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Introduction

1. General Introduction

The study of diagram algebras has become a central theme in modern representation theory, with deep connections
to physics, combinatorics, topology, categorification, quantum groups, among others. Two particularly important
examples of such algebras are the Temperley-Lieb algebra and the Partition algebra, both of which can be described
using algebraic, combinatorial, and diagrammatic methods. These algebras arise naturally in a variety of contexts,
including statistical mechanics, Schur–Weyl duality, and the representation theory of the symmetric group. Their rich
algebraic structure and close connection to combinatorics place this thesis naturally within the area of combinatorial
representation theory.

Algebraic combinatorics provides concrete tools to describe and organize this information. Many important ex-
amples in this area involve bases with special properties that reflect the structure of the algebra. One of the most
useful tool in this context is the theory of cellular algebras, developed by Graham and Lehrer [37]. Roughly speaking,
a cellular algebra is one that admits a special kind of basis, called cellular basis, which helps to build the irreducible
representations of the algebra. This basis allows us to define bilinear forms on certain standard spaces (called cell
modules), and from these we can construct all the irreducible representations by taking suitable quotients.

Diagram algebras such as the Temperley–Lieb algebra TL𝑛 (𝛿) are emblematic examples of cellular algebras. Orig-
inally introduced in the 1970s in the context of Potts models in statistical mechanics, the Temperley-Lieb algebra
has become central in areas such as quantum groups, low-dimensional topology, knots and categorification. It can be
described using diagrams, where each element is a way of connecting 𝑛 points on the top with 𝑛 points on the bottom
using non-intersecting arcs (see Figure 1). Its cellular structure, made explicit in the early 2000s, allows us to use these
diagrams to study its representations in a very explicit and visual way.

,

1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

,

Figure 1. Three elements in the diagrammatic basis of TL5 (𝛿).

Another fundamental example of a diagram algebra is the partition algebra P𝑘 (𝑛), introduced independently by
Paul Martin in the 1990’s, in the context of the Potts model in statistical mechanics [64], and by Vaughan Jones as the
centralizer algebra in a Schur–Weyl duality setting for the symmetric group acting on tensor powers of the permutation
representation [50]. Structurally, P𝑘 is a C[𝑥]-algebra with a basis indexed by set partitions of {1, . . . , 𝑘} ∪ {1′, . . . , 𝑘 ′},
often visualized as diagrams with 𝑘 upper and 𝑘 lower vertices connected by arcs or blocks (see Figure 2). These diagrams
generalize those of TL𝑛 (𝛿) by allowing multiple points to belong to the same block, capturing richer combinatorial
behavior.

Since then, P𝑘 has emerged as a fundamental object in the combinatorial and diagrammatic representation theory,
connected not only to statistical physics, but also to a wide range of algebraic contexts. These include Deligne’s
category Rep(𝑆𝑡 ), the Kronecker problem, and the representation theory of symmetric and Schur algebras. Also, P𝑘
admits various interesting subalgebras, such as the Temperley–Lieb, Brauer, Motzkin, Rook, among other algebras. Its
cellular structure and diagrammatic basis make it a powerful tool for studying the centralizer algebras of symmetric
group actions.

Many of the known examples of cellular algebras also have a special set of commuting elements {𝐿1, 𝐿2, . . . , 𝐿𝑛}
called Jucys-Murphy elements. These elements are useful because they help to detect when the algebra is semisimple
and allow us to construct a particular kind of basis for its representations. This is called a seminormal form. Roughly
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Figure 2. An element in the diagrammatic basis of P9 (𝑛).

speaking, a seminormal form is a basis where the Jucys–Murphy elements act diagonally and the other generators of
the algebra act in a controlled way through explicit formulas. This type of basis has long been known for the symmetric
group, where it is a powerful tool to understand its representations.

Idempotents also play an important role in representation theory. An idempotent 𝑒 is an element such that 𝑒2 = 𝑒,
and it is called primitive if it cannot be written as a sum of two smaller non-zero orthogonal idempotents. Primitive
idempotents are important because they are used to construct the building blocks of representations. For example,
in the case of the symmetric group, one can construct each irreducible representation by applying the algebra to a
primitive idempotent. In the Temperley-Lieb algebra over the complex numbers (even over the rational numbers),
there is a special family of primitive idempotents called the Jones-Wenzl projectors JW𝑛. These are defined recursively
and have the property of being killed by diagrams that close off a strand (caps or cups). They are central objects in
the semisimple theory.

In recent years, new developments have extended these ideas to the setting of positive characteristic, using techniques
from Khovanov-Lauda-Rouquier (KLR) algebras. In particular, the so-called 𝑝-Jones-Wenzl projectors introduced
in [13], provide analogues of the classical projectors that work over fields of characteristic 𝑝. These projectors help us
understand the structure of the algebra when semisimplicity fails.

Seminormal forms are well understood in the context of the symmetric group and its Hecke algebra deformation,
where they yield explicit bases and play a central role in the construction of idempotents. In this work, we develop
a seminormal theory for the Temperley–Lieb algebra over the field of rational numbers. These results are presented
in detail in our article “Seminormal Forms for the Temperley–Lieb Algebra” [81], where we construct explicit
seminormal idempotents and analyze their relation to the classical Jones–Wenzl projectors in both semisimple and
modular settings. Our construction is combinatorial, and it uses the Jones-Wenzl idempotents as building blocks. With
this, we obtain seminormal idempotents E𝔱, which give rise to a concrete seminormal basis. Moreover, we extend our
study to the non-semisimple setting by considering the Temperley–Lieb algebra over a field of positive characteristic.
In this modular context, we construct class idempotents arising from the cellular structure, and we show how our
seminormal framework allows us to recover and reinterpret the 𝑝-Jones–Wenzl projectors.

This work also investigates a new family of subalgebras of the partition algebra, introduced in our paper “On
the Spherical Partition Algebra” [67], which we call the spherical partition algebra SP𝑘 . These algebras are
defined as idempotent truncations of the partition algebra P𝑘 , specifically SP𝑘 = 𝑒𝑘P𝑘𝑒𝑘 , where 𝑒𝑘 is the symmetrizing
idempotent associated with the symmetric group 𝔖𝑘 . The spherical partition algebras arise naturally as centralizer
algebras in a version of Schur–Weyl duality involving the symmetric group acting diagonally on tensor powers of
permutation modules.

We show that the spherical partition algebras SP𝑘 retain many structural features of the partition algebra, including
a cellular structure that enables a diagrammatic and combinatorial approach to their representation theory. This allows
for an explicit description of their modules in both semisimple and non-semisimple settings.

Moreover, we establish that SP𝑘 arises naturally in a Schur–Weyl duality involving the symmetric group and
tensor powers of the permutation representation. This duality provides a powerful framework for analyzing the module
category of SP𝑘 and reveals deep connections with classical constructions such as Specht modules and symmetric
powers. On the other hand, we prove that the spherical partition algebras are cellular and quasihereditary. The
cellular structure, defined via an explicit diagrammatic basis, enables a combinatorial and visual description of their
cell modules, providing new tools to study their representations in both semisimple and non-semisimple settings.
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2. Overview and Main Results

In Chapter 1 we provide the foundational background in representation theory needed for the rest of the thesis.
It begins with the study of finite group representations over a field, including basic definitions, key examples and
fundamental theorems like Maschke’s Theorem and the Artin–Wedderburn Theorem. The equivalence between group
representations and modules over the group algebra is emphasized, and the concepts of irreducibility, semisimplicity,
and decomposition are developed both in the group and module settings.

The theory is then generalized to modules over associative algebras, introducing notions such as endomorphism
algebras and the Jacobson radical. This culminates in the Artin–Wedderburn classification of semisimple algebras as
finite products of matrix algebras over division rings.

The final part of the chapter focuses on quasihereditary algebras and highest weight categories, following [20]. The
main tools discussed include standard and costandard modules, Ext-groups, and tilting modules. The Brauer–Humphreys
reciprocity and the use of Schur functors and saturated subsets are also presented, setting the stage for the algebraic
and categorical methods used in later chapters.

In Chapter 2 we introduce the representation theory of the symmetric group, a central object in algebraic com-
binatorics. It begins with the basic combinatorial concepts needed to describe and classify its representations, such as
partitions and tableaux.

We then study how representations are constructed, focusing on the permutation and Specht modules, and present
important results like the Branching Rule and the decomposition of the permutation module. The chapter concludes
with Schur-Weyl duality, which links the symmetric and general linear groups through their joint action on tensor space.
Altogether, these topics provide the combinatorial and algebraic tools needed to understand more advanced structures
introduced in later chapters.

Beyond their intrinsic interest, symmetric group representations serve as a testing ground for many ideas in modern
representation theory. They offer concrete, combinatorial models that help illustrate general phenomena. The tools
and constructions presented here will reappear in more abstract settings, making this chapter a foundational step in
the broader study of algebraic structures.

In Chapter 3 we introduce the theory of cellular algebras as developed by Graham and Lehrer. A cellular algebra
A over a commutative ring 𝑅 is defined via a distinguished basis indexed by a poset and satisfying specific multiplication
properties that allow the construction of cell modules. These modules carry a bilinear form whose radical determines
irreducible quotients.

A key structural feature is the existence of Jucys-Murphy (JM) elements, which are a family of commuting elements
acting triangularly on the cellular basis. When these elements satisfy a separation condition on the indexing set 𝑇 (Λ),
the algebra becomes split semisimple over the field of fractions k, and one can construct an explicit seminormal basis
diagonalizing the action of the JM-elements. This basis gives rise to orthogonal idempotents 𝐹𝔱 and associated primitive
idempotents 𝑓𝔰𝔱, yielding direct-sum decompositions of the algebra into cell modules.

The chapter culminates in the construction of seminormal forms for the Hecke algebra, including a 𝑞-analogue of
Young’s seminormal form. In the modular setting, when the JM-elements no longer separate, one introduces residue
and linkage classes to describe the block structure and define a generalized seminormal basis 𝑔𝔰𝔱 compatible with the
cellular structure. This provides an integral lift of the decomposition matrix and explains how seminormal theory
extends to modular representation theory via the reduction of idempotents and class functions.

In Chapter 4, we develop a new perspective on the seminormal forms for Temperley–Lieb algebra TL𝑛, focusing
on both semisimple and non-semisimple cases. In the semisimple (or separated) case, one of our main achievements is
to explicitly construct the idempotents E𝑡 by means of a diagrammatic approach based on the classical Jones-Wenzl

projectors. Specifically, we realize these idempotents in terms of the projectors JW𝑘 for TLQ
𝑘
, with 𝑘 ≤ 𝑛 (Theorem

2.2.2 and Corollary 2.2.2). A crucial component in this realization is Theorem 2.2.1. In the non-seminismple setting

(or unseparated case) we use the previous constructions to define a family of class idempotents in TL
Z(𝑝)
𝑛 given by

E[𝑡 ] :=
∑︁
𝑠∈[𝑡 ]

E𝑠 ,

where the sum is over a p-class of standard tableaux, and 𝑝 is a prime number. A key part of our analysis involves

Hu–Mathas’ isomorphism between RZ(𝑝)
𝑛 and Z(𝑝)𝔖𝑛, where R

Z(𝑝)
𝑛 is the KLR-algebra over Z(𝑝) . As a consequence,

there is an isomorphism between TL
Z(𝑝)
𝑛 and RZ(𝑝)

𝑛 /I𝑛, where I𝑛 is a graded ideal. Under this isomorphism, the KLR-
generator 𝑒(i) maps to a class idempotent associated with a one-column tableau 𝔱𝑛. This gives rise to a truncated algebra
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E[𝑡𝑛 ]TL𝑛Z(𝑝)E[𝑡𝑛 ] , which contains blocks intertwining elements U𝑖, known as ‘diamonds’. In the unseparated case, our

main results focus on the action of the elements U𝑖 on the seminormal basis of TL𝑛Q, via Hu–Mathas’ isomorphism.
Theorem 3.4.1 establishes a formula that mirrors the classical action of the symmetric group on Young’s seminormal
form. A key consequence of this result, given in Corollary 3.4.1, is the injection

𝜄𝐾𝐿𝑅 : TL
Z(𝑝)
𝑛2 ↩→ TL𝑛

Z(𝑝)

for any 𝑛2 < 𝑛, where TL
Z(𝑝)
𝑛2 has its own JM-elements 𝔏𝑖 and associated seminormal idempotents. While these are a

priori unrelated to the idempotents E𝑡 from the separated case, we show in Theorems 3.5.1, and the corollaries that
follow, that they are eigenvectors for the same JM-elements and satisfy a simple multiplicative formula. Our main
theorem shows that the 𝑝-Jones–Wenzl projector pJW𝑛 can be recursively constructed from these class idempotents.
Finally, we obtain the chain in equation 3.92:

0 ⊂ TL
Z(𝑝)
𝑛2 ⊆ TL

Z(𝑝)
𝑛2+1 ⊆ · · · ⊆ TL

Z(𝑝)
𝑛 ,

and then, as a result, the equation 3.99 given by 𝑝JW𝑛 =
∏𝑘−1
𝑖=0 E[𝔱

𝑛𝑖
2
] .

In Chapter 5, we study a new family of diagrammatic algebras called the spherical partition algebras SP𝑘 ,
introduced in our joint work with P. Martin and S. Ryom-Hansen. These algebras arise as idempotent truncations
SP𝑘 = 𝑒𝑘P𝑘𝑒𝑘 of the classical partition algebras P𝑘 . One of our main results is the proof of a double centralizer
property for the action of the symmetric group 𝔖𝑛 on symmetric powers 𝑆𝑘𝑉𝑛 (Theorem 3.1.1). This leads to the
following bimodule decomposition (Theorem 3.2.2)

𝑆𝑘𝑉𝑛 �
⊕

𝜆∈Par𝑘,𝑛
sph

𝑆(𝜆) ⊗ 𝐺𝑘 (𝜆),

where 𝑆(𝜆) is a Specht module for C𝔖𝑛 and 𝐺𝑘 (𝜆) is a simple SP𝑘 (𝑛)-module, for Par𝑘,𝑛
𝑠𝑝ℎ
⊆ Par𝑘 a concrete subset of

Par𝑘 . We also obtain an explicit dimension formula for 𝐺𝑘 (𝜆)
dim𝐺𝑘 (𝜆) =

∑︁
𝜈∈Par≤𝑛

𝑘

𝐾𝜆,Φ(𝜈) ,

where 𝐾𝜆,Φ(𝜈) is a Kostka number and Φ is a ‘multiplicity’ map defined on partitions. We prove that the specialized
algebras SP𝑘 (𝑡) are cellular for all 𝑡 ∈ C (Theorem 4.2.2), and quasihereditary when 𝑡 ≠ 0 (Theorem 4.3.2). This
enables an explicit combinatorial description of the corresponding cell modules 𝑒𝑘Δ(𝜆) (Theorem 4.2.3). In particular,
we compute their dimensions via the formula

dim 𝑒𝑘Δ𝑘 (𝜆) =
𝑘∑︁
𝑖=𝑙

∑︁
𝜈∈Par𝑖

Ψ(𝜈) ∈Par𝑙

𝐾𝜆,Ψ(𝜈) · |Par𝑘−𝑖 |,

where Ψ is a certain multiplicity function on partitions. Finally, the simple SP𝑘 (𝑡)-modules are 𝑒𝑘𝐿𝑘 (𝜆) for 𝜆 ∈ Λ𝑘𝑠𝑝ℎ a

concrete set. This, combined with results by P. Martin, leads to our main Theorem of this chapter (Theorem 5.1.2) that
describes the decomposition numbers and dimensions of the simple modules for SP𝑘 (𝑡) in all the cases, except when
𝑡 ≠ 0. Altogether, this provides a new combinatorial and diagrammatic framework for studying symmetric powers,
Schur–Weyl duality, and representation theory via the spherical partition algebra.
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CHAPTER 1

Preliminaries

This chapter reviews fundamental concepts and results from representation theory that will be used throughout
the thesis. We begin with the basic theory of representations of finite groups over a field, focusing on modules over the
group algebra, irreducibility, semisimplicity, and the role of induction and restriction. We then generalize these ideas
to the setting of associative algebras, discussing modules, endomorphism algebras, and the classification of semisimple
algebras via the Artin–Wedderburn theorem.

In the final sections, we summarize some key aspects of the theory of quasihereditary algebras and highest weight
categories, following the exposition in Donkin’s appendix [20]. We introduce standard and costandard modules, tilting
modules, and the behavior of homological invariants such as Ext1 in this context. These tools play a central role in the
later chapters of the thesis.

1. Representation theory of groups and some generalizations

1.1. Theoretical concepts for groups. In this section, we introduce basic terminology and notation related to
the representation of groups. Later, we will discuss the representations of the symmetric group in detail.

Let K be an algebraically closed field and 𝐺 a finite group. Let 𝑉 be an 𝑛-dimensional K-vector space. Then 𝐺𝐿𝑛 (𝑉)
(or 𝐺𝐿𝑛 (K)) is defined as the group of invertible 𝑛 × 𝑛 matrices with entries in K.

Definition 1.1.1. A representation of 𝐺 is a pair (𝑉, 𝜌), consisting of an 𝑛-dimensional vector space 𝑉 and a group
homomorphism

𝜌 : 𝐺 → 𝐺𝐿𝑛 (𝑉). (1.1)

In that case, we say that 𝑉 is a representation of 𝐺, and the dimension of 𝑉 is the degree of the representation.
Throughout this work, we will usually omit 𝜌 when it is clear from the context, and the dimension of every representation
will be finite. The term “representation” arises from the case where 𝜌 is injective (also called faithful), in which case
there is an isomorphic copy of 𝐺 as a subgroup of 𝐺𝐿𝑛 (𝑉).

Therefore, from Definition 1.1.1 we can conclude that 𝜌 is a representation of 𝐺 if it satisfies two conditions. First,
𝜌(1𝐺) = 𝐼𝑛, where 1𝐺 is the identity of 𝐺 and 𝐼𝑛 is the 𝑛×𝑛 identity matrix (with 1’s on the diagonal and 0’s elsewhere).
Second, for all 𝑔, ℎ ∈ 𝐺, we have 𝜌(𝑔ℎ) = 𝜌(𝑔)𝜌(ℎ); note that the latter is matrix multiplication. Every group has a
representation of dimension one.

Definition 1.1.2. The trivial representation sends every 𝑔 ∈ 𝐺 to the 1× 1 matrix [1]. It is easy to verify that this
is a representation.

We use the notation 1𝐺 for this representation.

Definition 1.1.3. The group algebra K𝐺 is defined as the set of all formal sums∑︁
𝑔∈𝐺

𝛼𝑔𝑔, 𝛼𝑔 ∈ K, (1.2)

with componentwise addition and multiplication defined by (𝛼𝑔) (𝛽ℎ) = (𝛼𝛽) (𝑔ℎ), where 𝛼 and 𝛽 are multiplied in K and
𝑔ℎ is the group product in 𝐺.

With this multiplication, K𝐺 becomes a ring, which is commutative if and only if 𝐺 is abelian. Moreover, the group
𝐺 embeds into K𝐺 (identifying 𝑔 with 1K𝑔), and the field K also embeds into K𝐺 (identifying 𝛼 with 𝛼1𝐺). Under these
identifications, we define an action of K on K𝐺 by

𝛽
©­«
∑︁
𝑔∈𝐺

𝛼𝑔𝑔
ª®¬ =

∑︁
𝑔∈𝐺
(𝛽𝛼𝑔)𝑔, (1.3)
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for 𝛽 ∈ K. In this way, K𝐺 is a vector space over K of dimension |𝐺 |, and K lies in the center of K𝐺. Therefore, we say
that K𝐺 is a K-algebra (i.e., both a ring and a vector space).

Definition 1.1.4. 𝑉 is a K𝐺-module if there is an action of K𝐺 on 𝑉 making it a module over K𝐺.

It is not difficult to see that representations give rise to K𝐺-modules if we define(∑︁
𝑔

𝛼𝑔𝑔

)
· 𝑣 =

∑︁
𝑔

𝛼𝑔𝑔𝑣 :=
∑︁
𝑔

𝛼𝑔𝜌(𝑔) (𝑣) (1.4)

for all 𝑔 ∈ 𝐺, scalars 𝛼𝑔 ∈ k and 𝑣 ∈ 𝑉 . Conversely, given a K𝐺-module 𝑉 , we can recover a representation via the same
rule. Thus, there is a natural correspondence between representations and K𝐺-modules. For simplicity, we often say
“𝐺-module” instead of “K𝐺-module.”

Definition 1.1.5. The regular representation is obtained by taking 𝑉 = K𝐺, which is consider as a left module
over itself. This representation has dimension |𝐺 |. If 𝐺 = {𝑔1, 𝑔2, . . . , 𝑔𝑛}, the action of 𝑔 ∈ 𝐺 on a basis element 𝑔 𝑗
gives another basis element 𝑔𝑖 = 𝑔𝑔 𝑗 . The matrix of the action of 𝑔 has a 1 in position (𝑖, 𝑗) and 0 elsewhere. This
representation is always faithful.

Definition 1.1.6. If 𝑋 is a finite set and 𝐺 acts on 𝑋 on the left, the permutation representation is given by taking
𝑉 as the K-vector space with basis {𝑣𝑥 | 𝑥 ∈ 𝑋}, and defining the action of 𝐺 on 𝑉 by

𝑔

(∑︁
𝑥∈𝑋

𝛼𝑥𝑣𝑥

)
=

∑︁
𝑥∈𝑋

𝛼𝑥𝑣𝑔𝑥 . (1.5)

Example 1.1.1. Let 𝑋 = {1, 2, . . . , 𝑛} and let 𝔖𝑛 be the symmetric group of degree 𝑛. Consider the K-vector space
𝑉 with basis {𝑣1, 𝑣2, . . . , 𝑣𝑛}. For each 𝜎 ∈ 𝔖𝑛, define

𝜎𝑣𝑖 = 𝑣𝜎 (𝑖) . (1.6)

This is the permutation representation of the symmetric group. For 𝑛 = 3, for instance, we have:

(123) ↦→

0 0 1
1 0 0
0 1 0

 . (1.7)

Throughout this work, we will use the language of 𝐺-modules, or simply say “module” when the algebra is clear
from context.

Definition 1.1.7. Let 𝑉 be a 𝐺-module and 𝑊 ⊆ 𝑉 a K-vector subspace. We say that 𝑊 is a 𝐺-submodule of 𝑉 if
it is 𝐺-invariant, that is,

𝑔𝑊 ⊆ 𝑊 for all 𝑔 ∈ 𝐺. (1.8)

The simplest 𝐺-submodules of 𝑉 are 𝑉 and 0, called trivial submodules. Any other is called a proper submodule.

Definition 1.1.8. Let 𝑉 be a finite-dimensional vector space over a field k. The 𝑘-th symmetric power of 𝑉 , denoted
𝑆𝑘 (𝑉), is defined as the quotient of the tensor power 𝑉⊗𝑘 by the subspace generated by all elements of the form

𝑣1 ⊗ · · · ⊗ 𝑣𝑘 − 𝑣𝜎 (1) ⊗ · · · ⊗ 𝑣𝜎 (𝑘 ) ,
for all 𝑣1, . . . , 𝑣𝑘 ∈ 𝑉 and all permutations 𝜎 ∈ 𝔖𝑘. Thus, 𝑆𝑘 (𝑉) consists of totally symmetric tensors.

Definition 1.1.9. The 𝑘-th exterior power of 𝑉 , denoted
∧𝑘 (𝑉), is defined as the quotient of 𝑉⊗𝑘 by the subspace

generated by all elements of the form

𝑣1 ⊗ · · · ⊗ 𝑣𝑘 + 𝑣𝜎 (1) ⊗ · · · ⊗ 𝑣𝜎 (𝑘 ) ,
for all permutations 𝜎 ∈ 𝔖𝑘 of odd sign. Equivalently,

∧𝑘 (𝑉) consists of totally alternating tensors.

Remark 1.1.1. Let 𝑉 and 𝑈 be representations of 𝐺.

(1) The direct sum 𝑉 ⊕𝑈 and the tensor product 𝑉 ⊗𝑈 are also representations. The action is given by 𝑔(𝑣, 𝑢) =
(𝑔𝑣, 𝑔𝑢) and 𝑔(𝑣 ⊗ 𝑢) = 𝑔𝑣 ⊗ 𝑔𝑢, respectively.

(2) The 𝑘-th tensor power 𝑉⊗𝑘 is a representation via the above action.

(3) The exterior power
∧𝑘 (𝑉) and the symmetric power 𝑆𝑘 (𝑉) are subrepresentations of 𝑉⊗𝑘.

Definition 1.1.10. Let 𝑉 be a 𝐺-module.
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(1) 𝑉 is irreducible (or simple) if its only submodules are 𝑉 and 0.
(2) 𝑉 is indecomposable if it cannot be written as 𝑉1 ⊕ 𝑉2 for any nonzero submodules 𝑉1 and 𝑉2. Otherwise, 𝑉 is

called decomposable.

Similarly, 𝑉 is said to be completely reducible if it is a direct sum of irreducible submodules.

Remark 1.1.2. Two direct consequences follow from the previous definitions:

(1) The trivial representation 1𝐺 is irreducible (being one-dimensional).
(2) If 𝑉 is irreducible, then it is indecomposable (but the converse is not generally true).

Example 1.1.2. Let us now view the same permutation representation of 𝔖𝑛 on 𝑉 = C𝑛 given in Example 1.1.1,
using the standard basis {𝑒1, . . . , 𝑒𝑛}, where 𝜎 · 𝑒𝑖 = 𝑒𝜎 (𝑖) . This representation is reducible. Define the 1-dimensional
subspace

𝑊 = C(𝑒1 + 𝑒2 + · · · + 𝑒𝑛),
which is a proper 𝔖𝑛-subrepresentation (hence irreducible). The orthogonal complement 𝑊⊥, spanned by vectors

∑
𝛼𝑖𝑒𝑖

such that
∑
𝛼𝑖 = 0, is an irreducible subrepresentation of 𝑉 , known as the standard representation, and has dimension

𝑛 − 1.

The following theorem provides a condition under which every indecomposable module is completely reducible.

Theorem 1.1.1 (Maschke’s Theorem). Let 𝐺 be a finite group and K a field whose characteristic does not divide
|𝐺 |. If 𝑉 is a finite-dimensional 𝐺-module and 𝑊 is a submodule of 𝑉 , then there exists a submodule 𝑈 such that
𝑉 = 𝑊 ⊕ 𝑈.

Corollary 1.1.1 (Generalization of Maschke’s Theorem). Let 𝐺 be a finite group and K a field whose characteristic
does not divide |𝐺 |. Then every finite-dimensional 𝐺-module 𝑉 decomposes as a direct sum of irreducible submodules:

𝑉 = 𝑊1 ⊕𝑊2 ⊕ · · · ⊕𝑊𝑟 . (1.9)

Thus, irreducible representations can be considered the building blocks. Let (𝑉, 𝜌) be a representation of 𝐺 such
that

𝑉 = 𝑊1 ⊕𝑊2 ⊕ · · · ⊕𝑊𝑟 , (1.10)

where each 𝑊𝑖 is irreducible. Let B be the basis formed by the union of the bases B1, . . . ,B𝑟 of the 𝑊𝑖. Defining
𝜌𝑖 = 𝜌 |𝑊𝑖

, the matrix of 𝜌(𝑔) in this basis has block-diagonal form:

𝜌(𝑔) =


𝜌1 (𝑔) 0 · · · 0
0 𝜌2 (𝑔) · · · 0
...

...
. . .

...

0 0 · · · 𝜌𝑟 (𝑔)


. (1.11)

Definition 1.1.11. A 𝐺-module homomorphism between 𝐺-modules 𝑉 and 𝑈 is a map 𝑓 : 𝑉 → 𝑈 such that

(1) 𝑓 (𝜆𝑥 + 𝑦) = 𝜆 𝑓 (𝑥) + 𝑓 (𝑦),
(2) 𝑓 (𝑔𝑥) = 𝑔 𝑓 (𝑥),

for all 𝑥, 𝑦 ∈ 𝑉 , 𝜆 ∈ K, and 𝑔 ∈ 𝐺.

We say that 𝑓 is a 𝐺-module isomorphism if 𝑓 is bijective, and we write 𝑉 � 𝑈.

Theorem 1.1.2. Let 𝑉 be a representation of 𝐺, and suppose that the characteristic of k does not divide |𝐺 |.
Then

𝑉 = 𝑉
⊕𝑎1
1 ⊕ 𝑉⊕𝑎22 ⊕ · · · ⊕ 𝑉⊕𝑎𝑟𝑟 , (1.12)

where the 𝑉𝑖 are pairwise non-isomorphic irreducible 𝐺-modules. The decomposition of 𝑉 is unique up to isomorphism,
as are the 𝑉𝑖 and their multiplicities.

Remark 1.1.3. Following the notation of Theorem 1.1.2, we often use the shorthand notation for decompositions
and multiplicities:

𝑉 = 𝑎1𝑉1 ⊕ 𝑎2𝑉2 ⊕ · · · ⊕ 𝑎𝑟𝑉𝑟 . (1.13)
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If dim𝑉𝑖 = 𝑑𝑖, then from the preceding theorem we have

dim𝑉 = 𝑎1𝑑1 + 𝑎2𝑑2 + · · · + 𝑎𝑟𝑑𝑟 .

Using Maschke’s Theorem 1.1.1, we can write

C𝐺 =
⊕
𝑖

𝑎𝑖𝑉𝑖 , (1.14)

where the 𝑉𝑖 form a complete list of pairwise non-isomorphic irreducible 𝐺-submodules of C𝐺, with multiplicity 𝑎𝑖.
Using the machinery of character theory, the following theorem can be established.

Theorem 1.1.3. Let 𝐺 be a finite group and C𝐺 its group algebra. Suppose it decomposes as in equation (1.14).
Then:

(1) 𝑎𝑖 = dim𝑉𝑖.
(2)

∑
𝑖 (dim𝑉𝑖)2 = |𝐺 |.

(3) The number of distinct 𝑉𝑖 is equal to the number of conjugacy classes of 𝐺.

As a consequence of this result, the irreducible characters of a finite group 𝐺 form an orthonormal basis for the
space of class functions.

1.2. Induction and Restriction. We now turn to the study of induction and restriction from a categorical
perspective. Let 𝑅 and 𝑆 be two rings, and let 𝜑 : 𝑆 → 𝑅 be a ring homomorphism. If 𝑁 is a left 𝑅-module, then 𝑁

becomes a left 𝑆-module via

𝑠𝑛 := 𝜑(𝑠)𝑛, 𝑠 ∈ 𝑆, 𝑛 ∈ 𝑁. (1.15)

This 𝑆-module is denoted by 𝑅𝑒𝑠𝑅
𝑆
(𝑁) and depends on 𝜑. On the other hand, for a given 𝑆-module 𝑀, consider 𝑅 as a

right 𝑆-module via

𝑟𝑠 := 𝑟𝜑(𝑠), for 𝑟 ∈ 𝑅, 𝑠 ∈ 𝑆. (1.16)

It is then possible to construct a left 𝑅-module by defining

𝐼𝑛𝑑𝑅𝑆 (𝑀) := 𝑅 ⊗𝑆 𝑀. (1.17)

Thus, we obtain functors

𝑅𝑒𝑠𝑅𝑆 : 𝑅-Mod→ 𝑆-Mod and 𝐼𝑛𝑑𝑅𝑆 : 𝑆-Mod→ 𝑅-Mod,

which are called the restriction functor and the induction functor, respectively.

Definition 1.2.1. Let C and D be two categories, and let 𝐹 : C → D and 𝐺 : D → C be functors. The functor 𝐹
is said to be the left adjoint of 𝐺 if, for all objects 𝑋 in C and 𝑌 in D, there are bijections

𝜑𝑋,𝑌 : HomD (𝐹 (𝑋), 𝑌 ) � HomC (𝑋, 𝐺 (𝑌 )), (1.18)

which are natural in both 𝑋 and 𝑌 . In other words, there is a natural isomorphism of bifunctors

𝜑 : HomD (𝐹 (−),−) → HomC (−, 𝐺 (−)), (1.19)

called the adjunction map.

Theorem 1.2.1 (Frobenius Reciprocity). Let 𝜑 : 𝑆 → 𝑅 be a ring homomorphism. Then the induction functor
𝐼𝑛𝑑𝑅

𝑆
is left adjoint to the restriction functor 𝑅𝑒𝑠𝑅

𝑆
. Moreover, we can describe an explicit adjunction map as follows.

Let 𝑀 be an 𝑆-module and 𝑁 an 𝑅-module. Then

𝜑𝑀,𝑁 : Hom𝑅 (𝐼𝑛𝑑𝑅𝑆 (𝑀), 𝑁) → Hom𝑆 (𝑀, 𝑅𝑒𝑠𝑅𝑆 (𝑁)) (1.20)

is given by 𝑓 ↦→ [𝑚 ↦→ 𝑓 (1 ⊗ 𝑚)]. An explicit inverse 𝜙𝑀,𝑁 is defined as

𝜙𝑀,𝑁 : Hom𝑆 (𝑀, 𝑅𝑒𝑠𝑅𝑆 (𝑁)) → Hom𝑅 (𝐼𝑛𝑑𝑅𝑆 (𝑀), 𝑁), (1.21)

given by 𝑔 ↦→ [𝑟 ⊗ 𝑚 ↦→ 𝑟𝑔(𝑚)].
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1.3. Generalization to Modules and Algebras. The main goal of this section is to generalize some notions
from the representation theory of groups. Most of the content is based on [33]. Let 𝑅 be a non-zero commutative unital
ring.

Definition 1.3.1. An 𝑅-module homomorphism between two 𝑅-modules 𝑀 and 𝑁 is a map 𝑓 : 𝑀 → 𝑁 such that

(1) 𝑓 (𝑥 + 𝑦) = 𝑓 (𝑥) + 𝑓 (𝑦),
(2) 𝑓 (𝑟𝑥) = 𝑟 𝑓 (𝑥),

for all 𝑥, 𝑦 ∈ 𝑀 and 𝑟 ∈ 𝑅.

We say that 𝑓 is an 𝑅-module isomorphism if 𝑓 is bijective.

Although in the previous section we defined irreducible, indecomposable, and completely reducible 𝐺-modules,
these notions can be generalized to modules over an arbitrary ring 𝑅.

Definition 1.3.2. Let 𝑀 be an 𝑅-module.

(1) 𝑀 is said to be irreducible (or simple) if its only submodules are 𝑀 and 0.
(2) 𝑀 is said to be semisimple if every submodule of 𝑀 is a direct summand; that is, for every submodule 𝑁 ⊆ 𝑀,

there exists a complement 𝑃 such that 𝑀 = 𝑁 ⊕ 𝑃.

The second statement in Definition 1.3.2 is equivalent to the following: 𝑀 is semisimple if there exist irreducible
submodules 𝑁1, 𝑁2, . . . , 𝑁𝑟 such that

𝑀 = 𝑁1 ⊕ 𝑁2 ⊕ · · · ⊕ 𝑁𝑟 ,
i.e., 𝑀 is completely reducible.

A basic and important example of a k-algebra is 𝑀𝑛 (k), the algebra of 𝑛× 𝑛 matrices. The subalgebras of diagonal,
upper triangular, and lower triangular matrices are also k-subalgebras of 𝑀𝑛 (k).

Recall that an 𝑅-algebra homomorphism 𝜑 between two 𝑅-algebras 𝐴 and 𝐵 is an 𝑅-module homomorphism such
that 𝜑(𝑎 ·𝐴 𝑏) = 𝜑(𝑎) ·𝐵 𝜑(𝑏) for all 𝑎, 𝑏 ∈ 𝐴. We say that 𝜑 is unital if it maps the unity of 𝐴 to the unity of 𝐵. Many
of these concepts can be defined over a general ring 𝑅, but from now on, we restrict our attention to algebras over a
field k. Most of the results in this section are taken from [33]. Many proofs are omitted for brevity, and others are only
sketched. We now define:

Definition 1.3.3. Let 𝐴 be a unital k-algebra. A representation of 𝐴 is a pair (𝑉, 𝜑), where 𝑉 is a k-vector space
and 𝜑 : 𝐴→ Endk (𝑉) is a k-algebra homomorphism such that 𝜑(1𝐴) = Id𝑉 .

Remark 1.3.1. Let 𝑉1 and 𝑉2 be two representations of 𝐴. We say that they are equivalent if and only if the
corresponding 𝐴-modules 𝑉1 and 𝑉2 are isomorphic.

Group representations have historically formed the foundation of representation theory since the late 19th century.
The following result shows that group representations are essentially equivalent to representations of their corresponding
group algebras.

Proposition 1.3.1. Let 𝐺 be a group and k a field.

(1) Every representation 𝜌 : 𝐺 → 𝐺𝐿 (𝑉) over k extends to a representation �̃� : k𝐺 → Endk (𝑉) of the group
algebra, given by ∑︁

𝑔∈𝐺
𝛼𝑔𝑔 ↦→

∑︁
𝑔∈𝐺

𝛼𝑔𝜌(𝑔).

(2) Conversely, given a representation 𝜑 : k𝐺 → Endk (𝑉), its restriction to 𝐺, 𝜑|𝐺 : 𝐺 → 𝐺𝐿 (𝑉), defines a group
representation.

Definition 1.3.4. An 𝐴-module 𝑉 is said to be irreducible if 𝑉 ≠ 0 and the only 𝐴-submodules of 𝑉 are 0 and 𝑉
itself.

Lemma 1.3.1. Let 𝐴 be a k-algebra and let 𝑉 be a nonzero 𝐴-module. Then 𝑉 is irreducible if and only if for every
nonzero 𝑣 ∈ 𝑉 , we have 𝐴𝑣 = 𝑉 .
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Proof: Suppose 𝑉 is irreducible and let 𝑣 ∈ 𝑉 be nonzero. Then 𝐴𝑣 is a submodule of 𝑉 containing 𝑣 = 1𝐴𝑣, hence
𝐴𝑣 ≠ 0. Since 𝑉 is irreducible, we must have 𝐴𝑣 = 𝑉 . Conversely, suppose that for all 𝑣 ≠ 0, we have 𝐴𝑣 = 𝑉 . Let
𝑈 ⊆ 𝑉 be a nonzero submodule. Then it contains some nonzero 𝑢, then 𝑉 = 𝐴𝑢 ⊆ 𝑈 by hypothesis. Thus 𝑈 = 𝑉 and 𝑉
is irreducible. □

Lemma 1.3.2. Let 𝐴 be a k-algebra, 𝑉 an 𝐴-module, and 𝑈 ⊊ 𝑉 an 𝐴-submodule. Then the following are equivalent:

(1) The factor module 𝑉/𝑈 is simple.
(2) 𝑈 is a maximal submodule of 𝑉 , i.e., if 𝑈 ⊆ 𝑊 ⊆ 𝑉 for any submodule 𝑊, then 𝑊 = 𝑈 or 𝑊 = 𝑉 .

Proof: This follows directly from the submodule correspondence (see Theorem 2.28 in [33]). □

Now suppose 𝐴 is an algebra and 𝐼 a proper two-sided ideal of 𝐴. Then the quotient 𝐵 = 𝐴/𝐼 is a k-algebra. Any
𝐵-module 𝑀 can be viewed as an 𝐴-module via the action 𝑎 · 𝑚 = (𝑎 + 𝐼)𝑚. This 𝐴-module is called the inflation of 𝑀
to 𝐴. This construction is useful for producing simple 𝐴-modules.

Remark 1.3.2. Inflation can be viewed as a particular case of restriction. Indeed, the quotient map 𝜑 : 𝐴→ 𝐴/𝐼 is
a ring homomorphism, and any 𝐴/𝐼-module becomes an 𝐴-module by restricting scalars along 𝜑. In this sense, inflation
corresponds to the restriction functor applied to the surjection 𝐴→ 𝐴/𝐼.

Lemma 1.3.3. Let 𝐴 be a k-algebra and let 𝐵 = 𝐴/𝐼 for some proper ideal 𝐼 ⊊ 𝐴. If 𝑆 is a simple 𝐵-module, then
its inflation to 𝐴 is a simple 𝐴-module.

Proof: The submodules of 𝑆 as an 𝐴-module are precisely the inflations of its 𝐵-submodules. Since 𝑆 is simple as a
𝐵-module, it has no proper submodules. Hence, 𝑆 is also simple as an 𝐴-module. □

We conclude this section with the general version of Schur’s Lemma.

Theorem 1.3.1 (Schur’s Lemma). Let 𝐴 be a k-algebra. Suppose 𝑆 and 𝑇 are simple 𝐴-modules and let 𝜑 : 𝑆 → 𝑇

be an 𝐴-module homomorphism. Then:

(1) Either 𝜑 = 0, or 𝜑 is an isomorphism. In particular, for every simple 𝐴-module 𝑆, the endomorphism algebra
End𝐴(𝑆) is a division algebra.

(2) If 𝑆 = 𝑇 , 𝑆 is finite-dimensional, and k is algebraically closed, then 𝜑 = 𝜆 Id𝑆 for some scalar 𝜆 ∈ k.

Proof: (1) Suppose 𝜑 ≠ 0. Then ker(𝜑) is a proper submodule of 𝑆. Since 𝑆 is simple, ker(𝜑) = 0, so 𝜑 is injective.
Likewise, im(𝜑) is a nonzero submodule of 𝑇 , so im(𝜑) = 𝑇 and 𝜑 is surjective. Hence, 𝜑 is an isomorphism.
(2) Since k is algebraically closed, the k-linear map 𝜑 on the finite-dimensional space 𝑆 has an eigenvalue 𝜆 ∈ k, with
eigenvector 𝑣 ≠ 0 such that 𝜑(𝑣) = 𝜆𝑣. Then 𝜑 − 𝜆 Id𝑆 is an 𝐴-module homomorphism whose kernel contains 𝑣, so it is
nonzero. Since 𝑆 is simple, this implies ker(𝜑 − 𝜆 Id𝑆) = 𝑆, hence 𝜑 = 𝜆 Id𝑆. □

2. Semisimple Algebras

2.1. Semisimple Algebras. Recall that the terms irreducible and simple are used interchangeably.

Definition 2.1.1. Let 𝐴 be a k-algebra. A nonzero 𝐴-module 𝑉 is called semisimple if it is the direct sum of simple
submodules. That is, there exist simple submodules 𝑆𝑖 for 𝑖 ∈ 𝐼 (an index set), such that

𝑉 =
⊕
𝑖∈𝐼

𝑆𝑖 .

Example 2.1.1. Let 𝐴 = 𝑀𝑛 (k) and consider 𝑉 = 𝐴 as a left 𝐴-module. It can be shown that

𝑉 = 𝐶1 ⊕ 𝐶2 ⊕ · · · ⊕ 𝐶𝑛,
where 𝐶𝑖 is the space of matrices with nonzero entries only in the 𝑖-th column. Each 𝐶𝑖 is isomorphic to k𝑛 and is a
simple 𝐴-module. Thus, 𝑀𝑛 (k) is a semisimple 𝐴-module.

The following two results can be found in [33], Theorem 4.3 and Corollary 4.7.

Theorem 2.1.1. Let 𝐴 be a k-algebra and 𝑉 a nonzero 𝐴-module. The following statements are equivalent:

(1) For every 𝐴-submodule 𝑈 ⊆ 𝑉 , there exists an 𝐴-submodule 𝐶 of 𝑉 such that 𝑉 = 𝑈 ⊕ 𝐶.
(2) 𝑉 is the direct sum of simple submodules (i.e., 𝑉 is semisimple).
(3) 𝑉 is the sum of simple submodules, that is, there exist simple 𝐴-submodules 𝑆𝑖, 𝑖 ∈ 𝐼, such that 𝑉 =

∑
𝑖∈𝐼 𝑆𝑖.
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Corollary 2.1.1. Let 𝐴 be a k-algebra.

(1) Let 𝜑 : 𝑆 → 𝑉 be an 𝐴-module homomorphism, where 𝑆 is a simple 𝐴-module. Then either 𝜑 = 0, or Im(𝜑) is
a simple 𝐴-module isomorphic to 𝑆.

(2) Let 𝜑 : 𝑉 → 𝑊 be an isomorphism of 𝐴-modules. Then 𝑉 is semisimple if and only if 𝑊 is semisimple.
(3) All nonzero submodules and factor modules of semisimple 𝐴-modules are again semisimple.
(4) Let (𝑉𝑖)𝑖∈𝐼 be a family of nonzero 𝐴-modules. Then the direct sum

⊕
𝑖∈𝐼 𝑉𝑖 is semisimple if and only if each

𝑉𝑖 is semisimple.

Definition 2.1.2. A k-algebra 𝐴 is called semisimple if 𝐴 is semisimple as an 𝐴-module.

Example 2.1.2. Every matrix algebra 𝑀𝑛 (k) is semisimple.

Remark 2.1.1. A semisimple algebra 𝐴 is a direct sum of simple submodules, i.e., 𝐴 =
⊕

𝑖∈𝐼 𝑆𝑖, where the index
set 𝐼 is necessarily finite. Indeed, the identity element 1𝐴 can be written as a finite sum 1𝐴 = 𝑠𝑖1 + · · · + 𝑠𝑖𝑘 , implying that

𝐴 = 𝐴 · 1𝐴 = 𝐴𝑠𝑖1 ⊕ · · · ⊕ 𝐴𝑠𝑖𝑘 ,
so 𝐴 is a finite direct sum of simple 𝐴-modules. Hence, 𝐴 has finite length as an 𝐴-module, and each simple 𝐴-module
corresponds to a summand in this decomposition.

Theorem 2.1.2. Let 𝐴 be a k-algebra. The following statements are equivalent:

(1) 𝐴 is semisimple.
(2) Every nonzero 𝐴-module is semisimple.

Proof: The implication (2) ⇒ (1) follows directly from Definition 2.1.2. For the reverse direction, assume 𝐴 is
semisimple as an 𝐴-module. Let 𝑉 ≠ 0 be an arbitrary 𝐴-module. Since 𝑉 is a vector space, let {𝑣𝑖 | 𝑖 ∈ 𝐼} be a basis
of 𝑉 . Define ⊕

𝑖∈𝐼
𝐴 := {(𝑎𝑖)𝑖∈𝐼 | 𝑎𝑖 ∈ 𝐴, finitely many 𝑎𝑖 ≠ 0}.

Consider the map

𝜙 :
⊕
𝑖∈𝐼

𝐴→ 𝑉, (𝑎𝑖)𝑖∈𝐼 ↦→
∑︁
𝑖∈𝐼

𝑎𝑖𝑣𝑖 .

This is a surjective 𝐴-module homomorphism. By the First Isomorphism Theorem,(⊕
𝑖∈𝐼

𝐴

)
/ker(𝜙) � 𝑉.

Since 𝐴 is semisimple,
⊕

𝑖∈𝐼 𝐴 is semisimple by Corollary 2.1.1 (4), and its quotient is semisimple by Corollary 2.1.1
(3). Therefore, 𝑉 is semisimple. □

Corollary 2.1.2. Let 𝐴 and 𝐵 be k-algebras. Then:

(1) If 𝜑 : 𝐴→ 𝐵 is a surjective algebra homomorphism and 𝐴 is semisimple, then 𝐵 is semisimple.
(2) If 𝐴 � 𝐵 as k-algebras, then 𝐴 is semisimple if and only if 𝐵 is semisimple.
(3) Every factor algebra of a semisimple algebra is semisimple.

Proof: (1) follows directly from Corollary 2.1.1 (3). For (2), apply (1) to both 𝜑 and 𝜑−1. For (3), apply (1) to the
canonical surjection 𝐴→ 𝐴/𝐼. □

Remark 2.1.2. Subalgebras of semisimple algebras are not necessarily semisimple. For example, the algebra of
upper triangular matrices is not semisimple, while 𝑀𝑛 (k) is. More generally, every finite-dimensional k-algebra is
isomorphic to a subalgebra of 𝑀𝑛 (k), and hence of a semisimple algebra.

Let 𝐵 = 𝐴/𝐼, where 𝐼 ⊊ 𝐴 is a two-sided ideal. A 𝐵-module can be viewed as an 𝐴-module on which 𝐼 acts trivially.
Conversely, any 𝐴-module 𝑉 with 𝐼𝑉 = 0 can be viewed as a 𝐵-module. The actions are related by

(𝑎 + 𝐼)𝑣 = 𝑎𝑣 for 𝑎 ∈ 𝐴, 𝑣 ∈ 𝑉.

Theorem 2.1.3. Let 𝐴 be a k-algebra, 𝐼 ⊊ 𝐴 a two-sided ideal, and 𝐵 = 𝐴/𝐼. For any 𝐵-module 𝑉 , the following
are equivalent:

(1) 𝑉 is semisimple as a 𝐵-module.
(2) 𝑉 is semisimple as an 𝐴-module with 𝐼𝑉 = 0.
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Proof: Suppose (1) holds. Then 𝑉 =
∑
𝑗∈𝐽 𝑆 𝑗 where each 𝑆 𝑗 is a simple 𝐵-submodule. By [33, Lemma 2.37], each 𝑆 𝑗

can be viewed as a simple 𝐴-module with 𝐼𝑆 𝑗 = 0. Hence, 𝑉 is semisimple as an 𝐴-module.
Conversely, assume (2). Then 𝑉 =

∑
𝑗∈𝐽 𝑆 𝑗 where each 𝑆 𝑗 is a simple 𝐴-submodule with 𝐼𝑆 𝑗 = 0. Again using [33,

Lemma 2.37] and Lemma 1.3.3, each 𝑆 𝑗 is a simple 𝐵-module, and hence 𝑉 is semisimple as a 𝐵-module. □

Corollary 2.1.3. Let 𝐴1, . . . , 𝐴𝑟 be finitely many k-algebras. Then the direct product 𝐴1 × · · · × 𝐴𝑟 is semisimple
if and only if each 𝐴𝑖 is semisimple.

Example 2.1.3. By the preceding corollary, any finite direct product

𝑀𝑛1 (k) × · · · × 𝑀𝑛𝑟 (k)
is a semisimple algebra.

2.2. The Jacobson Radical. The Jacobson radical of an algebra provides an alternative description of semisim-
plicity.

Definition 2.2.1. Let 𝐴 be a k-algebra. The Jacobson radical 𝐽 (𝐴) of 𝐴 is defined as the intersection of all maximal
left ideals of 𝐴. Equivalently, 𝐽 (𝐴) is the intersection of all maximal 𝐴-submodules of 𝐴.

An ideal 𝐼 is called nilpotent if there exists an integer 𝑟 ≥ 1 such that 𝐼𝑟 = 0. The annihilator of an 𝐴-module 𝑀 is
defined by

Ann𝐴(𝑀) = {𝑎 ∈ 𝐴 | 𝑎𝑚 = 0 for every 𝑚 ∈ 𝑀}. (2.1)

Definition 2.2.2. Let 𝐴 be a k-algebra and 𝑉 an 𝐴-module. A composition series of 𝑉 is a finite chain of 𝐴-
submodules

0 = 𝑉0 ⊂ 𝑉1 ⊂ 𝑉2 ⊂ · · · ⊂ 𝑉𝑛 = 𝑉
such that each factor module 𝑉𝑖/𝑉𝑖−1 is simple for all 1 ≤ 𝑖 ≤ 𝑛. The length of the composition series is 𝑛.

The factors 𝑉𝑖/𝑉𝑖−1 are called composition factors. It can be shown that if 𝐴 is a finite dimensional k-algebra, then
every finite-dimensional 𝐴-module 𝑉 , as well as every submodule 𝑈 ⊆ 𝑉 , admits a composition series.

Theorem 2.2.1. Let 𝐴 be a k-algebra that has a composition series as an 𝐴-module (i.e., 𝐴 has finite length as
an 𝐴-module). Then the Jacobson radical 𝐽 (𝐴) satisfies the following:

(1) 𝐽 (𝐴) is the intersection of finitely many maximal left ideals.
(2) We have

𝐽 (𝐴) =
⋂

𝑆 simple

Ann𝐴(𝑆),

that is, 𝐽 (𝐴) consists of all 𝑎 ∈ 𝐴 such that 𝑎𝑆 = 0 for every simple 𝐴-module 𝑆.
(3) 𝐽 (𝐴) is a two-sided ideal of 𝐴.
(4) 𝐽 (𝐴) is a nilpotent ideal; specifically, 𝐽 (𝐴)𝑛 = 0, where 𝑛 is the length of a composition series of 𝐴 as an

𝐴-module.
(5) The factor algebra 𝐴/𝐽 (𝐴) is semisimple.
(6) Let 𝐼 ⊆ 𝐴 be a two-sided ideal such that 𝐼 ≠ 𝐴 and the factor algebra 𝐴/𝐼 is semisimple. Then 𝐽 (𝐴) ⊆ 𝐼.
(7) 𝐴 is a semisimple algebra if and only if 𝐽 (𝐴) = 0.

We will prove only items (4), (6), and (7). Proofs of the remaining statements can be found in [33, Theorem 4.23].

Proof: (4) Consider a composition series of 𝐴 as an 𝐴-module:

0 = 𝑉0 ⊂ 𝑉1 ⊂ · · · ⊂ 𝑉𝑛−1 ⊂ 𝑉𝑛 = 𝐴.
For each 𝑖 ∈ {1, 2, . . . , 𝑛}, the factor 𝑉𝑖/𝑉𝑖−1 is a simple 𝐴-module. By part (2), 𝐽 (𝐴) annihilates each simple factor, so

𝐽 (𝐴)𝑉𝑖 ⊆ 𝑉𝑖−1, for all 𝑖 = 1, . . . , 𝑛.

Thus,
𝐽 (𝐴)𝑉1 = 0, 𝐽 (𝐴)2𝑉2 ⊆ 𝐽 (𝐴)2𝑉1 = 0,

and inductively we obtain 𝐽 (𝐴)𝑟𝑉𝑟 = 0 for all 𝑟. In particular, 𝐽 (𝐴)𝑛𝐴 = 0, which implies 𝐽 (𝐴)𝑛 = 0.

(6) Since 𝐴/𝐼 � 𝑆1 ⊕ 𝑆2 ⊕ · · · ⊕ 𝑆𝑟 for simple 𝐴/𝐼-modules 𝑆𝑖, and each 𝑆𝑖 can be viewed as a simple 𝐴-module, part
(2) implies 𝐽 (𝐴)𝑆𝑖 = 0 for all 𝑖. Hence,

𝐽 (𝐴) (𝐴/𝐼) = 𝐽 (𝐴) (𝑆1 ⊕ · · · ⊕ 𝑆𝑟 ) = 0,
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which implies 𝐽 (𝐴) = 𝐽 (𝐴)𝐴 ⊆ 𝐼.

(7) If 𝐴 is semisimple, then 𝐽 (𝐴) = 0 by part (5) with 𝐼 = 0. Conversely, if 𝐽 (𝐴) = 0, then 𝐴/𝐽 (𝐴) = 𝐴 is semisimple.

□

Remark 2.2.1. From the preceding theorem, one can show that 𝐽 (𝐴) is the largest nilpotent ideal of 𝐴.

2.3. The Artin–Wedderburn Theorem. The significance of the Artin–Wedderburn Theorem lies in the fact
that it provides a complete classification of semisimple k-algebras.

Lemma 2.3.1. Let 𝐴 be a k-algebra and suppose that, as an 𝐴-module, 𝐴 decomposes as a direct sum of nonzero
submodules:

𝐴 = 𝑀1 ⊕ 𝑀2 ⊕ · · · ⊕ 𝑀𝑟 .
Write the identity element of 𝐴 as 1𝐴 = 𝑒1 + 𝑒2 + · · · + 𝑒𝑟 with 𝑒𝑖 ∈ 𝑀𝑖. Then:

(1) 𝑒2
𝑖
= 𝑒𝑖 and 𝑒𝑖𝑒 𝑗 = 0 for 𝑖 ≠ 𝑗 .

(2) 𝑀𝑖 = 𝐴𝑒𝑖 and 𝑒𝑖 ≠ 0.

Proof: For (1), note that

𝑒𝑖 = 𝑒𝑖1𝐴 = 𝑒𝑖𝑒1 + 𝑒𝑖𝑒2 + · · · + 𝑒𝑖𝑒𝑟 .
Thus,

𝑒𝑖 − 𝑒2𝑖 =
∑︁
𝑗≠𝑖

𝑒𝑖𝑒 𝑗 .

The left-hand side lies in 𝑀𝑖, while the right-hand side lies in
⊕

𝑗≠𝑖 𝑀 𝑗 . Since the sum is direct, we conclude 𝑒2
𝑖
= 𝑒𝑖

and 𝑒𝑖𝑒 𝑗 = 0 for 𝑖 ≠ 𝑗 .

For (2), take 𝑚 ∈ 𝑀𝑖. Then
𝑚 = 𝑚1𝐴 = 𝑚𝑒1 + 𝑚𝑒2 + · · · + 𝑚𝑒𝑟 .

As before, this implies 𝑚 − 𝑚𝑒𝑖 ∈
⊕

𝑗≠𝑖 𝑀 𝑗 , so 𝑚 = 𝑚𝑒𝑖 ∈ 𝐴𝑒𝑖, and hence 𝑀𝑖 ⊆ 𝐴𝑒𝑖. The reverse inclusion is clear since

𝑒𝑖 ∈ 𝑀𝑖 and 𝑀𝑖 is an 𝐴-module. Finally, 𝑒𝑖 ≠ 0 because 𝑀𝑖 ≠ 0. □

The elements 𝑒𝑖 ∈ 𝐴 with 𝑒2
𝑖
= 𝑒𝑖 are called idempotents, and the properties in Lemma 2.3.1 (1) define an orthogonal

idempotent decomposition of the identity.

The following proposition is a special case of the Artin-Wedderburn Theorem 2.3.2. However, we will prove it
without using Theorem 2.3.2.

Proposition 2.3.1. Let k be an algebraically closed field, and suppose 𝐴 is a finite-dimensional commutative
k-algebra. Then 𝐴 is semisimple if and only if 𝐴 is isomorphic to a finite direct product of copies of k. That is,

𝐴 � k × · · · × k.

Proof: A direct product of copies of k is clearly semisimple. Conversely, assume 𝐴 is a finite-dimensional commutative
semisimple k-algebra. Then, as an 𝐴-module, we have a decomposition

𝐴 = 𝑆1 ⊕ 𝑆2 ⊕ · · · ⊕ 𝑆𝑟
with 𝑆𝑖 = 𝐴𝑒𝑖 simple submodules and {𝑒𝑖} an orthogonal idempotent decomposition of 1𝐴 by Lemma 2.3.1.

Since 𝐴 is finite-dimensional, each simple 𝐴-module 𝑆𝑖 is finite-dimensional ([33], Corollary 3.20). Moreover, as 𝐴
is commutative and k is algebraically closed, each 𝑆𝑖 is one-dimensional ([33], Corollary 3.38), with basis 𝑒𝑖.

Define the map 𝜓 : 𝐴→ k𝑟 by

𝜓(𝑎) = (𝛼1, . . . , 𝛼𝑟 ) where 𝑎𝑒𝑖 = 𝛼𝑖𝑒𝑖 .

This map is an algebra isomorphism. Details can be found in [33, Proposition 5.2]. □

For any k-algebra 𝐵, the opposite algebra 𝐵op is defined to have the same underlying vector space as 𝐵, but
multiplication is given by 𝑏 ∗ 𝑏′ := 𝑏′𝑏 for 𝑏, 𝑏′ ∈ 𝐵.

Lemma 2.3.2 ([33], Lemma 5.4). Let 𝐴 be a k-algebra. Then 𝐴 � End𝐴(𝐴)op as k-algebras.
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Let 𝑈1, . . . ,𝑈𝑟 be 𝐴-modules. Define the k-algebra Λ of 𝑟 × 𝑟 matrices with entries in Hom𝐴(𝑈 𝑗 ,𝑈𝑖):

Λ :=



𝜑11 · · · 𝜑1𝑟
...

...

𝜑𝑟1 · · · 𝜑𝑟𝑟


�������𝜑𝑖 𝑗 ∈ Hom𝐴(𝑈 𝑗 ,𝑈𝑖)

 .
With matrix addition and composition as multiplication, Λ is a k-algebra. Let 𝑉 := 𝑈1 ⊕ · · · ⊕ 𝑈𝑟 . Then Λ � End𝐴(𝑉)
([33, Lemma 5.6]).

Theorem 2.3.1. Let 𝐴 be a k-algebra and let 𝑉 = 𝑆1 ⊕ · · · ⊕ 𝑆𝑡 where each 𝑆𝑖 is a simple 𝐴-module. Then there
exist positive integers 𝑟 and 𝑛1, . . . , 𝑛𝑟 , and division algebras 𝐷1, . . . , 𝐷𝑟 over k, such that

End𝐴(𝑉) � 𝑀𝑛1 (𝐷1) × · · · × 𝑀𝑛𝑟 (𝐷𝑟 ).

Proof: By Schur’s lemma, Hom𝐴(𝑆 𝑗 , 𝑆𝑖) = 0 when 𝑆𝑖 � 𝑆 𝑗 , and End𝐴(𝑆𝑖) is a division algebra over k when 𝑆𝑖 � 𝑆 𝑗 .
Group the isomorphic summands so that

𝑆1 � · · · � 𝑆𝑛1 , 𝑆𝑛1+1 � · · · � 𝑆𝑛1+𝑛2 , . . . , 𝑆𝑡−𝑛𝑟+1 � · · · � 𝑆𝑡 ,
yielding 𝑟 distinct isomorphism classes with multiplicities 𝑛1, . . . , 𝑛𝑟 . Define 𝐷𝑖 := End𝐴(𝑆𝑘) for any representative 𝑆𝑘
in the 𝑖-th class. By Schur’s lemma the 𝐷𝑖’s are division algebras. We obtain that the endomorphism algebra of 𝑉 can
be written as a matrix algebra, with block matrices

End𝐴(𝑉) � Λ = (Hom(𝑆 𝑗 , 𝑆𝑖))𝑖, 𝑗 =

𝑀𝑛1 (𝐷1) · · · 0

...
. . .

0 · · · 𝑀𝑛𝑟 (𝐷𝑟 )

 � 𝑀𝑛1 (𝐷1) × · · · × 𝑀𝑛𝑟 (𝐷𝑟 ).

□

Lemma 2.3.3 ([33], Lemma 5.8). (1) Let 𝐷 be a division algebra over k. Then 𝑀𝑛 (𝐷) is a semisimple k-
algebra for any 𝑛 ∈ N. Moreover,

𝑀𝑛 (𝐷)op � 𝑀𝑛 (𝐷op)
as k-algebras.

(2) Let 𝐷1, . . . , 𝐷𝑟 be division algebras over k. Then the direct product

𝑀𝑛1 (𝐷1) × · · · × 𝑀𝑛𝑟 (𝐷𝑟 )
is a semisimple k-algebra.

It has been established that any algebra of the form 𝑀𝑛1 (𝐷1)×· · ·×𝑀𝑛𝑟 (𝐷𝑟 ), with 𝐷𝑖 division algebras, is semisimple.
The Artin–Wedderburn theorem states that every semisimple algebra is of this form.

Theorem 2.3.2 (Artin–Wedderburn Theorem). Let k be a field and let 𝐴 be a semisimple k-algebra. Then there
exist positive integers 𝑟 and 𝑛1, . . . , 𝑛𝑟 and division algebras 𝐷1, . . . , 𝐷𝑟 over k such that

𝐴 � 𝑀𝑛1 (𝐷1) × · · · × 𝑀𝑛𝑟 (𝐷𝑟 ).
Conversely, every such product is a semisimple k-algebra.

Proof: The second statement is covered by Lemma 2.3.3. For the first, assume 𝐴 is semisimple, so as an 𝐴-module,

𝐴 = 𝑆1 ⊕ · · · ⊕ 𝑆𝑡 ,
where each 𝑆𝑖 is a simple 𝐴-module. By Theorem 2.3.1,

End𝐴(𝐴) � 𝑀𝑛1 (𝐷1) × · · · × 𝑀𝑛𝑟 (𝐷𝑟 ).
Then, by Lemmas 2.3.2 and 2.3.3,

𝐴 � End𝐴(𝐴)op � 𝑀𝑛1 (𝐷1) × · · · × 𝑀𝑛𝑟 (𝐷𝑟 ),

where 𝐷𝑖 := 𝐷
op
𝑖
. □

Remark 2.3.1. The k-algebra 𝑀𝑛 (𝐷) is simple if 𝐷 is a division k-algebra and 𝑛 ≥ 1.

The decomposition in the above theorem is known as the Artin–Wedderburn decomposition of the semisimple
algebra 𝐴.
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Corollary 2.3.1. (1) Let 𝐷1, . . . , 𝐷𝑟 be division algebras over k, and 𝑛1, . . . , 𝑛𝑟 positive integers. Then the
semisimple algebra 𝑀𝑛1 (𝐷1)×· · ·×𝑀𝑛𝑟 (𝐷𝑟 ) has precisely 𝑟 simple modules up to isomorphism, with dimensions
𝑛1 dimk 𝐷1, . . . , 𝑛𝑟 dimk 𝐷𝑟 (which may be infinite).

(2) If k is algebraically closed and 𝐴 is a finite-dimensional semisimple k-algebra, then

𝐴 � 𝑀𝑛1 (k) × · · · × 𝑀𝑛𝑟 (k),
for some 𝑛1, . . . , 𝑛𝑟 ∈ N. In this case, 𝐴 has 𝑟 simple modules up to isomorphism, of dimensions 𝑛1, . . . , 𝑛𝑟 .

Remark 2.3.2. A k-algebra of the form

𝐴 � 𝑀𝑛1 (k) × · · · × 𝑀𝑛𝑟 (k)
is called a split semisimple algebra.

3. Quasihereditary Algebras

We now turn to the study of quasihereditary algebras. This section presents the main results from the Appendix
on this topic in [20], focusing on those most relevant to our work.

3.1. Highest Weight Categories. Let 𝐾 be an algebraically closed field, k a subfield, and 𝑆 a finite-dimensional
k-algebra. Assume that End𝑆 (𝐿) = k for every simple 𝑆-module 𝐿. Fix a complete set of pairwise non-isomorphic
simple 𝑆-modules {𝐿 (𝜆) | 𝜆 ∈ Λ+}, where Λ is an indexing set and Λ+ ⊆ Λ consists of those 𝜆 such that 𝐿 (𝜆) ≠ 0. We
follow the notation in [20] and do not replace Λ by Par𝑛.

Definition 3.1.1. A (left) 𝑆-module 𝑃 is said to be projective if, for every surjective homomorphism of 𝑆-modules
𝑓 : 𝑀 ↠ 𝑁 and every 𝑆-module homomorphism 𝑔 : 𝑃→ 𝑁, there exists a homomorphism �̃� : 𝑃→ 𝑀 such that 𝑓 ◦ �̃� = 𝑔.
That is, the following diagram commutes:

𝑃

𝑀 𝑁

𝑔 𝑔

𝑓

Remark 3.1.1. A useful criterion for projectivity is that any direct summand of a free 𝑆-module is projective. That
is, if 𝐹 is a free 𝑆-module and 𝑃 ⊆ 𝐹 is a submodule such that 𝐹 = 𝑃 ⊕𝑄 for some 𝑆-module 𝑄, then 𝑃 is projective. In
particular, if 𝑆 is a unital ring and 𝑒 ∈ 𝑆 is an idempotent, then the left 𝑆-module 𝑆𝑒 is projective, since it is a direct
summand of the regular module 𝑆. Indeed, we have the decomposition 𝑆 = 𝑆𝑒 ⊕ 𝑆(1 − 𝑒).

Remark 3.1.2. Another important characterization is that a module 𝑃 is projective if and only if the functor
Hom𝑆 (𝑃,−) is exact. That is, 𝑃 is projective if Hom𝑆 (𝑃,−) sends every short exact sequence of 𝑆-modules to a short
exact sequence of k-vector spaces.

Definition 3.1.2. A (left) 𝑆-module 𝐼 is said to be injective if, for every injective homomorphism of 𝑆-modules
𝑓 : 𝑀 ↩→ 𝑁 and every 𝑆-module homomorphism 𝑔 : 𝑀 → 𝐼, there exists a homomorphism �̃� : 𝑁 → 𝐼 such that �̃� ◦ 𝑓 = 𝑔.
That is, the following diagram commutes:

𝑀 𝑁

𝐼

𝑓

𝑔
𝑔

Remark 3.1.3. A module 𝐼 is injective if and only if the functor Hom𝑆 (−, 𝐼) is exact.

Definition 3.1.3. A projective cover of 𝐿 (𝜆) is a surjective homomorphism of 𝑆-modules

𝜋 : 𝑃(𝜆) ↠ 𝐿 (𝜆),
where 𝑃(𝜆) is projective and ker(𝜋) = rad(𝑃(𝜆)). That is, 𝜋 is an essential surjective homomorphism, meaning that
𝑃(𝜆) is the smallest projective module surjecting onto 𝐿 (𝜆).

Definition 3.1.4. An injective envelope of 𝐿 (𝜆) is an injective homomorphism

𝜄 : 𝐿 (𝜆) ↩→ 𝐼 (𝜆),
where 𝐼 (𝜆) is injective and the image of 𝜄 is an essential submodule of 𝐼 (𝜆). That is, every nonzero submodule of 𝐼 (𝜆)
intersects 𝜄(𝐿 (𝜆)) nontrivially.
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Since 𝑆 is finite-dimensional over a field, it is Artinian. In particular, the category of finite-dimensional 𝑆-modules
𝑚𝑜𝑑 (𝑆) is abelian, has enough projectives and enough injectives, so every simple module admits a projective cover and
an injective envelope (unique up to isomorphism). For each 𝜆 ∈ Λ+, fix a projective cover 𝑃(𝜆) and an injective envelope
𝐼 (𝜆) of 𝐿 (𝜆).

For 𝑋 ∈ 𝑚𝑜𝑑 (𝑆) and 𝜆 ∈ Λ+, write [𝑋 : 𝐿 (𝜆)] for the multiplicity of 𝐿 (𝜆) as a composition factor of 𝑋. That is, the
number [𝑋 : 𝐿 (𝜆)] denotes the number of times (counted with multiplicity) that the simple module 𝐿 (𝜆) appears as a
composition factor in a composition series of 𝑋.

Let 𝜋 ⊆ Λ+. We say 𝑉 ∈ 𝑚𝑜𝑑 (𝑆) belongs to 𝜋 if all its composition factors lie in {𝐿 (𝜆) | 𝜆 ∈ 𝜋}. Among all such
submodules of 𝑉 , there is a unique maximal one denoted 𝑂 𝜋 (𝑉). Similarly, among all submodules 𝑈 ⊆ 𝑉 such that 𝑉/𝑈
belongs to 𝜋, there is a unique minimal such 𝑈, denoted 𝑂 𝜋 (𝑉).

Let 𝜙 : 𝑉 → 𝑉 ′ be a morphism in 𝑚𝑜𝑑 (𝑆). Then 𝜙(𝑂 𝜋 (𝑉)) ⊆ 𝑂 𝜋 (𝑉 ′) and 𝜙(𝑂 𝜋 (𝑉)) ⊆ 𝑂 𝜋 (𝑉 ′). Define:

𝑂 𝜋 (𝜙) : 𝑂 𝜋 (𝑉) → 𝑂 𝜋 (𝑉 ′), 𝑂 𝜋 (𝜙) : 𝑂 𝜋 (𝑉) → 𝑂 𝜋 (𝑉 ′)
as the restrictions of 𝜙. The assignments 𝑂 𝜋 and 𝑂 𝜋 are functors 𝑚𝑜𝑑 (𝑆) → 𝑚𝑜𝑑 (𝑆), which are left exact and right
exact, respectively.

For 𝑥 ∈ 𝑆, consider right multiplication by 𝑥, i.e., 𝜙 : 𝑆 → 𝑆 given by 𝜙(𝑠) = 𝑠𝑥. Then functoriality implies
𝑂 𝜋 (𝑆)𝑥 ⊆ 𝑂 𝜋 (𝑆), so 𝑂 𝜋 (𝑆) is a (two-sided) ideal of 𝑆.

Lemma 3.1.1. For 𝑉 ∈ 𝑚𝑜𝑑 (𝑆) we have 𝑂 𝜋 (𝑉) = 𝑂 𝜋 (𝑆) · 𝑉 . In particular, 𝑂 𝜋 (𝑆) · 𝑉 = 0 if 𝑉 belongs to 𝜋.

Proof: The lemma holds for 𝑉 = 𝑆 and hence also for direct sums of copies of 𝑆. Write 𝑉 = 𝐹/𝑇 , where 𝐹 is a free
module and 𝑇 a submodule. Then, by right exactness:

𝑂 𝜋 (𝑉) = 𝑂 𝜋 (𝐹) + 𝑇
𝑇

=
𝑂 𝜋 (𝑆) · 𝐹 + 𝑇

𝑇
= 𝑂 𝜋 (𝑆) · (𝐹/𝑇).

If 𝑉 belongs to 𝜋, then 𝑂 𝜋 (𝑉) = 0, so 𝑂 𝜋 (𝑆) · 𝑉 = 0. □

Define 𝑆(𝜋) := 𝑆/𝑂 𝜋 (𝑆) and note that 𝑂 𝜋 (𝑉) and 𝑉/𝑂 𝜋 (𝑉) are naturally 𝑆(𝜋)-modules. If 𝜆 ∈ 𝜋, then 𝐿 (𝜆) is
naturally an 𝑆(𝜋)-module. One can prove:

Lemma 3.1.2. {𝐿 (𝜆) | 𝜆 ∈ 𝜋} is a complete set of pairwise non-isomorphic simple 𝑆(𝜋)-modules. Moreover,
𝑃(𝜆)/𝑂 𝜋 (𝑃(𝜆)) is a projective cover and 𝑂 𝜋 (𝐼 (𝜆)) is an injective envelope of 𝐿 (𝜆) as 𝑆(𝜋)-modules, for all 𝜆 ∈ 𝜋.

3.2. The Schur Functor and Module Structures over 𝑒𝑆𝑒. Let 𝑒 ∈ 𝑆 be a non-zero idempotent, and let
𝑆𝑒 := 𝑒𝑆𝑒 denote the associated subalgebra. There is a functor 𝑓 : 𝑚𝑜𝑑 (𝑆) → 𝑚𝑜𝑑 (𝑆𝑒) defined by 𝑓 𝑉 := 𝑒𝑉 , viewed as
an 𝑆𝑒-module. Given a morphism 𝜃 : 𝑉 → 𝑉 ′ in 𝑚𝑜𝑑 (𝑆), we define 𝑓 𝜃 := 𝜃 |𝑒𝑉 , the restriction to 𝑒𝑉 . We have a natural
isomorphism of k-vector spaces:

Hom𝑆 (𝑆𝑒,𝑉) � 𝑒𝑉,
and since 𝑆𝑒 is a projective 𝑆-module, we obtain the following:

Lemma 3.2.1. The functor 𝑓 : 𝑚𝑜𝑑 (𝑆) → 𝑚𝑜𝑑 (𝑆𝑒) is exact.

Define Λ𝑒 := {𝜆 ∈ Λ+ | 𝑒𝐿 (𝜆) ≠ 0}. Recall that the dual space of a left 𝑆-module 𝑉 is 𝑉∗ := Homk (𝑉, k), which is a
left module over 𝑆𝑜𝑝 in the usual way.

Proposition 3.2.1. Let 𝑔 : 𝑚𝑜𝑑 (𝑆𝑜𝑝) → 𝑚𝑜𝑑 (𝑆𝑜𝑝𝑒 ) denote the Schur functor. Then:

(1) For 𝑉 ∈ 𝑚𝑜𝑑 (𝑆), the natural map 𝑔(𝑉∗) → ( 𝑓 𝑉)∗ is an isomorphism of 𝑆𝑜𝑝𝑒 -modules.
(2) Λ𝑒 is the set of 𝜆 ∈ Λ+ such that 𝑃(𝜆) is a direct summand of 𝑆𝑒.
(3) For 𝜆 ∈ Λ𝑒 and 𝑉 ∈ 𝑚𝑜𝑑 (𝑆), the natural map

Hom𝑆 (𝑃(𝜆), 𝑉) → Hom𝑆𝑒 ( 𝑓 𝑃(𝜆), 𝑓 𝑉)
is an isomorphism.

(4) The set { 𝑓 𝐿 (𝜆) | 𝜆 ∈ Λ𝑒} is a complete set of pairwise non-isomorphic irreducible 𝑆𝑒-modules.
(5) For 𝜆 ∈ Λ𝑒, the module 𝑓 𝑃(𝜆) is a projective cover of 𝑓 𝐿 (𝜆).
(6) For 𝜆 ∈ Λ𝑒, the module 𝑓 𝐼 (𝜆) is an injective envelope of 𝑓 𝐿 (𝜆).
(7) For 𝑋 ∈ 𝑚𝑜𝑑 (𝑆) and 𝜆 ∈ Λ𝑒, we have

[𝑋 : 𝐿 (𝜆)] = [ 𝑓 𝑋 : 𝑓 𝐿 (𝜆)] .
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Proof: We sketch some of the main arguments; see [20] for full details.

Let 𝑈 be a simple 𝑆-module and assume 𝑒𝑢 ≠ 0 for some 𝑢 ∈ 𝑈 and 𝑒𝑢 ∈ 𝑒𝑈. Then 𝑆𝑒𝑒𝑢 = 𝑒(𝑆𝑒𝑈). As 𝑈 is simple,
𝑆𝑒𝑈 = 𝑈 by Lemma 1.3.1, and so 𝑆𝑒𝑒𝑢 = 𝑒𝑈. Therefore, 𝑓𝑈 = 𝑒𝑈 is simple as an 𝑆𝑒-module.

Now, given a composition series of 𝑆𝑒

0 = 𝑉0 ⊂ 𝑉1 ⊂ · · · ⊂ 𝑉𝑛 = 𝑆𝑒,
we obtain a composition series for 𝑆𝑒

0 = 𝑓 𝑉0 ⊂ 𝑓 𝑉1 ⊂ · · · ⊂ 𝑓 𝑉𝑛 = 𝑆𝑒,

with 𝑓 𝑉𝑖/ 𝑓 𝑉𝑖−1 � 𝑓 (𝑉𝑖/𝑉𝑖−1) being either 0 or simple. As every simple left 𝑆𝑒-module is a composition factor of the
left 𝑆-module 𝑆 (called the regular 𝑆-module), then the simple 𝑆𝑒-modules are precisely those of the form 𝑓𝑈 for some
simple 𝑆-module 𝑈.

If 𝑓 𝐿 (𝜆) ≠ 0, then Hom𝑆 (𝑆𝑒, 𝐿(𝜆)) ≠ 0, implying that 𝑃(𝜆) is a direct summand of 𝑆𝑒, because the morphism splits.

Assume 𝑒 = 𝑒1 + · · · + 𝑒𝑛 is a decomposition into orthogonal primitive idempotents. Then

𝑆𝑒 = 𝑆𝑒1 ⊕ · · · ⊕ 𝑆𝑒𝑛,
and 𝑃(𝜆) � 𝑆𝑒𝑖 for some 𝑖. Using known isomorphisms of Hom spaces and projectivity of 𝑆𝑒𝑖, we conclude that 𝑓 𝑃(𝜆)
is projective.

Further analysis shows that 𝑓 𝑃(𝜆) is indecomposable, and 𝑓 𝐿 (𝜆) appears as its head. That is,
𝑓 𝐿 (𝜆) � 𝑓 𝑃(𝜆)/rad( 𝑓 𝑃(𝜆))

is the unique simple top quotient of 𝑓 𝑃(𝜆). Thus, the 𝑓 𝐿 (𝜆) for distinct 𝜆 ∈ Λ𝑒 are pairwise non-isomorphic, and
Λ𝑒 is precisely the set of labels for which 𝑃(𝜆) appears as a direct summand of 𝑆𝑒. □

3.3. Standard and Costandard Modules. Fix a partial order ≤ on Λ+. For 𝜆 ∈ Λ+, define
𝜋(𝜆) := {𝜇 ∈ Λ+ | 𝜇 < 𝜆}.

Since projective covers of simple modules in a finite-dimensional algebra are indecomposable, each 𝑃(𝜆) is indecompos-
able. Let 𝑀 (𝜆) denote the unique maximal submodule of 𝑃(𝜆). Define

𝐾 (𝜆) := 𝑂 𝜋 (𝜆) (𝑀 (𝜆)), Δ(𝜆) := 𝑃(𝜆)/𝐾 (𝜆),
and similarly,

∇(𝜆) ⊆ 𝐼 (𝜆) by ∇(𝜆)/𝐿 (𝜆) := 𝑂 𝜋 (𝜆) (𝐼 (𝜆)/𝐿 (𝜆)).

The modules Δ(𝜆) and ∇(𝜆) are called the standard and costandard modules, respectively.

Lemma 3.3.1. For all 𝜆 ∈ Λ+, we have:

End𝑆 (Δ(𝜆)) = k, End𝑆 (∇(𝜆)) = k.

Definition 3.3.1. Let 𝑆 be a finite-dimensional k-algebra and 𝑋,𝑌 ∈ 𝑚𝑜𝑑 (𝑆). The group Ext1𝑆 (𝑋,𝑌 ) is the set of
equivalence classes of short exact sequences:

0→ 𝑌
𝜄−→ 𝐸

𝜋−→ 𝑋 → 0,

where two such sequences are equivalent if there exists an 𝑆-module isomorphism 𝑓 : 𝐸 → 𝐸 ′ making the diagram
commute:

0 → 𝑌
𝜄−→ 𝐸

𝜋−→ 𝑋 → 0
∥ ↓ 𝑓 ∥

0 → 𝑌
𝜄′−→ 𝐸 ′

𝜋′−−→ 𝑋 → 0.

Remark 3.3.1. The vanishing of Ext1𝑆 (𝑋,𝑌 ) characterizes projective and injective modules:

• Ext1𝑆 (𝑋,𝑌 ) = 0 for all 𝑌 if and only if 𝑋 is projective.

• Ext1𝑆 (𝑋,𝑌 ) = 0 for all 𝑋 if and only if 𝑌 is injective.

In either case, every short exact sequence splits, so 𝐸 � 𝑋 ⊕ 𝑌 .

Proposition 3.3.1. Let 𝜆 ∈ Λ+. Then:
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(1) Hom𝑆 (Δ(𝜆),∇(𝜇)) =
{

k, if 𝜆 = 𝜇,

0, otherwise.

(2) Let 𝑋 ∈ 𝑚𝑜𝑑 (𝑆). If Ext1𝑆 (Δ(𝜆), 𝑋) ≠ 0 or Ext1𝑆 (𝑋,∇(𝜆)) ≠ 0, then 𝑋 has a composition factor 𝐿 (𝜇) with 𝜇 ≮ 𝜆.

Definition 3.3.2. Let 𝑋 ∈ 𝑚𝑜𝑑 (𝑆). A filtration of 𝑋 is a sequence:

0 = 𝑋0 ⊆ 𝑋1 ⊆ · · · ⊆ 𝑋𝑟 = 𝑋
of submodules. A Δ-filtration (resp. ∇-filtration) is one in which each successive quotient 𝑋𝑖/𝑋𝑖−1 is isomorphic to some
Δ(𝜆) (resp. ∇(𝜆)) or zero. We write 𝑋 ∈ F (Δ) or 𝑋 ∈ F (∇) accordingly.

If 𝑋 ∈ F (Δ), then (𝑋 : Δ(𝜆)) denotes the multiplicity of Δ(𝜆) as a composition factor in any such filtration
(analogously for ∇).

Definition 3.3.3. The category 𝑚𝑜𝑑 (𝑆) is called a highest weight category (with respect to the order ≤) if for all
𝜆 ∈ Λ+:

(1) 𝐼 (𝜆)/∇(𝜆) ∈ F (∇),
(2) If (𝐼 (𝜆)/∇(𝜆) : ∇(𝜇)) ≠ 0, then 𝜇 > 𝜆.

3.4. Properties in Highest Weight Categories. From now on, assume that (𝑚𝑜𝑑 (𝑆), ≤) is a highest weight
category. The elements of Λ+ are called dominant weights.

Definition 3.4.1. The Grothendieck group Grot(𝑆) of the abelian category mod(𝑆) is the free abelian group generated
by the isomorphism classes [𝑋] of objects 𝑋 ∈ mod(𝑆), subject to the relations

[𝑋] = [𝑋 ′] + [𝑋 ′′]
for every short exact sequence

0→ 𝑋 ′ → 𝑋 → 𝑋 ′′ → 0

in mod(𝑆).

This group is a free abelian group with basis {[𝐿 (𝜆)] | 𝜆 ∈ Λ+}. Each standard module Δ(𝜆) has a composition
series with top 𝐿 (𝜆) and all other composition factors of the form 𝐿 (𝜇) with 𝜇 < 𝜆. Therefore, we can write:

[Δ(𝜆)] = [𝐿 (𝜆)] +
∑︁
𝜇<𝜆

𝑎𝜇 [𝐿 (𝜇)],

for some 𝑎𝜇 ∈ Z≥ 0. Thus, the set {[Δ(𝜆)]}𝜆 ∈ Λ+ forms a Z-basis for 𝐺𝑟𝑜𝑡 (𝑆), and similarly for {[∇(𝜆)]}𝜆∈Λ+ .
By exactness of Hom𝑆 (𝑃(𝜆),−) and Hom𝑆 (−, 𝐼 (𝜆)), we have:

Lemma 3.4.1. Let 𝜆 ∈ Λ+ and 𝑋 ∈ 𝑚𝑜𝑑 (𝑆). Then:

dimHom𝑆 (𝑃(𝜆), 𝑋) = dimHom𝑆 (𝑋, 𝐼 (𝜆)) = [𝑋 : 𝐿 (𝜆)] .

Define integers (𝑋 : Δ(𝜆)) and (𝑋 : ∇(𝜆)) by:

[𝑋] =
∑︁
𝜆∈Λ+
(𝑋 : Δ(𝜆)) [Δ(𝜆)], [𝑋] =

∑︁
𝜆∈Λ+
(𝑋 : ∇(𝜆)) [∇(𝜆)] .

These functions are additive on short exact sequences.

Proposition 3.4.1. Let 𝑋,𝑌 ∈ 𝑚𝑜𝑑 (𝑆). Then:

(1) If 𝑋 ∈ F (Δ) and 𝑌 ∈ F (∇), then

dimExt𝑖𝑆 (𝑋,𝑌 ) =
{∑

𝜈∈Λ+ (𝑋 : Δ(𝜈)) (𝑌 : ∇(𝜈)), if 𝑖 = 0,

0, if 𝑖 > 0.

In particular, for 𝜆, 𝜇 ∈ Λ+:

Ext𝑖𝑆 (Δ(𝜆),∇(𝜇)) =
{

k, if 𝑖 = 0 and 𝜆 = 𝜇,

0, otherwise.

(2) For 𝜆 ∈ Λ+:
(𝑋 : Δ(𝜆)) = dimHom𝑆 (𝑋,∇(𝜆)), (𝑌 : ∇(𝜆)) = dimHom𝑆 (Δ(𝜆), 𝑌 ).
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(3) 𝑋 ∈ F (Δ) if and only if Ext1𝑆 (𝑋,∇(𝜆)) = 0 for all 𝜆 ∈ Λ+.
(4) 𝑋 ∈ F (∇) if and only if Ext1𝑆 (Δ(𝜆), 𝑋) = 0 for all 𝜆 ∈ Λ+.
(5) For 𝜆 ∈ Λ+, the projective module 𝑃(𝜆) ∈ F (Δ), and the injective module 𝐼 (𝜆) ∈ F (∇). Moreover,

(𝑃(𝜆) : Δ(𝜇)) = [∇(𝜇) : 𝐿 (𝜆)], (𝐼 (𝜆) : ∇(𝜇)) = [Δ(𝜇) : 𝐿 (𝜆)] .
(6) Let

0→ 𝑋 ′ → 𝑋 → 𝑋 ′′ → 0

be a short exact sequence in 𝑚𝑜𝑑 (𝑆). If 𝑋 ′, 𝑋 ∈ F (∇), then 𝑋 ′′ ∈ F (∇). Similarly, if 𝑋, 𝑋 ′′ ∈ F (Δ), then
𝑋 ′ ∈ F (Δ).

(7) If 𝑋 ∈ F (Δ) (resp. F (∇)), and 𝑌 is a direct summand of 𝑋, then 𝑌 ∈ F (Δ) (resp. F (∇)).

Definition 3.4.2. A subset 𝜋 ⊆ Λ+ is called saturated if, for all 𝜆 ∈ 𝜋 and 𝜇 ∈ Λ+ with 𝜇 < 𝜆, it follows that 𝜇 ∈ 𝜋.

Let 𝜋 be a saturated set of dominant weights. We can consider modules 𝑋 ∈ 𝑚𝑜𝑑 (𝑆) that belong to 𝜋, meaning all
their composition factors are isomorphic to 𝐿 (𝜆) for some 𝜆 ∈ 𝜋. The quotient algebra 𝑆(𝜋) := 𝑆/𝑂 𝜋 (𝑆) captures the
structure of such modules.

Proposition 3.4.2. Let 𝑀, 𝑁 be finite-dimensional 𝑆-modules belonging to the saturated set 𝜋. Then, for all 𝑖 ≥ 0,

Ext𝑖
𝑆 (𝜋 ) (𝑀, 𝑁) � Ext𝑖𝑆 (𝑀, 𝑁).

This means that the Ext groups for modules belonging to a saturated subset can be computed either in the algebra
𝑆 or in the quotient algebra 𝑆(𝜋).

As shown in [20, Proposition A3.4], the category 𝑚𝑜𝑑 (𝑆(𝜋)) inherits the structure of a highest weight category:

Proposition 3.4.3. Let 𝜋 ⊆ Λ+ be a saturated set. Then 𝑚𝑜𝑑 (𝑆(𝜋)) is a highest weight category with respect to
the partial order inherited from Λ+, and with standard modules Δ(𝜆) and costandard modules ∇(𝜆) for 𝜆 ∈ 𝜋.

3.5. Quasihereditary Algebras and Tilting Modules.

Definition 3.5.1. An ideal 𝐻 ⊆ 𝑆 is called a hereditary ideal if it satisfies:

(1) 𝐻 is projective as a left 𝑆-module.
(2) Hom𝑆 (𝐻, 𝑆/𝐻) = 0.
(3) 𝐻𝑁𝐻 = 0, where 𝑁 is the radical of 𝑆.

Definition 3.5.2. The algebra 𝑆 is called quasihereditary if there exists a finite chain of ideals

0 = 𝐻𝑛 ⊂ 𝐻𝑛−1 ⊂ · · · ⊂ 𝐻1 ⊂ 𝐻0 = 𝑆

such that each quotient 𝐻𝑖/𝐻𝑖+1 is a hereditary ideal in the algebra 𝑆/𝐻𝑖+1. Such a chain is called a hereditary chain.

The following proposition was shown in [20, Proposition A3.7].

Proposition 3.5.1. An algebra 𝑆 is quasihereditary if and only if the category 𝑚𝑜𝑑 (𝑆) is a highest weight category
(for a suitable order on simple modules).

Thus, we may use the two expressions interchangeably.

Definition 3.5.3. Let (𝑆,Λ+) be a quasihereditary algebra. A finite-dimensional 𝑆-module 𝑇 is called a tilting
module if it lies in both F (Δ) and F (∇); that is, 𝑇 admits both a standard and a costandard filtration.

Lemma 3.5.1. Let 𝑋 ∈ F (Δ). Then there exists a tilting module 𝑇 with 𝑋 ⊆ 𝑇 . Moreover, if there exists 𝜆 ∈ Λ+

such that (𝑋 : Δ(𝜆)) = 1 and (𝑋 : Δ(𝜇)) ≠ 0 only if 𝜇 ≤ 𝜆, then we may choose 𝑇 so that (𝑇 : Δ(𝜆)) = 1 and (𝑇 : Δ(𝜇)) ≠ 0
only if 𝜇 ≤ 𝜆.

Theorem 3.5.1 (Classification of Tilting Modules).

(1) For each 𝜆 ∈ Λ+, there exists a unique (up to isomorphism) indecomposable tilting module 𝑇 (𝜆) such that:

[𝑇 (𝜆) : 𝐿 (𝜆)] = 1 and [𝑇 (𝜆) : 𝐿 (𝜇)] ≠ 0⇒ 𝜇 ≤ 𝜆.
(2) Every tilting module is a direct sum of the modules 𝑇 (𝜆), for 𝜆 ∈ Λ+.
(3) Every indecomposable tilting module is absolutely indecomposable (i.e., remains indecomposable under any

field extension of k).
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Proposition 3.5.2. Let 𝑋 ∈ 𝑚𝑜𝑑 (𝑆). Then 𝑋 ∈ F (∇) if and only if 𝑋 admits a finite resolution by tilting modules.

In summary, in a highest weight category:

• Projective modules admit standard filtrations.
• Injective modules admit costandard filtrations.
• Modules with costandard filtrations admit finite resolutions by tilting modules.
• Tilting modules are precisely those with both types of filtrations.

A central structural result is the Brauer–Humphreys reciprocity:

(𝑃(𝜆) : Δ(𝜇)) = [Δ(𝜇) : 𝐿 (𝜆)],
for all 𝜆, 𝜇 ∈ Λ+. This expresses that the multiplicity of Δ(𝜇) in a standard filtration of 𝑃(𝜆) equals the multiplicity of
𝐿 (𝜆) in a composition series of ∇(𝜇).

This completes the summary of the theory of quasihereditary algebras and highest weight categories as presented
in [20].
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CHAPTER 2

The Symmetric Group

This chapter introduces the representation theory of the symmetric group, a central object in algebraic combi-
natorics. It begins with the basic combinatorial concepts needed to describe and classify its representations, such as
partitions and tableaux.

We then study how representations are constructed, focusing on the permutation and Specht modules, and present
important results like the Branching Rule and the decomposition of the permutation module. A key idea throughout is
the relation between symmetric group representations and symmetric functions, which leads to the definition of Schur
functions and their connection to characters.

The chapter concludes with Schur–Weyl duality, which links the symmetric and general linear groups through
their joint action on tensor space. Altogether, these topics provide the combinatorial and algebraic tools needed to
understand more advanced structures introduced in later chapters.

Beyond their intrinsic interest, symmetric group representations serve as a testing ground for many ideas in modern
representation theory. They offer concrete, combinatorial models that help illustrate general phenomena, and appear
naturally in diverse areas such as Schur algebras, category theory, and algebraic geometry. The tools and constructions
presented here will reappear in more abstract settings, making this chapter a foundational step in the broader study of
algebraic structures.

1. Basic notions on combinatorics

1.1. Partitions and tableaux. Let 𝑘 be a positive integer. A partition 𝜆 of 𝑘 is a non-increasing sequence
𝜆 = (𝜆1, 𝜆2, . . . , 𝜆𝑝) of non-negative integers such that 𝜆1 + 𝜆2 + · · · + 𝜆𝑝 = 𝑘. We use the notation 𝜆 ⊢ 𝑘 for a partition
𝜆 of 𝑘 and denote its size by |𝜆 | = 𝑘. The length of 𝜆 is defined to be 𝑙 (𝜆) = 𝑝. A partition can be identified with its
Young diagram; for example,

𝜆 = (4, 2, 1) = , (1.1)

where 𝜆 ⊢ 7 and 𝑙 (𝜆) = 3. We use matrix conventions to label the boxes, also called nodes, of 𝜆. Thus, (1, 1), (1, 2), . . .,
(1, 𝜆1) are the nodes of the first row of 𝜆, and so on. The diagram of a partition is the set [𝜆] = (𝑖, 𝑗) | 1 ≤ 𝑗 ≤ 𝜆𝑖 , 𝑖 ≥ 1 ⊆
N × N.

We denote by Par𝑘 the set of partitions of 𝑘, and by Par≤𝑙
𝑘

the set of partitions of 𝑘 with length less than or equal

to 𝑙. For example, the above partition is an element of Par≤37 . Using the convention Par0 = ∅, we define Par = ∪∞
𝑘=0

Par𝑘
and Par≤𝑙 = ∪∞

𝑘=0
Par≤𝑙

𝑘
.

Some partitions can be written in a compact form. For instance, 𝜆 = (6, 6, 6, 4, 4, 3, 2, 2, 1, 1, 1, 1) can be written as
𝜆 = (63, 42, 31, 22, 14), where the exponents indicate the multiplicities of the corresponding parts. In general, a partition
𝜆 = (𝜆𝑎11 , 𝜆

𝑎2
2 , . . . , 𝜆

𝑎𝑝
𝑝 ) satisfies 𝜆1 > 𝜆2 > . . . > 𝜆𝑝.

More generally, define C𝑜𝑚𝑝𝑘 as the set of compositions 𝜇 of 𝑘, meaning that 𝜇 = (𝜇1, 𝜇2, . . . , 𝜇𝑟 ) is a sequence
of non-negative integers (not necessarily decreasing) such that the sum is 𝑘. As with partitions, each composition is
represented by a diagram. For example,

𝜇 = (1, 5, 3) = . (1.2)
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We let ord(𝜇) ∈ Par𝑘 denote the partition obtained by reordering the parts of 𝜇 in decreasing order. For 𝜇 ∈ C𝑜𝑚𝑝𝑘
and 𝜈 ∈ C𝑜𝑚𝑝𝑙, define their concatenation 𝜇 · 𝜈 = (𝜇1, 𝜇2, . . . , 𝜇𝑝 , 𝜈1, 𝜈2, . . . , 𝜈𝑞) ∈ C𝑜𝑚𝑝𝑘+𝑙.

A bijection 𝔱 : [𝜆] → 1, 2, . . . , 𝑘 is called a 𝜆-tableau; in other words, it is a filling of the nodes of 𝜆 with the numbers
1, 2, . . . , 𝑘. For example, a 𝜆-tableau 𝔱 with shape 𝜆 as in example 1.1 is:

𝔱 =
2 7 5 3

1 4

6

, (1.3)

and we define Shape(𝔱) = 𝜆 if the shape of 𝔱 is 𝜆. Let Tab(𝜆) denote the set of tableaux of shape 𝜆.

We are interested in two special kinds of tableaux: standard tableaux and semistandard tableaux. A tableau 𝔱 is
standard if the entries increase along both rows and columns. The set of standard tableaux of shape 𝜆 is denoted by
Std(𝜆), and its cardinality is given by

| Std(𝜆) | = |𝜆 |!∏
𝑢∈[𝜆] ℎ(𝑢)

, (1.4)

where ℎ(𝑢) is the hook length of the node 𝑢 ∈ [𝜆]. For example, for 𝜆 as in (1.1) we have Std(𝜆) = 7!
1·2·4·6·1·3·1 = 35.

We use the convention Std(∅) = ∅ and | Std(∅) | = 1. We also write 𝑓 𝜆 for | Std(𝜆) |.
More generally, a tableau 𝔱 is row standard if the entries increase left to right along each row. The following are

examples of a row standard and a standard tableau of shape 𝜆 = (5, 3, 2):

2 5 8 9 10

1 3 6

4 7

,
1 3 6 9 10

2 5 8

4 7

. (1.5)

The row-reading tableau, denoted 𝔱𝜆, is the standard tableau in which the numbers 1, 2, . . . , 𝑘 appear in order along
the rows and then down the columns. For example,

𝔱𝜆 =
1 2 3 4 5

6 7 8

9 10

, (1.6)

where 𝜆 is the same as in the previous example. There is also the column-reading tableau, denoted 𝔱𝜆, which fills entries
column by column:

𝔱𝜆 =
1 4 7 9 10

2 5 8

3 6

. (1.7)

Let 𝜆 ∈ Par𝑘 and 𝜇 = (𝜇1, 𝜇2, . . . , 𝜇𝑞) ∈ C𝑜𝑚𝑝𝑘 . A semistandard 𝜆-tableau of type 𝜇 is a filling of [𝜆] with the
number 1 occurring 𝜇1 times, 2 occurring 𝜇2 times, and so on, such that the entries weakly increase across rows and
strictly increase down columns. For example, if 𝜆 = (4, 3, 2) and 𝜇 = (3, 3, 3), the two semistandard tableaux of type 𝜇
are:

1 1 1 2

2 2 3

3 3

,
1 1 1 3

2 2 2

3 3

. (1.8)

The set of semistandard tableaux of shape 𝜆 and type 𝜇 is denoted SStd(𝜆, 𝜇), and its cardinality | SStd(𝜆, 𝜇) | is
called the Kostka number, denoted 𝐾𝜆,𝜇. For instance, in the example above we have 𝐾𝜆,𝜇 = 2, as seen in (1.8).
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1.2. The poset of partitions. There is a partial order on the set Par𝑘 . If 𝜆 = (𝜆1, 𝜆2, . . . , 𝜆𝑝) and 𝜇 =

(𝜇1, 𝜇2, . . . , 𝜇𝑞) are partitions of 𝑘, we say that 𝜆 dominates 𝜇, and write 𝜆 ⊵ 𝜇, if

𝜆1 + 𝜆2 + · · · + 𝜆𝑖 ≥ 𝜇1 + 𝜇2 + · · · + 𝜇𝑖 (1.9)

for all 𝑖 ≥ 1. If 𝑖 > 𝑝 (respectively, 𝑖 > 𝑞), then we take 𝜆𝑖 (respectively, 𝜇𝑖) to be zero. This order is called the
dominance order for partitions. Intuitively, 𝜆 is greater than 𝜇 in the dominance order if the Young diagram of 𝜆 is
short and wide, while that of 𝜇 is long and narrow.

The dominance order for partitions can be extended to a partial order on the set of standard tableaux of shape 𝜆, for
𝜆 ⊢ 𝑘. This order is called the dominance order for standard tableaux, and is defined as follows: for 𝔱, 𝔰 ∈ 𝑆𝑡𝑑 (𝜆), we say
that 𝔱 is greater than or equal to 𝔰, and write 𝔱⊵𝑡 𝔰 (or simply 𝔱⊵𝔰), if for all 𝑚 ≤ 𝑘 we have 𝑆ℎ𝑎𝑝𝑒(𝔱 ↓ 𝑚)⊵𝑆ℎ𝑎𝑝𝑒(𝔰 ↓ 𝑚)
in the dominance order for partitions, where 𝔱 ↓ 𝑚 is defined as the tableau obtained from 𝔱 by deleting all the nodes
with numbers strictly greater than 𝑚. For example, one can verify that for

𝔰 =
1 3 4

2 5
and 𝔱 =

1 2 4

3 5
, (1.10)

the inequality 𝔱 ⊵𝑡 𝔰 holds. This is easy to verify by writing out 𝔱 ↓ 𝑚 and 𝔰 ↓ 𝑚 for 𝑚 ∈ 1, 2, 3, 4, 5.

𝑚 1 2 3 4 5

𝔰 ↓ 𝑚 1
1
2

1 3
2

1 3 4
2

1 3 4
2 5

𝔱 ↓ 𝑚 1 1 2
1 2
3

1 2 4
3

1 2 4
3 5

Note that 𝔱𝜆 ⊵𝑡 𝔱 for all 𝔱 ∈ 𝑆𝑡𝑑 (𝜆), so this is the unique maximal tableau for ⊵𝑡 , whereas 𝔱𝜆 is the unique minimal
element.

Let 𝔖𝑘 be the symmetric group of bijections on {1, 2, . . . , 𝑘}. For 𝜎 ∈ 𝔖𝑘 and 𝑖 ∈ {1, 2, . . . , 𝑘} we write 𝜎(𝑖)
for the image of 𝑖 under 𝜎. We use standard cycle notation for elements of 𝔖𝑘 , that is, 𝜎 = (𝑖1, 𝑖2, . . . , 𝑖𝑘) is the
element defined by 𝜎(𝑖1) = 𝑖2, 𝜎(𝑖2) = 𝑖3, . . . , 𝜎(𝑖𝑟 ) = 𝑖1. For elements 𝜎1, 𝜎2 ∈ 𝔖𝑘 , the product 𝜎1𝜎2 ∈ 𝔖𝑘 is given by
(𝜎1𝜎2) (𝑖) = 𝜎1 (𝜎2 (𝑖)).

For 𝜆 ⊢ 𝑘, there is a natural left-𝔖𝑘 action of the symmetric group on the set Tab(𝜆). For example, the permutation
𝜎 = (1, 2) (4, 5), in cycle notation, acts on 𝔱 of 1.10 by permuting the numbers on the nodes, then

𝜎𝔱 =
2 1 5

3 4
. (1.11)

Further, note that Tab(𝜆) � 𝔖𝑘 as a 𝔖𝑘-set. For 𝔱 ∈ Tab(𝜆) let 𝑑 (𝔱) be the unique element of 𝔖𝑘 such that
𝔱 = 𝑑 (𝔱)𝔱𝜆. There exists compatibility between ⊵𝑡 and the Bruhat order for the symmetric group 𝔖𝑘 : 𝔱 ⊵𝑡 𝔰 if and only
if 𝑑 (𝔱) ≥ 𝑑 (𝔰) in the Bruhat order. Recall that 𝑤 ≤ 𝜏 in the Bruhat order if 𝑤 is a subword of 𝜏 in terms of generators.
This result is known as Ehresmann’s Theorem (see [70]).

Suppose that 𝜆 ∈ C𝑜𝑚𝑝𝑘 . For 𝔰, 𝔱 ∈ Tab(𝜆) we write 𝔰 ∼ 𝔱 if 𝔰 can be obtained from 𝔱 by permuting the numbers
within the rows of 𝔱. This defines an equivalence relation on Tab(𝜆). The equivalence classes under ∼ are called

𝜆-tabloids, and the tabloid represented by 𝔱 is denoted {𝔱}. For example, if 𝔱 = 1 2

3
, then

{𝔱} =
 1 2

3
,
2 1

3

 =
1 2
3

(1.12)

We let {Tab(𝜆)} denote the set of 𝜆-tabloids. One can note that the 𝔖𝑘-action on Tab(𝜆) induces a well-defined
𝔖𝑘-action on {Tab(𝜆)}, that is, 𝜎{𝔱} = {𝜎𝔱} for all 𝜎 ∈ 𝔖𝑘 . If 𝜆 = (𝜆1, 𝜆2, . . . , 𝜆𝑝) ⊢ 𝑘, then the number of tableaux in
any equivalence class is 𝜆!, where

𝜆! = 𝜆1!𝜆2! · · · 𝜆𝑝!. (1.13)
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Thus, the number of 𝜆-tabloids is 𝑘!/𝜆!. This will allow us to define the permutation module 𝑀 (𝜆) in the next
section, a fundamental object in the study of the representation theory of the symmetric group.

2. Representations of the symmetric group

2.1. Fundamental concepts. In this section, we introduce some fundamental concepts about the symmetric
group 𝔖𝑘 and its representations. In most of the theory developed throughout this work, we use cycle notation for
permutations 𝜎 ∈ 𝔖𝑘 . Much of the content in this section has been adapted from [89].

Recall that for a fixed 𝑔 ∈ 𝐺, the conjugacy class 𝐶𝑔 is defined as the set of elements of 𝐺 that are conjugate to 𝑔.
Two permutations belong to the same conjugacy class if and only if they have the same cycle type. Therefore, there is
a correspondence between partitions of 𝑘 and conjugacy classes of 𝔖𝑘 .

Definition 2.1.1. Given a partition 𝜆 = (𝜆1, 𝜆2, . . . , 𝜆𝑝) of 𝑘, the corresponding Young subgroup of 𝔖𝑘 is

𝔖𝜆 = 𝔖{1,2,...,𝜆1 } ×𝔖{𝜆1+1,𝜆1+2,...,𝜆1+𝜆2 } ×𝔖{𝑘−𝜆𝑝+1,𝑘−𝜆𝑝+2,...,𝑘} (2.1)

We usually write the Young subgroup as 𝔖𝜆 = 𝔖𝜆1 ×𝔖𝜆2 × · · · ×𝔖𝜆𝑝
. For example, for the partition 𝜆 = (3, 2, 1),

the corresponding Young subgroup is

𝔖𝜆 = 𝔖{1,2,3} ×𝔖{4,5} ×𝔖{6} � 𝔖3 ×𝔖2 ×𝔖1. (2.2)

Suppose that 𝜆 is a partition of 𝑘 as in Definition 2.1.1.

Definition 2.1.2. The permutation module corresponding to 𝜆 and denoted 𝑀 (𝜆) is defined as

𝑀 (𝜆) = 𝑆𝑝𝑎𝑛C{{𝔱1}, {𝔱2}, . . . , {𝔱𝑟 }}, (2.3)

where {𝔱1}, {𝔱2}, . . . , {𝔱𝑟 } is a complete list of 𝜆-tabloids. The dimension of 𝑀 (𝜆) is 𝑘!/𝜆!, and 𝑀 (𝜆) is a 𝔖𝑘-module.

Remark 2.1.1. Notice that the dimension of the permutation module does not change if we reorder the numbers in
𝜆 = (𝜆1, 𝜆2, . . . , 𝜆𝑝). Thus, we can define, more generally, 𝑀 (𝜇) for 𝜇 a composition of 𝑘. If 𝜇 is such that ord(𝜇) = 𝜆,
then 𝑀 (𝜇) � 𝑀 (𝜆).

Consider the Young subgroup 𝔖𝜆 for 𝜆 as in 2.1.1. Then the following holds:

𝐼𝑛𝑑
𝔖𝑘

𝔖𝜆
(𝟙𝔖𝜆
) � C[𝔖𝑘/𝔖𝜆] . (2.4)

If we call 𝑉 (𝜆) = 𝐼𝑛𝑑
𝔖𝑘

𝔖𝜆
(𝟙𝔖𝜆
), then one can verify that 𝑉 (𝜆) and 𝑀 (𝜆) are isomorphic as 𝔖𝑘-modules. Thus, 𝑀 (𝜆) is

cyclic.

In the preceding chapter, we saw some examples of representations of a finite group 𝐺. Now we begin the study
of the representation theory of the symmetric group by listing some of its representations, using the theory developed
earlier and connecting it with the combinatorial concepts introduced in this chapter.

(1) The trivial representation for 𝔖𝑘 , denoted 𝟙𝔖𝑘
, is the one which sends 𝜎 ∈ 𝔖𝑘 to the 1 × 1 identity matrix.

Consider the partition 𝜆 = (𝑘) of 𝑘, then
𝑀 (𝑘) = 𝑆𝑝𝑎𝑛C

{
1 2 · · · 𝑘

}
(2.5)

with the trivial action of 𝔖𝑘 . Notice that 𝑀 (𝜆) is a one-dimensional 𝔖𝑘-module, recovering the trivial
representation, which is an irreducible representation of 𝔖𝑘 .

(2) The regular representation for 𝔖𝑘 is given by taking 𝑉 = C𝔖𝑘 , as in Definition 1.1.5. Consider the partition
𝜆 = (1𝑘), where each equivalence class 𝔱 contains only one tableau, and can be identified with a permutation
in one-line notation. Since the 𝔖𝑘-action is preserved,

𝑀 (1𝑘) � C𝔖𝑘 , (2.6)

thus recovering the regular representation.
(3) The permutation representation of 𝔖𝑘 is given by taking 𝑉 = C𝑘 with standard basis {𝑒1, 𝑒2, . . . , 𝑒𝑘} and

the action 𝜎𝑒𝑖 = 𝑒𝜎 (𝑖) for all 𝜎 ∈ 𝔖𝑘 . Consider the partition 𝜆 = (𝑘 − 1, 1) of 𝑘. Each equivalence class 𝔱 is
uniquely determined by the number in the second row, hence, with this choice of 𝜆, we recover the permutation
representation:

𝑀 (𝑘 − 1, 1) � 𝑆𝑝𝑎𝑛C{𝑒1, 𝑒2, . . . , 𝑒𝑘} � C𝑘 . (2.7)
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(4) The sign representation of 𝔖𝑘 is defined via 𝜀 : 𝜎 ↦→ sgn(𝜎) for all 𝜎 ∈ 𝔖𝑘 . This is a one-dimensional
representation because the image of 𝜀 lies in 𝐺𝐿1 (C) � C×. We can also realize the sign representation by
taking the one-dimensional vector space

𝑉 = C

[ ∑︁
𝜎∈𝔖𝑘

sgn(𝜎)𝜎
]
, (2.8)

which is a 𝔖𝑘-module.

A natural question at this point is: which partition corresponds to the permutation module of the sign representation
or the standard representation studied in 1.1.2? For such constructions, we use the same partitions given in examples 2
and 3 above, but with a very different internal structure. The permutation module 𝑀 (𝜆) is not always irreducible as a
𝔖𝑘-module; however, for each partition 𝜆 of 𝑘, there exists an irreducible 𝔖𝑘-module called the Specht module, denoted
𝑆(𝜆).

2.2. Specht modules. Let 𝔱 be a tableau with rows 𝑅1, 𝑅2, . . . , 𝑅𝑝 and columns 𝐶1, 𝐶2, . . . , 𝐶𝑞, the row-stabilizer
of 𝔱 is defined to be

𝑅𝔱 = 𝔖𝑅1
×𝔖𝑅2

× · · ·𝔖𝑅𝑝
, (2.9)

and the column-stabilizer of 𝔱 is defined to be

𝐶𝔱 = 𝔖𝐶1
×𝔖𝐶2

× · · ·𝔖𝐶𝑞
. (2.10)

For example, consider the following tableau

𝔱 =
6 4 1 5

2 3
. (2.11)

The row-stabilizer and the column-stabilizer are, respectively, 𝑅𝔱 = 𝔖{1,4,5,6} × 𝔖{2,3} and 𝐶𝔱 = 𝔖{2,6} × 𝔖{3,4} ×
𝔖{1} ×𝔖{5} .

Define

𝜅𝔱 =
∑︁
𝜎∈𝐶𝔱

𝑠𝑔𝑛(𝜎)𝜎, (2.12)

and note that 𝜅𝔱 factors as 𝜅𝔱 = 𝜅𝐶1
𝜅𝐶2
· · · 𝜅𝐶𝑞

. For the tableau 𝔱, the associated polytableau 𝑒𝔱 is defined to be

𝑒𝔱 = 𝜅𝔱{𝔱}. (2.13)

For example, for 𝔱 as in 2.11, we have

𝑒𝔱 =
6 4 1 5
2 3

− 2 4 1 5
6 3

− 6 3 1 5
2 4

+ 2 3 1 5
6 4

(2.14)

Definition 2.2.1. For any partition 𝜆 the corresponding Specht module, denoted 𝑆(𝜆), is the 𝔖𝑘-submodule of 𝑀 (𝜆)
spanned by the polytabloids 𝑒𝔱, where 𝜆 is the shape of 𝔱 .

Since the group algebra C𝔖𝑘 acts on 𝑀 (𝜆), and this action sends polytabloids to linear combinations of polytabloids,
the subspace

𝑆(𝜆) := spanC{𝑒𝔱 | 𝔱 ∈ Std(𝜆)}
is invariant under the 𝔖𝑘-action. Indeed, for any 𝜎 ∈ 𝔖𝑘 , we have 𝜎 · 𝑒𝔱 =

∑
𝔰 𝑎𝔰𝑒𝔰, where the coefficients 𝑎𝔰 ∈ C, and

the sum runs over standard tableaux 𝔰 of shape 𝜆. Hence, 𝑆(𝜆) is a 𝔖𝑘-submodule.

The Specht modules 𝑆(𝜆) for 𝜆 ⊢ 𝑘, constitute a complete list of irreducible 𝔖𝑘-modules over C or any field of
characteristic zero, indeed the following theorem plays a main role in the representation theory of the symmetric group.

Theorem 2.2.1. A basis of 𝑆(𝜆) is the set {𝑒𝔱 | 𝔱 is a standard 𝜆-tableau }.

Remark 2.2.1. Recall that 𝑓 𝜆 is the cardinality of the set of standard 𝜆-tableaux denoted 𝑆𝑡𝑑 (𝜆). As an immediate
consequence of the preceding theorem and the Theorem 1.1.3 we have the following two equalities;

(1) 𝑑𝑖𝑚 𝑆(𝜆) = 𝑓 𝜆, and
(2)

∑
𝜆⊢𝑘
( 𝑓 𝜆)2 = 𝑘!.
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Example 2.2.1. Let 𝜆 = (𝑘) be a partition of 𝑘, then the only standard 𝜆-tableau is 𝔱 = 1 2 · · · 𝑘 . Thus 𝑆(𝜆) is a
one dimensional 𝔖𝑘-module spanned by the only polytableau on its basis, which is

𝑒𝔱 = 1 2 · · · 𝑘 , (2.15)

and from 𝑆(𝑘) arises the trivial representation. This is the only possibility since 𝑆(𝑘) is a submodule of 𝑀 (𝑘), where
𝔖𝑘 acts trivially.

Example 2.2.2. Consider 𝜆 = (1𝑘), there is only one standard 𝜆-tableau:

𝔱 =
1

2
...

𝑘

(2.16)

then 𝜅𝔱 =
∑

𝜎∈𝔖𝑘

𝑠𝑔𝑛(𝜎)𝜎 and 𝑒𝔱 is the signed sum of all the 𝑘! permutations regarded as tabloids. It is not difficult to

prove that every element 𝜋 in 𝔖𝑘 acts on 𝑒𝔱 by the sign, that is

𝜋𝑒𝔱 = 𝑠𝑔𝑛(𝜋)𝑒𝔱 . (2.17)

Then we have 𝑆(1𝑘) = 𝑆𝑝𝑎𝑛C{𝑒𝔱}, which recovers the sign representation.

Example 2.2.3. Suppose that 𝜆 = (𝑘 − 1, 1), then one can write

{𝔱} = 𝑖 · · · 𝑗

𝑘
= k, (2.18)

where the tabloid is indexed by the number in the second row. Thus 𝑒𝔱 = k − i and the basis of 𝑆(𝑘 − 1, 1) is 2 − 1, 3 −
1, . . . , k − 1. As a result, we can prove that

𝑆(𝑘 − 1, 1) = 𝑆𝑝𝑎𝑛C{𝛼1𝑒1 + 𝛼2𝑒2 + · · · + 𝛼𝑘𝑒𝑘 | 𝛼1 + 𝛼2 + · · · + 𝛼𝑘 = 0}, (2.19)

the dimension of 𝑆(𝑘 − 1, 1) is 𝑘 − 1 and hence 𝑆(𝑘 − 1, 1) is the defining representation.

We now aim at counting the number of irreducible representations of 𝔖𝑘 . Thus we return to the conjugacy classes
of 𝔖𝑘 , which are in bijection with the partitions of 𝑘. Hence, for example, there are 3 conjugacy classes on 𝔖3 given
by the partitions (3), (2, 1) and (13). These three partitions define the three irreducible representations of 𝔖3, as we
have seen in the preceding examples, 𝑆(3) is the trivial representation, 𝑆(2, 1) is the defining representation and 𝑆(13)
is the sign representation. The dimensions are 1, 2 and 1 respectively and 12 + 22 + 12 = 3!.

2.3. Representations and idempotents. Returning to the list of representations studied before, one can note
that the sign representation defined in Example 4 can be defined by taking the element∑︁

𝜎∈𝔖𝑘

𝑠𝑔𝑛(𝜎)𝜎, in C𝔖𝑘 . (2.20)

If we define

𝑓𝑘 =
1

𝑘!

( ∑︁
𝜎∈𝔖𝑘

𝑠𝑔𝑛(𝜎)𝜎
)
, (2.21)

𝑓𝑘 is an idempotent in C𝔖𝑘 , that is, 𝑓
2
𝑘
= 𝑓𝑘 . In the same way we can define the idempotent

𝑒𝑘 =
1

𝑘!

( ∑︁
𝜎∈𝔖𝑘

𝜎

)
, (2.22)

in C𝔖𝑘 . Indeed it will be the starting piece of the construction of the Spherical Partition algebra that we will discuss
through the chapter 5.
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Idempotents and representations are very closely related. For 𝜆 a partition of 𝑘, consider the row reading tableau
as in 1.6 and define 𝑅𝜆 and 𝐶𝜆, the row-stabilizer and the column-stabilizer of 𝔱𝜆, respectively. The Young symmetrizer
is defined to be

𝑦𝜆 =

( ∑︁
𝜎∈𝐶𝜆

𝑠𝑔𝑛(𝜎)𝜎
) ( ∑︁

𝜎∈𝑅𝜆

𝜎

)
, (2.23)

thus 𝑦𝜆 is a preidempotent, that is 𝑦2
𝜆
= 𝑎𝜆𝑦𝜆 for some 𝑎𝜆 in the ground field (now it is C but it may be Q). Using 𝑦𝜆,

we define the idempotent 𝑒𝜆 = 1
𝑎𝜆
𝑦𝜆. The relevance of 𝑒𝜆 relies on the 𝔖𝑘-isomorphism between C𝔖𝑘𝑒𝜆 and 𝑆(𝜆). See

[35] Theorem 4.3.

There is a family of idempotents that carries particular significance in representation theory. Let 𝐴 be a unital
C-algebra, which is a domain as a ring.

Definition 2.3.1. An idempotent 𝑝 ∈ 𝐴 is said to be primitive in 𝐴 if it cannot be written as the sum of other two
non-zero idempotents 𝑝1, 𝑝2 ∈ 𝐴 such that 𝑝1𝑝2 = 𝑝2𝑝1 = 0.

Notice that the idempotent 𝑒𝜆 is a primitive idempotent. Suppose that 𝑒𝜆 is not a primitive idempotent, then 𝑆(𝜆)
would be decomposable, contradicting the isomorphism with C𝔖𝑘𝑒𝜆 mentioned before. Next we state some facts about
primitive idempotents and representation theory based on [41].

Proposition 2.3.1. Let 𝐴 a C-algebra. If 𝑝 ∈ 𝐴 is an idempotent and 𝑝𝐴𝑝 � C𝑝 � C (as algebras) then 𝑝 is
primitive in 𝐴.

Proof: Suppose that 𝑝 is not primitive, hence there exits 𝑝1, 𝑝2 ∈ 𝐴, non-zero idempotents with 𝑝 = 𝑝1 + 𝑝2 and
𝑝1𝑝2 = 𝑝2𝑝1 = 0. For 𝑝1 there exists a scalar 𝛼 ∈ C such that

𝑝𝑝1𝑝 = 𝛼𝑝, (2.24)

by assumption. Notice that 𝛼𝑝1 = 𝛼𝑝𝑝1 = 𝑝𝑝1𝑝𝑝1 = 𝑝1 and it forces 𝛼 to be equal to 1, otherwise 𝑝1 would be
zero which is not true by our supposition. From equation (2.24) one gets 𝑝𝑝1𝑝 = 𝑝 which implies that 𝑝1 = 𝑝, a
contradiction. □

The following map

𝜑 : (𝑝𝐴𝑝)op → 𝐸𝑛𝑑𝐴(𝐴𝑝) (2.25)

𝑝𝑏𝑝 ↦→ 𝜑𝑝𝑏𝑝 ,

where 𝜑𝑝𝑏𝑝 (𝑎𝑝) = (𝑎𝑝) (𝑝𝑏𝑝) for 𝑎𝑝 ∈ 𝐴 is a ring isomorphism.

Proposition 2.3.2. If 𝑝 is a primitive idempotent in 𝐴 and 𝐴𝑝 is semisimple as a 𝐴-module then 𝐴𝑝 must be a
simple 𝐴-module.

Proof: Suppose that 𝐴𝑝 is not simple, then there exist 𝐴-modules 𝑉1 and 𝑉2 such that

𝐴𝑝 = 𝑉1 ⊕ 𝑉2. (2.26)

Let 𝜑1 and 𝜑2 in 𝐸𝑛𝑑𝐴(𝐴𝑝) defined to be the invariant projections in 𝑉1 and 𝑉2 respectively. By 2.25 𝜑1 and 𝜑2 are
given by the right multiplication by 𝑝1 and 𝑝2 respectively, where 𝑝1 = 𝑝𝑝1𝑝 and 𝑝2 = 𝑝𝑝2𝑝 and 𝑝1, 𝑝2 ∈ 𝐴. As a
consequence, note that if 𝑎𝑝 = 𝑣1 + 𝑣2 for 𝑣1 ∈ 𝑉1 and 𝑣2 ∈ 𝑉2 then 𝑣1 = 𝑎𝑝1 and 𝑣2 = 𝑎𝑝2. Hence we obtain that
𝑉1 = 𝐴𝑝1, 𝑉2 = 𝐴𝑝2, 𝐴𝑝 = 𝐴𝑝1 ⊕ 𝐴𝑝2 and 𝑝 = 𝑝1 + 𝑝2.

We obtain 𝑝21 = 𝜑1 (𝑝1) = 𝜑21 (𝑝) = 𝑝1, where the first two equalities comes from direct computations and the last
equality holds by the definition of 𝜑1 as a projection. In the same way we have 𝑝1𝑝2 = 𝜑2 (𝑝1) = 𝜑2 (𝜑1 (𝑝)) = 0.
Similarly 𝑝22 = 𝑝2 and 𝑝2𝑝1 = 0 and it follows that 𝑝 is not primitive which is a contradiction. □

The converse of the preceding proposition is given by the next result and Proposition 2.3.1.

Proposition 2.3.3. Let 𝑝 be an idempotent in 𝐴 and 𝐴𝑝 a simple 𝐴-module, then

𝑝𝐴𝑝 � 𝐸𝑛𝑑𝐴(𝐴𝑝)op � C𝑝. (2.27)

Proof: The isomorphism on the left-hand side arises from 2.25. Note that a map in 𝐸𝑛𝑑𝐴(𝐴𝑝)op is of the form 𝜑𝑝𝑏𝑝
for some 𝑏 ∈ 𝐴 by 2.25, then 𝐸𝑛𝑑𝐴(𝐴𝑝)op � C(𝑝𝑏𝑝). By Schur’s Lemma 1.3.1 we have 𝐸𝑛𝑑𝐴(𝐴𝑝)op � C𝐼𝑑𝐴𝑝. It forces
𝑏 to be 1. Then we get C(𝑝𝑏𝑝) = C𝑝 and the isomorphism on the right-hand side follows. □
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In the setting of a finite-dimensional semisimple C-algebra 𝐴, the Artin-Wedderburn theorem 2.3.2 implies that 𝐴
is isomorphic to a finite direct sum of matrix algebras over C:

𝐴 �
𝑟⊕
𝑖=1

M𝑑𝑖 (C). (2.28)

Each summand M𝑑𝑖 (C) is a simple algebra and has, up to isomorphism, a unique simple left module given by the action
on column vectors C𝑑𝑖 .

Now, let {𝑒1, 𝑒2, . . . , 𝑒𝑟 } ⊆ 𝐴 be a complete set of orthogonal primitive idempotents such that 𝑒𝑖 corresponds to the
identity matrix in the 𝑖-th summand. Then, each left ideal 𝐴𝑒𝑖 is a simple left 𝐴-module.

By Propositions 2.3.1 to 2.3.3, we know that if 𝑒𝑖 is a primitive idempotent, then 𝐴𝑒𝑖 is a simple 𝐴-module, and
any simple left 𝐴-module is isomorphic to one of the 𝐴𝑒𝑖. Moreover, the 𝐴𝑒𝑖 are pairwise non-isomorphic.

Therefore, the set {𝐴𝑒1, . . . , 𝐴𝑒𝑟 } forms a complete list of representatives of isomorphism classes of simple left
𝐴-modules. The regular module 𝐴 decomposes as a direct sum of these simple modules with multiplicities, and we have
the isomorphism:

𝐴 �
𝑟⊕
𝑖=1

EndC (𝐴𝑒𝑖), (2.29)

where each summand satisfies

EndC (𝐴𝑒𝑖) � M𝑑𝑖 (C), with 𝑑𝑖 = dimC (𝐴𝑒𝑖). (2.30)

3. The Branching Rule and the decomposition of the permutation module

3.1. The branching rule. Continuing the study of the representation theory of the symmetric group, we aim to
analyze the restricted and induced representations of the Specht modules when we go from 𝔖𝑘 to 𝔖𝑘−1, or from 𝔖𝑘

to 𝔖𝑘+1. There exists a combinatorial rule to go from one representation to another, it is called the Branching Rule.
Before stating the theorem, we need to introduce some technical definitions.

Suppose that 𝜆 is a partition of 𝑘 and consider its Young diagram. An inner corner of 𝜆 is a node (𝑖, 𝑗) ∈ [𝜆] whose
removal leaves the Young diagram of a partition. A partition obtained by such removal is denoted 𝜆−. An outer corner
of 𝜆 is a node (𝑖, 𝑗) ∉ [𝜆] whose addition yields a Young diagram of a partition. A partition obtained by such addition
is denoted 𝜆+.

Example 3.1.1. Consider the partition 𝜆 = (4, 4, 3, 2), then the nodes which are inner corners are the ones marked
with a black circle

𝜆 =
•

•
•

. (3.1)

On the other hand, the nodes which are outer corners are the ones marked with a star

𝜆 =
★

★

★

★

, (3.2)

Thus, the possible shapes for 𝜆− are the partitions (4, 3, 3, 2), (4, 4, 2, 2) and (4, 4, 3, 1). Simultaneously, the possible
shapes for 𝜆+ are (5, 4, 3, 2), (4, 4, 4, 2), (4, 4, 3, 3) and (4, 4, 3, 2, 1).

The proof of the following Theorem can be found in [89], Theorem 2.8.3.

Theorem 3.1.1. (Branching Rule). For 𝜆 a partition of 𝑘, the following holds:
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(1) 𝑅𝑒𝑠𝔖𝑘

𝔖𝑘−1
(𝑆(𝜆)) �

⊕
𝜆−
𝑆(𝜆−).

(2) 𝐼𝑛𝑑𝔖𝑘+1
𝔖𝑘
(𝑆(𝜆)) �

⊕
𝜆+
𝑆(𝜆+).

Example 3.1.2. Suppose that 𝜆 = (4, 4, 3, 2) is a partition of 13. From the preceding example, we have

𝑅𝑒𝑠
𝔖13

𝔖12
(𝑆(4, 4, 3, 2)) � 𝑆(4, 3, 3, 2) ⊕ 𝑆(4, 4, 2, 2) ⊕ 𝑆(4, 4, 3, 1), (3.3)

and

𝐼𝑛𝑑
𝔖14

𝔖13
(𝑆(4, 4, 3, 2)) � 𝑆(5, 4, 3, 2) ⊕ 𝑆(4, 4, 4, 2) ⊕ 𝑆(4, 4, 3, 3) ⊕ 𝑆(4, 4, 3, 2, 1). (3.4)

The branching rule naturally gives rise to the construction of a Bratteli diagram associated to the tower of symmetric
groups

𝔖0 ⊂ 𝔖1 ⊂ 𝔖2 ⊂ · · · ⊂ 𝔖𝑘 ⊂ · · · .

Definition 3.1.1. A Bratteli diagram is a graded graph B =
⊔
𝑘≥0 B𝑘, where each vertex in level 𝑘 corresponds to

an isomorphism class of irreducible representations of 𝔖𝑘. That is, we identify B𝑘 with the set of partitions Par𝑘 of

𝑘. There is an edge from 𝜇 ∈ Par𝑘−1 to 𝜆 ∈ Par𝑘 if and only if 𝑆(𝜆) appears as a direct summand of 𝐼𝑛𝑑𝔖𝑘

𝔖𝑘−1
𝑆(𝜇),

or equivalently, if 𝑆(𝜇) appears in 𝑅𝑒𝑠
𝔖𝑘

𝔖𝑘−1
𝑆(𝜆). By the Branching Rule (Theorem 3.1.1), this occurs precisely when

𝜇 = 𝜆−, i.e., 𝜇 is obtained by removing a single node from the Young diagram of 𝜆.

Paths in the Bratteli diagram from the trivial representation C of 𝔖0 to a given vertex 𝜆 ∈ Par𝑘 are in bijection
with standard Young tableaux of shape 𝜆. Indeed, each path corresponds to a sequence of partitions

∅ = 𝜆 (0) → 𝜆 (1) → · · · → 𝜆 (𝑘 ) = 𝜆

such that 𝜆 (𝑖) ∈ Par𝑖 and 𝜆 (𝑖) is obtained from 𝜆 (𝑖−1) by adding a box. Filling the node added at each step with
the number 𝑖 yields a standard tableau. Therefore, the number of such paths equals the dimension of the irreducible
representation 𝑆(𝜆).

Example 3.1.3. The following diagram illustrates the Bratteli diagram for the symmetric group, showing how the
irreducible representations (indexed by partitions) branch as we move from 𝔖0 to 𝔖3. Each vertex corresponds to a
partition of 𝑘, and an edge from 𝜆 to 𝜇 indicates that 𝑆(𝜇) appears in the restriction of 𝑆(𝜆) to 𝔖𝑘−1.

∅

3.2. The decomposition of the permutation module. As we discussed in the preceding chapter, the study
of the homomorphism algebra is crucial in representation theory. Certainly, it is used to find a decomposition of the
permutation module as the sum of Specht modules. Over the ground field C, the following holds

Proposition 3.2.1. Let 𝑉 and 𝑈 representations of the group 𝐺 with 𝑉 irreducible. Then the dimension of
𝐻𝑜𝑚(𝑉,𝑈) is the multiplicity of 𝑉 in 𝑈.

The following results can be found in [89] Proposition 2.4.5 and Theorem 2.11.2. Let 𝜆 and 𝜇 be partitions of 𝑘.

33



Proposition 3.2.2. Suppose that 𝐻𝑜𝑚(𝑆(𝜆), 𝑀 (𝜇)) is non-zero and 𝑓 ∈ 𝐻𝑜𝑚(𝑆(𝜆), 𝑀 (𝜇)). Then 𝜆 ▷ 𝜇, and if
𝜆 = 𝜇, then 𝑓 = 𝛼𝐼𝑑 for 𝛼 a scalar in C.

Theorem 3.2.1. (Young’s Rule) The permutation module has the following decomposition

𝑀 (𝜇) �
⊕
𝜆

𝐾𝜆,𝜇𝑆(𝜆), (3.5)

where the 𝐾𝜆𝜇’s are the Kostka numbers defined in the paragraph below equation 1.8.

Example 3.2.1. Let 𝜇 = (2, 1, 1) a partition of 4. The possibilities for 𝜆 are

𝜆1 = (2, 1, 1), 𝜆2 = (2, 2), 𝜆3 = (3, 1) 𝜆4 = (4). (3.6)

That is, the partitions of 4 greater or equal to 𝜇. For 𝜆1, 𝜆2 and 𝜆4 the only semistandard tableaux of type 𝜇 are

1 1

2

3

1 1

2 3

1 1 2 3
(3.7)

respectively. Whereas for 𝜆3 there are two possibilities

1 1 2

3

1 1 3

2
. (3.8)

Consequently, 𝐾𝜆1 ,𝜇 = 𝐾𝜆2 ,𝜇 = 𝐾𝜆4 ,𝜇 = 1 and 𝐾𝜆3 ,𝜇 = 2. Thus, the decomposition of the permutation module is

𝑀 (2, 1, 1) � 𝑆(2, 1, 1) ⊕ 𝑆(2, 2) ⊕ 2𝑆(3, 1) ⊕ 𝑆(4). (3.9)

Remark 3.2.1. Some notable cases can be observed.

(1) If 𝜆 ◁ 𝜇, then 𝐾𝜆,𝜇 is zero. There is no semistandard tableaux with shape 𝜆 of type 𝜇. This holds with the
Proposition 3.2.2.

(2) For any 𝜇, 𝐾𝜇,𝜇 = 1. There is only one way to construct a semistandard tableau of shape 𝜇 and type 𝜇; place
the 1’s in the first row, the 2’s in the second row, and so on. Thus, the multiplicity of the diagonal on the
equation 3.5 is 1.

(3) For any 𝜇, 𝐾 (𝑘 ) ,𝜇 = 1. Thus, the multiplicity of 𝑆(𝑘) in 𝑀 (𝜇) is 1.

(4) For any 𝜆, 𝐾𝜆, (1𝑘 ) = 𝑓 𝜆, that is, the cardinality of the set of standard tableaux of shape 𝜆. Thus,

𝑀 (1𝑘) �
⊕
𝜆

𝑓 𝜆𝑆(𝜆). (3.10)

However, 𝑀 (1𝑘) is the regular representation and 𝑓 𝜆 = 𝑑𝑖𝑚 𝑆(𝜆). Then C𝔖𝑘 �
⊕
𝜆

𝑓 𝜆𝑆(𝜆) and this is an

application of the theorem 1.1.3.

4. An Introduction to Schur Functions and the Littlewood–Richardson Rule

4.1. The ring of symmetric functions. In this section we introduce some of the basic terminology on symmetric

functions. Let x = {𝑥1, 𝑥2, . . .} be an infinite set of variables. If
∑
𝜆𝑖 = 𝑛, then the monomial 𝑥𝜆1

𝑗1
𝑥
𝜆2
𝑗2
· · · 𝑥𝜆𝑝

𝑗𝑝
is said to be

of degree 𝑛. A symmetric polynomial 𝑓 in x satisfies

𝜎 · 𝑓 (x) = 𝑓 (𝑥𝜎 (1) , 𝑥𝜎 (2) , . . .) = 𝑓 (x), for all 𝜎 ∈ 𝔖𝑛, (4.1)

where 𝜎(𝑖) = 𝑖 for all 𝑖 > 𝑛. In this setting, 𝑓 is a polynomial in the formal power series ring C⟦𝑥⟧, where 𝑓 is
homogeneous of degree 𝑛 if every monomial in 𝑓 is of degree 𝑛. Let Λ𝑛 be the space of homogeneous symmetric
polynomials of degree 𝑛. It is not difficult to see that Λ𝑛 is a C-vector space.

Example 4.1.1. Two examples of symmetric polynomials in two and three variables, respectively.

(1) 𝑓 (𝑥1, 𝑥2) = 𝑥21 + 2𝑥1𝑥2 + 𝑥22 in Λ2.
(2) 𝑓 (𝑥1, 𝑥2, 𝑥3) = 𝑥1𝑥2 + 𝑥21 + 𝑥2𝑥3 + 𝑥22 + 𝑥1𝑥3 + 𝑥23 in Λ2.
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For 𝜆 = (𝜆1, 𝜆2, . . . , 𝜆𝑝) a partition, the monomial symmetric function is defined to be

𝑚𝜆 = 𝑚𝜆 (x) =
∑︁

𝑥
𝜆1
𝑗1
𝑥
𝜆2
𝑗2
· · · 𝑥𝜆𝑝

𝑗𝑝
, (4.2)

that is, the sum over all distinct monomials with exponent given by 𝜆. If 𝜆 is a partition of 𝑛, then 𝑚𝜆 is homogeneous
of degree 𝑛. For example, 𝑚 (2,1) (𝑥1, 𝑥2) = 𝑥21𝑥2 + 𝑥1𝑥22. The set {𝑚𝜆 | 𝜆 ⊢ 𝑛} is a basis of Λ𝑛 and then, the dimension of
Λ𝑛 is 𝑝(𝑛), the number of partitions of 𝑛.

Definition 4.1.1. The ring of symmetric functions is defined as

Λ =
⊕
𝑛≥0

Λ𝑛. (4.3)

Notice that Λ has a graded structure. There exist other important families of symmetric polynomials in Λ. Some
of them are the elementary symmetric functions 𝑒𝑛, the power sum symmetric functions 𝑝𝑛 and the homogeneous
symmetric functions ℎ𝑛. These three examples are bases of Λ𝑛 where the index set is the set of partitions of 𝑛.

There exists another important family of symmetric polynomials; the Schur functions. Indeed, the Schur functions
are also a basis for the space Λ𝑛, but they are also important for its connection with representation theory. There are
several ways to define the Schur functions, however, we will use the combinatorial approach.

Let 𝜇 = (𝜇1, 𝜇2, . . . , 𝜇𝑟 ) any composition, then define

x𝜇 = 𝑥
𝜇1
1 𝑥

𝜇2
2 · · · 𝑥

𝜇𝑟
𝑟 . (4.4)

Let 𝜆 be a partition, then choose a semistandard 𝜆-tableau 𝑇 . For example, for 𝜆 = (3, 2)

𝑇 =
1 1 4

2 4
(4.5)

One can notice that the composition 𝜇 = (2, 1, 0, 2) is the type of 𝔱. The weight associated to 𝑇 is defined to be

x𝑇 = x𝜇 = 𝑥21𝑥2𝑥
2
4 . (4.6)

Definition 4.1.2. Given a partition 𝜆, the associated Schur function is

𝑠𝜆 (x) =
∑︁

𝑇∈𝑆𝑆𝑡𝑑 (𝜆,𝜇)
x𝑇 , (4.7)

where 𝜇 is any composition of |𝜆 | such that filling 𝜆 with the numbers given by the weight 𝜇, produces a semistandard
tableau 𝑇 .

Example 4.1.2. Let 𝜆 = (2, 1), we aim to determine 𝑠𝜆 (𝑥1, 𝑥2, 𝑥3). The semistandard tableaux with shape 𝜆 and
type a composition of 3 are:

1 1

2
,
1 1

3
,
1 2

2
,
1 3

3
,
1 2

3
,
1 3

2
,
2 2

3
,
2 3

3
. (4.8)

Hence,

𝑠𝜆 (𝑥1, 𝑥2, 𝑥3) = 𝑥21𝑥2 + 𝑥21𝑥3 + 𝑥1𝑥22 + 𝑥1𝑥23 + 2𝑥1𝑥2𝑥3 + 𝑥22𝑥3 + 𝑥2𝑥23 . (4.9)

Remark 4.1.1. Notice that if 𝜆 = (𝑛), then 𝑠 (𝑛) (x) = ℎ𝑛 (x). It occurs because a one-rowed tableau is a weakly
decreasing sequence, that is, a partition. Additionally, if 𝜆 = (1𝑛), hence 𝑠 (1𝑛 ) (x) = 𝑒𝑛 (x), because the numbers on the
entries can occur only once. Finally, the coefficient of 𝑥1𝑥2 · · · 𝑥𝑛 in 𝑠𝜆 is 𝑓 𝜆, as can be seen in the example 4.1.2.

Theorem 4.1.1. The following triangularity property holds

𝑠𝜆 =
∑︁
𝜇⊴𝜆

𝐾𝜆,𝜇𝑚𝜇, (4.10)

where 𝜇 is a partition.

Therefore the set {𝑠𝜆 | 𝜆 ⊢ 𝑛} is a basis for Λ𝑛.
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4.2. The Littlewood-Richardson Rule. The product of any pair of Schur functions is given by

𝑠𝜇𝑠𝜈 =
∑︁
𝜆

𝑐𝜆𝜇,𝜈𝑠𝜆, (4.11)

where 𝜇 and 𝜈 are arbitrary partitions. The coefficients 𝑐𝜆𝜇,𝜈 are called the Littlewood-Richardson coefficients and they
are non-negative integers with a combinatorial interpretation. Note that the coefficients in 4.11 can be studied from
a representation theory point of view, since they are the multiplicities of the irreducible characters of the symmetric
group appearing in

𝜒𝜇𝜒𝜈 =
∑︁
𝜆

𝑐𝜆𝜇,𝜈𝜒𝜆, (4.12)

or equivalently, the multiplicities of Specht modules in

𝐼𝑛𝑑
𝔖𝑛

𝔖𝜇×𝔖𝜈
(𝑆(𝜇) ⊗ 𝑆(𝜈)) =

⊕
𝜆

𝑐𝜆𝜇,𝜈𝑆(𝜆), (4.13)

where |𝜇 | + |𝜆 | = 𝑛. See [89] Section 4.9 for further details.

In order to show the combinatorial interpretation of the Littlewood-Richardson coefficients, we need the following
definitions.

Definition 4.2.1. A skew shape, denoted 𝜆/𝜇, is a pair (𝜆, 𝜇) of partitions such that the Young diagram of 𝜆
contains the Young diagram of 𝜇. For 𝜆 = (𝜆1, 𝜆2, . . . , 𝜆𝑝) and 𝜇 = (𝜇1, 𝜇2, . . . , 𝜇𝑟 ), 𝜆 contains 𝜇 means that 𝜇𝑖 ≤ 𝜆𝑖 for
all 𝑖. The skew diagram for a skew shape 𝜆/𝜇 is the Young diagram of the difference of the Young diagrams of 𝜆 and 𝜇.

Example 4.2.1. Suppose that 𝜆 = (5, 3, 2) and 𝜇 = (2, 1), then the skew diagram of 𝜆/𝜇 is

(4.14)

Definition 4.2.2. A skew tableau of shape 𝜆/𝜇 is a skew diagram of shape 𝜆/𝜇, filled with numbers in the nodes.
A skew tableau may be standard, semistandard, or of other types.

Example 4.2.2. The skew tableaux 𝔱 and 𝔰 are standard and semistandard respectively, with shape 𝜆/𝜇 for 𝜆 and
𝜇 as in the preceding example

𝔱 =
3 5 6

2 4

1 7

, 𝔰 =
3 3 4

2 4

1 3

, (4.15)

and the type of 𝔱 and 𝔰 is (17) and (1, 1, 3, 2), respectively.

Definition 4.2.3. A Littlewood-Richardson tableau 𝔱 is a semistandard skew tableau of shape 𝜆/𝜇 such that 𝜈 is
the type of 𝔱, for 𝜈 a partition, and any skew tableau obtained from 𝔱 by removing some of its leftmost columns is
semistandard and has type a partition.

Example 4.2.3. The tableau 𝔰 from the preceding example is not a Littlewood-Richardson tableax because the type
of 𝔰 is a composition.

Example 4.2.4. Let 𝜆 = (4, 3, 2), 𝜇 = (2, 1), then consider

𝔱 =
1 1

2 2

1 3

(4.16)

of type the partition 𝜈 = (3, 2, 1). We can delete its left most columns and obtain the following sequence

1 1

2 2

3

,
1 1

2
,

1
. (4.17)

The preceding tableaux are of type (2, 2, 1), (2, 1) and (1), which are partitions. As a result, 𝔱 is a Littlewood-Richardson
tableaux.
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Now we can state the combinatorial interpretation of the Littlewood-Richardson coefficients.

Definition 4.2.4. The coefficient 𝑐𝜆𝜇,𝜈 is the number of Littlewood-Richardson tableaux of shape 𝜆/𝜇 and type 𝜈.

Example 4.2.5. Consider 𝜆 ⊢ 4, 𝜇 = (1) and 𝜈 = (13). The only way to obtain Littlewood-Richardson tableaux of
shape 𝜆/𝜇 of type 𝜈 is if 𝜆/𝜇 is composed by vertical strips. Notice that for 𝜆 = (4), 𝜆 = (3, 1) and 𝜆 = (2, 2) is not
possible to find a tableau with such attribute. However, for 𝜆 = (2, 1, 1) we can find only one Littlewood-Richardson
tableau;

1

2

3

, (4.18)

and similar for 𝜆 = (14). Thus, 𝑐 (2,1,1)(1) , (13 ) = 𝑐
(14 )
(1) , (13 ) = 1. Recall the formula in 4.13, we have

𝐼𝑛𝑑
𝔖4

𝔖(1)×𝔖(13 )
(𝑆(1) ⊗ 𝑆(13)) = 𝑆(2, 1, 1) ⊕ 𝑆(14). (4.19)

One can note that the dimension of the right-hand side is 3 + 1 = 4, which agrees with the dimension of
∧3 (𝑉), for 𝑉 a

C-vector space of dimension 4. Then ∧3
(𝑉) � 𝐼𝑛𝑑𝔖4

𝔖(1)×𝔖(13 )
(𝑆(1) ⊗ 𝑆(13)). (4.20)

Remark 4.2.1. Indeed, one can prove the following. Let 𝑉 be a C-vector space of dimension 𝑛, then∧𝑘
(𝑉) � 𝑆(𝑚 + 1, 1𝑘−1) ⊗ 𝑆(𝑚, 1𝑘). (4.21)

It follows from the decomposition in equation 4.13, where 𝜆 is a partition of 𝑛, 𝜇 = (1) and 𝜈 = (1𝑘), and the combinatorial
interpretation of the Littlewood-Richardson coefficients.

5. Schur-Weyl Duality

5.1. Schur-Weyl Duality. The classic case of the Schur-Weyl duality was proved by Schur in [90]. In the classic
case the ground field is C, but the Schur-Weyl duality holds for an arbitrary infinite field, even a field of positive
characteristic. Most of this section was taken from the first part of [23], where the author wrote out the details to
prove the Schur-Weyl duality in positive characteristic using only known facts from representation theory. Let 𝑉 be a
𝑛-dimensional C-vector space with basis {𝑣1, 𝑣2, . . . , 𝑣𝑛}. Consider 𝐺𝐿𝑛 (𝑉) the general linear group, we write 𝐺𝐿𝑛 (C)
if there is no confusion. The group 𝐺𝐿𝑛 (C) acts on 𝑉 via the matrix multiplication 𝐴𝑣, where 𝐴 ∈ 𝐺𝐿𝑛 (C) and 𝑣 ∈ 𝑉 .

Now consider the 𝑘th tensor power of 𝑉 , defined as

𝑉⊗𝑘 =

𝑘︷              ︸︸              ︷
𝑉 ⊗ 𝑉 ⊗ · · · ⊗ 𝑉 with basis {𝑣𝑖1 ⊗ 𝑣𝑖2 ⊗ · · · ⊗ 𝑣𝑖𝑘 | 1 ≤ 𝑖1, . . . , 𝑖𝑘 ≤ 𝑛}.

The action of 𝐺𝐿𝑛 (C) on 𝑉 can be extended to 𝑉⊗𝑘 via

𝐴(𝑣𝑖1 ⊗ 𝑣𝑖2 ⊗ · · · ⊗ 𝑣𝑖𝑘 ) = 𝐴𝑣𝑖1 ⊗ 𝐴𝑣𝑖2 ⊗ · · · ⊗ 𝐴𝑣𝑖𝑘 , (5.1)

for all 𝐴 ∈ 𝐺𝐿𝑛 (C) and 𝑣𝑖1 ⊗ 𝑣𝑖2 ⊗ · · · ⊗ 𝑣𝑖𝑘 ∈ 𝑉⊗𝑘 . This is called the diagonal action of 𝐺𝐿𝑛 (C) on 𝑉⊗𝑘 . This action
commutes with the action of the symmetric group 𝔖𝑘 , which acts from the right by permuting tensor coordinates, i.e.,

(𝑣𝑖1 ⊗ 𝑣𝑖2 ⊗ · · · ⊗ 𝑣𝑖𝑘 )𝜎 = 𝑣𝑖𝜎 (1) ⊗ 𝑣𝑖𝜎 (2) ⊗ · · · ⊗ 𝑣𝑖𝜎 (𝑘) . (5.2)

Thus, we have an action of 𝐺𝐿𝑛 (C) × 𝔖𝑘 on 𝑉⊗𝑘 . Let C𝐺𝐿𝑛 (C) and C𝔖𝑘 the group algebra of 𝐺𝐿𝑛 (C) and 𝔖𝑘 ,
respectively. These two algebras have representations

Υ : C𝐺𝐿𝑛 (C) → 𝐸𝑛𝑑C (𝑉⊗𝑘), Ξ : C𝔖𝑘 → 𝐸𝑛𝑑C (𝑉⊗𝑘) (5.3)

given by the action defined before. Let 𝐸𝑛𝑑C𝔖𝑘
(𝑉⊗𝑘) denote the set of linear maps from 𝑉⊗𝑘 to 𝑉⊗𝑘 which commute

with the 𝔖𝑘-action. In the same way, define 𝐸𝑛𝑑C𝐺𝐿𝑛 (C) (𝑉⊗𝑘) as the set of linear maps from 𝑉⊗𝑘 to 𝑉⊗𝑘 which commute
with every matrix on 𝐺𝐿𝑛 (C). The following inclusions

Υ(C𝐺𝐿𝑛 (C)) ⊆ 𝐸𝑛𝑑C𝔖𝑘
(𝑉⊗𝑘), Ξ(C𝔖𝑘) ⊆ 𝐸𝑛𝑑C𝐺𝐿𝑛 (C) (𝑉⊗𝑘) (5.4)
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are induced by the fact that the two actions commute. The existence of these inclusions means that the representations
in the equation 5.3 induce the morphisms

Υ : C𝐺𝐿𝑛 (C) → 𝐸𝑛𝑑C𝔖𝑘
(𝑉⊗𝑘), Ξ : C𝔖𝑘 → 𝐸𝑛𝑑C𝐺𝐿𝑛 (C) (𝑉⊗𝑘). (5.5)

Theorem 5.1.1. (Schur-Weyl duality) The inclusions in equation 5.4 are in fact equalities. Equivalently, the
induced maps in 5.5 are surjective.

If the statement of the Schur-Weyl duality holds we say that the actions of 𝐺𝐿𝑛 (C) and 𝔖𝑘 centralize each other.
It can be shown that 𝑉⊗𝑘 can be decomposed into irreducible 𝐺𝐿𝑛 (C) ×𝔖𝑘-modules as follows

𝑉⊗𝑘 =
⊕
𝜆⊢𝑘

𝐹 (𝜆) ⊗ 𝑆(𝜆), (5.6)

where for each 𝜆, 𝐹 (𝜆) is an irreducible 𝐺𝐿𝑛 (C)-module and 𝑆(𝜆) is a Specht module. The 𝐹 (𝜆)’s are a family of
non isomorphic irreducible 𝐺𝐿𝑛 (C)-modules where some of which may be zero.
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CHAPTER 3

Cellular algebras

In this chapter, we introduce the theory of cellular algebras developed by Graham and Lehrer [37]. This framework
provides a powerful approach to studying the representation theory of an algebra 𝐴 through the use of a distinguished
basis: the cellular basis. Roughly speaking, an algebra is called cellular if it admits such a basis, which satisfies specific
properties that facilitate the construction its representations.

The multiplication rules in the cellular basis allow one to define a bilinear form on the so-called cell modules of 𝐴.
The irreducible 𝐴-modules are then obtained as quotients of these cell modules by the radical of the bilinear form; such
quotients are either zero or absolutely irreducible.

This chapter is organized into three sections. The first introduces the general notions of cellular algebras and the
theory of Jucys–Murphy elements, closely following the presentation in [70]. We also present the separation condition, a
key notion introduced by Mathas in [71], which gives rise to a natural dichotomy in the study of cellular algebras. This
dichotomy guides much of our subsequent work, particularly in Chapter 4. The second and third sections, focusing on
the separated and unseparated cases respectively, follow the framework developed in [71]. In some instances, we omit
detailed proofs and instead provide sketches that highlight the main ideas.

1. Cellular algebras and Jucys-Murphy elements

1.1. Cellular algebras. We start with the definition of a cellular algebra from [37].

Definition 1.1.1. Suppose that A is an associative 𝑅-algebra over the domain 𝑅. Suppose moreover that (Λ, ≤) is
a poset such that for each 𝜆 ∈ Λ there is a finite set 𝑇 (𝜆) and elements 𝐶𝜆

𝔰𝔱
∈ A such that

C =
{
𝐶𝜆𝔰𝔱 | 𝜆 ∈ Λ and 𝔰, 𝔱 ∈ 𝑇 (𝜆)

}
(1.1)

is a 𝑅-basis for A. Then the pair (C,Λ) is called a cellular basis for A if

(i) The 𝑅-linear map ∗ : A → A determined by (𝐶𝜆
𝔰𝔱
)∗ = 𝐶𝜆

𝔱𝔰
for all 𝜆 ∈ Λ and 𝔰, 𝔱 ∈ 𝑇 (𝜆) is an algebra anti-

automorphism of A.
(ii) For any 𝜆 ∈ Λ, 𝔱 ∈ 𝑇 (𝜆) and 𝑎 ∈ A there exist elements 𝑟𝑎𝔰𝔲 ∈ 𝑅 such that for all 𝔰 ∈ 𝑇 (𝜆)

𝑎𝐶𝔰𝔱 ≡
∑︁

𝔲∈𝑇 (𝜆)
𝑟𝑎𝔰𝔲𝐶𝔲𝔱 mod A>𝜆 (1.2)

where A>𝜆 is the free 𝑅-submodule of A, given by {𝐶𝔲𝔳 | 𝜇 ∈ Λ, 𝜇 > 𝜆 and 𝔲, 𝔳 ∈ 𝑇 (𝜇)}.

If A has a cellular basis we say that it is a cellular algebra with cell datum (Λ, 𝑇, C).
Remark 1.1.1. Some facts can be observed from the preceding definition:

(1) Note that in part (ii) the coefficient 𝑟𝑎𝔰𝔲 does not depend on 𝔱.
(2) A cellular algebra can have more than one cellular basis. Furthermore, the size of the poset Λ can differ

between one basis or another.
(3) A is a free 𝑅-algebra of finite rank |𝑇 (Λ) |, where 𝑇 (Λ) = ⊔

𝜆∈Λ
𝑇 (𝜆) and A>𝜆 is a two-sided ideal of A.

We assume that 𝑇 (𝜆) is a poset with ordering ▷𝜆, for each 𝜆 ∈ Λ. In the same way, 𝑇 (Λ) is a poset with ordering
𝔱 ▷ 𝔰 if either 𝔱, 𝔰 ∈ 𝑇 (𝜆) and 𝔱 ▷𝜆 𝔰, or 𝔱 ∈ 𝑇 (𝜆), 𝑠 ∈ 𝑇 (𝜇) and 𝜆 > 𝜇.

Example 1.1.1. Let A = 𝑅[𝑥] where 𝑥 is an indeterminate over 𝑅, and take Λ to be the non-negative integers with
their natural ordering. For each 𝑛 ∈ Λ let 𝑇 (𝑛) = {𝑛} and set 𝐶𝑛𝑛𝑛 = 𝑥

𝑛. Then {𝑥𝑛 | 𝑛 ∈ N} is a cellular basis of A. Here
A>𝑛 is the set of polynomials of degree greater than 𝑛 and A>𝑛/A>𝑛+1 � 𝑅 is irreducible for all 𝑛 if 𝑅 is a field.

Example 1.1.2. Let A = 𝑀𝑛×𝑛 (𝑅) and take Λ = {𝑛} and 𝑇 (𝑛) = {1, 2, . . . , 𝑛}. Then the set of elementary matrices
{𝐸𝑖 𝑗 | 1 ≤ 𝑖, 𝑗 ≤ 𝑛} gives a cellular basis of A.
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Suppose that A is a cellular algebra with cell datum (Λ, 𝑇, C). With each 𝔰 ∈ 𝑇 (𝜆) we associate a symbol 𝐶𝜆𝔰 and
next define Δ(𝜆) as the free 𝑅-module with basis {𝐶𝜆𝔰 | 𝔰 ∈ 𝑇 (𝜆)}. Then Δ(𝜆) becomes a left A-module, called the cell
module, via

𝑎𝐶𝜆𝔰 =
∑︁

𝔲∈𝑇 (𝜆)
𝑟𝑎𝔰𝔲𝐶

𝜆
𝔲 (1.3)

where 𝑟𝑎𝔰𝔲 is as in (1.2). We shall call {𝐶𝜆𝔰 | 𝔰 ∈ 𝑇 (𝜆)} the cellular basis for Δ(𝜆). The cell module Δ(𝜆) is isomorphic to
{𝐶𝜆

𝔰𝔱
+ A>𝜆 | 𝔰 ∈ 𝑇 (𝜆)} via 𝐶𝜆𝔰 ↦→ 𝐶𝜆

𝔰𝔱
+ A>𝜆.

There is a bilinear form ⟨ , ⟩ : Δ(𝜆) × Δ(𝜆) → 𝑅 such that ⟨𝐶𝜆𝔰 , 𝐶𝜆𝔱 ⟩, for 𝔰, 𝔱 ∈ 𝑇 (𝜆), is given by

⟨𝐶𝜆𝔰 , 𝐶𝜆𝔱 ⟩𝐶
𝜆
𝔲𝔳 ≡ 𝐶𝜆𝔲𝔰𝐶𝜆𝔱𝔳 mod A>𝜆, (1.4)

where 𝔲 and 𝔳 are any elements of 𝑇 (𝜆). The bilinear form ⟨ , ⟩ is both symmetric and associative in the sense that
⟨𝑎𝑥, 𝑏⟩ = ⟨𝑎, 𝑏𝑥∗⟩, for all 𝑎, 𝑏 ∈ Δ(𝜆) and 𝑥 ∈ A.

For 𝜆 ∈ Λ we define 𝑟𝑎𝑑Δ(𝜆) = {𝑥 ∈ Δ(𝜆) | ⟨𝑥, 𝑦⟩ = 0 for all 𝑦 ∈ Δ(𝜆)}. For the associativity of the bilinear form, it
follows that 𝑟𝑎𝑑Δ(𝜆) is an A-submodule of Δ(𝜆). Also define,

𝐿 (𝜆) = Δ(𝜆)/𝑟𝑎𝑑Δ(𝜆). (1.5)

Recall that the Jacobson radical of a module is the intersection of all its maximal submodules.

Proposition 1.1.1. Suppose that 𝑅 is a field and let 𝜆 any element of Λ such that 𝐿 (𝜆) ≠ 0.

(1) The left A-module 𝐿 (𝜆) is absolutely irreducible. That is, 𝐿 (𝜆) is irreducible in any scalar extension of 𝑅.
(2) The Jacobson radical of Δ(𝜆) is equal to 𝑟𝑎𝑑Δ(𝜆).

Proof: Let 𝑥 ∈ Δ(𝜆) such that 𝑥 ∉ 𝑟𝑎𝑑Δ(𝜆), then ⟨𝑥, 𝑦⟩ ≠ 0 for some 𝑦 ∈ Δ(𝜆). We can assume that ⟨𝑥, 𝑦⟩ = 1, because
𝑅 is a field. We know that 𝑦 =

∑
𝔰∈𝑇 (𝜆)

𝑟𝔰𝐶
𝜆
𝔰 , for 𝑟𝔰 ∈ 𝑅. Thus, for 𝔱 ∈ 𝑇 (𝜆), define

𝑦𝔱 =
∑︁

𝔰∈𝑇 (𝜆)
𝑟𝔰𝐶

𝜆
𝔰𝔱 ∈ A. (1.6)

Consider the following multiplication,

𝑥𝑦𝔱 =
∑︁

𝔰∈𝑇 (𝜆)
𝑟𝔰𝑥𝐶

𝜆
𝔰𝔱 =

∑︁
𝔰∈𝑇 (𝜆)

𝑟𝔰 ⟨𝑥, 𝐶𝜆𝔰 ⟩𝐶𝜆𝔱 = ⟨𝑥, 𝑦⟩𝐶𝜆𝔱 = 𝐶𝜆𝔱 , (1.7)

where the second equality occurs for the definition of ⟨ , ⟩. Thus, 𝑥 generates Δ(𝜆) and the same is true for any
𝑥 ∉ 𝑟𝑎𝑑Δ(𝜆). Therefore, 𝐿 (𝜆) is irreducible and by Lemma 1.3.2 𝑟𝑎𝑑Δ(𝜆) is the unique proper maximal submodule of
Δ(𝜆), then it is the Jacobson radical. Using the same argument we can prove that 𝐿 (𝜆) is irreducible in any extension
field of 𝑅, so 𝐿 (𝜆) is absolutely irreducible. □

The following proposition was proven by Graham and Leherer.

Theorem 1.1.1. (Graham-Lehrer) Let Λ0 = {𝜇 ∈ Λ | 𝐿 (𝜇) ≠ 0}. Then {𝐿 (𝜆) | 𝜆 ∈ Λ0} is a complete set of pairwise
non-isomorphic irreducible A-modules over a field 𝑅.

Proposition 1.1.2. Suppose that 𝑅 is a field. Then the following are equivalent.

(1) A is split semisimple.
(2) Δ(𝜆) = 𝐿 (𝜆) for all 𝜆 ∈ Λ.
(3) 𝑟𝑎𝑑Δ(𝜆) = 0.

1.2. Jucys-Murphy elements. The Jucys-Murphy elements play an important role. Their key properties were
developed in Murphy’s papers in the eighties, see [72], [73], [74]. These properties were formalized by Mathas as
follows.

Definition 1.2.1. (Jucys-Murphy elements) A family of Jucys-Murphy elements for A, denoted JM-elements, is a
set {𝐿1, 𝐿2, . . . , 𝐿𝑀 } of commuting elements of A together with a set of scalars, {𝑐𝔱 (𝑖) ∈ 𝑅 | 𝔱 ∈ 𝑇 (Λ) and 1 ≤ 𝑖 ≤ 𝑀},
such that

(1) 𝐿∗
𝑖
= 𝐿𝑖, for all 𝑖 ∈ {1, 2, . . . , 𝑀}.
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(2) For all 𝜆 ∈ Λ and 𝔰, 𝔱 ∈ 𝑇 (𝜆), the following triangularity property is satisfied

𝐶𝜆𝔰𝔱𝐿𝑖 ≡ 𝑐𝔱 (𝑖)𝐶
𝜆
𝔰𝔱 +

∑︁
𝔳▷𝔱

𝑟𝔱𝔳𝐶
𝜆
𝔰𝔳 mod A>𝜆 (1.8)

for some 𝑟𝔱𝔳 ∈ 𝑅, which depends on 𝑖.

We call 𝑐𝔱 (𝑖) the content of 𝔱 at 𝑖.

The Jucys-Murphy elements depend on the choice of cellular basis.

Remark 1.2.1. There is a right analogue of the formula (1.8),

𝐿𝑖𝐶
𝜆
𝔰𝔱 ≡ 𝑐𝔰 (𝑖)𝐶

𝜆
𝔰𝔱 +

∑︁
𝔲▷𝔰

𝑟 ′𝔰𝔲𝐶
𝜆
𝔱𝔲 mod A>𝜆, (1.9)

for some 𝑟 ′𝔰𝔲 ∈ 𝑅.

We defined a cellular algebra over a domain 𝑅, however, as we observed many of the results that we study require
to work in a field. Then, let k the field of fractions of 𝑅. Note that in all the results where we assume that 𝑅 is a field,
we can replace 𝑅 with k, which is the minimal field over which the theory developed in this chapter works.

Let Lk be the commutative subalgebra of A spanned by {𝐿1, 𝐿2, . . . , 𝐿𝑀 }. For each 𝔱 ∈ 𝑇 (Λ) there exists a
one-dimensional representation 𝐾𝔱 on which 𝐿𝑖 acts by multiplication by 𝑐𝔱 (𝑖), for 1 ≤ 𝑖 ≤ 𝑀.

Proposition 1.2.1. Let A be a cellular k-algebra with a family of JM-elements and fix 𝜆 ∈ Λ, and 𝔰 ∈ 𝑇 (𝜆).
Suppose that whenever 𝔱 ∈ 𝑇 (Λ) and 𝔰 ◁ 𝔱 then 𝑐𝔱 (𝑖) ≠ 𝑐𝔰 (𝑖), for some 𝑖 with 1 ≤ 𝑖 ≤ 𝑀. Then 𝐿 (𝜆) ≠ 0.

Proof: By definition of JM-elements, for any 𝜇 ∈ Λ the Lk-module composition factors of Δ(𝜇) are precisely the
modules {𝐾𝔰 | 𝔰 ∈ 𝑇 (𝜇)}. If 𝔲, 𝔳 ∈ 𝑇 (Λ) then 𝐾𝔲 � 𝐾𝔳 as Lk-modules if and only if 𝑐𝔲 (𝑖) = 𝑐𝔳 (𝑖), for 1 ≤ 𝑖 ≤ 𝑀. Note
that 𝐾𝔱 is not an Lk-module composition factor for any cell module Δ(𝜇) whenever 𝜆 > 𝜇. Consequently, 𝐾𝔱 is not an
Lk-module composition factor of 𝐿 (𝜇) whenever 𝜆 > 𝜇. However, by [37], Proposition 3.6, 𝐿 (𝜇) is a composition factor
of Δ(𝜆) only if 𝜆 ≥ 𝜇. Therefore, 𝐶𝜆

𝔱
∉ 𝑟𝑎𝑑Δ(𝜆) and then, 𝐿 (𝜆) ≠ 0 as claimed. □

As we mentioned in the introduction, we study the theory of cellular algebras following the dichotomy seen in [71],
that is, there are two cases depending if the following condition holds.

Definition 1.2.2. (Separation condition) Suppose that A is a cellular 𝑅-algebra with JM-elements {𝐿1, 𝐿2, . . . , 𝐿𝑀 }.
The Jucys-Murphy elements separate 𝑇 (Λ) (over 𝑅) if whenever 𝔰, 𝔱 ∈ 𝑇 (Λ) and 𝔰 ▷ 𝔱 then 𝑐𝔰 (𝑖) ≠ 𝑐𝔱 (𝑖), for some 𝑖 with
1 ≤ 𝑖 ≤ 𝑀.

The separation condition says that the contents distinguish between the elements of 𝑇 (Λ). Besides, the separation
condition forces to A (over k) to be semisimple.

Corollary 1.2.1. Suppose that the cellular k-algebra A has a family of JM-elements which separates 𝑇 (Λ). Then
A is split semisimple.

Proof: From proposition 1.1.2 we know that Δ(𝜆) = 𝐿 (𝜆) for all 𝜆 ∈ Λ if and only if A is split semisimple. The
separation condition implies that if 𝔱 ∈ 𝑇 (𝜆) then 𝐾𝔱 does not occur as an Lk-module composition factor of 𝐿 (𝜇) for
any 𝜇 > 𝜆. By [37] (Proposition 3.6), 𝐿 (𝜇) is a composition factor of Δ(𝜆) only if 𝜆 ≥ 𝜇, so the cell module Δ(𝜆) = 𝐿 (𝜆)
is irreducible. Hence, A is semisimple.

□

The converse of the preceding corollary is also true. First, the irreducible A-modules 𝐿 (𝜆) are absolutely irreducible
by proposition 1.1.1. Thus, a cellular algebra is semisimple if and only if it is split semisimple, then non-split algebra
do not arise in our setting. Suppose that A is split semisimple. The Wedderburn basis of matrix units in the simple
components of A is a cellular basis of A. We claim that A admits a family of JM-elements.

To see it return to the example 1.1.2 and consider the case A = 𝑀𝑛 (k), with cellular basis the elementary matrices.
Let 𝐿𝑖 = 𝐸𝑖𝑖 for 1 ≤ 𝑖 ≤ 𝑛. Then {𝐿1, 𝐿2, . . . , 𝐿𝑛} is a family of Jucys-Murphy elements for A which separates 𝑇 (Λ).

Remark 1.2.2. The number 𝑀 of JM-elements is not an invariant of the algebra A.
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1.3. The Murphy Standard Basis. We finish this section with a key example of cellular algebra: the Hecke
algebra. First recall that the symmetric group 𝔖𝑛 is a Coxeter group with set of generators 𝑆 = {𝑠1, 𝑠2, . . . , 𝑠𝑛−1} of
simple transpositions 𝑠𝑖 := (𝑖, 𝑖 + 1). Then, 𝔖𝑛 is generated by 𝑆 with the following relations

𝑠2𝑖 = 1, if 1 ≤ 𝑖 < 𝑛 (1.10)

𝑠𝑖𝑠𝑖+1𝑠𝑖 = 𝑠𝑖+1𝑠𝑖𝑠𝑖+1, if |𝑖 − 𝑗 | = 1 (1.11)

𝑠𝑖𝑠 𝑗 = 𝑠 𝑗 𝑠𝑖 , if |𝑖 − 𝑗 | > 1 (1.12)

where the last two relations are known as braid relations. Let 𝑤 ∈ 𝔖𝑛, hence 𝑤 = 𝑠𝑖1 𝑠𝑖2 · · · 𝑠𝑖𝑘 for 𝑠𝑖 𝑗 ∈ 𝑆 and, if
𝑘 is minimal, we say that the length of 𝑤 is equal to 𝑘 and write 𝑙 (𝑤) = 𝑘. The element 𝑠𝑖1 𝑠𝑖2 · · · 𝑠𝑖𝑘 is called reduced
expression for 𝑤.

Let 𝑅 a commutative domain with 1 and let 𝑞 ∈ 𝑅 an arbitrary element.

Definition 1.3.1. The Hecke algebra H = H𝑅,𝑞 (𝔖𝑛) is defined as the associative unital 𝑅-algebra with generators
𝑇1, 𝑇2, . . . , 𝑇𝑛−1 and relations

(𝑇𝑖 − 𝑞) (𝑇𝑖 + 1) = 0, if 1 ≤ 𝑖 < 𝑛 (1.13)

𝑇𝑖𝑇𝑖+1𝑇𝑖 = 𝑇𝑖+1𝑇𝑖𝑇𝑖+1, if |𝑖 − 𝑗 | = 1 (1.14)

𝑇𝑖𝑇𝑗 = 𝑇𝑗𝑇𝑖 . if |𝑖 − 𝑗 | > 1 (1.15)

First, note that if 𝑞 = 1, the first relation (known as quadratic relation) turn into 𝑇2
𝑖
= 1, then H = 𝑅𝔖𝑛. Conse-

quently,H is called a deformation of 𝑅𝔖𝑛 and the representations of𝔖𝑛 arise naturally in the study of the representation
theory of H .

Let 𝑤 ∈ 𝔖𝑛 and 𝑠𝑖1 𝑠𝑖2 · · · 𝑠𝑖𝑘 be a reduced expression for 𝑤. Define 𝑇𝑤 = 𝑇𝑖1𝑇𝑖2 · · ·𝑇𝑖𝑘 , we identify 𝑇𝑖 = 𝑇𝑠𝑖 and 𝑇𝑖𝑑
is the unity of 𝑅. It can be shown that 𝑇𝑤 is well-defined, that is, it does not depend on the choice of the reduced
expression for 𝑤. Therefore H is free as 𝑅-module with basis {𝑇𝑤 | 𝑤 ∈ 𝔖𝑛}. Observe that from the quadratic relation
one gets 𝑇−1

𝑖
= 𝑞−1 (𝑇𝑖 − 𝑞 + 1), the inverse of 𝑇𝑖. Thus 𝑇

−1
𝑤 = 𝑇−1

𝑖𝑘
· · ·𝑇−1

𝑖2
𝑇−1
𝑖1

.

Let 𝜆 = (𝜆1, 𝜆2, . . . , 𝜆𝑟 ) be a partition of 𝑛 and 𝔰, 𝔱 ∈ 𝑆𝑡𝑑 (𝜆). Recall the definition of Young subgroup given in 2.1.1
and define

𝑚𝜆 =
∑︁
𝑤∈𝔖𝜆

𝑇𝑤 . (1.16)

Now recall the definition of 𝑑 (𝔱) ∈ 𝔖𝑛 for 𝔱 a tableau, given in the paragraph below (1.11). Let the 𝑅-linear
anti-isomorphism ∗ : H → H , defined by 𝑇∗𝑤 = 𝑇𝑤−1 for all 𝑤 ∈ 𝔖𝑛. Define

𝑚𝔰𝔱 = 𝑇𝑑 (𝔰)𝑚𝜆𝑇
∗
𝑑 (𝔱) . (1.17)

Theorem 1.3.1. (The Murphy standard basis). The Hecke algebra H is free as 𝑅 module with basis

M = {𝑚𝔰𝔱 | 𝔰, 𝔱 ∈ 𝑆𝑡𝑑 (𝜆), 𝜆 ⊢ 𝑛}. (1.18)

Moreover, the following hold.

(1) The 𝑅-linear map given by 𝑚𝔰𝔱 ↦→ 𝑚𝔱𝔰, for all 𝑚𝔰𝔱 ∈ M, is an anti-isomorphism of H .
(2) Suppose that ℎ ∈ H and 𝔱 ∈ 𝑆𝑡𝑑 (𝜆). Then there exist coefficients 𝑟𝔳 ∈ 𝑅 such that for all 𝔰 ∈ 𝑆𝑡𝑑 (𝜆)

𝑚𝔰𝔱ℎ ≡
∑︁

𝔳∈𝑆𝑡𝑑 (𝜆)
𝑟𝔳𝑚𝔰𝔳 mod H𝜆, (1.19)

where H𝜆 is the 𝑅-module with basis 𝑚𝔲𝔳 for 𝔲, 𝔳 ∈ 𝑆𝑡𝑑 (𝜇) for some partition 𝜇 of 𝑛 with 𝜇 ▷ 𝜆.

Consequently, (M,Λ) is a cellular basis of H for Λ the poset of partitions ordered by dominance.

Example 1.3.1. Suppose that 𝑛 = 5. We will construct an element on the cellular basis of H𝑅,𝑞 (𝔖5). Fix 𝜆 = (3, 2)
a partition of 5, and choose 𝔰, 𝔱 ∈ 𝑆𝑡𝑑 (𝜆). Let 𝔰 = 1 2 4

3 5
and 𝔱 = 1 2 5

3 4
, then 𝑑 (𝔰) = 𝑠2 and 𝑑 (𝔱) = 𝑠4𝑠2. Also, we

have 𝔖𝜆 = 𝔖{1,2,3} ×𝔖{4,5} , then
𝑚𝜆 = (1 + 𝑇1 + 𝑇2 + 𝑇1𝑇2 + 𝑇2𝑇1 + 𝑇2𝑇1𝑇2) (1 + 𝑇3). (1.20)
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Therefore,

𝑚𝔰𝔱 = 𝑇2 (1 + 𝑇1 + 𝑇2 + 𝑇1𝑇2 + 𝑇2𝑇1 + 𝑇2𝑇1𝑇2) (1 + 𝑇3)𝑇2𝑇4. (1.21)

Remark 1.3.1. Observe that, when 𝑞 = 1, the Murphy standard basis of H gives a cellular basis for the algebra
𝑅𝔖𝑛.

The Hecke algebra H is equipped with a family of Jucys-Murphy elements, which are defined as follows.

Definition 1.3.2. Set 𝐿1 := 0. For 𝑖 ≥ 2

𝐿𝑖 = 𝑞
−1𝑇(𝑖−1,𝑖) + 𝑞−2𝑇(𝑖−2,𝑖) + · · · + 𝑞1−𝑖𝑇(1,𝑖) . (1.22)

This defines a family of JM-elements for H .

For instance, if 𝑛 = 4 then 𝐿1 = 0, 𝐿2 = 𝑞−1𝑇(1,2) , 𝐿3 = 𝑞−1𝑇(2,3) +𝑞−2𝑇(1,3) , and 𝐿4 = 𝑞−1𝑇(3,4) +𝑞−2𝑇(2,4) +𝑞−3𝑇(1,4) .

Remark 1.3.2. Note that from the definition 1.3.2 we obtain a family of JM-elements for 𝑅𝔖𝑛 given by 𝐿1 := 0,
and

𝐿𝑖 := (1, 𝑖) + (2, 𝑖) + · · · + (𝑖 − 1, 𝑖), (1.23)

for 𝑖 = 2, 3, . . . , 𝑛.

Proposition 1.3.1. Let 𝑖 and 𝑘 integers with 1 ≤ 𝑖 < 𝑛 and 1 ≤ 𝑘 ≤ 𝑛.

(1) 𝑇𝑖𝐿𝑖+1 = (𝑞 − 1)𝐿𝑖+1 + 1 + 𝐿𝑖𝑇𝑖 and 𝑇𝑖𝐿𝑖 = 𝐿𝑖+1𝑇𝑖 − 1 − (𝑞 − 1)𝐿𝑖+1.
(2) 𝑇𝑖 and 𝐿𝑘 commute if 𝑖 ≠ 𝑘 − 1, 𝑘.
(3) 𝐿𝑖 and 𝐿𝑘 commute.
(4) 𝑇𝑖 commutes with 𝐿𝑖𝐿𝑖+1 and 𝐿𝑖𝐿𝑖+1.

Proof: First, note that 𝐿𝑖 can be written as

𝐿𝑖 = 𝑞
−1𝑇𝑖−1 + 𝑞−2𝑇𝑖−2𝑇𝑖−1 + · · · + 𝑞1−𝑖𝑇1𝑇2 · · ·𝑇𝑖−1 · · ·𝑇2𝑇1. (1.24)

Then 𝑇𝑖𝐿𝑖𝑇𝑖 = 𝑞𝐿𝑖+1 −𝑇𝑖 and we use this formula to obtain (1). To prove (2), first note that if 𝑖 > 𝑘 𝑇𝑖 and 𝐿𝑘 commute
because 𝑇𝑖 and 𝑇𝑗 commute for 1 ≤ 𝑗 < 𝑘. Now we need to prove the result for 𝑖 < 𝑘 − 1.

Let 𝑖 = 𝑘 − 2 and 𝑘 ≥ 3, then

𝐿𝑘𝑇𝑘−2 = (𝑞−1𝑇𝑘−1 + 𝑞−2𝑇𝑘−2𝑇𝑘−1 + · · · + 𝑞1−𝑘𝑇1𝑇2 · · ·𝑇𝑘−1 · · ·𝑇2𝑇1)𝑇𝑘−2. (1.25)

Take an arbitrary element in the preceding sum and use the braid relations to get:

· · ·𝑇𝑘−4𝑇𝑘−3𝑇𝑘−2𝑇𝑘−1𝑇𝑘−2𝑇𝑘−3𝑇𝑘−4 · · ·𝑇𝑘−2 = · · ·𝑇𝑘−4𝑇𝑘−3𝑇𝑘−2𝑇𝑘−1𝑇𝑘−2𝑇𝑘−3𝑇𝑘−2𝑇𝑘−4 · · · (1.26)

= · · ·𝑇𝑘−4𝑇𝑘−3𝑇𝑘−2𝑇𝑘−1𝑇𝑘−3𝑇𝑘−2𝑇𝑘−3𝑇𝑘−4 · · · (1.27)

= · · ·𝑇𝑘−4𝑇𝑘−3𝑇𝑘−2𝑇𝑘−3𝑇𝑘−1𝑇𝑘−2𝑇𝑘−3𝑇𝑘−4 · · · (1.28)

= · · ·𝑇𝑘−4𝑇𝑘−2𝑇𝑘−3𝑇𝑘−2𝑇𝑘−1𝑇𝑘−2𝑇𝑘−3𝑇𝑘−4 · · · (1.29)

= 𝑇𝑘−2 · · ·𝑇𝑘−4𝑇𝑘−3𝑇𝑘−2𝑇𝑘−1𝑇𝑘−2𝑇𝑘−3𝑇𝑘−4 · · · , (1.30)

therefore 𝐿𝑘𝑇𝑘−2 = 𝑇𝑘−2𝐿𝑘 and, particularly, 𝐿3𝑇1 = 𝑇1𝐿3. Finally, we need to show that 𝑇𝑖 and 𝐿𝑘 commute when
1 ≤ 𝑖 ≤ 𝑘 − 3 and 𝑘 ≥ 4. We proceed by induction on 𝑘, since the base case follows from the equality 𝐿3𝑇1 = 𝑇1𝐿3.
Therefore, if 1 ≤ 𝑖 ≤ 𝑘 − 3 then

𝑇𝑖𝐿𝑘 = 𝑞
−1𝑇𝑖 (𝑇𝑘−1 + 𝑇𝑘−1𝐿𝑘−1𝑇𝑘−1) = 𝑞−1 (𝑇𝑘−1𝑇𝑖 + 𝑇𝑘−1𝑇𝑖𝐿𝑘−1𝑇𝑘−1) = 𝐿𝑘𝑇𝑖 , (1.31)

since 𝑇𝑖 and 𝑇𝑘−1 commute and 𝑇𝑖𝐿𝑘−1 = 𝐿𝑘−1𝑇𝑖 by induction.

In order to finish the proof, we need to show (3) and (4), but the statement (3) is a direct consequence of (2),
whereas the claim (4) can be obtained by a direct calculation using (1). This completes the proof. □
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2. The separated case

2.1. Construction of the Seminormal Basis. For 𝑖 = 1, 2, . . . , 𝑀 the set of possible contents that the elements
of 𝑇 (Λ) can take at 𝑖 is defined to be C(𝑖) = {𝑐𝔱 (𝑖) | 𝔱 ∈ 𝑇 (Λ)}.

Definition 2.1.1. Suppose that 𝔰, 𝔱 ∈ 𝑇 (𝜆), for some 𝜆 ∈ Λ and define

𝐹𝔱 =

𝑀∏
𝑖=1

∏
𝑐∈C(𝑖)
𝑐≠𝑐𝔱 (𝑖)

𝐿𝑖 − 𝑐
𝑐𝔱 (𝑖) − 𝑐

. (2.1)

Thus, 𝐹𝔱 ∈ A. Define 𝑓𝔰𝔱 = 𝐹𝔰𝐶
𝜆
𝔰𝔱
𝐹𝔱 ∈ A.

The set { 𝑓𝔰𝔱 | 𝔰, 𝔱 ∈ 𝑇 (𝜆), for some 𝜆 ∈ Λ} is called the seminormal basis of A. Now we need to extend the order ▷
of 𝑇 (Λ) to ⊔

𝜆∈Λ
𝑇 (𝜆) × 𝑇 (𝜆). It is said that (𝔰, 𝔱) ▷ (𝔲, 𝔳) if 𝔰 ⊵ 𝔲, 𝔱 ⊵ 𝔳 and (𝔰, 𝔱) ≠ (𝔲, 𝔳).

Lemma 2.1.1. Let A be a cellular algebra with a family of JM-elements that satisfies the separation condition over
𝑇 (Λ).

(1) For 𝔰, 𝔱 ∈ 𝑇 (𝜆) there exist scalars 𝑏𝔲,𝔳 ∈ k such that

𝑓𝔰𝔱 = 𝐶
𝜆
𝔰𝔱 +

∑︁
𝔲,𝔳∈𝑇 (𝜇) ,𝜇∈Λ
(𝔲,𝔳)▷ (𝔰,𝔱)

𝑏𝔲,𝔳𝐶
𝜇
𝔲𝔳 mod A>𝜆. (2.2)

(2) The set { 𝑓𝔰𝔱 | 𝔰, 𝔱 ∈ 𝑇 (𝜆) for some 𝜆 ∈ Λ} is a basis of A.
(3) For 𝔰, 𝔱 ∈ 𝑇 (𝜆), ( 𝑓𝔰𝔱)∗ = 𝑓𝔱𝔰.

Proof: Using the definition of Jucys-Murphy elements from 1.2.1, for any 𝑐 ∈ C(𝑖) with 𝑐 ≠ 𝑐𝔱 (𝑖) we have

𝐶𝜆𝔰𝔱
𝐿𝑖 − 𝑐
𝑐𝔱 (𝑖) − 𝑐

≡ 𝐶𝜆𝔰𝔱 +
∑︁
𝔳▷𝔱

𝑏𝔳𝐶
𝜇
𝔰𝔳 mod A>𝜆, (2.3)

and the same applies if we act on 𝐶𝜆
𝔰𝔱
from the left. Then we obtain the equality given in (1). From (1), the transition

matrix from the basis {𝐶𝜆
𝔰𝔱
} to the basis { 𝑓𝔰𝔱} is unitriangular (using a suitable order). Then one gets (2). For (3), we

have from the definitions that (𝐶𝜆
𝔰𝔱
)∗ = 𝐶𝜆

𝔱𝔰
and 𝐿∗

𝑖
= 𝐿𝑖, thus ( 𝑓𝔰𝔱)∗ = 𝐹∗𝔱 𝐶

𝜆
𝔱𝔰
𝐹∗𝔰 = 𝐹𝔱𝐶

𝜆
𝔱𝔰
𝐹𝔰 = 𝑓𝔱𝔰. □

Proposition 2.1.1. Let 𝔰, 𝔱 ∈ 𝑇 (𝜆) for some 𝜆 ∈ Λ. Let 𝔲 ∈ 𝑇 (Λ) and fix 𝑖 ∈ {1, 2, . . . , 𝑀}. Then,

(1) 𝑓𝔰𝔱𝐿𝑖 = 𝑐𝔱 (𝑖) 𝑓𝔰𝔱,
(2) 𝑓𝔰𝔱𝐹𝔲 = 𝛿𝔱𝔲 𝑓𝔰𝔲,

where 𝛿𝔱𝔲 is Kronecker delta. There are analogues for the right hand side for part (1) and (2).

Proof: Let 𝑁 = |𝑇 (Λ) | and 𝔲, 𝔳 ∈ 𝑇 (𝜇). For this proof we will only show the main ideas. First, it is necessary to
prove the following claim: 𝐶

𝜇
𝔲𝔳𝐹

𝑁
𝔱

= 0, for all 𝔲 ∈ 𝑇 (𝜇). Further details of the proof of this claim can be found in [71]
(Proposition 3.4).
Define 𝑓 ′

𝔰𝔱
= 𝐹𝑁𝔰 𝐶

𝜆
𝔰𝔱
𝐹𝑁
𝔱
. Now fix 𝑗 ∈ {1, 2, . . . , 𝑀}, as the Jucys-Murphy commutes we obtain

𝑓 ′𝔰𝔱𝐿 𝑗 = 𝐹
𝑁
𝔰 𝐶

𝜆
𝔰𝔱𝐿 𝑗𝐹

𝑁
𝔱

= 𝐹𝑁𝔰 (𝑐𝔱 ( 𝑗)𝐶𝜆𝔰𝔱 + 𝑥)𝐹
𝑁
𝔱
, (2.4)

where 𝑥 is a linear combination of 𝐶
𝜇
𝔲𝔳 for 𝔳 ▷ 𝔱 and 𝔲, 𝔳 ∈ 𝑇 (𝜇). Using the claim, 𝑥𝐹𝑁

𝔱
= 0 and then 𝑓 ′

𝔰𝔱
𝐿 𝑗 = 𝑐𝔱 ( 𝑗) 𝑓 ′𝔰𝔱.

Every factor of 𝐹𝔱 fix 𝑓 ′
𝔰𝔱
, thus 𝑓 ′

𝔰𝔱
= 𝑓 ′

𝔰𝔱
𝐹𝔱. Moreover, if 𝔲 ≠ 𝔱 we can find 𝑗 such that 𝑐𝔱 ( 𝑗) ≠ 𝑐𝔲 ( 𝑗) by the separation

condition, so 𝑓 ′
𝔰𝔱
𝐹𝔲 = 0. We have shown that

𝐹𝔲 𝑓
′
𝔰𝔱𝐹𝔳 = 𝛿𝔲𝔰𝛿𝔱𝔳 𝑓

′
𝔰𝔱, (2.5)

for any 𝔲, 𝔳 ∈ 𝑇 (Λ). Using the same argument as in 2.1.1 and inverting the equation we can write 𝐶𝜆
𝔰𝔱
= 𝑓 ′

𝔰𝔱
+ 𝑦, where 𝑦

is a linear combination of 𝑓 ′𝔲𝔳 for (𝔲, 𝔳) ▷ (𝔰, 𝔱). Therefore,
𝑓𝔰𝔱 = 𝐹𝔰𝐶

𝜆
𝔰𝔱𝐹𝔱 = 𝐹𝔰 ( 𝑓

′
𝔰𝔱 + 𝑦)𝐹𝔱 = 𝐹𝔰 𝑓

′
𝔰𝔱𝐹𝔱 = 𝑓 ′𝔰𝔱 . (2.6)

That is, 𝑓𝔰𝔱 = 𝑓 ′
𝔰𝔱
. Thus

𝑓𝔰𝔱𝐿𝑖 = 𝑓 ′𝔰𝔱𝐿𝑖 = 𝑐𝔱 (𝑖) 𝑓
′
𝔰𝔱 = 𝑓𝔰𝔱, (2.7)

so, part (1) of the proposition follows. Finally,

𝑓𝔰𝔱𝐹𝔲 = 𝑓 ′𝔰𝔱𝐹𝔲 = 𝛿𝔱𝔲 𝑓
′
𝔰𝔱 = 𝛿𝔱𝔲 𝑓𝔰𝔱, (2.8)
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proving (2). □

The proof of the following Theorem can be found in [71] (Theorem 3.7).

Theorem 2.1.1. Suppose that the family of JM-elements separate 𝑇 (Λ) over 𝑅. Let 𝔰, 𝔱 ∈ 𝑇 (𝜆) and 𝔲, 𝔳 ∈ 𝑇 (𝜇),
for some 𝜆, 𝜇 ∈ Λ. Then, there exist scalars {𝛾𝔱 ∈ k | 𝔱 ∈ 𝑇 (Λ)} such that

𝑓𝔰𝔱 𝑓𝔲𝔳 =

{
𝛾𝔱 𝑓𝔰𝔳, if 𝜆 = 𝜇 and 𝔱 = 𝔲,

0, otherwise.
(2.9)

In particular, 𝛾𝔱 depends only on 𝔱 ∈ 𝑇 (Λ) and { 𝑓𝔰𝔱 | 𝔰, 𝔱 ∈ 𝑇 (𝜆) for some 𝜆 ∈ Λ} is a cellular basis of A.

Corollary 2.1.1. Suppose that A is a cellular algebra with a family of JM-elements which separates 𝑇 (Λ). Then
𝛾𝔱 ≠ 0 for all 𝔱 ∈ 𝑇 (Λ).

Proof: By contradiction suppose that 𝛾𝔱 = 0, for some 𝔱 ∈ 𝑇 (𝜆) and 𝜆 ∈ Λ. Then, 𝑓𝔱𝔱 𝑓𝔲𝔳 = 0 = 𝑓𝔲𝔳 𝑓𝔱𝔱, for all 𝔲, 𝔳 ∈ 𝑇 (𝜇)
and 𝜇 ∈ Λ. As a consequence, k 𝑓𝔱𝔱 is a one-dimensional nilpotent ideal of A, thus A is not semisimple. This contradicts
Corollary 1.2.1. Thus, 𝛾𝔱 ≠ 0 for all 𝔱 ∈ 𝑇 (Λ). □

2.2. Seminormal Basis and Cell Modules. Next, we use the seminormal basis to study the cell modules. The
corollaries below are results derived from the preceding theorem.

Corollary 2.2.1. Suppose that 𝜆 ∈ Λ and fix 𝔰, 𝔱 ∈ 𝑇 (𝜆). Then,
Δ(𝜆) � 𝑓𝔰𝔱A = Span { 𝑓𝔰𝔳 | 𝔳 ∈ 𝑇 (𝜆)}. (2.10)

Proof: From the definition, we know that 𝑓𝔲𝔳 = 𝐹𝔲𝐶
𝜆
𝔲𝔳𝐹𝔳 for 𝔲, 𝔳 ∈ 𝑇 (𝜆). Then the cell modules corresponding to the

cellular bases {𝐶𝜆𝔲𝔳} and { 𝑓𝔲𝔳} of A are isomorphic. Let Δ(𝜆)′ be the cell module for the seminormal basis, then it is
spanned by { 𝑓𝔰𝔲 + A>𝜆 | 𝔲 ∈ 𝑇 (𝜆)}.
Now suppose that 𝔲, 𝔳 ∈ 𝑇 (𝜇) for some 𝜇 ∈ Λ. Then by Theorem 2.1.1 𝑓𝔰𝔱 𝑓𝔲𝔳 = 𝛿𝔱𝔲𝛾𝔱 𝑓𝔰𝔳 and, by Corollary 2.1.1 𝛾𝔱 ≠ 0.
Thus, { 𝑓𝔰𝔳 | 𝔳 ∈ 𝑇 (𝜆)} is a basis of 𝑓𝔰𝔱A. By Theorem 2.1.1, 𝑓𝔰𝔱A is isomorphic to Δ(𝜆)′ via 𝑓𝔰𝔳 ↦→ 𝑓𝔰𝔳 + 𝐴>𝜆 for 𝔳 ∈ 𝑇 (𝜆).
Therefore, Δ(𝜆) � Δ(𝜆)′ � 𝑓𝔰𝔱A, as required.

□

Using the preceding corollary one obtain an explicit decomposition of A into a direct sum of cell modules. This
result can be also understood as a consequence of Corollary 1.2.1.

Corollary 2.2.2. Suppose that A is a cellular algebra with a family of JM-elements which separates 𝑇 (Λ). Then
Δ(𝜆) = 𝐿 (𝜆) for all 𝜆 ∈ Λ, and

A �
⊕
𝜆∈Λ

Δ(𝜆)⊕|𝑇 (Λ) | . (2.11)

Fix 𝔰 ∈ 𝑇 (𝜆) and set 𝑓𝔱 = 𝑓𝔰𝔱, then Δ(𝜆) has basis { 𝑓𝔱 | 𝔱 ∈ 𝑇 (𝜆)}. For some scalars 𝑏𝔳 ∈ k, we have 𝑓𝔱 = 𝐶𝜆𝔱 +
∑
𝔳▷𝔱
𝑏𝔳𝐶

𝜆
𝔳 ,

by Lemma 2.1.1 (1). For 𝜆 ∈ Λ, the Gram determinant of the bilinear form ⟨ , ⟩ on the cell module Δ(𝜆) is defined to
be

𝐺 (𝜆) = det (⟨𝐶𝜆𝔰 , 𝐶𝜆𝔱 ⟩)𝔰,𝔱∈𝑇 (𝜆) .

There is not a specific ordering on the rows and columns of the Gram matrix, however 𝐺 (𝜆) is well-defined only up to
multiplication by ±1.

Theorem 2.2.1. Let A be a cellular k-algebra with a family of JM-elements which hold with the separation
condition on 𝑇 (Λ). Let 𝜆 ∈ Λ and suppose that 𝔰, 𝔱 ∈ 𝑇 (𝜆). Then

⟨ 𝑓𝔰, 𝑓𝔱⟩ = ⟨𝐶𝜆𝔰 , 𝑓𝔱⟩ =
{
𝛾𝔱, if 𝔰 = 𝔱,

0, otherwise.
(2.12)

Consequently, 𝐺 (𝜆) = ∏
𝜆∈𝑇 (𝜆)

𝛾𝔱.

Proof: We already know that { 𝑓𝔰𝔱} is a cellular basis of A and, by Corollary 2.2.1 we may take { 𝑓𝔱 | 𝔱 ∈ 𝑇 (𝜆)} to
be a basis of Δ(𝜆). Again, 𝑓𝔰𝔱 𝑓𝔲𝔳 = 𝛿𝔱𝔲𝛾𝔱 𝑓𝔰𝔳, so using this and the definition of inner product on Δ(𝜆) we obtain that
⟨ 𝑓𝔰, 𝑓𝔱⟩ = 𝛿𝔰𝔱𝛾𝔱. Using Proposition 2.1.1 (2) and the associativity of the inner product to get

⟨𝐶𝜆𝔰 , 𝑓𝔱⟩ = ⟨𝐶𝜆𝔰 , 𝑓𝔱𝐹𝔱⟩ = ⟨𝐶𝜆𝔰 𝐹∗𝔱 , 𝑓𝔱⟩ = ⟨ 𝑓𝔰, 𝑓𝔱⟩. (2.13)

45



The theorem follows. As the transition matrix between both bases is unitriangular, we have

𝐺 (𝜆) = det (⟨𝐶𝜆𝔰 , 𝐶𝜆𝔱 ⟩) = det (⟨ 𝑓𝔰, 𝑓𝔱⟩) =
∏

𝜆∈𝑇 (𝜆)
𝛾𝔱 . (2.14)

□

Remark 2.2.1. Observe that if we extend the bilinear form ⟨ , ⟩ to A, then { 𝑓𝔰𝔱} is an orthogonal basis of A.

Two consequences can be noticed from the preceding theorem. Recall that 𝑅 is a domain and k its fraction field.

Corollary 2.2.3. Let 𝜆 ∈ Λ. Then, ∏
𝜆∈𝑇 (𝜆)

𝛾𝔱 ∈ 𝑅.

Proof: The inner product ⟨𝐶𝜆𝔰 , 𝐶𝜆𝔱 ⟩ ∈ 𝑅 for all 𝔰, 𝔱 ∈ 𝑇 (𝜆) by definition. Then 𝐺 (𝜆) ∈ 𝑅 and the result follows from the
Theorem 2.2.1. □

Corollary 2.2.4. Suppose that 𝜆 ∈ Λ. Then the cell module Δ(𝜆) is irreducible, i.e., Δ(𝜆) = 𝐿 (𝜆).

Proof: The result follows from the Theorem 2.2.1, Corollary 2.1.1 and the fact that 𝐺 (𝜆) ≠ 0. □

2.3. Primitive Idempotents. Now we turn to the study of the primitive idempotents of A.

Theorem 2.3.1. Let A be a cellular k-algebra with a family of JM-elements which separates 𝑇 (Λ). Then,

(1) If 𝔱 ∈ 𝑇 (𝜆) and 𝜆 ∈ Λ then 𝐹𝔱 =
1
𝛾𝔱
𝑓𝔱𝔱 and 𝐹𝔱 is a primitive idempotent in A.

(2) If 𝜆 ∈ Λ then 𝐹𝜆 =
∑

𝔱∈𝑇 (𝜆)
𝐹𝔱 is a primitive central idempotent in A.

(3) {𝐹𝔱 | 𝔱 ∈ 𝑇 (Λ)} and {𝐹𝜆 | 𝜆 ∈ Λ} are complete sets of pairwise orthogonal idempotents in A; in particular

1A =
∑︁
𝜆∈Λ

𝐹𝜆 =
∑︁

𝔱∈𝑇 (Λ)
𝐹𝔱 . (2.15)

Proof: Notice that 1
𝛾𝔱
𝑓𝔱𝔱 is well-defined by Corollary 2.1.1, that is, 𝛾𝔱 ≠ 0. In addition, 1

𝛾𝔱
𝑓𝔱𝔱 is an idempotent by

Theorem 2.1.1. From Corollary 2.2.4 Δ(𝜆) is irreducible and by Corollary 2.2.1 Δ(𝜆) � 𝑓𝔱𝔱A = 𝐹𝔱A. then 𝐹𝔱 is a
primitive idempotent by Proposition 2.3.3 and the two preceding results.
Now, in order to complete the proof of (1), we need to prove that 𝐹𝔱 =

1
𝛾𝔱
𝑓𝔱𝔱. First, write 𝐹𝔱 as linear combination of

elements on the seminormal basis,

𝐹𝔱 =
∑︁
𝜈∈Λ

©­«
∑︁

𝔞,𝔟∈𝑇 (𝜈)
𝑟𝔞𝔟 𝑓𝔞𝔟

ª®¬ . (2.16)

Now, notice that for 𝔲, 𝔳 ∈ 𝑇 (𝜇) for some 𝜇 ∈ Λ we have

𝛿𝔳𝔱 𝑓𝔲𝔳 = 𝑓𝔲𝔳𝐹𝔱 =
∑︁
𝜈∈Λ

∑︁
𝔞,𝔟∈𝑇 (𝜈)

𝑟𝔞𝔟 𝑓𝔲𝔳 𝑓𝔞𝔟 =
∑︁

𝔟∈𝑇 (𝜇)
𝑟𝔳𝔟𝛾𝔳 𝑓𝔲𝔟. (2.17)

Comparing both sides of the equation one gets

𝑟𝔳𝔟 =

{
1
𝛾𝔱
, if 𝔳 = 𝔱 = 𝔟,

0 otherwise.
(2.18)

Then 𝐹𝔱 =
1
𝛾𝔱
𝑓𝔱𝔱 because the choice of 𝔳 was arbitrary. Thus (1) follows, and the parts (2) and (3) follow from (1) and

the multiplication formula in Theorem 2.1.1. □

Corollary 2.3.1. Let A be a cellular k-algebra with a family of JM-elements which separates 𝑇 (Λ). Then,
𝐿𝑖 =

∑︁
𝔱∈𝑇 (Λ)

𝑐𝔱 (𝑖)𝐹𝔱 (2.19)

and
∏
𝑐∈C(𝑖) (𝐿𝑖 − 𝑐) is the minimum polynomial for 𝐿𝑖 acting on A.

Proof: Using the part (3) of the preceding Theorem we obtain

𝐿𝑖 = 𝐿𝑖

∑︁
𝔱∈𝑇 (Λ)

𝐹𝔱 =
∑︁

𝔱∈𝑇 (Λ)
𝐿𝑖𝐹𝔱 =

∑︁
𝔱∈𝑇 (Λ)

𝑐𝔱 (𝑖)𝐹𝔱 . (2.20)

For the second part, note that
∏
𝑐∈C(𝑖) (𝐿𝑖 − 𝑐) 𝑓𝔱 = 0 for all 𝔱 ∈ 𝑇 (Λ) by Proposition 2.1.1. If we omit 𝐿𝑖 − 𝑑 for some

𝑑 ∈ C(𝑖) then we can find a 𝔰 in 𝑇 (𝜇) for some 𝜇 such that 𝑐𝔰 (𝑖) = 𝑑. Therefore
∏
𝑐≠𝑑 (𝐿𝑖 − 𝑐) 𝑓𝔰 ≠ 0. □
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Corollary 2.3.2. Let A be a cellular k-algebra with a family of JM-elements which separates 𝑇 (Λ). Then
{𝐿1, 𝐿2, . . . , 𝐿𝑀 } generates a maximal commutative subalgebra of A.

Proof: Recall that Lk is the commutative subalgebra of A generated by the Jucys-Murphy elements. From the
preceding Corollary, we obtain that Lk is spanned by the primitive idempotents {𝐹𝔱 | 𝔱 ∈ 𝑇 (Λ)}. The primitive
idempotents of an algebra span a maximal commutative subalgebra, then the result follows. □

2.4. Seminormal forms for the Hecke algebra. A classical example of seminormal forms arises in the repre-
sentation theory of the symmetric group 𝔖𝑛, which is called Young’s Seminormal form. Over a field of characteristic
zero, each irreducible representation 𝑆(𝜆) admits a seminormal basis indexed by standard Young tableaux of shape 𝜆.
That is, a basis which diagonalizes the action of the Jucys–Murphy elements 𝐿𝑖 =

∑
𝑗<𝑖 ( 𝑗 , 𝑖), and the transpositions

𝑠𝑖 = (𝑖, 𝑖 + 1) act via explicit upper-triangular formulas.

For example, if 𝜆 = (2, 1), the Specht module 𝑆(2, 1) has a basis {𝑣𝔱} where 𝔱 runs over standard tableaux of shape
(2, 1). On this basis, we have:

𝐿2𝑣𝔱 = 𝑐𝔱 (2) 𝑣𝔱, 𝐿3𝑣𝑡 = 𝑐𝔱 (3) 𝑣𝔱,

where 𝑐𝔱 (𝑖) is the content of the node containing 𝑖 in the tableau 𝔱. The elements 𝑠𝑖 act by simple rational functions of
the contents. Seminormal forms are important because they provide explicit matrices for the irreducible representations
of 𝔖𝑛, and because the action of the generators can be described entirely in terms of the combinatorics of tableaux.

Now we generalize this idea to the Hecke algebra, where a 𝑞-analogue of the seminormal form plays a central role.
Let 𝑅 be a commutative domain with unity. Recall the definition of the Hecke algebra H given in 1.3.1. In Theorem
1.3.1 we observed that H is a cellular 𝑅-algebra with a family of Jucys-Murphy elements given by

𝐿1 = 0, 𝐿𝑖 = 𝑞
−1𝑇(𝑖−1,𝑖) + 𝑞−2𝑇(𝑖−2,𝑖) + · · · + 𝑞1−𝑖𝑇(1,𝑖) .

Let 𝑚 be an integer and define the quantum integer [𝑚]𝑞 = 1 + 𝑞 + · · · + 𝑞𝑚−1 if 𝑚 ≥ 0, and [−𝑚]𝑞 = −𝑞−𝑚 [𝑚]𝑞
otherwise. Note that when 𝑞 ≠ 1, we have [𝑚]𝑞 =

𝑞𝑚−1
𝑞−1 , whereas if 𝑞 = 1, [𝑚]1 = 𝑚. Let 𝑒 be the smallest positive

integer such that [𝑒]𝑞 = 0 and set 𝑒 = ∞ if no such integer exists. That is, either 𝑞 = 1 and 𝑒 is the characteristic of 𝑅,
or 𝑞 ≠ 1 and 𝑞 is a primitive 𝑒-th root of unity.

Let 𝜆 be a partition of 𝑛 and [𝜆] its Young diagram. If 𝑥 = (𝑖, 𝑗) is a node in [𝜆], an 𝑒-residue of 𝑥 in the integer
𝑟𝑒𝑠(𝑥) = 𝑗 − 𝑖 mod 𝑒. In the same way, if 𝑘 is an integer in a node of a 𝜆-tableau 𝔱 and 1 ≤ 𝑘 ≤ 𝑛 then 𝑟𝑒𝑠𝔱 (𝑘) = 𝑟𝑒𝑠(𝑥),
where 𝑥 is the unique node in [𝜆] where 𝑘 appears.

Example 2.4.1. Suppose that 𝑒 = 3, 𝜆 = (4, 2) and 𝔱 = 1 3 4 6

2 5
. Then the 𝑒-residues in [𝜆] are 0 1 2 0

2 0
.

So, for example, [res𝔱 (3)]𝑞 = [1]𝑞 and [res𝔱 (4)]𝑞 = [2]𝑞.

Now assume that 𝑅 is a field and 𝑒 > 𝑛, then we can construct the seminormal idempotent given in 2.1.1. In this
setting, we obtain for 𝔱 a 𝜆-tableau:

𝐹𝔱 =

𝑛∏
𝑘=1

∏
𝔰∈𝑆𝑡𝑑 (𝜆)

[𝑟𝑒𝑠𝔰 (𝑘 ) ]𝑞≠[𝑟𝑒𝑠𝔱 (𝑘 ) ]𝑞

𝐿𝑘 − [𝑟𝑒𝑠𝔰 (𝑘)]𝑞
[𝑟𝑒𝑠𝔱 (𝑘)]𝑞 − [𝑟𝑒𝑠𝔰 (𝑘 ) ]𝑞

. (2.21)

and let 𝑓𝔱 = 𝑚𝔱𝐹𝔱, where 𝑚𝔱 = 𝑚𝔱𝔱𝜆 mod H𝜆 as in the Murphy’s Standard basis. Indeed, a set as {𝑚𝔱 | 𝔱 ∈ 𝑆𝑡𝑑 (𝜆)},
is the basis as an 𝑅-module of the Specht module 𝑆H (𝜆) of H , which coincides with the cell module ΔH (𝜆).

The following Theorem is a 𝑞-analogue of the Young’s Seminormal form for H , that is, a generalization of the
Young’s Seminormal form for group algebra of the symmetric group. This result corresponds to Theorem 3.36 in [70].

Theorem 2.4.1. (Dipper-James) Suppose that 𝑅 is a field and that 𝑒 > 𝑛. Let 𝜆 be a partition of 𝑛.

(i) { 𝑓𝔱 | 𝔱 ∈ Std(𝜆)} is an orthogonal basis of 𝑆H (𝜆).
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(ii) Let 𝔰 be a standard 𝜆-tableau, 𝔱 = 𝔰(𝑖, 𝑖 + 1), and let 𝜌 = res𝔰 (𝑖) − res𝔱 (𝑖). Then

𝑓𝔰𝑇𝑖 =



𝑞 𝑓𝔰, if 𝑖 and 𝑖 + 1 are in the same row of 𝔰,

− 𝑓𝑠 , if 𝑖 and 𝑖 + 1 are in the same column of 𝑠,

− 1

[𝜌]𝑞
𝑓𝔰 + 𝑓𝔱, if 𝔱 ∈ Std(𝜆) and 𝔰 ⊲ 𝔱,

𝑞𝜌

[𝜌]𝑞
𝑓𝔰 +
[𝜌 + 1]𝑞 [𝜌 − 1]𝑞

[𝜌]2𝑞
𝑓𝔱, if 𝔱 ∈ Std(𝜆) and 𝔱 ⊲ 𝔰.

(2.22)

3. The unseparated case

Let 𝑅 be a discrete valuation ring with maximal ideal 𝜋, and A a cellular 𝑅-algebra with a family of JM-elements
which separates 𝑇 (Λ) over 𝑅. Recall that A is not forced to be split semisimple over 𝑅, but if k is the fraction field of
𝑅, then A is split semisimple over k, by Corollary 1.2.1.
Let 𝑘 = 𝑅/𝜋 be the residue field of 𝑅. Denote A𝑘 = A ⊗𝑅 𝑘 and let {𝐶𝜆

𝔰𝔱
} be the cellular basis of A over 𝑅, k and 𝑘, by

abuse of notation. Note that in general the JM-elements do not separate 𝑇 (Λ) over 𝑘. In order to be clear about the
ground field involved, we will use the corresponding subscript on A. For 𝑟 ∈ 𝑅, let 𝑟 = 𝑟 + 𝜋 be its image in 𝑘 = 𝑅/𝜋.
More generally, if 𝑎 =

∑
𝑟𝔰𝔱𝐶

𝜆
𝔰𝔱
∈ A𝑅 then we set 𝑎 =

∑
𝑟𝔰𝔱𝐶

𝜆
𝔰𝔱
∈ A𝑘 . Assume that 𝑐 − 𝑐′ is invertible in 𝑅 whenever

𝑐 ≠ 𝑐′, for 𝑐, 𝑐′ ∈ C =
⋃𝑀
𝑖=1 C(𝑖).

3.1. Residue classes and linkage classes. Let 𝑖 ∈ {1, 2, . . . , 𝑀} and 𝔱 ∈ 𝑇 (𝜆), define the residue of 𝑖 at 𝔱 to be

𝑟𝔱 (𝑖) = 𝑐𝔱 (𝑖). The action of the JM-elements on A𝑘 is given by

𝐶𝜆𝔰𝔱𝐿𝑖 ≡ 𝑟𝔱 (𝑖)𝐶
𝜆
𝔰𝔱 +

∑︁
𝔳▷𝔱

𝑟𝔱𝔳𝐶
𝜆
𝔰𝔳 mod A>𝜆𝑘 , (3.1)

where 𝑟𝔱𝔳 ∈ 𝑘. Similarly, we can define a formula for the left action of 𝐿𝑖.

Definition 3.1.1. (Residue classes and linkage classes)

(1) Suppose that 𝔰, 𝔱 ∈ 𝑇 (Λ). Then 𝔰 and 𝔱 belong to the same residue class, and we write 𝔰 ≈ 𝔱, if 𝑟𝔰 (𝑖) = 𝑟𝔱 (𝑖),
for all 𝑖 ∈ {1, 2, . . . , 𝑀}.

(2) Suppose that 𝜆, 𝜇 ∈ Λ. Then 𝜆 and 𝜇 are residually linked, and we write 𝜆 ∼ 𝜇, if there exist elements
𝜆0 = 𝜆, 𝜆1, . . . , 𝜆𝑟 = 𝜇 and elements 𝔰 𝑗 , 𝔱 𝑗 ∈ 𝑇 (𝜆 𝑗 ) such that 𝔰 𝑗−1 ≈ 𝔱 𝑗 , for 𝑗 = 1, 2, . . . , 𝑟.

Both ≈ and ∼ are equivalence relations on 𝑇 (Λ) and Λ respectively. If 𝔰 ∈ 𝑇 (Λ), let T𝔰 ∈ 𝑇 (Λ)/≈ be its residue
class. For the residue class T, define T(𝜆) = T∩𝑇 (𝜆), for 𝜆 ∈ Λ. The residue classes 𝑇 (Λ)/≈ parameterize the irreducible
L𝑘-modules.

Let T be a residue class, define

𝐹T =
∑︁
𝔱∈T

𝐹𝔱 . (3.2)

Note that 𝐹T is an element of Ak, as defined above.

Lemma 3.1.1. Suppose that T is a residue equivalence class in 𝑇 (Λ). Then 𝐹T is an idempotent in A𝑅.

Proof: Note that 𝐹T is a linear combination of orthogonal idempotents in A𝐾 , by theorem 2.3.1. We need to prove
that 𝐹T ∈ A𝑅, although this is non-trivial. The main idea is to fix an element 𝔱 ∈ T(𝜇), where 𝜇 ∈ Λ, and define

𝐹′𝔱 =
𝑀∏
𝑖=1

∏
𝑐∈C
𝑐≠𝑟𝔱 (𝑖)

𝐿𝑖 − 𝑐
𝑐𝔱 (𝑖) − 𝑐

. (3.3)

We assumed that 𝑐𝔱 (𝑖) − 𝑐 is invertible in 𝑅 whenever 𝑟𝔱 (𝑖) ≠ 𝑐. Thus 𝐹′
𝔱
∈ A𝑅. The goal is to prove that 𝐹T =

(𝐹T −𝐹′𝔱 )
𝑁 − (1−𝐹′

𝔱
)𝑁 +1 for certain 𝑁, then 𝐹T ∈ A𝑅. The details of this proof can be found in [71] (Lemma 4.2). □

As a consequence of the preceding Lemma, 𝐹T ∈ A𝑅 and then we can reduce 𝐹T module 𝜋 to obtain an element in
A𝑘 . Let 𝐺T = 𝐹T ∈ A𝑘 be the reduction of 𝐹T modulo 𝜋. Then 𝐺T is an idempotent in A𝑘 .

Definition 3.1.2. Let T be a residue class of 𝑇 (Λ).
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(1) Suppose that 𝔰, 𝔱 ∈ T(𝜆). Define 𝑔𝔰𝔱 = GT𝔰
𝐶𝜆
𝔰𝔱

GT𝔱
∈ A𝑘.

(2) Suppose that Γ ∈ Λ/∼ is a residue linkage class in Λ. Let AΓ
𝑘
be the subspace of A𝑘 spanned by {𝑔𝔰𝔱 | 𝔰, 𝔱 ∈ 𝑇 (𝜆)

and 𝜆 ∈ Γ}.

One can note that (𝐺T)∗ = 𝐺T and that (𝑔𝔰𝔱)∗ = 𝑔𝔱𝔰 for all 𝔰, 𝔱 ∈ 𝑇 (𝜆) and 𝜆 ∈ Λ. As a consequence of Theorem
2.3.1, if S and T are residue classes in 𝑇 (Λ), then 𝐺S𝐺T = 𝛿ST𝐺T.

Proposition 3.1.1. Let 𝔰, 𝔱 ∈ 𝑇 (𝜆), for some 𝜆 ∈ Λ, and fix 𝑖 with 𝑖 ∈ {1, 2, . . . 𝑀}. Let T ∈ 𝑇 (Λ)/≈. Then in A𝑘 ,

(1) 𝐿𝑖𝑔𝔰𝔱 = 𝑟𝔰 (𝑖)𝑔𝔰𝔱.
(2) 𝐺T𝑔𝔰𝔱 = 𝛿T𝔰T𝑔𝔰𝔱,

and similar for the right hand side.

3.2. Generalization of the seminormal basis. We now generalize the seminormal basis constructed on the
previous section to the algebra A𝑘 .

Theorem 3.2.1. Suppose that A𝑅 has a family of JM-elements which separates 𝑇 (Λ) over 𝑅.

(1) {𝑔𝔰𝔱 | 𝔰, 𝔱 ∈ 𝑇 (𝜆) and 𝜆 ∈ Λ} is a cellular basis of A𝑘 .
(2) Let Γ be the residue linkage class of Λ. Then AΓ

𝑘
is a cellular algebra with cellular basis {𝑔𝔰𝔱 | 𝔰, 𝔱 ∈ 𝑇 (𝜆) and

𝜆 ∈ Γ}.
(3) The residue linkage classes decompose A𝑘 into a direct sum of cellular subalgebras; that is

𝐴𝑘 =
⊕
Γ∈Λ/∼

𝐴Γ
𝑘 . (3.4)

Proof: Let Γ be the residue linkage class in Λ and let 𝜆 ∈ Γ. We use the same argument as in Lemma 2.1.1 (1), that
is, if 𝔰, 𝔱 ∈ 𝑇 (𝜆) then 𝑔𝔰𝔱 = 𝐶𝜆𝔰𝔱 + 𝑦, where 𝑦 is a linear combination of more dominant terms. Therefore, {𝑔𝔰𝔱} is a basis
of A𝑘 .
It is possible to prove, by direct computation, that for 𝜆, 𝜇 ∈ Λ, 𝔰, 𝔱 ∈ T(𝜆) and 𝔲, 𝔳 ∈ T(𝜇) we have: if 𝜆 ∼ 𝜇, then
𝑔𝔰𝔱𝑔𝔲𝔳 ∈ AΓ

𝑘
; otherwise 𝑔𝔰𝔱𝑔𝔲𝔳 = 0. Details can be found in [71] (Theorem 4.5). All the statements in the theorem now

follow. □

Corollary 3.2.1. Suppose that A𝑅 has a family of JM-elements which separates 𝑇 (Λ) over 𝑅 and that 𝜆, 𝜇 ∈ Λ.
Then Δ(𝜆) and Δ(𝜇) are in the same block of A𝑘 only if 𝜆 ∼ 𝜇.

Let Γ ∈ Λ/∼ be a residue linkage class. Then
∑
𝜆∈Γ

𝐹𝜆 ∈ 𝐴𝑅 by Lemma 3.1.1 and Theorem 2.3.1 (2). Define

𝐺Γ =
∑
𝜆∈Γ 𝐹𝜆 ∈ A𝑘 , we have the following result.

Corollary 3.2.2. Suppose that A𝑅 has a family of JM-elements which separates 𝑇 (Λ) over 𝑅.

(1) Let Γ be a residue linkage class. Then 𝐺Γ is a central idempotent in A𝑘 and the identity elements of the
subalgebra AΓ

𝑘
. Moreover,

AΓ
𝑘 = 𝐺ΓA𝑘𝐺Γ � 𝐸𝑛𝑑A𝑘

(𝐴𝑘𝐺Γ). (3.5)

(2) {𝐺Γ | Γ ∈ Λ/∼} and {𝐺T | T ∈ 𝑇 (Λ)/≈} are complete sets of pairwise orthogonal idempotents of A𝑘 . In
particular,

1A𝑘
=

∑︁
Γ∈Λ/∼

𝐺Γ =
∑︁

T∈𝑇 (Λ)/≈
𝐺T. (3.6)

Proof: This Corollary is immediate from Theorem 3.2.1 and Theorem 2.3.1. □

Let R(𝑖) = {𝑐 | 𝑐 ∈ C(𝑖)}. If T is a residue class in 𝑇 (Λ) then we set 𝑟T (𝑖) = 𝑟𝔱 (𝑖), for 𝔱 ∈ T and 𝑖 ∈ {1, 2, . . . , 𝑀}.
The first claim of the following Corollary follows directly from Corollary 3.2.2 (2) Proposition 3.1.1.

Corollary 3.2.3. Suppose that A𝑅 has a family of JM-elements which separates 𝑇 (Λ) over 𝑅. Then,
𝐿𝑖 =

∑︁
T∈𝑇 (Λ)/≈

𝑟T (𝑖)𝐺T. (3.7)

and
∏
𝑟∈R(𝑖) (𝐿𝑖 − 𝑟) is the minimum polynomial for 𝐿𝑖 acting on A𝑘 .

Given 𝜆 ∈ Λ fix 𝔰 ∈ 𝑇 (𝜆) and define 𝑔𝔱 = 𝑔𝔰𝔱 + A>𝜆𝑘 .

49



Proposition 3.2.1. Suppose that A𝑅 has a family of JM-elements which separates 𝑇 (Λ) over 𝑅. Then the set
{𝑔𝔱 | 𝔱 ∈ 𝑇 (𝜆)} forms a basis of Δ(𝜆). Moreover, if 𝔱, 𝔲 ∈ 𝑇 (𝜆) then

⟨𝑔𝔱, 𝑔𝔲⟩ =
{
⟨𝐶𝜆

𝔱
, 𝑔𝔲⟩, if 𝔱 ≈ 𝔲,

0, if 𝔱 ≇ 𝔲.
(3.8)

Proof: By Theorem 3.2.1 and the argument of Lemma 2.1.1 (1), we obtain that {𝑔𝔱 | 𝔱 ∈ 𝑇 (𝜆)} is a basis of Δ(𝜆). If
𝔱, 𝔲 ∈ 𝑇 (𝜆) then by the associativity of the inner product we get

⟨𝑔𝔱, 𝑔𝔲⟩ = ⟨𝐶𝜆𝔱 𝐺T𝔱
, 𝑔𝔲⟩ = ⟨𝐶𝜆𝔱 , 𝑔𝔲⟩𝐺T𝔱

. (3.9)

Now (2) follows from the right hand side of the Proposition 3.1.1 part (2). □
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CHAPTER 4

Seminormal forms for the Temperley-Lieb algebra

In this chapter, we study the Temperley-Lieb algebra and develop the construction of seminormal forms adapted
to its cellular structure. This work is based on the article [81], coauthored with Steen Ryom-Hansen and published in
the Journal of Algebra. Our goal is to generalize the classical notion of seminormal forms for the symmetric group, to
the Temperley-Lieb algebra.

We first describe the semisimple case or the separated case, where the action of the Jucys-Murphy elements is
diagonalizable and the cellular basis admits a seminormal form. In this setting, the primitive idempotents of the
algebra are the Jones-Wenzl projectors, we then use it to provide a combinatorial construction of the seminormal
idempotents.

We then turn to the non-semisimple or unseparated case, where this description breaks down. In this context, we
introduce class idempotents for the Temperley-Lieb algebra, that sum over residue classes of tableaux and give rise to
a generalized seminormal basis. This construction reveals a close connection with the theory of KLR algebras and,
especially, with the modular analogues of the Jones-Wenzl idempotents, known as 𝑝-Jones-Wenzl projectors.

1. The Temperley-Lieb algebra

1.1. Generators and relations. The Temperley-Lieb algebra was introduced in the seventies from motivations
in statistical mechanics. Since then it has been generalized in several interesting ways and has been shown to be related
to many areas of mathematics as well, including knot theory, categorification theory and Soergel bimodules, see for
example [8], [26], [38], [58], [60], [61], [64], [82], [93]. In this work we shall use the variation of the Temperley-Lieb
algebra that has loop parameter equal to 2. It is defined as follows.

Definition 1.1.1. The Temperley-Lieb algebra TL𝑛 is the associative unitary Z-algebra on generators u1, u2, . . . , u𝑛−1
subject to the relations

u2
𝑖 = 2u𝑖 , if 1 ≤ 𝑖 < 𝑛 (1.1)

u𝑖u 𝑗u𝑖 = u𝑖 , if |𝑖 − 𝑗 | = 1 (1.2)

u𝑖u 𝑗 = u 𝑗u𝑖 , if |𝑖 − 𝑗 | > 1 (1.3)

For 𝑛 = 0 or 𝑛 = 1 we define TL𝑛 := Z.

For k a commutative ring we shall also consider the specialized version TLk
𝑛 of TL𝑛, defined as

TLk
𝑛 := TL𝑛 ⊗Z k (1.4)

Here we are mostly interested in the cases where k is the rational field Q, the finite field with 𝑝 elements F𝑝 or the

localization Z(𝑝) of Z at the prime 𝑝. The corresponding Temperley-Lieb algebras are TLQ
𝑛, TL

F𝑝

𝑛 and TL
Z(𝑝)
𝑛 .

A well-known and important feature of TL𝑛 is the fact that it is a diagram algebra. Concretely, TL𝑛 is isomorphic

to the diagrammatically defined algebra TL𝑑𝑖𝑎𝑔𝑛 with basis given by non-crossing planar matchings of 𝑛 northern points
of a (n invisible) rectangle with 𝑛 southern points of the rectangle. Here are three examples for 𝑛 = 5.

,

1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

,

(1.5)

We refer to such matchings as Temperley-Lieb diagrams. For two Temperley-Lieb diagrams 𝐷1 and 𝐷2 the product

𝐷1𝐷2 in TL𝑑𝑖𝑎𝑔𝑛 is given by concatenation with 𝐷1 on top of 𝐷2. For example, choosing 𝐷1 and 𝐷2 as the first two
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diagrams in (1.5) we have that

𝐷1𝐷2 =

1 2 3 4 5

1 2 3 4 5

= = 𝐷3 (1.6)

where 𝐷3 is the third diagram of (1.5). This concatenation product may give rise to diagrams with internal loops. Each
internal loop is removed from the diagram, and the resulting diagram is multiplied by the scalar 2 ∈ Z. For example,
if 𝐷1 and 𝐷3 are as above, we have that

𝐷1𝐷3 =

1 2 3 4 5

1 2 3 4 5

= 2 = 2𝐷3 (1.7)

The isomorphism between TL𝑛 and TL𝑑𝑖𝑎𝑔𝑛 is given by

1 ↦→ b bb

1 2 n

, u𝑖 ↦→ bb b b bb

1 2 i n

(1.8)

where 1 is the unit-element of TL𝑛. From now on we shall identify TL𝑛 with TL𝑑𝑖𝑎𝑔𝑛 via this isomorphism. There is
a similar isomorphism for the specialized Temperley-Lieb algebra TLk

𝑛 and here we shall also identify TLk
𝑛 with the

corresponding diagrammatic algebra, defined over k.

1.2. Jones-Wenzl proyectors. Throughout this chapter we shall be interested in the Jones-Wenzl idempotent

JW𝑛 of TLQ
𝑛, see [51] and [99]. It is the unique nonzero idempotent of TLQ

𝑛 satisfying

u𝑖JW𝑛 = JW𝑛u𝑖 = 0 for all 𝑖 (1.9)

We use the following standard diagrammatic notation for JW𝑛

JW𝑛 =

b b b
1 n

b b b

JWn ∈ TLQ
𝑛 (1.10)

For example we have that

JW2 = −1
2 (1.11)

= + +JW3 2
3

2
3

1
3

1
3− − (1.12)

In general, as one already observes in (1.11) and (1.12), when expanding JW𝑛 in terms of the diagram basis for TLQ
𝑛,

the coefficient of 1 is 1, whereas the other coefficients in general are rational numbers
𝑎

𝑏
with non-trivial denominator.

These denominators 𝑏 prohibit the specialization of JW𝑛 to fields k whose characteristic 𝑝 divides 𝑏.

On the other hand, we always have JW∗𝑛 = JW𝑛 where ∗ is the antiautomorphism of TLQ
𝑛 given by reflection through

a horizontal axis, and similarly JW𝑛 is symmetric with respect to reflection through a vertical axis. These properties
can be observed in (1.11) and (1.12).

For general 𝑛 there is no known closed formula for calculating the coefficients of JW𝑛 in terms of the diagram basis

for TLQ
𝑛; all known formulas are recursive. We shall need the following recursive formula that goes back to Jones and

Wenzl, see [51] and [99].
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b b b

b b b

JWn =

b b b

b b b

JWn−1

b b b

b b b

JWn−1

JWn−1
b b b

n−1
n− (1.13)

Combining it with (1.1) we obtain the following well-known formula

b b b

b b b

JWn =

b b b

b b b

JWn−1
n+1
n (1.14)

which can be repeated to arrive at

b b b

b b b

JWn =

b b b

b b bb b b

b b b

b b b

m
JWn−m

n+1
n−m+1

(1.15)

Using (1.13) one proves that for 𝑚 < 𝑛 we have JW𝑚JW𝑛 = JW𝑛, or diagrammatically

JWn

JWm

= JWn

b b b

b b b

b b b

b b b

b b b

b b b (1.16)

1.3. Cellularity of Temperley-Lieb. We next recall the basic elements of the representation theory of TL𝑛,
using the language of cellular algebras introduced in chapter 3. The notion of cellular algebras was introduced by
Graham and Lehrer in [37] and in fact TL𝑛 was one of their motivating examples.

Throughout this chapter, when referring to ‘representations’ and ‘actions’ we shall in general mean ‘right represen-
tations’ and ‘right actions’.

TL𝑛 is an example of a cellular algebra. To see this one lets Λ be the set of two-column integer partitions Par≤2𝑛 ,
endowed with the usual dominance order. Only throughout this chapter, Par≤2𝑛 denotes the set of partitions of 𝑛 whose
Young diagram has at most two columns. In the rest of this work, Par≤2𝑛 denotes the partitions of 𝑛 of length at most
two.

Thus, for 𝜆 = (2𝑙2 , 1𝑙1−𝑙2 ), 𝜇 = (2𝑚2 , 1𝑚1−𝑚2 ) ∈ Par≤2𝑛 one has 𝜆 ⊴ 𝜇 if and only if 𝑙2 ≤ 𝑚2. For 𝜆 ∈ Par≤2𝑛 one
lets 𝑇 (𝜆) be the set of standard 𝜆-tableaux Std(𝜆). To explain 𝐶, one first constructs for 𝜆 ∈ Par≤2𝑛 and 𝔱 ∈ Std(𝜆) a
Temperley-Lieb half-diagram 𝐶𝜆

𝔱
for TL𝑛 as follows. Going through the numbers {1, 2 . . . , 𝑛} in increasing order, one

raises for any 𝑖 occurring in the first column of 𝔱 a vertical line from the 𝑖’th lower position of the rectangle and for any
𝑖 occurring in the second column of 𝔱, one joins the 𝑖’th lower position with the top end of the first vacant line to the
left, always avoiding line crossings. Here is an example for 𝜆 = (24, 13) ∈ Par11.

𝔱 :=
6

7

8

9

10

11

1

2

3

4

5

↦→ 𝐶𝜆𝔱 = (1.17)
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For a pair of standard 𝜆-tableaux (𝔰, 𝔱), one then defines 𝐶𝜆
𝔰𝔱
as the diagram obtained from 𝐶𝜆𝔰 and 𝐶𝜆

𝔱
by reflecting 𝐶𝜆𝔰

horizontally and concatenating below with 𝐶𝜆
𝔱
. Here is an example.

(𝔰, 𝔱) :=
1 2

3 4

5
,

1 2

3

4

5
↦→ 𝐶𝜆𝔰𝔱 = (1.18)

Using the multiplication rules explained in (1.6) and (1.7), one now checks that TL𝑛 indeed is a cellular algebra over Z,
with the ingredients just introduced, and similarly TLk

𝑛 is a cellular algebra over k.

In the case of the cell modules of TL𝑛, we identify for 𝔰0, 𝔱 ∈ Std(𝜆) the Δ(𝜆) basis element 𝐶𝜆
𝔰0𝔱

with the half-

diagram 𝐶𝜆
𝔱
. Under this identification, for a Temperley-Lieb diagram 𝐷 we have that 𝐶𝜆

𝔱
𝐷 is the concatenation with

𝐶𝜆
𝔱
on top of 𝐷, where internal loops are removed by multiplying by 2, and where half-diagrams that do not belong to

{𝐶𝜆
𝔱
| 𝔱 ∈ Std(𝜆)} are set equal to zero.

1.4. Jucys-Murphy elements. JM-elements were first constructed for the group algebra of the symmetric group,
and from these one obtains JM-elements for TL𝑛, as we shall shortly see.

Recall the definition of Jucys-Murphy elements for the Hecke algebra given in 1.3.2. As we mentioned in the remark
below 1.3.2, we can obtain a family of JM elements {𝐿1, 𝐿2, . . . , 𝐿𝑛} ⊆ Z𝔖𝑛 (or k𝔖𝑛) be defined by

𝐿1 := 0, and 𝐿𝑖 := (1, 𝑖) + (2, 𝑖) + . . . + (𝑖 − 1, 𝑖) for 𝑖 = 2, 3, . . . , 𝑛 (1.19)

Define moreover for 𝔱 ∈ Std(𝜆) the function 𝑐𝔱 : {1, 2, . . . , 𝑛} → Z (or k) by

𝑐𝔱 (𝑖) := 𝑐 − 𝑟 for 𝔱[𝑟, 𝑐] = 𝑖 (1.20)

where 𝔱[𝑟, 𝑐] is the number that appears in the 𝑟’th row of 𝔱, counted from top to bottom, and in the 𝑐’th column of 𝔱,
counted from the left to right.

As we observed in the subsection 1.3.1, 𝔖𝑛 is a Coxeter group on the simple transpositions 𝑠𝑖 = (𝑖, 𝑖 + 1). We need
the following well-known fundamental Lemma, which is easily verified.

Lemma 1.4.1. There is a surjection Φ : Z𝔖𝑛 → TL𝑛, given by 𝑠𝑖 ↦→ u𝑖 − 1. The kernel of Φ is the ideal in Z𝔖𝑛

generated by 𝑠1𝑠2𝑠1 + 𝑠1𝑠2 + 𝑠2𝑠1 + 𝑠1 + 𝑠2 + 1. A similar statement holds over k.

Let L𝑖 := Φ(𝐿𝑖). We represent L𝑖 diagrammatically as follows

L𝑖 =

b b b

b b b

1 i n

Li
b b b (1.21)

We now have the following key result.

Theorem 1.4.1. {L1,L2, . . . ,L𝑛} is a family of JM-elements for TL𝑛 with respect to the content functions 𝑐𝔱,
defined in (1.20).

Proof: {𝐿1, 𝐿2, . . . , 𝐿𝑛} is known to be a family of JM-elements for the cellular structure on Z𝔖𝑛 given by the
specialization 𝑞 = 1 of Murphy’s standard basis for the Hecke algebra, see [70], [74] and Remark 1.3.2. On the other
hand, Φ : Z𝔖𝑛 → TL𝑛 maps the standard basis cellular structure on Z𝔖𝑛 to the diagram basis cellular structure on
TL𝑛 and therefore {L1,L2, . . . ,L𝑛} is a family of JM-elements for TL𝑛, as claimed. For more details one should consult
[80]. □

Remark 1.4.1. Jucys-Murphy elements for the Temperley-Lieb algebra have been considered before in [29] and in
[42]. The Jucys-Murphy elements in [29] are different from ours. The Jucys-Murphy elements in [42] are also different
from ours since they are ‘multiplicative’ and do not specialize to the 𝑞 = 1 setting of the present work.
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2. The separated case

In this section we consider the rational Temperley-Lieb algebra TLQ
𝑛. The ground ring for TLQ

𝑛 is Q which implies
that for two-column partitions 𝜆 and 𝜇 and for standard tableaux 𝔰 ∈ Std(𝜆) and 𝔱 ∈ Std(𝜇) we have that

𝑐𝔰 (𝑖) = 𝑐𝔱 (𝑖) for 𝑖 = 1, 2, . . . , 𝑛 =⇒ 𝔰 = 𝔱 (2.1)

In other words, the separation condition defined in 1.2.2 is fulfilled and so TLQ
𝑛 is semisimple. Recall that, by the theory

viewed in chapter 3 section 2, the separation condition also implies that the simultaneous action of the L𝑖’s on TLQ
𝑛 via

right multiplication is diagonalizable with eigenvalues given by the 𝑐𝔱 (𝑖)’s, and similarly for the left action. Moreover,
under the separation condition we have the following expression for the idempotent projector E𝔱 (denoted 𝐹𝔱 in chapter
3) for the common eigenvector for all the L𝑖’s with eigenvalues 𝑐𝔱 (𝑖)

E𝔱 =
∏
𝑐∈C

∏
𝑖=1,...,𝑛
𝑐≠𝑐𝔱 (𝑖)

L𝑖 − 𝑐
𝑐𝔱 (𝑖) − 𝑐

∈ TLQ
𝑛 (2.2)

where C is the set of contents for standard tableaux of two-column partitions of 𝑛, that is

C := {𝑐𝔱 (𝑖) | 𝑖 = 1, 2, . . . , 𝑛 and 𝔱 ∈ Std(Par≤2𝑛 )} where Std(Par≤2𝑛 ) :=
⋃

𝜆∈Par≤2𝑛

Std(𝜆) (2.3)

As we observed in Theorem 2.3.1, with 𝔱 running over Std(Par≤2𝑛 ) the E𝔱’s form a complete set of orthogonal primitive

idempotents for TLQ
𝑛, that is we have

1 =
∑︁

𝔱∈Std(Par≤2𝑛 )
E𝔱, L𝑖E𝔱 = E𝔱L𝑖 = 𝑐𝔱 (𝑖)E𝔱, E𝔰E𝔱 = 𝛿𝔰𝔱E𝔰 (2.4)

where 𝛿𝔰𝔱 is the Kronecker delta.

The formulas in (2.2) and (2.4) are consequences of the general theory for JM-elements developed in [71] and studied
in chapter 3. For Q𝔖𝑛 the analogues of (2.2) and (2.4) were first found by Murphy in [75]. We find it worthwhile to
mention that the corresponding properties do not hold for the Young symmetrizer idempotents for Q𝔖𝑛, since these
are not orthogonal.

The expression for E𝔱 given in (2.2) contains many redundant factors and is in general intractable, in the symmetric
group case as well as in the Temperley-Lieb case.

2.1. Orthogonal idempotents for the rational Temperley-Lieb algebra. The purpose of this part is to
give a new expression for E𝔱 in the Temperley-Lieb case, using Jones-Wenzl idempotents. In view of this, one may now
consider seminormal forms and Jones-Wenzl idempotents as two aspects of the same theory.

Let 𝔱 ∈ Std(𝜆) be a two-column standard tableau. Then 𝔱 can be written in the form

𝔱 =

D1

D2

Dk

M1

M2

Mk

b
b
b

b
b
b

(2.5)

where each 𝐷𝑖 and 𝑀𝑖 is a non-empty block of consecutive natural numbers, except that 𝑀𝑘 is allowed to be empty,
satisfying that the numbers of 𝐷𝑖 are less than the numbers of 𝑀𝑖 and that the numbers of 𝑀𝑖 are less than the numbers
of 𝐷𝑖+1 for all 𝑖. Let 𝑑𝑖 := |𝐷𝑖 | and 𝑚𝑖 = |𝑀𝑖 | be the cardinalities of 𝐷𝑖 and 𝑀𝑖, respectively. Then 𝑑1 + 𝑑2 + . . . + 𝑑𝑖 ≥
𝑚1 + 𝑚2 + . . . + 𝑚𝑖 for all 𝑖. Moreover, each sequence of blocks 𝐷1, 𝑀1, 𝐷2, . . . , 𝑀𝑘 satisfying all these conditions gives
rise to a two-column standard tableau and in this way we obtain a bijective correspondence between such sequences of
blocks and two-column standard tableaux.
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For 𝑖 = 1, 2, . . . , 𝑘 define 𝑛𝑖 via

𝑛1 := 𝑑1 and 𝑛𝑖 = (𝑑1 + 𝑑2 + . . . + 𝑑𝑖) − (𝑚1 + 𝑚2 + . . . + 𝑚𝑖−1) for 𝑖 > 1 (2.6)

We now associate with 𝔱 an element 𝑓𝔱 ∈ ΔQ (𝜆) in the following recursive way. Suppose first that 𝑀𝑘 ≠ ∅. If 𝑘 = 1 we
set

𝑓𝔱 =

b b b

b b b
b b b

JWn1
m1 (2.7)

and if 𝑘 = 2 we set

𝑓𝔱 =

b b b

b b b

b b b

JWn1
m1

b b b

JWn2

m2

b b b

(2.8)

We repeat this recursively, that is in the 𝑖’th step we first concatenate on top with JW𝑛𝑖 and then bend down the 𝑚𝑖
top and rightmost lines to the bottom. If 𝑀𝑘 = ∅ the construction is the same as for 𝑀𝑘 ≠ ∅, except that in the last
step the bending down of the 𝑚𝑘 top and rightmost lines is omitted.

For example,

if 𝔱 :=

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

we have that 𝑓𝔱 =

JW5

JW6

JW5

b b b b b

b b b b

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

(2.9)

In general, if 𝑖 appears in the first column of 𝔱 then 𝑖 is connected in 𝑓𝔱 to the southern border of a Jones-Wenzl element,
and if 𝑖 appears in the second column of 𝔱 then 𝑖 is connected in 𝑓𝔱 to the northern border of a Jones-Wenzl element.
We have indicated this in (2.9), using colors.

In general, for 𝔱 as in (2.5) we shall sometimes represent 𝑓𝔱 in the following schematic way

𝑓𝔱 =
b
b
b

n1

n2

nk

m1

m2

mk

(2.10)

where 𝑛 is a shorthand for JW𝑛 and where 𝑚𝑖 indicates the number of lines being bent down, which may be zero for
𝑚𝑘 .

For 𝔱 a two-column standard tableau we set

𝛾𝔱 :=
𝑘∏
𝑖=1

𝑛𝑖 + 1
𝑛𝑖 − 𝑚𝑖 + 1

(2.11)
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We define 𝑓𝔱𝔱 as the concatenation of 𝑓 ∗
𝔱
with 𝑓𝔱 with 𝑓 ∗

𝔱
on top of 𝑓𝔱 and finally we define E′

𝔱
∈ TLQ

𝑛 as E′
𝔱
:= 1

𝛾𝔱
𝑓𝔱𝔱, or

diagrammatically

E′𝔱 :=
1

𝛾𝔱

b
b
b

n1

n2

nk

m1

m2

mk

b
b
b

n1

n2

nk

m1

m2

mk

(2.12)

The elements E′
𝔱
have already appeared in the literature, see [17], [39] and [64], with our diagrammatic approach

essentially being the one of [17]. The purpose of this section is to show that E𝔱 = E′
𝔱
. This is a new result.

The following Theorem has already appeared in [17], see also [39] and [64], but we still include it for completeness.

Theorem 2.1.1. {E′
𝔱
| 𝔱 ∈ Std(Par≤2𝑛 )} is a set of orthogonal idempotents for TLQ

𝑛.

Proof: We first observe that (1.15) implies 𝑓 2
𝔱𝔱
= 𝛾𝔱 𝑓𝔱𝔱 and so E′

𝔱
is indeed an idempotent. Similarly, we observe that

𝑓 ∗
𝔱
𝐶
𝔱
= 𝛾𝔱JW𝑛𝑘−𝑚𝑘

from which it follows that 𝑓𝔱 ≠ 0, and hence also E′
𝔱
≠ 0.

We next assume that 𝔱 ≠ 𝔱 and must show that E′
𝔱
E
𝔱
′ = 0 which can be done by showing that 𝑓

𝔱
𝑓
𝔱
∗ = 0. Letting

{𝐷𝑖 | 𝑖 = 1, 2, . . . , 𝑘} and {𝑀 𝑖 | 𝑖 = 1, 2, . . . , 𝑘} be the blocks for 𝔱, as in (2.5), and defining 𝑛𝑖 and 𝑚𝑖 as in (2.6), we must
show that the following diagram is zero

𝑓𝔱 𝑓𝔱
∗ =

b
b
b

n1

n2

nk

m1

m2

mk

b
b
b

n1

n2

m1

m2

nk

mk

(2.13)

If 𝑛1 = 𝑛1 and 𝑚1 = 𝑚1 then (2.13) is equal to
𝑛1 + 1

𝑛1 − 𝑚1 + 1
times 𝑓

𝔱1
𝑓
𝔱1

∗ where 𝔱1 and 𝔱1 are the standard tableaux

obtained from 𝔱 and 𝔱 by removing the blocks 𝑀1, 𝐷1 and 𝑀1, 𝐷1 and so we may assume that 𝑛1 ≠ 𝑛1 or 𝑚1 ≠ 𝑚1. If
𝑛1 < 𝑛1 then at least one line from JW𝑛1 is bent down to JW𝑛′1 , and so it follows from (1.16) that the resulting diagram
is zero: to illustrate this we take 𝑛1 = 3 and 𝑛′1 = 4 where the relevant part of 𝑓

𝔱1
𝑓
𝔱1

∗ is

b b b

JW3

JW4

b b b

JW4= = 0 (2.14)
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If 𝑛1 > 𝑛1 one applies ∗ to (2.13) and is then reduced to the previous case 𝑛1 < 𝑛1. If 𝑛1 = 𝑛1 and 𝑚1 > 𝑚1 then a
line from JW𝑛1 is bent down to JW𝑛′2 and so the resulting diagram is also zero in this case. Let us illustrate this using
𝑛1 = 𝑛1 = 4 and 𝑚1 = 3, 𝑚1 = 2 and 𝑛2 = 3 where the relevant part of (2.13) is as follows

JW3

JW4
b b b

JW4

=

b

JW3

JW2 = = 05
3

5
3

JW3 (2.15)

Finally, if 𝑛1 = 𝑛1 and 𝑚1 < 𝑚1 we once again first apply ∗ and are then reduced to the previous case. This proves that
{E′

𝔱
| 𝔱 ∈ Std(Par≤2𝑛 )} is a set of orthogonal idempotents.

□

Corollary 2.1.1. Let 𝜆 be a two-column partition. Then { 𝑓𝔱 | 𝔱 ∈ Std(𝜆)} is a Q-basis for ΔQ (𝜆).

Proof: We have that 𝑓𝔱E′𝔰 = 𝛿𝔰𝔱 𝑓𝔱 and so it follows from Theorem 2.1.1 that { 𝑓𝔱 | 𝔱 ∈ Std(𝜆)} is a Q-linearly independent
subset of ΔQ (𝜆). Since dimΔQ (𝜆) = |Std(𝜆) | it is also a basis for ΔQ (𝜆). □

2.2. Seminormal forms for the rational Temperley-Lieb algebra. We now set out to prove E′
𝔱
= E𝔱. Our

proof will be an induction over the dominance order on standard tableaux and for this the following Theorem is a key
ingredient.

Theorem 2.2.1. Suppose that 𝔱 ∈ Std(𝜆) where 𝜆 ∈ Par≤2𝑛 . Suppose first that for a simple transposition 𝑠𝑖 ∈ 𝔖𝑛

we have that 𝔱𝑠𝑖 ∈ Std(𝜆) and that 𝔱 ⊴ 𝔱𝑠𝑖. Then, setting 𝔱𝑑 := 𝔱, 𝔱𝑢 := 𝔱𝑠𝑖 and 𝑟 := 𝑐𝔱𝑢 (𝑖) − 𝑐𝔱𝑑 (𝑖), the following formulas
hold

(1) 𝑓𝔱𝑑u𝑖 =
𝑟 + 1
𝑟

𝑓𝔱𝑑 +
𝑟2 − 1
𝑟2

𝑓𝔱𝑢

(2) 𝑓𝔱𝑢u𝑖 =
𝑟 − 1
𝑟

𝑓𝔱𝑢 + 𝑓𝔱𝑑

Suppose next that 𝔱𝑠𝑖 ∉ Std(𝜆). Then

(3) 𝑓𝔱u𝑖 = 0 if 𝑖, 𝑖 + 1 are in the same column of 𝔱
(4) 𝑓𝔱u𝑖 = 2 𝑓𝔱 if 𝑖, 𝑖 + 1 are in the same row of 𝔱

Proof: We first show (1). We have blocks 𝐷 𝑗 and 𝑀 𝑗 for 𝔱, as in (2.5). By the assumptions, 𝑖 lies in the first column
of 𝔱, as the biggest number of a block 𝐷 𝑗 , whereas 𝑖 + 1 lies in the second column of 𝔱, as the smallest number of the
block 𝑀 𝑗 , as indicated in the example below.

𝔱 =

D1

D2

M1

M2

D3

M3

i

i+ 1

, 𝑓𝔱 =

n1

n2

n3

i

m1

m2 − 1

i+ 1

(2.16)
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In (2.16), we have indicated the corresponding 𝑓𝔱 and have singled out the lines for 𝑓𝔱 that are connected to 𝑖 and 𝑖 + 1.
We now get, using (1.14)

𝑓𝔱u𝑖 =

n1

n3

i

m1

m2 − 1

n2
=

n1

n3

i

m1

m2 − 1

n2 − 1
n2+1
n2

(2.17)

On the other hand, bending down the last top line of the recursive formula (1.13) for JW𝑛 we have

b b b

b b b

b b b

b b b

b b b

b b b

b b b

n2 − 1

n2n2 − 1

n2 − 1

= +n2−1
n2

(2.18)

and inserting this in the right hand side of (2.17) we obtain

𝑓𝔱u𝑖 =

n1

n3

m1

m2

n1

n3

m1

n2 − 1

n2 − 1

m2 − 1

+ n2
2−1
n2
2

n2+1
n2

n2

=
𝑛2 + 1
𝑛2

𝑓𝔱𝑢 +
𝑛22 − 1
𝑛22

𝑓𝔱𝑑

(2.19)

One finally checks that 𝑛2 = 𝑐𝔱𝑢 (𝑖) − 𝑐𝔱𝑑 (𝑖) = 𝑟 and so (1) follows from (2.19), at least for 𝔱 as in (2.16). For general 𝔱
the proof of (1) is carried out the same way. From this (2) follows by applying u𝑖 to both sides of (1).

Finally, (3) and (4) are direct consequences of the definitions, with (3) corresponding to u𝑖 annihilating a Jones-
Wenzl element, and (4) to u𝑖 acting on a cap. □

Theorem 2.2.1 is an analogue of Young’s seminormal form known from the representation theory of Q𝔖𝑛. To make
this explicit we set

s𝑖 := Φ(𝑠𝑖) = u𝑖 − 1 (2.20)

Then we have the following Corollary to Theorem 2.2.1.

Corollary 2.2.1. (Young’s seminormal form YSF for TLQ
𝑛). Let 𝔱, 𝑠𝑖 , 𝔱𝑢, 𝔱𝑑 and 𝑟 be as in Theorem 2.2.1. Then we

have

(1) 𝑓𝔱𝑑 s𝑖 =
1

𝑟
𝑓𝔱𝑑 +

𝑟2 − 1
𝑟2

𝑓𝔱𝑢

(2) 𝑓𝔱𝑢s𝑖 = −
1

𝑟
𝑓𝔱𝑢 + 𝑓𝔱𝑑

Suppose next that 𝔱𝑠𝑖 ∉ Std(𝜆). Then

(3) 𝑓𝔱s𝑖 = − 𝑓𝔱 if 𝑖, 𝑖 + 1 are in the same column of 𝔱
(4) 𝑓𝔱s𝑖 = 𝑓𝔱 if 𝑖, 𝑖 + 1 are in the same row of 𝔱

Proof: This follows immediately from Theorem 2.2.1. □
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Remark 2.2.1. Note that the main ingredient for proving Theorem 2.2.1, and hence also Corollary 2.2.1, was the
recursive formula (1.13) for JW𝑛. In fact, (1.13) may be viewed as a special case of Theorem 2.2.1. Indeed, setting
𝜆 = (2, 1𝑛−2) and letting 𝔱 = 𝔱𝜆𝑠𝑛−1 we have

𝑓𝔱 =

b b b

b b b

b b b

n− 2

n− 2

(2.21)

Moreover 𝔱𝑠𝑛−1 ⊴ 𝔱 and so (2) of Theorem 2.2.1 is the formula 𝑓𝔱u𝑛−1 = 𝑛−2
𝑛−1 𝑓𝔱 + 𝑓𝔱𝑠𝑛−1 , that is

b b b

b b b

b b b

b b b

b b b

b b b

b b b

=n− 2

n− 2

n− 2

n− 1+n−2
n−1 (2.22)

After bending up the last line, this becomes (1.13) for 𝑛 − 1. In view of this one may consider (1.13) and YSF, that is
Corollary 2.2.1, as two sides of the same coin.

We next aim at proving that 𝑓𝔱’s is an eigenvector for L𝑖 with eigenvalue 𝑐𝔱 (𝑖). The argument for this will be an
induction on Std(𝜆) over ⊴. We may either carry out this induction from top to bottom, using 𝔱𝜆 as inductive basis,
or from bottom to top, using 𝔱𝜆 as inductive basis. In either case it turns out that the inductive step, using Theorem
2.2.1, is relatively straightforward and similar to the inductive step for the Q𝔖𝑛-case, whereas the inductive basis is the
most complicated part of the proof. The 𝔱𝜆-case is slightly simpler than the 𝔱𝜆-case and so we choose to carry out the
induction from bottom to top. In other words, to prove the inductive basis we should take 𝔱 = 𝔱𝜆 where 𝜆 = Par≤2𝑛 and
must show that 𝑓𝔱𝜆L𝑖 = 𝑐𝔱𝜆 (𝑖) 𝑓𝔱𝜆 for all 𝑖 = 1, 2, . . . , 𝑛. This is the content(!) of the next Lemma.

Lemma 2.2.1. Let the situation be as just described, that is 𝔱 = 𝔱𝜆 where 𝜆 = (2𝑙2 , 1𝑙1−𝑙2 ) ∈ Par≤2𝑛 and 𝑙1 and 𝑙2
are the lengths of the two columns of 𝜆. Then we have that 𝑓𝔱L𝑖 = (1 − 𝑖) 𝑓𝔱 for 𝑖 = 1, . . . , 𝑙1 and 𝑓𝔱L𝑖 = (2 − 𝑖 + 𝑙1) 𝑓𝔱 for
𝑖 = 𝑙1 + 1, . . . , 𝑛, that is

𝑓𝔱L𝑖 = 𝑐𝔱 (𝑖) 𝑓𝔱 (2.23)

Proof: We have

𝑓𝔱 =

b b b b b b

b b b

b b b
JWl1

l2 (2.24)

On the other hand, from the definition of the JM-elements in (1.19) we have the following formula, valid for 𝑖 =

1, 2, . . . , 𝑛 − 1

L𝑖+1 = s𝑖L𝑖s𝑖 + s𝑖 = (u𝑖 − 1)L𝑖 (u𝑖 − 1) + u𝑖 − 1 (2.25)

Since 𝑓𝔱u𝑖 = 0 for 𝑖 = 1, 2, . . . , 𝑙1 − 1 we get from this that

𝑓𝔱L𝑖 = (1 − 𝑖) 𝑓𝔱 for 𝑖 = 1, 2 . . . , 𝑙1 (2.26)

which shows (2.23) for these value of 𝑖.

Now, if we assume that (2.23) also holds for 𝑖 = 𝑙1+1, we would deduce from (2.25) that (2.23) holds for 𝑖 = 𝑙1+2, . . . , 𝑛
as well, since 𝑓𝔱u𝑖 = 0 for 𝑖 = 𝑙1 + 1, . . . , 𝑛 − 1, and so (2.23) would have been proved for all 𝑖.
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We are therefore reduced to showing (2.23) for 𝑖 = 𝑙1 + 1, which is equivalent to showing that 𝑓𝔱L𝑙1+1 = 𝑓𝔱. But in
the diagrammatic expression for 𝑓𝔱L𝑙1+1, that is

𝑓𝔱L𝑙1+1 =

b b b b b b

b b b

bb b

b b b

b b b

b b b b b b

bb bLl1+1

JWl1
l2

(2.27)

the multiplication with L𝑙1+1 only involves the leftmost 𝑙1 + 1 bottom lines of 𝑓𝔱 and so we may assume that 𝑙2 = 1 when
proving 𝑓𝔱L𝑙1+1 = 𝑓𝔱. We therefore proceed to prove by induction on 𝑙1 that 𝑓𝔱L𝑙1+1 = 𝑓𝔱 where 𝜆 = (2, 1𝑙1−1).

For this the basis case 𝑙1 = 1 is the claim that

L2 = (2.28)

or equivalently that u1L2 = u1 (u1 − 1) which is immediate from the definitions.

We then treat the inductive step from 𝑙1 to 𝑙1 + 1. In view of (2.25), we first calculate an expression for 𝑓𝔱 (u𝑙1 − 1).
We find

𝑓𝔱 (u𝑙1 − 1) =
b b b b b b

b b bb b b

JWl1
− JWl1 (2.29)

=

b b b

b b b

b b b

b b b

l1+1
l1

JWl1−1 JWl1− (2.30)

=

b b b

b b b

b b b

b b b

b b b

b b b

b b b

l1+1
l1

JWl1

JWl1−1

JWl1−1

JWl1+ l21−1
l21

− (2.31)

=

b b b

b b b

b b b

b b b

b b b

+ l21−1
l21

1
l1

JWl1−1

JWl1

JWl1−1

(2.32)

where we used the (2.18) variation of (1.13) for (2.31). We next apply L𝑙1 to (2.32) in order to arrive at an expression
for 𝑓𝔱 (u𝑙1 − 1)L𝑙1 . Using (2.26) we see that L𝑙1 acts on the first term of (2.32) by multiplication with 1 − 𝑙1 and, by
inductive hypothesis, it acts on the second term of (2.32) by multiplication with 1. Combining, we get that

𝑓𝔱 (u𝑙1 − 1)L𝑙1 =

b b b

b b b

b b b

b b b

b b b

+ l21−1
l21

JWl1−1

JWl1

JWl1−1

1−l1
l1

(2.33)
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We now get

𝑓𝔱 (u𝑙1 − 1)L𝑙1 (u𝑙1 − 1) =
b b b

b b b

b b b

b b b

b b b

b b b

b b b

b b b

b b b

b b b

1−l1
l1

−1−l1
l1

+ l21−1
l21

JWl1−1

JWl1

JWl1

JWl1−1

JWl1−1

JWl1−1

− l21−1
l21

(2.34)

=

b b b

b b b

b b b

b b b

b b b

−1−l1
l1

JWl1−1

JWl1

JWl1−1

− l21−1
l21

(2.35)

Finally, adding (2.32) and (2.35) we get, using (2.25)

𝑓𝔱L𝑙1+1 =

b b b

b b b

JWl1
= 𝑓𝔱 (2.36)

This proves the induction step and then also the Lemma.

□

Lemma 2.2.2. We have the following commutation relations between L𝑘 and u𝑖.

(1) If 𝑘 ≠ 𝑖, 𝑖 + 1 then u𝑖L𝑘 = L𝑘u𝑖
(2) We have (u𝑖 − 1)L𝑖 = L𝑖+1 (u𝑖 − 1) − 1
(3) We have (u𝑖 − 1)L𝑖+1 = L𝑖 (u𝑖 − 1) + 1

Proof: This follows immediately from L𝑘 = Φ(𝐿𝑖), the definition of 𝐿𝑖 in (1.19) and the properties given in 1.3.1 for
the specialized case 𝑞 = 1.

□

We can now show the Theorem that was mentioned above.

Theorem 2.2.2. Let 𝔱 ∈ Std(𝜆) where 𝜆 ∈ Par≤2𝑛 . Then for all 𝑖 = 1, 2, . . . , 𝑛 we have

𝑓𝔱L𝑖 = 𝑐𝔱 (𝑖) 𝑓𝔱 (2.37)

Proof: As already mentioned, we show the formula (2.37) by upwards induction on Std(𝜆). The basis case 𝔱 = 𝔱𝜆 is
given by Lemma 2.2.1, so let us assume that 𝔱 ≠ 𝔱𝜆 and that (2.37) holds for all 𝔰 such that 𝔰◁ 𝔱. We must then check it
for 𝔱. Since 𝔱 ≠ 𝔱𝜆 there is an 𝑖 appearing in the second column of 𝔱, but with 𝑖 + 1 appearing in the first column of 𝔱, in
a lower position, and so 𝔱𝑠𝑖 ◁ 𝔱. Setting 𝑓𝑑 = 𝑓𝔱𝑠𝑖 , 𝑓𝑢 = 𝑓𝔱 and 𝑟 := 𝑐𝑢 (𝑖) − 𝑐𝑑 (𝑖) where 𝑐𝑢 (𝑘) := 𝑐𝔱 (𝑘) and 𝑐𝑑 (𝑘) := 𝑐𝔱𝑠𝑖 (𝑘),
we have from a) of Theorem 2.2.1 that

𝑓𝑑u𝑖 =
𝑟 + 1
𝑟

𝑓𝑑 +
𝑟2 − 1
𝑟2

𝑓𝑢 (2.38)

By induction hypothesis we have that 𝑓𝑑L𝑘 = 𝑐𝑑 (𝑘) 𝑓𝑑 for all 𝑘. Suppose first that 𝑘 ≠ 𝑖, 𝑖 + 1. Then we get from
Lemma 2.2.2 that u𝑖L𝑘 = L𝑘u𝑖. Acting upon 𝑓𝑑, this equation becomes via (2.38)

𝑟 + 1
𝑟

𝑐𝑑 (𝑘) 𝑓𝑑 +
𝑟2 − 1
𝑟2

𝑓𝑢L𝑘 =
𝑟 + 1
𝑟

𝑐𝑑 (𝑘) 𝑓𝑑 +
𝑟2 − 1
𝑟2

𝑐𝑑 (𝑘) 𝑓𝑢 (2.39)
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from which we deduce that 𝑓𝑢L𝑘 = 𝑐𝑑 (𝑘) 𝑓𝑢. But in this case 𝑐𝑢 (𝑘) = 𝑐𝑑 (𝑘) and so 𝑓𝑢L𝑘 = 𝑐𝑢 (𝑘) 𝑓𝑢, as claimed.

Suppose now that 𝑘 = 𝑖. We have from Lemma 2.2.2 that (u𝑖 −1)L𝑖 = L𝑖+1 (u𝑖 −1) −1. Acting upon 𝑓𝑑, this becomes
𝑓𝑑 (u𝑖 − 1)L𝑖 = 𝑓𝑑 (L𝑖+1 (u𝑖 − 1) − 1). Using (2.38), the left hand side of this is

LHS =
1

𝑟
𝑐𝑑 (𝑖) 𝑓𝑑 +

𝑟2 − 1
𝑟2

𝑓𝑢L𝑖 (2.40)

whereas the right hand side is

RHS =
1

𝑟
𝑐𝑑 (𝑖 + 1) 𝑓𝑑 +

𝑟2 − 1
𝑟2

𝑐𝑑 (𝑖 + 1) 𝑓𝑢 − 𝑓𝑑 =
−𝑟 + 𝑐𝑑 (𝑖 + 1)

𝑟
𝑓𝑑 +

𝑟2 − 1
𝑟2

𝑐𝑑 (𝑖 + 1) 𝑓𝑢

=
𝑐𝑑 (𝑖)
𝑟

𝑓𝑑 +
𝑟2 − 1
𝑟2

𝑐𝑑 (𝑖 + 1) 𝑓𝑢
(2.41)

where we used 𝑐𝑑 (𝑖 + 1) = 𝑐𝑢 (𝑖) and 𝑟 = 𝑐𝑢 (𝑖) − 𝑐𝑑 (𝑖) for the last equality. Comparing (2.40) and (2.41) we conclude that
𝑓𝑢L𝑖 = 𝑐𝑑 (𝑖 + 1) 𝑓𝑑 = 𝑐𝑢 (𝑖) 𝑓𝑑, proving the Theorem in this case as well.

Finally, the case 𝑘 = 𝑖 + 1 is proved the same way. The Theorem is proved. □

Corollary 2.2.2. For 𝜆 a two-column partition and 𝔱 ∈ Std(𝜆) we have that E′
𝔱
= E𝔱. In particular, the {E′

𝔱
} form

a complete set of primitive idempotents for TLQ
𝑛.

Proof: It follows from Theorem 2.2.2 and the formula E′
𝔱
:= 1

𝛾𝔱
𝑓𝔱𝔱 that E′

𝔱
L𝑘 = L𝑘E′𝔱 = 𝑐𝔱 (𝑘)E

′
𝔱
for all 𝑘. But this property

characterizes the idempotent E𝔱 and so E′
𝔱
= E𝔱, as claimed. □

Remark 2.2.2. In the Okounkov-Vershik theory for the representation theory of Q𝔖𝑛 one derives Young’s semi-
normal form via the Gelfand-Zetlin subalgebra of Q𝔖𝑛, see [77]. It should be possible to establish an analogue of

this theory for TLQ
𝑛, using our L𝑘 ’s. It should also be possible to show that E′

𝔱
= 𝑃𝔱 where 𝑃𝔱 is a product of central

idempotents as in [77]. This would give an alternative way of proving Corollary 2.2.2.

3. The unseparated case

3.1. Idempotents for Temperley-Lieb over a finite field. We shall from now on focus on the Temperley-Lieb

algebra TL
F𝑝

𝑛 defined over the finite field F𝑝, where 𝑝 > 2. We are interested in idempotents in TL
F𝑝

𝑛 .

If 𝑝 > 𝑛 the condition (2.1) still holds and so TL
F𝑝

𝑛 is a semisimple algebra and in fact all the results from the
previous section remain valid. Let us therefore assume that 𝑝 ≤ 𝑛. Under that assumption (2.1) does not hold, and so
we are in the unseparated case in the terminology of [71] studied in chapter 3, section 3. Moreover, the coefficients of

JW𝑛 and of E𝔱 cannot be reduced from Q to F𝑝, and hence these idempotents do not exist in TL
F𝑝

𝑛 . In fact, if 𝑝 ≤ 𝑛
there are in general no nonzero idempotents in TL

F𝑝

𝑛 satisfying (1.9).

On the other hand, we can still apply the general theory of JM-elements to construct idempotents for TL
F𝑝

𝑛 . Let
us briefly explain this.

For 𝔱 ∈ Std(𝜆) where 𝜆 ∈ Par≤2𝑛 we define the 𝑝-class [𝔱] of 𝔱 via
[𝔱] = {𝔰 ∈ Std(Par≤2𝑛 ) | 𝑐𝔰 (𝑖) ≡ 𝑐𝔱 (𝑖) mod 𝑝 for all 𝑖 = 1, 2, . . . , 𝑛} (3.1)

We now set

E[𝔱] :=
∑︁
𝔰∈[𝔱]

E𝔰, (3.2)

as in equation (3.2). By definition E[𝔱] ∈ TLQ
𝑛, but it follows from the general theory developed in [71] that E[𝔱] in fact

belongs to TL
Z(𝑝)
𝑛 where Z(𝑝) := {

𝑎

𝑏
∈ Q | 𝑝 does not divide 𝑏}. See Lemma 3.1.1 in chapter 3. We have that Z(𝑝) is a

local ring with maximal ideal 𝜋 := 𝑝Z(𝑝) and Z(𝑝)/𝜋 � F𝑝. and hence E[𝔱] can be reduced to an element of TL
F𝑝

𝑛 , that
we shall also denote E[𝔱] .

The E[𝔱] ’s clearly are idempotents in TL
F𝑝

𝑛 , called class idempotents, but they are not primitive idempotents in
general, as we shall shortly see.
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Let 𝑀𝑡𝑟𝑖𝑣 := ΔF𝑝 (1𝑛) be the trivial TL
F𝑝

𝑛 -module, in other words 𝑀𝑡𝑟𝑖𝑣 is the one-dimensional TL
F𝑝

𝑛 -module on which
u𝑘 acts as zero for all 𝑘. Let 𝑃𝑡𝑟𝑖𝑣 be the projective cover for 𝑀𝑡𝑟𝑖𝑣. By general principles there exists a primitive

idempotent 𝑝E𝑡𝑟𝑖𝑣 ∈ TL
F𝑝

𝑛 such that 𝑝E𝑡𝑟𝑖𝑣TL
F𝑝

𝑛 = 𝑃𝑡𝑟𝑖𝑣. Recently, it was observed in [94] that the idempotent 𝑝E𝑡𝑟𝑖𝑣
coincides with the 𝑝-Jones-Wenzl idempotent 𝑝JW𝑛 that was introduced by Burull, Libedinsky and Sentinelli, see [13].
We need this fact in the following, and shall therefore recall the definition of 𝑝JW𝑛.

For 𝑛 ∈ N we define non-negative integers 𝑎𝑖 satisfying 0 ≤ 𝑎𝑖 < 𝑝, 𝑎𝑘 ≠ 0 and

𝑛 + 1 = 𝑎𝑘 𝑝
𝑘 + 𝑎𝑘−1𝑝𝑘−1 + . . . + 𝑎1𝑝 + 𝑎0 (3.3)

In other words, (𝑎𝑘 , 𝑎𝑘−1, . . . , 𝑎1, 𝑎0) are the coefficients of 𝑛 + 1 when written in base 𝑝. We then define I𝑛 ⊆ N via

I𝑛 := {𝑎𝑘 𝑝𝑘 ± 𝑎𝑘−1𝑝𝑘−1 ± . . . ± 𝑎1𝑝 ± 𝑎0} − 1 (3.4)

where for 𝐴 ⊆ N we define 𝐴 − 1 := {𝑎 − 1 | 𝑎 ∈ 𝐴}. One checks that each 𝑚 ∈ I𝑛 is given uniquely by the corresponding
sequence of signs for the nonzero 𝑎𝑘 ’s. Using this, for 𝑚 ∈ I𝑛 we now define a tableau 𝔱𝑚 ∈ Std(Par≤2𝑛 ) in terms of a
block decomposition for standard tableaux as in (2.5), using blocks 𝐷1, 𝑀1, 𝐷2, 𝑀2, . . . , 𝐷𝑘 , 𝑀𝑘 of consecutive numbers,
as follows.

Suppose first that 𝑖1 ≥ 0 is maximal such that (𝑎𝑘 , 𝑎𝑘−1, . . . , 𝑎𝑘−𝑖1 ) all appear in 𝑚 with non-negative sign. Then
𝐷1 is defined by the condition that it be of cardinality |𝐷1 | = 𝑎𝑘 𝑝

𝑘 + . . . + 𝑎𝑘−𝑖1 𝑝𝑘−𝑖1 − 1. Suppose next that 𝑖2 > 𝑖1
is maximal such that (𝑎𝑘−𝑖1−1, 𝑎𝑘−𝑖1−2, . . . , 𝑎𝑘−𝑖2 ) all appear in 𝑚 with non-positive sign. Then we define 𝑀1 by the
condition that it be of cardinality |𝑀1 | = 𝑎𝑘−𝑖1−1𝑝

𝑘−𝑖1−1 + . . . + 𝑎𝑘−𝑖2 𝑝𝑘−𝑖2 . We then continue the same way, defining
𝐷2, 𝑀2, . . . except that the −1 term should only appear for 𝐷1.

The 𝑝-Jones-Wenzl idempotent 𝑝JW𝑛 is now defined as follows

𝑝JW𝑛 :=
∑︁
𝑚∈I𝑛

E′𝔱𝑚 (3.5)

Note that, unlike the definition in (3.5), the original definition of 𝑝JW𝑛 in [13] was formulated recursively. The
definition in (3.5) is the left-right mirror of Definition 2.22 in [97], although we have here formulated it in terms of
standard tableaux. Note also that the original definition of 𝑝JW𝑛, and the definition in [97], was carried out for the
Temperley-Lieb algebra with loop parameter −2, as opposed to loop parameter 2 as in the present work. To switch
between the two settings one should apply the isomorphism u𝑖 ↦→ −u𝑖.

Let us give a couple of examples. If 𝑛 = 3 and 𝑝 = 3 we have I3 = {3 ± 1} − 1 = {3, 1}. The tableaux corresponding
to the elements of I3 are as follows

𝔱3 =

1

2

31

0

2 , 𝔱1 =
1

2

310

2

(3.6)

and so we get

3JW3 = E′𝔱3 + E′𝔱1 =

JW2

JW2

JW3 +2
3

(3.7)

To verify that 3JW3 belongs to TLF3

3 , one uses (1.11) and (1.12) to expand JW2 and JW3 and finds

3JW3 = −1
2

(3.8)

which indeed belongs to TLF3

3 .

In the tableaux in (3.6) we have indicated with color red, for each 𝑖 = 1, 2, 3, the residue 𝑐𝔱 (𝑖) mod 𝑝 of the content
𝑐𝔱 (𝑖). Using this we get that the 3-class of 𝔱3 is [𝔱3] = {𝔱3, 𝔱1}. We now use Corollary 2.2.2 and get that

E[𝔱3 ] =
3JW3 (3.9)

Thus in this case the class idempotent E[𝔱3 ] is in fact primitive.
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To give an example where the class idempotent is not primitive we choose 𝑝 = 3 and 𝑛 = 12. We then have
𝑛 + 1 = 9 + 3 + 1 and so I𝑛 = {9 ± 3 ± 1} − 1 = {12, 10, 6, 4} and so we have that 3JW12 = E′

𝔱12
+ E′

𝔱10
+ E′

𝔱6
+ E′

𝔱4

The corresponding standard tableaux, with 3-residues indicated with color red as before, are as follows

𝔱12 =

0

1

2

9

1

2

3

4

5

6

7

8

10

11

12

0

1

2

0

1

2

0

1

2

𝔱10 =

0

1

2

9

1

2

3

4

5

6

7

8

10

11

12

0

1

2

0

1

2

0

1

2

𝔱6 =

0

1

2

91

2

3

4

5

6

7

8

10

11

12

0

1

2

0

1

2

1

2

0

𝔱4 =

0

1

2

91

2

3

4

5

6

7

8

10

11

12

0

1

2

0

1

2

1

2

0

(3.10)

Note that 𝔱12, 𝔱10, 𝔱16 and 𝔱4 all belong to the same 3-class, as can be seen by comparing the residues modulo 3. But
the class [𝔱12] contains two more tableaux, namely

𝔰 =

0

1

2

9

1

2

3

4

5

6

7

8

10

11

12

0

1

2

0

1

2

1

2

0

𝔱 =

0

1

2

9

1

2

3

4

5

6

7

8

10

11

12

0

1

2

0

1

2

1

2

0

(3.11)

obtained by interchanging {6, 7, 8} and {9, 10, 11} in 𝔱6 and 𝔱4. From this we get that

E[𝔱12 ] =
3JW12 + E′𝔰 + E′𝔱 (3.12)

which shows that E′𝔰 + E′
𝔱
∈ TL

F𝑝

𝑛 . By expanding in terms of the diagram basis for TL
F𝑝

𝑛 , one gets E′𝔰 + E′
𝔱
≠ 0 in TL

F𝑝

𝑛

and clearly 3JW12 and E′𝔰 + E′
𝔱
are orthogonal. Hence E[𝔱12 ] is not a primitive idempotent in TL

F𝑝

𝑛 .

The purpose of the rest of the chapter is to show that a variation of the principle for constructing idempotents given

in (3.2), this time using KLR-theory, can be applied recursively to derive the 𝑝-Jones-Wenzl idempotents for TL
F𝑝

𝑛 , that
is the primitive idempotents.

Let us start out by proving the following Lemma, which is a generalization of (3.12).

Lemma 3.1.1. Let E[𝔱𝑛 ] ∈ TL
F𝑝

𝑛 be the class idempotent for the 𝑝-class [𝔱𝑛], given by the one-column tableau

𝔱𝑛 = 𝔱1𝑛 =

1

2

n

b
b

b

. Then E[𝔱𝑛 ] =
𝑝JW𝑛 + E for some idempotent E in TL

F𝑝

𝑛 , orthogonal to 𝑝JW𝑛.

Proof: We must show that 𝔱𝑚 ∈ [𝔱𝑛] for all 𝑚 ∈ I𝑛 as in (3.4). Let 𝐷1, 𝑀1, . . . , 𝐷𝑘 , 𝑀𝑘 be the sequence of blocks defining
𝔱𝑚, as in the paragraph preceding (3.5). Then clearly 𝑐𝔱𝑛 (𝑖) ≡ 𝑐𝔱𝑚 (𝑖) mod 𝑝 for 𝑖 ∈ 𝐷1, since in fact 𝑐𝔱𝑛 (𝑖) = 𝑐𝔱𝑚 (𝑖)
for these 𝑖. Suppose now that 𝑀1 ≠ ∅ and that 𝑚1,𝑚𝑖𝑛 is the first number in 𝑀1. Then by the cardinality of 𝐷1

we have that 𝑐𝔱𝑛 (𝑚1,𝑚𝑖𝑛) ≡ 𝑐𝔱𝑚 (𝑚1,𝑚𝑖𝑛) ≡ 1 mod 𝑝 and then 𝑐𝔱𝑛 (𝑚) ≡ 𝑐𝔱𝑚 (𝑚) mod 𝑝 for all 𝑚 ∈ 𝑀1. This patterns
repeats itself. If 𝐷2 ≠ ∅ we let 𝑑2,𝑚𝑖𝑛 be the first number of 𝐷2. Then by the cardinality of 𝐷1 ∪ 𝑀1 we have that
𝑐𝔱𝑛 (𝑑2,𝑚𝑖𝑛) ≡ 𝑐𝔱𝑚 (𝑑2,𝑚𝑖𝑛) ≡ 1 mod 𝑝 and then 𝑐𝔱𝑛 (𝑑) ≡ 𝑐𝔱𝑚 (𝑑) mod 𝑝 for all 𝑑 ∈ 𝐷2, and so on recursively. This proves
the Lemma. □

For the rest of the chapter we fix integers 𝑛1, 𝑛2, 𝑟 using integer division as follows

𝑛 = (𝑝 − 1) + 𝑛1, 𝑛1 = 𝑝𝑛2 + 𝑟 where 0 ≤ 𝑟 < 𝑝 (3.13)
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Recall that 𝑛 ≥ 𝑝 and so 𝑛2 is non-negative.

The next Lemma gives us a kind of recursive description of the class [𝔱𝑛].

Lemma 3.1.2. If 𝑟 = 0 there is a bijection

𝑓1 : [𝔱𝑛] → Std(Par≤2𝑛2 ) (3.14)

Otherwise, if 𝑟 > 0, there is a bijection
𝑓2 : [𝔱𝑛] → Std(Par≤2𝑛2 ) × {1, 2} (3.15)

Proof: Suppose first that 𝑟 = 0 and let 𝔱 ∈ [𝔱𝑛]. We must define 𝑓1 (𝔱) and must show that it is a bijection. Since
𝔱 ∈ [𝔱𝑛], the numbers (1, 2, . . . , 𝑝 − 1), whose content residues in 𝔱 are (0, 𝑝 − 1, . . . , 2), all appear in the first column
of 𝔱. We now consider consecutive blocks of consecutive numbers 𝐵1, 𝐵2, . . . , 𝐵𝑛2 in 𝔱, all of length 𝑝, starting with the
block 𝐵1 := (𝑝, 𝑝 + 1, . . . , 2𝑝 − 1). For each 𝐵𝑖, the content residues are (1, 0, 𝑝 − 1, 𝑝 − 2, . . . , 3, 2). The numbers of each
𝐵𝑖 may appear in either column of 𝔱, but they all appear in the same column of 𝔱, since 𝔱 ∈ [𝔱𝑛]. Using this observation,
we can define 𝑓1 (𝔱) as the two-column standard tableau of 𝑛2 that has 𝑖 in the first column iff the numbers of 𝐵𝑖 are in
the first column of 𝔱.

Here are two examples of 𝑓1 (𝔱), using 𝑝 = 3, in which we have indicated the blocks 𝐵1, 𝐵2, 𝐵3 and 𝐵4 with colors.

𝑓1 :

1

22

1

0

3

4

5

6

7

8

9

10

11

12

13

14
2

1

0

2

1

0

2

1

0

2

0

↦→ 1

2

3

4
, 𝑓1 :

1

22

1

0

3

4

5

6

7

8

9

10

11

12

13

14
2

1

0

2

1

0

2

1

0

2

0

↦→ 1 2

3 4
(3.16)

One readily checks that 𝑓1, defined this way, is a bijection, proving (3.14).

In order to show (3.15), we choose 𝔱 ∈ [𝔱𝑛] and proceed as before, defining blocks 𝐵1, 𝐵2, . . . , 𝐵𝑛2 of consecutive
numbers of length 𝑝. But since 𝑟 > 0 there will this time be an ‘extra’ block 𝐵𝑛2+1 of length 𝑟. The numbers of
𝐵𝑛2+1 may appear in either column of 𝔱, but they all appear in the same column. Let 𝔱1 := 𝔱 |≤𝑛−𝑟 . We now define
𝑓2 (𝔱) := ( 𝑓1 (𝔱1), 1) if the numbers of 𝐵𝑛2+1 are all in the first column of 𝔱, and otherwise we define 𝑓2 (𝔱) := ( 𝑓1 (𝔱1), 2).
Here are two examples, using 𝑝 = 3 and 𝑟 = 2.

𝑓2 :

1

22

1

0

3

4

5

6

7

8

9

10

11

12

13

14
2

1

0

2

1

0

2

1

0

2

0

15

16
1

0

↦→
(

1 2

3 4
, 1

)
, 𝑓2 :

1

22

1

0

3

4

5

6

7

8

9

10

11

12

13

14
2

1

0

2

1

0

2

1

0

2

0 15

16
1

0

↦→
(

1 2

3 4
, 2

)
(3.17)

Note that if 𝑛2 = 0, corresponding to 𝑛 + 1 = 𝑝 + 𝑟, one has 𝑓2 (𝔱1) = ∅ ∈ Std(Par≤20 ).

Once again, one checks that 𝑓2 is a bijection, which proves (3.15), and hence the Lemma.

□

Returning to the examples (3.10) and (3.11), where 𝑛 = 12 and 𝑝 = 3, we have that [𝔱12] = {𝔱12, 𝔱10, 𝔱6, 𝔱4, 𝔰, 𝔱} and
writing 𝑓 = 𝑓2 we get

𝑓 (𝔱12) =
©­­«

1

2

3
2

1

0

, 1
ª®®¬ , 𝑓 (𝔱10) =

©­­«
1

2

3
2

1

0

, 2
ª®®¬ , 𝑓 (𝔱6) =

(
1

2

3

2

10 , 1

)
, 𝑓 (𝔱4) =

(
1

2

3

2

10 , 2

)
(3.18)
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whereas

𝑓 (𝔰) =
(

1 2

32

10 , 1

)
, 𝑓 (𝔱) =

(
1 2

32

10 , 2

)
(3.19)

Note now that [𝔱3] =


1

2

3
2

1

0

, 1

2

3

2

10

, which are the two tableaux that appear in (3.18), but that 1 2

32

10 does not belong

to [𝔱3]. Our second goal is to explain, in general, that this is the reason why the tableaux 𝔰 and 𝔱 should not be taken
into account when giving the primitive idempotent.

3.2. The 𝐾𝐿𝑅 algebra. There are multiple ways to define 𝐾𝐿𝑅 algebras, depending on the context in which they
are considered. A definition that aligns closely with the focus of our work can be found in [61]. However, unlike their
approach, we do not consider multipartitions, multitableaux, etc. Instead, we focus on a simplified setting where the
multicharge plays no role and is always taken to be zero. That is, the level is always 1.

Let k be a field of characteristic 𝑝, where 𝑝 is either a prime number or zero, and suppose that 𝑒 > 1 is a positive
integer. Let 𝐼𝑒 := Z/𝑒Z. The elements of i = (𝑖1, . . . , 𝑖𝑛) of 𝐼𝑛𝑒 are called residue sequences modulo 𝑒, or simply residue
sequences.

Indeed, the elements of 𝐼𝑒 can be arranged in a cyclic quiver, where, for 𝑖, 𝑗 ∈ 𝐼𝑒, we write 𝑖 → 𝑗 if 𝑖 and 𝑗 are
adjacent in the quiver, that is if 𝑗 = 𝑖 + 1. An illustrative diagram can be found in the next section, where we focus on
the integral case, which is our main interest now.

The following definition is quite similar to the main theorem of [12], but we omit the relations involving 𝑖 ⇄ 𝑗

because our interest lies in the case where 𝑒 is an odd prime number.

Definition 3.2.1. The cyclotomic KLR algebra of type 𝐴𝑒−1, or simply the KRL algebra, is the k-algebra R𝑛
generated by the elements

{𝑒(i) | i ∈ 𝐼𝑛𝑒 } ∪ {𝜓𝑘 | 1 ≤ 𝑘 < 𝑛} ∪ {𝑦𝑙 | 1 ≤ 𝑙 ≤ 𝑛} (3.20)

with identity 1R𝑛
=

∑
i∈𝐼𝑛𝑒 𝑒(i), subject to the relations

𝑒(i)𝑒(j) = 𝛿i,j𝑒(i) 𝑦𝑙𝑒(i) = 𝑒(i)𝑦𝑙 (3.21)

𝜓𝑘𝑒(i) = 𝑒(i · 𝑠𝑘)𝜓𝑘 𝑦𝑙𝑦𝑚 = 𝑦𝑚𝑦𝑙 (3.22)

𝜓𝑘𝑦𝑘+1𝑒(i) = (𝑦𝑘𝜓𝑘 + 𝛿𝑖𝑘 ,𝑖𝑘+1 )𝑒(i) 𝑦𝑘+1𝜓𝑘𝑒(i) = (𝜓𝑘𝑦𝑘 + 𝛿𝑖𝑘 ,𝑖𝑘+1 )𝑒(i) (3.23)

𝜓𝑘𝑦𝑙 = 𝑦𝑙𝜓𝑘 if 𝑙 ≠ 𝑘, 𝑘 + 1 (3.24)

𝜓𝑘𝜓𝑚 = 𝜓𝑚𝜓𝑘 if |𝑘 − 𝑚 | > 1 (3.25)

𝑒(i) = 0 if 𝑖1 ≠ 0 (3.26)

𝑦1𝑒(i) = 0 (3.27)

(
𝜓𝑘𝜓𝑘+1𝜓𝑘 − 𝜓𝑘+1𝜓𝑘𝜓𝑘+1

)
𝑒(i) =


−𝑒(i) if 𝑖𝑘+2 = 𝑖𝑘 → 𝑖𝑘+1
𝑒(i) if 𝑖𝑘+2 = 𝑖𝑘 ← 𝑖𝑘+1
0 otherwise

(3.28)

𝜓2
𝑘𝑒(i) =


(𝑦𝑘 − 𝑦𝑘+1)𝑒(i) if 𝑖𝑘 → 𝑖𝑘+1
(𝑦𝑘+1 − 𝑦𝑘)𝑒(i) if 𝑖𝑘 ← 𝑖𝑘+1
0 if 𝑖𝑘 = 𝑖𝑘+1
𝑒(i) otherwise

(3.29)

where i · 𝑠𝑘 = (𝑖1, 𝑖2, . . . , 𝑖𝑘 , 𝑖𝑘+1, . . . , 𝑖𝑛) · 𝑠𝑘 := (𝑖1, 𝑖2, . . . , 𝑖𝑘+1, 𝑖𝑘 , . . . , 𝑖𝑛).

There exists a diagrammatic representation associated with the elements of the 𝐾𝐿𝑅 algebra, which we will examine
in more detail in the next section.
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3.3. The integral 𝐾𝐿𝑅 algebra. Brundan-Kleshchev and independently Rouquier found a new presentation for
the group algebra F𝑝𝔖𝑛, proving that it is isomorphic to the KLR-algebra R𝑛 (in fact they worked in the greater
generality of cyclotomic Hecke algebras). If 𝑛 ≥ 𝑝 it follows from their work that F𝑝𝔖𝑛 is endowed with a non-trivial
Z-grading, since R𝑛 is endowed with a non-trivial Z-grading in that case. The isomorphism F𝑝𝔖𝑛 � R𝑛 is important

to us since it induces, via Lemma 1.4.1, an isomorphism TL
F𝑝

𝑛 � R𝑛/I𝑛 where I𝑛 is a graded ideal in R𝑛, and hence in

particular TL
F𝑝

𝑛 inherits a Z-grading from F𝑝𝔖𝑛, see [82] for more details on this.

Hu and Mathas gave in [47] a new simpler proof of the Brundan-Kleshchev and Rouquier isomorphism using

seminormal forms, and via this they were able to lift it to an isomorphism Z(𝑝)𝔖𝑛 � R
Z(𝑝)
𝑛 , where RZ(𝑝)

𝑛 is an integral
version of R𝑛 (once again the result was proved in the greater generality of cyclotomic Hecke algebras). We shall need

this isomorphism and its proof so let us recall the precise definition of RZ(𝑝)
𝑛 from [47].

We first arrange the elements of F𝑝 = {0, 1, 2, . . . , 𝑝 − 1} in a cyclic quiver as follows

0 1

2

3

p− 1

(3.30)

and for 𝑖, 𝑗 ∈ F𝑝 we write 𝑖 → 𝑗 if 𝑖 and 𝑗 are adjacent in the quiver in the way that the arrows indicate. We shall refer
to the elements i = (𝑖1, 𝑖2, . . . , 𝑖𝑛) of F𝑛𝑝 as residue sequences.

Definition 3.3.1. The integral KLR-algebra RZ(𝑝)
𝑛 is the Z(𝑝) -algebra generated by the elements

{𝑒(i) | i ∈ F𝑛𝑝 } ∪ {𝜓𝑘 | 1 ≤ 𝑘 < 𝑛} ∪ {𝑦𝑙 | 1 ≤ 𝑙 ≤ 𝑛} (3.31)

with identity 1 =
∑

i∈F𝑛
𝑝
𝑒(i), subject to the relations

𝑒(i)𝑒(j) = 𝛿i,j𝑒(i) 𝑦𝑙𝑒(i) = 𝑒(i)𝑦𝑙 (3.32)

𝜓𝑘𝑒(i) = 𝑒(i · 𝑠𝑘)𝜓𝑘 𝑦𝑙𝑦𝑚 = 𝑦𝑚𝑦𝑙 (3.33)

𝜓𝑘𝑦𝑘+1𝑒(i) = (𝑦𝑘𝜓𝑘 + 𝛿𝑖𝑘 ,𝑖𝑘+1 )𝑒(i) 𝑦𝑘+1𝜓𝑘𝑒(i) = (𝜓𝑘𝑦𝑘 + 𝛿𝑖𝑘 ,𝑖𝑘+1 )𝑒(i) (3.34)

𝜓𝑘𝑦𝑙 = 𝑦𝑙𝜓𝑘 if 𝑙 ≠ 𝑘, 𝑘 + 1 (3.35)

𝜓𝑘𝜓𝑚 = 𝜓𝑚𝜓𝑘 if |𝑘 − 𝑚 | > 1 (3.36)

𝑒(i) = 0 if 𝑖1 ≠ 0 (3.37)

𝑦1𝑒(i) = 0 (3.38)

(
𝜓𝑘𝜓𝑘+1𝜓𝑘 − 𝜓𝑘+1𝜓𝑘𝜓𝑘+1

)
𝑒(i) =


−𝑒(i) if 𝑖𝑘+2 = 𝑖𝑘 → 𝑖𝑘+1
𝑒(i) if 𝑖𝑘+2 = 𝑖𝑘 ← 𝑖𝑘+1
0 otherwise

(3.39)

𝜓2
𝑘𝑒(i) =



(𝑦𝑘 − 𝑦𝑘+1)𝑒(i) if 𝑖𝑘 → 𝑖𝑘+1 ≠ 0

(𝑦𝑘 + 𝑝 − 𝑦𝑘+1)𝑒(i) if 𝑖𝑘 → 𝑖𝑘+1 = 0

(𝑦𝑘+1 − 𝑦𝑘)𝑒(i) if 0 ≠ 𝑖𝑘 ← 𝑖𝑘+1
(𝑦𝑘+1 + 𝑝 − 𝑦𝑘)𝑒(i) if 0 = 𝑖𝑘 ← 𝑖𝑘+1
0 if 𝑖𝑘 = 𝑖𝑘+1
𝑒(i) otherwise

(3.40)

where i · 𝑠𝑘 = (𝑖1, 𝑖2, . . . , 𝑖𝑘 , 𝑖𝑘+1, . . . , 𝑖𝑛) · 𝑠𝑘 := (𝑖1, 𝑖2, . . . , 𝑖𝑘+1, 𝑖𝑘 , . . . , 𝑖𝑛).

It is easy to check that RZ(𝑝)
𝑛 ⊗Z(𝑝) F𝑝 � R𝑛 where R𝑛 is the original cyclotomic KLR-algebra.

We have already alluded to the following Theorem, that was proved by Hu and Mathas in [47].

Theorem 3.3.1. There is an isomorphism of Z(𝑝) -algebras 𝐹 : RZ(𝑝)
𝑛 � Z(𝑝)𝔖𝑛.
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We next recall the diagrammatics for RZ(𝑝)
𝑛 , as given in [47]. It is an extension of the diagrammatics for R𝑛. A

KLR-diagram 𝐷 for R𝑛 consists of 𝑛 strands connecting 𝑛 northern points with 𝑛 southern points of a (n invisible)
rectangle. Crossings are allowed in 𝐷, but only crossings involving two strands. Isotopic diagrams are considered to
be equal. The strands of 𝐷 are decorated with elements of F𝑝, and the segments of a strand are decorated with a
nonnegative number of dots. The product 𝐷1𝐷2 of KLR-diagrams 𝐷1 and 𝐷2 is realized by vertical concatenation
with 𝐷1 on top of 𝐷2 where 𝐷1𝐷2 is set to zero if the bottom residue sequence for 𝐷1 does not coincide with the top
residue sequence for 𝐷2. Here is an example of a KLR-diagram, using 𝑛 = 6 and 𝑝 = 3.

1 0 211 2

2 1 0 2 1 1

b

b

b

b

b

(3.41)

The diagrams for RZ(𝑝)
𝑛 is given by

𝑒(i) ↦→ b b b

i1 i2 in−1 in

, 𝑦𝑙𝑒(i) ↦→
b b b

i1 i2 in−1 in

b b b

b

il

𝜓𝑘𝑒(i) ↦→
b b b

i1 i2 in−1 in

b b b

ik ik+1

(3.42)

Via this, one can convert the relations (3.32) – (3.40) into a set of diagrammatic relations for RZ(𝑝)
𝑛 . For example, the

relation 3.38 becomes

b bb

i1 i2 in

b

= 0 (3.43)

Whereas the left equation on 3.34 is viewed as

b bb

i1 ik ik+1

b

b bb

in

=
b bb

i1 ik ik+1

b

b bb

in

+ 𝛿𝑖𝑘 ,𝑖𝑘+1
b b b

i1 i2 in−1 in

(3.44)

If 𝑖𝑘+2 = 𝑖𝑘 ← 𝑖𝑘+1 the relation in 3.39 can be viewed locally as

ik ik+1 ik

=

ik ik+1 ik

+

ik ik+1 ik

(3.45)

There is a degree function for R𝑛, given for example in [12], [52] and [84]. The degree is given by 𝑑𝑒𝑔(𝑒(i)) = 0,
𝑑𝑒𝑔(𝑦𝑘𝑒(i)) = 2 and

𝑑𝑒𝑔(𝜓𝑘𝑒(i)) =

−2 if 𝑖𝑘 = 𝑖𝑘+1,

1 if 𝑖𝑘 → 𝑖𝑘+1, 𝑖𝑘 ← 𝑖𝑘+1,

0 otherwise.

(3.46)

For instance, it is easy to see that if 𝑖𝑘 = 𝑖𝑘+1 then the degree of 𝜓𝑘𝑦𝑘+1𝑒(i) on the left-hand side of 3.47 is 0 as
well as the degree of the first term on the right-hand side of the same equation. Therefore (𝜓𝑘𝑦𝑘+1 − 𝑦𝑘𝜓𝑘)𝑒(i) is an
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homogeneous element of degree 0 which is agree with the degree of 𝑒(i). Otherwise, 𝛿𝑖𝑘 ,𝑖𝑘+1 = 0 and 3.47 turn into

b bb

i1 ik ik+1

b

b bb

in

=
b bb

i1 ik ik+1

b

b bb

in

(3.47)

The degree of both sides is 3 if 𝑖𝑘 → 𝑖𝑘+1 or 𝑖𝑘 ← 𝑖𝑘+1, and it is 2 if there is no relation between 𝑖𝑘 and 𝑖𝑘+1.

This degree function does not induce a Z-grading on RZ(𝑝)
𝑛 , since the relations in (3.40) are not homogeneous. For

example if 0 = 𝑖𝑘 ← 𝑖𝑘+1, locally we have

ik ik+1

=

ik ik+1

b −

ik ik+1

b + 𝑝

ik ik+1

(3.48)

Notice that, under the conditions given for 𝑖𝑘 and 𝑖𝑘+1

ik ik+1

−

ik ik+1

b +

ik ik+1

b

(3.49)

is an homogeneous element of degree 2. Contrarily, the degree of 𝑝𝑒(i) on the right-hand side of 3.48 is 0.

We now have the following Theorem which is an extension of Theorem 3.2 and Remark 3.7 of [82] to the integral
case.

Theorem 3.3.2. Let 𝑛 ≥ 3. If 𝑝 > 3 then the homomorphism Φ from Lemma 1.4.1 induces an isomorphism

between TL
Z(𝑝)
𝑛 and the quotient of RZ(𝑝)

𝑛 given by the relation

𝑒(i) = 0 if 𝑖1 = 0 mod 𝑝, 𝑖2 = 1 mod 𝑝 and 𝑖3 = 2 mod 𝑝 (3.50)

If 𝑝 = 3 then Φ induces an isomorphism between TL
Z(𝑝)
𝑛 and the quotient of RZ(𝑝)

𝑛 given by the relation

𝑦3𝑒(i) = 0 if 𝑖1 = 0 mod 𝑝, 𝑖2 = 1 mod 𝑝 and 𝑖3 = 2 mod 𝑝 (3.51)

Proof: The proof from [82] carries over. It uses properties of Murphy’s standard basis that also hold in the present

case. These properties lead to a description of ker𝜓 as the ideal in RZ(𝑝)
𝑛 , given by (3.50) and (3.51). □

We need the basic ingredients in Hu-Mathas’ proof of 3.3.1, in the special case Z(𝑝)𝔖𝑛 that we are considering.

Recall from 1.3.1 that {𝑥𝜆
𝔰𝔱
| (𝔰, 𝔱) ∈ Std(𝜆)×2, 𝜆 ∈ Par𝑛} be the specialization 𝑞 = 1 of Murphy’s standard basis for

the Hecke algebra of type 𝐴𝑛, see [70] and [74]. As already mentioned in the proof of Theorem 1.4.1, it is a cellular
basis for Z(𝑝)𝔖𝑛 on poset (Par𝑛,⊴), and the elements {𝐿1, 𝐿2, . . . , 𝐿𝑛} defined in (1.19) form a family of JM-elements
for Z(𝑝)𝔖𝑛 with respect to the content function defined in (1.20). For Q𝔖𝑛, these JM-elements are separating, and so
for 𝔱 ∈ Std(𝜆) we have an idempotent 𝐸𝔱 ∈ Q𝔖𝑛, using the formula in (2.2). For 𝔰, 𝔱 ∈ Std(Par𝑛) we define

𝑓𝔰𝔱 := 𝐸𝔰𝑥𝔰𝔱𝐸𝔱 ∈ Q𝔖𝑛 (3.52)

Then the elements { 𝑓𝔰𝔱 | (𝔰, 𝔱) ∈ Std(𝜆)2, 𝜆 ∈ Par𝑛} form a Q-basis for Q𝔖𝑛.

For 𝜆 ∈ Par≤2𝑛 and 𝔰, 𝔱 ∈ Std(𝜆) we define similarly elements 𝑓𝔰𝔱 in TLQ
𝑛, denoted the same way, via

𝑓𝔰𝔱 := E𝔰𝐶
𝜆
𝔰𝔱E𝔱 ∈ TLQ

𝑛 (3.53)

that form a Q-basis for TLQ
𝑛. For Φ : Q𝔖𝑛 → TLQ

𝑛 the homomorphism from Lemma 1.4.1 we have that Φ(𝑥𝜆
𝔰𝔱
) =

𝐶𝜆
𝔰𝔱
+ higher terms, where the higher terms are a linear combination of 𝐶𝔰1𝔱1 with 𝔰1 ▷ 𝔰 and 𝔱1 ▷ 𝔱, see Theorem 9 of

[48]. Using this, and that Φ(𝐿𝑖) = L𝑖 and therefore Φ(𝐸𝔱) = E𝔱 for 𝔱 ∈ Std(Par≤2𝑛 ) we get that

Φ( 𝑓𝔰𝔱) = 𝑓𝔰𝔱 for 𝔰, 𝔱 ∈ Std(Par≤2𝑛 ) (3.54)
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For 𝑝 a prime and 𝔱 ∈ Std(Par𝑛) we define the 𝑝-class [𝔱] ⊆ Std(Par𝑛), as in (3.1). There is a well-defined function
from 𝑝-classes to residue sequences, given by [𝔱] ↦→ i𝔱 := (𝑐𝔱 (1), 𝑐𝔱 (2), . . . , 𝑐𝔱 (𝑛)).

In the proof of the isomorphism in Theorem 3.3.1, Hu and Mathas construct left and right actions of 𝑒(i), 𝑦𝑙 and
𝜓𝑘 on Z(𝑝)𝔖𝑛, by defining their actions on { 𝑓𝔰𝔱}. Let us explain the formulas that they used for this.

The formulas for 𝑒(i) are the simplest. They are given by

𝑒(i) 𝑓𝔰𝔱 :=
{
𝑓𝔰𝔱 if i𝔰 = i

0 if i𝔰 ≠ i
𝑓𝔰𝔱𝑒(i) :=

{
𝑓𝔰𝔱 if i𝔱 = i

0 if i𝔱 ≠ i
(3.55)

The formulas for 𝑦𝑙 correspond to taking the nilpotent part of the JM-element 𝐿𝑖, just as in the proof of the original
isomorphism Theorem. For 𝑖 ∈ Z let �̂� ∈ Z be given via integer division such that 0 ≤ �̂� ≤ 𝑝 − 1 and �̂� ≡ 𝑖 mod 𝑝 and
consider �̂� as an element of Z(𝑝) . Then

𝑦𝑙 𝑓𝔰𝔱 :=
(
𝑐𝔰 (𝑙) −�𝑐𝔰 (𝑙)) 𝑓𝔰𝔱 𝑓𝔰𝔱𝑦𝑙 :=

(
𝑐𝔱 (𝑙) −�𝑐𝔱 (𝑙)) 𝑓𝔰𝔱 (3.56)

The formulas for 𝜓𝑘 are a bit more complicated, but also the most important for us.

For 𝔰 ∈ Std(𝜆) where 𝜆 ∈ Par𝑛 and 𝑘 = 1, 2, . . . , 𝑛 − 1 we set 𝔱 := 𝔰𝑠𝑘 and 𝑟 = 𝑟𝔰 (𝑘) := 𝑐𝔰 (𝑘) − 𝑐𝔱 (𝑘). We then define
𝛼 = 𝛼𝔰 (𝑘) ∈ Q via

𝛼𝔰 (𝑘) :=


1 if 𝔱 ∈ Std(𝜆) and 𝔱 ◁ 𝔰

𝑟2 − 1
𝑟2

if 𝔱 ∈ Std(𝜆) and 𝔱 ▷ 𝔰

0 otherwise

(3.57)

In the terminology of [47], 𝛼𝔰 (𝑘) is a choice of a seminormal coefficient system. It is the ‘canonical choice’ of a
seminormal coefficient system, since it corresponds to the ‘non-diagonal part’ of YSF, see Corollary 2.2.1.

In order to define the action of 𝜓𝑘 it is enough to define the left action of 𝜓𝑘𝑒(i) and the right action of 𝑒(i)𝜓𝑘 .
Suppose that i𝔰 = (𝑖1, 𝑖2, . . . , 𝑖𝑘 , 𝑖𝑘+1, . . . , 𝑖𝑛). We first define 𝛽 = 𝛽𝔰 (𝑘) ∈ Q and 𝛽 = 𝛽𝔰 (𝑘) ∈ Q via

𝛽𝔰 (𝑘) :=


𝛼

1 − 𝑟 if 𝑖𝑘 ≡ 𝑖𝑘+1 mod 𝑝

𝛼𝑟 if 𝑖𝑘 ≡ 𝑖𝑘+1 + 1 mod 𝑝
𝛼𝑟

1 − 𝑟 otherwise

𝛽𝔰 (𝑘) :=


𝛼

1 + 𝑟 if 𝑖𝑘 ≡ 𝑖𝑘+1 mod 𝑝

−𝛼𝑟 if 𝑖𝑘 ≡ 𝑖𝑘+1 − 1 mod 𝑝

− 𝛼𝑟

1 + 𝑟 otherwise

(3.58)

Let 𝔞 ∈ Std(𝜆). We then have

𝜓𝑘𝑒(i) 𝑓𝔰𝔞 :=

𝛽 𝑓𝔱𝔞 − 𝛿𝑖𝑘 ,𝑖𝑘+1
1

𝑟
𝑓𝔰𝔞 if i𝔰 = i

0 if i𝔰 ≠ i
(3.59)

𝑓𝔞𝔰𝑒(i)𝜓𝑘 :=
𝛽 𝑓𝔞𝔱 − 𝛿𝑖𝑘 ,𝑖𝑘+1

1

𝑟
𝑓𝔞𝔰 if i𝔰 = i

0 if i𝔰 ≠ i
(3.60)

The formulas in (3.55) – (3.60) are a key ingredient in Hu and Mathas’ proof of Theorem 3.3.1, see Lemma 4.23
in [47]. Note that the formulas (3.55) – (3.60) in fact over-determine 𝐹 (𝑒(i)), 𝐹 (𝑦𝑙) and 𝐹 (𝜓𝑘), since already the left
action on the basis { 𝑓𝔰𝔱} is enough to determine 𝐹 (𝑒(i)), 𝐹 (𝑦𝑙) and 𝐹 (𝜓𝑘). In other words, the left action determines
the right action and vice versa.

We now return to the homomorphism Φ : Z(𝑝)𝔖𝑛 → TL
Z(𝑝)
𝑛 from Lemma 1.4.1. We have the following compatibility

Theorem.

Theorem 3.3.3. The actions of Φ(𝑒(i)), Φ(𝑦𝑙) and Φ(𝜓𝑘) are given by the formulas in (3.55) – (3.59), with the

only difference that 𝑓𝔰𝔱 is now the element of TLQ
𝑛 defined in (3.54).

Proof: This is an immediate consequence of (3.54) and the definitions in (3.55) – (3.59). □
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3.4. Young Seminormal Form for eTL
F𝑝

𝑛 e. We write for simplicity e := E[𝔱𝑛 ] ∈ TL
Z(𝑝)
𝑛 , that is e := Φ(𝑒(i))

where i = (0,−1,−2, . . . ,−𝑛 + 1) is the decreasing residue sequence. This is an idempotent in TL
Z(𝑝)
𝑛 and so we obtain

an idempotent truncated subalgebra eTL
Z(𝑝)
𝑛 e of TL

Z(𝑝)
𝑛 . This subalgebra plays an important role for what follows. To a

certain extent, this runs parallel to several recent papers, for example [57] and [60], where similar idempotent truncated

algebras have been studied. By general principles, eTL
Z(𝑝)
𝑛 e is a subalgebra of TL

Z(𝑝)
𝑛 , but with unit-element e.

Under the isomorphism from Theorem 3.3.2, the elements eTL
Z(𝑝)
𝑛 e are linear combinations of KLR-diagrams that

have top and bottom residue sequences both equal to i = (0,−1,−2, . . . ,−𝑛 + 1).

Recall from (3.1.2) that we have fixed natural numbers 𝑛1, 𝑛2 and 𝑟 such that 𝑛 = (𝑝 − 1) + 𝑛1 and 𝑛1 = 𝑝𝑛2 + 𝑟.
As in Lemma 3.1.2 we furthermore have blocks 𝐵1, 𝐵2. . . . , 𝐵𝑛2 of length 𝑝 of consecutive natural numbers. The largest
number of 𝐵𝑖 is 𝐼 := (𝑖 + 1)𝑝 − 1 and we define 𝑆𝑖 ∈ 𝔖𝑛 as

𝑆𝑖 := 𝑠𝐼 (𝑠𝐼−1𝑠𝐼+1) · · · (𝑠𝐼−𝑝+1𝑠𝐼−𝑝+3 · · · 𝑠𝐼+𝑝−3𝑠𝐼+𝑝−1) · · · (𝑠𝐼−1𝑠𝐼+1)𝑠𝐼 (3.61)

𝑆𝑖 is a reduced expression for the element of 𝔖𝑛 that interchanges the blocks 𝐵𝑖 and 𝐵𝑖+1, respecting the orders of the

elements of each block. We then define U𝑖 as the element of 𝑒(i)RZ(𝑝)
𝑛 𝑒(i) that is obtained from 𝑆𝑖 by converting each

𝑠 𝑗 to 𝜓 𝑗 , and finally multiplying on the left and on the right by e. Similar elements have been considered before in
[53], [57] and [60], but only for the original KLR-algebra R𝑛 defined over a field. In [57] and [60], the U𝑖’s are called
diamonds. For example, for 𝑛 = 14 and 𝑝 = 3 we have

U1 =

0 2 1 0 2 1 0 2 1 0 2 1 0 2

0 2 1 0 2 1 0 2 1 0 2 1 0 2

U2 =

0 2 1 0 2 1 0 2 1 0 21 0 2

0 2 1 0 2 1 0 2 1 0 21 0 2

(3.62)

Our goal is to describe the left and right actions on the Q-basis { 𝑓𝔰𝔱} for TLQ
𝑛. For this we have the following

surprising Theorem, which may be viewed as a generalization of Theorem 2.2.1, and then also of Corollary 2.2.1, that
is YSF, to the non-semisimple setting. As we shall see, its proof relies on (3.55) and (3.59), and so ultimately on Hu

and Mathas’ proof of the isomorphism Theorem 3.3.1. It is valid for eTL
Z(𝑝)
𝑛 e and eTL

F𝑝

𝑛 e.

Theorem 3.4.1. Suppose that 𝔰, 𝔞 ∈ [𝔱𝑛] ∩ Std(Par≤2𝑛 ), and that 𝑖 = 1, 2, . . . , 𝑛2 − 1. Let 𝔱 := 𝔰 · 𝑆𝑖 and suppose
that 𝔱 is a standard tableau. If 𝔰 ▷ 𝔱 set 𝔰𝑢 := 𝔰, otherwise set 𝔰𝑢 := 𝔱. Let 𝔰𝑑 = 𝔰𝑢 · 𝑆𝑖. In the notation of Lemma 3.1.2,
define 𝑓 as 𝑓1 if 𝑟 = 0, otherwise as the first component of 𝑓2. Define 𝜚 := 𝑐 𝑓 (𝔰𝑢 ) (𝑖) − 𝑐 𝑓 (𝔰𝑢 ) (𝑖 + 1) and 𝑋 ∈ Q via

𝑋 :=

(
(𝜚 + 1)𝑝 − 1

) (
(𝜚 + 1)𝑝 − 2

)
· · ·

(
𝜚𝑝 + 1

)(
𝜚𝑝 − 1

) (
𝜚𝑝 − 2

)
· · ·

(
(𝜚 − 1)𝑝 + 1

) (3.63)

with 𝑝 − 1 factors in decreasing order in numerator as well as denominator. Then the left action of U𝑖 is given by

(1) U𝑖 𝑓𝔰𝑑𝔞 =
𝜚 + 1
𝜚

𝑓𝔰𝑑𝔞 +
𝜚2 − 1
𝑋𝜚2

𝑓𝔰𝑢𝔞

(2) U𝑖 𝑓𝔰𝑢𝔞 =
𝜚 − 1
𝜚

𝑓𝔰𝑢𝔞 + 𝑋 𝑓𝔰𝑑𝔞

Suppose next that 𝔱 is not standard. Then U𝑖 acts via

(3) U𝑖 𝑓𝔰𝔞 = 0 if 𝑖, 𝑖 + 1 are in the same column of 𝑓 (𝔰)
(4) U𝑖 𝑓𝔰𝔞 = 2 𝑓𝔰𝔞 if 𝑖, 𝑖 + 1 are in the same row of 𝑓 (𝔰)

Proof: Let us first prove (2). The proof is a book-keeping of the coefficients that arise from the applications via (3.59)
of the 𝜓𝑖’s that appear in U𝑖. By the assumptions, in 𝔰𝑢 the block of numbers 𝐵𝑖 is positioned above the block of
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numbers 𝐵𝑖+1 as indicated below.

𝔰𝑢 =

I + 1

I + 2

I + p

I + p− 1

b
b
b

b
b
b

I

I − 1

I + 1− p

I + 2− p

Bi+1

Bi

b
b
b

b
b
b

1

0

3

2

1

0

3

2
𝑆𝑖 =

sI
sI+1sI−1

sI+2sI

sI−1

b
b
b

sI+2sIbbb bbbsI+1−p

sI−2

sI−1+p

b
b
b

sI+2sIsI−2

sI+1sI−1

sI

b
b

bb
b
b

b
b
b b

b
b

(3.64)

For simplicity we write 𝑓𝔰𝑢 = 𝑓𝔰𝑢𝔞 and 𝑓𝔰𝑑 = 𝑓𝔰𝑑𝔞. We first claim that U𝑖 maps 𝑓𝔰𝑢 to a linear combination of 𝑓𝔰𝑢
and 𝑓𝔰𝑑 , disregarding the coefficients for the time being.

To show this claim we proceed as follows. When applying 𝜓𝐼 to 𝑓𝔰𝑢 , corresponding to the top row in the diamond
for 𝑆𝑖 in (3.64), the residue difference modulo 𝑝 is 1, as can be read off from the red numbers in (3.64), and so by (3.59)
the result is a scalar multiple of 𝑓𝔰𝑢 ·𝑠𝐼 , that is one term. Next when applying 𝜓𝐼+1 and 𝜓𝐼−1 to 𝑓𝔰𝑢 ·𝑠𝐼 , corresponding to
the second row in the diamond for 𝑆𝑖 in (3.64), the residue difference is 2 and so by (3.59) the result is a multiple of
𝑓𝔰𝑢 · (𝑠𝐼 𝑠𝐼−1𝑠𝐼+1 ) , that is one term once again. This pattern repeats itself until we reach the middle row of the diamond
where the residue differences are all 𝑝, and so by (3.59) these 𝜓𝑖’s produce two terms each, corresponding to the two
terms in (3.59). The tableau of the first term is given by the action by 𝑠𝑖 whereas the tableau of the second is given
by the omission of 𝑠𝑖. On the other hand, the 𝜓𝑖’s in the lower part of the diamond once again only produce one term
each. This pattern of residue differences can be read off from the KLR-diamonds as well, see (3.62).

We conclude from this that U𝑖 maps 𝑓𝔰𝑢 to a linear combination of 𝑓𝔰𝑢 ·𝜎 where 𝜎 is a subexpression of 𝑆𝑖 obtained
from 𝑆𝑖 by deleting certain of the 𝑠𝑖’s from the middle row of 𝑆𝑖 and where 𝔰𝑢 · 𝜎 is standard. If 𝜎 is the subexpression
obtained by deleting all the 𝑠𝑖’s of the middle row, the resulting term is 𝑓𝔰𝑢 ·𝜎 = 𝑓𝔰𝑢 and if no 𝑠𝑖 is deleted the resulting
term is 𝑓𝔰𝑢 ·𝜎 = 𝑓𝔰𝑑 , of course.

We must however also consider the mixed cases where some of the 𝑠𝑖’s from the middle row of 𝑆𝑖 are deleted, but
not all. In these cases we may use Coxeter relations to move a generator 𝑠𝑖 ≠ 𝑠𝐼 to the top of 𝑆𝑖 and so we deduce that
𝔰𝑢 · 𝜎 is not standard. In Figure 1 we give an example, using 𝑝 = 5, and the indicated tableau 𝔰𝑢.

𝔰𝑢 =

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

B2

B3

s14

s15

s16

s17s11

s10 s18

s13

s14s12

s15s13

s16s14

s17s11 s15s13

s16s14s12

s15s13

s14

s14

s15

s16

s17

s11

s10

s18

s13

s14s12

s15s13

s16s14

s17s15s13

s16s14s12

s15s13

s14

→
s10

s14

s15

s16

s17

s11

s10

s18

s13

s14s12

s15s13

s16s14

s17s15s13

s16s14s12

s15s13

s14

→
s10

Figure 1. Example using 𝑝 = 5.

It follows from this observation that the part of the action of 𝜓𝜎 on 𝑓𝔰𝑢 that gives rise to 𝑓𝔰𝑢 ·𝜎 must involve the
third case of (3.57), for at least one of the 𝜓𝑖’s, since the other cases produce standard tableaux. But then the result
is zero, proving that the mixed cases do not contribute to the action of U𝑖 and so the claim is proved.

Let us now calculate the coefficient of 𝑓𝔰𝑑 under the action of U𝑖 on 𝑓𝔰𝑢 . The contribution to this coefficient for
each 𝜓𝑖 of the middle row of the diamond is given by always choosing the first term of (3.59). This implies that the
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sI+1sI−1

sI+2sI
b
b
b

bbb bbb

sI−2

b

b

b

sI+2sIsI−2

sI+1sI−1

sI

b
b

bb
b
b

b
b

b

b
b
b

sI

sI+1sI−1sI+2−p sI−2+p

sI+2−p sI−1 sI+1

sI+1−p sI sI+2 sI−1+p

b
b
b

b
b
b

b
b
b

b
b
b

r β

sI−2

P − p+ 1 P − p+ 1

P − p+ 2

P − p+ 3

P − 1

−(P − p+ 2)/(P − p+ 1)

−(P − p+ 3)/(P − p+ 2)

−(P − 1)/(P − 2)

−1/(P − 1)P

P + 1P + 1

P + p− 1 −(P + p− 1)/(P + p− 2)

P + p− 2 −(P + p− 2)/(P + p− 3)

−(P + p− 3)/(P + p− 4)P + p− 3

sI−2+p

Figure 2. Values of 𝑟 and 𝛽 for each row of the diamond.

coefficient of 𝑓𝔰𝑑 always comes from ‘going down’ and so 𝛼 = 1 for all occurrences of (3.57) involved in the coefficient
of 𝑓𝔰𝑑 . The value of 𝛽, according to (3.58), therefore only depends on 𝑟 and the relevant residue differences, that are
constant along the rows of the diamond.

The table in Figure 2 gives the values of 𝑟 and 𝛽 for each row of the diamond, where we write 𝑃 := 𝜚𝑝, for simplicity.
The colors in the table correspond to the three cases in the definition of 𝛽 in (3.58), with red corresponding to the first
case, blue to the second case and black to the third case. To get the coefficient of 𝑓𝔰𝑑 we must now multiply all the 𝛽’s
of the table in Figure 2, with multiplicities given by the cardinalities of the rows of the diamond.

We first claim that the sign of this product is +. To show this we observe that the number of black or red 𝛽’s in
the table in (3.58) is 𝑝2 minus the number of blue 𝛽’s, that is 𝑝2 − 𝑝 = 𝑝(𝑝 − 1) which is even, proving the claim.

The product of the 𝛽’s is therefore

(𝑃 − 𝑝 + 1)
1

(𝑃 − 𝑝 + 2)2
(𝑃 − 𝑝 + 1)2

(𝑃 − 𝑝 + 3)3
(𝑃 − 𝑝 + 2)3 · · ·

(𝑃 − 1) 𝑝−1
(𝑃 − 2) 𝑝−1

1

(𝑃 − 1) 𝑝
(𝑃 + 1) 𝑝−1

1
· · · (𝑃 + 𝑝 − 3)

3

(𝑃 + 𝑝 − 4)3
(𝑃 + 𝑝 − 2)2
(𝑃 + 𝑝 − 3)2

(𝑃 + 𝑝 − 1)
(𝑃 + 𝑝 − 2) =

((((((𝑃 − 𝑝 + 1)
1

(((((((𝑃 − 𝑝 + 2)2

(𝑃 − 𝑝 + 1) �2
(((((((𝑃 − 𝑝 + 3)3

(𝑃 − 𝑝 + 2) �3
· · ·�����(𝑃 − 1) 𝑝−1

(𝑃 − 2)��𝑝−1
1

(𝑃 − 1)�𝑝
(𝑃 + 1)��𝑝−1

1
· · · (𝑃 + 𝑝 − 3)

�3

(((((((𝑃 + 𝑝 − 4)3
(𝑃 + 𝑝 − 2) �2

(((((((𝑃 + 𝑝 − 3)2
(𝑃 + 𝑝 − 1)
((((((𝑃 + 𝑝 − 2) =

(𝑃 + 1)
(𝑃 − 𝑝 + 1)

(𝑃 + 2)
(𝑃 − 𝑝 + 2) · · ·

(𝑃 + 𝑝 − 2)
(𝑃 − 2)

(𝑃 + 𝑝 − 1)
(𝑃 − 1)

(3.65)

Remembering that 𝑃 = 𝜚𝑝, we conclude from this that the coefficient of 𝑓𝔰𝑑 is 𝑋 as claimed.

In order to determine the coefficient of 𝑓𝔰𝑢 we use the same method as for the coefficient of 𝑓𝔰𝑑 , with the difference
that this time 𝛼 is ‘going down’ only until reaching the middle row of diamond in which it ‘stands still’ and after this
point, corresponding to the lower part of the diamond, 𝛼 is ‘going up’ again. Thus the table for 𝑓𝔰𝑢 coincides with
the table in Figure 2 in the upper half of the diamond, but differs from it in the middle row and below. Using the
definitions of 𝑟, 𝛼 and 𝛽, we then get the following table, where we use the same color scheme as in Figure 2, and once
again 𝑃 := 𝜚𝑝.
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sI+1sI−1

sI+2sI
b
b
b

bbb bbb

sI−2

b

b

b

sI+2sIsI−2

sI+1sI−1

sI

b
b

bb
b
b

b
b

b

b
b
b

sI

sI+1sI−1sI+2−p sI−2+p

sI+2−p sI−1 sI+1

sI+1−p sI sI+2 sI−1+p

b
b
b

b
b
b

b
b
b

b
b
b

r β

sI−2

P − p+ 1 P − p+ 1

P − p+ 2

P − p+ 3

P − 1

−(P − p+ 2)/(P − p+ 1)

−(P − p+ 3)/(P − p+ 2)

−(P − 1)/(P − 2)

P

sI−2+p

−1/P

−(P − 1)

−(P − (p− 1))

−(P − (p− 2))

−(P − (p− 3))

−P (P − 2)/(P − 1)

−(P − p)/(P − (p− 1))

−(P − (p− 1))/(P − (p− 2))

−(P − (p− 2))/(P − (p− 3))

(3.66)

We must calculate the product of the 𝛽’s that appear in (3.66). There is only one 𝛽 appearing with a positive sign

in (3.66), namely the one in the first row, and so the sign of the product of all the 𝛽’s is (−1) 𝑝2−1 = 1, since 𝑝 is an odd
prime. It is now easy to calculate the product of the 𝛽’s: indeed multiplying the 𝛽 of the first row with the 𝛽 of the
last row, the 𝛽’s of the second row with the 𝛽’s of the second last row, and so on, we find that the product of the 𝛽’s is

𝑃 − 𝑝
𝑃

=
𝜚𝑝 − 𝑝
𝜚𝑝

=
𝜚 − 1
𝜚

(3.67)

which proves (2)

The proof of (1) is proved with the same methods as the proof of (2) and is left to the reader.

The proof of (3) is easy since, by the assumption for (3), all the numbers of 𝐵𝑖 and 𝐵𝑖+1 appear in the same column
of 𝔰. In particular, 𝐼 and 𝐼 + 1 appear in the same column of 𝔰 and so indeed U𝑖 𝑓𝔰𝔞 = 0 since already 𝜓𝐼 𝑓𝔰𝔞 = 0.

The proof of (4) is slightly more complicated. Under the assumption of (4), we have that 𝔰 and 𝔰 · 𝑆𝑖 are as follows

𝔰 =

I + 1

I + 2

I + p

I + p− 1

b
b
b

b
b
b

I

I − 1

I + 1− p

I + 2− p

Bi+1

Bi

b
b
b

b
b
b

1

0

3

21

0

3

2

𝔰 · 𝑆𝑖 = I + 1

I + 2

I + p

I + p− 1

b
b
b

b
b
b

I

I − 1

I + 1− p

I + 2− p

b
b
b

b
b
b

1

0

3

2

1

0

3

2 (3.68)

with 𝔰 · 𝑆𝑖 non-standard. Using this, and arguing as in the paragraphs following (3.64), we get that U𝑖 𝑓𝔰𝔞 = 𝜆 𝑓𝔰𝔞 for
some 𝜆. With the same notation as before we then get the following table for calculating 𝜆.

75



sI+1sI−1

sI+2sI
b
b
b

bbb bbb

sI−2

b

b

b

sI+2sIsI−2

sI+1sI−1

sI

b
b

bb
b
b

b
b

b

b
b
b

sI

sI+1sI−1sI+2−p sI−2+p

sI+2−p sI−1 sI+1

sI+1−p sI sI+2 sI−1+p

b
b
b

b
b
b

b
b
b

b
b
b

r β

sI−2

sI−2+p

−2p+ 1 −(2p− 2)2p/(2p− 1)

−2p+ 2

−2p+ 3

−(2p− 3)/(2p− 2)

−(2p− 4)/(2p− 3)

−p− 1 −p/(p+ 1)

−p 1/p

2p− 1

2p− 2

2p− 3

p+ 1p+ 1

−(2p− 1)/(2p− 2)

−(2p− 2)/(2p− 3)

−(2p− 3)/(2p− 4)

(3.69)

The product of the 𝛽’s of the table can be calculated by pairing the top 𝛽 with the bottom 𝛽, and so on, and gives
𝜆 = (−1) 𝑝−12 = 2, proving (4). (In fact, this calculation may be viewed as the calculation for the coefficient of 𝑓𝔰𝑑𝔞 in
a) in the special case 𝜚 = 1). The proof of the Theorem is finished. □

We have the following variant of Theorem 3.4.1 describing the right action of U𝑖 on { 𝑓𝔰𝔱}. Note that the formulas

for the right action are the same as the formulas for the left action, except that 𝑋 should be replaced by
1

𝑋
.

Theorem 3.4.2. Let the notation be the same as in Theorem 3.4.1. Then the right action of U𝑖 is given by

(1) 𝑓𝔞𝔰𝑑U𝑖 =
𝜚 + 1
𝜚

𝑓𝔞𝔰𝑑 +
𝑋 (𝜚2 − 1)

𝜚2
𝑓𝔞𝔰𝑢

(2) 𝑓𝔞𝔰𝑢U𝑖 =
𝜚 − 1
𝜚

𝑓𝔞𝔰𝑢 +
1

𝑋
𝑓𝔞𝔰𝑑

Suppose that 𝔱 is not standard. Then U𝑖 acts via

(3) 𝑓𝔞𝔰U𝑖 = 0 if 𝑖, 𝑖 + 1 are in the same column of 𝑓 (𝔰)
(4) 𝑓𝔞𝔰U𝑖 = 2 𝑓𝔞𝔰 if 𝑖, 𝑖 + 1 are in the same row of 𝑓 (𝔰)

Statements similar to the one of the following Corollary, but for the original KLR-algebra R𝑛 defined over a field,
are already present in literature, see for example [53], [60] and [57], although the proofs in these references are different
from ours, since they rely on KLR-diagrammatics.

Corollary 3.4.1. Let 𝑛2 be chosen as in (3.13) and suppose that 𝑛2 > 1. Then there is a (non-unital) injection of
Temperley-Lieb algebras given by

𝜄𝐾𝐿𝑅 : TL
Z(𝑝)
𝑛2 → TL

Z(𝑝)
𝑛 , u𝑖 ↦→ Φ(U𝑖) for 𝑖 = 1, 2, . . . , 𝑛2 − 1 (3.70)

Proof: We must show that the left action of the U𝑖’s verify the Temperley-Lieb relations (1.1), (1.2) and (1.3). The
quadratic relation (1.1) follows immediately from Theorem 3.4.1, since the 2 × 2-matrix MU𝑖

expressing the left action
of U𝑖 in terms of { 𝑓𝔞𝔱𝑑 , 𝑓𝔞𝔱𝑢 } has the form

MU𝑖
=


𝜚 + 1
𝜚

𝑋

𝜚2 − 1
𝑋𝜚2

𝜚 − 1
𝜚

 (3.71)

which satisfies M2
U𝑖

= 2MU𝑖
.

In order to show relation (1.2), we choose 𝔰, 𝔱 ∈ [𝔱𝑛] ∩ Std(Par≤2𝑛 ) and show that the left action of U𝑖U𝑖±1U𝑖 on 𝑓𝔰𝔱
is equal to the left action of U𝑖 on 𝑓𝔰𝔱. Let us focus on U𝑖U𝑖+1U𝑖. We then consider the positions of 𝑖, 𝑖 + 1 and 𝑖 + 2 in
𝑓 (𝔰) where 𝑓 is as in Theorem 3.4.1. If 𝑖, 𝑖 + 1 and 𝑖 + 2 are in different rows of 𝑓 (𝔰), we have the following possibilities
𝔰1, 𝔰2, . . . , 𝔰6 for 𝑓 (𝔰).
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i+ 1

i+ 2

i i+ 1

i+ 2

i

i+ 1

i+ 2

i

i+ 1

i+ 2

i i+ 1

i+ 2

i

i+ 1

i+ 2

i

(3.72)

One now checks for all 𝑗 = 1, 2, . . . , 6 that indeed U𝑖U𝑖+1U𝑖 𝑓𝔰 𝑗 𝔱 = U𝑖 𝑓𝔰 𝑗 𝔱. For example, using 𝜚 := 𝑐𝔰2 (𝑖) − 𝑐𝔰1 (𝑖) one gets,
using Theorem 3.4.1 repeatedly

U𝑖U𝑖+1U𝑖 𝑓𝔰1𝔱 = U𝑖U𝑖+1

(
𝜚 + 1
𝜚

𝑓𝔰1𝔱 +
𝜚2 − 1
𝑋𝜚2

𝑓𝔰2𝔱

)
=
𝜚2 − 1
𝑋𝜚2

U𝑖U𝑖+1 𝑓𝔰2𝔱

=
𝜚2 − 1
𝑋𝜚2

U𝑖

(
𝜚

𝜚 − 1 𝑓𝔰2𝔱 +
(𝜚 − 1)2 − 1
𝑋1 (𝜚 − 1)2

𝑓𝔰3𝔱

)
= U𝑖

(
𝜚 + 1
𝑋𝜚

𝑓𝔰2𝔱

)
=
𝜚 + 1
𝑋𝜚

(
𝜚 − 1
𝜚

𝑓𝔰2𝔱 + 𝑋 𝑓𝔰1𝔱
)
=
𝜚2 − 1
𝑋𝜚2

𝑓𝔰2𝔱 +
𝜚 + 1
𝜚

𝑓𝔰1𝔱

(3.73)

which equals U𝑖 𝑓𝔰1𝔱. For the other 𝔰 𝑗 ’s, the verification of U𝑖U𝑖+1U𝑖 𝑓𝔰 𝑗 𝔱 = U𝑖 𝑓𝔰 𝑗 𝔱. is done the same way.

If two of the numbers 𝑖, 𝑖 + 1 and 𝑖 + 2 are in the same row of 𝑓 (𝔱) we have the following possibilities

i+ 1

i+ 2

i

i+ 1

i+ 2i

(3.74)

and in each case one checks that U𝑖U𝑖+1U𝑖 and U𝑖 act the same way. The verification of U𝑖U𝑖−1U𝑖 = U𝑖 is done the same
way, and finally the verification of relation (1.3) is trivial.

In order to show injectivity of 𝜄𝐾𝐿𝑅 one first checks that throughout the above arguments, one may always replace
left actions by right actions. (This also follows from the theory in [47]).

Let now {𝐶𝔰𝔱 | 𝔰, 𝔱 ∈ Std(𝜆), 𝜆 ∈ Par≤2𝑛2 } be the basis for TL
Z(𝑝)
𝑛2 , as introduced in the paragraph before (1.18). From

the formulas in Theorem 3.4.1 we have that 𝔲, 𝔳 ∈ Std(𝜇) with 𝜇 ∈ Par≤2𝑛2 and 𝐶𝔰𝔱 𝑓𝔲𝔳 ≠ 0 implies 𝔲 ⊵ 𝔱, and similarly,

from the formulas in Theorem 3.4.2, we have that 𝑓𝔲𝔳𝐶𝔰𝔱 ≠ 0 implies 𝔳⊵ 𝔰. Moreover, we also have that 𝐶𝔱𝜆𝔲 𝑓𝔲𝔳 = 𝜇
𝑙
𝔲 𝑓𝔱𝜆𝔳

where 𝜇𝑙𝔲 ≠ 0 and that 𝑓𝔲𝔳𝐶𝔳𝔱𝜆 = 𝜇𝑟𝔳 𝑓𝔲𝔱𝜆 where 𝜇𝑟𝔳 ≠ 0 and where 𝔲, 𝔳 are of shape 𝜆.

Suppose now that 0 ≠ 𝐶 =
∑

𝔰,𝔱 𝜆𝔰𝔱𝐶𝔰𝔱 ∈ ker 𝜄𝐾𝐿𝑅. Choose (𝔰0, 𝔱0) such that 𝜆𝔰0𝔱0 ≠ 0 and such that (𝔰0, 𝔱0) is
minimal with respect to this property. Then, using 𝐶 𝑓𝔰0𝔱0 = 0 we get 0 = 𝑓𝔱0𝔰0𝐶 𝑓𝔰0𝔱0 = 𝜆𝔰0𝔱0𝑐 𝜇

𝑙
𝔰0
𝜇𝑟
𝔱0
𝑓𝔱0𝔱0 , where 𝑐 ≠ 0,

which implies 𝜆𝔰0𝔱0 = 0. This is however a contradiction, and so the injectivity of 𝜄𝐾𝐿𝑅 has been proved. □

Remark 3.4.1. For 𝑛2 = 0 or 𝑛2 = 1 the proof of Corollary 3.4.1 does not make sense. In these cases we define
𝜄𝐾𝐿𝑅 by

𝜄𝐾𝐿𝑅 : TL
Z(𝑝)
𝑛2 → TL

Z(𝑝)
𝑛 , 1 ↦→ E[𝔱𝑛 ] (3.75)

This definition corresponds to the basis case in the induction proof of Theorem 3.5.2 for all values of 𝑛2.
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Remark 3.4.2. In general 𝜄𝐾𝐿𝑅 (TL
Z(𝑝)
𝑛2 ) ⊆ eTL

Z(𝑝)
𝑛 e, but this inclusion is not an equality, since for example e𝑦𝑖e ∈

eTL
Z(𝑝)
𝑛 e \ 𝜄𝐾𝐿𝑅 (TL

Z(𝑝)
𝑛2 ). Over F𝑝 it is likely that 𝜄𝐾𝐿𝑅 (TL

F𝑝

𝑛2 ) is the degree zero part of eTL
F𝑝

𝑛 e.

Remark 3.4.3. Let TL
Z(𝑝)
𝑛2 (2𝑝) be the Temperley-Lieb algebra defined over Z(𝑝) with loop parameter 2𝑝 and let

once again 𝑛2 be chosen as in (3.13). Then there is another injection 𝜄𝑐𝑎𝑏 : TL
Z(𝑝)
𝑛2 (2𝑝) → TL

Z(𝑝)
𝑛 given by replacing each

line after the first 𝑝 − 1 lines by 𝑝 parallel lines. For example for 𝑛 = 14 and 𝑝 = 3 we have

𝜄𝑐𝑎𝑏 (u1) = , 𝜄𝑐𝑎𝑏 (u2) = (3.76)

In view of Fermat’s little Theorem, it induces an injection 𝜄𝑐𝑎𝑏 : TL
F𝑝

𝑛2 → TL
F𝑝

𝑛 . Note that 𝜄𝑐𝑎𝑏 is much simpler to define
than 𝜄𝐾𝐿𝑅 since it does not require KLR-theory.

Let 𝑆𝑖 ∈ 𝔖𝑛 be as in (3.61). Then one gets an expression for 𝜄𝑐𝑎𝑏 (u𝑖) by replacing each 𝑠 𝑗 in 𝑆𝑖 by the generator u 𝑗
of TL

Z(𝑝)
𝑛 . For example for 𝜄𝑐𝑎𝑏 (u1) and 𝜄𝑐𝑎𝑏 (u2) as in (3.76) one gets

𝜄𝑐𝑎𝑏 (u1) = u5u4u6u3u5u7u4u6u5, 𝜄𝑐𝑎𝑏 (u2) = u8u7u9u6u8u10u7u9u8 (3.77)

This is parallel to our definition of U𝑖 in the paragraph following (3.61) where we use 𝜓𝑖’s instead of u𝑖’s. Via these
expressions and Theorem 2.2.1 one may now attempt to describe the action of 𝜄𝑐𝑎𝑏 (u𝑖) on 𝑓𝔰𝑑𝔞, in the hope of finding
formulas similar to the ones of Theorem 3.4.1, but already for small values of 𝑛 and 𝑝 the result is an intractable linear
combination of 𝑓𝔲𝔱’s for 𝔰𝑑 ⊴ 𝔲 ⊴ 𝔰𝑢 where 𝔰𝑑 and 𝔰𝑢 are as in Theorem 3.4.1. The reason for this is that YSF, that is
Theorem 2.2.1, gives rise to two 𝑓𝔲𝔱 terms for each u𝑖 in 𝜄𝑐𝑎𝑏 (u𝑖), whereas Hu and Mathas’ formulas (3.59) and (3.60)
only give rise to one 𝑓𝔲𝔱 term for each 𝜓𝑖 in U𝑖, except for the 𝜓𝑖’s in the middle of the diamond. This simpler description
of the action of the 𝜓𝑖’s, in comparison with the action of the u𝑖’s, is a key ingredient in the proofs of Theorem 3.4.1
and 3.4.2 and it is a main reason why we need KLR-theory for Corollary 3.4.1 and therefore also, as we shall see, for
the main results of this section.

Over F𝑝 it would be interesting to investigate whether the mentioned linear combination of 𝑓𝔲𝔱’s reduces to the two
terms 𝑓𝔰𝑑𝔱 and 𝑓𝔰𝑢𝔱 since that would imply that 𝜄𝑐𝑎𝑏 and 𝜄𝐾𝐿𝑅 coincide. In particular, 𝜄𝑐𝑎𝑏 (u𝑖) would be homogeneous
of degree 0, although the individual U 𝑗 -factors of 𝜄𝐾𝐿𝑅 (u𝑖) are not homogeneous. We thank one of the referees for
bringing 𝜄𝑐𝑎𝑏 to our attention.

3.5. Connection between the 𝑝-Jones-Wenzl idempotents and KLR-theory. Suppose that 𝑛2 > 1. Let

{L1,L2, . . . ,L𝑛2 } be the family of JM-elements in TL
Z(𝑝)
𝑛2 given by L𝑖 := Φ(𝐿𝑖) where {𝐿1, 𝐿2, . . . , 𝐿𝑛2 } ⊆ Z(𝑝)𝔖𝑛2 is the

original family of JM-elements in (1.19) and where Φ : Z(𝑝)𝔖𝑛2 → TL
Z(𝑝)
𝑛2 is the surjection from Lemma 1.4.1. Using

the general theory in [71], we then obtain idempotents E𝔱 ∈ TLQ
𝑛2 for 𝔱 ∈ Par≤2𝑛2 that are common eigenvectors for the

L𝑖’s, via the construction in (2.12) and Corollary 2.2.2. On the other hand, the inclusion 𝜄𝐾𝐿𝑅 : TL
Z(𝑝)
𝑛2 → TL

Z(𝑝)
𝑛 from

Corollary 3.4.1 induces an inclusion 𝜄Q
𝐾𝐿𝑅

: TLQ
𝑛2 ⊆ TLQ

𝑛 and so we may view the E𝔱’s as idempotents in TLQ
𝑛 via 𝜄Q

𝐾𝐿𝑅
.

Our next goal is to show, quite surprisingly, that these new idempotents {E𝔱 | 𝔱 ∈ Std(Par≤2𝑛2 )}, viewed as elements

in TLQ
𝑛, are closely related to the first idempotents {E𝔱 | 𝔱 ∈ Std(Par≤2𝑛 )} in TLQ

𝑛. We start with the following Lemma,
which should be compared with Lemma 2.2.1.

Lemma 3.5.1. Let 𝜆 ∈ Std(Par≤2𝑛 ) and suppose that 𝔱 = 𝔱𝜆 ∈ [𝔱𝑛] ∩ Std(Par≤2𝑛 ) and that 𝔞 ∈ [𝔱𝑛] ∩ Std(𝜆). Set
𝔰 := 𝑓 (𝔱𝜆) ∈ Par≤2𝑛2 where 𝑓 is as in Theorem 3.4.1. Let 𝑓𝔱𝔞 and 𝑓𝔞𝔱 be as in (3.53). Then for for 𝑖 = 1, 2, . . . , 𝑛2 we have
that

L𝑖 𝑓𝔱𝔞 = 𝑐𝔰 (𝑖) 𝑓𝔱𝔞 and 𝑓𝔱𝔞L𝑖 = 𝑐𝔰 (𝑖) 𝑓𝔱𝔞 (3.78)
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Proof: Let us show the formula for the left action of L𝑖. Letting 𝑙1 and 𝑙2 be the column lengths of 𝔰 we have that

𝔰 =

1

2

l1

l1 + 1

l1 + l2
b
b
b

b
b
b

l1 + 2

(3.79)

Once again, we use the recursive formula L𝑖+1 = (U𝑖 − 1)L𝑖 (U𝑖 − 1) + U𝑖 − 1. Together with (3) of Theorem 3.4.1, it
reduces the proof to the case 𝑙2 = 1 and 𝑖 = 𝑙1 + 1 where we must show that

L𝑙1+1 𝑓𝔱𝔞 = 𝑓𝔱𝔞 (3.80)

We do so by induction over 𝑙1. The basis of the induction, corresponding to 𝑙1 = 1, is the affirmation that L2 𝑓𝔱𝔞 =

𝑓𝔱𝔞 ⇐⇒ (U1 − 1) 𝑓𝔱𝔞 = 𝑓𝔱𝔞 which is true by (4) of Theorem 3.4.1.

To show the inductive step 𝑙1 − 1 =⇒ 𝑙1 we write for simplicity 𝑙 := 𝑙1, 𝔱𝑑 := 𝔱 and 𝔱𝑢 := 𝔱 · 𝑠𝑙 and get via (1) and (2)
of Theorem 3.4.1 that

L𝑙+1 𝑓𝔱𝔞 =

(
(U𝑙 − 1)L𝑙 (U𝑙 − 1) + U𝑙 − 1

)
𝑓𝔱𝑑𝔞 = L𝑙 (U𝑙 − 1)

(1
𝑙
𝑓𝔱𝑑𝔱 +

𝑙2 − 1
𝑋 𝑙2

𝑓𝔱𝑢𝔱

)
+

(1
𝑙
𝑓𝔱𝑑𝔞 +

𝑙2 − 1
𝑋 𝑙2

𝑓𝔱𝑢𝔞

)
= (U𝑙 − 1)

(1 − 𝑙
𝑙

𝑓𝔱𝑑𝔞 +
𝑙2 − 1
𝑋 𝑙2

𝑓𝔱𝑢𝔞

)
+

(1
𝑙
𝑓𝔱𝑑𝔞 +

𝑙2 − 1
𝑋 𝑙2

𝑓𝔱𝑢𝔞

)
= U𝑙

(1 − 𝑙
𝑙

𝑓𝔱𝑑𝔞 +
𝑙2 − 1
𝑋 𝑙2

𝑓𝔱𝑢𝔞

)
+ 𝑓𝔱𝑑𝔞

=
1 − 𝑙
𝑙

U𝑙
(
𝑓𝔱𝑑𝔞 −

𝑙 + 1
𝑋 𝑙

𝑓𝔱𝑢𝔞

)
+ 𝑓𝔱𝑑𝔞 = 𝑓𝔱𝑑𝔞 = 𝑓𝔱𝔞

(3.81)

The proof of the formula for the right action is done the same way.

□

The previous Lemma is the basis step for the inductive proof of the following Theorem which should be compared
with Theorem 2.2.2.

Theorem 3.5.1. Suppose that 𝔱, 𝔞 ∈ [𝔱𝑛] ∩ Std(Par≤2𝑛 ). Set 𝔰 := 𝑓 (𝔱) ∈ Par≤2𝑛2 where 𝑓 is as in Theorem 3.4.1.
Then for 𝑖 = 1, 2, . . . , 𝑛2 we have that

L𝑖 𝑓𝔱𝔞 = 𝑐𝔰 (𝑖) 𝑓𝔱𝔞 and 𝑓𝔞𝔱L𝑖 = 𝑐𝔰 (𝑖) 𝑓𝔞𝔱 (3.82)

Proof: As already indicated, the proof is by upwards induction over the dominance order in Std(𝜆), with Lemma
3.5.1 corresponding to the induction basis. The induction step is carried out the same way as the induction step in
the proof of Theorem 2.2.2, with Theorem 3.4.1 replacing Theorem 2.2.1. The extra factors 𝑋 or 1/𝑋 in the equations
corresponding to (2.38)–(2.41) do not affect the conclusion. □

We have a series of Corollaries to Theorem 3.5.1.

Corollary 3.5.1. Let 𝔱 and 𝔰 be as in Theorem 3.5.1 and let E𝔱 ∈ TLQ
𝑛 be the idempotent from Corollary 2.2.2.

Then we have
L𝑖E𝔱 = E𝔱L𝑖 = 𝑐𝔰 (𝑖)E𝔱 for 𝑖 = 1, 2, . . . , 𝑛2 (3.83)

Proof: This follows directly from Theorem 3.5.1 together with the construction of E𝔱 in (2.12) and Corollary 2.2.2.
□

Corollary 3.5.2. Suppose that 𝔱 ∈ [𝔱𝑛] ∩ Std(Par≤2𝑛 ) and that 𝔰 ∈ Par≤2𝑛2 where 𝑛2 is as in Lemma 3.14. Let

𝜄
Q
𝐾𝐿𝑅

: TLQ
𝑛2 ⊆ TLQ

𝑛 be the inclusion given by Corollary 3.4.1. Then we have

𝜄
Q
𝐾𝐿𝑅

(
E𝔰

)
· E𝔱 = E𝔱 · 𝜄Q𝐾𝐿𝑅

(
E𝔰

)
=

{
E𝔱 if 𝑓 (𝔱) = 𝔰

0 if 𝑓 (𝔱) ≠ 𝔰
(3.84)

In particular

𝜄
Q
𝐾𝐿𝑅

(
E𝔰

)
=

∑︁
𝔱∈[𝔱𝑛 ]∩Std(Par≤2𝑛 )

𝑓 (𝔱)=𝔰

E𝔱 (3.85)
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Proof: To show (3.84), we first suppose that 𝑓 (𝔱) = 𝔰. Using (2.2) and Corollary 3.5.1 we then get

𝜄
Q
𝐾𝐿𝑅

(
E𝔰

)
· E𝔱 =

©­­­«
∏
𝑐∈C

∏
𝑖=1,...,𝑛2
𝑐≠𝑐𝔰 (𝑖)

L𝑖 − 𝑐
𝑐𝔰 (𝑖) − 𝑐

ª®®®¬ E𝔱 =

©­­­«
∏
𝑐∈C

∏
𝑖=1,...,𝑛2
𝑐≠𝑐𝔰 (𝑖)

𝑐𝔰 (𝑖) − 𝑐
𝑐𝔰 (𝑖) − 𝑐

ª®®®¬ E𝔱 = E𝔱 (3.86)

as claimed. Suppose next that 𝑓 (𝔱) ≠ 𝔰. Then there is 𝑖 ∈ {1, 2, . . . , 𝑛2} such that 𝑐 𝑓 (𝔱) (𝑖) ≠ 𝑐𝔰 (𝑖), since the separability

condition (2.1) is fulfilled, and so 𝜄Q
𝐾𝐿𝑅

(
E𝔰

)
has

(
L𝑖−𝑐 𝑓 (𝔱) (𝑖)

)
as a factor. But by Corollary 3.5.1 we have

(
L𝑖−𝑐 𝑓 (𝔱) (𝑖)

)
𝐸𝔱 =

0 which implies 𝜄Q
𝐾𝐿𝑅

(
E𝔰

)
𝐸𝔱 = 0. The formula for the right action in (3.84) is proved the same way.

Finally, (3.85) is a consequence of (3.84) since the E𝔱’s are a complete set of orthogonal idempotents, see Corollary

2.2.2, and 𝜄Q
𝐾𝐿𝑅

(
E𝔰

)
E𝔲 = 0 for 𝔲 ∈ Std(Par≤2𝑛 ) \ [𝔱𝑛]. □

Let
𝑛 + 1 = 𝑎𝑘 𝑝

𝑘 + 𝑎𝑘−1𝑝𝑘−1 + . . . + 𝑎1𝑝 + 𝑎0 (3.87)

be the expansion of 𝑛 + 1 in base 𝑝 from (3.3). As in (3.13) we have 𝑛 = 𝑛1 + (𝑝 − 1) and 𝑛1 = 𝑝𝑛2 + 𝑟 and so

𝑟 = 𝑎0 and 𝑛2 + 1 = 𝑎𝑘 𝑝
𝑘−1 + 𝑎𝑘−1𝑝𝑘−2 + . . . + 𝑎1 (3.88)

For our final Corollary we allow 𝑛2 to be any natural number or 0. Let I𝑛 be the set defined in (3.4).

Corollary 3.5.3. Choose 𝜖𝑖 ∈ {±1} for 𝑖 = 1, 2, . . . , 𝑘 − 1 and let 𝑚 = (𝑎𝑘 𝑝𝑘−1 + 𝜖𝑘−1𝑎𝑘−1𝑝𝑘−2 + . . . + 𝜖1𝑎1) − 1 be

the corresponding element in I𝑛2 . Let 𝜄
Q
𝐾𝐿𝑅

: TLQ
𝑛2 ⊆ TLQ

𝑛 be as above. Then

𝜄
Q
𝐾𝐿𝑅
(E𝔱𝑚 ) =

{
E𝔱 (𝑎𝑘 𝑝𝑘+𝜖𝑘−1𝑎𝑘−1𝑝𝑘−1+...+𝜖1𝑎1𝑝+𝑎0 )−1

+ E𝔱 (𝑎𝑘 𝑝𝑘+𝜖𝑘−1𝑎𝑘−1𝑝𝑘−1+...+𝜖1𝑎1𝑝−𝑎0 )−1
if 𝑎0 ≠ 0

E𝔱 (𝑎𝑘 𝑝𝑘+𝜖𝑘−1𝑎𝑘−1𝑝𝑘−1+...+𝜖1𝑎1𝑝)−1
if 𝑎0 = 0

(3.89)

Proof: If 𝑛2 > 1 we get (3.89) from (3.85) and the definition of 𝑓 , see Theorem 3.4.1 and Lemma 3.1.2. If 𝑛2 = 0 or
𝑛2 = 1 we get (3.89) directly from (3.75). □

We now finish this chapter by showing how 𝑝JW𝑛 fits into the picture. Recall that 𝑛 ≥ 𝑝. Repeating the process
in (3.88) we find that 𝑛, 𝑛1, 𝑛2 and 𝑟 belong to sequences of non-negative integers 𝑛𝑖 , 𝑛𝑖1, 𝑛

𝑖
2 and 𝑟 𝑖 where 𝑛 := 𝑛0, 𝑛1 =

𝑛01, 𝑛2 = 𝑛02 and 𝑟 = 𝑟0 and where

𝑛𝑖 = 𝑛𝑖𝑖 + (𝑝 − 1), 𝑛𝑖1 = 𝑝𝑛𝑖2 + 𝑟 𝑖 , 𝑛𝑖+1 = 𝑛𝑖2 for 𝑖 = 0, 1, . . . , 𝑘 − 1 (3.90)

In fact we have
𝑟 𝑖 = 𝑎𝑖 and 𝑛𝑖2 + 1 = 𝑎𝑘 𝑝

𝑘−𝑖−1 + 𝑎𝑘−1𝑝𝑘−𝑖−2 + . . . + 𝑎𝑖+1 (3.91)

from which we see that 𝑛𝑖2 is strictly positive, except possibly 𝑛𝑘−12 which may be zero.

Using Corollary 3.4.1 we then get a chain of injections

TL
Z(𝑝)
𝑛𝑘−12

⊆ TL
Z(𝑝)
𝑛𝑘−22

⊆ · · · ⊆ TL
Z(𝑝)
𝑛02
⊆ TL

Z(𝑝)
𝑛

(3.92)

By (3.91) we have 𝑛𝑘−12 = 𝑎𝑘 − 1 and so we have from (3.92) a (non-unital) injection

𝜄𝑘 : TL
Z(𝑝)
𝑎𝑘−1 ⊆ TL

Z(𝑝)
𝑛

(3.93)

With this we are in position to prove our final Theorem. It establishes the promised connection between the 𝑝-Jones-
Wenzl idempotents and KLR-theory for the Temperley-Lieb algebra, via the seminormal form approach to KLR-theory.

Theorem 3.5.2. In the above setting we have
𝑝JW𝑛 = 𝜄𝑘 (E𝔱 (𝑎𝑘−1)

) (3.94)

Proof: We proceed by induction on 𝑘. If 𝑘 = 1 we have 𝑛 + 1 = 𝑎1𝑝 + 𝑎0 and so (3.94) is the statement
𝑝JW𝑛 = 𝜄1 (E𝔱 (𝑎1−1)

) (3.95)

But by Corollary 3.5.3 and the definitions both sides of (3.95) are equal to E[𝔱𝑛 ] , and so the basis of the induction is
established.

Let us now assume that (3.94) holds for 𝑘 − 1. Since 𝑛2 = 𝑛2 + 1 = (𝑎𝑘 𝑝𝑘−1 + 𝑎𝑘−1𝑝𝑘−2 + . . . + 𝑎1) − 1 we then have
𝑝JW𝑛2 = 𝜄𝑘−1 (E𝔱 (𝑎𝑘−1)

) (3.96)
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or equivalently ∑︁
𝜖𝑖∈{±1}

E𝔱 (𝑎𝑘 𝑝𝑘−1+𝜖𝑘−1𝑎𝑘−1𝑝𝑘−2+...+𝜖1𝑎1 )−1
= 𝜄𝑘−1 (E𝔱 (𝑎𝑘−1)

) (3.97)

Applying 𝜄Q
𝐾𝐿𝑅

to both sides of (3.97) we arrive via Corollary 3.5.3 at∑︁
𝜖𝑖∈{±1}

E𝔱 (𝑎𝑘 𝑝𝑘+𝜖𝑘−1𝑎𝑘−1𝑝𝑘−1+...+𝜖0𝑎0 )−1
= 𝜄𝑘 (E𝔱 (𝑎𝑘−1)

) (3.98)

that is 𝑝JW𝑛 = 𝜄𝑘 (E𝔱 (𝑎𝑘−1)
), as claimed. The Theorem is proved.

□

Viewing E[𝔱
𝑛𝑖
2
] as an element of TL

Z(𝑝)
𝑛

via (3.92), we can formulate Theorem 3.5.2 as the statement

𝑝JW𝑛 =

𝑘−1∏
𝑖=0

E[𝔱
𝑛𝑖
2
] (3.99)

since E[𝔱
𝑛𝑖
2
]E[𝔱

𝑛𝑘−1
2
] = E[𝔱

𝑛𝑘−1
2
] . In other words, E𝔱 is a summand of 𝑝JW𝑛 if and only if 𝑓 (𝑖) (𝔱) := (

𝑖︷       ︸︸       ︷
𝑓 ◦ . . . ◦ 𝑓 ) (𝔱) ∈ [𝔱𝑛𝑖−12

]
for all 𝑖. For example, for 𝑛 = 12 and 𝑝 = 3 we get using (3.18) and (3.19) that E𝔱 is a summand of 𝑝JW12 exactly for
𝔱 ∈ {𝔱12, 𝔱10, 𝔱6, 𝔱4} in the notation of (3.10). This is the precise meaning of our statement following (3.19).

One could consider this as an incarnation of the fractal structure of the representation theory of TL
F𝑝

𝑛 or its Ringel
dual 𝑆𝐿2 (F𝑝), studied for example [31], [32], [86], [97].
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CHAPTER 5

On the Spherical partition algebra SP𝑘

In this chapter, we introduce and study the spherical partition algebra SP𝑘 , an idempotent truncation of the classical
partition algebra P𝑘 defined via the embedding of the trivial 𝔖𝑘-module. This chapter is based on the article [67],
coauthored with Paul Martin and Steen Ryom-Hansen.

We begin by defining SP𝑘 as the algebra 𝑒𝑘P𝑘𝑒𝑘 , where 𝑒𝑘 is the symmetrizing idempotent in C𝔖𝑘 . We construct
a basis for SP𝑘 indexed by bipartite partitions and show that the rank of this algebra is given by the number of such
partitions. We then study the specialized algebra SP𝑘 (𝑡) for 𝑡 ∈ C, showing that it is quasihereditary for 𝑡 ≠ 0 and
determining the decomposition numbers and simple modules in all cases except 𝑡 = 0.

A central result of this chapter is the establishment of a Schur-Weyl type duality between SP𝑘 (𝑛) and 𝔖𝑛, via
their commuting actions on the symmetric power S𝑘 (𝑉𝑛). This leads to a double centralizer property analogous to the
classical case, and to a parametrization and dimension formula for the irreducible SP𝑘 (𝑛)-modules that appear in this
setting. Finally, we describe the Loewy structure of the indecomposable projective and tilting modules for SP𝑘 (𝑡).

1. The Partition algebra

1.1. Generators, relations and Jucys-Murphy elements for P𝑘. The partition algebra P𝑘 was introduced by
Paul Martin via considerations in statistical mechanics, see [64]. Let SetPar𝑘 be the set of set partitions on {1, 2 . . . , 𝑘},
that is the set of equivalence relations 𝑑 on {1, 2 . . . , 𝑘}. For even subscript 2𝑘 we shall usually think of SetPar2𝑘 as set
partitions on {1, 2 . . . , 𝑘} ∪ {1′, 2′ . . . , 𝑘 ′}. If 𝑑 ∈ SetPar𝑘 we write 𝑑 = {𝑑1, 𝑑2, . . . , 𝑑𝑎} where the 𝑑𝑖’s are the classes, or
blocks, of 𝑑. If furthermore 𝑑 ∈ SetPar2𝑘 , we represent 𝑑 diagrammatically using two parallel horizontal lines of points
labeling the top points {1, 2, . . . , 𝑘} and the bottom points {1′, 2′, . . . , 𝑘 ′}, from left to right. We draw lines between
these points in such a way that the connected components, in the graph-theoretical sense, of the corresponding graph
are exactly the blocks of 𝑑, for example

{{1}, {2, 3, 7, 8, 9, 6′, 7′, 8′}, {4, 5, 6, 1′, 2′}, {3′, 4′, 5′}, {9′}} ↦→
b b b b b b b b b

b b b b b b b b b

1 2 3 4 5 6 7 8 9

1′ 2′ 3′ 4′ 5′ 6′ 7′ 8′ 9′
. (1.1)

Note that, just as for elements of BiPar𝑘 , this diagrammatic representation of 𝑑 ∈ SetPar2𝑘 is not unique.

For 𝑑 = {𝑑1, 𝑑2, . . . , 𝑑𝑎} ∈ SetPar2𝑘 , we say that a block 𝑑𝑖 is propagating if 𝑑𝑖 ∩ {1, 2, . . . , 𝑘} ≠ ∅ and 𝑑𝑖 ∩
{1′, 2′, . . . , 𝑘 ′} ≠ ∅. If 𝑑𝑖 ∩ {1, 2, . . . , 𝑘} ≠ ∅ we say that 𝑑𝑖 ∩ {1, 2, . . . , 𝑘} is an intersection top block for 𝑑 and if
𝑑𝑖 ∩ {1′, 2′, . . . , 𝑘 ′} ≠ ∅ we say that 𝑑𝑖 ∩ {1′, 2′, . . . , 𝑘 ′} is an intersection bottom block for 𝑑.

We define P𝑘 as the C[𝑥]-algebra that, as a C[𝑥]-module, is free on SetPar2𝑘 , and that has multiplication defined
as follows. For elements 𝑑, 𝑑1 ∈ SetPar2𝑘 , let 𝑑 ◦1 𝑑1 be the concatenation of 𝑑 and 𝑑1 with 𝑑 on top of 𝑑1. There
may be one or several ‘internal’ connected components of 𝑑 ◦1 𝑑1, that is components that do not intersect any of the
top or bottom points of 𝑑 ◦1 𝑑1. Let 𝑑 ◦2 𝑑1 be the diagram obtained from 𝑑 ◦1 𝑑1 by removing these 𝑁, say, internal
components. There may still one or several ‘internal points’ of 𝑑 ◦2 𝑑1, that is points that are neither top or bottom
points of 𝑑 ◦2 𝑑1, and we let 𝑑 ◦3 𝑑1 be the diagram obtained from 𝑑 ◦2 𝑑1 by eliminating these points. We may now view
𝑑 ◦3 𝑑1 as the diagram of a set partition and the product in P𝑘 of 𝑑 and 𝑑1 is defined as 𝑑𝑑1 = 𝑥𝑁 𝑑 ◦3 𝑑1. The product
of two general elements of P𝑘 is defined by the linear extension of the multiplicative operation we have defined.

For example, if

𝑑 =
b b b b b b b

b b b b b b b

1 2 3 4 5 6 7

1′ 2′ 3′ 4′ 5′ 6′ 7′

, 𝑑1 =
b b b b b b b

b b b b b b b
1 2 3 4 5 6 7

1′ 2′ 3′ 4′ 5′ 6′ 7′

(1.2)
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we have that

𝑑𝑑1 =

b b b b b b b

b b b b b b b

1 2 3 4 5 6 7

b b b b b b b

b b b b b b b

1′ 2′ 3′ 4′ 5′ 6′ 7′

= 𝑥3
b b b b b b b
1 2 3 4 5 6 7

b b b b b b b

1′ 2′ 3′ 4′ 5′ 6′ 7′
.

(1.3)

t can be checked that this rule gives rise to a well-defined associative multiplication on P𝑘 , in other words, 𝑑𝑑1 does
not depend on the choices of diagrammatic representations for 𝑑 and 𝑑1. We call the number of propagating blocks of
𝑑 the propagating number, and denote it by 𝑝𝑛 (𝑑). The propagating number satisfies

𝑝𝑛 (𝑑1𝑑2) ≤ min(𝑝𝑛 (𝑑1), 𝑝𝑛 (𝑑2)). (1.4)

For any 𝑡 ∈ C we define the specialized partition algebra P𝑘 (𝑡) = P𝑘 ⊗C[𝑥 ] C where C is made into an C[𝑥]-algebra
via 𝑥 ↦→ 𝑡.

Recall that𝔖𝑘 is a Coxeter group on generators 𝑆 = {𝑠1, 𝑠2, . . . , 𝑠𝑘−1} where 𝑠𝑖 is the simple transposition 𝑠𝑖 = (𝑖, 𝑖+1).
Let C[𝑥]𝔖𝑘 be the group algebra for 𝔖𝑘 over C[𝑥]. Then there is a natural algebra inclusion 𝜄𝑘 : C[𝑥]𝔖𝑘 ↩−→ P𝑘 given
by

𝑠𝑖 ↦→
b b b b b b
1 2

b b b b b b

1′ 2′

b b b b b b

i

i′

n

n′
.

(1.5)

In a similar manner as the algebra group of the symmetric group 𝔖𝑘 can be considered a subalgebra of P𝑘 , there
are other important subalgebras in the list. Examples of subalgebras of P𝑘 are the Brauer algebra, the Rook algebra
and the Temperley-Lieb algebra already studied in chapter 4, etc.

The Partition algebra has generators and relations. We follow the notation given in [25].

Theorem 1.1.1. The Partition algebra P𝑘 (𝑡) is generated by 3𝑘 − 2 elements which are, for 1 ≤ 𝑖 ≤ 𝑘 − 1 and
1 ≤ 𝑗 ≤ 𝑘,

b b b b b

b b b b b

i
b

b
......

b b b b

b b b b

j
b

b
......

b b b b b

b b b b b

i
b

b
......si =

pj =qi = , ,

.

(1.6)

These generators hold with the following relations in the monoid associated to P𝑘 (𝑡), that is, ignoring the ‘internal’
connected components appearing. See [25] Theorem 36. For 1 ≤ 𝑖 ≤ 𝑘 − 1 and 1 ≤ 𝑗 ≤ 𝑘 we have

𝑠2𝑖 = 1 for all 𝑖, (1.7)

𝑠𝑖𝑠 𝑗 = 𝑠 𝑗 𝑠𝑖 if |𝑖 − 𝑗 | > 1, (1.8)

𝑠𝑖𝑠 𝑗 𝑠𝑖 = 𝑠 𝑗 𝑠𝑖𝑠 𝑗 if |𝑖 − 𝑗 | = 1, (1.9)

𝑝2𝑖 = 𝑝𝑖 for all 𝑖, (1.10)

𝑝𝑖 𝑝 𝑗 = 𝑝 𝑗 𝑝𝑖 for all 𝑖, 𝑗 , (1.11)

𝑠𝑖 𝑝 𝑗 = 𝑝 𝑗 𝑠𝑖 if 𝑗 ≠ 𝑖, 𝑖 + 1, (1.12)

𝑠𝑖 𝑝𝑖 = 𝑝𝑖+1𝑠𝑖 for all 𝑖, (1.13)

𝑝𝑖 𝑝𝑖+1𝑠𝑖 = 𝑝𝑖 𝑝𝑖+1 for all 𝑖, (1.14)

𝑞2𝑖 = 𝑞𝑖 for all 𝑖, (1.15)

𝑞𝑖𝑞 𝑗 = 𝑞 𝑗𝑞𝑖 for all 𝑖, 𝑗 , (1.16)

𝑠𝑖𝑞 𝑗 = 𝑞 𝑗 𝑠𝑖 if |𝑖 − 𝑗 | > 1, (1.17)

𝑠𝑖𝑠 𝑗𝑞𝑖 = 𝑞 𝑗 𝑠𝑖𝑠 𝑗 if |𝑖 − 𝑗 | = 1, (1.18)

𝑞𝑖𝑠𝑖 = 𝑠𝑖𝑞𝑖 = 𝑞𝑖 for all 𝑖, (1.19)
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𝑞𝑖 𝑝 𝑗 = 𝑝 𝑗𝑞𝑖 if 𝑗 ≠ 𝑖, 𝑖 + 1, (1.20)

𝑞𝑖 𝑝 𝑗𝑞𝑖 = 𝑞𝑖 if 𝑗 = 𝑖, 𝑖 + 1, (1.21)

𝑝 𝑗𝑞𝑖 𝑝 𝑗 = 𝑝 𝑗 if 𝑗 = 𝑖, 𝑖 + 1. (1.22)

We now adopt a change of notation in order to follow the work of Enyang in [30]. Replace 𝑝 𝑗 by 𝑒2 𝑗−1 and 𝑞𝑖 by
𝑒2𝑖 in 1.6. We define the Jucys-Murphy elements for P𝑘 (𝑡) as in [18] where Creedon corrected a few typos from [30].
Notice that under this terminology P𝑘 (𝑡) is generated by 𝑠1, 𝑠2, . . . , 𝑠𝑘−1, 𝑒1, 𝑒2, . . . , 𝑒2𝑘−1 where 𝑒1, 𝑒3, 𝑒5, etc. are the
previous 𝑝 𝑗 ’s and 𝑒2, 𝑒4, 𝑒6, etc. are the previous 𝑞 𝑗 ’s.

Definition 1.1.1. The JM-elements for P𝑘 (𝑡) are defined as follows: Let 𝐿1 = 0, 𝐿2 = 𝑒1, 𝜎2 = 1, and 𝜎3 = 𝑠1.
Then, for 𝑖 = 1, 2, . . ., define

𝐿2𝑖+2 = 𝑠𝑖𝐿2𝑖𝑠𝑖 − 𝑠𝑖𝐿2𝑖𝑒2𝑖 − 𝑒2𝑖𝐿2𝑖𝑠𝑖 + 𝑒2𝑖𝐿2𝑖𝑒2𝑖+1𝑒2𝑖 + 𝜎2𝑖+1, (1.23)

where, for 𝑖 = 2, 3, . . ., we have

𝜎2𝑖+1 =𝑠𝑖−1𝑠𝑖𝜎2𝑖−1𝑠𝑖𝑠𝑖−1 + 𝑠𝑖𝑒2𝑖−2𝐿2𝑖−2𝑠𝑖𝑒2𝑖−2𝑠𝑖 + 𝑒2𝑖−2𝐿2𝑖−2𝑠𝑖𝑒2𝑖−2 − 𝑠𝑖𝑒2𝑖−2𝐿2𝑖−2𝑠𝑖−1𝑒2𝑖𝑒2𝑖−1𝑒2𝑖−2
− 𝑒2𝑖−2𝑒2𝑖−1𝑒2𝑖𝑠𝑖−1𝐿2𝑖−2𝑒2𝑖−2𝑠𝑖 .

Also, for 𝑖 = 1, 2, . . ., define

𝐿2𝑖+1 = 𝑠𝑖𝐿2𝑖−1𝑠𝑖 − 𝐿2𝑖𝑒2𝑖 − 𝑒2𝑖𝐿2𝑖 + (𝑡 − 𝐿2𝑖−1)𝑒2𝑖 + 𝜎2𝑖 , (1.24)

where, for 𝑖 = 2, 3, . . ., we have

𝜎2𝑖 =𝑠𝑖−1𝑠𝑖𝜎2𝑖−2𝑠𝑖𝑠𝑖−1 + 𝑒2𝑖−2𝐿2𝑖−2𝑠𝑖𝑒2𝑖−2𝑠𝑖 + 𝑠𝑖𝑒2𝑖−2𝐿2𝑖−2𝑠𝑖𝑒2𝑖−2 − 𝑒2𝑖−2𝐿2𝑖−2𝑠𝑖−1𝑒2𝑖𝑒2𝑖−1𝑒2𝑖−2
− 𝑠𝑖𝑒2𝑖−2𝑒2𝑖−1𝑒2𝑖𝑠𝑖−1𝐿2𝑖−2𝑒2𝑖−2𝑠𝑖 .

Example 1.1.1. In terms of the diagrammatic basis we have

𝐿3 =
b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b− − ++ t
b

b

b

b

b

b ,

𝐿4 =
b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b
− − + +

b

b

b

b

b

b

b

b

b

b .

Creedon collected in [18] a variety of relations from [28] and [30]. A complete proof of the following Proposition
can be found through the work of Enyang in [28]. However, Creedon gave indications in Lemma 2.2.3 of [18] about
where to find each one in [28].

Proposition 1.1.1. Whenever the indices make sense, we have the following relations:

(1) (Sigma Relations)
(a) 𝜎∗

𝑖
= 𝜎𝑖

(b) 𝜎2
𝑖
= 1

(c) 𝜎2𝑖𝜎2𝑖+1𝜎2𝑖 = 𝜎2𝑖+1𝜎2𝑖𝜎2𝑖+1 = 𝑠𝑖
(d) 𝜎𝑖 commutes with P𝑖−2 (𝑡)
(e) 𝜎2𝑖𝑒2𝑖 = 𝑒2𝑖𝜎2𝑖 = 𝑒2𝑖
(f) 𝜎2𝑖+1𝑒2𝑖 = 𝑒2𝑖𝜎2𝑖+1 = 𝑒2𝑖

(2) (JM Relations)
(a) 𝐿∗

𝑖
= 𝐿𝑖

(b) 𝐿𝑖𝐿 𝑗 = 𝐿 𝑗𝐿𝑖
(c)

∑𝑟
𝑖=1 𝐿𝑖 is central in P𝑘 (𝑡)

(d) 𝐿𝑖 commutes with P𝑖−1 (𝑡)
(3) (Mixed Relations)

(a) 𝑒2𝑖+1𝜎2𝑖𝑒2𝑖+1 = (𝑡 − 𝐿2𝑖−1)𝑒2𝑖+1
(b) 𝑒𝑖 (𝐿𝑖 + 𝐿𝑖+1) = (𝐿𝑖 + 𝐿𝑖+1)𝑒𝑖 = 𝑡𝑒𝑖
(c) 𝜎2𝑖𝑒2𝑖−1𝑒2𝑖 = 𝐿2𝑖𝑒2𝑖 , and 𝑒2𝑖𝑒2𝑖−1𝜎2𝑖 = 𝑒2𝑖𝐿2𝑖
(d) 𝜎2𝑖+1𝑒2𝑖+1𝑒2𝑖 = 𝐿2𝑖𝑒2𝑖 , and 𝑒2𝑖𝑒2𝑖+1𝜎2𝑖+1 = 𝑒2𝑖𝐿2𝑖

Example 1.1.2. For the right equality in relation (3) b) notice that

𝐿3𝑒3 =
b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b
−− ++

b

b

b

b

b

b

b

b
t ,
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whereas

𝐿4𝑒3 =
b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b
− − + +

b

b

b

b

b

b

b

b

b

b

t t .

Then we obtain (𝐿3 + 𝐿4)𝑒3 = 𝑡𝑒3.

To finish this part, consider 𝜋1 and 𝜋2 elements in SetPar2𝑘 , we say that 𝜋1 ≤ 𝜋2 if 𝜋2 is coarser than 𝜋1. That
is, 𝑖 and 𝑗 are in the same block of 𝜋1 implies that 𝑖 and 𝑗 are in the same block of 𝜋2. With this ordering SetPar2𝑘
is a partially ordered set. Let 𝑑𝜋 the diagram associated to an element 𝜋 ∈ SetPar2𝑘 , then as we have seen, the set
{𝑑𝜋 | 𝜋 ∈ SetPar2𝑘} is a basis for P𝑘 called the diagram basis. For each 𝑘 ∈ Z>0 there is a second basis {𝑥𝜋 | 𝜋 ∈ SetPar2𝑘}
of P𝑘 , called the orbit basis, defined by the following coarsening relation given in [6].

𝑑𝜋 =
∑︁
𝜋1≤𝜋

𝑥𝜋1 , for any 𝑑𝜋 in P𝑘 . (1.25)

Under any linear extension of the partial ordered ≤ the transition matrix between the diagram basis and the orbit basis
is triangular with 1’s on the diagonal.

1.2. Representation Theory for P𝑘. Now we begin the study of the representation theory of P𝑘 (𝑛) where 𝑛 ∈ N.
Following the ideas of [41], consider 𝟙𝔖𝑛

the trivial representation of 𝔖𝑛. On the other hand, let 𝑉 an 𝑛-dimensional
C-vector space with basis {𝑣1, 𝑣2, . . . , 𝑣𝑛} viewed as the permutation representation of 𝔖𝑛 as in Example 1.1.1. Then
by the Branching rule 3.1.1 we obtain

𝐼𝑛𝑑
𝔖𝑛

𝔖𝑛−1
(𝑅𝑒𝑠𝔖𝑛

𝔖𝑛−1
(𝟙𝔖𝑛
)) � 𝑉. (1.26)

More generally, for a 𝔖𝑛-module 𝑀,

𝐼𝑛𝑑
𝔖𝑛

𝔖𝑛−1
(𝑅𝑒𝑠𝔖𝑛

𝔖𝑛−1
(𝑀)) � 𝑀 ⊗ 𝑉. (1.27)

See [41] equation (3.17) for further details. By iterating (1.27) it follows that

(𝐼𝑛𝑑𝔖𝑛

𝔖𝑛−1
(𝑅𝑒𝑠𝔖𝑛

𝔖𝑛−1
(𝟙𝔖𝑛
)))𝑘 � 𝑉⊗𝑘 , (1.28)

and

𝑅𝑒𝑠
𝔖𝑛

𝔖𝑛−1
(𝐼𝑛𝑑𝔖𝑛

𝔖𝑛−1
(𝑅𝑒𝑠𝔖𝑛

𝔖𝑛−1
(𝟙𝔖𝑛
)))𝑘 � 𝑉⊗𝑘 (1.29)

as 𝔖𝑛-modules and 𝔖𝑛−1-modules, respectively.

Let 𝜆 = (𝜆1, 𝜆2, . . . , 𝜆𝑙) a partition, define 𝜆<1 = (𝜆2, . . . , 𝜆𝑙) to be the partition 𝜆 with the first row deleted. The
Brattelli diagram for P𝑘 (𝑛) is the graph A(𝑛) which encodes the decomposition of 𝑉⊗𝑘 for 𝑘 ∈ Z≥0. Therefore A(𝑛) is
given by setting

vertices on level 𝑘 : A𝑘 (𝑛) = {𝜆 ⊢ 𝑛 | 𝑘 − |𝜆<1 | ∈ Z≥0}, (1.30)

vertices on the level 𝑘 + 1

2
: A𝑘+ 1

2
(𝑛) = {𝜆 ⊢ 𝑛 − 1 | 𝑘 − |𝜆<1 | ∈ Z≥0}, (1.31)

an edge 𝜆→ 𝜇, if 𝜇 ∈ A𝑘+ 1
2
(𝑛) is obtained from 𝜆 ∈ A𝑘 (𝑛) by removing a box, (1.32)

an edge 𝜇→ 𝜆, if 𝜆 ∈ A𝑘+1 (𝑛) is obtained from 𝜇 ∈ A𝑘 (𝑛) by adding a box. (1.33)

For example, the first few levels of A(5) are given by
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k = 0 :

k = 0 + 1
2 :

k = 1 :

k = 1 + 1
2 :

k = 2 :

k = 2 + 1
2 :

k = 3 :

The following theorem can be found in [41] (Theorem 3.22).

Theorem 1.2.1. The dimension of the irreducible P𝑘 (𝑛)-modules, denoted by P𝜆
𝑘
(𝑛), are given by the formula

𝑑𝑖𝑚(P𝜆𝑘 (𝑛)) = (number of paths from (𝑛) ∈ A0 (𝑛) to 𝜇 ∈ A𝑘+ 1
2
(𝑛) in the graph A(𝑛)). (1.34)

1.3. Schur-Weyl duality. Now, we aim to study Schur-Weyl duality applied to the Partition algebra; therefore,
let us recall the definitions in Section 5.1.1. Let 𝑉𝑛 a 𝑛-dimensional vector space and fix a basis {𝑣1, 𝑣2, . . . , 𝑣𝑛} of 𝑉𝑛.
We consider 𝑉𝑛 as a left C𝔖𝑛-module via the left action 𝜎𝑣𝑖 = 𝑣𝜎 (𝑖) for 𝜎 ∈ 𝔖𝑛. Take the 𝑘th tensor product of 𝑉𝑛,

that is 𝑉 = 𝑉⊗𝑘𝑛 .
Consider again the diagonal action of 𝐺𝐿𝑛 (C) described in equation (5.1). Note that 𝔖𝑛 can be viewed as the subgroup
of permutation matrices of 𝐺𝐿𝑛 (C). Therefore,

𝜎 · (𝑣𝑖1 ⊗ 𝑣𝑖2 ⊗ · · · ⊗ 𝑣𝑖𝑘 ) = 𝑣𝜎 (𝑖1 ) ⊗ 𝑣𝜎 (𝑖2 ) ⊗ · · · ⊗ 𝑣𝜎 (𝑖𝑘 ) , (1.35)

for all 𝜎 ∈ 𝔖𝑛. This action permutes elements within the basis of 𝑉𝑛.

Now consider
𝐸𝑛𝑑𝔖𝑛

(𝑉⊗𝑘𝑛 ) = { 𝑓 ∈ 𝐸𝑛𝑑 (𝑉⊗𝑘𝑛 ) | 𝑓 𝜎𝑣 = 𝜎 𝑓 𝑣, for all 𝜎 ∈ 𝔖𝑛 and 𝑣 ∈ 𝑉⊗𝑘𝑛 }, (1.36)

that is, the elements 𝑓 ∈ 𝐸𝑛𝑑 (𝑉⊗𝑘𝑛 ) such that 𝑓 commutes with the action of 𝔖𝑛, or equivalently, the maps
𝑓 ∈ 𝐸𝑛𝑑 (𝑉⊗𝑘𝑛 ) such that 𝑓 = 𝜎−1 𝑓 𝜎 for all 𝜎 ∈ 𝔖𝑛. Let 𝑖 = (𝑖1, 𝑖2, . . . , 𝑖𝑘) and 𝑖′ = (𝑖′1, 𝑖′2, . . . , 𝑖′𝑘) sequences on
{1, 2, . . . , 𝑛}. We write {(𝑖, 𝑖′)}𝑛 for the set of all possible pairs of sequences (𝑖, 𝑖′) on {1, 2, . . . , 𝑛}. There is a natural
action of 𝔖𝑛 on the elements of {(𝑖, 𝑖′)}𝑛, given by

𝜎(𝑖, 𝑖′) = (𝜎𝑖, 𝜎𝑖′) = (𝜎(𝑖1), 𝜎(𝑖2), . . . , 𝜎(𝑖𝑘), 𝜎(𝑖′1), 𝜎(𝑖′2), . . . , 𝜎(𝑖′𝑘)). (1.37)

Take 𝑓 ∈ 𝐸𝑛𝑑 (𝑉⊗𝑘𝑛 ), thus 𝑓 is a matrix
(
𝑓
𝑖

𝑖′

)
=

(
𝑓
𝑖1 ,𝑖2 ,...,𝑖𝑘
𝑖′1 ,𝑖

′
2 ,...,𝑖

′
𝑘

)
of size 𝑛𝑘 × 𝑛𝑘 , and the condition 𝑓 ∈ 𝐸𝑛𝑑𝔖𝑛

(𝑉⊗𝑘𝑛 )
amount to (

𝑓
𝑖1 ,𝑖2 ,...,𝑖𝑘
𝑖′1 ,𝑖

′
2 ,...,𝑖

′
𝑘

)
=

(
𝑓
𝜎 (𝑖1 ) ,𝜎 (𝑖2 ) ,...,𝜎 (𝑖𝑘 )
𝜎 (𝑖′1 ) ,𝜎 (𝑖′2 ) ,...,𝜎 (𝑖′𝑘 )

)
, (1.38)

for all (𝑖, 𝑖′) ∈ {(𝑖, 𝑖′)}𝑛 and 𝜎 ∈ 𝔖𝑛. Note that under this condition each orbit of 𝔖𝑛 represent a basis element of
𝐸𝑛𝑑𝔖𝑛

(𝑉⊗𝑘𝑛 ).
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Example 1.3.1. Let 𝑛 = 2 and 𝑘 = 2. A matrix in 𝑓 ∈ 𝐸𝑛𝑑𝔖2
(𝑉⊗22 ) has the form

𝑓 =


𝑓 1111 𝑓 1211 𝑓 2111 𝑓 2211

𝑓 1112 𝑓 1212 𝑓 2112 𝑓 2212

𝑓 1121 𝑓 1221 𝑓 2121 𝑓 2221

𝑓 1122 𝑓 1222 𝑓 2122 𝑓 2222

 , (1.39)

where each entry of 𝑓 corresponds to a pair of sequences (𝑖1, 𝑖2, 𝑖′1, 𝑖′2) on {1, 2}. Moreover, 𝑓 is a 22×22 matrix determined
by the orbit of each pair of sequences under the action of 𝔖2 on the set {(𝑖, 𝑖′)}2. That is 𝑓 2122 = 𝑓 1211 , 𝑓

22
22 = 𝑓 1111 , etc. A

typical matrix in 𝐸𝑛𝑑𝔖2
(𝑉⊗22 ) is

𝑓 =


𝑎1 𝑎2 𝑎3 𝑎4
𝑎5 𝑎6 𝑎7 𝑎8
𝑎8 𝑎7 𝑎6 𝑎5
𝑎4 𝑎3 𝑎2 𝑎1

 , (1.40)

where 𝑎𝑖 ∈ C for all 𝑖.

We can use the preceding example to determine the basis of 𝐸𝑛𝑑𝔖𝑛
(𝑉⊗𝑘𝑛 ), which is given by the matrices defined

by the following rule for their entries. Fix a pair of sequences ( 𝑗 , 𝑗 ′) on {(𝑖, 𝑖′)}𝑛, the entry 𝑓
𝑖1 ,𝑖2 ,...,𝑖𝑘
𝑖′1 ,𝑖

′
2 ,...,𝑖

′
𝑘

of 𝑓 is given by

𝑓
𝑖1 ,𝑖2 ,...,𝑖𝑘
𝑖′1 ,𝑖

′
2 ,...,𝑖

′
𝑘

=

{
1, if there exists a 𝜎 ∈ 𝔖𝑛 such that 𝑖 = 𝜎 𝑗 and 𝑖′ = 𝜎 𝑗 ′,

0, otherwise.
(1.41)

That is, as we mention before, each matrix is determined by the 𝑆𝑛-orbits on the set {(𝑖, 𝑖′)}𝑛. Return to the
preceding example, the basis of 𝐸𝑛𝑑𝔖2

(𝑉⊗22 ) is given by the matrices


1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1

 ,

0 1 0 0
0 0 0 0
0 0 0 0
0 0 1 0

 , etc. (1.42)

A basis element of 𝐸𝑛𝑑𝔖𝑛
(𝑉⊗𝑘𝑛 ) can be represented by a diagram. For example, the second matrix in the preceding

example satisfies 𝑓 1211 = 𝑓 2122 = 1 and 0’s elsewhere, thus we draw two parallel horizontal lines of 𝑘 = 2 points, labeling
the top vertices by 𝑖1 = 1, 𝑖2 = 1 and the bottom vertices by 𝑖′1 = 1, 𝑖′2 = 2. The blocks are determined by labeling of the
vertices, that is, points with the same number are in the same block of the diagram and, in consequence, the labeling
given by 𝑓 1211 or 𝑓 2122 , produce the same diagram.

Example 1.3.2. The diagram associated to the second matrix of (1.42) is

b b

b b

bb

bb
=

1 2

1 1

2 1

2 2
.

(1.43)

On the other hand, consider a set partition 𝜋, a set partition of {𝑖1, 𝑖2, . . . , 𝑖𝑘 , 𝑖′1, 𝑖′2, . . . , 𝑖′𝑘}, , where the 𝑖 𝑗 ’s and the
𝑖′
𝑗
’s are numbers in {1, 2, . . . , 𝑛}. For the sequences 𝑖 and 𝑖′ in {1, 2, . . . , 𝑛}, we define

𝜋
𝑖1 ,𝑖2 ,...,𝑖𝑘
𝑖′1 ,𝑖

′
2 ,...,𝑖

′
𝑘

=

{
1, if all values assigned to positions in the same block of 𝜋 are equal,

0, otherwise
(1.44)

,

That is, for each block 𝐵 ⊆ {𝑖1, . . . , 𝑖𝑘 , 𝑖′1, . . . , 𝑖′𝑘}, all the corresponding values 𝑖 𝑗 and 𝑖
′
𝑗
that appear in the same

block must be equal. For example, let 𝜋 be a set partition on the set {𝑖1, 𝑖2, . . . , 𝑖8, 𝑖′1, 𝑖′2, . . . , 𝑖′8} given by

𝜋 = {{𝑖1, 𝑖2, 𝑖4, 𝑖′2, 𝑖′5}, {𝑖3}, {𝑖5, 𝑖6, 𝑖7, 𝑖′3, 𝑖′4, 𝑖′6, 𝑖′7}, {𝑖′1}, {𝑖8, 𝑖′8}}. (1.45)

That is, in terms of diagrams

𝜋 ↦→
b b

b b

i1 i2 i3 i4 i5 i6 i7 i8
b b

b b

b b

b b

b b

b b

i′1 i′2 i′3 i′4 i′5 i′6 i′7 i′8

(1.46)

then, (𝜋)𝑖1 ,𝑖2 ,...,𝑖𝑘
𝑖′1 ,𝑖

′
2 ,...,𝑖

′
𝑘

= 𝛿𝑖′2𝑖
′
5
𝛿𝑖′2𝑖1𝛿𝑖

′
2𝑖2
𝛿𝑖′2𝑖4𝛿𝑖

′
3𝑖
′
4
𝛿𝑖′3𝑖

′
6
𝛿𝑖′3𝑖

′
7
𝛿𝑖′3𝑖5𝛿𝑖

′
3𝑖6
𝛿𝑖′3𝑖7𝛿𝑖

′
8𝑖8

.

88



The goal now is to extend the action of C𝔖𝑘 from classical Schur-Weyl duality to an action of P𝑘 (𝑛) as can be
observed in the following schema.

𝐺𝐿𝑛 (𝑉)

𝑆𝑘

𝑉⊗𝑘𝑛

𝑆𝑛

P𝑘 (𝑛)

Let 𝑣𝑖′1 ⊗ 𝑣𝑖′2 ⊗ · · · ⊗ 𝑣𝑖′𝑘 ∈ 𝑉
⊗𝑘
𝑛 , where the 𝑖 𝑗 ’s are in the set {1, 2, . . . , 𝑛}. Consider the set partition in SetPar2𝑘

associated to 𝜋. That is 𝜋 = {{1, 2, 4, 2′, 5′}, {3}, {5, 6, 7, 3′, 4′, 6′, 7′}, {1′}, {8, 8′}}, with a slight abuse of notation. Using
equation 1.44, define the formula

(𝑣𝑖′1 ⊗ 𝑣𝑖′2 ⊗ · · · ⊗ 𝑣𝑖′𝑘 )𝑑𝜋 =
∑︁

1≤𝑖1 ,𝑖2 ,...,𝑖𝑘≤𝑛
(𝜋)𝑖1 ,𝑖2 ,...,𝑖𝑘

𝑖′1 ,𝑖
′
2 ,...,𝑖

′
𝑘

(𝑣𝑖1 ⊗ 𝑣𝑖2 ⊗ · · · ⊗ 𝑣𝑖𝑘 ), (1.47)

and extend it linearly to all P𝑘 (𝑛). It was shown in [50] and [64] that this defines a right P𝑘 (𝑛)-action on 𝑉⊗𝑘𝑛 and,
indeed, this action commutes with the action of 𝔖𝑛, so 𝑉

⊗𝑘
𝑛 is a (CS𝑛,P𝑘 (𝑛))-bimodule.

Example 1.3.3. For 𝑛 = 4 and 𝑘 = 5 consider the action of {{1, 3, 1′, 2′}, {2}, {4, 5, 3′}, {4′, 5′}} on 𝑉⊗54 . We have

(𝑣1 ⊗ 𝑣1 ⊗ 𝑣2 ⊗ 𝑣4 ⊗ 𝑣4)
b b b b b
1 2 3 4 5

b b b b b

1′ 2′ 3′ 4′ 5′

= 𝑣1 ⊗
(

4∑︁
𝑖=1

𝑣𝑖

)
⊗ 𝑣1 ⊗ 𝑣2 ⊗ 𝑣2. (1.48)

Observe that the action may be zero, for example

(𝑣1 ⊗ 𝑣3 ⊗ 𝑣2 ⊗ 𝑣4 ⊗ 𝑣4)
b b b b b
1 2 3 4 5

b b b b b

1′ 2′ 3′ 4′ 5′

= 0. (1.49)

The action is zero because the values assigned to positions 1 and 3, which are in the same block of 𝜋, are different,
violating the equality condition imposed by the definition. In summary, we obtained the first part of the following
Theorem.

Theorem 1.3.1. Let 𝑛 ∈ Z>0. Then there is a surjective algebra homomorphism Υ : P𝑘 (𝑛) → 𝐸𝑛𝑑𝔖𝑛
(𝑉⊗𝑘𝑛 ) given by

the right P𝑘 (𝑛)-action on 𝑉⊗𝑘𝑛 . That is Υ(𝑑) (𝑣) = 𝑣𝑑 where 𝑑 ∈ P𝑘 (𝑛) and 𝑣 ∈ 𝑉⊗𝑘𝑛 . In particular, Υ is an isomorphism
if 𝑛 ≥ 2𝑘.

Proof: Let 𝑓 ∈ 𝐸𝑛𝑑𝔖𝑛
(𝑉⊗𝑘𝑛 ), then 𝑓 satisfies 𝜎 𝑓 𝜎−1 for all 𝜎 ∈ 𝔖𝑛. That is, 𝑓 is defined to be a matrix

(
𝑓
𝑖1 ,𝑖2 ,...,𝑖𝑘
𝑖′1 ,𝑖

′
2 ,...,𝑖

′
𝑘

)
which holds with (1.38). As we mentioned before, each 𝔖𝑛-orbit represents an element on the basis of 𝐸𝑛𝑑𝔖𝑛

(𝑉⊗𝑘𝑛 )
since each matrix entry of 𝑓 is constant on the orbits of 𝔖𝑛.
These orbits decompose {1, 2, . . . , 𝑘} ∪ {1′, 2′, . . . , 𝑘 ′} into subsets and it corresponds to set partitions 𝜋 ∈ SetPar2𝑘 .
Therefore for all 𝜋 ∈ SetPar2𝑘 we have in terms of the orbit basis

(Υ(𝑥𝜋))𝑖1 ,𝑖2 ,...,𝑖𝑘𝑖′1 ,𝑖
′
2 ,...,𝑖

′
𝑘

=

{
1, if all values assigned to positions in the same block of 𝜋 are equal,

0, otherwise.
(1.50)

Note that Υ(𝑥𝜋) is a matrix with 1′s in the matrix position corresponding to 𝜋 and 0′s elsewhere. It follows that 𝑓 is a
linear combination of Υ(𝑥𝜋) for some elements 𝜋 ∈ SetPar2𝑘 . As {𝑥𝜋 | 𝜋 ∈ SetPar2𝑘} is a basis for P𝑘 (𝑛) we have that
Υ is a surjective map.
One can observe that the matrix entry (Υ(𝑥𝜋))𝑖1 ,𝑖2 ,...,𝑖𝑘𝑖′1 ,𝑖

′
2 ,...,𝑖

′
𝑘

= 0 for all the indices if 𝜋 has more than 𝑛 blocks, as each

block is associated to a number on the set {1, 2, . . . , 𝑛} and different blocks have different numbers. It follows that
𝑥𝜋 ∈ 𝐾𝑒𝑟 (Υ). If 𝜋 ∈ SetPar2𝑘 has 𝑛 blocks or less then we can choose a different index in {1, 2, . . . , 𝑛} for each block
of 𝜋 and then we get entries (Υ(𝑥𝜋))𝑖1 ,𝑖2 ,...,𝑖𝑘𝑖′1 ,𝑖

′
2 ,...,𝑖

′
𝑘

= 1 in the corresponding position, and it follows that 𝑥𝜋 ∉ 𝐾𝑒𝑟 (Υ). We

conclude that for 𝑛 > 2𝑘 the kernel of Υ is trivial, then the map is an isomorphism.

□

Using the left 𝔖𝑛-action on 𝑉⊗𝑘𝑛 we can define the following surjective algebra homomorphism

Ξ : C𝔖𝑛 → 𝐸𝑛𝑑P𝑘 (𝑛) (𝑉⊗𝑘𝑛 ), via Ξ(𝜎) (𝑣) = 𝜎𝑣, for 𝜎 ∈ 𝔖𝑛, 𝑣 ∈ 𝑉⊗𝑘𝑛 , (1.51)
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as follows from the surjectivity of Υ and Burnside’s density theorem, see for example [56] or Theorem 5.4 in [41], and
Maschke’s Theorem 1.1.1 for C𝔖𝑛.

Theorem 1.3.2. (Double Centralizer Theorem) Let 𝐸 be a finite-dimensional vector space over k, an algebraically
closed field. Let 𝐴 ⊆ 𝐸𝑛𝑑 (𝐸) be a subalgebra of the endomorphism algebra of 𝐸 such that 𝐴 is semisimple. Define
𝐵 = 𝐸𝑛𝑑𝐴(𝐸). Then

(1) 𝐸𝑛𝑑𝐵 (𝐸) = 𝐴.
(2) 𝐵 is semisimple.

(3) 𝐸 =
𝑟⊕
𝑖=1

(𝑉𝑖 ⊗ 𝑊𝑖) as a representation of 𝐴 ⊗ 𝐵 where 𝑉𝑖 is an irreducible 𝐴-module and 𝑊𝑖 is an irreducible

𝐵-module.

In other words, 𝐴 and 𝐵 are mutual centralizers in 𝐸𝑛𝑑 (𝐸).
Proof: Due to the semisimplicity of 𝐴 there is a family of non-isomorphic irreducible 𝐴-modules 𝑉1, 𝑉2, . . . , 𝑉𝑟 which
decompose 𝐴. That is, there are k-algebra homomorphisms

𝜌𝑖 : 𝐴→ 𝐸𝑛𝑑 (𝑉𝑖), (1.52)

for each 𝑖 ∈ {1, 2, . . . , 𝑟}. Note that, as the sum is finite we have

𝐸𝑛𝑑 (𝐴) = 𝐻𝑜𝑚(𝐴, 𝐴) = 𝐻𝑜𝑚
(
𝑟⊕
𝑖=1

𝑉𝑖 ,

𝑟⊕
𝑗=1

𝑉 𝑗

)
=

𝑟⊕
𝑖=1

𝐻𝑜𝑚(𝑉𝑖 , 𝑉𝑖) =
𝑟⊕
𝑖=1

𝐸𝑛𝑑 (𝑉𝑖). (1.53)

Then, the map ⊕𝜌𝑖 : 𝐴→
𝑟⊕
𝑖=1

𝐸𝑛𝑑 (𝑉𝑖) is surjective. The kernel of ⊕𝜌𝑖 is defined to be

𝑘𝑒𝑟 (⊕𝜌𝑖) = {𝑎 ∈ 𝐴 | 𝑎 · 𝑉𝑖 = 0 for all 𝑖 }, (1.54)

that is the elements 𝑎 ∈ 𝐴 which acts as zero on each irreducible 𝐴-module 𝑉𝑖. We can observe that, following the
Theorem 2.2.1 part (2)

𝐽 (𝐴) = 𝑘𝑒𝑟 (⊕𝜌𝑖)

and for the semisimplicity of 𝐴 we conclude that 𝐽 (𝐴) = 0. By the first isomorphism theorem we get 𝐴 �
𝑟⊕
𝑖=1

𝐸𝑛𝑑 (𝑉𝑖).

Recall that the dimension of 𝐻𝑜𝑚𝐴(𝑉𝑖 , 𝐸) is also defined to be the multiplicity of the 𝐴-module 𝑉𝑖 on 𝐸 . Therefore we
can decompose 𝐸 as follows

𝐸 �
𝑟⊕
𝑖=1

(𝑉𝑖 ⊗ 𝐻𝑜𝑚𝐴(𝑉𝑖 , 𝐸)). (1.55)

Let 𝑊𝑖 = 𝐻𝑜𝑚𝐴(𝑉𝑖 , 𝐸), by definition we have 𝐵 = 𝐸𝑛𝑑𝐴(𝐸) = 𝐻𝑜𝑚𝐴(𝐸, 𝐸). We use de preceding decomposition of 𝐸 to
get

𝐵 � 𝐻𝑜𝑚𝐴

(
𝑟⊕
𝑖=1

𝑉𝑖 ⊗𝑊𝑖 , 𝐸
)

�
𝑟⊕
𝑖=1

𝐻𝑜𝑚𝐴(𝑉𝑖 ⊗𝑊𝑖 , 𝐸)

�
𝑟⊕
𝑖=1

𝐻𝑜𝑚𝐴(𝑊𝑖 ⊗ 𝑉𝑖 , 𝐸)

�
𝑟⊕
𝑖=1

𝐻𝑜𝑚𝐴(𝑊𝑖 , 𝐻𝑜𝑚𝐴(𝑉𝑖 , 𝐸))

=

𝑟⊕
𝑖=1

𝐸𝑛𝑑𝐴(𝑊𝑖),

where the fourth equivalence occurs because the Tensor-functor and the Hom-functor are adjoints in the sense of Def-
inition 1.2.1. Now let 𝑓 and 𝑓 ′ in 𝑊𝑖. As each 𝑉𝑖 is irreducible we can choose 𝑣 ∈ 𝑉𝑖, 𝑣 ≠ 0, such that 𝑉𝑖 = 𝐴𝑣 by
Lemma 1.3.1. Therefore 𝑓 and 𝑓 ′ correspond to 𝑣 and 𝑣′ respectively. Note that 𝐴 𝑓 (𝑣) ⊆ 𝐸 is an invariant subspace,
then there is an invariant subspace 𝑊 of 𝐸 such that 𝐸 = 𝐴 𝑓 (𝑣) ⊕𝑊 .
Define the map 𝜙 : 𝐸 → 𝐸 by sending 𝑎 𝑓 (𝑣) + 𝑤 ↦→ 𝑎 𝑓 ′ (𝑣) + 𝑤 for all 𝑎 ∈ 𝐴, 𝑣 ∈ 𝑉𝑖 and 𝑤 ∈ 𝑊 , then we have 𝜙 ◦ 𝑓 = 𝑓 ′.
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As 𝜙 is an 𝐴-homomorphism we obtain 𝜙 ∈ 𝐸𝑛𝑑𝐴(𝐸) = 𝐵 and 𝑊𝑖 is an 𝐵-module.

Now return to the decomposition of 𝐸 . As 𝐵-modules one can write

𝐸 �
𝑟⊕
𝑖=1

(𝑊𝑖 ⊗ 𝐻𝑜𝑚𝐵 (𝑊𝑖 , 𝐸)), (1.56)

and comparing with 1.55 we obtain by force that 𝑉𝑖 � 𝐻𝑜𝑚𝐵 (𝑊𝑖 , 𝐸). Note that 𝑊𝑖 is an irreducible 𝐵-module. If 𝑊 ′
𝑖

where an proper submodule of 𝑊𝑖, then 𝐻𝑜𝑚𝐵 (𝑊𝑖 , 𝐸) would have a proper submodule which contradicts the irreducibil-

ity of 𝑉𝑖. As 𝐵 =
𝑟⊕
𝑖=1

𝐸𝑛𝑑𝐴(𝑊𝑖), then 𝐵 is semisimple.

Therefore

𝐸 �
𝑟⊕
𝑖=1

(𝑊𝑖 ⊗ 𝑉𝑖) �
𝑟⊕
𝑖=1

(𝑉𝑖 ⊗𝑊𝑖), (1.57)

that is a decomposition of 𝐸 as 𝐴 ⊗ 𝐵-bimodule. Using the preceding equation

𝐸𝑛𝑑𝐵 (𝐸) � 𝐻𝑜𝑚𝐵

(
𝑟⊕
𝑖=1

(𝑉𝑖 ⊗𝑊𝑖), 𝐸
)

�
𝑟⊕
𝑖=1

𝐻𝑜𝑚𝐵 (𝑉𝑖 , 𝐻𝑜𝑚𝐵 (𝑊𝑖 , 𝐸))

�
𝑟⊕
𝑖=1

𝐸𝑛𝑑 (𝑉𝑖) = 𝐴.

Therefore the Theorem follows. □

With the preceding notation we can state.

Proposition 1.3.1. The algebra homomorphism Ξ : C𝔖𝑛 → 𝐸𝑛𝑑P𝑘 (𝑛) (𝑉⊗𝑘𝑛 ) defined before is an algebra isomor-
phism if 𝑛 ≥ 2𝑘.

Proof: First, notice that 𝐴 = C𝔖𝑛 can be viewed as a subalgebra of 𝐸𝑛𝑑 (𝑉⊗𝑘𝑛 ) since the map from C𝔖𝑛 to 𝐸𝑛𝑑 (𝑉⊗𝑘𝑛 )
given by the action of 𝔖𝑛 on 𝑉⊗𝑘𝑛 , is an embedding. Let 𝐵 = 𝐸𝑛𝑑C𝔖𝑛

(𝑉⊗𝑘𝑛 ), then if 𝑛 > 2𝑘 we obtain 𝐵 = P𝑘 (𝑛) by
Theorem 1.3.1. Therefore, Ξ is an isomorphism when 𝑛 ≥ 2𝑘, by Theorem 1.3.2. Furthermore, we find that P𝑘 (𝑛) is
semisimple when 𝑛 > 2𝑘. □

Recall the definition of Schur-Weyl duality given in 5.1.1. Using Theorem 1.3.1 and Proposition 1.3.1 we have the
following.

Theorem 1.3.3. Let 𝑛 ≥ 2𝑘. The C-algebras C𝔖𝑛 and P𝑘 (𝑛) are in Schur-Weyl duality for 𝑉⊗𝑘𝑛 . That is, the
actions of C𝔖𝑛 and P𝑘 (𝑛) centralize each other (i.e. Υ and Ξ are surjections) and 𝑉⊗𝑘𝑛 can be decomposed into irreducible
C𝔖𝑛 × P𝑘 (𝑛)-modules as follows

𝑉⊗𝑘𝑛 �
⊕

𝜆∈A𝑘 (𝑛)
𝑆(𝜆) ⊗ P𝜆𝑘 (𝑛), (1.58)

where P𝜆
𝑘
(𝑛) are irreducible P𝑘 (𝑛)-modules.

If 𝑛 < 2𝑘 the preceding Theorem changes subtly. Let 𝑍𝑘,𝑛 = 𝐸𝑛𝑑𝑆𝑛 (𝑉⊗𝑘) and 𝑍𝜆
𝑘,𝑛

an irreducible 𝑍𝑘,𝑛-module.

Therefore, the decomposition of (1.58) turns into

𝑉⊗𝑘𝑛 �
⊕
𝜆∈ ˆA(𝑛)

𝑆(𝜆) ⊗ 𝑍𝜆𝑘,𝑛, (1.59)

where ˆA(𝑛) ⊂ Par𝑛 is the index set of the irreducible 𝑍𝑘,𝑛-modules 𝑍𝜆
𝑘,𝑛

.
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2. The Spherical partition algebra SP𝑘

As previously observed, there are many important subalgebras of P𝑘 . Our main goal in to introduce a new subal-
gebra to the list.

Let 𝑒𝑘 = 𝜄𝑘

(
1

𝑘!

∑︁
𝜎∈𝔖𝑘

𝜎

)
. Then 𝑒𝑘 is an idempotent of P𝑘 . We use it to introduce the protagonist of the present

chapter.

Definition 2.0.1. The spherical partition algebra SP𝑘 is defined as the idempotent truncation of P𝑘 with idempotent
𝑒𝑘, that is

SP𝑘 = 𝑒𝑘P𝑘𝑒𝑘 . (2.1)

Similarly, for 𝑡 ∈ C we define the specialized spherical partition algebra SP𝑘 (𝑡) as SP𝑘 (𝑡) = 𝑒𝑘P𝑘 (𝑡)𝑒𝑘.

Note that SP𝑘 is a subalgebra of P𝑘 , but not a unital subalgebra, since the one-element for SP𝑘 is 𝑒𝑘 , and similarly
for SP𝑘 (𝑡).

2.1. Bipartite partitions. For 𝑘 ∈ N, we let BiPar𝑘 be the set of bipartite partitions of 𝑘. That is, BiPar𝑘 is
the set of multisets 𝑏 = {[𝑥1, 𝑦1], [𝑥2, 𝑦2], . . . , [𝑥𝑎, 𝑦𝑎]} of pairs [𝑥𝑖 , 𝑦𝑖] such that 𝑥𝑖 and 𝑦𝑖 are nonnegative integers, not
both zero, satisfying

𝑎∑︁
𝑖=1

𝑥𝑖 =

𝑎∑︁
𝑖=1

𝑦𝑖 = 𝑘. (2.2)

Let 𝑏𝑝𝑘 be the cardinality of BiPar𝑘 . Then 𝑏𝑝1 = 2, since BiPar1 consists of the multisets

{[1, 1]}, {[1, 0], [0, 1]}. (2.3)

Similarly, 𝑏𝑝2 = 9, since BiPar2 consists of the multisets

{[2, 2]}, {[1, 0], [1, 2]}, {[2, 1], [0, 1]}, {[1, 1], [1, 1]}, {[2, 0], [0, 2]}, {[2, 0], [0, 1], [0, 1]}
{[1, 0], [1, 0], [0, 2]}, {[1, 1], [1, 0], [0, 1]}, {[1, 0], [1, 0], [0, 1], [0, 1]}. (2.4)

We use the convention that 𝑏𝑝0 = 1. The sequence

(𝑏𝑝0, 𝑏𝑝1, 𝑏𝑝2, 𝑏𝑝3, 𝑏𝑝4, 𝑏𝑝5, . . .) = (1, 2, 9, 31, 109, 339, . . .) (2.5)

is A002774 in the OEIS.

Bipartite partitions in BiPar𝑘 are also known as vector partitions of [𝑘, 𝑘]. Their history goes back to the work of
Macmahon, and their combinatorics have been studied for example in [3], [36] and [62].

For 𝑏 = {[𝑥1, 𝑦1], [𝑥2, 𝑦2], . . . , [𝑥𝑎, 𝑦𝑎]} ∈ BiPar𝑘 we represent each part [𝑥𝑖 , 𝑦𝑖] of 𝑏 via two parallel horizontal lines
of points, the top row containing 𝑥𝑖 points and the bottom row containing 𝑦𝑖 points, that are joined via a propagating
line from the leftmost top point to the leftmost bottom point, for example

[5, 3] =
b b b b b

b b b .
(2.6)

We represent 𝑏 itself diagrammatically by concatenating the diagrams of the parts [𝑥𝑖 , 𝑦𝑖] from left to right, for example
for 𝑏 = {[3, 1], [2, 2], [3, 2], [0, 4], [2, 1]} we have

𝑏 ↦→
b b b b b b b b b b

b b b b b b b b bb .
(2.7)

Note that since elements of BiPar𝑘 are multisets, this diagrammatic representation of 𝑏 ∈ BiPar𝑘 is not unique, since
any permutation of the parts of 𝑏 ∈ BiPar𝑘 does not change 𝑏. For example we have

{[2, 1], [1, 2]} ↦→
b b b

b b b

bbb

bbb
=

.
(2.8)

In order to remediate this nonuniqueness, we introduce for 𝑏 ∈ BiPar𝑘 the normal form 𝑁 (𝑏), using the appropri-
ate lexicographic order. To be precise, suppose that 𝑏 = {[𝑥1, 𝑦1], [𝑥2, 𝑦2], . . . , [𝑥𝑎, 𝑦𝑎]}. Then we define 𝑁 (𝑏) =(
[𝑥𝜎 (1) , 𝑦𝜎 (1) ], [𝑥𝜎 (2) , 𝑦𝜎 (2) ], . . . , [𝑥𝜎 (𝑎) , 𝑦𝜎 (𝑎) ]

)
where 𝜎 ∈ 𝔖𝑎 is chosen such that if 𝑖 ≥ 𝑗 then either 𝑥𝜎 (𝑖) < 𝑥𝜎 ( 𝑗 ) or

(𝑥𝜎 (𝑖) = 𝑥𝜎 ( 𝑗 ) and 𝑦𝜎 (𝑖) ≤ 𝑦𝜎 ( 𝑗 )). For example, we have

𝑁 ({[1, 2], [2, 1], [4, 1], [0, 2], [0, 1], [1, 2], [1, 1], [3, 2]}) =
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(
[4, 1], [3, 2], [2, 1], [1, 2], [1, 2], [1, 1], [0, 2], [0, 1]

)
. (2.9)

Using the normal form 𝑁 (𝑏), elements of BiPar𝑘 may be viewed as sequences of pairs [𝑥𝑖 , 𝑦𝑖] rather than multisets of
such pairs. For 𝑁 (𝑏) applied to 𝑏 as in (2.7) we have

𝑁 (𝑏) ↦→
b b b b bb b b b b

b b bb b b b b bb

1

1′

2

2′

3

3′ 4′ 5′ 6′ 7′ 8′ 9′ 10′

4 5 6 7 8 9 10

.
(2.10)

In [36], Garsia and Gessel gave another characterization of BiPar𝑘 , that we shall need. Let 𝜆 = (𝜆1, 𝜆2, . . . , 𝜆𝑙) ∈ Par𝑘
and 𝜎 = (𝜎1, 𝜎2, . . . , 𝜎𝑙) ∈ 𝔖𝑙 be a symmetric group element written in permutation notation, by which we mean that
𝜎𝑖 ∈ {1, 2, . . . , 𝑙} and that 𝜎 maps 𝑖 to 𝜎𝑖 for all 𝑖. Then 𝜆 is said to be 𝜎-compatible if 𝜆𝑖 = 𝜆𝑖+1 implies 𝜎𝑖 < 𝜎𝑖+1.

Suppose now that 𝑏 = {[𝑥1, 𝑦1], [𝑥2, 𝑦2], . . . , [𝑥𝑎, 𝑦𝑎]} ∈ BiPar𝑘 and consider a diagrammatic representation for
𝑏 as in (2.7). Define 𝜆𝑡𝑜𝑝 as the partition obtained from the nonzero 𝑥𝑖’s via reordering, and define similarly 𝜆𝑏𝑜𝑡 .
Next reorder the top points and bottom points of the diagram in such a way that there are no crossings between
the propagating lines leaving parts of the same length in 𝜆𝑡𝑜𝑝, and similarly for 𝜆𝑏𝑜𝑡 , and let 𝐺𝐺 (𝑏) be the resulting
diagram. Define 𝜆𝑡𝑜𝑝,𝑝𝑟𝑜 to be the partition extracted from 𝜆𝑡𝑜𝑝 by eliminating the parts with no propagating lines,
and define similarly 𝜆𝑏𝑜𝑡, 𝑝𝑟𝑜. Then 𝜆𝑡𝑜𝑝,𝑝𝑟𝑜 and 𝜆𝑏𝑜𝑡, 𝑝𝑟𝑜 are partitions of the same length, say 𝑙, and so we may define

𝜎 = (𝜎1, 𝜎2, . . . , 𝜎𝑙) ∈ 𝔖𝑙 by the condition that 𝜆𝑏𝑜𝑡, 𝑝𝑟𝑜1 is connected to 𝜆𝑡𝑜𝑝,𝑝𝑟𝑜𝜎1
, whereas 𝜆𝑏𝑜𝑡, 𝑝𝑟𝑜2 is connected to

𝜆
𝑡𝑜𝑝,𝑝𝑟𝑜
𝜎2

, and so on. With this notation, Theorem 2.1 of [36] states that 𝜆𝑏𝑜𝑡, 𝑝𝑟𝑜 is 𝜎-compatible whereas 𝜆𝑡𝑜𝑝,𝑝𝑟𝑜 is
𝜎−1-compatible, and that BiPar𝑘 is characterised by these properties. In other words, the diagram 𝐺𝐺 (𝑏) is another
normal form for 𝑏 ∈ BiPar𝑘 . For example, for 𝑏 as in (2.7), we have

𝐺𝐺 (𝑏) ↦→
b b b

b b b b

b b b b b

b b b b

b b

b b
1 2 3 4

1 2 3 4

(2.11)

and so 𝜆𝑡𝑜𝑝,𝑝𝑟𝑜𝑝 = (3, 3, 2, 2), 𝜆𝑏𝑜𝑡, 𝑝𝑟𝑜𝑝 = (2, 2, 1, 1) and 𝜎 = (1, 3, 2, 4).
We define the propagating part of 𝐺𝐺 (𝑏) to be the diagram obtained from 𝐺𝐺 (𝑏) by removing all components

that are completely contained in the top line or in the bottom line of points. For example, for 𝐺𝐺 (𝑏) as in (2.11), the
propagating part is

b b b b b b b b

b b b b

b b

b b
1 2 3 4

1 2 3 4

.
(2.12)

2.2. Rank of the Spherical Partition Algebra. As a C[𝑥]-module SP𝑘 is automatically free, since C[𝑥] is a
PID and SP𝑘 is a submodule of the free C[𝑥]-module P𝑘 , and hence torsion-free. Our next task is to determine the
rank of SP𝑘 .

For this, we first observe that any diagrammatic representation of 𝑏 ∈ BiPar𝑘 may be viewed as an element of
SetPar2𝑘 . For example, for 𝑏 as in (2.7), and hence 𝑁 (𝑏) as in (2.10), we have

𝑏 =
b b b b b b b b b b

b b b b b b b b b b

1′ 2′ 3′ 4′ 5′ 6′ 7′ 8′ 9′ 10′

1 2 3 4 5 6 7 8 9 10

, 𝑁 (𝑏) =
b b b b bb b b b b

b b bb b b b b bb

1

1′

2

2′

3

3′ 4′ 5′ 6′ 7′ 8′ 9′ 10′

4 5 6 7 8 9 10

.
(2.13)

We next recall some results and conventions from [102]. For 𝑑 ∈ SetPar2𝑘 there is a canonical diagrammatic repre-
sentation N(𝑑) for 𝑑 in which the propagating blocks all appear with only one propagating line, which connects the
leftmost points of the corresponding top and bottom blocks. For example, for 𝑑 as in (1.1), we have

𝑑 =

b b b b b b b b b

b b b b b b b b b

1 2 3 4 5 6 7 8 9

1′ 2′ 3′ 4′ 5′ 6′ 7′ 8′ 9′
, N(𝑑) =

b b b b b b b b b

b b b b b b b b b

1 2 3 4 5 6 7 8 9

1′ 2′ 3′ 4′ 5′ 6′ 7′ 8′ 9′
(2.14)

where we indicate with red and blue the two propagating blocks of N(𝑑). For 𝑙 = 0, 1, 2, . . . , 𝑘 we now let C𝑙 be the set

C𝑙 =
{
(𝑑, 𝑆)

���� 𝑑 = (𝑑1, 𝑑2, . . . , 𝑑𝑝) is a set partition on {1, 2, . . . , 𝑘} for 𝑝 ≥ 𝑙
𝑆 ⊆ {𝑑1, 𝑑2, . . . , 𝑑𝑝} and |𝑆 | = 𝑙

}
.

(2.15)
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Then, by [102], there is a bijection 𝑓

𝑓 : SetPar2𝑘 �
𝑘∐
𝑙=0

C𝑙 ×𝔖𝑙 × C𝑙 . (2.16)

For example, for 𝑑 as in (2.14), we have

𝑓 (𝑑) = 𝑓 (N(𝑑)) =
(
(𝑑1, 𝑑2, 𝑑3), (𝑑2, 𝑑3)

)
× (1, 2) ×

(
(𝑑′1, 𝑑2, 𝑑′3, 𝑑′4), (𝑑′1, 𝑑′3)

)
(2.17)

where, reading from left to right, 𝑑1 = {1}, 𝑑2 = {2, 3, 7, 8, 9}, corresponding to the first two intersection top blocks of
𝑑, etc.

We define SetPar𝑙2𝑘 ⊆ SetPar2𝑘 as the set partitions whose diagrammatic representations have exactly 𝑙 propagating

blocks and get that 𝑓 induces a bijection SetPar𝑙2𝑘 � C𝑙 ×𝔖𝑙 × C𝑙.

There are natural commuting left and right 𝔖𝑘-actions on SetPar𝑙2𝑘 and so we also get left and right 𝔖𝑘-actions on
C𝑙 ×𝔖𝑙 × C𝑙, via 𝑓 . These 𝔖𝑘-actions on C𝑙 ×𝔖𝑙 × C𝑙 are, on the other hand, not immediately ‘visible’ and so our first
goal is to give another description of C𝑙 ×𝔖𝑙 × C𝑙 from which they can be read off. This will be useful for describing a
basis for SP𝑘 = 𝑒𝑘P𝑘𝑒𝑘 .

Let 𝔰, 𝔰1, 𝔱, 𝔱1 be row standard tableaux whose shapes are compositions of 𝑘, such that 𝔰 and 𝔱 are of length 𝑟

whereas 𝔰1 and 𝔱1 are of length 𝑟1, where 𝑟 and 𝑟1 are both greater than or equal to 𝑙. We then write (𝔰, 𝔰1) ∼𝑙 (𝔱, 𝔱1) if
(𝔰, 𝔰1) = (𝜌𝔱, 𝜌1𝔱1) where 𝜌 and 𝜌1 are row permutations of 𝔱 and 𝔱1, by which we mean that 𝜌 and 𝜌1 permute the rows
of 𝔱 and 𝔱1 together with the numbers appearing in them. We further require that 𝜌 and 𝜌1 permute the first 𝑙 rows
of 𝔱 and 𝔱1 simultaneously, whereas they may permute the rows strictly below the 𝑙th row of 𝔱 and 𝔱1 independently. In
other words, 𝜌 ∈ 𝔖𝑟 and 𝜌1 ∈ 𝔖𝑟1 and 𝜌 |{1,2,...,𝑙} = 𝜌1 |{1,2,...,𝑙} where 𝜌 |{1,2,...,𝑙} and 𝜌1 |{1,2,...,𝑙} denote the restrictions
of 𝜌 and 𝜌1 to {1, 2, . . . , 𝑙}. Here is an example with 𝑙 = 3. We indicate with red the separation of the top 𝑙 rows from
the remaining lower rows of the tableaux.
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©­­­­­­­­­­«

1 2
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4
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6 7
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1 2
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6
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8 9

10 11

,

ª®®®®®®®®®®¬ .
(2.18)

It is easy to check that ∼𝑙 is an equivalence relation on pairs of row standard tableaux of length greater than 𝑙, and
we define (𝔰, 𝔱)∼𝑙 as the equivalence class represented by (𝔰, 𝔱). Let 𝑖 ↦→ min𝔱 (𝑖) be the function that gives the minimal
(first) number of the 𝑖th row of the row standard tableau 𝔱. Then any class (𝔰, 𝔱)∼𝑙 has a distinguished representative
(𝔰𝑖𝑛𝑐𝑟 , 𝔱𝑖𝑛𝑐𝑟 ) for which min𝔰𝑖𝑛𝑐𝑟 is increasing on the restriction to {1, . . . , 𝑙} and min𝔰𝑖𝑛𝑐𝑟 and min𝔱𝑖𝑛𝑐𝑟 are both increasing
on the restriction to {𝑙 + 1, 𝑙 + 2, . . .}. For example, in (2.18) the second pair is the distinguished representative for its
class.

Now min𝔱𝑖𝑛𝑐𝑟 need not be increasing on the restriction to {1, . . . , 𝑙}, but there exists a row permutation 𝜌 such that
min𝜌−1𝔱𝑖𝑛𝑐𝑟 is increasing on the restriction to {1, . . . , 𝑙}. We may view 𝜌 as an element of 𝔖𝑙. For example, in (2.18)
we have 𝜌 = (1, 3, 2) in permutation notation. But 𝜌 only depends on (𝔰, 𝔱) through its class (𝔰, 𝔱)∼𝑙 , and so we define
𝜌 (𝔰,𝔱)∼𝑙 = 𝜌.

We next observe that any element 𝑑 of SetPar𝑙2𝑘 gives rise to a class (𝔰, 𝔱)∼𝑙 , by associating the intersection top
blocks of 𝑑 with the rows of 𝔰 and the intersection bottom blocks of 𝑑 with the rows of 𝔱, in such a way that intersection
top and bottom blocks that are intersections of propagating blocks for 𝑑 are associated with the first 𝑙 rows of 𝔰 and 𝔱,
and with rows of the same row number if and only if they are intersections of the same propagating block. For example,
for 𝑑 as in (2.14) the corresponding class is

©­­­­­­« 1

2 3

4 5 6

7 8 9

1 2

3 4 5

6 7 8

9

,

ª®®®®®®¬∼2 .
(2.19)
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One notes that the association just defined is a bijection between SetPar𝑙2𝑘 and the set of classes (𝔰, 𝔱)∼𝑙 . Note also

that the 𝔖𝑘-actions on SetPar𝑙2𝑘 , under this bijection, correspond to the natural 𝔖𝑘-actions on 𝔰 and 𝔱, as explained in
(1.11), although the action on 𝔱 should be chosen as a right action.

There is however also an obvious bijection between the set of classes (𝔰, 𝔱)∼𝑙 and C𝑙 × 𝔖𝑙 × C𝑙. It maps (𝔰, 𝔱)∼𝑙 to
(𝑑𝔰, 𝑆𝔰) × 𝜌 (𝔰,𝔱)∼𝑙 × (𝑑𝔱, 𝑆𝔱) where 𝑑𝔰 is the set partition whose blocks are the rows of 𝔰, with 𝑆𝔰 being the blocks of the
first 𝑙 rows of 𝔰, and similarly for 𝑑𝔱 and 𝑆𝔱. Combining this with the bijection of the previous paragraph we have
achieved our goal of describing the 𝔖𝑘-actions on C𝑙 ×𝔖𝑙 × C𝑙.

We now use it to prove the following Theorem.

Theorem 2.2.1. The map 𝐹 : BiPar𝑘 → SP𝑘 given by 𝑏 ↦→ 𝑒𝑘𝑁 (𝑏)𝑒𝑘 is injective. Moreover, the image of 𝐹, that
is 𝑖𝑚𝐹 = {𝑒𝑘𝑁 (𝑏)𝑒𝑘 | 𝑏 ∈ BiPar𝑘}, is a C[𝑥]-basis for SP𝑘 and so rkC[𝑥 ] SP𝑘 = 𝑏𝑝𝑘 .

Proof: We first show simultaneously that 𝐹 is injective and that 𝑖𝑚𝐹 is a linearly independent set. Let 𝑏 ∈ BiPar𝑘 and
consider 𝑁 (𝑏) as an element of SetPar2𝑘 . Let (𝔰, 𝔱)∼𝑙 be the class associated with 𝑁 (𝑏) under the bijection explained
in the paragraph before (2.19) and let (𝔰𝑖𝑛𝑐𝑟 , 𝔱𝑖𝑛𝑐𝑟 ) be its distinguished representative, as defined above. Here is an
example

(𝔰𝑖𝑛𝑐𝑟 , 𝔱𝑖𝑛𝑐𝑟 ) =


1 2 3 4

5 6 7

8 9 10

11
,

12 13

14 15

16 17

18

1 2

3 4

5 6 7

8 9

10 11 12 13

14 15 16 17

18

 .

(2.20)

Two properties can be observed in (2.20) and hold for general (𝔰𝑖𝑛𝑐𝑟 , 𝔱𝑖𝑛𝑐𝑟 ).

I. We have 𝜌 (𝔰,𝔱)∼𝑙 = 1 and so 𝔱𝑖𝑛𝑐𝑟 is the row reading tableau, in which the numbers {1, 2, . . . , 𝑘} appear in order
from left to right down the rows. Or, equivalently, min𝔱𝑖𝑛𝑐𝑟 is an increasing function.

II. Let 𝜆 be the shape of 𝔰𝑖𝑛𝑐𝑟 . Then min𝔰𝑖𝑛𝑐𝑟 is also increasing, but only upon restriction to subsets 𝐼 of the row
indices for 𝜆, for which {𝜆𝑖 |𝑖 ∈ 𝐼} is constant.

Using these properties we may now argue as follows. Let 𝜎, 𝜎1 ∈ 𝔖𝑘 and suppose that 𝜎𝑁 (𝑏)𝜎1 is of the form
𝑁𝑏1 for some 𝑏1 ∈ BiPar𝑘 . Then, passing to the pair (𝔰𝑖𝑛𝑐𝑟 , 𝔱𝑖𝑛𝑐𝑟 ) and using the properties, one sees that the only way
to obtain an element in normal form by acting 𝜎 on 𝔰𝑖𝑛𝑐𝑟 and 𝜎1 on 𝔱𝑖𝑛𝑐𝑟 is that these two simultaneous actions only
interchange numbers appearing in the same row. With this, we deduce that 𝑏 = 𝑏1. In other words, 𝑁 (𝑏) is the only
element from BiPar𝑘 in normal form that appears in the expansion of 𝑒𝑘𝑁 (𝑏)𝑒𝑘 . But this implies that 𝐹 is injective
and that 𝑖𝑚𝐹 is a linearly independent set, as claimed.

In order to prove that 𝑖𝑚𝐹 is a spanning set, it is enough to show that 𝑒𝑘𝑑𝑒𝑘 belongs to 𝑖𝑚𝐹 for any 𝑑 ∈ SetPar2𝑘 .
Let therefore (𝔰, 𝔱)∼𝑙 be the class for 𝑑 under the bijection constructed before (2.19). We first choose row permutations
𝜌 and 𝜌1 satisfying the conditions described in the paragraph before (2.18), such that (𝜌𝔰, 𝜌1𝔱) has the shape of an
element corresponding to 𝑁 (𝑏) under the bijection, for some 𝑏 ∈ BiPar𝑘 . To be precise, by (2.9) this means that, when
restricted to the top 𝑙 rows, the shape of 𝜌𝔰 is a partition, and so are the shapes of 𝜌𝔰 and 𝜌1𝔱, when restricted to the
rows strictly below the 𝑙th th row, whereas 𝜌1𝔱 is only a partition on the restriction to the the equally sized rows of 𝜎𝔰.
Note that (𝔰, 𝔱)∼𝑙 = (𝜌𝔰, 𝜌1𝔱)∼𝑙. But we may at this stage choose 𝜎, 𝜎1 ∈ 𝔖𝑘 such that (𝜎𝜌𝔰, 𝜎1𝜌1𝔱) is the distinguished
representative of 𝑁 (𝑏), for some 𝑏 ∈ BiPar𝑘 as described below (2.20), which shows the claim. □

3. Schur-Weyl duality for SP𝑘 (𝑛)

3.1. The C𝔖𝑛-decomposition of the symmetric power of a vector space. In this section we study the
specialized spherical partition algebra SP𝑘 (𝑛), where 𝑛 ∈ N. Our main result is a double centralizer property involving
SP𝑘 (𝑛) and 𝔖𝑛, both acting on the symmetric power 𝑆𝑘𝑉𝑛 where 𝑉𝑛 is a C-vector space of dimension 𝑛. It is an
analogue of Schur-Weyl duality, see [90], [101].

Fix a basis {𝑣1, 𝑣2, . . . , 𝑣𝑛} for 𝑉𝑛. As we observed in 1.35, 𝑉⊗𝑘𝑛 is a left C𝔖𝑛-module via the diagonal action. There
is however also a natural C𝔖𝑘-module structure on 𝑉⊗𝑘𝑛 , given by place permutation. To distinguish it from the previous
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C𝔖𝑛-module structure on 𝑉⊗𝑘𝑛 , we choose it to be a right module structure:

(𝑣𝑖1 ⊗ 𝑣𝑖2 ⊗ · · · ⊗ 𝑣𝑖𝑘 )𝜎 = 𝑣𝑖𝜎 (1) ⊗ 𝑣𝑖𝜎 (2) ⊗ · · · ⊗ 𝑣𝑖𝜎 (𝑘) for 𝜎 ∈ 𝔖𝑘 . (3.1)

In general, the two actions commute and so 𝑉⊗𝑘𝑛 is a (C𝔖𝑛,C𝔖𝑘)-bimodule.

We next define the 𝑘th symmetric power of 𝑉𝑛 via

𝑆𝑘𝑉𝑛 = (𝑉⊗𝑘𝑛 )𝑒𝑘 (3.2)

where 𝑒𝑘 ∈ C𝔖𝑘 is the idempotent defined just above Definition 2.0.1. It follows from the (C𝔖𝑛,C𝔖𝑘)-structure on 𝑉⊗𝑘𝑛
that 𝑆𝑘𝑉𝑛 is a left C𝔖𝑛-module.

For simplicity, we write

𝑣𝑖1𝑣𝑖2 · · · 𝑣𝑖𝑘 = (𝑣𝑖1 ⊗ 𝑣𝑖2 ⊗ · · · ⊗ 𝑣𝑖𝑘 )𝑒𝑘 (3.3)

and also

𝑣
𝑎1
𝑖1
𝑣
𝑎2
𝑖2
· · · 𝑣𝑎𝑝

𝑖𝑝
=

( 𝑎1︷            ︸︸            ︷
𝑣𝑖1 ⊗ · · · ⊗ 𝑣𝑖1 ⊗

𝑎2︷            ︸︸            ︷
𝑣𝑖2 ⊗ · · · ⊗ 𝑣𝑖2 ⊗ · · · ⊗

𝑎𝑝︷            ︸︸            ︷
𝑣𝑖𝑝 ⊗ · · · ⊗ 𝑣𝑖𝑝

)
𝑒𝑘 . (3.4)

Then we have that

{𝑣𝑚1

𝑖1
𝑣
𝑚2

𝑖2
· · · 𝑣𝑚𝑝

𝑖𝑝
| 1 ≤ 𝑖1 < 𝑖2 < . . . < 𝑖𝑘 ≤ 𝑛,

∑︁
𝑖

𝑚𝑖 = 𝑘} (3.5)

is a basis for 𝑆𝑘𝑉𝑛 and so dim 𝑆𝑘𝑉𝑛 =
(𝑘+𝑛−1

𝑘

)
.

Our first aim is to give a decomposition of the C𝔖𝑛-module 𝑆𝑘𝑉𝑛 in terms of permutation modules. Surprisingly,
this appears to be new, and even the related C𝔖𝑛-decomposition of 𝑉⊗𝑘𝑛 was determined only recently in [7], see also
[9] and [66].

Suppose that 𝜈 = (𝜈𝑎11 , 𝜈
𝑎2
2 , . . . , 𝜈

𝑎𝑝
𝑝 ) ∈ Par≤𝑛𝑘 , that is 𝑎1+𝑎2+ . . .+𝑎𝑝 ≤ 𝑛. Then, setting Φ(𝜈) = ord(𝑎1, 𝑎2, . . . , 𝑎𝑝 , 𝑑)

where 𝑑 = 𝑛 − (𝑎1 + 𝑎2 + . . . + 𝑎𝑝), we obtain a function

Φ : Par≤𝑛
𝑘
→ Par𝑛. (3.6)

The following Theorem gives the promised decomposition of the C𝔖𝑛-module 𝑆𝑘𝑉𝑛.

Theorem 3.1.1. (1) There is an isomorphism of C𝔖𝑛-modules

𝑆𝑘𝑉𝑛 �
⊕

𝜈∈Par≤𝑛
𝑘

𝑀 (Φ(𝜈)) (3.7)

where 𝑀 (Φ(𝜈)) is the permutation module.
(2) The following multiplicity formula holds

[𝑆𝑘𝑉𝑛 : 𝑆(𝜆)] =
∑︁

𝜈∈Par≤𝑛
𝑘

𝐾𝜆,Φ(𝜈) (3.8)

where 𝐾𝜆,Φ(𝜈) is the Kostka number.

Proof: In view of Theorem 3.2.1, (2) of the Theorem follows immediately from (1) of the Theorem, so let us show (1).

Choose 𝑣 = 𝑣𝑚1

𝑖1
𝑣
𝑚2

𝑖2
· · · 𝑣𝑚𝑝

𝑖𝑝
an element of the basis for 𝑆𝑘𝑉𝑛, given in (3.5), and let 𝑀 be the C𝔖𝑛-module generated

by 𝑣. Note that the 𝑖 𝑗 ’s are distinct and so there is 𝜎 ∈ 𝔖𝑛 such that

𝜎(𝑣) = 𝑣𝑛11 𝑣
𝑛2
2 · · · 𝑣

𝑛𝑝
𝑝 where 𝑛1 ≥ 𝑛2 ≥ . . . ≥ 𝑛𝑝 . (3.9)

Define now 𝜈 = (𝑛1, 𝑛2, . . . , 𝑛𝑝) and write 𝜈 = (𝜈𝑎11 , 𝜈
𝑎2
𝑠 , . . . , 𝜈

𝑎𝑠
𝑠 ) with 𝜈1 > 𝜈2 > . . . > 𝜈𝑠. Then one quickly checks that

𝜎(𝑣) generates the C𝔖𝑛-permutation module 𝑀 (𝛼) where 𝛼 = ord(𝑎1, 𝑎2, . . . , 𝑎𝑠 , 𝑑) for 𝑑 = 𝑛 − (𝑎1 + 𝑎2 + . . . + 𝑎𝑠), that
is 𝑀 = 𝑀 (𝛼) for 𝛼 = Φ(𝜈) and 𝜈 = (𝑛1, 𝑛2, . . . , 𝑛𝑠). This proves the Theorem. □

Let us illustrate the argument of the proof of the Theorem using 𝑘 = 17, 𝑛 = 15 and

𝑣 = 𝑣1𝑣1 (𝑣2𝑣2)𝑣3𝑣3 (𝑣4)𝑣5𝑣5𝑣5 (𝑣6𝑣6)𝑣7 (𝑣9)𝑣10𝑣10𝑣10 ∈ 𝑆17𝑉15 (3.10)

where we use parentheses to group equal indices. Using the notation of the proof of the Theorem, this gives

𝜎(𝑣) = 𝑣1𝑣1𝑣1 (𝑣2𝑣2𝑣2)𝑣3𝑣3 (𝑣4𝑣4)𝑣5𝑣5 (𝑣6𝑣6)𝑣7 (𝑣8)𝑣9 (3.11)
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and so 𝜈 = (3, 3, 2, 2, 2, 2, 1, 1, 1) = (32, 24, 13) and 𝑑 = 15 − (2 + 4 + 3) = 6, and hence 𝛼 = ord(2, 4, 3, 6) = (6, 4, 3, 2).
According to the Theorem we should therefore have C𝔖15𝑣 = 𝑀 (𝛼).

On the other hand, the subgroup of 𝔖15 stabilizing 𝜎(𝑣) is the Young subgroup

𝔖1,2 ×𝔖3,4,5,6 ×𝔖7,8,9 ×𝔖10,11,12,13,14,15 (3.12)

corresponding to the multiplicities (2, 4, 3) of 𝜈 and to 𝑑. Moreover, C𝔖15𝜎(𝑣) is spanned by the elements

𝑣𝑖1𝑣𝑖1𝑣𝑖1 (𝑣𝑖2𝑣𝑖2𝑣𝑖2 )𝑣𝑖3𝑣𝑖3 (𝑣𝑖4𝑣𝑖4 )𝑣𝑖5𝑣𝑖5 (𝑣𝑖6𝑣𝑖6 )𝑣𝑖7 (𝑣𝑖8 )𝑣𝑖9 (3.13)

for distinct 𝑖 𝑗 ∈ {1, 2, . . . , 15}. But the elements in (3.13) are invariant under permutations of 𝑖1 and 𝑖2, permutations

of 𝑖3, 𝑖4, 𝑖5, 𝑖6 and permutations of 𝑖7, 𝑖8, 𝑖9 and hence there are
( 15
2,4,3,6

)
of them, as expected.

Remark 3.1.1. Note that the proof of Theorem 3.1.1 does not use any special properties of C and so the Theorem
is valid for any ground field. Note also that, in view of the observation 2.1.1, the omission of ord from the definition of
Φ in (3.6) does not change the validity of Theorem 3.1.1.

To the best of our knowledge, the formula for the multiplicity [𝑆𝑘𝑉𝑛 : 𝑆(𝜆)] in Theorem 3.1.1 is new, but in the
theory of symmetric functions there is another approach to the evaluation of [𝑆𝑘𝑉𝑛 : 𝑆(𝜆)], going back to the work of
Aitken. We make use of this alternate approach below.

Following the notation used in [63] and studied in section 4 of the second chapter, we let ΛQ be the ring of symmetric
functions in infinitely many variables 𝑥1, 𝑥2, . . ., defined over Q. Any basis for ΛQ is indexed by Par and one prominent
basis is {𝑠𝜆 | 𝜆 ∈ Par} the basis of Schur functions. Let 𝑅𝑘 be the Q-vector space with basis given by the irreducible
characters for 𝔖𝑘 and set 𝑅 =

⊕∞
𝑘=0 𝑅

𝑘 with the convention that 𝑅0 = Q. Let char : 𝑅 → ΛQ be the characteristic map.

It satisfies char(𝜒𝜆) = 𝑠𝜆 where 𝜒𝜆 is the character of 𝑆(𝜆).

Letting 𝜓𝑘𝑛 be the character of the 𝔖𝑛-module 𝑆𝑘𝑉𝑛, we now have that

∞∑︁
𝑘=0

char(𝜓𝑘𝑛)𝑡𝑘 =
∑︁

𝜆∈Par𝑛
𝑠𝜆 (1, 𝑡, 𝑡2, . . .)𝑠𝜆. (3.14)

This is the formula showed by Aitken in [4], see also [96] and exercise 7.73 in [92]. For our purposes, the usefulness of
it derives from the following expression for 𝑠𝜆 (1, 𝑡, 𝑡2, . . .), see for example Corollary 7.21.3 of [92].

𝑠𝜆 (1, 𝑡, 𝑡2, . . .) =
𝑡𝑏 (𝜆)∏

𝑢∈𝜆 [ℎ(𝑢)]
. (3.15)

Here [ℎ(𝑢)] = 1 − 𝑡ℎ (𝑢) where ℎ(𝑢) is the hook length of 𝑢 ∈ 𝜆, and 𝑏(𝜆) = ∑ℓ (𝜆)
𝑖=1 (𝑖 − 1)𝜆𝑖. For example

𝑏
©­­«

ª®®¬ = 7. (3.16)

In the notation of symmetric function theory the expression in (3.14) is the plethystic transformation ℎ𝑛

( 𝑋

1 − 𝑡

)
of the

complete symmetric function ℎ𝑛 where 𝑋 = 𝑥1 + 𝑥2 + . . ., see for example Proposition 3.3.1 of the survey paper [43].

Since ℎ𝑛 = 𝑠𝑛, it is also equal to 𝑠𝑛

( 𝑋

1 − 𝑡

)
. Recall that plethystic transformation plays an important role in the theory

of integrality and positivity of Macdonald polynomials. Indeed, these integrality and positivity properties only hold for
the plethystically transformed Macdonald polynomials, not for the original Macdonald polynomials.

Combining the two formulas (3.14) and (3.15), one gets an expression for the multiplicity [𝑆𝑘𝑉𝑛 : 𝑆(𝜆)] by taking
the coefficient of 𝑡𝑘 in the power series expansion of (3.15). This is less concrete than our closed formula in Theorem
3.1.1, but, as we shall now see, it allows us to determine exactly when [𝑆𝑘𝑉𝑛 : 𝑆(𝜆)] ≠ 0.

Lemma 3.1.1. In the above setting we have that [𝑆𝑘𝑉𝑛 : 𝑆(𝜆)] ≠ 0 if and only if 𝑘 ≥ 𝑏(𝜆).

Proof: If 𝑘 < 𝑏(𝜆), it follows immediately from (3.14) and (3.15) that [𝑆𝑘𝑉𝑛 : 𝑆(𝜆)] = 0. Conversely, if 𝑘 ≥ 𝑏(𝜆) it
follows from (3.14) and (3.15) that [𝑆𝑘𝑉𝑛 : 𝑆(𝜆)] ≠ 0 since any partition 𝜆 ∈ Par𝑛 has at least one node 𝑢 of hook length

1 which gives a contribution 𝑡𝑏 (𝜆)

[ℎ (𝑢) ] = 𝑡
𝑏 (𝜆) (1 + 𝑡 + 𝑡2 + . . .) to (3.15) that cannot be cancelled out. □
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In view of the Lemma we now define

Par𝑘,𝑛
𝑠𝑝ℎ

= {𝜆 ∈ Par𝑛 | 𝑏(𝜆) ≤ 𝑘}. (3.17)

For 𝑘 big enough, we have Par𝑘,𝑛
𝑠𝑝ℎ

= Par𝑛. The next Lemma makes this statement precise.

Lemma 3.1.2. We have Par𝑘,𝑛
𝑠𝑝ℎ

= Par𝑛 if and only if
𝑛(𝑛 − 1)

2
≤ 𝑘.

Proof: For 𝜆 ∈ Par𝑛 we interpret 𝑏(𝜆) as the sum of all the entries of the semistandard 𝜆-tableau 𝔱 on {0, 1, 2, . . . , 𝑛−1},
obtained by inserting 0 in all the nodes of the first row of 𝜆, 1 in all the nodes of the second row of 𝜆, and so on. For
example, for 𝜆 as in (3.16) we have that

𝔱 =

0 0 0 0 0

1 1 1

2 2 .

(3.18)

In view of this interpretation, it is clear that for 𝜆 running over Par𝑛, the maximal value of 𝑏(𝜆) is obtained for the one

column partition 𝜆 = (1𝑛). But for this 𝜆 we have 𝑏(𝜆) = 𝑛(𝑛 − 1)
2

, which proves the desired result. □

3.2. Schur-Weyl duality statement. We now turn to our Schur-Weyl duality statement. It was shown in [50]
and [64] that 𝑉⊗𝑘𝑛 is a right module for P𝑘 (𝑛), with action commuting with the left C𝔖𝑛-action on 𝑉⊗𝑘𝑛 and so 𝑉⊗𝑘𝑛 is a
(C𝔖𝑛,P𝑘 (𝑛))-bimodule. Recall the formulas studied in Theorem 1.3.1 that give this P𝑘 (𝑛)-action, that is the induced
algebra homomorphism

Υ : P𝑘 (𝑛) ↠ EndC𝔖𝑛
(𝑉⊗𝑘𝑛 ), Υ(𝑝) (𝑣) = 𝑣𝑝, where 𝑝 ∈ P𝑘 (𝑛), 𝑣 ∈ 𝑉⊗𝑘𝑛 (3.19)

which is surjective and is an isomorphism if 𝑛 ≥ 2𝑘. The P𝑘 (𝑛)-action on 𝑉⊗𝑘𝑛 induces an SP𝑘 (𝑛) = 𝑒𝑘P𝑘 (𝑛)𝑒𝑘-action
on 𝑆𝑘𝑉𝑛 = (𝑉⊗𝑛𝑛 )𝑒𝑘 , and hence an algebra homomorphism

Υ𝑠𝑝ℎ : SP𝑘 (𝑛) → EndC𝔖𝑛
(𝑆𝑘𝑉𝑛), Υ𝑠𝑝ℎ (𝑒𝑘 𝑝𝑒𝑘) (𝑣) = 𝑣𝑒𝑘 𝑝𝑒𝑘 where 𝑒𝑘 𝑝𝑒𝑘 ∈ SP𝑘 (𝑛), 𝑣 ∈ 𝑆𝑘𝑉𝑛. (3.20)

On the other hand, recall that there is also an algebra homomorphism given in Proposition 1.3.1 defined by

Ξ : C𝔖𝑛 ↠ EndP𝑘 (𝑛) (𝑉⊗𝑘𝑛 ), Ξ(𝑥) = 𝑥𝑣, where 𝑥 ∈ 𝔖𝑛, 𝑣 ∈ 𝑉⊗𝑘𝑛 (3.21)

which is surjective and it induces a homomorphism

Ξ𝑠𝑝ℎ : C𝔖𝑛 → EndSP𝑘 (𝑛) (𝑆𝑘𝑉𝑛), Ξ(𝑥) = 𝑥𝑣, where 𝑥 ∈ 𝔖𝑛, 𝑣 ∈ 𝑆𝑘𝑉𝑛. (3.22)

The algebra surjections in (3.19) and (3.21) express the statement that the commutating actions of P𝑘 (𝑛) and C𝔖𝑛

on 𝑉⊗𝑘𝑛 centralise each other, and therefore are in Schur-Weyl duality (see Theorem 1.3.3) on 𝑉⊗𝑘𝑛 .

Note that in the statistical mechanical model underpinning the partition algebra P𝑘 (𝑛), that is the Potts model,
the P𝑘 (𝑛)-module 𝑉⊗𝑘𝑛 is the 𝑛-state Potts representation, see [64, §8.2]. In this setting, the commuting action of 𝔖𝑛 is
the Potts symmetry.

In view of (3.19) and (3.21), one may now hope that SP𝑘 (𝑛) and C𝔖𝑛 are in Schur-Weyl duality on 𝑆𝑘𝑉𝑛, via the
maps Υ𝑠𝑝ℎ and Ξ𝑠𝑝ℎ given in (3.20) and (3.22). Our next result is that this indeed is the case.

Theorem 3.2.1. (1) The algebra homomorphism Υ𝑠𝑝ℎ is surjective for all 𝑘, 𝑛 and it is an isomorphism if
𝑛 ≥ 2𝑘.

(2) The algebra homomorphism Ξ𝑠𝑝ℎ is surjective for all 𝑘, 𝑛.

Proof: Let us first show that Υ𝑠𝑝ℎ is surjective. Suppose that 𝑓 ∈ EndC𝔖𝑛
(𝑆𝑘𝑉𝑛). We need to prove that there exists a

𝑑 ∈ SP𝑘 (𝑛) such that Υ𝑠𝑝ℎ (𝑑) = 𝑓 , which is equivalent to Υ𝑠𝑝ℎ (𝑒𝑘 𝑝𝑒𝑘) = 𝑓 for some 𝑝 ∈ P𝑘 (𝑛). In terms of how these

elements act, that is 𝑓 (𝑣𝑒𝑘) = 𝑣𝑒𝑘 (𝑒𝑘 𝑝𝑒𝑘) for an arbitrary 𝑣 ∈ 𝑆𝑘𝑉𝑛.
Since 𝑒𝑘 is an idempotent in P𝑘 (𝑛) we have that 𝑆𝑘𝑉𝑛 = 𝑉⊗𝑘𝑛 𝑒𝑘 is a C𝔖𝑛-summand of 𝑉⊗𝑘𝑛 , that is 𝑉⊗𝑘𝑛 � 𝑆𝑘𝑉𝑛 ⊕ 𝑀
where 𝑀 is the C𝔖𝑛-module 𝑀 = 𝑉⊗𝑘𝑛 (1 − 𝑒𝑘). Hence 𝑓 can be extended to an endomorphism 𝑓𝑒𝑥𝑡 ∈ EndC𝔖𝑛

(𝑉⊗𝑛𝑛 ), via
𝑓𝑒𝑥𝑡 = ( 𝑓 , 0) along this decomposition. But then, by (3.19), there is 𝑝 ∈ P𝑘 (𝑛) such that 𝑓𝑒𝑥𝑡 = Υ(𝑝), that is 𝑣𝑝 = 𝑓𝑒𝑥𝑡 (𝑣)
for some 𝑣 ∈ 𝑆𝑘𝑉𝑛. From which we deduce that 𝑓 = Υ(𝑒𝑘 𝑝𝑒𝑘). This shows surjectivity of Υ𝑠𝑝ℎ.
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We next assume 𝑛 ≥ 2𝑘 and calculate dimEndC𝔖𝑛
(𝑆𝑘𝑉𝑛). Using the basis in (3.5), an element 𝑓 of EndC (𝑆𝑘𝑉𝑛)

can be described as a
(𝑘+𝑛−1

𝑘

)
×

(𝑘+𝑛−1
𝑘

)
matrix 𝐴 =

(
𝑎
𝑖1 ,𝑖2...,𝑖𝑘
𝑗1 , 𝑗2 ,..., 𝑗𝑘

)
for increasing sequences 𝑖1 ≤ 𝑖2 ≤ . . . ≤ 𝑖𝑘 ≤ 𝑛 and

𝑗1 ≤ 𝑗2 ≤ . . . ≤ 𝑗𝑘 ≤ 𝑛. The condition that 𝑓 is C𝔖𝑛-linear corresponds to requiring additionally that(
𝑎
𝑖1 ,𝑖2...,𝑖𝑘
𝑗1 , 𝑗2 ,..., 𝑗𝑘

)
=

(
𝑎
𝑜𝑟𝑑 (𝜎 (𝑖1 ) ,𝜎 (𝑖2 ) ...,𝜎 (𝑖𝑘 ) )
𝑜𝑟𝑑 (𝜎 ( 𝑗1 ) ,𝜎 ( 𝑗2 ) ,...,𝜎 ( 𝑗𝑘 ) )

)
for all 𝜎 ∈ 𝔖𝑛 (3.23)

where 𝑜𝑟𝑑 is the function that reorders the elements of a sequence to produce a weakly increasing sequence. For weakly

increasing sequences (𝑟1, 𝑟2, . . . , 𝑟𝑘) and (𝑠1, 𝑠2, . . . 𝑠𝑘) over {1, 2, . . . , 𝑛} we define the matrix 𝐴
𝑠1 ,𝑠2 ,...,𝑠𝑘
𝑟1 ,𝑟2 ,...,𝑟𝑘 =

(
𝑎
𝑖1 ,𝑖2 ,...,𝑖𝑘
𝑗1 , 𝑗2 ,..., 𝑗𝑘

)
via

𝑎
𝑖1 ,𝑖2...,𝑖𝑘
𝑗1 , 𝑗2 ,..., 𝑗𝑘

=


1 if there exists 𝜎 ∈ 𝔖𝑛 such that:

(𝑖1, 𝑖2, . . . , 𝑖𝑘) = 𝑜𝑟𝑑 (𝜎(𝑠1), 𝜎(𝑠2), . . . , 𝜎(𝑠𝑘)) and
( 𝑗1, 𝑗2, . . . , 𝑗𝑘) = 𝑜𝑟𝑑 (𝜎(𝑟1), 𝜎(𝑟2), . . . , 𝜎(𝑟𝑘))

0 otherwise.

(3.24)

Then, by (3.23), the distinct matrices 𝐴𝑟1 ,𝑟2 ,...,𝑟𝑘𝑠1 ,𝑠2 ,...,𝑠𝑘 form a basis for EndC𝔖𝑛
(𝑆𝑘𝑉𝑛). We arrange pairs of weakly increasing

sequences (𝑠1, 𝑠2, . . . , 𝑠𝑘) and (𝑟1, 𝑟2, . . . , 𝑟𝑘) over {1, 2, . . . , 𝑛} in the form

(
𝑟1, 𝑟2, . . . , 𝑟𝑘
𝑠1, 𝑠2, . . . , 𝑠𝑘

)
and then get an 𝔖𝑛-action on

them via 𝜎

(
𝑟1, 𝑟2 . . . 𝑟𝑘
𝑠1, 𝑠2 . . . 𝑠𝑘

)
=

(
𝑜𝑟𝑑 (𝜎(𝑟1), 𝜎(𝑟2) . . . 𝜎(𝑟𝑘))
𝑜𝑟𝑑 (𝜎(𝑠1), 𝜎(𝑠2) . . . 𝜎(𝑠𝑘))

)
. Then each matrix 𝐴

𝑟1 ,𝑟2 ,...,𝑟𝑘
𝑠1 ,𝑠2 ,...,𝑠𝑘 only depends on the 𝔖𝑛-orbit of(

𝑟1𝑟2, . . . , 𝑟𝑘
𝑠1𝑠2, . . . , 𝑠𝑘

)
and these orbits are in bijection with bipartite partitions in BiPar𝑘 by letting equal numbers belong to

the same part. For example, for 𝑘 = 16, 𝑛 = 5 we have that(
111122334445555
112223333335555

)
↦→

b

b b

b bb b

b

b

b b

b

b b

b

b b b b

b b bb

b b

bb b b

b b b .
(3.25)

Moreover, by the assumption 𝑛 ≥ 2𝑘, each 𝑏 ∈ BiPar𝑘 arises this way from such an𝔖𝑛-orbit, and hence dimEndC𝔖𝑛
(𝑆𝑘𝑉𝑛) =

𝑏𝑝𝑘 . Combining this with Theorem 2.2.1 we get that dimSP𝑘 (𝑛) = dimEndC𝔖𝑛
(𝑆𝑘𝑉𝑛) and so Υ𝑠𝑝ℎ is an isomorphism

if 𝑛 ≥ 2𝑘. This proves (1) of the Theorem, and (2) follows from Burnside’s density theorem, once again, and Maschke’s
Theorem for C𝔖𝑛. □

Define now 𝑍
𝑘,𝑛

𝑠𝑝ℎ
as the image of Υ𝑠𝑝ℎ, that is as the centralizer algebra 𝑍 𝑘,𝑛

𝑠𝑝ℎ
= EndC𝔖𝑛

(𝑆𝑘𝑉𝑛). By joining the

results of this section we get the following Theorem.

Theorem 3.2.2. (1) The irreducible 𝑍 𝑘,𝑛
𝑠𝑝ℎ

-modules are indexed by Par𝑘,𝑛
𝑠𝑝ℎ

, see (3.17).

(2) For 𝜆 ∈ Par𝑘,𝑛
𝑠𝑝ℎ

, let 𝐺𝑘 (𝜆) be the irreducible 𝑍 𝑘,𝑛
𝑠𝑝ℎ

-module given in a). Then there is an isomorphism of

(C𝔖𝑛,SP𝑘 (𝑛))-bimodules

𝑆𝑘𝑉𝑛 �
⊕

𝜆∈Par𝑘,𝑛
𝑠𝑝ℎ

𝑆(𝜆) ⊗ 𝐺𝑘 (𝜆) (3.26)

where 𝐺𝑘 (𝜆) is viewed as an SP𝑘 (𝑛)-module via inflation along SP𝑘 (𝑛) → 𝑍
𝑘,𝑛

𝑠𝑝ℎ
.

(3) For 𝜆 ∈ Par𝑘,𝑛
𝑠𝑝ℎ

, we have dim𝐺𝑘 (𝜆) =
∑
𝜈∈Par≤𝑛

𝑘
𝐾𝜆,Φ(𝜈) .

(4) 𝑍 𝑘,𝑛
𝑠𝑝ℎ

is a semisimple algebra and dim 𝑍
𝑘,𝑛

𝑠𝑝ℎ
=

∑
𝜆∈Par𝑘,𝑛

𝑠𝑝ℎ

(dim𝐺𝑘 (𝜆))2.

Remark 3.2.1. The Theorem should be contrasted with Theorem 3.22 in [41], describing the decomposition of

𝑉⊗𝑘𝑛 as a (C𝔖𝑛,P𝑘 (𝑛))-bimodule. In that ‘classical’ setting the role played by our Par𝑘,𝑛
𝑠𝑝ℎ

is replaced by Par𝑘,𝑛𝑝𝑎𝑟 defined
as

Par𝑘,𝑛𝑝𝑎𝑟 = {𝜆 = (𝜆1, 𝜆2, . . . , 𝜆𝑙) ∈ Par𝑛 | 𝜆2 + 𝜆3 + . . . + 𝜆𝑙 ≤ 𝑘}. (3.27)

Note however that the proofs from the classical situation do not carry over to our setting.

Let us illustrate (4) of Theorem 3.2.2, using 𝑛 = 6 and 𝑘 = 3. In that case 𝑛 ≥ 2𝑘 and so by Theorem
2.2.1 and Theorem 3.2.1 we have dim 𝑍

3,6
𝑠𝑝ℎ

= dimSP3 = 31. On the other hand, from (3.17) we get Par3,6
𝑠𝑝ℎ

=

{(6), (5, 1), (4, 2), (3, 3), (4, 1, 1)} and since Par≤63 = Par3 = {(3), (2, 1), (13)} we have via the definition of Φ in (3.6)

that {Φ(𝜈) | 𝜈 ∈ Par≤63 } = {(5, 1), (4, 1, 1), (3, 3)}. The table in Figure 1 gives the Kostka numbers 𝐾𝜆,Φ(𝜈) and hence

dim𝐺3 (𝜆) for 𝜆 ∈ Par3,6𝑠𝑝ℎ, via c) of the Theorem.

Summing the squares of the numbers of the last row of the table we get 32 + 42 + 22 + 12 + 12 = 31, as expected.
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λ

Φ(ν)

1

1

1

1

2

1

3 4

0

1

1

2

0

0

1

1

0

1

0

1

1 5 9 5 10

|Std(λ)|

dimG3(λ) .

Figure 1. Example using 𝑛 = 6, 𝑘 = 3.

Similarly, we can use the table to illustrate (2) of Theorem 3.2.2, at least at dimension level. Indeed, summing the
products of the numbers of the first and the last row we get 1 × 3 + 5 × 4 + 9 × 2 + 5 × 1 + 10 × 1 = 56 = dim 𝑆3𝑉6.

Remark 3.2.2. As already mentioned in the introduction, A. Wilson has shown that SP𝑘 coincides with the
multiset partition algebra MP𝑘 (𝑥) that was introduced in [76]. The definition of MP𝑘 (𝑥) is quite different from
the definition of SP𝑘 , but in Lemma 5.12 of [76] the authors prove that MP𝑘 (𝑥) arises from P𝑘 via idempotent
truncation with respect to a certain idempotent 𝑒′

𝑘
, defined in terms of the orbit basis for P𝑘 . Wilson shows that the

two idempotents 𝑒′
𝑘
and 𝑒𝑘 in fact coincide.

Example 3.2.1. Suppose that 𝑛 ≥ 2𝑘. Then by Remark 3.2.1 the partitions (𝑛 − 𝑘, 𝑘) and (𝑛 − 𝑘, 1𝑘) both belong
to Par𝑘,𝑛𝑝𝑎𝑟 . Moreover, by Lemma 3.1.1, we also have that (𝑛 − 𝑘, 𝑘) belongs to Par𝑘,𝑛

𝑠𝑝ℎ
but (𝑛 − 𝑘, 1𝑘) does not.

Remark 3.2.3. In analogy with SP𝑘 , it would seem natural also to introduce an antispherical partition algebra
ASP𝑘 via ASP𝑘 = 𝑓𝑛P𝑘 𝑓𝑛, where 𝑓𝑛 = 𝜄𝑘

(
1
𝑘!

∑
𝜎∈𝔖𝑘

sign(𝜎)𝜎
)
and where sign(𝜎) is the usual sign of 𝜎 ∈ 𝔖𝑘 . On the

other hand, for any transposition 𝜎 ∈ 𝔖𝑘 we have that 𝜎 𝑓𝑛 = 𝑓𝑛𝜎 = − 𝑓𝑛 and so ASP𝑘 is a small algebra, since in fact
rkC[𝑥 ] ASP𝑘 = 2 for 𝑘 ≥ 2.

Even so, if 𝑛 ≥ 2𝑘, one could still develop analogues for ASP𝑘 of our results for SP𝑘 , by replacing 𝑆𝑘𝑉𝑛 with
the exterior power module

∧𝑘 𝑉𝑛 = (𝑉⊗𝑛) 𝑓𝑛. Then ASP𝑘 is in Schur-Weyl duality with C𝔖𝑛 on
∧𝑘 𝑉𝑛 and we have

C𝔖𝑛-module isomorphisms∧𝑘 𝑉𝑛 � Ind𝔖𝑛

𝔖𝑛−𝑘×𝔖𝑘

(
𝑆(𝑛 − 𝑘) ⊗ 𝑆(1𝑘)

)
� 𝑆(𝑛 − 𝑘, 1𝑘) ⊕ 𝑆(𝑛 − 𝑘 + 1, 1𝑘−1) (3.28)

where the last isomorphism follows from the Littlewood-Richardson rule. The two Specht modules appear with multi-
plicity one in (3.28), and so we deduce that ASP𝑘 has two simple modules, each of dimension one. This is in accordance
with rkC[𝑥 ] ASP𝑘 = 2.

We shall not consider ASP𝑘 further in this work.

4. Cellularity of SP𝑘 (𝑡)

4.1. Cellularity of P𝑘 (𝑡). We now state first the cell datum for P𝑘 (𝑡), using a small variation of the constructions
given in [24] and [102]. For Λ we use

Λ𝑘 =

𝑘⋃
𝑙=0

Par𝑙 . (4.1)
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For the order relation ⊴ on Λ𝑘 we use the usual dominance order on each Par𝑙, and extend it to all of Λ𝑘 via 𝜆 ◁ 𝜇 if

𝜆 ∈ Par𝑙 and 𝜇 ∈ Par𝑙 where 𝑙 > 𝑙. Suppose that 𝜆 ∈ Par𝑙 ⊆ Λ𝑘 . Then for 𝑇 (𝜆) we use 𝑇𝑘 (𝜆) = Std(𝜆) × C𝑙 where C𝑙 is as
in (2.15). Thus, the elements of 𝑇𝑘 (𝜆) are of the form 𝔠 = (𝔰, 𝑐, 𝑆) where 𝔰 ∈ Std(𝜆) for 𝜆 ∈ Par𝑙, and 𝑐 is a set partition
on {1, 2, . . . , 𝑘} with 𝑆 being a subset of the blocks of 𝑐, such that |𝑆 | = 𝑙.

Finally, in order to give the cellular basis itself, we need to recall the Murphy standard basis, see Theorem 1.3.1,
for C𝔖𝑙. For 𝜆 ∈ Par𝑙, we denote by 𝔱𝜆 the row reading tableau that was already used in the proof of Theorem 2.2.1.
In 𝔱𝜆, the numbers {1, 2, 3, . . . , 𝑙} are filled in increasingly along the rows of 𝜆 and down the columns, for example for
𝜆 = (5, 3, 2) we have

𝔱𝜆 =

1 2 3 4 5

6 7

9 10

8

.

(4.2)

Let 𝔖𝜆 ≤ 𝔖𝑙 be the Young subgroup for 𝜆, that is the row stabilizer of 𝔱𝜆, and define 𝑥𝜆𝜆 ∈ C𝔖𝑙 via 𝑥𝜆𝜆 =
∑
𝑤∈𝔖𝜆

𝑤.

For 𝔰 ∈ Tab(𝜆), let 𝑑 (𝔰) ∈ 𝔖𝑙 be defined by the condition that 𝑑 (𝔰)𝔱𝜆 = 𝔰, and for 𝔰, 𝔱 ∈ Tab(𝜆) let 𝑥𝔰𝔱 = 𝑑 (𝔰)𝑥𝜆𝜆𝑑 (𝔱)−1.
Then it was proved in [70] and [73] that the set {𝑥𝔰𝔱 | 𝔰, 𝔱 ∈ Std(𝜆), 𝜆 ∈ Par𝑙} is a cellular basis for C𝔖𝑙: Murphy’s
standard basis. (In fact, in [70] and [73] the authors work in the more general setting of Hecke algebras of type 𝐴𝑙−1).

Let I▷𝜆
𝑙

= span{𝑥𝔰𝔱 | 𝔰, 𝔱 ∈ Std(𝜇), 𝜇 ▷ 𝜆} ⊆ C𝔖𝑙 be the cell ideal in C𝔖𝑙 corresponding to 𝜆 and let 𝑥𝔰 =

𝑥𝔰𝔱𝜆 mod I▷𝜆
𝑙
⊆ C𝔖𝑙/ 𝑙▷𝜆. When 𝔱𝜆 appears as a subscript, we sometimes write 𝜆 instead of 𝔱𝜆, for example 𝑥𝔰𝜆 = 𝑥𝔰𝔱𝜆

and 𝑥𝜆 = 𝑥𝔱𝜆 . Then the Specht module 𝑆(𝜆) for C𝔖𝑙 is the submodule of C𝔖𝑙/I▷𝜆𝑙 generated by 𝑥𝜆. It is the cell module
associated with Murphy’s standard basis and {𝑥𝔰 | 𝔰 ∈ Std(𝜆)} is a cellular basis for 𝑆(𝜆).

Returning to P𝑘 (𝑡) we finally obtain its cellular basis. For 𝔠 = (𝔰, 𝑐, 𝑆) and 𝔡 = (𝔱, 𝑑, 𝑇) in 𝑇𝑘 (𝜆) we define 𝐶𝔠𝔡 ∈ P𝑘 (𝑡)
via

𝐶𝔠𝔡 = 𝑔
(
(𝑐, 𝑆) ⊗ 𝑥𝔰𝔱 ⊗ (𝑑, 𝑇)

)
(4.3)

where 𝑔 is the isomorphism induced by 𝑓 −1 for 𝑓 as in (2.16). Then {𝐶𝔠𝔡 | 𝔠, 𝔡 ∈ 𝑇𝑘 (𝜆) for 𝜆 ∈ Λ𝑘} is the cellular basis
for P𝑘 (𝑡). A typical basis element 𝐶𝔠𝔡 has the diagrammatic form

𝐶𝔠𝔡 =

b b b b b b b b b

b b b b b b b b b

1 2 3 4 5 6 7 8 9

1′ 2′ 3′ 4′ 5′ 6′ 7′ 8′ 9′

b b
10 11

10′ 11′
b b

xst

.

(4.4)

For 𝜆 ∈ Λ𝑘 , we now give a description of the cell module Δ𝑘 (𝜆) for P𝑘 (𝑡). For 𝜆 ∈ Par𝑙 ∈ Λ𝑘 we let 𝔡𝜆 ∈ 𝑇 (𝜆) be
the element defined via 𝔡𝜆 = (𝔱𝜆, 𝑑, 𝑇) where 𝑇 = {{1}, {2}, . . . , {𝑙}} and 𝑑 = {{1}, {2}, . . . , {𝑙}, {𝑙 + 1, 𝑙 + 2, . . . , 𝑘}}. For
𝔠 = (𝔰, 𝑐, 𝑆) ∈ 𝑇 (𝜆) we set

𝐶𝔠 = 𝐶𝔠𝔡𝜆 mod P▷𝜆
𝑘 (𝑡) (4.5)

where P▷𝜆
𝑘
(𝑡) = span{𝐶𝔠𝔡 | 𝔠, 𝔡 ∈ 𝑇 (𝜇), 𝜇 ▷ 𝜆} and have then Δ𝑘 (𝜆) = span{𝐶𝔠 | 𝔠 ∈ 𝑇𝑘 (𝜆)}. Then, by definition, Δ𝑘 (𝜆) is

the submodule of P𝑘 (𝑡)/P▷𝜆
𝑘
(𝑡) generated by {𝐶𝔠 | 𝔠 ∈ 𝑇𝑘 (𝜆)}. We represent a typical basis element 𝐶𝔠 for Δ𝑘 (𝜆) as a

half diagram as follows

𝐶𝔠 =

b b b b b b b b b
1 2 3 4 5 6 7 8 9

b b
10 11

xs (4.6)

thus leaving out 𝔡𝜆 from the diagram. The action of 𝑎 ∈ P𝑘 (𝑡) on 𝐶𝔠 ∈ Δ𝑘 (𝜆), that is 𝑎𝐶𝔠 ∈ Δ𝑘 (𝜆), is given by
concatenation with 𝑎 on top of 𝐶𝔠, followed by the elimination of internal blocks as in P𝑘 (𝑡), and of terms involving
{𝐶𝔡 | 𝔡 ∉ 𝑇𝑘 (𝜆)} that are set equal to 0.

By construction we have

dimΔ𝑘 (𝜆) = |𝑇𝑘 (𝜆) | = |Std(𝜆) | |𝐶𝑙 | (4.7)

where 𝐶𝑙 is as in (2.15). This formula can be explicitly expressed in terms of Stirling numbers of the second kind, as
explained in [24].
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Example 4.1.1. For the partitions (𝑘) and (1𝑘) in Λ𝑘 we get via (4.7) that dimΔ𝑘 (𝑘) = dimΔ𝑘 (1𝑘) = 1 and so
in particular Δ𝑘 (𝑘) and Δ𝑘 (1𝑘) are simple P𝑘 (𝑡)-modules. Suppose that 𝑛 ≥ 2𝑘 such that P𝑘 (𝑛) is semisimple by [65].
Then explicit expressions for the primitive idempotents in P𝑘 (𝑛) associated with Δ𝑘 (𝑘) and Δ𝑘 (1𝑘) were determined in

[6] and [14]. In the notation of [14], these idempotents are the elements Quasi𝑘 and Alt𝑘 of P𝑘 (𝑛).

4.2. Cellular basis and cell modules of SP𝑘 (𝑡). In this section we initiate the study of the representation
theory of SP𝑘 (𝑡), for arbitrary 𝑡 ∈ C.

It was shown in [65] that P𝑘 (𝑡) is semisimple if and only if 𝑡 ∉ {0, 1, 2, . . . , 2𝑘 − 2}. This gives us immediately the
following Theorem.

Theorem 4.2.1. Suppose that 𝑡 ∉ {0, 1, 2, . . . , 2𝑘 − 2}. Then SP𝑘 (𝑡) is a semisimple algebra.

Proof: Let J𝑘 and SJ 𝑘 be the Jacobson radicals for P𝑘 (𝑡) and SP𝑘 (𝑡), respectively. Then, by definition, 𝑎 ∈ J𝑘 if
and only if 𝑎𝐿 = 0 for all irreducible P𝑘 (𝑡)-modules, and similarly for SJ 𝑘 .

Since 𝑡 ∉ {0, 1, 2, . . . , 2𝑘 − 2} we have that P𝑘 (𝑡) is semisimple, which by definition means that J𝑘 = 0. On the
other hand, it is known that the irreducible SP𝑘 (𝑡)-modules are the nonzero 𝑒𝑘𝐿’s for 𝐿 running over irreducible P𝑘 (𝑡)-
modules, see (iv) of Theorem (4) of A1 of the appendix to [20]. Suppose now that 𝑒𝑘𝑎𝑒𝑘 ∈ SJ 𝑘 . Then 𝑒𝑘𝑎𝑒𝑘 (𝑒𝑘𝐿) = 0
and hence 𝑒𝑘𝑎𝑒𝑘𝐿 = 0 for all irreducible P𝑘 (𝑡)-modules 𝐿. But this means that 𝑒𝑘𝑎𝑒𝑘 ∈ J𝑘 and so 𝑒𝑘𝑎𝑒𝑘 = 0, as claimed.
□

In general, even when P𝑘 (𝑡) is not semisimple, it is always a cellular algebra in the sense of [37], as was shown in
[24] and [102], and so SP𝑘 (𝑡) becomes a cellular algebra as well, since it is an idempotent truncation of P𝑘 (𝑡). With
the preparations made in subsection 4.1 we are in position to formulate and prove the cellularity of SP𝑘 (𝑡).

Theorem 4.2.2. The spherical partition algebra SP𝑘 (𝑡) is cellular on the poset Λ𝑘 . The cell modules for SP𝑘 (𝑡)
are {𝑒𝑘Δ𝑘 (𝜆) | 𝜆 ∈ Λ𝑘}.

Proof: Defining 𝔠 = (𝔰, 𝑑, 𝑆) ∈ 𝑇 (𝜆) where 𝜆 = (𝑘), 𝔰 = 𝔱𝜆 and 𝑑 = 𝑆 = {{1}, {2}, . . . , {𝑘}}, we have 𝑒𝑘 = 1
𝑘!𝐶𝔠𝔠. From

this it follows that 𝑒∗
𝑘
= 𝑒

𝑘
and so we may apply Proposition 4.3 of [54]. This proves the Lemma. □

Note that Proposition 4.3 of [54] does not give rise to a basis for 𝑒𝑘Δ𝑘 (𝜆) and in fact our next goal is to construct
such a basis.

For this we need several new notational ingredients. Suppose first that 𝜈 = (𝜈𝑎11 , 𝜈
𝑎2
2 , . . . , 𝜈

𝑎𝑝
𝑝 ) ∈ Par𝑖. We then

define the function
Ψ : Par𝑖 → Par,Ψ(𝜈) = ord(𝑎1, 𝑎2, . . . , 𝑎𝑝) (4.8)

which may be considered as a variation of the function Φ defined in (3.6). Define also 𝑝𝑖 = |Par𝑖 |; this is just the
classical partition function.

Suppose that 𝔰 is a semistandard 𝜆-tableau of type 𝜇. Following section 7 in [73], we now set

𝑥𝔰 =
∑︁
𝑤∈𝔖𝜇

𝑤𝔱𝜆∈Std(𝜆)

𝑥𝑤𝔱𝜆 ∈ 𝑆(𝜆). (4.9)

For example, for 𝔰 =
1 2

3

1

2

3

we have

𝑥𝔰 = 𝑥
1 2 3

4 5

6

+ 𝑥
1 2

3

4

5

6

+ 𝑥
1 2 3

4

5

6

+ 𝑥
1 2

3

4

5

6

. (4.10)

Moreover, for any 𝜏 ∈ C𝑜𝑚𝑝𝑖 we define 𝑑𝜏 ∈ SetPar𝑖 as the set partition whose blocks are the rows of 𝔱𝜏 . For
example, if 𝜏 = (3, 2, 1, 3) we get 𝑑𝜏 = {{1, 2, 3}, {4, 5}, {6}, {7, 8, 9}}.

Suppose now that 𝜆 ∈ Par𝑙 ⊆ Λ𝑘 and that 𝜈 ∈ Par𝑖 with Ψ(𝜈) ∈ Par𝑙 for 𝑙 ≤ 𝑖 ≤ 𝑘. Suppose furthermore that 𝔰 is a
semistandard 𝜆-tableau of type Ψ(𝜈) and that 𝜇 ∈ Par𝑘−𝑖. Using this information we define an element 𝑥𝜈,𝔰,𝜇 ∈ 𝑒𝑘Δ𝑘 (𝜆)
as follows

𝑥𝜈,𝔰,𝜇 = 𝑒𝑘𝑔
(
(𝑑𝜈 ·𝜇, 𝑑𝜈) ⊗ 𝑥𝔰 ⊗ 𝔡𝜆

)
(4.11)
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where 𝔡𝜆 is as below (4.4) and 𝑔 is the isomorphism induced by 𝑓 −1 for 𝑓 as in (2.16). For example, for 𝑘 = 17, 𝑙 = 6,
𝜈 = (32, 22, 12), 𝜇 = (22, 1) and 𝜆 and 𝔰 as in (4.10), we have

𝑥𝜈,𝔰,𝜇 = 𝑒17

©­­­«
b b b b b b

1 2 3 4 5 6 7 8 9
b b

10 11
b b b b b b

12 13 14 15 16 17
b b

xs

b ª®®®¬ . (4.12)

With this notation we can now state and prove the following Theorem.

Theorem 4.2.3. (1) Let 𝜆 ∈ Par𝑙 ⊆ Λ𝑘 . Then the set

B𝜆 = {𝑥𝜈,𝔰,𝜇 | 𝜈 ∈ Par𝑖 for 𝑙 ≤ 𝑖 ≤ 𝑘 such that Ψ(𝜈) ∈ Par𝑙 , 𝔰 ∈ SStd(𝜆,Ψ(𝜈)), 𝜇 ∈ Par𝑘−𝑖} (4.13)

is a cellular basis for 𝑒𝑘Δ𝑘 (𝜆).
(2) Suppose that 𝜆 ∈ Par𝑙 ⊆ Λ𝑘 . Then we have the following dimension formula

dim 𝑒𝑘Δ𝑘 (𝜆) =
𝑘∑︁
𝑖=𝑙

∑︁
𝜈∈Par𝑖

Ψ(𝜈) ∈Par𝑙

𝐾𝜆,Ψ(𝜈) 𝑝𝑘−𝑖 (4.14)

where 𝐾𝜆,Ψ(𝜈) is the Kostka number.

Proof: The right hand side of (4.14) is just the cardinality of B𝜆 from (1) and so we only have to show (1).

For this we first recall the set C𝑙 defined in (2.15). For (𝑐, 𝑆) ∈ C𝑙 we define

𝑀 (𝑐, 𝑆) = 𝑒𝑘𝑔 ((𝑐, 𝑆) ⊗ C𝔖𝑙 ⊗ 𝔡𝜆) . (4.15)

We consider 𝑀 (𝑐, 𝑆) as a right C𝔖𝑙-module, with action coming from the right 𝔖𝑙-multiplication in the factor C𝔖𝑙

of 𝑀 (𝑐, 𝑆). For the special element 𝑒𝑘𝑔((𝑐, 𝑆) ⊗ 1 ⊗ 𝔡𝜆) ∈ 𝑀 (𝑐, 𝑆) we let (𝔰, 𝔱)∼𝑙 be the equivalence class of pairs
corresponding to 𝑔((𝑐, 𝑆) ⊗ 1 ⊗ 𝔡𝜆) under the bijection described in the paragraphs from (2.18) to (2.19). The 𝔖𝑘-left
action on these classes is faithful and transitive and so in the expansion of 𝑒𝑘𝑔((𝑐, 𝑆) ⊗1⊗𝔡𝜆) there is a class represented

by a distinguished pair (𝔰1, 𝔱 (1
𝑙 ,𝑘−𝑙) ) satisfying that the numbers {1, 2, . . . , 𝑘} below the red line of 𝔰1 are all bigger than

the numbers above the red line. Moreover, the numbers above the red line of 𝔰1 are filled in along rows, starting with
the longest row, followed by the second longest row and so on, and similarly for the numbers below the red line. In the
case of rows of equal lengths, the numbers are filled in along these rows starting with top one and finishing with the

bottom one. Below we give an example of (𝔰, 𝔱 (1𝑙 ,𝑘−𝑙) )∼𝑙 and its distinguished representative (𝔰1, 𝔱 (1
𝑙 ,𝑘−𝑙) ).

©­­­­­­­­­­­­« ,

7 9 10

1

2

3

4

5 86

1

2

3

4

5

6

8 9

10

7

11

11

ª®®®®®®®®®®®®¬∼4 ,

©­­­­­­­­­­­­« ,

7 9 10

1

2

3

4

5 86

1 2

3 4

5

6

8

9 10

7 11

11

ª®®®®®®®®®®®®¬
(4.16)

On the other hand, under the bijection described in the paragraphs from (2.18) to (2.19), the 𝔖𝑙-action on 𝑀 (𝑐, 𝑆)
is given by row permutations of the top 𝑙 rows of the first component of the classes (𝔰, 𝔱)∼𝑙, Using this and the description

of the distinguished representative for (𝔰, 𝔱 (1𝑙 ,𝑘−𝑙) )∼𝑙 just obtained, we conclude that 𝑀 (𝑐, 𝑆) is isomorphic to the right
C𝔖𝑙-permutation module given by Ψ(𝜈), that is 𝑀 (Ψ(𝜈)) � 𝑥Ψ(𝜈)Ψ(𝜈)C𝔖𝑙 where 𝜈 = ord(shape(𝔰1 |1,...,𝑙)) for 𝔰1 |1,...,𝑙 the
restriction of 𝔰1 to the first 𝑙 rows.

We now recall the fact, shown in [73], that the set {𝑥𝔰 | 𝔰 ∈ SStd(𝜆,Ψ(𝜈))} is a basis for 𝑥Ψ(𝜈)Ψ(𝜈)𝑆(𝜆). Finally
taking into account 𝜇 = ord(shape(𝔰1 |𝑙+1,...)), where 𝔰1 |𝑙+1,... is the restriction of 𝔰1 to the rows below the red line, we
arrive at the basis given in (4.13), which shows that B𝜆 indeed is a basis for 𝑒𝑘Δ𝑘 (𝜆).

Finally, since we already know that the 𝑒𝑘Δ𝑘 (𝜆)’s are the cell modules for the cellular algebra SP𝑘 (𝑡), we get that
B𝜆 is even a cellular basis for 𝑒𝑘Δ𝑘 (𝜆). This concludes our proof. □
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By cellularity of SP𝑘 (𝑡) we have dimSP𝑘 (𝑡) =
∑
𝜆∈Λ𝑘 (dim 𝑒𝑘Δ𝑘 (𝜆))2, which via Theorem 2.2.1 and Theorem 4.2.3

becomes the following identity involving 𝑏𝑝𝑘

𝑏𝑝𝑘 =
∑︁

𝜆∈Par𝑙⊆Λ𝑘

( 𝑘∑︁
𝑖=𝑙

∑︁
𝜈∈Par𝑖

Ψ(𝜈) ∈Par𝑙

𝐾𝜆,Ψ(𝜈) 𝑝𝑘−𝑖

)2
. (4.17)

It may be surprising that the identity (4.17) can in fact be proved with combinatorial tools, as we shall now briefly
explain.

Fix 𝜈 ∈ Par𝑖, 𝜇 ∈ Par 𝑗 such that Ψ(𝜈),Ψ(𝜇) ∈ Par𝑙 for some 𝑙 ∈ {0, 1, . . . , 𝑘} and consider their contribution to
(4.17), that is ∑︁

𝜆∈Par𝑙
𝐾𝜆,Ψ(𝜇)𝐾𝜆,Ψ(𝜈) . (4.18)

The sum in (4.18) has a combinatorial interpretation, which is a consequence of the RSK algorithm.

Indeed, let NΨ(𝜇) ,Ψ(𝜈) be the set of non-negative integer valued matrices with row sum Ψ(𝜇) and column sum Ψ(𝜈).
For example, if 𝜇 = (23, 12) and 𝜈 = (32, 22, 1) we have Ψ(𝜇) = (3, 2) and Ψ(𝜈) = (2, 2, 1) and then NΨ(𝜇) ,Ψ(𝜈) consists of
the matrices [

1 1 1
1 1 0

]
,

[
0 2 1
2 0 0

]
,

[
2 0 1
0 2 0

]
,

[
1 2 0
1 0 1

]
,

[
2 1 0
0 1 1

]
. (4.19)

With this notation we have the following formula for (4.18), see for example Corollary 7.13.2 in [92].∑︁
𝜆∈Par𝑙

𝐾𝜆,Ψ(𝜇)𝐾𝜆,Ψ(𝜈) = |NΨ(𝜇) ,Ψ(𝜈) |. (4.20)

Now each matrix in NΨ(𝜇) ,Ψ(𝜈) corresponds to the propagating part of an element of BiPar𝑘 , in the normal form 𝐺𝐺 (𝑏)
given by Garsia and Gessel, as in (2.11), with the entries of the matrix giving the number of propagating lines that
connect equally sized parts. For example, for 𝜇 and 𝜈 as above, the five matrices in NΨ(𝜇) ,Ψ(𝜈) given by (4.19) correspond
to the diagrams

b b b

bb b b b b b b

b b b b b b b b , b b b

bb b b b b b b

b b b b b b b b , b b b

bb b b b b b b

b b b b b b b b ,

b b b

bb b b b b b b

b b b b b b b b , b b b

bb b b b b b b

b b b b b b b b

(4.21)

in the specified order. Using this, and taking into the account the possibilities for the non-propagating part, we obtain
our combinatorial proof of the identity (4.17).

4.3. Simple modules and standard modules. We next draw a couple of consequences of Theorem 4.2.3. We
first define Λ𝑘

𝑠𝑝ℎ
⊆ Λ𝑘 via

Λ𝑘𝑠𝑝ℎ = {𝜆 = (𝜆1, 𝜆2, . . . , 𝜆𝑙) ∈ Λ𝑘 | 𝑏(𝜆) ≤ 𝑘} (4.22)

where

𝑏(𝜆) =
𝑙∑︁
𝑖=1

𝑖𝜆𝑖 . (4.23)

This definition should be contrasted with the definition of Par𝑘,𝑛
𝑠𝑝ℎ

in (3.17). We get

Corollary 4.3.1. With the above notation we have 𝑒𝑘Δ𝑘 (𝜆) ≠ 0 if and only if 𝜆 ∈ Λ𝑘
𝑠𝑝ℎ

.

Proof: If 𝜆 ∈ Λ𝑘
𝑠𝑝ℎ

we consider 𝜈 = (𝑙𝜆𝑙 , (𝑙 − 1)𝜆𝑙−1 , . . . , 1𝜆1 ). Then |𝜈 | ≤ 𝑘 and Ψ(𝜈) = 𝜆 and so 𝐾𝜆Ψ(𝜈) = 𝐾𝜆𝜆 ≠ 0 which

implies 𝑒𝑘Δ𝑘 (𝜆) ≠ 0, by Theorem 4.2.3.

Suppose now that 𝑒𝑘Δ𝑘 (𝜆) ≠ 0. Then, by Theorem 4.2.3, we have 𝐾𝜆Ψ(𝜈) ≠ 0 for some partition 𝜈 with |𝜈 | ≤ 𝑘,
which implies 𝜆 ⊵ Ψ(𝜈). Let 𝜈 = (𝜈𝑎11 , 𝜈

𝑎2
2 , . . . , 𝜈

𝑎𝑙
𝑙
) where 𝜈1 > 𝜈2 > · · · > 𝜈𝑙 and suppose that ord(𝑎1, 𝑎2, . . . , 𝑎𝑙) =

(𝑏1, 𝑏2, . . . , 𝑏𝑙), in other words Ψ(𝜈) = (𝑏1, 𝑏2, . . . , 𝑏𝑙). Then from |𝜈 | ≤ 𝑘 we get

𝜈1𝑎1 + 𝜈2𝑎2 + . . . + 𝜈𝑙𝑎𝑙 ≤ 𝑘 =⇒ 𝜈1𝑏𝑙 + 𝜈2𝑏𝑙−1 + . . . + 𝜈𝑙𝑏1 ≤ 𝑘 =⇒ 𝑙𝑏𝑙 + (𝑙 − 1)𝑏𝑙−1 + . . . + 1𝑏1 ≤ 𝑘. (4.24)

Let now 𝔱 be the semistandard 𝜆-tableau of type Ψ(𝜈) that exists because 𝐾𝜆Ψ(𝜈) ≠ 0. In 𝔱 the number 1 appears 𝑏1
times, the number 2 appears 𝑏2 times etc, and so the sum of the numbers appearing in 𝔱 is 1𝑏1 + 2𝑏2 + . . . + 𝑙𝑏𝑙 which
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is less than 𝑘 by (4.24). Let now 𝔰 be the semistandard 𝜆-tableau that is obtained from 𝔱 by replacing each number in
𝔱 by the row index of its node. The numbers in the 𝑖th row of 𝔱 cannot be strictly less than 𝑖, and so also the sum of
the numbers in 𝔰 is smaller than 𝑘. On the other hand, 𝔰 is the unique semistandard 𝜆-tableau of type 𝜆 that has 1 in
the nodes of the first row, 2 in the nodes of the second row, etc, and therefore the sum of numbers in 𝔰 is 𝑏(𝜆). This
proves the Corollary. □

Example 4.3.1. For the partitions (𝑘) and (1𝑘) considered in Example 4.1.1, we get via (4.22) that (𝑘) ∈ Λ𝑘
𝑠𝑝ℎ

but

(1𝑘) ∉ Λ𝑘
𝑠𝑝ℎ

if 𝑘 ≥ 2, or equivalently 𝑒𝑘Quasi𝑘 ≠ 0 but 𝑒𝑘Alt𝑘 = 0. This result can also be obtained directly from the

expressions for Quasi𝑘 and Alt𝑘 found in [6] and [14].

It follows from the Corollary that Λ𝑘
𝑠𝑝ℎ

is a natural parametrizing index set for the representation theory of SP𝑘 (𝑡).
Let A be a cellular algebra with cell datum (Λ, 𝑇, C) as in Definition 1.1.1 and let {Δ(𝜆) | 𝜆 ∈ Λ} be the associated set
of cell modules. Each Δ(𝜆) is endowed with a k-valued bilinear form ⟨·, ·⟩𝜆 which is important for the representation
theory of A. To explain ⟨·, ·⟩𝜆 one first chooses arbitrarily 𝔱0 ∈ 𝑇 (𝜆). For basis elements 𝐶𝔰, 𝐶𝔱 ∈ Δ(𝜆) one considers the
expansion of 𝐶𝔱0𝔱𝐶𝔰𝔱0 in the cellular basis for A and then defines

⟨𝐶𝔰, 𝐶𝔱⟩𝜆 = coeff𝐶𝔱0𝔱0
(𝐶𝔱0𝔱𝐶𝔰𝔱0 ) (4.25)

where coeff𝐶𝔱0𝔱0
(𝐶𝔱0𝔱𝐶𝔰𝔱0 ) is the coefficient of 𝐶𝔱0𝔱0 in the above expansion.

Suppose now that k is a field. We define rad(𝜆) = {𝑣 ∈ Δ(𝜆) | ⟨𝑣, 𝑤⟩𝜆 = 0 for all 𝑤 ∈ Δ(𝜆)}. Then rad(𝜆) is a
submodule of Δ(𝜆) and moreover, by the general theory of cellular algebras developed in [37], the quotient module
𝐿 (𝜆) = Δ(𝜆)/rad(𝜆) is either zero or irreducible, and the set of nonzero 𝐿 (𝜆)’s forms a complete set of isomorphism
classes for the irreducible A-modules.

We get the following Theorem.

Theorem 4.3.1. Suppose that 𝑡 ∉ {0, 1, 2, . . . , 2𝑘 − 2}. Then SP𝑘 (𝑡) is semisimple and {𝑒𝑘Δ𝑘 (𝜆) | 𝜆 ∈ Λ𝑘
𝑠𝑝ℎ
} is a

complete set of representatives for the isomorphism classes of irreducible SP𝑘 (𝑡)-modules.

Proof: We know from Theorem 4.2.1 that SP𝑘 (𝑡) is semisimple. It then follows from Theorem 3.8 of [37] that the
nonzero cell modules, that is {𝑒𝑘Δ𝑘 (𝜆) | 𝜆 ∈ Λ𝑘𝑠𝑝ℎ}, are irreducible and pairwise inequivalent. □

In the following we shall use the language of quasi-hereditary algebras, see for example the appendix to [20] and
Section 3.5.2 above. In our setting, the following Theorem is useful for us.

Theorem 4.3.2. A is quasi-hereditary if and only if ⟨·, ·⟩𝜆 ≠ 0 for all 𝜆 ∈ Λ.

For 𝑡 ≠ 0 it is known that P𝑘 (𝑡) is a quasi-hereditary algebra, see [21] or [55]. In Theorem 4.3.1 we showed that
SP𝑘 (𝑡) is semisimple and determined its irreducible modules if 𝑡 ∉ {0, 1, 2, . . . , 2𝑘 − 2}. Combining Theorem 4.2.3 with
Theorem 4.3.2, we now obtain the quasi-heredity of SP𝑘 (𝑡) in the remaining cases, except when 𝑡 = 0.

Corollary 4.3.2. Suppose that 𝑡 ∈ {1, 2, . . . , 2𝑘 − 2}. Then SP𝑘 (𝑡) is quasi-hereditary on the poset Λ𝑘
𝑠𝑝ℎ

with

standard modules {𝑒𝑘Δ(𝜆) | 𝜆 ∈ Λ𝑘𝑠𝑝ℎ}.

Proof: Let 𝜆 = (𝜆1, 𝜆2, . . . , 𝜆𝑝) ∈ Λ𝑘𝑠𝑝ℎ with |𝜆 | = 𝑙. We then construct a special cellular basis element 𝑥𝜈,𝔰,𝜇 for Δ𝑘 (𝜆)
as in (4.11). For 𝜈 we use 𝜈 = (𝑝𝜆𝑝 , (𝑝 − 1)𝜆𝑝−1 , . . . , 1𝜆1 ) which satisfies |𝜈 | ≤ 𝑘 and Ψ(𝜈) = 𝜆. For 𝔰 we use the unique
semistandard 𝜆-tableau of type Ψ(𝜈), which has 1 in the nodes of the first row, 2 in the nodes of the second row, and
so on. Note that 𝑥𝔰 = 𝑥𝜆𝜆. Finally, for 𝜇 we use the one-row partition 𝜇 = (𝑘 − 𝑖) where |𝜈 | = 𝑖. For these choices we
set 𝐶𝔱0 = 𝑥𝜈,𝔰,𝜇 and, in view of (4.25) and Theorem 4.3.2, we must calculate the coefficient of 𝐶𝔱0𝔱0 in the expansion of
𝐶𝔱0𝔱0𝐶𝔱0𝔱0 in terms of the cellular basis for SP𝑘 (𝑡). For example, for 𝑘 = 9, 𝜆 = (2, 2), 𝜈 = (22, 12) and 𝜇 = (3) we have
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diagrammatically

𝐶𝔱0𝔱0 =

b b b b b b b b b

b b b b b b b b b

1 2 3 4 5 6 7 8 9

1′ 2′ 3′ 4′ 5′ 6′ 7′ 8′ 9′

xλλ

e9

e9

, 𝐶𝔱0𝔱0𝐶𝔱0𝔱0 =

b b b b b b b b b

b b b b b b b b b

1 2 3 4 5 6 7 8 9

1′ 2′ 3′ 4′ 5′ 6′ 7′ 8′ 9′

xλλ

e9

e9

b b b b b b b b b

b b b b b b b b b

1 2 3 4 5 6 7 8 9

1′ 2′ 3′ 4′ 5′ 6′ 7′ 8′ 9′

xλλ

e9

(4.26)

and must calculate the coefficient of 𝐶𝔱0𝔱0 in the expansion of 𝐶𝔱0𝔱0𝐶𝔱0𝔱0 . For this we first observe that 𝑥
2
𝜆𝜆

= (∏𝑝

𝑖=1 𝜆𝑖!)𝑥𝜆𝜆.

We next consider the contribution to the coefficient of 𝐶𝔱0𝔱0 given by 𝜎 ∈ 𝔖𝑘 from the expansion of the middle 𝑒𝑘
of 𝐶𝔱0𝔱0𝐶𝔱0𝔱0 in terms of the group element basis of C𝔖𝑘 . We divide the elements 𝜎 ∈ 𝔖𝑘 in three types, according
to their contribution to the coefficient of 𝐶𝔱0𝔱0 in 𝐶𝔱0𝔱0𝐶𝔱0𝔱0 . A key point for what follows is the observation that this
division is exhaustive.

1. We say that 𝜎 is of type 1 if it has the form 𝜎 = 𝜎1𝜎2 where 𝜎1 is a permutation of the numbers within blocks
of 𝑑𝜈 ·𝜇 and 𝜎2 is a permutation of the blocks of 𝑑𝜈 induced by an element from 𝔖𝜆. In the example (4.26),
this means that 𝜎1 ∈ 𝔖1,2 ×𝔖3,4 ×𝔖7,8,9 ≤ 𝔖9 and that 𝜎2 ∈ ⟨(1, 3) (2, 4), (5, 6)⟩ ≤ 𝔖9. Each element of type
1 has a contribution of (∏𝑝

𝑖=1 𝜆𝑖!)
𝑡
𝑘! to the coefficient of 𝐶𝔱0𝔱0 in the product 𝐶𝔱0𝔱0𝐶𝔱0𝔱0 . Below we give two

examples of elements of type 1, the first of the form 𝜎 = 𝜎1 and the second of the form 𝜎 = 𝜎2.

b b b b b b b b b

b b b b b b b b b

1 2 3 4 5 6 7 8 9

xλλ

e9

b b b b b b b b b

b b b b b b b b b

1′ 2′ 3′ 4′ 5′ 6′ 7′ 8′ 9′

xλλ

e9

{σ1 ,

0

1

2

9

1

2

3

4

5

6

7

8

10

11

12

0

1

2

0

1

2

0

1

2

.

(4.27)

2. We say that 𝜎 is of type 2 if it has contribution (∏𝑝

𝑖=1 𝜆𝑖!)
1
𝑘! to the coefficient of 𝐶𝔱0𝔱0 , in other words, the

factor 𝑡 appearing in the contribution coming from type 1 elements is no longer present. Type 2 elements arise
the same way as type 1 elements, except that the blocks coming from 𝑑𝜇 are merged into the other blocks.
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Below we give an example of an element of type 2.

b b b b b b b b b

b b b b b b b b b

1 2 3 4 5 6 7 8 9

xλλ

e9

b b b b b b b b b

b b b b b b b b b

1′ 2′ 3′ 4′ 5′ 6′ 7′ 8′ 9′

xλλ

e9

{σ2

.

(4.28)

3. Finally, we say that 𝜎 is of type 3 if it gives rise to a diagram with no contribution to 𝐶𝔱0𝔱0 in the expansion
of 𝐶𝔱0𝔱0𝐶𝔱0𝔱0 , in other words, the diagram in question has strictly fewer than 𝑙 propagating blocks. Here is an
example.

b b b b b b b b b

b b b b b b b b b

1 2 3 4 5 6 7 8 9

xλλ

e9

b b b b b b b b b

b b b b b b b b b

1′ 2′ 3′ 4′ 5′ 6′ 7′ 8′ 9′

xλλ

e9

{σ

.

(4.29)

Let 𝐴1, 𝐴2 and 𝐴3 be the cardinalites of type 1, type 2 and type 3 elements, respectively. The numbers 𝐴1, 𝐴2 and 𝐴3

can be calculated using combinatorial methods, but we do not need their exact values and shall therefore not do so.
On the other hand, one easily checks that if 𝜆 ≠ ∅ then 𝐴1 > 0 whereas 𝐴2 > 0 if 𝜆 = ∅.

Finally, to conclude the proof of the Corollary we now note that the coefficient of 𝐶𝔱0𝔱0 in 𝐶𝔱0𝔱0𝐶𝔱0𝔱0 is (
∏𝑝

𝑖=1 𝜆𝑖!)
1
𝑘! (𝐴1𝑡+

𝐴2) and this is nonzero by the hypothesis on 𝑡. □

5. The implications of SP𝑘 (𝑛) being quasihereditary

5.1. The decomposition numbers for SP𝑘 (𝑛) when SP𝑘 (𝑛) is non-semisimple. In this section we shall use
the results of the previous sections to determine the decomposition numbers for SP𝑘 (𝑛) when SP𝑘 (𝑛) is quasi-hereditary
and non-semisimple, that is when 𝑛 ∈ {1, 2, . . . , 2𝑘 − 2}.

Our arguments depend crucially on [65] in which the decomposition numbers for P𝑘 (𝑛) are determined. The results
in [65] are formulated in terms of the notion of 𝑛-pairs of partitions, which we need to explain. For this, let 𝜆 ∈ Par𝑙
and let 𝑢 ∈ 𝜆 be the (𝑖, 𝑗)th node of 𝜆. For 𝑄 ∈ Z we then define the 𝑄-content of 𝑢 as 𝑐𝑄

𝜆
(𝑢) = 𝑄 + 𝑗 − 𝑖 and let the

𝑄-content diagram of 𝜆 be the diagram obtained from the Young diagram of 𝜆 by writing 𝑐𝑄
𝜆
(𝑢) in each node 𝑢 ∈ 𝜆.

For example, for 𝜆 = (5, 3, 3, 2, 2) the 2-content diagram is as follows

2 3 4

−1

5 6

1

0

32

1 2

0

−1−2
.

(5.1)
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Definition 5.1.1. Let (𝜆, 𝜇) be a pair of partitions of different orders. We then say that (𝜆, 𝜇) is an 𝑛-pair if
𝜆 ⊂ 𝜇 and the Young diagram for 𝜇 is obtained from the Young diagram for 𝜆 by adding nodes in exactly one row.
Furthermore, the rightmost of these nodes should be of |𝜆 |-content 𝑛.

Below we give two examples of 𝑛-pairs, in the first we choose 𝑛 = 4 and in the second 𝑛 = 15.

(
, 0 1 2 3 4∅

)
,

©­­­«
12 13 14 15 16 17 18

12 13

1110

11 14 15

,

ª®®®¬
.

(5.2)

Note that there exists an alcove geometric description of 𝑛-pairs, see [10].

The following Lemma is immediate from Definition 5.1.

Lemma 5.1.1. Suppose that 𝑛 ∈ Z and 𝜆 ∈ Par. Then there exists at most one 𝜇 ∈ Par such that (𝜆, 𝜇) is an 𝑛-pair.

Proof: Let 𝜆 = (𝜆𝑎11 , 𝜆
𝑎2
2 , . . . , 𝜆

𝑎𝑝
𝑝 ) ∈ Par𝑙. If 𝜇 ∈ Par is obtained from 𝜆 by adding nodes to the 𝑖th row, then we must

have 𝑖 ∈ {1, 𝑎1 + 1, 𝑎1 + 𝑎2 + 1, . . . , 𝑎1 + 𝑎2 + . . . + 𝑎𝑝 + 1}. Since the |𝜆 |-contents are constant along the diagonals of 𝜆, we
conclude from this that the possible values of 𝑛 are all distinct, which shows the Lemma. Below we illustrate on the
example 𝜆 = (91, 53, 32), where we have indicated with red the possible values of 𝑛.

𝜆 =

30

30

30

30

31

31

31

31

32

32

32

33

33

34 35 36 37 38

29

29

29

28

28

28

27

27

27

26

2625

34 35 36 37

39 . . .

29 30

24 25 26 .

(5.3)

□

In [65] the following important Theorem was proved.

Theorem 5.1.1. Let 𝑛 ∈ {1, 2, . . . , 2𝑘 − 2}. For 𝜆 ∈ Λ𝑘 let 𝐿𝑘 (𝜆) = Δ𝑘 (𝜆)/rad(𝜆) be the irreducible P𝑘 (𝑛)-module
associated with 𝜆. Then the following statements hold.

(1) Let 𝜆, 𝜇 ∈ Λ𝑘 with 𝜆 ≠ 𝜇. Then there is a nonzero homomorphism of P𝑘 (𝑛)-modules Δ𝑘 (𝜇) → Δ𝑘 (𝜆) if and
only if (𝜆, 𝜇) is an 𝑛-pair.

(2) Let 𝜆 ∈ Λ𝑘 . If there is no 𝜇 ∈ Λ𝑘 such that (𝜆, 𝜇) is an 𝑛-pair then Δ𝑘 (𝜆) is irreducible. Otherwise, Δ𝑘 (𝜆) has
decomposition factors 𝐿𝑘 (𝜆) and 𝐿𝑘 (𝜇) where (𝜆, 𝜇) is the unique 𝑛-pair with 𝜆 in the first factor.

(3) Let 𝜆 ∈ Λ𝑘 and suppose that (𝜆1, 𝜆2, . . . , 𝜆𝑝) is a chain of partitions in Λ𝑘 such that 𝜆 = 𝜆1 and such that each
(𝜆𝑖 , 𝜆𝑖+1) is an 𝑛-pair for 𝑖 = 1, 2, . . . , 𝑝 − 1. Furthermore, assume that the chain is maximal in the sense that
there is no 𝑛-pair (𝜆𝑝 , 𝜇) with 𝜇 ∈ Λ𝑘 . Then there is a resolution of P𝑘 (𝑛)-modules

0→ Δ𝑘 (𝜆𝑝) → · · · → Δ𝑘 (𝜆2) → Δ𝑘 (𝜆1) → 𝐿𝑘 (𝜆) → 0. (5.4)

Note that (5.4) gives rise to the formula

dim 𝐿𝑘 (𝜆) =
𝑝∑︁
𝑖=1

(−1)𝑖+1 dimΔ𝑘 (𝜆𝑖). (5.5)

In view of (4.7), this is an explicit formula for dim 𝐿𝑘 (𝜆).

In order to apply Theorem 5.1.1 we need the following Lemma.

Lemma 5.1.2. Suppose that 𝜆 ∈ Λ𝑘
𝑠𝑝ℎ

. Then 𝑒𝑘𝐿𝑘 (𝜆) ≠ 0. It is an irreducible SP𝑘 (𝑛)-module and the set

{𝑒𝑘𝐿𝑘 (𝜆) | 𝜆 ∈ Λ𝑘𝑠𝑝ℎ} is a complete set of representatives for the isomorphism classes of irreducible the SP𝑘 (𝑛)-modules.
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Proof:

In follows from Corollary 4.3.2 that 𝑒𝑘𝐿𝑘 (𝜆) ≠ 0 when 𝜆 ∈ Λ𝑘
𝑠𝑝ℎ

. From this the remaining statements of the Lemma

follow from the general cellular algebra theory, see [37]. □

Combining, we obtain the following Theorem.

Theorem 5.1.2. (1) {𝑒𝑘𝐿𝑘 (𝜆) | 𝜆 ∈ Λ𝑘𝑠𝑝ℎ} is a complete set of representatives for the isomorphism classes of

irreducible the SP𝑘 (𝑛)-modules.
(2) Let 𝜆 ∈ Λ𝑘

𝑠𝑝ℎ
. If there is no 𝜇 ∈ Λ𝑘

𝑠𝑝ℎ
such that (𝜆, 𝜇) is an 𝑛-pair then 𝑒𝑘Δ𝑘 (𝜆) is an irreducible SP𝑘 (𝑛)-

module. Otherwise, 𝑒𝑘Δ𝑘 (𝜆) has decomposition factors 𝑒𝑘𝐿𝑘 (𝜆) and 𝑒𝑘𝐿𝑘 (𝜇) where (𝜆, 𝜇) is the unique 𝑛-pair
with 𝜆 in the first factor.

(3) Let 𝜆 ∈ Λ𝑘
𝑠𝑝ℎ

and suppose that (𝜆1, 𝜆2, . . . , 𝜆𝑝) is a chain of partitions in Λ𝑘
𝑠𝑝ℎ

such that 𝜆 = 𝜆1 and such that

each (𝜆𝑖 , 𝜆𝑖+1) is an 𝑛-pair for 𝑖 = 1, 2, . . . , 𝑝 − 1. Furthermore, assume that the chain is maximal in the sense
that there is no 𝑛-pair (𝜆𝑝 , 𝜇) with 𝜇 ∈ Λ𝑘

𝑠𝑝ℎ
. Then there is a resolution of SP𝑘 (𝑛)-modules

0→ 𝑒𝑘Δ𝑘 (𝜆𝑝) → · · · → 𝑒𝑘Δ𝑘 (𝜆2) → 𝑒𝑘Δ𝑘 (𝜆1) → 𝑒𝑘𝐿𝑘 (𝜆) → 0. (5.6)

Proof: The statement in (1) has already appeared in Lemma 5.1.2. The statement in (3) follows from (3) of Theorem
5.1.1 and the fact that left multiplication with 𝑒𝑘 is an exact functor. To show the first statement of (2), we observe
that under the hypothesis on 𝜆 the resolution (5.6) becomes

0→ 𝑒𝑘Δ𝑘 (𝜆1) → 𝑒𝑘𝐿𝑘 (𝜆) → 0 (5.7)

which shows that 𝑒𝑘Δ𝑘 (𝜆) is irreducible, as claimed. Finally, the second statement of (2) follows from the corresponding
statement in (2) of Theorem 5.1.1 and exactness of left multiplication with 𝑒𝑘 . □

As above, we note that the resolution (5.6), combined with (4.14), gives rise to an explicit formula for the dimensions
of the irreducible SP𝑘 (𝑛)-modules, as follows

dim 𝑒𝑘𝐿𝑘 (𝜆) =
𝑝∑︁
𝑖=1

(−1)𝑖+1 dim 𝑒𝑘Δ𝑘 (𝜆𝑖). (5.8)

Let us consider the example 𝜆 = (1) ∈ Λ3
𝑠𝑝ℎ

with 𝑘 = 𝑛 = 3. Then the chain in (3) of Theorem 5.1.2 has the form

{𝜆1, 𝜆2} where 𝜆1 = 𝜆 and 𝜆2 = (3) and so the resolution in (5.6) becomes

0→ 𝑒3Δ3 (𝜆2) → 𝑒3Δ3 (𝜆1) → 𝑒3𝐿3 (𝜆) → 0. (5.9)

Using (2) of Theorem 4.2.3 we get dim 𝑒3Δ3 (𝜆1) = 4 and dim 𝑒3Δ3 (𝜆2) = 1 and so we find that dim 𝑒3𝐿𝑘 (𝜆1) = 3.

It is interesting to compare this with dim𝐺3 (𝜇) where 𝜇 = (2, 1) ∈ Par3,3
𝑠𝑝ℎ

. Note that 𝜇 = 𝜆 where 𝜇 is defined

by 𝜇 = (𝜇2, . . . , 𝜇𝑙) for 𝜇 = (𝜇1, 𝜇2, . . . , 𝜇𝑙). Using (3) of Theorem 3.2.2 we obtain dim𝐺3 (𝜇) = 3, that is dim𝐺3 (𝜇) =
dim 𝑒3𝐿𝑘 (𝜆).

We think that this equality is no coincidence. To be precise, for 𝜆 ∈ Par𝑘,𝑛
𝑠𝑝ℎ

we think that it should be true that

dim𝐺𝑘 (𝜆) = dim 𝑒𝑘𝐿𝑘 (𝜆). (5.10)

We note that we have verified (5.10) for 𝑘 ≤ 11 using SageMath. We also note that for P𝑘 (𝑛) the statement corresponding
to (5.10) should be true as well but appears not to have been proved in the literature.

5.2. Tilting modules for P𝑘 (𝑛) and SP𝑘 (𝑛). We already saw that P𝑘 (𝑛) are quasi-hereditary algebras when
𝑛 ≠ 0 and therefore, in particular, they are endowed with families of tilting modules, see the appendix [20] and
Theorem 3.5.1. In this part we take the opportunity to describe the structure of these tilting modules, using standard
arguments from the theory of quasi-hereditary algebras. We observe that the same arguments also provide us with a
description of the tilting modules for SP𝑘 (𝑛).

Since SP𝑘 (𝑡) is quasihereditary (Corollary 4.3.2), it admits a highest weight structure as in Proposition 3.5.1, and
therefore a well-defined family of tilting modules; see Definition 3.5.3.

We assume 𝑛 ∈ {1, 2, . . . , 2𝑘 − 2} in which case P𝑘 (𝑛), as we already saw, is non-semisimple quasi-hereditary on the
poset Λ𝑘 defined in (4.1). Correspondingly, the category P𝑘 (𝑛)-mod of finite dimensional P𝑘 (𝑛)-modules is a highest
weight category where the standard modules {Δ𝑘 (𝜆) | 𝜆 ∈ Λ𝑘} are as described in the paragraphs between (4.4) and (4.6)
and the irreducible modules {𝐿𝑘 (𝜆) | 𝜆 ∈ Λ𝑘} as described in (3) of Theorem 5.1.1.
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P𝑘 (𝑛)-mod is equipped with a duality 𝑀 ↦→ 𝑀∗ via 𝑀∗ = HomC (𝑀,C) where the P𝑘 (𝑛)-structure on 𝑀∗ is given by

𝑎 𝑓 (𝑚) = 𝑓 (𝑎∗𝑚) for 𝑎 ∈ P𝑘 (𝑛), 𝑓 ∈ 𝑀∗, 𝑚 ∈ 𝑀 (5.11)

for 𝑎 ↦→ 𝑎∗ the anti-automorphism coming from the cellular structure on P𝑘 (𝑛). Note that the 𝐿𝑘 (𝜆)’s are self dual
𝐿𝑘 (𝜆) = 𝐿𝑘 (𝜆)∗ via

𝐿𝑘 (𝜆) → 𝐿𝑘 (𝜆)∗, 𝑣 ↦→ ⟨·, 𝑣⟩𝜆. (5.12)

The costandard modules {∇𝑘 (𝜆) | 𝜆 ∈ Λ𝑘} for P𝑘 (𝑛) are defined by ∇𝑘 (𝜆) = Δ𝑘 (𝜆)∗.

The following definitions and results are part of the general theory of quasi-hereditary algebras. Let F𝑘 (Δ) be the
subcategory of P𝑘 (𝑛)-modules whose objects have Δ-filtrations, in other words, a P𝑘 (𝑛)-module 𝑀 belongs to F𝑘 (Δ) if
there is a filtration of P𝑘 (𝑛)-modules 0 ⊂ 𝑀1 ⊂ 𝑀2 ⊂ . . . ⊂ 𝑀𝑟 = 𝑀 such that for each 𝑖 = 1, 2, . . . , 𝑟 there is a 𝜆𝑖 ∈ Λ𝑘
such that 𝑀𝑖/𝑀𝑖−1 = Δ𝑘 (𝜆𝑖). We define F𝑘 (∇) in a similar way, that is 𝑀 ∈ F𝑘 (∇) if and only if 𝑀∗ ∈ F𝑘 (Δ).

For 𝜆 ∈ Λ𝑘 we let 𝑃𝑘 (𝜆) be the projective cover of 𝐿𝑘 (𝜆) in P𝑘 (𝑛)-mod. Then 𝑃𝑘 (𝜆) ∈ F𝑘 (Δ) and for any Δ-filtration
0 ⊂ 𝑀1 ⊂ 𝑀2 ⊂ . . . ⊂ 𝑀𝑟−1 ⊂ 𝑀𝑟 = 𝑃𝑘 (𝜆) with 𝑀𝑖/𝑀𝑖−1 = Δ𝑘 (𝜆𝑖) we have 𝜆𝑟 = 𝜆 whereas 𝜆 𝑗 ▷ 𝜆 for 𝑗 < 𝑟. For
𝑀 ∈ F𝑘 (Δ) we define (𝑀 : Δ𝑘 (𝜆)) = dimHomP𝑘 (𝑛) (𝑀,∇𝑘 (𝜆)) which is the number of times Δ𝑘 (𝜆) occurs as a subfactor
in a Δ-filtration of 𝑀. We then have the Brauer-Humphreys reciprocity formula

(𝑃𝑘 (𝜆) : Δ𝑘 (𝜇)) = [Δ𝑘 (𝜇) : 𝐿𝑘 (𝜆)] for 𝜆, 𝜇 ∈ Λ𝑘 (5.13)

where [Δ𝑘 (𝜇) : 𝐿𝑘 (𝜆)] denotes decomposition number multiplicity.

For 𝜆 ∈ Λ𝑘 we let P𝑘 (𝑛)-mod≤𝜆 be the subcategory of P𝑘 (𝑛)-mod consisting of modules with composition factors in
{𝐿𝑘 (𝜇) | 𝜇 ⊴ 𝜆}. Then P𝑘 (𝑛)-mod≤𝜆 is a highest weight category with standard modules {Δ𝑘 (𝜇) | 𝜇 ⊴ 𝜆} and costandard
modules {∇𝑘 (𝜇) | 𝜇⊴ 𝜆} and so we deduce from the description of projective covers that Δ𝑘 (𝜆) is the projective cover of
𝐿𝑘 (𝜆) in P𝑘 (𝑛)-mod≤𝜆. If 𝜇 ◁ 𝜆 we then get from (2) of Theorem 5.1.1 and Proposition A3.3 in [20] that

dimExt1P𝑘 (𝑛)-mod
(𝐿𝑘 (𝜆), 𝐿𝑘 (𝜇)) = dimExt1

P𝑘 (𝑛)-mod≤𝜆
(𝐿𝑘 (𝜆), 𝐿𝑘 (𝜇)) =

{
1 if (𝜆, 𝜇) is an 𝑛-pair
0 otherwise

(5.14)

and if 𝜆 ◁ 𝜇 we get

dimExt1P𝑘 (𝑛)-mod
(𝐿𝑘 (𝜆), 𝐿𝑘 (𝜇)) = dimExt1P𝑘 (𝑛)-mod

(𝐿𝑘 (𝜇)∗, 𝐿𝑘 (𝜆)∗) =
{
1 if (𝜇, 𝜆) is an 𝑛-pair
0 otherwise

(5.15)

since 𝐿𝑘 (𝜇)∗ = 𝐿𝑘 (𝜇) and 𝐿𝑘 (𝜆)∗ = 𝐿𝑘 (𝜆).

We now fix a chain of partitions C = {𝜆1, 𝜆2, . . . , 𝜆𝑝} in Λ𝑘 such that (𝜆𝑖 , 𝜆𝑖+1) is an 𝑛-pair for 𝑖 = 1, 2, . . . , 𝑝 − 1.
Suppose furthermore that the chain is maximal in both directions, in other words there is no 𝜇 ∈ Λ𝑘 such that (𝜇, 𝜆1)
is an 𝑛-pair or such that (𝜆𝑝 , 𝜇) is an 𝑛-pair. By Lemma 5.1.1, each 𝜆 ∈ Λ𝑘 belongs to a unique such maximal chain C.
Defining

P𝑘 (𝑛)-modC = {𝑀 ∈ P𝑘 (𝑛)-mod | [𝑀 : 𝐿𝑘 (𝜆)] ≠ 0 =⇒ 𝜆 ∈ C} (5.16)

we get from (5.14) and (5.15) that P𝑘 (𝑛) = ⊕CP𝑘 (𝑛)-modC is the block decomposition of P𝑘 (𝑛)-mod where C runs over
maximal chains in the above sense.

A P𝑘 (𝑛)-module 𝑇 is called a tilting module if 𝑇 ∈ F𝑘 (Δ) ∩ F𝑘 (∇). For each 𝜆 ∈ Λ𝑘 there exists a unique indecom-
posable tilting module 𝑇𝑘 (𝜆) satisfying [𝑇𝑘 (𝜆) : 𝐿𝑘 (𝜆)] = 1 and that [𝑇𝑘 (𝜆) : 𝐿𝑘 (𝜇)] ≠ 0 =⇒ 𝜇⊴ 𝜆. Each tilting module
𝑇 is a direct sum of such 𝑇𝑘 (𝜆)’s.

Part (1) of the following Theorem was obtained already in [65], but still we include it for completeness.

Theorem 5.2.1. With the above notation, we have the following results.

(1) If 𝑗 = 2, 3, . . . , 𝑝 − 1 then the Loewy structure for 𝑃𝑘 (𝜆 𝑗 ) is as follows

Pk(λ
j) = Lk(λ

j−1) Lk(λ
j+1)

Lk(λ
j)

Lk(λ
j) .

(5.17)

(2) If 𝑗 = 1 then the Loewy structure for 𝑃𝑘 (𝜆1) is as follows

Pk(λ
1) = ∆k(λ

1) =
Lk(λ

1)

Lk(λ
2) .

(5.18)
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(3) If 𝑗 = 𝑝 then the Loewy structure for 𝑃𝑘 (𝜆𝑝) is as follows

Pk(λ
p) =

Lk(λ
p)

Lk(λ
p−1)

Lk(λ
p) .

(5.19)

Proof: To prove (1) we first observe that (2) of Theorem 5.1.1 together with (5.13) imply that (𝑃𝑘 (𝜆 𝑗 ) : Δ𝑘 (𝜆𝑖)) = 1
for 𝑗 = 𝑖 or 𝑗 = 𝑖 +1 and otherwise (𝑃𝑘 (𝜆 𝑗 ) : Δ𝑘 (𝜆𝑖)) = 0. Therefore there are two Δ-factors in the Δ-filtration for 𝑃𝑘 (𝜆 𝑗 ),
namely Δ𝑘 (𝜆 𝑗 ) and Δ𝑘 (𝜆 𝑗−1). On the other hand, defining 𝑄𝑘 (𝜆) = ker(𝑃𝑘 (𝜆) → 𝐿𝑘 (𝜆)) we get from (5.14) and (5.15)
that dimHomP𝑘 (𝑛) (𝑄𝑘 (𝜆 𝑗 ), 𝐿𝑘 (𝜆𝑖)) = 1 if 𝑖 = 𝑗 − 1 or 𝑖 = 𝑗 + 1 and otherwise dimHomP𝑘 (𝑛) (𝑄𝑘 (𝜆 𝑗 ), 𝐿𝑘 (𝜆𝑖)) = 0. Hence
the Loewy structure for 𝑃𝑘 (𝜆 𝑗 ) must be as indicated in (1).

To prove (2) we once again use Theorem 5.1.1 and (5.13), but this time we find that Δ𝑘 (𝜆1) is the only Δ-factor of
𝑃𝑘 (𝜆1), which shows (2).

Finally, to show (3) we first note that (2) of Theorem 5.1.1 gives Δ𝑘 (𝜆𝑝) = 𝐿𝑘 (𝜆𝑝). Since 𝑃𝑘 (𝜆𝑝) has Δ-factors
Δ𝑘 (𝜆𝑝) and Δ𝑘 (𝜆𝑝−1), as one sees from Theorem 5.1.1 and (5.13), the structure of 𝑃𝑘 (𝜆𝑝) must be the one indicated in
(3). This proves the Theorem. □

We now get the following Theorem, describing the indecomposable tilting modules for P𝑘 (𝑛).

Theorem 5.2.2. The tilting module 𝑇𝑘 (𝜆𝑖) for 𝑖 = 1, 2, . . . , 𝑝 are given by the following.

(1) If 𝑗 = 1, 2, . . . , 𝑝 − 1 then 𝑇𝑘 (𝜆 𝑗 ) = 𝑃𝑘 (𝜆 𝑗+1).
(2) 𝑇𝑘 (𝜆𝑝) = Δ𝑘 (𝜆𝑝).

Proof: The modules in (1) are described in (1) and (3) of Theorem 5.2.1. They are self-dual and therefore tilting
modules. The missing tilting module is 𝑇𝑘 (𝜆𝑝) = Δ𝑘 (𝜆𝑝), given in (2). □

We finally mention that there are versions of Theorem 5.2.1 and Theorem 5.2.2 for SP𝑘 (𝑛) instead of P𝑘 (𝑛). In
view of Theorem 5.1.2 the statements and proofs are here exactly the same as for Theorem 5.2.1 and Theorem 5.2.2.
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