+ . . . (14.33)

which are now simple derivatives instead of variation of functional with respect to functions.

In particular no δ function appears in (14.33).



CHAPTER 4

Physical Models

1. Gauge symmetries

1.1. The harmonic oscillator.

One of the most basic model in theoretical physics is the harmonic oscillator. It describes a

large class of system including for example pendulum’s oscillations in the small angle limit.

The equation of an harmonic oscillator is

q̈ +ω2
0q = 0, (1.1)

whose solution is

q(t ) = A cos(ω0t +φ). (1.2)

Equation (1.1) is referred as the equation of motion of the system. q is the dynamical variable

under consideration, it also called coordinate, and belongs to the configuration space. A

and φ are two integration constant determined by the problem one is considering, ω0 is the

frequency. The model of the harmonic oscillator can be used to describe the movement of

a pendulum with small oscillations. In this case, q is the angle between the pendulum and

the vertical axis and ω0 =
√

g
L , g being the gravitational acceleration and L the length of

the pendulum. In this model, like almost all other model of classical physics, the dynamical

parameter is the time t . Here, q is also called a physical degree of freedom. It correspond to

a parameter which can in principle evolves in any way, but whose behaviour is completely

fixed by the equation of motion. The equation (1.1) does not depends explicitly on time, thus

is invariant under time translation t 7→ t + t0. This kind of symmetry, which correspond to a

global transformation of a physical quantities, is called a global symmetry.

1.2. Example of gauge symmetry.

In this thesis we will be interested in another kind of symmetries called gauge symmetries.

There are the symmetries of the equations of motions involving an arbitrary function of time.

For example consider the system  ẋ − xẋ+y ẏ
x2+y2 x + y = 0

ẏ − xẋ+y ẏ
x2+y2 y −x = 0

. (1.3)

It is invariant under

x(t ) 7→ eλ(t )x(t ), y(t ) 7→ eλ(t ) y(t ), (1.4)

with λ an arbitrary function. Indeed, the general solution is given by

x(t ) = eλ(t ) cos(t ), y(t ) = eλ(t ) sin(t ). (1.5)

99
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Here, the transformation 1.4 is called a gauge transformation and λ is called a pure gauge

quantity. It is a variable which is still completely free after solving the equation of motion,

and which does not depend on the initial conditions; and thus cannot be given any physical

interpretation. Indeed the physical system we are considering does not provide any way of

measuring it. As it cannot be provided any physical sense, it is convenient to fix its value to

a given value in order to simplify the problem. For example we could choose λ(t ) = 0. This

procedure is called gauge fixing. It is worthwhile to note that going to another system of co-

ordinates makes the arbitrariness of unphysical coordinate more explicit. Indeed, choosing

polar coordinate (r,α), the system 1.3 can be written

α̇= 1, (1.6)

making it clear that r = eλ does not play any role. Once in this form, we can get rid of r

definitively and the system does not contains any pure gauge quantities anymore. However,

in many physical problems this kind of simplification may not occur, and it is often more

convenient to work keeping the pure gauge quantities, solving them only in the last steps of

the resolution of a physical proble. In this example, we saw that only the angular coordinate

was sensible to the initial data, necessary to solve the differential equation. Such a quantity

is called an "on-shell degree of freedom". On the other hand, x and y are called "off-shell

degrees of freedom". They correspond to the number of expected functions to be found

solving equation of motion after a quick and naive look at them. One important step in any

physical problem is to count the number of degrees of freedom, This has to be understood

as counting the minimal amount of initial data that are necessary to solve the equations of

motion.

1.3. Gauge symmetry in shape dynamics.

The following example is taken from [Wil22]. We consider a body that we approximate in the

following manner: we cut it into N pieces, that we then reduce to a single point, concentrat-

ing all the mass of that piece. Hence the body is seen as a collection of N point {xi }N
i=1, each

having a mass mi . We consider then a motion of the body, which consist of a rotation each

point xi around the center of mass, hence:

xµi (t ) = Rµν(αi )xνi (0), (1.7)

for a matrix of rotation Rµν with some angle of rotation αi . In the notation we adopt the

convention that two repeated indices are summed. This convention is called Einstein’s sum-

mation convention and will always be assumed in this manuscript. In order to study de-

formation of the body, we introduce the reference coordinate si , which is the position the

point xi would have taken if the body were not deformed during its motion. Once again, we
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consider that the motion consists only of rotations, hence:

xµi (t ) =Uµν(θi )sνi (t ), (1.8)

sµi (t ) = T µν(βi )xn
i u(0), (1.9)

Rµν(αi ) =Uµν(θi )T µν(βi ), (1.10)

(1.11)

with two new rotation matrices Uµν and T µν. We consider that si (0) = xi (0), i.e. the body

is not deformed at the beginning of the motion. For the sake of clarity, we will no more

write the angles (αi ), (βi ), (θi ) in argument of the rotation matrices. We are interested in the

analysis of the torque induced by the motion. We recall that the torque correspond to the

derivative with respect to time of the angular momentum, which is itself given by:

Lµν =
N∑

i=1
mi (xµi ẋνi −xνi ẋµi ), (1.12)

with the time derivative denoted by a dot. We introduce the angular velocity:

ω
µν
xi

= Ṙµρ(R−1)ρν, (1.13)

with which the velocity can be expressed as:

ẋµi =ωµνxi
xνi , (1.14)

and, with the help of the moment of inertia:

Iµν;ρσ(xi ) = mi

(
δµσxνi xρi +δνρxµi xρi −δµρxνi xσi −δνσxµi xρi

)
, (1.15)

(where δµν is the Kronecker’s tensor) express the angular momentum as:

Lµν =
N∑

i=1
Iµν;ρσ(xi )ωρσxi

. (1.16)

We now wish to separate the contribution from what we will call the true movement of the

body, which is given by the si ’s, and the deformation of the body, given by the motion of the

xi ’s relatively to the si ’s. For this, we find the relations between the respective moments of

inertia and angular velocities:

Iµν;ρσ(xi ) =UµαUνβUργUσδIαβ;γδ(si ), (1.17)

ω
µν
xi

=UµρUνσω
ρσ
si

+U̇µρ(U−1)ρν. (1.18)

The angular momentum can thus be written as:

Lµν =UµαUνβIαβ;ρσ(si )
(
ω̃
ρσ

i +ωρσsi

)
, (1.19)

where ω̃ρσi = (U−1)ργU̇γσ will be called in this section the "connection". The gauge freedom

of this problem is the choice of the reference coordinate si . Indeed, nothing here tells us

what is the true motion of the undeformed body, and it is our free choice the set it through
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the coordinates si , or equivalently, through the choice of the global rotation T . A gauge trans-

formation is a choice of another si :

s′i = (V −1)si . (1.20)

It implies a change in the connection:

ω̃′
i =V −1ω̃V +V −1V̇ (1.21)

This is precisely the kind of transformations followed by connections in fibre bundles, as we

will be shown later. Finally, the torque of the body is expressed as:

dLµν

d t
=UµαUνβDt Iαβ;ρσ(ω̃ρσi +ωρσsi

). (1.22)

We have introduced the covariant derivative

Dt Iαβ;ρσ(ω̃ρσi +ωρσsi
) = (δαµδβν

d

d t
+ ω̃αµδβν+δαµω̃βν)Iµν;ρσ(ω̃ρσi +ωρσsi

). (1.23)

1.4. Lagrangian formalism.

Models in physics are often cast into a formalism called Lagrangian formalism. It correspond

to an integrated form of the equations of motions, which are then obtained by varying the

dynamical coordinates or the dynamical fields, following the least action principle. Here, a

theory is specified by an action, denoted S, which is the integral over time of the Lagrangian,

denoted L,

S =
∫ tB

tA

L(qn(t ), q̇n(t ), q̈n(t ), ...)d t , (1.24)

where qn(t ), n ∈ {1, . . . , N } are the dynamical coordinates. The action principle states that

among all possible path going from {qn(tA)} to {qn(tB )}, the physical one is the one for which

the action take an extremal value. Thus the equation of motions are

δS = 0. (1.25)

The variation δS is given by the integral of the variation of the Lagrangian, which in turn is

given by

δL=
[
∂L
∂qn

− d

d t

∂L
∂q̇n

+ d 2

d t 2

∂L
∂q̈n

+ . . .

]
δqn (1.26)

+ d

d t

(
∂L
∂q̇n

− d

d t

∂L
∂q̈n

+ . . .

)
δqn +

(
∂L

∂q̈n
+ . . .

)
δq̇n + . . .

 . (1.27)

In computing the equation of motions, the variation is always assumed to leave the extremal

points fixed

δqn(tA) = δqn(tB ) = 0. (1.28)

Hence the integral of the total derivative (1.27) gives 0. Furthermore, in most of the situation

encountered in physics, the Lagrangian depends explicitly only of q and q̇ . Thus we arrive at

the celebrated Euler-Lagrange equations

∂L
∂qn

− d

d t

∂L
∂q̇n

= 0. (1.29)
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while the derivative term reduce to

d

d t

(
∂L

∂q̇n
δqn

)
. (1.30)

1.5. Noether symmetries.

Lagrangian formalism permits to make the link between global symmetries and conserved

quantities. Global symmetries are those which are parametrized by a global constant param-

eter. We said earlier that the equations of motion of the harmonic oscillator were unchanged

after translation in time. We propose to show here that, using the Lagrangian formalism, a

system enjoying such a symmetry possesses an associated conserved quantities called the

energy. Translation in time form a one-parameter group of transformation. When dealing

with such a kind of transformation, it is best advised to look at infinitesimal transformation.

Let L(qn(t ), q̇n(t )) be a Lagrangian not depending explicitly on time. Under infinitesimal

time translation t 7→ t +ε, L is transformed as

L+ε d

d t
L. (1.31)

At the same time, we showed that the have

δεL=
(
∂L
∂qn

− d

d t

∂L
∂q̇n

)
δεqn + d

d t

(
∂L
∂q̇n

δεqn

)
(1.32)

Here, δεqn = qn(t +ε)−qn(t ) ≃ εq̇n . We are interested at properties of a physical object, for

which the equations of motion hold, hence we assume the first term of the right-hand-side

of (1.32) to vanish. However, in this computation we don’t require the boundaries to be fix :

here they are shifted as well (qn(tA) 7→ qn(tA +ε)). Equating the variations obtained in (1.31)

and in (1.32), we get

ε
d

d t

(
∂L

∂q̇n
q̇n −L

)
= 0 (1.33)

Showing that E = ∂L
∂q̇n

q̇n −L is conserved.

More generally, a Noether symmetry is any transformation which transform the Lagrangian

by a total derivative, i.e. for which δεL = d
d t K, for some functional K and for which the

infinitesimal parameter ε is constant. Then, a computation totally similar as the one we just

made shows that the quantity

Q= ∂L

∂q̇n
δεqn −K (1.34)

is conserved. This conserved quantity Q is called the charge of the symmetry.

1.6. Gauge symmetries in Lagrangian formalism.

Let us point out that in the case of time-independent Lagrangian, the Euler-Lagrange equa-

tions (1.29) can be rewritten as

q̈m
∂2L

∂q̇m∂q̇n
= ∂L
∂qn

− ˙qm
∂2L

∂qm∂q̇n
. (1.35)

Hence, the acceleration q̈n can explicitly compute from the {qn}’s and {q̇n}’s if and only if

the matrix ∂2L
∂q̇m∂q̇n

is invertible. In the case it is, the system can be exactly solved, in the
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opposite case, the solutions will contains arbitrary functions of time, meaning that we have

the appearance of a gauge symmetry.

1.7. Hamiltonian formalism.

The Hamiltonian formalism starts by defining canonical momenta associated to the dynam-

ical coordinates (or dynamical fields).

pn = ∂L
∂q̇n

. (1.36)

In case of gauge symmetries, these momenta are not independent: they satisfy some condi-

tions, denoted φk , k ∈ {1, . . .K } called "constraints", that we assume independent. Next we

introduce the Hamiltonian as the Legendre transform of the Lagrangian:

H= q̇n pn −L. (1.37)

The Hamiltonian, as well as The constraints φk , are functions of pn and qn only and does

not depend on the velocities q̇n . When non trivial constraints exist, the change of variables

{qn , q̇n} → {qn , pn}, (1.38)

is not invertible, and map the whole (qn , q̇n) space to an hypersurface, called the constraint

surface", in the (qn , pn) space, which is itself called the "phase space". The following regular-

ity condition on the constraints are usually required: the rank of the matrix ∂φk
∂(qn ,pn ) is maxi-

mal. This regularity condition implies that locally, the constraints φk can be seen (rigorously

only locally, but here we assume globally) as coordinates complementary to the {qn , pn}. In

other words, there exists some functions xl , l ∈ {K +1, . . . ,2N } such that the Jacobian matrix
∂(φk ,xl )
∂(qn ,pn ) is invertible.

The fact that the phase space variable are required to satisfy the equations φk (qn , pn) =
0 means that the Hamiltonian is not a well defined function of these same variables; the

following proposition teach us that it could be changed by

H 7→H+ ckφk (1.39)

where the ck ’s are abitrary functions of the phase space variables.

PROPOSITION 23. If a smooth phase space function G(qn , pn) vanishes on the constraint

surface, then G = g kφk for some functions g k

(Taken from [HT94])

A tangent vector to the constraint surface can be written as

v l ∂

∂xl
= v l ∂qn

∂xl

∂

∂qn
+ v l ∂pn

∂xl

∂

∂pn
. (1.40)

To simplify the notation, in the following paragraph we write

δqn = v l ∂qn

∂xl
, δpn = v l ∂pn

∂xl
. (1.41)
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In this direction, the Hamiltonian changes as

δH= q̇n pn − ∂L
∂qn

δqn (1.42)

implying (
∂H
∂qn

− ∂H
∂qn

)
δqn +

(
∂H
∂pn

− q̇n

)
δpn = 0 (1.43)

This last equation is true for any vector tangent to the constraint surface; we obtain at each

point 2N−K equations with 2N unknowns, one possible basis of solutions of which is { ∂φk
∂qn

, ∂φk
∂pn

}

because of the regularity conditions. Thus we obtain

q̇n = ∂H
∂pn

+ ck ∂φk

∂pn
, (1.44)

∂L
∂qn

=− ∂H
∂qn

− ck ∂φk

∂qn
, (1.45)

with ck some arbitrary smooth functions. Now we can use the Euler-Lagrange equations to

change (1.45) into

ṗn =− ∂H
∂qn

− ck ∂φk

∂qn
. (1.46)

1.8. Poisson Bracket.

Equations (1.44,1.46), together with the constraint equations φk (qn , pn) = 0 are called "Hamil-

ton’s equations of motion". For any two function on the phase space, we introduce the no-

tion of Poisson bracket, denoted {·, ·}:

{F (qn , pn),G(qn , pn)} = ∂F

∂qn

∂G

∂pn
− ∂F

∂pn

∂G

∂qn
. (1.47)

With it, (1.44,1.46) can be written as:

q̇n = {H, qn}+ ck {φk , pn}, ṗn =−{H, pn}− {φk , qn}, (1.48)

and more generally

Ḟ (pn , qn) = {H,F }+ ck {φk ,F } (1.49)

1.9. Constraint algorithm.

Constraints are time-independent. Hence, on the constraint surface, φ̇k = 0. In term of Pois-

son brackets:

φ̇k = {H,φk }+ c j {φ j ,φk }. (1.50)

If this expression in not a linear combination of the already existing constraints, we obtain a

new constraint. Then we have to check that φ̈k = 0, and so on. We keep the notation φk for

the constraints, including the new ones we just added to the list, k belonging now to a bigger

set of indices. During the process, equations (1.50) is solved for the c j ’s, which lose arbitrari-

ness. We can always redefine c j = u j +v j
ac ′a , where u j and v j

a are some functions which has
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been explicitly found soling (1.50), whereas c ′a are unknown functions, corresponding to the

remaining arbitrariness. Thus we rewrote our system of constraints:

H+ ckφk →H′+ c ′aφ′
a (1.51)

H′ =H+u jφ j , φ′
a = v j

aφ j . (1.52)

1.10. First class constraints.

A quantity is called first class if its Poisson bracket with any constraint vanishes on the con-

straint surface, or, according to proposition 23, is proportional to the constraints. It is straight-

forward to show that the Poisson bracket of two first class quantities is again first class. A

quantity which is not first class is called second class. The Hamiltonian H′ defined in (1.52)

is first class. We use now the notation φa for a first class constraint and χa for a second class

constraint. The matrix of Poisson bracket for the different constraints (on the constraint sur-

face) is:

φa χa[ ]
φb 0 0

χb 0 Cab

. (1.53)

If Cab is not invertible, there exist a linear combination λaCab = 0. Then λaχa is seen to be a

first class constraint. Thus we can assume that the separation between first class and second

class constraints has been properly made (no combination of the second class constraints

yields a first class one), and that the matrix Cab is invertible. Cab is antisymmetric, thus

there is an even number of second class constraints.

1.11. Gauge symmetries.

We have seen that constraints enter in the Hamiltonian multiplied by arbitrary functions.

Let us now explore how the dynamic is changed under different choices for these arbitrary

functions. Let ca and c̃a be two such different functions. Let F (qn , pn) be any dynamical

quantity. Its evolution is governed by the equation

Ḟ = {F,H}+ ca{φa ,F }. (1.54)

After an infinitesimal displacement in time, the difference between the two dynamics is

δF = (ca − c̃a){φa ,F }d t . (1.55)

Thus, we can interpret the constraints as generators of transformations F 7→ F + ϵa{φa ,F }.

First class constraints generate transformations that do not take physical quantities out of

the constraint surface, as they preserve the equality φa = 0 on the this surface. Thus they

can be interpreted as true gauge transformation, as defined earlier. Second class constraints,

on the other hand, do not. However, it is possible to remove them from the formalism, by

modifying the Poisson bracket. The new bracket, called Dirac bracket, is:

{F,G}Dir = {F,G}− {F,χa}(C−1)ab{χb ,G}. (1.56)
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The dynamics is given by the exact same equations as before, but with the Poisson bracket

everywhere replaced by the Dirac bracket.

1.12. Gauge fixing.

A gauge fixing procedure is exactly like a constraint but added by hand. It solve a first class

constraint by forming with it a pair of second class constraint, which as we have seen, does

not allow for arbitrary function in the physical solutions of the motion. The converse is also

true: removing one of the second class constraint will turn one other (or a linear combination

of the other) into a first class constraint.

1.13. Degrees of freedom.

In this formalism, the counting of degrees of freedom is immediate. Starting with N physi-

cal coordinates qn , then going to 2N canonical coordinates (qn , pn), we remove one degree

of freedom for each constraint. Furthermore, we have seen that each first class constraint

generates a gauge transformation, so we have to remove an additional degree of freedom for

each first class constraint. In the end

Number of degrees of freedom = (Number of canonical variables - 2· Number of first class

constraints - Number of second class constraints) /2.

1.14. The free relativistic particle.

Let us illustrate our preceding discussion by a very basic example of physics: he free massive

relativistic particle. Its action is:

S =−m
∫

d s
√

gµνq̇µq̇ν, (1.57)

with µ ∈ {0,1,2,3}, and we call the dynamical parameter s and not t to emphasize the fact

that it is not time (time is usually q0). The associated momenta are

pµ =−m
q̇µ
|q̇ | . (1.58)

There is one constraint p2 +m2 = 0. The Hamiltonian vanishes. Thus there is no further

constraint, and the constraint is first class. It generates the transformation:

qµ 7→ qµ−2mϵ
q̇µ

|q̇ | . (1.59)

Accordingly the Lagrangian changes as

L 7→L−2ϵ̇L. (1.60)

Using the equality dϵ
d s d s = dϵ we see that the gauge symmetry correspond to the freedom in

the choice of the parameter λ used to describe the particle. The number of physical degrees

of freedom is 3.
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1.15. Field theories.

Field theories describe the evolution of dynamical fields instead of dynamical coordinates.

Concretely, this means that there are now several dynamical parameter instead of just one.

Mathematically, the problem is changed: the equations of motions are partial differential

equations, not ordinary differential equations. For example, if we consider a theory describ-

ing a scalar field ϕ(x), depending on four space-time variables x ≡ {xµ}µ=0,1,2,3, through a

Lagrangian L(ϕ(x),∂µϕ(x)), the Euler-Lagrange equations are

∂µ
∂L

∂
(
∂µϕ

) − ∂L
∂ϕ

= 0. (1.61)

Usually, initial data for these partial differential equations are given on a surface at fixed time.

Hence space-time variables are decomposed into space variables −→x and the time variable t .

Concretely, solving the Euler-Lagrange equations (1.61) amount to find the time evolution

ϕ(−→x , t ), knowing ϕ(−→x ,0) and its time derivative ∂tϕ(−→x ,0).

1.16. Gauge symmetries in field theories.

In field theories, the momentum field associated to the physical field ϕ is

π(x, t ) = ∂L
∂ϕ̇

, (1.62)

The Hamiltonian H is defined a the space integral of an Hamiltonian’s density H

H(t ) =
∫

d 3x H(x, t ), H =πφ̇−L. (1.63)

The constraints functions turns into smeared constraints functionals F , which are integrals

of local functionals

F =
∫

d 3x F
(
ϕ(x, t ),π(x, t )

)
. (1.64)

The Poisson bracket for two functional depending of the fields ans their momenta is

{
F

(
ϕ(x, t ),π(x, t )

)
,G

(
ϕ(x ′, t ),π(x ′t )

)}=
∫ (

δF (x, t )

δϕx", t

δG(x ′, t )

δπx", t
− δF (x, t )

δπx", t

δG(x ′, t )

δϕx", t

)
d 3x",

(1.65)

where the variation show the appearance of delta-functions

ϕ(x, t )

ϕ(x ′, t )
= δ(x −x ′). (1.66)

The formalism - distinction between first and second class constraint, generation of gauge

transformation by the first class constraints, etc. - stay globally the same, but the variational

calculus implies a lot of technical difficulties in particular in the quantum theory. Hence the

attempt of using jets to mathematically simplify the calculus, [GM].



2. GRAVITY 109

1.17. Yang-Mills theories. The undoubtedly most famous gauge field theories are the

Yang-Mills theories. The Yang-Mils action take the form

SYang-Mills =
∫

M
F ∧∗F (1.67)

where M is a (usually Lorentzian) manifold, ∗ is the Hodge operator defined in 5.12, and

F the curvature 10.12 associated to a connection defined over a G-principal bundle over

M . Three of the four fundamental interactions are described by Yang-Mills theories, namely

electromagnetism with gauge group G =U (1), weak interaction with gauge group G = SU (2)

and strong interaction with G = SU (3), hence their importance in mathematical physics.

2. Gravity

2.1. The Einstein-Hilbert action.

In general relativity, the physical space-time is described as a four dimensional manifold. On

it, gravity is the effect produced by metric field g of Lorentzian signature. The physical action

is the Einstein-Hilbert action

SEH =− 1

16πG

∫ p−gRd 4x, (2.1)

where the integral is over the whole space-time, R is the scalar curvature presented in (11.23),

and G is the gravitational constant. It is possible to add to this action a constant Λ, called

the cosmological constant

SΛEH =− 1

16πG

∫ p−g (R+Λ)d 4x. (2.2)

The Euler-Lagrange equations derived from it are the Einstein equations (+ cosmological

constant)

Ricµν− 1

2
Rgµν+Λgµν = 0 (2.3)

So far, we have presented a vacuous theory, with no matter in it. Adding matter amount to

add a matter Lagrangian to the action,

SΛEH =
∫ p−g (R+Λ)d 4x +Lmatter, (2.4)

and the Einstein equations become

Ricµν− 1

2
Rgµν+Λgµν =−8πGTµν. (2.5)

Here

Tµν = δLmatter

δgµν
, (2.6)

is the energy momentum tensor, describing the distribution of matter. It is convenient to

work in a system of unit in which − 1
16πG = 1 so that we do not have to write this constant in

the equations anymore; we adopt this convention. All of the material presented here can be

found in [Wei72].
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2.2. Gravity is a peculiar gauge theory.

Like Yang-Mills theories, the Einstein-Hilbert action of gravity presents gauge symmetries, as

can be seen explicitly in the ADM formalism [ADM59]. However, in Yang-Mills theories the

algebra of infinitesimal gauge transformations can be factorized as

g⊗C∞(M) (2.7)

where g is the Lie algebra of the so-called gauge group G - the structure group of the princi-

pal fibre bundle - and M the manifold over which the theory is defined. In gravity the group

of gauge transformation is the group of diffeomorphism of the manifold. Its Lie algebra is

the Lie algebra of smooth vector fields and does not factorize as C∞(M) times a finite di-

mensional Lie algebra. This fact leads to many complications, in particular for the quantum

theory of gravity.

2.3. First order formalism.

It is common to consider that in general relativity, the only one fundamental field is the met-

ric g . This approach is called the second-order formalism of general relativity, because the

Einstein equations (2.3) involve derivative of order two of the metric. On the other hand, the

first order formalism consider two fundamental fields for the theory, the metric g and the

linear connection Γ. This linear connection is similar to the Levi-Civita, but do is not related

to the metric by 11.19, in particular its torsion does not necessarily vanishes. It is in fact the

new equations of motion, obtained by varying the connection field Γ, that impose the van-

ishing of the torsion. In other words, the connection solution in the first order formalism

(with action 2.1) is the Levi-Civita connection. The remaining equations of motion are the

Einstein equation 2.3, unchanged.

The use of an arbitrary connection implies the appearance of another gauge symmetry (dif-

ferent of the one of the previous paragraph). This is because the connection form Γ only

appears in the connection through its curvature, curvature which is invariant under gauge

transformations as defined as in paragraph 9.4. Another way of understanding this new

gauge symmetry is the following. In the first order formalism, the fundamental object is an

orthonormal frame (the vielbein) whereas in the second order formalism the fundamental

object is the metric. There are several choices of an orthonormal frame for a given metric;

the freedom in in the choice of the orthonormal frame is encoded by this new gauge sym-

metry.

2.4. Vielbein as fundamental fields.

In the first order formalism, it is common to use the vielbein ea
µ defined in 11.3 instead of

the metric g as fundamental field. The connection form is accordingly put with orthonormal

indices, i.e. we use the ωa
b of 11.12 instead of Γ. In term of this fields, the Einstein-Hilbert

action takes the form

SEH =
∫
εabcd Rab ∧ec ∧ed , (2.8)
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where Rab is the Riemann tensor, while the one with cosmological constant becomes

SΛEH =
∫
εabcd

(
Rab ∧ec ∧ed +Λea ∧eb ∧ec ∧ed

)
. (2.9)

The integral is written as the integral over a four-form instead of a zero one, hence the ap-

pearance of wedge products, as the fact that the metric determinant do not appears explicitly.

Finally, we have also introduced the Levi-Civita tensor εabcd , whose values is the sign of the

signature of the permutation sending {0,1,2,3} to {a,b,c,d}. [Pro] contains all the standard

convention we adopt concerning it. In particular

εabcd = ηaeηb f ηg cηhdεe f g h , (2.10)

εµνλρ = ea
µeb

νec
λed

ρεabcd , (2.11)

εµνλρ = Eµ
a Eν

b Eλ
c Eρ

dε
abcd . (2.12)

In this manuscript, we will mainly use this form of the Einstein-Hilbert action. In this for-

malism, the gauge transformation

2.5. Lorentz gauge transformations. Expressed in term of vielbein and spin connec-

tion, the gauge symmetries evoked in (2.3) are, for SEH

δωab = dλab +ωa
cλ

cb +ωb
cλ

ac , (2.13)

δϵa =λa
beb . (2.14)

These transformations are the geometric gauge transformations, as presented in paragraph

(9.4), for a connection-form ωa
b of a principal bundle whose structure group is the Lorentz

group. The field ea transforms as a section of an associated vector bundle. In fact, introduc-

ing the generators Jab , Pa of the Poincaré algebra

[Jab , Jcd ] = ηad Jbc +ηbc Jad −ηac Jbd −ηbd Jac , (2.15)

[Jab ,Pc ] = ηbc Pa −ηac Pb , [Pa ,Pb] = 0, (2.16)

we can write (2.13) more compactly

δω= dλ+ 1

2
[ω∧λ], δe = 1

2
[λ∧e], (2.17)

λ= 1

2
λab Jab , ω= 1

2
ωab Jab , e = eaPa (2.18)

2.6. (Anti-)de Sitter connection.

In the case of a non vanishing cosmological constant, the symmetry algebra is changed: the

Lorentz Lie algebra so(3,1) (we assume the dimension to be 4) is extended to the de Sitter Lie

algebra so(4,1) (if Λ> 0) or anti-de Sitter Lie algebra so(3,2). The Poincaré generators Pa are

replaced with (anti-)de Sitter generators Ja with commutation relations

[Ja , Jb] =± 1

ℓ2 Jab (2.19)
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In that case, it is possible to view the vielbein ea as part of the connection as well. In other

word, it is possible to define the connection

A = 1

2
ωab Jab +

1

ℓ
ea Ja . (2.20)

The gauge symmetry of action SΛEH can be cast as a gauge transformation of the connection

A. Using a gauge parameter λ= 1
2λ

ab Jab +λa Ja it reads

δλA = dA+ 1

2
[A∧λ]. (2.21)

The action SΛEH is not directly built from the connection one-form A. However, if we add the

Gauss-Bonnet invariant of paragraph (13.10), we can achieve such a construction. In details,

we define the curvature

F = 1

2

(
Rab ± 1

ℓ2 ea ∧eb
)

Jab +
1

ℓ
T a , (2.22)

where T a is the torsion two-form. Using this curvature, we build the action

S = εabcd

(
Rab ± 1

ℓ2 ea ∧eb
)(

Rcd ± 1

ℓ2 ec ∧ed
)

. (2.23)

This action contains the Einstein-Hilbert action with cosmological constant, plus the Gauss-

Bonnet term εabcd Rab ∧Rcd . This term does not contributes to the equation of motions, as

it is purely topological. Hence we recover from the action (2.23) the standard equation of

motions of general relativity.

2.7. Chern-Simons gravity.

The Einstein-Hilbert action can be extended to any number of space-time dimension

S(d)
ΛEH = εa1a2a3...ad

(
Ra1a2 +Λea1 ∧ea2

)∧ea3 ∧·· ·∧ead . (2.24)

The case d = 3 presents the peculiarity of being a Chern-Simons action. A Chern-Simons

action is an action whose Lagrangian is a Chern-Simons form, as defined in section (13.15).

Here, we can write S(3)
ΛEH as the difference of two integral of the form (13.53) if we set (we

follow [Bañ] )

Aa =−1

2
εa

bcω
bc + i

ℓ
ea , (2.25)

A
a =−1

2
εa

bcω
bc − i

ℓ
ea . (2.26)

The connections A = Aa Xa , A = A
a

Xa are two Sl(2,C) connections. The exact relation be-

tween the Einstein-Hilbert action and the Chern-Simons forms built from A and A is

S(3)
ΛEH = S(3)

C S (A)−S(3)
C S (A), (2.27)

S(3)
C S (A) =

∫
d 3xTr

(
A∧dA+ 2

3
A∧ A∧ A

)
(2.28)

where the trace is taken over the representation

X0 = 1

2

0 i

i 0

 , X1 = 1

2

0 −1

1 0

 , X2 = 1

2

i 0

0 −i

 . (2.29)
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We refer to [HZ16] or [Wit88] for more details. Similar Chern-Simons action can be built in

any dimension and can be seen as useful toy-model of gauge-invariant systems in higher

dimension. However, only in 3 dimensions it matches the Einstein-Hilbert action.

In the first order formulation of gravity, there is an additional gauge symmetry which,

this time, behaves like the Yang-Mills gauge symmetry.

3. Supergravity

3.1. The Rarita-Schwinger action.

A common feature of all supergravity theories, is the presence of a spin- 3
2 field Ψ =Ψµd xµ,

called the gravitino. Physically, it is the supersymmetric partner of the vielbein; geometri-

cally, it is one-form-section of a spinor bundle. One of the most simple action using such

Rarita Schwinger action is

SRS =
∫
Ψµγ

µνρ∂ρΨ, (3.1)

where Ψ is the Majorana conjugate of Ψ. This action is defined over the Minkowski space. In

other words, the metric is the Minkowski metric, and the gamma matrices γµ are assumed

to be constant (although we used greek indices). The Rarita-Schwinger action is invariant

under the infinitesimal transformation

Ψµ 7→Ψµ+∂µϵ. (3.2)

Transformation (3.2) is an example of a supersymmetry transformation, where the symmetry

parameter is fermionic.

3.2. A supergravity action.

A simple supergravity action in four dimension can be obtained by adding to the Einstein-

Hilbert action a slightly deformed version of the Rarita-Schwinger action. This supergravity

action is

S =
∫
εabcd Rab ∧ec ∧ed +Ψ∧ea ∧ (d+ 1

4
ωabγab)Ψ. (3.3)

As such, the action is not supersymmetric. However, it is possible to make it invariant under

a supersymmetry transformation by going back two a second-order formalism, where the

spin connection ωab is no more seen as an invariant field but instead is determined by the

fields ea and Ψ. Its expression is obtained through its equations of motion

ωa
bµ =ωa

bµ(e)+K a
bµ (ψ), (3.4)

where ωa
bµ(e) is the torsionless Levi-Civita connection, depending exclusively on the vielbein

field ea
µ, and K a

bµ(ψ) is the contorsion tensor whose dependence from the gravitino is (eq.

9.21 in[FV12])

Kνρµ(ψ) =−1

4
(ΨµγρΨν−ΨνγµΨρ +ΨργνΨµ). (3.5)

In the last equation, µ is the form index. To go from the natural to the orthonormal indices,

we have to use equation (11.11). When the action (3.3) is expressed with ωa
b satisfying (3.4),
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it invariant under the supersymmetry transformations

δea = 1

2
ϵγaΨ, δΨµ = (d+ 1

4
ωabγab)ϵ. (3.6)

Working with (3.4) is sometimes called the 1.5 formalism. This denomination comes from

the fact that we are working in the second-order formalism but with fields expressed in a

notation usually used in the first-order formalism.

3.3. Geometric supergravity actions.

Earlier, we have shown that we can see the fundamental fields of gravity as related with the

Poincaré (or (anti-)de Sitter) algebra. This fact can be extended to supergravity. For example,

the field Ψα appearing in (3.3) can be associated with a super-generator Qα. The algebra

spanned by the generators {Jab ,Pa ,Qα} is called the super-Poincaré algebra. The new non-

vanishing commutation relations are

[Jab ,Qα] =−1

2
(γab)βαQβ, {Qα,Qβ} =−1

2
(γa)αβPa . (3.7)

We have used the notation {, } to denote the symmetric anti-commutator of two fermionic

(i.e. with degree 1) generators. The fields involved in 3.3 can be put together forming a

"super-connection one-form"

A= 1

2
ωab Jab +eaPa +ΨαQα, (3.8)

however 3.3 cannot be written as an integral over a functional in A (unlike a Yang-Mills ac-

tion); and one of the main motivation of the two following works we are about to present

is to write down actions starting from a very geometrical point of view, explicitly using a

super-connection A. This idea is not new, as an example, the MacDowell-Mansouri action

for supergravity uses this formalism [MM77]. Also, Chern-Simons gravity can be extended to

Chern-Simons supergravity, where the connection one form A of 2.28 is replaced by a super-

connection A. But before going to the explicit geometric action, we would like to further

develop some points about real super-algebras and their connections.

3.4. Super-Lie algebras for AdS supergravities.

3.4.1. The complex AdS super-algebra.

sl(m|1,C) of (m+1)× (m+1) is the super-algebra of super-traceless complex super matrices.

The supercharges are represented by

Qα =

 0m×m Eα1

01×m 0

 , Qα =

 0m×m 0m×1

E1α 0

 . (3.9)

where E1α denotes the elementary matrix with entry 1 in the (1,α) position and 0 everywhere

else. The supercharges will be associated to the physical spinors of the theory. The basis of

the even part is chosen as:

JCa1...an
=

 γa1...ak 0m×1

01×m 0

 , n ≥ 1, JC0 =

 1 0m×1

01×m m

 . (3.10)
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3.4.2. The real AdS super-algebra.

We consider the following real structure:

J(X ) =−

 A

1


−1

X †

 A

1

 , (3.11)

where A is the matrix defining the Dirac conjugate of a spinor, usually A = γ0. This real

structure is chosen for three reasons:

(i) It preserves the decomposition of the even basis as in (3.10) (modulo factors of i ),

(ii) It preserves the generators of the Lorentz algebra

Ja1a2 =

 1
2γ

a1a2 0m×1

01×m 0

 , (3.12)

(iii) The spinors associated to the real supercharges can be reassembled into a Dirac

spinor and its Dirac conjugate (see the next paragraph).

The basis of the obtained real super-algebra is given by

Ja1...an =

 1
2γ

a1...an 0m×1

01×m 0

 , n ≡ 1,2 mod4, (3.13)

Ja1...an = i

 1
2γ

a1...an 0m×1

01×m 0

 , n ≡ 0,3 mod4, (3.14)

J0 = i

 1 0m×1

01×m m

 , (3.15)

for the bosonic part, and

T1α =

 0m×m Eα(m+1)

E(m+1)αA 0

 , T2α =

 0m×m i Eα(m+1)

−i E(m+1)αA 0

 , (3.16)

for the fermionic part. We have

[Ja1 ,Ja2 ] = Ja1a2 . (3.17)

Therefore we call this algebra an AdS super-algebra. Using the fact that there is a represen-

tation in which (see for example [FV12])

A = γ0 =σ1 ⊗1⊗·· ·⊗1∼ Id m
2 , m

2
, (3.18)

the AdS super-algebra is classified as su( m
2 , m

2 |1).
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3.4.3. Using the complex generators.

The AdS super-algebra is a real algebra and all its structure constants are real as it can be

verified with this example

[Jab ,T1,α] = T1,β(
1

2
Re(γab)βα+ 1

2
Im(γab)βα). (3.19)

In order to build a real Lagrangian, one should associate real spinor-fields with the generators

T1 and T2, let us call them φ1 and φ2. They are real in the most basic sense: φ∗
i =φi , where

∗ stands for the standard complex conjugation. Under a Lorentz transformation, these fields

are multiplied by real and imaginary parts of gamma matrices, as dictated by (3.19). Because

of these transformations rules, the fields φi will not be interpreted as physical fields. This

explains why it is more convenient to introduce the complex spinor field ψ = φ1 + iφ2. In-

deed, it is straightforward to show that ψ so defined will, under a Lorentz transformation

(with parameter λab), changes as ψ 7→ψ+ 1
4λ

abγabψ. In a connection for the su( m
2 , m

2 |1), we

obtain

Asu( m
2 , m

2 |1) = ·· ·+T1φ1 +T2φ2 = . . .Qψ+ψQ, (3.20)

with Q,Q the generators given in (3.9). In other words, the Q and Q generators can be used

in the connection as long as the spinor fields multiplying them are Dirac conjugate of each

others. Whereas for a general complex connection, the spinor fields ψ, ψ associated to Q, Q

are totally independent of each other.

3.4.4. Representation of Higher N algebra.

The fundamental representation of sl(m|M ,C) is given by

JCa1...an
=

 γa1...ak 0m×M

0M×m 0M×M

 , n ≥ 1, JC0 =

 Idm×m 0m×M

0M×m
m
N IdM×M

 , (3.21)

Q
i
α =

 0m×m Eαi

0M×m 0M×M

 , Qαi =

 0m×m 0m×M

Eiα 0M×M

 , (3.22)

KI =

 0m×m 0m×M

0M×m K I

 , (3.23)

where K I denotes the standard representation of su(M). One then uses the same real struc-

ture as in (3.11), with the 1 in the bottom-right corner changed by an IdM×M , and get su( m
2 , m

2 |M).

We will be in particular interested in su(2,2|2).

3.4.5. Reduction to Majorana spinors.

It was already shown in [TZ99] how to reduce the Dirac spinors to (symplectic) Majorana

spinors. Here, we would like to propose a similar construction, but in a way that does care

for the reality of the algebra at every step. We will work here with sl( m
2 , m

2 |1), the cases of

the different Poincaré super-algebra can be inferred from it. We first start with the Majorana

case. As we are back in the case t = 1, a quick glance at the preceding table forces us to put

tilde over our C and ϵ. In order to perform the reduction, one needs to find a new generator
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S, satisfying (3.11) such that, for any real spinor (in the sense φ∗ =φ), one has:

φS = Qψ+ (−)q
ψQ, (3.24)

where ψ is a Majorana spinor. Suppose that such a generator Sα exists and write it

Sα =

 Sα

S†
αD

 . (3.25)

The Majorana condition ψc =ψ† implies the same condition on Sα. We obtain it by consid-

ering an invertible matrix M satisfying

M †D = M T C̃ , (3.26)

and then by setting:

Sα = MEα,(m+1). (3.27)

For example one can take M = 1+B
2 (if invertible). The next step to go to an N = 1 supergravity

theory is to find a subalgebra with the Sα’s generators. The anti commutator is found to be{
Sα,Sβ

}
=∑ (−)n(n−1)/2

2k n!
(1+ ϵ̃(−)n(n+1)/2)

(
M T C̃γa1...an M

)
βα

(−i )q Ja1...an . (3.28)

with

q ≡ nt + n(n −1)

2
+1 mod 2. (3.29)

We check that the coefficient

(−i )q
(
M T C̃γa1...an M

)
βα

is real. Then, we need to check that all generators appearing in the

right-hand-side of (3.28) together with the generators Sα form a subalgebra. For the Ja1...an

generators, we compute

(C̃ [γa1...an ,γb1...bm ])T =−ϵ̃C̃ [γa1...an ,γb1...bm ], (3.30)

where in the left-hand-side the labels n,m are such that (C̃γa1...an )T = C̃γa1...an . In order for

the right-hand-side to have the same symmetry as the left-hand-side, we need ϵ = −1. We

finally check the commutator

[Ja1...an ,Sα] =
(

M−1 1

2
i qγa1...an M

)β
αSβ. (3.31)

In this computation, we have to be sure that the structure constant appearing in the right-

hand-side is real, otherwise it would require the introduction of a new generator (e.g. i Sα),

and in that case, the algebra will not close. Using the defining properties of M (3.26), one

verifies that the coefficient is indeed real. The symplectic Majorana case is very similar. The

first difference is that one need to introduce an index i associated to higher N theories. Then

Si
α needs to be a "symplectic Majorana column" making the matrix M to satisfy

M T ϵC = M †D. (3.32)

The anti commutator then becomes

{Si
α,S j

β
} =∑ (−)n(n−1)/2

2mn!
(1−ϵ(−)n(n±1)/2)(M T ϵCγa1...an M) j i

βα
Ja1...an . (3.33)
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Relation (3.30) is still valid, however now we want only matrices satisfying the condition

(Cγa1...an )T = −Cγa1...an , and this implies ϵ = 1. If we look at the commutator between even

and odd generators, we obtain again (3.31). The reality condition of the structure constants

can be checked as before.



CHAPTER 5

N = 2 Extended MacDowell-Mansouri Supergravity

1. Conditional symmetries

Yang-Mills and Einstein-Hilbert field theories are the two main theories of fundamental

physics. Although both are gauge theories, they present an important difference. In Yang-

Mills theories, the fundamental fields of the theories are the so-called gauge fields geomet-

rically interpreted as (smooth) sections of a principal G-bundle, G , the gauge group (usu-

ally U (1) or SU (N )) is a finite dimensional Lie group. In contrast, the fundamental field of

Einstein-Hilbert theory, in his most common presentation, is the metric field gµν, which does

not take values in the gauge group of the theory. Furthermore, in this textbook picture of

gravity theory, the gauge group is the infinite dimensional Lie1 group of diffeomorphism of

the manifold over which is defined the metric. Using the first order formalism for gravity, it

is possible to give a Yang-Mills-like aspect for the Einstein Hilbert theory. In this case, the

fundamental fields are the vielbein (replacing the metric) and the spin connection, which

both take values in the finite dimensional Poincaré Lie group. However, only the Lorentz

(structure) group is a gauge invariance of the Einstein-Hilbert action, while

We have seen that in first order gravity, the fundamental fields - the vielbein and the

spin connection - takes values in the Poincaré Lie algebra. We have also seen that the the-

ory possesses a Lorentz gauge invariance which does not require additional conditions and

is therefore called an off-shell symmetry. On the other hand local translation invariance is

a broken symmetry [Reg86]. In order to enforce local translation invariance of the action,

it is necessary to appeal to the so-called torsion constraint, which is a consequence of the

field equations and it is therefore referred to as an on-shell symmetry. In pure supergrav-

ity [FNF76; DZ76]—composed by the Einstein-Hilbert and the Rarita-Schwinger actions—

supersymmetry remains on-shell [FN76] up to a torsion constraint, T a ∼= ψ̄γaψ, like in first

order gravity. The introduction of auxiliary fields [SW78; Fv78] makes it possible to realize

the off-shell fermionic symmetry (for further details see e.g. [FV12; RV20; DRV21]). Leav-

ing aside the introduction of auxiliary fields, on-shell and off-shell symmetries play different

roles in (super)gravity. As is well known, off-shell symmetries can be represented by a princi-

pal bundle. Broken off-shell symmetries on the other hand, which are preserved when some

constraints are imposed, could be understood as sections of an associated vector bundle. In-

deed, as both on- and off-shell symmetries form a group, there is a natural representation of

the structure group on the generators of infinitesimal on-shell symmetries.

1If we do not restrict Lie group to be of finite dimensions

119
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Symmetries that are realized on the surface of the field equations and which belong to

certain Lie (super)group that also contains (unbroken) off-shell symmetries are often referred

to as “on-shell symmetries".2 The equations of motion provide sufficient but not necessary

conditions for these symmetries to hold; the consistency conditions (cf. , Υ̃ = 0 in section

2), provide necessary conditions for the invariance of the action and they can be therefore

called symmetry constraints. The symmetry constraints are, in general, less restrictive than

the equations of motion and we shall refer to the symmetries that arise when these con-

straints hold as conditional symmetries.

The MacDowell-Mansouri approach [MM77] of pure SUGRA shows clearly this pattern.

Their supergravity action principle is a quadratic form of the gauge curvature for a osp(4|1)-

valued connection, however, this bilinear explicitly breaks the OSp(4|1) symmetry leaving

unbroken only the Lorentz subgroup. The translation symmetry is broken and the corre-

sponding “dual" symmetry constraint holds on the surface of the torsion constraint. Super-

symmetry is also broken and the dual symmetry constraint appears as a product of the tor-

sion and the fermion curvature, which is therefore automatically satisfied also imposing the

torsion constraint.

More precisely, let g be a super algebra, A ∈ g the gauge potential, and Spt[A] the corre-

sponding action principle. The variation of the action with respect to the A reads,

δSpt =
∫
δAMΥM +b.t., (1.1)

where M labels the (super)algebra generators and the differential operator ΥM = ΥM[A] is

“dual” to δA. The action is invariant under the proposed variation if ΥM = 0, which defines

the field equations of the system. In what follows we shall often omit the ∧-product of dif-

ferential forms, and assume that the (anti)commutator [ , ] is graded with respect the form

degree and statistics of the fields, consistently with the Lie (super)algebra under considera-

tion.

For gauge transformations the transformation parameter takes the particular form δAM =
(Dλ)M, where D is the covariant derivative. Clearly the action remains invariant for “Killing

vectors" parameters λ, Dλ = 0, or when λ is in the kernel of Υ̃. When this is not the case,

upon partial integration (1.1) yields,

δλSpt =
∫
λMΥ̃M +b.t., (1.2)

where the dual differential operator Υ̃M
∼= (DΥ[A])M is dual to the parameter λM. It turns out

that Υ̃ = 0 is an integrability condition for the equation of motion Υ = 0 and, at the same

time, an indicator of whether the parameter λM generates a symmetry or not.

Consistently with our previous definition, an off-shell symmetry is the one for which

Υ̃M ≡ 0 is an identity. Reciprocally, a conditional gauge symmetry is one for which Υ̃M does

2The expression “on-shell symmetry" appears to us as vacuous, since any transformation of a field δA leaves

invariant the action on-shell. Instead of on- and off-shell symmetries, we prefer to refer to them as unconditional

or conditional symmetries, respectively.
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not vanish identically, but needs to be imposed as a constraint Υ̃M = 0. Thus, the index M in

(1.2) can be restricted to run over the off-shell broken symmetry generators only.

Geometrically, the distinction between off-shell and conditional symmetries can be un-

derstood as follow. Let g ∋ A be the Lie (super)algebra generating the a Lie (super)group

G—which combines off-shell and conditional symmetries—and let h be the algebra of off-

shell symmetries generating the subgroup H ⊂ G . The broken gauge symmetries are those

in the coset G/H , spanned locally by the vector subspace f ⊂ g. Denoting by h the Lie sub-

algebra corresponding to the subgroup H, we can decompose g= h⊕ f, where the direct sum

is a vector space direct sum. The differential operators Υ̃M dual to the generators of h vanish

identically whilst those dual to the generators of f do not.

Since [h , f] is a subset of f the gauge fields valued in the algebra elements f transform as

vectors under the endomorphisms generated by the unbroken symmetry algebra h. Effec-

tively, the gauge fields components in f can be regarded as fiber bundle sections. The group

H is the real structure group of the fiber bundle. From this perspective, the group G puts

together the structure group H and fiber sections, unifying the H-principal bundle and the

associated fiber bundle with sections in f. For a more rigorous exposition of these subjects

see e.g. [Ede20; Ede21].

In order to illustrate these aspects we shall consider briefly Yang-Mills theories and the

MacDowell-Mansouri approach [MM77] for N = 1 (super)gravity. In the first case, the action

reads,

SYM =
∫

tr F ∗F , (1.3)

where F = dA+A2 is the 2-form field strength of the gauge connection one form A ∈ g and ∗
is the Hodge dual operator. The variation of the gauge field δA and the gauge transformation

δA=Dλ yields respectively (1.1) and (1.2) with dual differential operators,

Υ= D ∗F , Υ̃= [F , ∗F ] . (1.4)

For general Yang-Mills theories [F , ∗F ] ≡ 0 and the whole symmetry group G is preserved

off-shell.

Next, the MacDowell-Mansouri action is given by

SMM =
∫

FM QMNFN , (1.5)

where now the field strength F is valued in the algebra g = so(3,2) for first order gravity,

or in g = osp(4|1) for pure supergravity. Appealing to the standard nomenclature, in the

first case, G = SO(3,2) and A = 1
2ω

abBab + eaBa ; in the second case, G = OSp(4|1) and

A= 1
2ω

abBab + eaBa + Qαψα. In both cases QMN is a Lorentz invariant tensor but it breaks

explicitly the transvection symmetry generated by Ba , and it also breaks the supersymmetry

transformations generated by Q. It can be shown that for the Lorentz transformation param-

eters the dual constraint vanishes identically, whilst for supersymmetry the dual constraints

(see e.g. [Nie04]),

Υ̃ ∼= Fa γa Dψ= 0, (1.6)
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where Fa is the transvection-valued component of the field strength, γ is a Dirac matrix and

Dψ is the covariant derivative for the so(3,2) connection acting on the gravitino field in the

Majorana representation. Although (1.6) admits different solutions, it is often solved using

the more restrictive field equations. Indeed, the equation obtained by extremizing the action

with respect to the spin connection yields,

Υcd
∼= ϵabcd Fa eb = 0, (1.7)

implying, for invertible vierbeins (eb
µ), the torsion constraint

Fa = 0. (1.8)

Here Fa consists of the vierbein torsion in pure gravity, and in the case of supergravity it also

contains an additional 2-form fermion-current. Hence on the surface of the constraint (1.7)

the action is invariant under local supersymmetry transformations. Alternatively, when the

gravitino field strength Dψ vanishes, or when it is in the kernel of Fγ, supersymmetry also

holds.

The constraint dual to the transvection transformation parameters is

Υ̃∼= 1

2
ϵabcd Fbc Fd − Dψγa iγ5Dψ= 0, (1.9)

which, using the torsion constraint (1.8), reduces to

Dψγa iγ5Dψ= 0. (1.10)

This constraint can be satisfied for example if

iγ5Dψ=ϕDψ+ϕ′∗Dψ, (1.11)

where ϕ and ϕ′ are scalar fields. This is because (Cγa)αβ is symmetric in its spinor indices,

where C is the conjugation matrix, whilst the products (Dψ)α(Dψ)β and (Dψ)α ∗ (Dψ)β are

antisymmetric. Conditions (1.11) can be fulfilled by configurations that are not necessarily

solutions of the field equations, but it can be checked that on-shell configurations do sat-

isfy the constraint (1.10). Indeed, the Rarita-Schwinger equation obtained by varying with

respect to the gravitino,

/e Dψ= 0, where /e := γaea , (1.12)

implies that (1.10) holds. In order to prove this, we can use the equivalent form of the Rarita-

Schwinger equation in four dimensions (see (4.18)),

(iγ5 −∗)Dψ= 0, (1.13)

which is in the class of (1.11) for ϕ = 0 and ϕ′ = 1. Hence, both local supersymmetry and

transvection invariance are conditional symmetries of N = 1 supergravity.
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2. Notations

In the following sections we consider an N = 2 supergravity model following the same pat-

tern, unifying the MacDowell-Mansouri supergravity and the non-abelian U (1)×SU (2) Yang-

Mills theory. This model has been presented in [Alv+21b]. Our action principle can be ex-

pressed in the Yang-Mills fashion,

S :=−
∫

str F⊛F , (2.1)

(cf. [Wis10] in the pure gravity case) where F = dA+A2 ∈ g = su(2,2|2), str is the super-

trace and ⊛ combines the standard Hodge operator and an involution of the superalgebra

su(2,2|2). The explicit form of ⊛ is given in Eq. (3.3).

The field equations and corresponding consistency conditions that follow from (2.23)

can be written as

Υ ∼= D⊛F+ = 0, Υ̃=D2 ⊛F+ = [F , ⊛F+] = 0, (2.2)

where D is the su(2,2|2) covariant derivative and F+ is the su(2,2|2) curvature with the terms

along transvection generators removed. The removal of the transvection terms is prompted

by the ⊛ operator, which is necessary in order to recover the pure (super)gravity sector.

The gauge transformation of the action, (1.2), takes the form

δS :=−
∫

str λ [F ,⊛F+] +b.t. , (2.3)

hence the su(2,2|2) symmetry holds on the surface of the non-trivial components of the inte-

grability condition Υ̃ in (2.2). As we shall see [F ,⊛F+] vanishes trivially except for the terms

along transvection generators and supercharges, analogously to N = 1 supergravity. Thus,

the group G = SU (2,2|2) breaks into H = SO(3,1)×R×U (1)×SU (2) off-shell symmetries while

transvections and supersymmetry are conditional symmetries.

2.1. Superalgebra representation.

In this section, we consider su(2,2|2) as spanned by

{Bab ,Ba ,B̃a ,B5︸ ︷︷ ︸
so(4,2)

; B6 ,BI︸ ︷︷ ︸
u(1)⊕su(2)

; Qαi , Q
i
α︸ ︷︷ ︸

supercharges

} . (2.4)

This representation will allow us to handle complex gravitino fields charged under U (1)×
SU (2) interactions

Here the so(4,2) generators are labeled by spacetime indices (a,b) in the range 0,1,2,3,

su(2) indices (I ) in the range 7,8,9, and spinorial labels (α) in the range 1, ...,4, whilst there is

single u(1) generator with the label 6. Hence the whole set of internal symmetry generators

are labeled by Latin letters, r, s, ..., in the range 6,7,8,9, Br ∈ u(1)⊕ su(2). The supercharges

isospin labels i = 1,2, transform in the fundamental representation of su(2)⊕u(1).

The adjoint action of the bosonic generators, denoted B, onto the fermionic generators

[Qαi ,BM ] = (BM )α j
i β Q

β

j , [BM ,Q
i
α] =Q j

β (BM )β i
j α , (2.5)
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provides the fundamental representations of the spacetime symmetry algebra so(4,2) and

the internal symmetry algebra u(1)⊕ su(2), by means of the structure constants BM , where

the indices M ∈ {a, [ab],r } label Lorentz vectors/tensors and internal symmetry generators.

The constant of structures BM can be expressed in terms of tensor products involving

4×4 spinor representations for spacetime symmetry generators,

so(4,2) : (BM )α j
i β = δi

j ×
{1

2
(γab)αβ ,

1

2
(γa)αβ ,

1

2
(γaγ5)αβ ,

1

2
(γ5)αβ

}
, (2.6)

or from 2×2 matrices for internal symmetries

u(1)⊕ su(2) : (BM )α j
i β = δαβ×

{
− i (12×2)i

j , − i

2
(σI )i

j
}

, (2.7)

where γ’s are Dirac gamma matrices and σI are the Pauli matrices. We shall denote the ad-

joint representation

ρ(BM ) = BM , (2.8)

simply by ρ-representation.

Introducing the Killing form KM N normalized by,

str (BMBN ) =KM N , (2.9)

the anti-commutator [Q,Q ]+ can be cast in a compact form using the representation ρ of

the bosonic subalgebra and the inverse Killing form KM N ,

[Q,Q ]+ =KM N BM BN , (2.10)

where the BM s are given in (2.6)-(2.7). Note that the su(2,2|2) contains the subalgebras,

so(3,2) = {Bab ,Ba} ∼= sp(4) , (2.11)

so(4,1) = {Bab ,B̃a} , (2.12)

i so(3,1)± = {Bab ,B±a} , B±a := 1

2
(Ba ± B̃a) , (2.13)

which are isometries correspondingly of anti-de Sitter, de Sitter and Minkowski spacetimes.

In the latter case we have two options, i so(3,1)+ or i so(3,1)−, for Poincaré subalgebras.

2.2. The gauge potential.

The gauge potential (connection) is of a one-form valued in the superalgebra (2.4),

A : =A+Ψ−Ψ ∈ su(2,2|2) , (2.14)

A : = AMBM , (2.15)

which we have decomposed in its fermion sector containing the gravitino supercharge-valued

field, Ψ :=ψα
i Q

i
α and its conjugate Ψ :=ψi

αQ
α
i , and the bosonic sector containing spacetime
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(W) and internal (U) symmetry components,

A=W+U , (2.16)

W= 1

2
ωabBab +paBa + p̃ a B̃a +hB5 ∈ so(4,2) , (2.17)

U=U rBr ∈ u(1)⊕ su(2) . (2.18)

Here ωab is the Lorentz connection, pa and p̃ a are respectively AdS4− and dS4− type transvec-

tion gauge fields (cf. respectively (2.11) and (2.12)), h is the dilation gauge field, U 6 is the u(1)

electromagnetic gauge field and U I are SU (2) gauge fields.

Using the adjoint representation ρ (2.8), which does not affect the field coefficients, we

can map the bosonic gauge connection A to its adjoint action A := ρ(A) upon the gravitino

fields,

A =W +U , W = ρ(W) , U = ρ(U) ,

W =Ω+P + P̃ +H , U =U r Br , (2.19)

where

Ω= 1

2
ωabBab , P = paBa , P̃ = p̃ a B̃a , H = hB5, U r Br =U 6B6 +U I BI . (2.20)

2.3. The field strength.

The covariant derivative associated to the gauge connection (2.14) acts on su(2,2|2)-valued

differential forms as

DΦ := dΦ + [A ,Φ] . (2.21)

We also introduce the covariant derivative, with respect to the bosonic gauge connection

(2.16),

D := d +A . (2.22)

The su(2,2|2) field strength, F := dA+AA, has components

F = 1

2
FabBab +F aBa + F̃ aB̃a +F5B5 +F rBr +Qi

αX
α
i −X i

αQ
α
i , (2.23)

where

Xα
i = (Dψ)αi , X i

α = (Dψ)i
α , (2.24)

Dψ= dψ+ (W +U )ψ , Dψ= dψ+ψ(W +U ) (2.25)

The covariant derivative D = d +W +U is induced by the action of (2.22) on supercharge-

valued gauge fields X=DΨ−DΨ, where DΨ=QDψ and DΨ= (Dψ)Q.

We identify three main sectors of the gauge curvature:

F =F− I+X , (2.26)

F :=D2 = F M BM , I := [Ψ ,Ψ] = I MBM , X :=QX −XQ , (2.27)
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respectively the bosonic gauge field strength, the gravitino (bosonic) 2-form current, where

I M =KM NψBNψ, (2.28)

I ab =−1

2
ψB abψ , (2.29)

I a =ψB aψ , Ĩ a =−ψB̃ aψ , (2.30)

I 5 =ψB5ψ , (2.31)

I 6 = 1

4
ψB6ψ , I I = 2ψBIψ . (2.32)

Thus, the boson and fermion components of the curvature are respectively,

F |BOS =FMBM =F− I , F |FER =X . (2.33)

For future reference, we shall use the “evaluate” symbol to project the superalgebra-valued

differential forms on particular elements of the algebra, namely, |BOS and |FER to be the pro-

jections onto the bosonic and the fermionic sectors, |ST and |INT the projections onto the

spacetime and internal generators, |L, |T and |D the projections onto Lorentz, transvection

and dilation generators.

Thus the boson components of F |BOS can be subdivided in their spacetime and internal

type of components, F|ST and F|INT, respectively given by,

F :=F|ST+F|INT , F|ST = dW+WW , F|INT = dU+UU . (2.34)

The 2-form current I= I|ST+ I|INT is decomposed similarly.

In more detail we have,

F|L = 1

2
F abBab , F|T = F aBa + F̃ aB̃a , F|D = F 5B5 , F|INT =G6B6 +G IBI , (2.35)

where

F ab = Rab(w)+pa pb − p̃a p̃b , Rab(w) := d w ab +w ac wc
b , (2.36)

F a = DΩpa −hp̃a , F̃ a = DΩp̃a −hpa , (2.37)

F 5 = dh +pa p̃a , (2.38)

G6 = dU 6 , G I = dU I +U JU K ϵJK
I , (2.39)

and for the gravitino currents,

I|L = 1

2
I ab Bab , I|T = I a Ba + Ĩ a B̃a , I|D = I 5 B5 , I|INT = I 6B6 + I I BI . (2.40)

In the adjoint representation (2.8) we write, from (2.35)

F := ρ(F) = F M BM , I := ρ(I) = I M BM (2.41)
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In what follows we shall also use gauge-field symbols as labels in the covariant derivative in

order to specify the gauge connection being used,

DW = d +W , DU = d +U , DΩ = d +Ω , DΩ+H = d +Ω+H .

2.4. Γ–gradding.

The matrix

Γ=

 γ5 04×2

02×4 02×2

 . (2.42)

induces a natural graded structure on the bosonic generators of su(2,2|2),

[B−
M ,Γ]+ = 0, [B+

M ,Γ] = 0, (2.43)

where B− =Ba ,B̃a , and B+ =Bab ,B̃5 ,Br .

The grading (2.43) of the bosonic component of any differential form Θ ∈ g is preserved

in the representation ρ. Since ρ(Γ) = γ5, we have [ρ(Θ|−BOS) ,γ5]+ = 0, [ρ(Θ|+BOS) ,γ5] = 0. Thus

we can also decompose the differential forms valued in fundamental representations of the

bosonic gauge algebra accordingly. In particular, for future reference, the gauge connection

decomposition reads,

A− =W − = P + P̃ , A+ =W ++U =Ω+H +U . (2.44)

Henceforth all differential form Θ ∈ g can be decomposed as follows,

Θ=Θ++Θ− , (2.45)

Θ− =Θ|T =ΘaBa + Θ̃aB̃a , Θ+ =Θ|+BOS+Θ|FER , Θ|+BOS =Θ|L+Θ|D+Θ|INT .

Hence the denoted +–component contains all the generators of the corresponding gauge

algebra excluding transvection generators. The −–components refer therefore only to the

transvection components. In particular, the transvection term of the field strength is given

by,

F− = (F a − I a)Ba + (F̃ a − Ĩ a)B̃a , F− = (F a − I a)Ba + (F̃ a − Ĩ a) B̃a . (2.46)

3. Lagrangian, dynamics and symmetries

3.1. Construction the Lagrangian and the ⊛ operator.

With the necessary ingredients at hand, we can proceed with the generalized Yang-Mills

action (2.23). The corresponding Lagrangian density, built from the field strength F (2.26), is

given by,

L :=− str
(
F⊛F

)
. (3.1)

We would like that this construction follows the Yang-Mills spirit of gauge theories, hence

that the ⊛ operator extend the traditional Hodge operator used in Yang-Mills theories. Hence,

⊛ must produce an authomorphism of the complexified su(2,2|2) two-form curvature: ⊛F ∈
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sl (4|2,C). In order to operate similarly to the regular Hodge dual in Lorentzian signature, we

shall also require ⊛2 =−1 on the 2-forms. These restrictions still allow for a large variety (at

least too many for us) of possibilities. As we want our model to extend the standard model

of theoretical physics, we add the following restrictions:

i) str (F|FER⊛F|FER) contains Rarita-Schwinger terms.

ii) str (F|ST⊛F|ST) contains Einstein-Hilbert terms.

iii) str (F|INT⊛F|INT) contains the Yang-Mills term.

iv) The action does not contain torsion kinetic terms.

Inspecting these terms we observe that the goal is achieved with the following actions of

the generalized Hodge operator, specified on the different sectors of the field strength:

1) ⊛X= iΓX+XiΓ=Qiγ5X −X iγ5Q.

2) ⊛F|L = iΓF|L .

3) ⊛F|INT =∗F|INT.

4) ⊛F|T = iΓF|T =−i F̃ aBa − i F aB̃a . Here, even though ⊛ produces imaginary factors,

in the Lagrangian these terms will cancel out.

5) In addition we choose ⊛F|D = ∗F|D upon the dilation sector. The option ⊛F|D =
iΓF|D does not belong to the algebra hence it is discarded. The option ⊛F|D = iF|D
yields an imaginary term in the Lagrangian, hence we avoid it.

The ⊛ operator will act in the same way on any g-valued 2-form, in agreement with their

su(2,2|2). The requirements above are satisfied by the choice

⊛F =1

2
(⊛Fab)Bab + (⊛Fa)Ba +⊛(F̃a)B̃a + (∗F5)B5

+ (∗F r )Br +Q ⊛X − (⊛X )Q ,
(3.2)

where

⊛Fab = 1

2
ϵab

cdFcd , ⊛Fa =−i F̃a , ⊛F̃a =−iFa , ⊛F5 =∗F5 ,

⊛F r =∗F r , ⊛X = iγ5X , ⊛X =X iγ5 .
(3.3)

Variations of the signs of the ⊛ operator on particular sectors of the curvature that may lead

to different models. We shall discuss briefly two additional cases in sections 4.4 and 4.5. For

example the option used in (4.49) also fulfills the requirements.

Collecting only bosonic terms in Lbos and fermion terms in Lfer, is composed as,

L=Lbos +Lfer (3.4)

Lfer = 4ψ

(
iγ5W −D + 1

2
(∗− iγ5)(F |D+F |INT)− iγ5

1

2
F−− 1

4
⊛ I+

)
ψ . (3.5)

In components the bosonic component of the Lagrangian reads,

Lbos :=1

2
Rab(w)pcdϵabcd + 1

4
pab pcdϵabcd + 1

4
Rab(w)Rcd (w)ϵabcd

−dh ∗dh −2dh ∗pa p̃a −pa p̃a ∗pb p̃b −
1

2
F I ∗F I −4dU 0 ∗dU 0 ,

(3.6)

where

pab := pa pb − p̃ a p̃ b . (3.7)
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The Lagrangian contains boson and fermion kinetic terms at exception of the transvec-

tion gauge fields, couplings of fermion-currents and field strengths (Pauli couplings) and

four-fermion self-interactions. It can be shown that the terms containing the transvection-

like component of the curvature (2.46) cancel out from the Lagrangian (3.1) as a consequence

of the ⊛ action (3.3) along these terms. Hence the absence of F |T Pauli couplings and Kinetic

terms is natural. The absence of F |L Pauli couplings in (3.5) is consequence of a cancelation

of the identical terms provided by the boson gauge curvatures and the fermion gauge curva-

tures.

As a last remark on this construction, we observe that since the ⊛ operator removes the

transvection type of terms from the Lagrangian, (3.1) can be alternatively written as,

L=− str F+⊛F+

=− str (F+− I+)⊛ (F+− I+)− str X⊛X .
(3.8)

Here we can see why the imaginary components of ⊛, on transvections, do not produce

imaginary terms in the Lagrangian. Since the supertraces of the bosonic generators (2.9)

produce the Killing form of the bosonic subalgebra, and since ⊛F is in the algebra by con-

struction (see (3.3)), the bosonic Lagrangian is equivalent to,

Lbos :=−(F+)N (⊛F+)N , (3.9)

where (F+)N := (F+)MKM N . For the fermionic component we get,

Lfer = 4ψ

(
iγ5W −D + 1

2

(
⊛F+− iγ5F

)− 1

4
⊛ I+

)
ψ−d (2iψγ5Dψ ) . (3.10)

Noticing that iγ5F = iγ5F++ iγ5F− and that ⊛F+ = iγ5F |L+∗F |D+∗F |INT, the Lorentz com-

ponents of the Pauli terms in (3.10) cancel out,

⊛F+− iγ5F = (⊛− iγ5)F+− iγ5F− = (∗− iγ5)(F |D+F |INT)− iγ5F− . (3.11)

Thus we can write Lfer as in (3.5).

3.2. Field equations.

The equations of motion are given by the vanishing condition of the variation of the action

with respect to the gauge connection A,

δL=−2 str
(
δAD⊛F+)− str d(δA⊛F+) , (3.12)

where F+ =F+− I++X from definition (2.45).

From (3.12) the equations of motion reads

D⊛F+ = 0. (3.13)

In an extended form the equations of motion (3.13) are given by:
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δw :

ϵcd ab

[
(DΩpa − I a )pb − (DΩp̃a − Ĩ a )p̃b

]
= 0. (3.14)

This equation is equivalent to

ϵcd ab

[
(F a − I a )pb − (F̃ a − Ĩ a )p̃b

]
= 0, (3.15)

since the components hp and hp̃ in the definitions (2.37) cancel.

δh :

d

(
∗F 5 − i

2
ψψ

)
= 0. (3.16)

δp :
1

2
ϵabcd pb(F cd − I cd )− p̃a ∗ (F 5 − I 5)−Dψiγ5Baψ+ψBa iγ5Dψ= 0. (3.17)

δp̃ :
1

2
ϵabcd p̃b(F cd − I cd )−pa ∗ (F 5 − I 5)+Dψiγ5B̃aψ−ψB̃a iγ5Dψ= 0. (3.18)

δU r :

DU
(∗F|INT+ I′|INT−∗I|INT

)= 0, (3.19)

where I′|INT :=ψiγ5B rψBr = 1
4ψiγ5B6ψB6 +2ψiγ5BIψBI .

δψ : (
iγ5W −D + 1

2
(⊛− iγ5)(F+− I+)− 1

2
iγ5(F−− I−)− 1

2
iγ5I

)
ψ= 0, (3.20)

or alternatively,(
iγ5W −DΩ+U + iγ5(W −)2 + 1

2
(∗− iγ5)((F − I )|D+ (F − I )|INT)

−1

2
iγ5(DΩW −− I−)− 1

2
iγ5I

)
ψ= 0,

(3.21)

where I is given in (2.41).

δψ : Similarly,

DψW − iγ5 + 1

2
ψ(⊛− iγ5)(F+− I+)− 1

2
ψ(F−− I−) iγ5 − 1

2
ψI iγ5 = 0, (3.22)

or alternatively,

(DΩ+Uψ)W −iγ5 +ψP 2iγ5 + 1

2
ψ(∗− iγ5)

(
(F − I )|D+ (F − I )|INT

)
− 1

2
ψ(DΩW −− I−)iγ5 − 1

2
ψI iγ5 = 0.

(3.23)

In (3.21) and (3.23) we observe that the terms including the gauge field H in the covariant

derivative DΨ and in F− = dW −+ [Ω+H ,W −] cancel each other.
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3.3. Integrability conditions and conditional symmetries.

Acting once again with the operator D on (3.13) we obtain theintegrability condition

[F , ⊛F+] = 0. (3.24)

Note that more generally, the system of equations

DB = 0, [F ,B] = 0, (3.25)

where B is a generic differential form and F is the curvature for the connection in D, is self-

consistent by virtue of the Bianchi identity, DF ≡ 0. In fact, acting once more with the co-

variant derivative produces no new constraints on B. In the same sense, the equations of

motion (3.13) and their integrability conditions (3.24) are also self-consistent.

It can be verified that all the components of the commutator (3.24) along the subalgebra

h= so(3,1)⊕R⊕u(1)⊕ su(2) , (3.26)

vanish identically,

[F , ⊛F+]|L ≡ 0, [F , ⊛F+]|D ≡ 0, [F , ⊛F+]|INT ≡ 0. (3.27)

Hence, the non-trivial components of (3.24) are along transvections and supercharge gener-

ators;

[F , ⊛F+] ≡ [F , ⊛F+]|T+ [F , ⊛F+]|FER , (3.28)

where

[F , ⊛F+]|T = [F− , ⊛F+ ]+ [X , ⊛X] , (3.29)

[F , ⊛F+]|FER =Qρ(F |BOS iΓ−⊛F+ )Dψ+Dψρ( iΓF |BOS−⊛F+ )Q . (3.30)

Therefore, (3.24) is equivalent to the system(
Fb (⊛F)b

a + F̃a ∗F5 +2Dψ iγ5B a Dψ
)
Ba

+
(
F̃b (⊛F)b

a +Fa ∗F5 −2Dψ iγ5B̃ a Dψ
)
B̃a = 0, (3.31)

Q ρ
(

{F |D+F |INT } (iΓ−∗) − iΓF−
)
Dψ

+Dψρ
(

(iΓ−∗) {F |D+F |INT } + iΓF−
)
Q= 0. (3.32)

Alternatively, the supercharge-valued constraint can be expressed as

Q
(

{ (F − I )|D+ (F − I )|INT } (iγ5 −∗)Dψ+ (F−− I−) iγ5Dψ
)

+
(
Dψ (iγ5 −∗) { (F − I )|D+ (F − I )|INT } +Dψ iγ5 (F − I )|INT

)
Q= 0.

(3.33)

An su(2,2|2) transformation of the connection gauge field (δA = Dλ) and its curvature

(δF = [F , λ]), implies that the Lagrangian changes as

δλL= 2 str
(
λ [F ,⊛F+]

) + b.t. (3.34)
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From (3.27) we know that (3.34) vanishes identically for λ ∈ h, hence (3.26) is a genuine gauge

(off-shell) symmetry of the system. As for transvections and supersymmetry, they are condi-

tional symmetries, i.e. subjected to their dual symmetry constraints (3.31) and (3.32) respec-

tively.

4. Ground states and effective theories

We have not yet established the relation between the symmetric tensor gµν, used to build

the Hodge dual necessary for the Yang-Mills action, and the transvection gauge fields in the

W − = P + P̃ component of the gauge connection.

So far, we have assumed, as in Yang-Mills theories, that the symmetric tensor gµν is a

prescribed function, like a fixed parameter of the action, not dynamical field. It is therefore

not varied in the computation of field equations and the symmetry transformations of the

Lagrangian. In this picture, the expected correspondence of the type ea
µ ∼ pa

µ, ea
µ ∼ p̃ a

µ, so

that gµν = ea
µeb

ν ηab , should be established a posteriori, as part of the solutions around a

ground state.

In order to avoid the emergence of new fields related to the basis-change matrices,

δpa

δeb
,

δp̃a

δeb
, (4.1)

that could spoil Lorentz invariance, they must be proportional to the only available invariant

tensor of rank 2, the Kronecker delta. Hence, following [Tow77; AVJ20], we consider a ground

state sector in which the transvection fields are chosen as,

pa =α+ea , p̃ a =α−ea , (4.2)

with constants α±.

The field equation for the spin connection,

ϵcd ab

(
Fa pb − F̃ a p̃ b

)
= 0, (4.3)

is an algebraic equation. When the system of equations (4.3) is non-degenerate, the Lorentz

connection can be solved in terms of the transvection gauge fields pa , p̃a , and the gravitino

currents I a and Ĩ a .

In the ground state (4.2), for non degenerate (3.7)

pab = (α2
+−α2

−)eaeb , (4.4)

the equation (4.3) can be reduced to the torsion constraint

T a = α+I a −α− Ĩ a

α2+−α2−
, T a := DΩea . (4.5)

Hence decomposing the spin connection in a torsionless component (such that DΩ(e)ea = 0)

and the contorsion, Ω=Ω(e)+K , we obtain the solution

Ωab
ν (e) = 2e[a|ρ∂[νe |b]

ρ −ecνe[a|µe |b]ρ∂µec
ρ , K ab

µ =−1

2
eaνebρ(Tµνρ −Tνρµ+Tρµν) , (4.6)

where Tµνρ = T a
µν eaρ .
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4.1. N = 2 supergravity ground state.

Imposing Majorana reality conditions on the gravitino fields, and setting α− = 0, the solution

(4.6) produces

Fa = F a − I a = 0, F̃ a = F̃ a − Ĩ a = 0. (4.7)

Using this back in the transvection symmetry constraint (3.31), we are left with

Dψ iγ5B a Dψ= 0, Dψ iγ5B̃ a Dψ= 0, (4.8)

which can be alternatively written as

DψB(iγ5 −∗)Dψ− (Dψiγ5 −∗Dψ)BDψ= 0, with B = B a , B̃ a . (4.9)

Now using (4.7) in the supersymmetry constraint (3.32), we get

{ (F − I )|D+ (F − I )|INT } (iγ5 −∗)Dψ= 0,

(Dψiγ5 −∗Dψ) { (F − I )|D+ (F − I )|INT } = 0.
(4.10)

Since (4.9) and (4.10) can be factorized by the Rarita-Schwinger equations (4.18),

(iγ5 −∗)Dψ= 0, Dψiγ5 −∗Dψ= 0, (4.11)

the torsion constraints (4.7) and the Rarita-Schwinger equation (4.11) provide enough con-

ditions for transvection symmetry and supersymmetry. We stress that (3.31) and (3.32) could

be solved by more general methods, which can allow complex gravitino configurations and

non-trivial field strengths.

Finally, about the Rarita-Schwinger equations, we would like to recall a result found in [DKS77].

Let B be a spinor 2-form satisfying,

/e ∧Ω= 0. (4.12)

Then it follows:

γµ∗Ωµν = 0, ∗Ωµν := 1

2
e ϵµνλρΩ

λρ , (4.13)

γµνλΩνλ = 0, (4.14)

γµΩµν = 0, (4.15)

(iγ5 −∗)Ω= 0. (4.16)

From (4.12), equivalent to γ[µΩνλ] = 0, we demonstrate these identities performing the

following operations:

• ϵρµνλγ
[µΩνλ] = 0 ⇒ (4.13)

• from (4.13) using identity iγ5γµνλ =−e ϵµνλργ
ρ ⇒ (4.14)

• γµγ[µΩνλ] = 0 and (4.14) ⇒ (4.15)

• we multiply (4.13) and (4.15) by γλ and iγ5γλ respectively, then we add the both

terms and anti-symmetrize the 2 free indices to obtain,

γ[λ|γµΩµ|ν] + iγ5γ[λ|γµ∗Ωµ|ν] =Ωλν+ iγ5 ∗Ωλν = 0, (4.17)
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which is equivalent to (4.16). In particular these results are valid for Ω= Dψ, hence,

/eDψ= 0 ∼= (iγ5 −∗)Dψ= 0. (4.18)

4.2. Gravitino ground state.

The supersymmetry constraint (3.33) can be fulfilled also in the gravitino vacuum configura-

tion

Dψ= 0, Dψ= 0. (4.19)

Since D2ψ= Fψ we also need

Fψ= 0. (4.20)

In particular, the case F = 0 implies that all the bosonic curvatures (2.36-2.39) must vanish:

0 = Rab(w)+pa pb − p̃ a p̃ b , (4.21)

0 = DΩpa −hp̃ a = DΩp̃ a −hpa , (4.22)

0 = dh +pa p̃a , (4.23)

0 =Gr . (4.24)

From (4.21) solutions interpolating Anti de Sitter and the de Sitter spaces can be achieved

with a suitable choice of the parameters α+ and α− in (4.2). The flat case, Rab(w) = 0, occurs

for α2+ =α2−. This case, however, is degenerate since (4.4) vanishes, which is reflected also by

the fact that the Einstein Hilbert term drops out from the Lagrangian (3.6). Replacing (4.2) in

the torsion-like conditions (4.22) this yields,

α±DΩea −α∓hea = 0, (4.25)

which, in the non-degenerate case α2+ ̸=α2−, requires h = 0, DΩea = 0, and spacetime to be of

constant curvature,

Rab(w)+ (α2
+−α2

−)eaeb = 0. (4.26)

4.3. Effective Lagrangian.

With the transvection fields at their ground states (4.2), the theory (3.1) yields the effective

Lagrangian3 take the form

Leff =− str F◦⊛F◦ , (4.27)

with F◦ = dA◦+A2◦ built from the 1-form

A◦ = 1

2
ωabBab +α+eaBa +α−ea B̃a +hB5 +U rBr +ψα

i Q
i
α−ψi

αQ
α
i . (4.28)

The field equations for (4.27) are obtained from (3.14)-(3.23) taking into account the de-

pendence on the vierbein, implicit in (4.2),

δeLeff =α+δea ∂L
∂pa +α−δea ∂L

∂p̃ a +δea ∂L
∂ea . (4.29)

3By effective we simply mean that the theory can be expanded around the ground state (4.2).
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Here the partial derivatives indicate functional derivative w.r.t. the explicit dependency on

the variables p and p̃. The first two terms on the right hand side of (4.29) are obtained from

the sum of the field equations (3.17) and (3.18) multiplied by α+ and α−, respectively. The

third term is obtained from the Yang-Mills terms,

LG =− str (G∗G) , G=F |D+F |INT . (4.30)

Hence

δeLG =−
∫

d 4x e δea
µV µ

a , (4.31)

where

V µ
a := str

(
GλρG

λρeµa − 1

4
GλρG

λµeρa

)
. (4.32)

Here eµa is the inverse of the vielbein and we have also introduced the inverse metric tensor

gµν = eµa eνbη
ab to raise the 2-form indices of G.

With a slightly different parametrization of the linear correspondence (4.2),

pa =α(1−τ)ea , p̃ a =ατea , (4.33)

so that W − = 1
2α((1−τ)−τγ5) /e, the Lorentz curvature reads

F ab = Rab(w)+α2(1−2τ)eaeb . (4.34)

Thus, τ interpolates between anti de Sitter for τ ∈ (−∞,1/2) and de Sitter for τ ∈ (1/2,∞), and

gives the degenerate case for τ= 1/2. The effective Lagrangian (4.27) reads

Leffbos = α2
(1

2
−τ

)
Rab(w)ec edϵabcd +α4

(
1

2
−τ

)2

eaebec edϵabcd (4.35)

+1

4
Rab(w)Rcd (w)ϵabcd −dh ∗dh − 1

2
F I ∗F I −4dU 6 ∗dU 6 , (4.36)

Lefffer = 4ψ

[
i /eα

(
π+
2

−
(1

2
−τ

)
π−

)
DΩ+U + α2

4

(1

2
−τ

)
iγ5/e2 (4.37)

+i D /eα

(
π+
2

−
(1

2
−τ

)
π−

)
+ 1

2
(∗− iγ5)(F |D +FU )− 1

4
⊛ I+

]
ψ . (4.38)

In the fermionic sector, π± = (1±γ5)/2 are the chiral projectors. We observe that the La-

grangian (4.38) breaks partity (asymmetric chiral terms) and it has a bi-parametric Newton

constant.

Note that the fact that for τ= 1/2 the gravity sector in (4.36) decouples is consistent with

the fact that pure Yang-Mills theories provide a good approximate description of internal

interactions at short scales, with no need of gravity.

For positive cosmological constant (τ> 1/2) the Lagrangian (4.36) produces ghosts modes

for gravitons, since the Einstein-Hilbert term has the opposite sign. In section 4.4 an alter-

native Lagrangian is proposed where this is fixed.
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4.3.1. Standard normalization of the Lagrangian.

The standard Einstein-Hilbert and Yang-Mills Lagrangians,

SEH = 1

2κ2

∫
1

2

(
Rab(w)− λ

3!
eaeb

)
ec edϵabcd = 1

2κ2

∫
d 4x e (R −2λ) , (4.39)

SEW =− 1

2g 2
SU (2)

∫
G I ∗G I − 1

2g 2
U (1)

∫
G6 ∗G6 , (4.40)

are contained in the effective Lagrangians (4.36)-(4.38) for τ ∈ (−∞,1/2),

1

κ2 = 2α2(1−2τ) , gSU (2) = 1, gU (1) = 1

2
p

2
. (4.41)

We see that the coupling constant gSU (2) has the canonical value and the Maxwell coupling

constant g U (1) < g SU (2), which respects the electroweak hierarchy. The Gravity coupling κ is bi-

parametric and from the first relation in (4.41) α has the units of the inverse of the Newton

constant GN since κ2 = 8πGN .

In addition, there is a new abelian term in (4.36) corresponding to the (non-compact

symmetry) dilation gauge field h,

Sdil =− 1

2g 2
D

∫
dh ∗dh , (4.42)

hence gD = 1/
p

2 is in the hierarchy gU (1) < g̃D < gSU (2). Note that the dilation gauge field h is

not minimally coupled, but has a Pauli coupling to the gravitino.

For τ = 0 and with a rescaled gravitino field, the standard Rarita-Schwinger action is

contained in (4.38) in the form,

LRS =− 1

κ2

∫
ζiγ5/eDζ= 1

κ2

∫
d 4x e ζµγ

µνλDµζν , ζ= ψp
α

. (4.43)

For more general values of τ, from the presence of the chiral projectors, the gravitino field

should be decomposed in its chiral sectors, which will therefore appear with different weights.

4.3.2. Limiting chiral model.

We can obtain fixed chirality gravitino models from the model (4.27) in the limit, α → 0,

τ→−∞ while

α2
(1

2
−τ

)
= 1

4κ2 (4.44)

is kept fixed. Hence we obtain in the bosonic sector (4.36),

Leffbos =
1

4κ2 Rab(w)ec edϵabcd + 1

16κ4 eaebec edϵabcd (4.45)

−dh ∗dh − 1

2
F I ∗F I −4dU 6 ∗dU 6 + 1

4
Rab(w)Rcd (w)ϵabcd , (4.46)

whilst for the fermion term (4.38), redefining ζ = π−ψ/
p
α, we get the Rarita-Schwinger ac-

tion for a chiral field with a torsion-coupling,

Lefffer =+ i

κ2 ζ

[
/eDΩ+U − 1

2
D /e

]
ζ . (4.47)
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4.4. Alternative ⊛s operator and the de Sitter sign fix.

The wrong sign in the Einstein-Hilbert term in (4.36) for τ ∈ (1/2,∞) can be fixed by redefin-

ing the action of the generalized Hodge dual operator on the Lorentz component of the field

strength: ⊛F |L →−⊛F |L . This leads to the wrong sign of the Einstein-Hilbert term in the

anti de Sitter sector. The Pauli-like term ψF |Lψ produced by the terms str (F|L⊛ I|L) will

not cancel the identical term produced by the fermion sector strX⊛X. Hence, in order to

prevent the new Lorentz-Pauli coupling we need to flip also the sign of the ⊛ operator on the

fermionic curvatures: ⊛X→−⊛X.

Different choices for the operator ⊛ can be selected by introducing the ad hoc sign func-

tion,

sτ =
 1, τ ∈ (−∞,1/2]

−1, τ ∈ (1/2,∞)
, (4.48)

such that,

⊛sF |L = sτ(⊛F |L) , ⊛sX= sτ(⊛X) , ⊛s (F |T +F |D +F |U ) =∗(F |T +F |D +F |U ) , (4.49)

which produces the alternative Lagrangian,

Lalt :=− str F+ ⊛s F+ , (4.50)

suitable for both, negative and positive curvature backgrounds. Since (τ−1/2) sτ = |τ−1/2|,
the new bosonic and fermionic components of the Lagrangian Lalt =Laltbos+Laltfer are given

respectively by,

Laltbos =α2
∣∣∣1

2
−τ

∣∣∣Rab(w)ec edϵabcd + sτα
4
(

1

2
−τ

)2

eaebec edϵabcd

+ sτ
1

4
Rab(w)Rcd (w)ϵabcd −dh ∗dh − 1

2
F I ∗F I −4dU 6 ∗dU 6 ,

(4.51)

and

Lefffer =4ψ

[
sτ i /eα

(
π+
2

−
(1

2
−τ

)
π−

)
DΩ+U + α2

4

∣∣∣1

2
−τ

∣∣∣iγ5/e2

+sτ i D /eα

(
π+
2

−
(1

2
−τ

)
π−

)
+ 1

2
(∗− sτ iγ5)(F |D +FU )− 1

4
⊛s I+

]
ψ .

(4.52)

Now the Einstein-Hilbert term sign is always correct and only the cosmological term in the

gravity side flips sign.

The chiral models are obtained as before in the limits α→ 0, τ→ ±∞, while keeping

fixed the value (4.44). From (4.51) this yields

Laltbos =
1

4κ2 Rab(w)ec edϵabcd + s±∞
16κ4 eaebec edϵabcd (4.53)

+ s±∞
4

Rab(w)Rcd (w)ϵabcd −dh ∗dh − 1

2
F I ∗F I −4dU 6 ∗dU 6 , (4.54)

where s±∞ =∓1, and in the fermion sector (4.52), redefining ζ=π−ψ/
p
α gives

Laltfer =
i

κ2 ζ

[
/eDΩ+U − 1

2
D /e

]
ζ . (4.55)
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4.5. The matter ansatz.

In [AVJ11] a mechanism to incorporate Dirac fermion (0-forms) in a supersymmetric gauge

connection was introduced, such that the corresponding 3D Chern-Simons supergravity ac-

tion produced, instead of a Rarita-Schwinger term, the Dirac action minimally coupled to

a Maxwell gauge field and gravity, with a torsion-dependent mass. This approach, referred

to as unconventional supersymmetry, has been used to build several models in 3D [Alv+15;

And+18], including interesting applications in condensed matter systems [And+20; IP21; Ior20;

Gal21b; Gal21a]. Extensions of these ideas to four dimensions can be found in [APZ14; AVJ20].

In unconventional supersymmetry (for a review see [Alv+21a]) a spin-1/2 field is intro-

duced directly in the supersymmetry gauge connection, not as a fundamental gravitino field

but combined with the vielbein in the form,

Ψ :=Q (/eξ) , Ψ= (/eξ)Q , (4.56)

where ξ is a fermion 0-form. Hence, instead the action principle for a spin-3/2 field the

results is a spin-1/2 action principle. This justified to denote (4.56) as the matter ansatz.

In reference [AVJ20] an unconventional supersymmetry model was proposed in four di-

mensions based in the superalgebra su(2,2|2) and a Lagrangian of the type (3.1), with the

fermion sector replaced by the matter ansatz (4.56). Similarly, here when the matter ansatz

(4.56) is used in (3.1), one obtains the descendant Lagrangian

Lm-ans :=− str
(
Fm-ans⊛Fm-ans

)
. (4.57)

In this Lagrangian the fermion field strength (2.23) is given by X := Qi
αD(/eξ)αi . Hence one

would obtain a theory for U (1)× SU (2)–minimally coupled matter fermions governed by a

Dirac action, with additional torsion and Pauli couplings, and four-fermion self-interactions.

The model (4.57) would differ from the one in [AVJ20] because the operator ⊛ used there

acts on the fermions component of the curvature with the opposite sign. As a consequence,

in [AVJ20] there is an additional coupling of the fermion field and the Lorentz curvature with

respect to the one here.

Without further additions, the theory obtained in this way hinges on the identification

between transvection and vierbein fields. Hence, considering the ground states (4.2), we can

obtain a theory of fermions coupled to gravity and gauge fields in a more standard fashion

applying the matter ansatz (4.56) in (4.38) and (4.52), or in the chiral-model limits (4.47)

and (4.55). In particular a matter–anti-matter symmetry breaking of fermions can be fine

tuned using the parameter τ in (4.38) and (4.52). Instead in (4.47)-(4.55) the chirality of the

fermions is fixed. See [AVJ20] for further discussions.



CHAPTER 6

Maximally extended Chern-Simons Poincaré supergravity for

all odd dimensions

1. Motivation

In [HR08], a supersymmetric extension of the Poincaré Lagrangian

L = ϵa1···a2n+1 Ra1a2 ∧·· ·Ra2n−1a2n ∧ea2n+1 , (1.1)

was found for the N = 1 Poincaré super-algebra (1.2) with the maximal amount of bosonic

generators Za1···ap , arising from the anticommutator of two spinor charges of the (N -extended)

Poincaré super-algebra{
Qi
α,Q j

β

}
= (

γa)
αβPa Gi j +∑

p

(
γa1···ap

)
αβZi j

a1···ap
, (1.2)

The construction was performed in d = 3 mod 8, which corresponds to the odd dimensions

where Majorana spinors exist. The goal of the work presented in the following sections is to

further extend this construction to all other odd dimensions, and for any N . Furthermore,

we show how the symplectic Majorana condition - an alternative reality condition - can be

implemented in the formalism. It may be stressed that, since the Poincaré algebras are non

semi-simple, the construction of supersymmetric Poincaré Chern-Simons theories for the

their maximal extension (1.2) is highly nontrivial. In order to circumvent this problem, we

observe that Poincaré (super-)algebras can be obtained from the semi-simple AdS (super-

)algebras by means of an expansion method inspired by Wigner-Inönü contractions. The

expansion method consists in forming the algebra of Lie algebra-valued polynomial, truncate

it at a given order N (i.e. quotient out the element of degree higher than N ), and then extract

a subalgebra from this algebra of truncated polynomial. This technique is similar to one

proposed in [MM03; JO03] for generating a Lie algebra from a lower dimensional one 1.

Here, we start by considering AdS super-algebras with maximal number of bosonic (even)

generators. These algebras are then expanded through the method that we briefly present in

a form adapted to our specific problem. Thus, we obtain all possible Poincaré super-algebras

with the maximal number of "central charges", namely the Za1···ap ’s in (1.2). The correspond-

ing supersymmetric Poincaré-Chern-Simons Lagrangians can be constructed from the in-

variant tensors of the semi-simple maximal AdS super-algebras. It can be shown that half

of the Za1...ap , and the corresponding gauge fields associated to them, do not contribute to

1In [JO03], the expansion is presented in the dual form i.e. the expansion is done for the dual coalgebra.

139
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the final Lagrangian, and these can be safely removed from the algebra. It is also shown that

these fields could not be part of any Lorentz invariant Lagrangian built from exactly one of

these fields and the Riemann curvature tensor.

2. Presentation of the Lagrangian

2.1. The Algebra.

We are interested on constructing gauge theories for some supersymmetric extensions of the

Poincaré algebra (1.2) with generators given by

Jab Lorentz generators, (2.1)

Pa Translations generators, (2.2)

Za1...an "Central" charges, (2.3)

Qα,Qα Super charges. (2.4)

There, we made two slight abuses. Firstly, the generatorsQ and Q are not part of the Poincaré

super-algebra but of its complexification. We do so because the fields associated to the real

generators have no physical meaning, see the Appendix. Secondly the Za1...an generators are

not strictly speaking central charges since they do not commute with the Lorentz generators.

However they do commute with all other generators, and hence in what follows we will refer

to them as "the central charges".

These central charges impose a splitting of the odd dimensions into the cases d = 4k +1 and

d = 4k +3. Indeed, their possible rank n are given by a set Id ∋ n, where

I4k+1 = {n ≡ 0,1mod4} \ {1}, (2.5)

I4k+3 = {n ≡ 1,2mod4} \ {1}. (2.6)

The non-vanishing (anti)commutators are

[Jab ,Qα] =−1

2
(γab)αβQ

β, [Jab ,Qα] = Qβ

1

2
(γab)βα, (2.7)

{Qα,Qβ} = 1

2(d+1)/2

Pa(γa)αβ+
∑

n∈Id

(−1)n(n−1)/2

n!
Za1...an (γa1...an )αβ

 . (2.8)

while the commutators between the Lorentz generators with the other bosonic generators

can be read off from their tensorial characters.

2.2. Connection and Chern-Simons form.

Let us now introduce the connection for the Poincaré super-algebra AP as

AP =Ω+Ψ+B, (2.9)
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and, where for convenience, we have defined

Ω= 1

2
ωab Jab , (2.10)

Ψ= Qψ+ψQ , (2.11)

B = ea Pa +
∑

n∈Id

ba1...an Za1...an . (2.12)

Since the algebra is closed, the curvature 2−form F = dA+ 1
2 [A∧A] is also expanded along

the generators as

FP = R+DΨ+DB+Ψ∧Ψ, (2.13)

R = 1

2
Rab Jab , Rab = dωab +ωa

c ω
cb , (2.14)

DΨ= Q(d+ /ω)ψ+ψ(
←−
d + /ω)Q, (2.15)

DB = Dea Pa +
∑

n∈Id

Dba1...an Za1...an , (2.16)

where D denotes the Lorentz covariant derivative, and the right exterior derivative
←−
d is de-

fined by, acting on a p-form Λ,

Λ
←−
d = (−1)p dΛ. (2.17)

We also define the pure Lorentz connection

ALor =Ω. (2.18)

The Lagrangian is chosen to be the transgression form (denomination borrowed from

[Nak91]) interpolating between the d+1
2 -th Chern character of associated to the pure Lorentz

connection ALor and the full super Poincaré connection AP. In details, one defines the inter-

polating connection and curvature

At = (1− t )ALor + tAP (2.19)

=Ω+ t (Ψ+B), (2.20)

Ft = R+ tD(Ψ+B)+ t 2Ψ∧Ψ, (2.21)

for t ∈ [0,1]. With the use of the invariant form2 〈 , . . . , 〉, constructed in section 3, and

detailed in (3.13-3.15), we are able to construct the Chern-Simons Lagrangian as

L=
∫ 1

0
d t〈AP −ALor, Ft , . . . , Ft︸ ︷︷ ︸

d−1
2

〉 (2.23)

= 〈B, R, . . . , R︸ ︷︷ ︸
d−1

2

〉1 + d −1

4
〈Ψ,DΨ,R, . . . , R︸ ︷︷ ︸

d−3
2

〉1. (2.24)

2By an invariant form of a real super-algebra g, we mean a linear map 〈 , . . . , 〉 : g⊗·· ·⊗g→R satisfying:

∀h, g1, . . . , gn ∈ g,
n∑

i=1
(−1)|h|(|g1|+|g2|+···+|gi−1|)〈g1, . . . , [h, gi ], . . . , gn〉 = 0. (2.22)
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2.3. The main Lagrangian. In a more explicit way, the Lagrangian can be written in a

very compact form as

L= i k Tr

/R(d−3)/2

/R(/e +
∑

n∈Id

/bn)+ (ψDψ−Dψψ)


 , (2.25)

where we have defined

/R = 1

4
Rabγab , /e = 1

2
eaγa , k ≡ d +1

2
mod2, (2.26)

/bn =
 i

2(n!) ba1...anγa1...an , n ≡ 0mod4,
1

2(n!) ba1...anγa1...an , n ≡ 1,2mod4.
(2.27)

It is interesting to note that, restricting the spinor ψ appearing in (2.11) to be a Majorana

spinor (which is possible only in dimensions d ≡ 3mod8 for the mostly plus Lorentzian sig-

nature) [TZ99], the Lagrangian becomes (with ψ now a Majorana spinor)

LMaj = Tr

/R(d−3)/2

/R(/e +
∑

n∈I3

/bn)+2ψDψ


 , (2.28)

and this expression coincides with that found in [HR08]. There, the restrictions for n ∈ Id

were computed using a symmetry argument exclusive to Majorana spinors. Surprisingly, re-

laxing the Majorana condition did not affect those restrictions.

2.4. Higher N theories.

So far, our theory contains one Dirac spinor and is therefore referred as a N = 2 theory. If

we restrict the spinor to be Majorana as explained in the previous paragraph, we obtain an

N = 1 theory. However, it is possible to increase N . To do so, we generalize the pair of odd

generators {Q, Q}, introducing a new index i ∈ {1, . . . N2 }3 forming the pairs {Qi , Q
i
} with new

commutation relations given by

[Jab ,Qαi ] =−1

2
(γab)αβQ

β

i , [Jab ,Q
i
α] = Q

i
β

1

2
(γab)βα, (2.29)

{Qαi ,Q
j
β} = 1

2(d+1)/2
δ

j
i

P a(γa)αβ+
∑

n∈Id

(−1)n(n−1)/2

n!
Za1...an (γa1...an )αβ

 .

For this extended Poincaré super-algebra, the resulting supersymmetric Chern-Simons La-

grangian is given

L= i k Tr

/R(d−3)/2

/R(/e +
∑

n∈Id

/bn)+
N /2∑
i=0

(ψi Dψi −Dψiψ
i )


 . (2.30)

3N is taken to be an even integer because we are adding Dirac spinors.
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2.5. Symplectic Majorana Spinors.

Our construction can also be extended in the case of symplectic Majorana spinors defined

in dimensions d ≡ 7mod8 (for mostly plus Lorentzian signature). Indeed, when N
2 being an

even integer, we can ask the spinors ψi to satisfy a symplectic Majorana condition,

ψ
i
α =ψβ

j Cβαε
j i , (2.31)

where ε is the matrix

ε=
 0 Id

−Id 0

 . (2.32)

In this case, the local supersymmetric Lagrangian obtained for the symplectic Majorana spinor

reads

L= Tr

/R(d−3)/2

/R(/e +
∑

n∈Id

/bn)+2
p∑

i=0
ψi Dψi


 . (2.33)

3. Expansion of super-algebras and invariant forms

The goal of this section is to obtain the invariant form of the Poincaré super-algebra

used in (2.23) to define our Lagrangian. This invariant form is computed using an expansion

of the AdS super-algebra. Thus we start by briefly recalling what is the AdS super-algebra (it is

reviewed in details in the appendix), then present the expansion method in its full generality

before applying it concretely to obtain the desired invariant form. We close this section by

discussing the more general cases of higher N theories.

3.1. The general expansion method.

We recall some results of section 2.1 and further develop the subject. Let g be a real Lie

super-algebra, and let

R[λ]⊗g, (3.1)

be the algebra of polynomial in λ with coefficients in g. Here, one can view λ as an infinites-

imal parameter, λ∼ 1
r 1/2 , and hence (3.1) can be thought as the algebra with generators gi ∈ g

together with their infinitesimal versions λn gi. We take the following quotient

g(N ) =
(
R[λ]⧸λN+1R[λ]

)
⊗g. (3.2)

In our picture where λ is as an infinitesimal parameter, the quotient by λN+1R[λ] corre-

sponds to "keeping track of terms up to order λN ".

Notice that g isZ2-graded as a Lie super-algebra, and thatR[λ], as well asR[λ]⧸λN+1R[λ]
are also Z2-graded, the grading being given by powers of λ (either even or odd), thus so is

g(N ). We denote by g(N )0 the even part of g(N ), which is itself a Lie super-algebra. Viewing

λ∼ 1
r 1/2 , looking at g(N )0 corresponds to rescale odd generators by odd powers of λ and even

generators by even ones.
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Suppose we have a subalgebra h⊂ g. Then obviously h(N ) ⊂ g(N ). Let K < N , and

g(K , N ) =
(
λKR[λ]⧸λN+1R[λ]

)
⊗g, (3.3)

which is the subalgebra of g(N ) with elements starting only at minimum λ-power K . It is

easy to see that g(K , N ) is a subalgebra (even an ideal) of g(N ). The sum of two subalgebra

being a subalgebra, h(N )+g(K , N ) is a subalgebra of g(N ), and we consider the even part

(h(N )+g(K , N ))0. (3.4)

We note that this construction is the dual transcription of the expansion method pre-

sented in [JO03]. Indeed, in this last reference, the authors make an expansion for the dual

coalgebra which, although presented differently, can be seen as taking a tensor product with
R[λ]⧸λN+1R[λ] then looking at subcoalgebra and keeping only even part. It can also be gen-

eralized by taking the (Cartesian and not tensorial) product of a given algebra with a semi

group. This method, called "S-expansion of algebras", has been developed in Ref. [IRS06].

Of important use for our purpose, we now show how to construct an invariant tensor

of the quotient super-algebra. Keeping g as a Lie super-algebra, let 〈 , . . . , 〉 denotes a p-

linear invariant form over it. Then it can be extended to

〈 , . . . , 〉N : g(N )0
⊗p →R[λ]⧸λN+1R[λ]. (3.5)

For each n ≤ N , one can consider the projection

R[λ]⧸λN+1R[λ] ≃λ
0R⊕λ1R⊕·· ·⊕λNR−→

prn
λnR≃R, (3.6)

where ≃ means isomorphism of vector spaces. The composition prn ◦ 〈 , . . . , 〉N defines a

p-linear invariant form over g(N )0. This of course, restricts to a p-linear invariant form over

any of its subalgebras.

3.2. Application to the Poincaré super-algebra.

We are now in position to show that the Poincaré super-algebras of interest (2.7-2.8) and their

invariant tensors can be obtained using the previous constructions applied to the AdS super-

algebra su( m
2 , m

2 |1). Let so(d −1,1) ⊂ su( m
2 , m

2 |1) be the Lorentz subalgebra. In the notations

of the previous paragraph, g= su( m
2 , m

2 |1), h= so(d −1,1), N = 2, K = 1. Thus we consider

(so(d −1,1)(2)+su(
m

2
,

m

2
|1)(1,2))0. (3.7)
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It is almost our Poincaré super-algebra (2.7-2.8). At the level of the generators, the contact

with its earlier presentation (2.1-2.4) is achieved through

λ0Jab −→ Jab , (3.8)

λ2Ja −→ Pa , (3.9)

λ2Ja1...an −→ Za1...an , n ̸= 1, 2, (3.10)

λ1Q−→Q, (3.11)

λ1Q −→ Q. (3.12)

To get our Poincaré super-algebra, we still need to impose the restriction n ∈ Id in (3.10).

Let us explain why such a restriction is needed. The resulting d+1
2 -linear form (obtained by

taking projection onto the λ2R-subspace) is given by

〈Pa ,Jb1b2
, . . .Jbd−2bd−1

〉 = 1

2(d+1)/2
ϵab1b2...bd−1

, (3.13)

〈Za1...an ,Jb1b2
, . . .Jbd−2bd−1

〉 = i l

2(d+1)/2
σTr(γa1...anγb1b2

. . .γbd−2bd−1
), (3.14)

〈Qα,Qβ,Jb1b2
, . . .Jbd−4bd−3

〉 = i k

2(d−3)/2(d −1)
σTr(Eαβγb1b2

. . .γbd−4bd−3
), (3.15)

where l ,k ∈ {0,1} with

l ≡ k +q mod 2, (3.16)

k ≡ d +1

2
mod 2, (3.17)

and where σTr means symmetrized trace defined by

σTr(M1M2 . . . Mn) = 1

n!

∑
σ∈Sn

Tr(Mσ(1)Mσ(2) . . . Mσ(n)).

As it can be seen from the expression of the invariant tensors, one is led to compute traces of

the form (3.14). Note that the other trace (3.15) can be cast in the form (3.14) decomposing

Eαβ in the matrix basis formed by the γa1...an -matrices. One can show that the trace (3.14) is

proportional to

Tr
(
{γa1...an , {γb1b2 . . . {γbd−4bd−3

, γbd−2bd−1
} . . . } }

)
, (3.18)

and using the following formula for the anti commutator

{γa1...an , γb1b2 } = γa1...an b1b2 −
2

n!

∑
σ∈Sn

ηb1aσ(1)ηb2aσ(2)γaσ(3)...aσ(n) , (3.19)

it is easy to show that the trace (3.18) vanishes for n ≡ 3mod4 for all odd dimensions, as

well as for n ≡ 2mod4 in dimensions d ≡ 1mod4 and for n ≡ 0mod4 in dimensions d ≡
3mod4. In other words, this means that the corresponding bosonic fields will not appear

in the Lagrangian (2.25). On the other hand, since any of the sub-vector spaces generated

these central charges having the same rank n (i.e. Vect〈{Za1...an }〉) form an Abelian ideal, we

can freely quotient the algebra by any of them. Hence, eliminating all central charges of the

same rank will not in any case affect the Chern-Simons form defined previously, and this

leads naturally to consider theories with central charges which are Lorentz tensor of rank n,
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with rank only given in n ∈ Id . Note however that taking a quotient does not, in general,

preserve the invariance of (3.13-3.15). It is only because we are eliminating generators where

(3.14) vanishes that we do not affect the invariant from.

3.3. Invariant forms for the (extended) N super-algebras.

Instead of starting with sl(m|1,C) we could repeat the analysis with sl(m|M ,C), which allows

the introduction of new fermionic generators coming in pairs, namely {Qαi ,Q
α
i }. This con-

struction also brings new bosonic generators that we will denote by KI , forming a new sl(M)

algebra.

Exactly as before, we choose a real form, su( m
2 , m

2 |M), and construct the algebra

(so(d −1,1)(2)+su(
m

2
,

m

2
|M)(1,2))0. (3.20)

This is the extended Poincaré super-algebra. In absence of further Majorana reduction, it

has N = 2M . The Majorana reduction achieved earlier depends uniquely on the Lorentz

subalgebra so(d −1,1) which has not been modified, and thus can be performed in the exact

same way. In this construction, the λKI ’s are true central charges, and the invariant form

(3.15) is now given by

〈Q
i
α,Qβj ,Jb1b2 , . . .Jd−4d−3〉 =

1

2(d−3)/2(d −1)
δi

jσTr(Eαβγb1b2 . . .γbd−4bd−3
). (3.21)

One can also compute the contribution of the central charges KI whose only non trivial can-

didate is given by

〈λKI ,Ja1a2 , . . .Ja2n−1a2n 〉. (3.22)

Nevertheless, computing the super-trace over the representation (3.12, 3.23), this contribu-

tion identically vanishes. As a direct consequence, we can eliminate the λKI generators of the

extended N Poincaré super-algebra. For completeness, we briefly mention that one could

keep the λ0KI generators, and the resulting theory would contain an additional SU (N ) gauge

symmetry (but the Lagrangian will involve a bunch of new terms).

4. Maximality of the theory

In this section, we prove that the theories presented in section 2 contains the maximal

number of ba1...an fields allowed, i.e. we have all possible n for which it is possible to write a

Lorentz invariant term built from one ba1...an and the Riemann curvature tensor only. We had

a Lagrangian with n ≡ 1 mod 4 and n ≡ d −1 mod 4. We have to show that it is impossible

to build a Lagrangian respecting the conditions mentioned above if n does not follow this

restriction.

4.1. To show this, we recall that any Lorentz invariant tensor is built from the Minkowski

metric ηab and the Levi-Civita tensor εa1...ad (For example the Killing form of the Lorentz al-

gebra can be written ηadηbc −ηacηbd ). With this remark in mind, let us set up more clearly

our problem. The resulting Lagrangian is a d-form, and ba1...an a 1-form. Hence we need

to use d−1
2 Riemann curvature two-form Rab . This gives us a total of n +d −1 indices, with
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n ≤ d−1
2 , that we need to contract using εa1...ad and ηab ; in other words, one is force to pair

these indices with some indices obtained from different tensors εa1...ad and ηab .

Let us first suppose that n is even. Then we have an even number of total indices to be con-

tracted. Thus, if we want to use the εa1...ad tensor, we need to use an even number of them.

However if we use at least two, counting the number of available indices, we see that we have

to contract some indices of these two tensors among themselves. But a well-known formula

tells us that two Levi-Civita tensors with some of their indices contracted is proportional to

a sum of antisymmetrized ηab ’s. We reach the conclusion that in the case n is even, we can

dispose of the Levi-Civita tensor, and that our sought invariant tensor will be built using the

Minkowski metric only.

Contracting indices of the curvature tensor Rab using the Minkowski metric, one can form

monomials without free indices as Ra
bRb

c Rc
a or with two free indices as Ra

bRb
c Rcd . Note

that a monomial with two free indices is symmetric in these two indices if it contains an even

number of curvature tensor (Ra
bRbc = Rc

bRba), antisymmetric if it contains an odd number

of them (Ra
bRb

c Rcd = −Rd
bRb

c Rca). A monomial without free indices, as the contraction

of two monomial with two free indices, these two monomials need to have the same type

of symmetry; thus a monomial with no indices necessarily contains an even number of cur-

vature tensor. Leaving them apart, we are left with monomials with two free indices, built

in total with a number of curvature tensor having the same parity as d−1
2 , which is the total

number of curvature tensor at our disposal.

The field ba1...an is fully antisymmetric, its indices can only be contracted with those of ten-

sors having the same symmetry; in other words with monomials made of an odd number

of curvature tensor. Suppose d−1
2 is even, then the total number of curvature tensor to be

used is even, so we need an even number of these monomials. As they have two free in-

dices, we obtain a multiple of four of indices to be contracted with those of ba1...an , leading

to n ≡ 0 mod 4. If d−1
2 is odd, the same argument leads to n ≡ 2 mod 4. In other words, one

can construct non-vanishing Lorentz invariant Lagrangians from one ba1...an field, n even,

and d −1 curvature tensors if and only if n ≡ d −1 mod 4.

Suppose now n is odd, then one can form b̂an+1...ad = εa1...an
an+1...ad ba1...an . Forming an

Lorentz invariant Lagrangian with ba1...an is equivalent to forming a Lorentz invariant La-

grangian with b̂an+1...ad , as we pass from one field to the other using a Lorentz invariant

tensor. The preceding analysis tells us that this is possible only if d −n ≡ d − 1 mod 4 or

equivalently n ≡ 1 mod 4. This conclude our proof.
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5. Further developments

The work we have presented has been done in the mostly plus Lorentzian signature.

However, thanks to our formalism, the analysis in other signature will be straightforward.

Indeed, one just has to change the matrix defining the Dirac conjugate (assuming a unitary

representation of the γ-matrices) by:

i qγ0γ1 . . .γt−1, (5.1)

where t denotes the number of minus signs in the metric and q ≡ n(n+1)
2 +1 mod 2. Work-

ing with the adequate Dirac conjugate, the representation of bosonic generators of the AdS

super-algebra is modified (they will be proportional to the generators (3.13-3.15) modulo

some i factors). Following the construction of the invariant form for the Poincaré super-

algebra, one sees that the sporadic appearance of i in the r.h.s. of (3.14) is changed. This

implies in turn a change in the definition of /b in (2.27). More explicitly we had an i for

n ≡ 0,(3) mod 4 and no i for n ≡ 1,2 mod 4. Now there will be an i when q ≡ 1 mod 2.

Changing the signature also affects the dimensions for which the reductions to Majorana or

symplectic Majorana spinors exist. Indeed, in terms of t and d , one gets

Majorana Spinors


t ≡ 1mod4 and d ≡ 3mod8,

or

t ≡ 2mod4 and d ≡ 5mod8.

(5.2)

Symplectic Majorana Spinors


t ≡ 1mod4 and d ≡ 7mod8,

or

t ≡ 2mod4 and d ≡ 1mod8.

(5.3)

It is quite striking to see that there are no Majorana spinors for the mostly minus Lorentzian

signature, meaning that reversing the signature does not lead to equivalent theories. Fi-

nally let us mention that the construction of Chern-Simons forms for other invariant tensors

would be possible but will probably lead to very complicated expressions to cumbersome to

be manageable.



CHAPTER 7

Tensionless limit of super-strings and its Majorana condition.

1. Motivation

The first approach to tensionless strings was provided by Schild [Sch77]. Its interest has in-

creased to concern string scattering [GM84], [GM88], AdS/CFT correspondence [Kni21] or

even in Hagedorn phase transition [AW88], [PA82], [Ole85]. Since supersymmetry is a cen-

tral element in string theories, there have been also some works regarding super-string ten-

sionless limits; with the precursor work of [LST91]. More recently, tensionless limit of the

super-Polyakov action have been investigated in which the spinor fields scale inhomoge-

neously [Bag+20], [BBP19], [Bag+18]. In these works a new action have been obtained, in

which the spinor fields play a more important role. Nevertheless, it was not found any Ma-

jorana condition in their tensionless action. This is somewhat intriguing since the spinors of

the super-Polyakov action are indeed Majorana spinors.

Let us remind the expression of the super-Polyakov action:

S =− 1

4πℓ

∫
d 2x

p−g gµν
[
∂µX∂νX + i ψ̄γµ∂νψ

]
. (1.1)

The metric g is the standard Minkowski metric, diagonal in the system of coordinates (x, t ),

with gxx = 1 and g t t = −1. The spinor ψ is a two-components Majorana spinor, ψ̄ stand for

its Majorana conjugate, ℓ is the string length. We consider closed strings, with periodicity T

along the x-coordinates: X (x +T, t ) = X (x, t ), ψ(x +T, t ) =ψ(x, t ). Usually, the physical space

is supposed to have several dimensions, implying that the fields X and ψ possess several

coordinates (i.e. there are collections of fields {X µ}, {ψµ}). In order to keep the present work

as simple as possible, and because it doesn’t play any role in the problem we are studying at

the present time, we do not consider these coordinates and assume the physical world has

dimension 1.

Considering only the bosonic part of this action

SBos =− 1

4πℓ

∫
d 2x

p−g gµν∂µX∂νX , (1.2)

its tensionless limit is obtained after setting

ℓ→∞,
t

x
→ 0. (1.3)
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An usual way of implementing this limit it is to introduce a parameter λ ∈ [0,1], producing

the deformation

ℓ 7→ ℓ

λ
, t 7→λt , (1.4)

and then taking the limit λ→ 0.

When the full superstring action (1.1) is considered, a deformation of the spinor ψ is also

necessary (it can be inferred by analyzing the physical dimension of the spinor). In the past

([BBP19], [Bag+20], [Bag+18]), this deformation has been guessed and a quite interesting ten-

sionless limit has been obtained. However, the authors of the aforementioned articles have

not been able to find any Majorana condition fulfilled by the spinor fields in their tensionless

limit. We will show in this article that this is mainly due to the election of their deformation.

In order to circumvent this problem, we will show how to compute the appropriate defor-

mation for the spinor, leading to a satisfying Majorana condition, by a method we will now

shortly resume. First, we observe that in the bosonic case, we can, instead of deforming

the coordinate, and in a manner totally equivalent, deform the metric. Then, in the full su-

perstring action, we will use this deformation of the metric to obtain a deformation of the

Clifford algebra. Finally, invoking the fact that, similarly to the bosonic case, a deformation

of the metric should be equivalent to a deformation of both the coordinates and the spinor,

we transfer the deformation of the Clifford algebra to its irreducible representation.

2. Short review of superstrings

2.1. Symmetries.

It is well known that the action (1.1) is invariant under a set of transformation called "ex-

tended diffeomorphisms" (see [BLT13] for an explanation of the terminology), given by

δξX = ξρ∂ρX , (2.1)

δξψ= 1

2
ξρ∂ρψ− 1

2
ελρξ

ρ∂λγ̃ψ+ 1

4
∂ρξ

ρψ− 1

4
εµρ∂µξ

ργ̃ψ, (2.2)

with ξ subject to

gµν∂ρξ
ρ − gµρ∂ρξ

ν− gνρ∂ρξ
µ = 0. (2.3)

The action is also invariant under the supersymmetry transformations given by

δϵX = ϵ̄ψ, (2.4)

δϵψ=−i∂µXγµϵ, (2.5)

where the spinor ϵ is subject to the condition

γνγµ∂νϵ= 0. (2.6)
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2.2. Super-field formalism.

The bosonic symmetry transformations acting on the bosonic field can be represented by

a differential operator, as it can be seen from (2.1). We would like to extend this feature to

the whole superalgebra, and represent every (super-)symmetry transformation by a super-

differential operator. For this reason, we introduce on-shell super-fields

Y = X + i θ̄ψ, (2.7)

where X and ψ are on-shell fields and θ is called a super-coordinate. Here, the use of on-

shell fields is required by the fact that the super-symmetry algebra only closes on-shell. In

order to work with off-shell fields, it is necessary to introduce the so-called auxiliary fields.

The advantage of this approach is that the addition of such fields to the theory would allow

to work with an off-shell closing supersymmetry algebra. In the super-field approach, the

auxiliary fields are components along θ̄θ. The vanishing of this component is also part of

the condition that an on-shell super-field fulfills. For more details on this topic, we refer

to [Del+99]. See also [CCF10] for a both rigorous and comprehensive presentation of the

mathematical nature of super-coordinates.

We define the following projectors

hµ±ν =
1

2
(gµν∓εµν), (2.8)

P± = 1

2
(1± γ̃), (2.9)

where

γ̃= 1

2
ϵµνγ

µγν, (2.10)

as well as as the quantities

ψ± = P±ψ, (2.11)

∂±µ = hν±µ∂ν, (2.12)

ξ
µ
± = hµ±νξ

ν, (2.13)

ϵ̄± = ϵ̄P± = ϵ∓. (2.14)

These definitions allow a clear decomposition of the symmetries.

Let us show how the super-differential operator representation s obtained by taking the ex-

ample of the symmetry generated by ξ+. Its action on Y is given by

δξ+Y = δξ+ X + i θ̄δξ+ψ. (2.15)

We demand it to be of the following form

δY = δxµ∂µY +δθ̄α∂θ̄αY . (2.16)
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Thus, we find expressions δxµ(ξ+)∂µ, δθα(ξ+)∂θ̄α and write that we call the super-differential

operator representation of δξ+ . Concerning the notations, we will write this representation

as L±(ξ±), Q±(ϵ̄±). Explicitly, we have

L+(ξ+) = ξµ+∂+µ+
1

2
∂+µξ

µ
+θ̄+∂θ̄+ , (2.17)

L−(ξ−) = ξµ−∂−µ+
1

2
∂−µξµ−θ̄−∂θ̄− , (2.18)

Q+(ϵ̄+) = θ̄+γµϵ−∂+µ− i ϵ̄+∂θ̄+ , (2.19)

Q−(ϵ̄−) = θ̄−γµϵ+∂−µ− i ϵ̄−∂θ̄− . (2.20)

2.3. Mode expansion.

The analysis of tensile superstring is simplified by choosing an appropriate coordinate sys-

tem and an appropriate representation of the Clifford algebra. We use the light cone coordi-

nates: x+ = t +x, x− = t −x, and

γ0 =
 0 1

−1 0

 , (2.21)

γ1 =
0 1

1 0

 , (2.22)

C = D = γ0, (2.23)

ψ=
ψ−
ψ+

 , (2.24)

where, with a slight abuse of notation, we have identified ψ+ as defined in (2.11) and its only

one non-vanishing component. Using this convention, the equations of motions are

∂+∂−X = 0, (2.25)

∂−ψ+ = 0, ∂+ψ− = 0. (2.26)

The solutions of these equations can be expanded in Fourier modes as

X =C0 + 2πℓ

T
P0t + i

p
ℓ

2π

∑
n∈Z\{0}

1

n

(
ane−

2πi nx+
T + ãne−

2πi nx−
T

)
, (2.27)

ψ+(x+) =
p

2πℓ
∑

n∈Z
b+

n e−
2πi nx+

T , (2.28)

ψ−(x−) =
p

2πℓ
∑

n∈Z
b−

n e−
2πi nx−

T . (2.29)

The symmetry parameters can also be expanded in Fourier modes (the symmetries have

to preserve the periodicity of the fields)

ξ+(x+) = ∑
n∈Z

ξ+n e−
2πi nx+

T , ξ−(x−) = ∑
n∈Z

ξ−n e−
2πi nx−

T , (2.30)

ϵ̄+(x+) = ∑
n∈Z

ϵ̄+,ne−
2πi nx+

T , ϵ̄−(x−) = ∑
n∈Z

ϵ̄−,ne−
2πi nx−

T . (2.31)
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In the light cone coordinate system, we can identify ξ+ (the component of ξ along x+) with

ξ+ (defined in (2.13)). We can therefore perform a mode expansion of the operators L±, Q±
of the previous section. We write

L±(ξ±) = ∑
n∈Z

ξ±n L±,n , Q±(ϵ̄±) = ∑
n∈Z

ϵ̄±,nQ±,n . (2.32)

L+,n = e−
2πi nx+

T

(
∂+− πi n

T
θ̄+∂θ̄+

)
, (2.33)

L−,n = e−
2πi nx−

T

(
∂−− πi n

T
θ̄−∂θ̄−

)
, (2.34)

Q+,n = e−
2πi nx+

T

(
−i∂θ̄+ −2θ̄+∂+

)
, (2.35)

Q−,n = e−
2πi nx−

T

(
−i∂θ̄− −2θ̄−∂−

)
. (2.36)

Using their explicit representation given in the appendix, we check that the operators {L+,n ,Q+,n}

and {L−,n ,Q−,n} form two independent copies of the super-Witt algebra, whose non vanish-

ing commutation relations are given by:

[L+,n ,L+,m] = 2πi

T
(m −n)L+,n+m , (2.37)

[L+,n ,Q+,r ] = 2πi

T
(r − n

2
)Q+,n+r , (2.38)

{Q+,r ,Q+,s } = 4i L+,r+s . (2.39)

3. The exotic super-string action.

3.1. An exotic convention.

The tensionless super-string action is not obtained as a limit of the standard super-string

action, but instead from an exotic action, as was pointed out in [Bag+20]. We briefly review

this result and refer to the quoted article for more details. The exotic super-string action is

obtained after replacing the traditional physicist’s definition for the Clifford algebra

γµγν+γνγµ = 2gµν, (3.1)

by another choice, preferred by mathematicians

γµγν+γνγµ =−2gµν. (3.2)

This conventions has repercussion on the so-called Majorana representation of spinors.

In full generality, the Majorana conjugation of a spinor ψ is

ψc =ψT C , (3.3)

where C , called conjugation matrix, is any matrix satisfying

CγµC−1 =±γµT , (3.4)

In spacetime of dimension 2, the two choices are possible: there exists two matrices, let us

call them C+ and C− depending on the sign of (3.4), that can be used to define the Majorana
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conjugation. Furthermore, it can be shown that these matrices can be chosen so that they

satisfy

C±T =±C T . (3.5)

However the on-shell closure of the supersymmetry algebra requires to take C = C−. There-

fore there is no choice for the super-Polyakov action. Furthermore, the Majorana condition

in nothing else than a reality condition. To keep things as clear as possible, we ask C , γ0, γ1

to be represented by real matrices, implying that a Majorana spinor is simply a real spinor

(ψ∗ = ψ). With all these considerations understood, when the convention (3.1) is chosen,

and for real representations, it is possible to have γ0 antisymmetric and thus C = γ0. On the

other hand, when the convention (3.2) is chosen, it is impossible to have both γ0 real and

symmetric, hence we cannot take C = γ0.

Now, the main physical implication of such a result comes from the Dirac bracket of the

spinor field

{ψα,ψβ}D.B. =−2πiℓ
(
(Cγ0)−1

)αβ
. (3.6)

The consequence is that in the case of the standard super-Polyakov action, i.e. when con-

vention (3.1) is chosen for the Clifford algebra, the fermionic modes, after canonical quan-

tization, will follow the anticommutation relations of (infinitely many) standard fermionic

harmonic oscillators,

[
1p
n

b̂+
n ,

1p
n

b̂+
n

†]+ = 1. (3.7)

On the other hand, in the case of the exotic super-Polyakov action, i.e. when the convention

(3.2) is used, one of the modes, b̂+
n say, will follow (3.7) whereas the other , b̂−

n say, will follow

[
1p
n

b̂−
n ,

1p
n

b̂−
n

†]+ =−1. (3.8)

This kind of commutation relations leads to negative norm states. Differences between stan-

dard fermionic oscillators and this kind of exotic fermionic oscillator are surveyed for exam-

ple in [HT94].

3.2. Symmetries of the exotic super-string action.

The appearance of the minus sign in the right-hand-side of (3.2) has repercussion in the

(super-)symmetry transformations, which become

δξX = ξρ∂ρX , (3.9)

δξψ= 1

2
ξρ∂ρψ+ 1

2
ελρξ

ρ∂λγ̃ψ+ 1

4
∂ρξ

ρψ+ 1

4
εµρ∂µξ

ργ̃ψ, (3.10)

δϵX =−ϵ̄ψ, (3.11)

δϵψ=−i∂µXγµϵ. (3.12)

The restrictions for the (super-)parameters (2.3), (2.6), however, are unaffected. Because we

want that a clear separation (on-shell) between the "+" symmetries and the "-" ones (for
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example we want {Q+,Q+} = L+), we have to change the definition of the projectors. Now we

set

P+ = 1− γ̃
2

, P− = 1+ γ̃
2

. (3.13)

The super-differential operators representation of the bosonic symmetries L±(ξ±) is still

given by (2.17-2.18) (taking (3.13) into account), whereas for the fermionic symmetries it

changes as

Q+(ϵ̄+) = θ̄+γµϵ−∂+µ+ i ϵ̄+∂θ̄+ , (3.14)

Q−(ϵ̄−) = θ̄−γµϵ+∂+µ+ i ϵ̄−∂θ̄− . (3.15)

An appropriate representation for the gamma matrices is now given by

γ0 =
0 1

1 0

 , (3.16)

γ1 =
0 −1

1 0

 , (3.17)

C = D = γ1, (3.18)

ψ=
ψ−
ψ+

 . (3.19)

The mode expansion of the fields X and ψ, as well as the parameters ξ and ϵ̄, are given by

the equations (2.27 - 2.31). The modes of the super-differential operators L± are given by

(2.33-2.34) and the one of Q± are now:

Q+,n = e−
2πi nx+

T

(
i∂θ̄+ +2θ̄+∂+

)
, (3.20)

Q−,n = e−
2πi nx−

T

(
i∂θ̄− −2θ̄−∂−

)
. (3.21)

The operators {L+,n ,Q+,n} and {L−,n ,Q−,n} still form two independent copies of the super-Witt

algebra; their commutation relations are still given by (2.37-2.39), with the only exception of

the anticommutator of the "-" supercharges which is now:

{Q−,r ,Q−,s } =−4i L−,r+s . (3.22)

Although this change has mathematically speaking no importance, it should have one in the

quantum theory. These consequences are beyond the scope of this article.

4. Deformation of the action

4.1. The bosonic deformed action.

In order to present some aspect of the problem in a simpler way, let us first focus on the

purely bosonic theory. The tensile bosonic string action is given by

SBos =− 1

4πℓ

∫
d 2x

p−g gµν∂µX∂νX . (4.1)
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It is straightforward to see that the two possible deformations

(a)


t 7→λt

x 7→ x

ℓ 7→ ℓ
λ

, (b)


t 7→ t

x 7→ x
λ

ℓ 7→ ℓ
λ

, (4.2)

lead to the same result

SBos(λ) =− 1

4πℓ

∫
d xd t (−Ẋ 2 +λ2X ′2), (4.3)

where we denote the derivative w.r.t to t by a dot and the one w.r.t x by a prime. It is possible

to, instead of deforming the coordinates like in (4.2), to deform the metric. Explicitly the

deformation (4.2-a) will be replaced by
g−1 =

−1

1

 7→ g−1(λ) =
− 1

λ2

1


ℓ 7→ ℓ

λ

, (4.4)

and the deformation (4.2-b) by
g−1 =

−1

1

 7→ g−1(λ) =
−1

λ2


ℓ 7→ ℓ

λ

. (4.5)

Replacing in (4.1), we obtain again (4.3), showing that all four deformations are equivalent.

A final remark on this equivalence: when the deformation x 7→ x
λ is chosen, the period of the

(super-)strings T has to be deformed as well by T 7→ T
λ . Taking this into account, it is then

straightforward to show that in both cases ({t 7→ λ,T 7→ T } and {x 7→ x
λ ,T 7→ T

λ }), the limit

λ→ 0 of (2.27) yields

X =C0 + 2πℓ

T
P0t + i

p
ℓ

2π

∑
n∈Z\{0}

1

n

(
αn − 2πi n

T
t α̃n

)
e−

2πi nx
T , (4.6)

with

αn = 1p
λ

(an − ã−n), α̃n =
p
λ(an + ã−n). (4.7)

in accordance with [Bag+20].

4.2. Deformation of the Clifford algebra.

Let us expose the strategy we will use. On the one hand, by analyzing the physical dimen-

sion, we understand that a deformation of the coordinates xµ should be accompanied with

a deformation of the spinor field ψ. On the other hand, a deformation of the metric has

to be accompanied with a deformation of the Clifford algebra. Computing the deformation

of the Clifford algebra from the deformation of the metric is quite easy, as we will show.

Hence, in order to compute the deformation of the spinor, we will assume that the equiv-

alence between the "coordinates deformation" point of view and the "metric deformation"

point of view still hold, and compute the deformation of the spinor from the deformation of

the gamma matrices. We remind that we use (3.2) for the Clifford algebra.
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We now turn on computing the deformation of the Clifford algebra. We consider the case

where the space-space component of the metric is deformed, which should be equivalent to

x 7→ x
λ . This will yield to a one-parameter family of Clifford algebras, denoted C(λ), whose

generators Γµ(λ) satisfy

Γµ(λ)Γν(λ)+Γν(λ)Γµ(λ) =−2gµν(λ)1, (4.8)

with

gµν =
−1

λ2

 . (4.9)

It is important in this construction that we work with the inverse metric gµν, and his asso-

ciated gamma matrices "with upper indices". Indeed, the inverse metric converges, in that

case, to a well defined degenerate matrix, whereas the normal metric diverges as λ→ 0. Had

we consider the deformation equivalent to t 7→ λt , we would have done the opposite, i.e.

consider the normal metric and gamma matrices "with lower indices".

The central problem the sought deformation should answer is to provide a representation of

C(0) with a Majorana condition. We will follow the strategy of [Bul13]. For this, we see the

full family of C(λ) as a collection of subalgebras of the bigger Clifford algebra Cl(1,2), where

the latter denotes the Clifford algebra associated to the three dimensional metric

Gµν =


−1

1

−1

 . (4.10)

We will then use the fact that Cl(1,2) admits a Majorana representation, and restrict the Ma-

jorana condition of the representation of Cl(1,2) to the sub-representation of the C(λ). It

is because of this injection of C(λ) into Cl(1,2) that we have to work with the metric de-

formation equivalent to x 7→ x
λ . If we would try instead the metric deformation equivalent

to t 7→ λt , we should have seen the family C(λ) as family of subalgebras of Cl(2,1), whose

irreducible representations do not possess a Majorana condition, and we would not have

obtained a reasonable Majorana condition for C(0).

At this point, we have to ensure that the representation of Cl(1,2) can be seen as an extension

of the representation of C(1) we started with. This crucial point is doable only if we choose

the Majorana conjugation matrix to satisfy C T =−C . Indeed, we said that two kind of matrix,

C+, C− could be used in spacetime of dimension equal to 2, and this is no longer true in

spacetime of dimension 3, where only C− exists. This is also what constrains us to embed

our family C(λ) in a Clifford algebra of dimension 3. In higher dimension, the dimension

of the representation will grow up, i.e. the spinors will have more components, which is an

undesirable feature.
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Explicitly, let Γ0, Γ1 be the generators of C(1) (with identification Γµ ≡ Γµ(1)), with Γ0 the

timelike generator, (Γ0)2 = 1, and Γ1 the spacelike generator, (Γ1)2 = −1. Let (V ,R1) be an

irreducible representation of the starting Clifford algebra C(1), used for example in 1.1, with

C and D the matrices defining the Majorana and Dirac conjugation.. We have γµ =R1(Γµ).

Let Ξ0,Ξ1 and Ξ2 be the generators of Cl(1,2), Ξ1 being the spacelike generator. Then (V ,R̄)

(with the same V ), with R̄(Ξ0) = γ0, R̄(Ξ1) = γ1 and R̄(Ξ2) = γ̃1 define an irreducible repre-

sentation of Cl(2,1). As argued in the previous paragraph, we chose the same matrices C and

D to define the Majorana and Dirac conjugation. An injection ιλ : C(λ) → Cl(1,2) is given by

ιλ : Γ0(λ) 7→Ξ0, (4.11)

Γ1(λ) 7→ 1+λ2

2
Ξ1 + 1−λ2

2
Ξ2. (4.12)

We obtain a representation (V ,Rλ) of C(λ) by putting Rλ =R◦ιλ. The Majorana condition on

any of these Rλ is obtained by restriction of the Majorana condition defined on R̄.

4.3. Deformation of the spinor.

We finally compute the deformation of the spinors. The equivalence between the "metric

deformation" and "coordinates deformation" stated before means that we are looking for a

collection ψ(λ) satisfying

S(λ) =− 1

4πℓ(λ)

∫
d 2x(λ)

p−g
[
gµν∂µ(λ)X∂µ(λ)X

+i ψ̄(λ)γµ∂ν(λ)ψ(λ)
]
, (4.13)

.=− 1

4πℓ(λ)

∫
d 2x

p−g (λ)
[
gµν(λ)∂µX∂µX + i ψ̄γµ(λ)∂νψ

]
, (4.14)

with the convention that for any quantity χ(λ) deformed in the l.h.s, its non-deformed coun-

terpart in the r.h.s satisfies χr.h.s
.= χ(1)l.h.s; and reciprocally for quantities deformed in the

r.h.s but not in the l.h.s.. Therefore, to compute the deformation of the spinor we first write

the required equality:

ψ̄γµ(λ)∂µψ= ψ̄(λ)γµ∂µ(λ)ψ(λ), (4.15)

leading to

ψ̄γ0∂xψ= ψ̄(λ)γ0∂xψ(λ), (4.16)

ψ̄

1+λ2

2 γ0 + 1−λ2

2 γ̃

λ
∂tψ= ψ̄(λ)γ0∂tψ(λ). (4.17)

We observe that, so long λ ̸= 0, the two sets of matrices {γ0,γ1} and {
1+λ2

2 γ0+ 1−λ2
2 γ̃

λ ,γ1} obey

the same Clifford relations. By uniqueness of the equivalence class of faithful irreducible
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representations of the Clifford algebras of even dimensions, we know that there exist an in-

vertible matrix P (λ) such that

P−1(λ)γ0P (λ) = γ0, (4.18)

P−1(λ)γ1P (λ) =
1+λ2

2 γ1 + 1−λ2

2 γ̃

λ
. (4.19)

Finally, the sought deformation is

ψ(λ) = P−1(λ)ψ. (4.20)

A last remark: in the previous section we said that the Majorana and Dirac conjugation ma-

trices should be conserved in order to preserve the Majorana condition. This means that

searching for P (λ), we also need to consider the two following equations:

P T (λ)C P (λ) =C , (4.21)

P †(λ)DP (λ) = D. (4.22)

We insist on the fact that the matrix P (λ) is guaranteed to exist only if λ ̸= 0. In the limit

λ→ 0, this matrix might become singular. However, we expect the Lagrangian to have a non

singular limit.

4.4. Explicit deformation and tensionless limit.

We introduce a representation for the gamma matrices in which the equations (4.18 - 4.22)

are easy to solve

γ0 =
1 0

0 −1

 , (4.23)

γ1 =
 0 1

−1 0

=C = D. (4.24)

The components of a spinor in this representation are ψ=
ψu

ψd

. They are related to the ψ±

by

ψu = 1p
2

(ψ−+ψ+), ψd = 1p
2

(ψ−−ψ+). (4.25)

In this representation

P (λ) =
pλ 0

0 1p
λ

 , (4.26)

thus

ψ(λ) = P−1(λ)ψ=
 1p

λ
ψup
λψd

 . (4.27)

From here it is possible to take the limit λ→ 0 and obtain

STensionless =
1

4πℓ

∫
d 2x

[
Ẋ 2 + i

(
ψd ψ̇u +ψuψ̇d +ψuψ

′
u

)]
. (4.28)
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The mode expansion of the tensionless field X has been already given in (4.6). For the spinor

fields, we have seen that the well defined tensionless components are ψu and ψd , whose

mode expansions in the limit λ→ 0 are

ψu[λ](x, t ) −−−→
λ→0

χ(x)+ t χ̃′(x), ψd [λ](x, t ) −−−→
λ→0

χ̃(x), (4.29)

χ(x) =
p

2πℓ
∑
n
βne−

2πi nx
T , χ̃(x) =

p
2πℓ

∑
n
β̃ne−

2πi nx
T , (4.30)

with

βn = bn + b̃−n

λ
, β̃n = bn − b̃−n . (4.31)

Note that it is possible to play exactly the same game starting from the standard super-

string action, in which case the tensionless limit is

SAlternative =
1

4πℓ

∫
d 2x

[
Ẋ 2 + iψd ψ̇d

]
. (4.32)

This result explains why we have to start with the exotic action.

4.5. Deformation of the symmetries.

For λ ̸= 0, the symmetries of the deformed action (4.13) are just the expressions L±, Q± given

in sections 1 and 2, but with λ dependent quantities. For example

L+[λ](ξ+(λ)) = ξµ+(λ)∂+µ(λ)+ 1

2
∂+µ(λ)ξµ+(λ)θ̄+(λ)∂θ̄+ (λ). (4.33)

Here the λ-dependence of ξ± is just through x± (ξ+(λ)
.= ξ+(x+(λ))), whereas θ± need to

be changed like ψ using the formula (4.27). However, at λ = 0, the ± decomposition of the

symmetries do not hold anymore and is replaced by another decomposition. In other words,

we have the equalities

L[λ](ξ(λ)) = L+[λ](ξ+(λ))+L−[λ](ξ−(λ)) = K( f )+M(g )+o(λ), (4.34)

Q[λ](ϵ̄(λ)) = Q[λ](ϵ̄(λ))+Q[λ](ϵ̄(λ)) = G(ζ̄)+H(ρ̄)+o(λ), (4.35)

but it is impossible to express for example K( f ) alone in terms of L+ and L−. It means that the

decomposition in term of projectors h±, P± do not exist in the tensionless limits; or equiva-

lently, these projectors do not possess a well defined limit when λ goes to 0. The new sym-

metries are

M(g ) = g∂t + 1

2
g ′θ̄u∂θ̄d

, (4.36)

K( f ) = f ∂x + 1

2
f ′(θ̄u∂θ̄u

+ θ̄d∂θ̄d
)+ tM( f ′), (4.37)

H(ρ̄) = ρ̄(i∂θ̄d
− θ̄u∂t ), (4.38)

G(ζ̄) = ζ̄(i∂θ̄u
+ θ̄u∂x − θ̄d∂t )− tH(ζ̄′). (4.39)

(4.40)
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and f , g ,ζ,ρ are related to ξ and ϵ by

ξ+−ξ−
2λ

= f ,
ξ++ξ−

2
= g + t f ′ (4.41)

ϵ̄up
λ
= ζ̄,

p
λϵ̄d = ρ̄− t ζ̄′. (4.42)

Although the symmetries L±, Q± and K, M, G, H are not directly related, their modes are,

by

Kn = L+,n −L−,−n

2λ
, Mn = L+,n −L−,−n

2
, (4.43)

Gr = 1p
2λ

(Q−,r −Q+,−r ), Hr =
√
λ

2
(Q+,r +Q−,−r ), (4.44)

which is a (disguised) Wigner-Inönü contraction. Why the Wigner-Inönü contraction takes

this form is understood by looking at (2.37-2.39), we see that T appears in the structure con-

stants. As said earlier, the deformation x 7→ x
λ implies a deformation T 7→ T

λ and thus we

get a λ-dependent algebra. In order to remove this λ-dependence, it is possible to scale

L±,n 7→ 1
λL±,n , Q±,r 7→ 1p

λ
Q±,r , after what equations (4.43-4.44) take the form of a standard

Wigner-Inönü contraction. The non-vanishing commutation relations of the new symmetry

modes are

[Kn ,Km] = 2π

T
i (m −n)Kn+m , (4.45)

[Kn ,Mm] = 2π

T
i (m −n)Mn+m , (4.46)

[Kn ,Gr ] = 2πi

T
(r − n

2
)Gn+r , (4.47)

[Kn ,Hr ] = 2πi

T
(r − n

2
)Hn+r , (4.48)

[Mn ,Gr ] = 2πi

T
(r − n

2
)Hn+r , (4.49)

{Gr ,Gs } = 2i Kr+s , (4.50)

{Gr ,Hs } = 2i Mr+s , (4.51)

with

Kn = e−
2πi nx

T (In − 2πi nt

T
Jn), (4.52)

Mn = e−
2πi nx

T Jn , (4.53)

Gr = e−
2πi r x

T (U+ 2πi r t

T
V), (4.54)

Hr = e−
2πi r x

T V, (4.55)
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and

In = ∂x − iπn

T
(θ̄u∂θ̄u

+ θ̄d∂θ̄d
), (4.56)

Jn = ∂t − iπn

T
θ̄d∂θ̄u

, (4.57)

U = i∂θ̄d
+ θ̄d∂x − θ̄u∂t , (4.58)

V = i∂θ̄u
− θ̄d∂t . (4.59)

We recognize the commutation relations of the super-BMS3 algebra [AGS86]. The fact that

the algebra of symmetries of the tensionless action (4.28) is the super-BMS3 algebra, as well

as its relation with the algebra of symmetries of the tensile action, was already shown in

[Bag+18]. Thus, what this last paragraph shows is that the implementation of the Majorana

condition haven’t altered the previous results of [Bag+20], [BBP19] and [Bag+18]. Further-

more, we can now state that the generators G and H defined in (4.38-4.39) are real.



Conclusion

In this thesis we have presented three theoretical model related to supergravity. In the

first one we have constructed an N = 2 supergravity model in a manner approaching a super-

Yang-Mills model based on the G = SU (2,2|2) symmetry. The peculiarity of this model is the

Hodge-like operator ⊛, which acts on the form indices of the SU (2)×U (1) gauge fields as well

as the "dilatation" fields, but on the Lorentz and spinor indices for the other fields forming

the super-connection, mimicking the MacDowell-Mansouri approach to supergravity. This

theory has to be seen as a mother theory containing interesting physical sectors, joining both

gravity and electroweak interaction in a single action principle (although some care has to be

taken regarding the values of the coupling constants).

In the second model we have constructed supersymmetric extensions of the so-called

Poincaré invariant gravity for some extensions of the Poincaré algebras (1.2) involving Lorentz

tensors of higher ranks. In order to ensure gauge invariance, the Lagrangians were chosen

to be Chern-Simons forms obtained thanks to the construction of invariant tensors. The

Poincaré super-algebras being non-semi simple, the construction of invariant tensors is in

general an highly nontrivial task. We circumvent this difficulty by exploiting the fact that the

Poincaré super-algebras (1.2) can be obtained from the semi simple AdS super-algebras by

means of an expansion. Indeed, in the super AdS case, the invariant tensors can be taken

as a super-trace over all the generators, and the expansion has the advantage of providing

the corresponding invariant tensor for the Poincaré super-algebras. These constructions are

done in any odd dimensions, and apply equally well for Majorana and symplectic Majorana

spinors, as long as they exist in the given signature and dimension, and can also be extended

for any N . Furthermore, the Lagrangians we obtain are coupled to fields ba1...an for any n

where it is possible to have such a coupling. Interestingly enough, our construction yields

a nontrivial supersymmetric Lagrangian which can be expressed in a simple and compact

form whose explicit invariance can be easily checked, either directly by means of Fierz rear-

rangements, or using the general theory of Chern-Simons forms.

In the third model, we have successfully given a Majorana condition for the spinors in

the tensionless limit of the super-Polyakov action. This Majorana condition is obtained by

carefully looking at the deformation linking the exotic super-Polyakov action to its tension-

less limit; in particular we have computed the deformation of the spinor fields by preserving

the equivalence between a deformation of the coordinates and a deformation of the metric.

This deformation has also been constructed in a way that it preserves the Majorana condition
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existing in the tensile theory. It was not guaranteed at all that such deformation was possi-

ble, and a profound analysis of representation theory of Clifford algebras has been done to

ensure its existence. It has been shown that it was crucial at this step to deform the spacelike

coordinate x and not the timelike coordinate t , partially explaining why all previous attempts

of defining a Majorana condition in the tensionless limit failed. We have also make sure that

the newly computed deformation reproduce some of the most important results shown pre-

viously concerning the tensionless action. The way on how symmetries are deformed has

been our main focus regarding this point; and we correctly obtain the Wigner-Inönü defor-

mation of the two copies of the super-Witt algebra to the super-BMS3 algebra.

Throughout the completion of the thesis, a deep attention was given to the rigor of the

mathematics used. In particular, the notions of super-connection and Lie derivative of spinor

fields, or even the relations between spinor fields and gravity have been studied before being

used in physical models. The widely used concept of Majorana spinors have been acutely

analysed which led to a simple solution of the problem of defining a Majorana condition for

tensionless strings. The expansion of algebra presented in [JO03] has been carefully stud-

ied and better apprehended, leading to more systematic constructions like the maximally

extended Chern-Simons Poincaré Lagrangian. Hence, although the theoretical models we

have presented might find no experimental applications, their analysis have shown them-

selves fruitful for improving the understanding of the mathematics at the heart of funda-

mental models of modern physics. Thanks to many similar works, we can hope to find even

more fundamental models constructing the physics of tomorrow.
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