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Notations and conventions

We denote by Z the ring of rational integers and by Q, R and C the fields of rational, real and complex num-

bers, respectively. If n is an integer we write Z≥n (resp. Z>n) to denote the set of integers a such that a ≥ n (resp.

a > n). If K is a commutative ring, K× denotes the set of units (that is, invertible elements) in K.

If A is a ring, we denote by Spec(A) its corresponding affine scheme. Given a scheme X we denote by OX its

structure sheaf.

We assume that the reader is familiar with the linear representation theory in characteristic zero of finite

groups.

All other notations and conventions will be introduced as needed.
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Introduction

0.1. Zero fiber rings

0.1.1. Groups acting on rings. Let W be a group acting on a set X . If w ∈W we write fixX (w) (or fix(w) if X

is understood) to denote the set of fixed points of w , that is,

fixX (w) = {x ∈ X | w · x = x}.

If L is a subset of W , we set

X L = ⋂
w∈L

fixX (w) = {x ∈ X | w · x = x for all w ∈ L}.

If L = {w} consists of a single element, we write X w instead of X {w}. The set X W is called the invariant set for the

action of W on X .

If x ∈ X , we write Wx to denote the stabilizer of x, that is,

Wx = {w ∈W | w · x = x}.

More generally, if U is a subset of X , we write

WU = ⋂
x∈U

Wx = {w ∈W | w · x = x for all x ∈U }.

If X = V is a K-linear representation of W (where K is a commutative ring), then fixV (w) and V L are K-

submodules of V , because

fixV (w) = ker(w |V −1V ),

and if L = W (or if L generates W as a group) then V W is a subrepresentation of V . Moreover, if U is a subset of

V and KU denotes the K-linear span of U , then

WU =WCU .

If X = A is a K-algebra and W acts on A by K-algebra automorphisms, then AW is a subring of A. In this case

we define the algebra A⋊W which as a K-module is given by A ⊗KKW (here KW denotes the group algebra of

W with coefficients in K) and with multiplication given by

(a1 ⊗w1)(a2 ⊗w2) = a1w1(a2)⊗w1w2, a1, a2 ∈ A, w1, w2 ∈W,

where for w ∈W and a ∈ A, we write w(a) for the action of w on a. In general, we avoid the use of the symbol ⊗,

so in A⋊W we have

w a = w(a)w, a ∈ A, w ∈W.

If A is a commutative K-algebra and K is an algebraically closed field of characteristic zero, the inclusion

homomorphism AW ,→ A induces a morphism of affine K-schemes

π : Spec(A) → Spec(AW ).

Also, if A is finitely generated as a K-algebra and W is finite, then by the Hilbert-Noether theorem [5, Theo-

rem 1.3.1] we have that AW is also a finitely generated K-algebra and that A is a finitely generated AW -module.

9



10 CHAPTER 0. INTRODUCTION

Thus π : Spec(A) → Spec(AW ) is a finite morphism. Also, Spec(AW ) is a scheme of finite type over K and hence

the residue field κ(x) ∼=K for each closed point x ∈ Spec(AW ). Moreover, when A is reduced, AW is also reduced,

so Spec(AW ) is an algebraic variety and it is easy to see that π : Spec(A) → Spec(AW ) is a geometric quotient,

so Spec(AW ) = Spec(A)/W . In this case for each closed point x ∈ Spec(A)/W we have that the ring of regular

functions on the scheme-theoretic fiber π−1(x) is given by

H 0(π−1(x),Oπ−1(x)) = A⊗AW C.

0.1.2. Zero fiber rings. We shall be interested in the case when W is a finite group acting by C-linear auto-

morphisms on a finite dimensional vector space V . Then W acts on the dual vector space V ∗ = HomC(V ,C) by

the formula

(w ·ϕ)(v) =ϕ(w−1 · v), w ∈W, ϕ ∈V ∗, v ∈V.

and hence on the symmetric powers Sd (V ∗). Thus we obtain an action of W on the ring C[V ] of polynomial

functions on V , that is

C[V ] = S(V ∗) = ⊕
d≥0

Sd (V ).

Note that as W acts on each homogeneous component of the Z-graded algebra C[V ], then C[V ]W is a graded

subalgebra of C[V ], and we denote by C[V ]W+ its irrelevant ideal, that is

C[V ]W
+ = ⊕

d>0
Sd (V ∗)W = { f ∈C[V ]W | f (0) = 0}.

We write IW (V ) to denote the ideal in C[V ] generated by C[V ]W+ , that is

IW (V ) =C[V ]W
+ C[V ].

The zero-fiber ring of (W,V ), denoted by Z (W,V ), is the ring of regular functions on the scheme theoretic fiber

of π : V →V /W over zero, that is

Z (W,V ) = H 0(π−1(0),Oπ−1(0)) =C[V ]⊗C[V ]W C

LEMMA 0.1. If V is a finite dimensional C-linear representation of a finite group W , then

Z (W,V ) ∼=C[V ]/IW (V )

as C-algebras.

PROOF. The map

C[V ]×C→C[V ]/IW (V ), ( f , a) 7→ a f + IW (V )

is C[V ]W -bilinear and hence induces a C-algebra homomorphism

φ :C[V ]⊗C[V ]W C→C[V ]/IW (V ).

On the other hand, the map

C[V ] →C[V ]⊗C[V ]W C, f 7→ f ⊗1

vanishes on C[V ]W+ and hence on IW (V ), so it induces a C-algebra homomorphism

ψ :C[V ]/IW (V ) →C[V ]⊗C[V ]W C.

A straightforward verification shows that ψ is a two sided inverse for φ and hence that φ is an isomorphism. □
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0.1.3. Diagonal coinvariant rings. Let W be a finite Coxeter group, hR be a (real) reflection representation

of W and h=C⊗R hR. Then h∗⊕h is again a representation of W . We call the action of W on h∗⊕h the diagonal

action of W on h∗⊕h. The diagonal coinvariant ring of W is the zero fiber ring

RW :=Z (W,h∗⊕h) =C[h∗⊕h]/IW (h∗⊕h)

The ring RW is bigraded by polynomial bidegree, putting h and h∗ in degree 1. This follows from the fact that

the ideal IW (h∗⊕h) is homogeneous.

For the case when W = Sn and h=Cn there is a description of RW in terms of the ring of diagonal harmonics.

Define the apolar form 〈·, ·〉 on C[X ,Y ] =C[x1, . . . , xn , y1, . . . , yn] by

〈 f , g 〉 = f
(
∂x1 , . . . ,∂xn ,∂y1 , . . . ,∂yn

)
g (x1, . . . , xn , y1, . . . , yn)|xi=yi=0, 1≤i≤n .

It is easy to see that this a nondegenerate symmetric bilinear form and that the monomials xαyβ, are an orthog-

onal basis for C[X ,Y ] with respect to the apolar form. It is also easy to see (see [46, Proposition 1.3.1]) that if

I is a homogeneous ideal, then I⊥ is a homogeneous vector subspace of C[X ,Y ] closed under arbitrary partial

derivatives and (I⊥)⊥ = I . Conversely if H is a homogeneous subspace of C[X ,Y ] closed under arbitrary partial

derivatives, then H⊥ is a homogeneous ideal.

The space of diagonal harmonics is, by definition, the homogeneous subspace

D Hn = ISn (Cn ⊕Cn)⊥.

Note that because d = x2
1 +·· ·+x2

n + y2
1 +·· ·+ y2

n ∈ ISn (Cn ⊕Cn), then for any f ∈ D Hn we have

∆ · f =
n∑

j=1

∂2 f

∂x2
j

+ ∂2 f

∂y2
j

= 〈d , f 〉 = 0,

where

∆= ∂2

∂x2
1

+·· ·+ ∂2

∂x2
n
+ ∂2

∂y2
1

+·· ·+ ∂2

∂y2
n

is the usual Laplace operator on (C2)n . Thus the elements or the Sn-module D Hn are indeed harmonic poly-

nomials, hence the name diagonal harmonics. By Weyl’s theorem on polarized sums [78], the ring of diagonal

invariants C[X ,Y ]Sn is generated by the polarized sums
∑n

j=1 xp
j y q

j , so we can equivalently define

D Hn = { f ∈C[X ,Y ] |
n∑

j=1
∂

p
x j
∂

q
y j

f = 0 for p +q ≥ 1}.

The map

D Hn → RSn

f 7→ f + ISn (Cn ⊕Cn)

is a bigraded vector space isomorphism, and restricts on each bigraded component to a CSn-module isomor-

phism.

The space of diagonal harmonics exhibits fascinating combinatorial and algebraic properties. One of them is

that it contains all the Garsia-Haiman modules associated to partitions of n:

Let µ be a partition of n (see 1.1.1). We associate to µ a polynomial ∆µ as follows. Let b1, . . . ,bn be any

enumeration of the boxes of µ and write bi = (ui , vi ) where ui , vi ∈Z≥0. Then

∆µ = det(x
u j −1
i y

v j −1
i )1≤i , j≤n .

The polynomial ∆µ depends, up to sign, only on µ and not on the enumeration of its boxes. Moreover, we have

w ·∆µ = sign(w)∆µ
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for all w ∈ Sn , so that ∆µ is an alternating polynomial. If for example we take µ = (n), then we can number the

boxes of µ as bi = (1, i ) for 1 ≤ i ≤ n and in this case

∆(n) = det(x0
i y j−1

i ) =∆(y1, . . . , yn) = ∏
1≤i< j≤n

(yi − y j )

is the usual Vandermonde determinant in the variables y1, . . . , yn . Similarly, if we choose µ= (1n), we obtain

∆(1n ) =∆(x1, . . . , xn) = ∏
1≤i< j≤n

(xi −x j ).

We can consider the ring C[X ,Y ] as a module over itself, where

f · g = f (∂x1 , . . . ,∂xn ,∂y1 , · · · ,∂yn )g .

Let Iµ denote the annihilator of ∆µ, which is an ideal in C[X ,Y ]. Equivalently, we can put

Iµ = {∆µ}⊥

with respect to the apolar form. The Garsia-Haiman module GHµ associated to µ is

GHµ =C[X ,Y ]/Iµ.

Note that

GHµ
∼= { f (∂x1 , . . . ,∂yn )∆µ | f ∈C[X ,Y ]}

as bigraded Sn-modules. The n! conjecture of Garsia and Haiman [29, Conjecture 1] states that

dimCGHµ = n!

for all partitions µ⊢ n. The polynomials ∆µ are diagonal harmonic polynomials, hence

GHµ ⊆ D Hn for all µ⊢ n.

0.2. Haiman conjectures

0.2.1. Hilbert series, graded characters and Frobenius series. Let

V = ⊕
α∈Zm

≥0

Vα

be a Zm
≥0-graded C-vector space. If each homogeneous component of V is finite dimensional, we define the

Hilbert series of V as the formal power series

HV (q1, . . . , qm) = ∑
α∈Zm

≥0

(dimCVα)qα ∈Z[[q1, . . . , qm]],

where

qα = qα1
1 · · ·qαm

n , α= (α1, . . . ,αm) ∈Zm
≥0.

If W is a finite group acting on V by Zm
≥0-graded vector space automorphisms, then each Vα is a finite dimensional

representation of W and thus has a well defined character char(Vα). We define the Zn
≥0-graded character of V as

the formal power series

charV (q1, . . . , qm) = ∑
α∈Zm

≥0

char(Vα)qα ∈ R(W )[[q1, . . . , qm]]

where R(W ) denotes the ring of virtual characters of W . Equivalently, as R(W ) can be realized as the Grothendieck

ring of the category of finite dimensional representations of W , we can also write

charV (q1, . . . , qm) = ∑
α∈Zn

≥0

[Vα]qα ∈ R(W )[[q1, . . . , qm]],
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where [Vα] denotes the isomorphism class of Vα in R(W ).

In the particular case when W = Sn is the symmetric group, let

χ :
⊕
n≥0

R(Sn) →Λ

be the Frobenius characteristic map that associates to each isomorphism class of Specht modules [Sλ] the Schur

polynomial sλ. Here Λ is the ring of symmetric functions (see Chapter I, Section 7 of [56] for details). The push-

forward of the graded character charV under the Frobenius characteristic map is called the Frobenius series of V ,

and hence is given by

FV (q1, . . . , qm) = ∑
α∈Zm

≥0

χ([Vα])qα ∈Λ[[q1, . . . , qm]].

Note that if V is finite dimensional, then HV and charV are polynomials in q1, . . . , qn and moreover

dimCV =HV (1, . . . ,1).

We will be interested in the case of simply graded (m = 1) and bigraded (m = 2) vector spaces. In the first

case we write q for the indeterminate, and in the second case we write (t , q) instead of (q1, q2).

The diagonal coinvariant ring has a natural structure of a bigraded Sn-representation, and we denote by

HW (t , q) its Hilbert series. If W = Sn we just write Hn(t , q) instead of HSn (t , q).

0.2.2. Haiman conjectures. In [46], M. Haiman proposed a series of conjectures involving the diagonal coin-

variant ring for finite Coxeter groups. Some of these conjectures are now theorems, which we present here.

THEOREM 0.2 (Formerly: the (n +1)n−1 conjecture). The Hilbert series Hn(q, t ) of the ring RSn satisfies

Hn(q−1, q) = q−(n
2

)
(1+q +q2 +·· ·qn)n−1.

In particular

dimCRSn = (n +1)n−1.

This is Conjecture 2.1.1 and Conjecture 2.2.1 in [46]. This is now a well established theorem thanks to the

work of M. Haiman on the geometry of the Hilbert scheme of n points in a plane, developed in the papers [42],

[43], [44] and [45]. During the proof of this conjecture, Haiman also established the n! conjecture of Garsia and

Haiman and, as a byproduct, Macdonald’s positivity conjecture (1988).

Thanks to several computer based calculations using MACAULAY, M. Haiman observed that, if h denotes the

Coxeter number of a finite Coxeter group W and n its rank (that is, the dimension of the irreducible reflection

representation), one has that

dimCRW ≥ (h +1)n .

More precisely we have

THEOREM 0.3. [32] Let W be a finite Coxeter group, let n be its rank and h its Coxeter number. There is a W -

invariant quotient DW of the diagonal coinvariant ring RW satisfying the following properties:

(1) dimCDW = (h +1)n .

(2) DW is Z-graded with Hilbert series

HDW (q) = q−hn/2(1+q +q2 +·· ·+qh)n .

(3) The image of C[h] in DW is the classical ring of coinvariants C[h]/IW (h).
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(4) If W is a Weyl group and Q denotes its root lattice, then, as CW -modules

DW ⊗det ∼=CQ/(h +1)Q

where det is the determinant representation of W , and CQ/(h+1)Q is the permutation representation on

Q/(h +1)Q.

In [46], parts (1) and (3) were formerly Conjecture 7.1.1, part (2) was Conjecture 7.1.2 and part (4) was Con-

jecture 7.3.1. In the proof of these conjectures, I. Gordon used an indirect approach via the representation theory

of rational Cherednik algebras. His approach (and the latter approach for an improvement of this theorem due to

S. Griffeth in [40]) uses the connection of the representation theory in category Oc to the representation theory

of the Hecke algebra Hc via the Knizhnik-Zamolodchikov functor (KZ functor) introduced in [31]. It is not in

the aim of this work to present all the machinery needed for this proof. We only mention that we will provide a

proof of part (a) of Theorem 0.3 for the case of cyclotomic groups G(ℓ,1,n) = (Z/ℓZ) ≀Sn by a completely different

approach, namely, the combinatorial representation theory of cyclotomic rational Cherednik algebras.

0.3. Outline of the dissertation

Chapter 1 is primarily devoted to introducing the combinatorial tools that will be used throughout this dis-

sertation, along with some general background on the representation theory of groups and associative algebras.

Chapter 2 focuses on the cyclotomic reflection groups G(ℓ,1,n) = (Z/ℓZ) ≀Sn , their representation theory in

the spirit of the Okounkov–Vershik approach to the symmetric group (see [64] and [14]), and several of their as-

sociated Hecke algebras. Notably, there are at least three Hecke algebras associated to complex reflection groups:

the Ariki–Koike algebras (see [3], [2], and [30, Chapter 5]), the Drinfel’d Hecke algebra [22], and the cyclotomic

degenerate affine Hecke algebra (see [67], [21], and [20]).

Chapter 3 is devoted to the rational Cherednik algebras and the development of their foundational prop-

erties. I made the deliberate—and perhaps polemical—decision to include full proofs of several results that are

often treated as folklore in the literature. In particular, I provide a complete and detailed proof of the Poincaré–

Birkhoff–Witt (PBW) theorem for Drinfel’d Hecke algebras, which I then use to derive a presentation for the ratio-

nal Cherednik algebra. This choice was motivated by the lack of references offering more than a sketch of these

arguments. The chapter also introduces category O, the Dunkl–Opdam subalgebra t of the cyclotomic rational

Cherednik algebra, and includes a proof of the trigonometric presentation of cyclotomic rational Cherednik al-

gebras, discovered independently by S. Griffeth [38] and B. Webster [77]. A proof of the braid relation for the

intertwining operators σi , following [35], is also provided.

Chapter 4 contains the combinatorial and representation-theoretic tools required for the proof of the main

theorem in Chapter 5. We develop the spectral theory of standard modules in category Oc using the Dunkl–

Opdam subalgebra, framed in terms of the (non-symmetric) Specht-valued Jack polynomials introduced in [36].

We also review the classification of t-diagonalizable representations in category Oc , established in [38], which is

a key step in the classification of unitary representations initiated by Etingof and Stoica in [26]. A connection

is made between diagonalizable representations of the rational Cherednik algebra and those of the cyclotomic

degenerate affine Hecke algebra, culminating in a simple and elegant proof of the graded character formula of

Fishel–Griffeth–Manosalva [27]. This chapter also includes some elementary results obtained during my Master’s

studies, which classify certain finite-dimensional diagonalizable representations. Although these results are not

essential to the main theorem, one of them is used (but can be bypassed via a direct argument) in the proof

presented in Chapter 5.
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Chapter 5 is the core of this dissertation. Here we show how the representation theory of rational Cherednik

algebras explains the gap between the quantities dimCRW and (h+1)n . The central concept is that of coinvariant-

type representations, introduced by the author and his advisor in [1]. Together with the combinatorial framework

developed in the previous chapters, we recover Haiman’s conjecture for cyclotomic groups (a result first proved

in [33]) and demonstrate that the difference between dimCRW (Bn ) and (h+1)n is always strictly positive for n ≥ 4.

Furthermore, we prove that this gap grows asymptotically at least like n2/4.

Warning! Do not skip the footnotes—they contain important clarifications, historical comments and, occa-

sionally, entertaining asides!





CHAPTER 1

Combinatorial and Representation Theoretic preliminaries

1.1. Combinatorial Preliminaries

1.1.1. Partitions and tableaux. Let n ∈ Z≥0. A partition of n is a finite sequence λ = (λ1, . . . ,λs ) of positive

integers such that λ1 ≥ ·· · ≥λs > 0 and

|λ| :=λ1 +·· ·+λs = n.

The integers λ1, . . . ,λs are called the parts of λ. For example (5,3,3,2) is a partition of 13. It is useful to allow the

last entries of a partition to be zero, so (5,3,3,2) and (5,3,3,2,0,0) denote the same partition of 13. The length of

a partition λ= (λ1, . . . ,λs ) is ℓ(λ) = s (where λs > 0). If j is an integer, the multiplicity of j in λ is

m j (λ) = m j = |{i |λi = j }|.

We also denote the partition λ as (1m1 2m2 3m3 · · · ), thus for example (5,3,3,2) is also denoted by (2,32,5) (we omit

j if m j = 0 and don’t write m j if m j = 1).

If λ= (λ1, . . . ,λs ) is a partition, the Young diagram of λ is the set

D(λ) = {(i , j ) ∈Z×Z | 1 ≤ j ≤λi , i = 1, . . . ,ℓ(λ)}.

We adopt the matrix convention so the positive vertical axis is oriented downwards. We also replace the point

(i , j ) ∈ D(λ) with a unit square. Thus for example the diagram of the partition (5,3,3,1) is

.

In what follows we identify a partition and its Young diagram. And element (i , j ) of the Young diagram of λ is

called a box of λ. If b = (i , j ) is a box of λ we define its content by

ctλ = ct(b) = j − i .

If λ is a partition, the transpose of λ is the partition λt defined by

(λt )i = |{ j |λ j ≥ i }|.

Thus we have that

D(λt ) = {(i , j ) | ( j , i ) ∈ D(λ)}.

Now let ℓ ∈Z>0. A ℓ-partition of n is a finite sequence λ= (λ0, . . . ,λℓ−1) where each λ j is a partition and

|λ| := |λ0|+ · · ·+ |λℓ−1| = n.

The Young diagram of λ is the ℓ-tuple whose j th component is the diagram of λ j . Thus for example

λ= ((4,2),∅, (3,1,1))

17
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is a 3-partition of 11 and its Young diagram is

, ∅, .

Note that a partition is the same as a 1-partition. If λ is a ℓ-partition of n, we write λ ⊢ℓ n. We write Parℓ(n) to

denote the set of ℓ-partitions of n.

Let λ = (λ0, . . . ,λℓ−1) ⊢ℓ n. Given (i , j ) ∈ λk for some k = 0, . . . ,ℓ− 1 we write β(i , j ) = k, so that β : λ →
{0, . . . ,ℓ−1} is a function and β(b) =β(b′) if and only if b and b′ are boxes of the same λk . If b ∈λk for some k, we

write b ∈λ and define its content by

ct(b) = ctλβ(b) (b),

that is, ct(b) is its content as a box of the partition λb if b ∈λk . Also, we define the transposition of λ= (λ0, . . . ,λℓ−1)

by

λt = ((λ1)t , (λ2)t , . . . , (λℓ−1)t , (λ0)t ).

A filling of an ℓ-partition λ ⊢ℓ n is a function T : D(λ) → Z>0. If T : λ→ {1, . . . ,n} is a bijection, we say that

T is a numbering of λ. A standard Young tableaux of shape λ is a numbering T : λ→ {1, . . . ,n} with the following

property. Let b = (i , j ) and b′ = (i ′, j ′) be two boxes in λ such that β(b) =β(b′). If either i = i ′ and j < j ′ or if j = j ′

and i < i ′ then T (b) < T (b′). That is, in each component, the numbering is increasing in each row and column of

the (diagram of the) partition.

Given λ ∈ Parℓ(n), the word reading tableau of λ, denoted by Tλ is defined by

Tλ(i , j ) = |λ0|+ · · ·+ |λβ(i , j )−1|+λβ(i , j )
1 +·· ·+λβ(i , j )

i−1 + j .

There is a somewhat better definition of a standard Young tableaux on an ℓ-partition. First, let λ= (λ0, . . . ,λℓ−1)

and µ = (µ0, . . . ,µℓ−1) be two ℓ-partitions. We write µ ⊆ λ if for each i = 0, . . . ,ℓ−1 we have that D(µi ) ⊆ D(λi ).

Under this circumstance an ℓ-tuple

D(λ\µ) = (D(λ0) \ D(µ0), . . . ,D(λℓ−1) \ D(µℓ−1))

is called a skew-diagram. Again, we write λ\µ instead of D(λ\µ). If we set |λi \µi | = |λi |− |µi | and

|λ\µ| = |λ0 \µ0|+ · · ·+ |λℓ−1 \µℓ−1| = |λ|− |µ|.

If |λ \µ| = 1 we write µ↗ λ, and if µ ⊆ λ and µ ̸= λ we write µ ⊂ λ. A standard Young tableaux of shape λ is a

sequence

T = (∅=λ0 ↗λ1 ↗λ2 ↗···↗λn =λ)

of ℓ-partitions, that is, a sequence such that |λi \λi−1| = 1 for all i = 1, . . . ,n. The reason for the equivalence is that

we can define a bijective function T :λ→ {1, . . . ,n} by

T (b) = i if and only if λi \λi−1 = {b},

and conversely, any such function determines a sequence

λi = T −1({1, . . . , i })

such that λi−1 ↗λi for all i = 1, . . . ,n.

We set Parℓ = ⋃
n≥0 Parℓ(n). This is the set of all ℓ-partitions. We define the Young graph to be the directed

graph Yℓ whose set of vertices is Parℓ and where there is a directed edge from µ to λ if µ↗ λ. The set Parℓ(n)

is called the n-th level of the graph. In Figure 1 we can visualize the graph Y1 up to level four and in Figure 2
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0 1 2 3 4

∅

FIGURE 1. Young diagram Y1 up to level 4

the graph Y2 up to level three. The set SYT(λ) consists of all the directed paths from (∅, . . . ,∅) to λ in the Young

diagram Yℓ.

We denote the set of all standard Young tableaux of shape λ by SYT(λ). If λ\µ is a skew-diagram, the notions

of standard Young tableaux of shape λ\µ and the set SYT(λ\µ) are obtained mutatis mutandis.

If µ⊆λ, there is a function

∪ : SYT(µ)×SYT(λ\µ) → SYT(λ)

(T,U ) 7→ T ∪U

defined by

(T ∪U )(b) =

T (b) if b ∈µ,

U (b)+|µ| if b ∈λ\µ,

for b ∈λ.

If T ∈ SYT(λ) and λ ∈ Parℓ(n), we define the content vector of T , denoted by ct(T ) as the vector

ct(T ) = (ℓct(T −1(1)),ζβ(T −1(1)),ℓct(T −1(2)),ζβ(T −1(2)), . . . ,ℓct(T −1(n)),ζβ(T −1(n))) ∈ (Z×µℓ)n

Two boxes b = (i , j ) and b′ = (i ′, j ′) in a skew diagram λ\µ are said to be adjacent if |i −i ′|+| j − j ′| = 1. A path

from b to b′ in λ\µ is a sequence of boxes

b = b0,b1, . . . ,bn = b′

in λ \µ such that bi−1 and bi are adjacent for each i = 1, . . . ,n. A skew diagram λ \µ is connected if for any two

boxes b and b′ in µ\λ there is a path from b to b′.
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FIGURE 2. Young graph Y2 up to level 3

There is an action of the symmetric group on the set of numberings of λ given by

(w ·T )(b) = w(T (b)),

where w ∈ Sn , b ∈ λ and T is a numbering of λ. In general if T ∈ SYT(λ) it is not the case that w ·T ∈ SYT(λ). If

T ∈ SYT(λ) we say that a sequence (si1 , . . . , siq ) of simple reflections is admissible for T if for each j ∈ {1, . . . , q} we
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have that

si j si j+1 · · · siq ·T ∈ SYT(λ).

We call q the length of the admissible sequence (si1 , . . . , siq ). The length of a standard Young tableaux T , denoted

by ℓ(T ), is the minimal length q of an admissible sequence (si1 , . . . , siq ) for the row reading tableau Tλ such that

T = si1 · · · siq ·Tλ.

While such and admissible sequence (si1 , . . . , siq ) could not be unique, the element wT := si1 · · · siq is uniquely

determined by T , because the action of Sn on the set of numberings of λ is free.

If T = si Tλ ∈ SYT(λ) for some i = 1, . . . ,n −1, we have that

ct(T ) = si ct(Tλ) (1.1)

1.1.2. Partition-valued functions. Let X be a set. A partition-valued function is a function

λ : X → Par.

We denote the image of an element x ∈ X under λ by λx and by ParX the set of all partition-valued functions on

X . We write

|λ| = ∑
x∈X

|λx |.

Note that an ℓ-partition is the same as a partition valued function on {1, . . . ,ℓ}. Equivalently we can think of an

ℓ-partition as a partition valued function on µℓ, where

µℓ = {ζ ∈C | ζℓ = 1}

is the cyclic group of ℓ-roots of unity. As before we write

ParX (n) = {λ : X → Par | |λ| = n}

and λ⊢X n if λ ∈ ParX (n). The notion of tableaux easily generalizes to the context of partition-valued functions.

To be more precise, if λ,µ : X → Par are partition valued functions on X , we write µ⊆λ if µx ⊆λx for all x ∈ X . In

this case we define a skew diagram λ\µ : X → Par by

(λ\µ)x :=λx \µx , x ∈ X

and

|λ\µ| = ∑
x∈X

|(λ\µ)x | = |λ|− |µ|.

If |λ \µ| = 1 we write µ↗ λ and if µ ⊆ λ and λ ̸= µ, we write µ ⊂ λ. A standard Young tableau of shape λ is a

sequence

T = (∅=λ0 ↗λ1 ↗λ2 ↗···↗λn =λ),

etc.

A skew diagram λ \µ is connected if (λ \µ)x is connected for each x ∈ X . A border strip is a connected skew

diagram that does not contain any 2×2 square. A border strip tableau of shape λ is a function T : λ→ {1, . . . ,n}

such that for each x ∈ X , given two boxes b = (i , j ),b′ = (i ′. j ′) ∈λx , we have that

T (b) ≤ T (b′) whenever i ≤ i ′ and j ≤ j ′,

the set T −1(i ) is a border strip for each i and T −1(i ) ⊆ λx for some x ∈ X (that is, each number i appears in at

most one component of λ). If we set µi = |T −1(b)|, then µ= (µ1, . . . ,µn) is called the weight of T . We denote the

set of border strip tableaux of shape λ and weight µ by BST(λ,µ).
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Given a connected skew diagram λ\µ, for each x ∈ X we define

h(λ\µ, x) = max{ j |λx
j −µx

j ̸= 0}−min{ j |λx
j −µx

j ̸= 0}

and call it the height of λ \µ at x. Given a border skew tableau T we define h(T, i ) = h(T −1(i )). Also, we define

fT (i ) = x if T −1(i ) ⊆ (λ\µ)x .

1.1.3. Skew-shapes. We generalize the notions of diagram and skew-diagram. A skew-shape is a finite subset

D ⊆R2 such that whenever (x, y) ∈ D and (x+a, y+b) ∈ D for some a,b ∈Z≥0, then (x+a′, y+b′) ∈ D for all integers

0 ≤ a′ ≤ a and 0 ≤ b′ ≤ b. A skew-shape is integral if D ⊆ Z>0. The elements of a skew-shape will be called boxes

and will be represented by unit squares, similar to the case of partitions. A integral skew-shape is the same as a

skew-partition. Given a skew shape D and a box b = (x, y) ∈ D , the content of b is

ct(b) = y −x.

Two boxes b = (x, y) and b′ = (x ′, y ′) in D are said to be adjacent if

|x −x ′|+ |y − y ′| = 1.

A path in D from a box b to a box b′ is a sequence of boxes

b = b0,b1, . . . ,bn = b′

in D such that bi−1 and bi are adjacent for all i = 1, . . . ,n. We also say in this case that b and b′ can be connected

by a path in D . This defines an equivalence relation on D , whose equivalence classes are the called connected

components of D . We say that D is connected if D is itself a connected component or, equivalently, if D has

exactly one connected component.

If D1, . . . ,Ds are the connected component of a skew-shape D , then a diagonal slide of D is another skew-

shape D ′ having connected components D ′
1, . . . ,D ′

s such that there are a1, . . . , as ∈R with

D ′
i = (ai , ai )+Di = {(x +ai , y +ai ) | (x, y) ∈ Di }, i = 1, . . . , s.

Note that if b = (x, y) is a box in Di and b′ = (x+ai , y+ai ) is the corresponding box in D ′
i , then ct(b) = ct(b′) = y−x.

Thus, the content of boxes is preserved under diagonal slides. Similarly we say that D ′ can be obtained from D

by a horizontal slide (resp. a vertical slide) if there are a1, . . . , as such that

D ′
i = (ai ,0)+Di = {(x +ai , y) | (x, y) ∈ Di }, i = 1, . . . , s.

(respectively

D ′
i = (0, ai )+Di = {(x, y +ai ) | (x, y) ∈ Di }, i = 1, . . . , s.)

Note that horizontal and vertical slides change, in general, the value of the contents of the boxes.

An ℓ-skew-shape is an ℓ-tuple of skew-shapes D = (D0, . . . ,Dℓ−1). If b ∈ D i is a box in the i -th component of

D , we set β(b) = i . Note that an ℓ-skew-shape can be seen also as a subset of R2×(Z/ℓZ), where D = (D0, . . . ,Dℓ−1)

corresponds to the subset

{(x, y, i ) | (x, y) ∈ D i }.

Given a skew-shape D , we define an ordering on it set of boxes as follows. If b,b′ are boxes in D , then

b = (x, y) ≤ b′ = (x ′, x ′) if and only if β(b) =β(b′) and x ′−x, y ′− y ∈Z≥0.
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1.1.4. Cyclotomic combinatorics. Let λ be a partition. A box b ∈Z2
≥1 is addable to λ if λ∪ {b} is a partition.

We say that b is outside addable to λ if b is addable to λ and ct(b) ̸= ct(b′) for all b′ ∈λ. We say that a box b ∈λ is

removable if λ\ {b} is a partition.

We call a vector c = (c0,d0, . . . ,dℓ−1) ∈Rℓ+1 a deformation parameter if

d0 +d1 +·· ·+dℓ−1 = 0.

This terminology will become clear in Chapter 3 where we introduce Rational Cherednik algebras. Let c be a

deformation parameter and λ ∈ Parℓ(n). We define ds = d j and λs = λ j whenever s ∈Z, j ∈ {0, . . . ,ℓ−1} and s ≡ j

(mod ℓ).

Given a box b ∈λ, the charged content of b is the statistic

ctc (b) = dβ(b) +ℓct(b)c0, (1.2)

and the charged content of λ is the sum of the charged contents of its boxes, that is,

ctc (λ) = ∑
b∈λ

ctc (b).

Given a box b ∈ λ we define kc (b) as the smallest positive integer k such that there is a box b′ ∈ λβ(b)−k such that

k = ctc (b)−ctc (b′) (here, we read the superscript i in λi modulo ℓ). If there is no such k we set kc (b) =∞. Also,

define ℓc (b) as the smallest positive integer ℓ such that there is an outside addable box b′ ∈ λβ(b)−ℓ such that

ℓ= c(b)− c(b′), and ℓc (b) =∞ if no such ℓ exists.

Given an ℓ-partition λ, we associate to it a set Γ(λ) that consists of ordered pairs (P,Q) such that

(a) Q :λ→Z≥0 is a filling of λ such that Q(b) ≤Q(b′) whenever b ≤ b′.
(b) P : λ→ {1, . . . , |λ|} is a numbering (that is, a bijection) such that whenever b ≤ b′ and Q(b) = Q(b′) we

have that P (b) > P (b′).

Define also a subset Γc (λ) of Γ(λ) as follows. The elements of Γc (λ) are ordered pairs (P,Q) ∈ Γ(λ) such that

(c) If b ∈λ and k ∈Z>0 satisfies

ctc (b) = dβ(b)−k +k

then Q(b) < k, and

(d) If b,b′ ∈λ and k ∈Z>0 are such that k ≡β(b)−β(b′) (mod ℓ) and

ctc (b)−ctc (b′) = k ±ℓc0

then

Q(b) ≤Q(b′)+k and (Q(b) =Q(b′)+k ⇒ P (b) > P (b′)).

Let π2 : Γc (λ) →Z≥0
λ be the projection onto the second component, that is

π2(P,Q) =Q.

We write

Tabc (λ) =π2(Γc (λ)),

that is, Tabc (λ) is the set of all Q such that (P,Q) ∈ Γc (λ) for some P . Given Q ∈ Tabc (λ) we write

Qc = {P | (P,Q) ∈ Tabc (λ)}.

We say that a filling Q of λ is generic if Q ∈ Tabc (λ) and in (d) we have

Q(b) <Q(b′)+k.
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Finally, for Q ∈ Tabc (λ) we define the degree of Q by

|Q| = ∑
b∈λ

Q(b).

If d ∈Z≥0, we set

Tabc (λ,d) = {Q ∈ Tabc (λ) | |Q| = d}.

1.1.5. Dominance order. Let ϵ1, . . . ,ϵn be the standard basis of the commutative free monoid (Z≥0)n . If λ,µ ∈
(Z≥0)n are partitions, we define

µ⊴λ if λ−µ ∈
n−1⊕
i=1

Z≥0(ϵi −ϵi+1).

If we write λ= (λ1, . . . ,λn) and µ= (µ1, . . . ,µn), then

µ⊴λ if and only if
k∑

i=1
µi ≤

k∑
i=1

λi for all 1 ≤ k ≤ n.

We call ⊴ the dominance order on the set Par1 of partitions.

We extend the dominance order to a partial order on (Z≥0)n . First, given µ ∈ (Z≥0)n , there exists some w ∈ Sn

such that w ·µ= (µw−1(1), . . . ,µw−1(1)) satisfies

µw−1(1) ≥µw−1(2) ≥ ·· · ≥µw−1(n) ≥ 0.

We write µ+ = w ·µ and call it the partition rearrangement of µ. Similarly, there is some v ∈ Sn such that the

element µ− := v ·µ= (µv−1(1), . . . ,µv−1(1)) satisfies

0 ≤µv−1(1) ≤µv−1(2) ≤ ·· · ≤µv−1(n).

We call µ− the anti-partition rearrangement of µ. We denote by v(µ) the longest element (with respect with the

usual length function on Sn) such that

v(µ) ·µ=µ−.

The element v(µ) is uniquely determined by µ by means of the formula

v(µ)(i ) = |{1 ≤ j < i |µ j <µi }|+ |{i ≤ j ≤ n |µ j ≤µi }|, 1 ≤ i ≤ n. (1.3)

Now, define a partial order on (Z≥0)n by

µ<λ if µ+◁λ+ or µ+ =λ+ and v(µ) < v(λ),

where on Sn we are using the Bruhat order [7, Chapter 2].

1.2. Representation Theoretic preliminaries

1.2.1. Generalities about representations. All rings are assumed to be associative and unital, and ring ho-

momorphisms are assumed to preserve the multiplicative unit. If R is a ring, by a R-module we will always mean

a left R-module. We denote by R-Mod the category of (left) R-modules. We denote by Mod-R the category of right

R-modules (and we will always use the adjective right to speak about right modules. We will make very little use

of these).

Let C be any (locally small) category. We denote by EndC(X ) the endomorphism monoid of an object X

in C, that is, the set of all morphisms X → X in C. If C is a preadditive category, EndC(X ) is a ring, called the

endomorphism ring of X . If C = R-Mod for some ring R, we write HomR and EndR instead of HomR-Mod and

EndR-Mod, respectively. If C is an abelian category, we write IrrC to denote the class of all irreducible (that is,

simple) objects in C, that is, those objects X such that given any subobject Y → X , then Y = 0 or Y → X is an

isomorphism. Again, if C = R-Mod for a ring R, we write IrrR instead of Irr(R-Mod).
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If θ : R → S is a ring homomorphism, then S has a natural structure of R-module, given by

r · s = θ(r )s, r ∈ R, s ∈ S.

We define the induction functor by

IndS
R : R-Mod → S-Mod

M 7→ S ⊗R M

[ f : M → N ] 7→ [1S ⊗ f : S ⊗R M → S ⊗R N ].

Similarly we define the restriction functor by

ResS
R : S-Mod → R-Mod

M 7→ HomS (R, M)

[ f : M → N ] 7→ [HomS (R, f ) : HomS (R, M) → HomS (R, N )].

Here, the structure of R-module on HomS (R, M) is given by

(r · f )(r ′) = f (r ′r ), r,r ′ ∈ R, f ∈ HomS (R, M).

The map

ηM : HomS (R, M) → M

f 7→ f (1)

is and abelian group isomorphism, and we can use it to pushforward the action of R on HomS (R, M), obtaining

that M is a left R module with action

r ·m = θ(r )m, r ∈ R, m ∈ M .

Thus we will always identify HomS (R, M) and M as R-modules. Actually η is a functor isomorphism, so this

identification is natural.

An easy consequence of the tensor-Hom adjunction is the following

THEOREM 1.1 (Frobenius reciprocity). (IndS
R ,ResS

R ) is an adjoint pair of functors.

As usual if S =CG is the group algebra of a finite group G and R =CH for a subgroup H of G , we write IndG
H

and ResG
H instead of IndCG

CH and ResCG
CH , respectively.

A very special case of induction functors appears when θ : R → R is a ring automorphism. In this case R is a

(R,R)-bimodule, with left action of R over itself given by

r · r ′ = θ(r )r ′, r,r ′ ∈ R.

and where R is the regular rigt module over itself. We write θR1 to denote this (R,R)-bimodule structure on R.

Let M be a left R-module and define a map

λM : θR1 ⊗R M → M

r ⊗m 7→ r m.

This is an abelian group homomorphism, and hence gives M the structure of a left R-module, with action given

by

r ·m = θ(r )m, r ∈ R,m ∈ M .

We denote M with this structure by θM . It is clear that

θ(−) : R-Mod → R-Mod
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is a functor and that

λ : IndR
R → θ(−) (1.4)

is a natural isomorphism of functors. This gives a very nice description of the induction functor as a twisting of

the action of R by the automorphism θ.

Assume that A is a C-algebra, and let M be a simple A-module. If N is any A-module of finite composition

length, the multiplicity of M in N , denoted by |N : M |, is the number of times that M appears as a composition

factor of N in any composition series for M . This number is well defined thanks to the Jordan-Hölder theorem.

If A is semisimple, then

|M : N | = dimCHomA(M , N ) = dimCHomA(N , M).

Now let A be a commutative finite dimensional C-algebra, and let M be a A-module. If α ∈A∗ = HomC(A,C),

the α-weight space of M is the vector subspace

Mα = {m ∈ M | am =α(a)m for all a ∈A}.

We say that α is a weight of A on M if Mα ̸= 0.

1.2.2. Gelfand-Tsetlin subalgebras. If A is a finite dimensional semisimple C-algebra, denote by Z (A) its

center and by Â the set of isomorphism classes of simple A-modules. If λ ∈ Â we denote by Mλ ∈ IrrA any

representative of λ.

Consider an increasing sequence A• of finite dimensional semisimple C-algebras

C=A0 ⊆A1 ⊆A2 ⊆ ·· · . (1.5)

Note that A0 being a field has (up to isomorphism) only one simple module, namely C. We denote its isomor-

phism class by ∅. So Â0 = {∅}. To ease the notation, we denote the induction and restriction functors by Indn
m

and Resn
m instead of IndAn

Am
and ResAn

Am
, respectively, for m ≤ n.

For each n ∈Z≥0 we denote by G Zn(A•) the subalgebra of An generated by

Z (A0), Z (A1), . . . , Z (An).

We call G Zn(A•) the Gelfand-Tsetlin subalgebra of An . We claim that G Zn(A•) is commutative. Indeed, this is

clear for n = 0 and if we assume that G Zn−1(A•) is commutative, then as G Zn(A•) is generated by Z (A•) and

G Zn−1(A•), the claim follows.

To the sequence A• we associate an infinite quiver Q(A•) whose vertex set is⋃
n≥0

Ân .

For n ≥ 1, if µ ∈ Ân−1 and λ ∈ Ân , there are k directed edges from µ to λ, where

k = |Resn
n−1(Mλ) : Mµ|.

The quiver Q(A•) is called the branching diagram or the Bratteli diagram of A•. The set Ân is called the nth level

of Q(A•). If there is an edge from µ to λ in the branching diagram, we write µ↗λ, and µ⊂λ if

|Resn
m(Mλ) : Mµ| ̸= 0,

where µ is in level m, λ in level n and m ≤ n. The reason between the use of a notation similar to that used

for standard Young tableaux will be clear when we study the representation theory of the groups G(ℓ,1,n). If the
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quiver Q(A•) is a directed graph, that is, if there is at most one edge between each pair of vertices, we say that A•
has simple branching. If λ ∈ Ân , let [∅,λ] be the set of all directed paths

T = (∅=λ0 ↗λ1 ↗···↗λn =λ)

from ∅ to λ in the branching diagram of A•.

Given a C-algebra A and a subalgebra B of A, we denote by Z (A,B) the centralizer of B in A, that is

Z (A,B) = {a ∈A | ab = ba for all b ∈B}.

It is clear that Z (A,B) is a subalgebra of A.

PROPOSITION 1.2. [64, Proposition 1.4] Let B be a subalgebra of a semisimple C-algebra A. Then Z (A,B) is a

commutative C-algebra if and only if for any λ ∈ Â and µ ∈ B̂ we have that

|ResAB(Mλ) : Mµ| ≤ 1.

Given a tower A• as in (1.5) and two nonnegative integers m,n, we set

Zn,m(A•) = Z (An+m ,An).

COROLLARY 1.3. The following conditions on a tower A• as in (1.5) of semisimple finite dimensional C-algebras

are equivalent.

(i) A• has simple branching.

(ii) For each n ∈Z>0 the subalgebra Zn−1,1(A•) is commutative.

The following result is a slight generalization of [64, Proposition 1.1] where the authors consider the case

when A• is the sequence of group algebras for a increasing sequence of finite groups. We provide a proof for the

version presented here.

PROPOSITION 1.4. If A• has simple branching, then G Zn(A•) is a maximal commutative subalgebra of An for each

n ∈ Z≥0. In this case, G Zn(A•) consists of all elements in An that are diagonalizable on each finite dimensional

An-module.

PROOF. Assume that A• has simple branching. Let λ ∈ Ân , and let

T = (∅=λ0 ↗λ1 ↗···↗λn =λ) ∈ [∅,λ].

For each j ∈ {0, . . . ,n}, the algebra A j is semisimple, an consequently the class λ j corresponds to a central idem-

potent eλ j ∈ A j , so that A j eλ j is the isotypic component of A j of isotype λ j . Then eλ j ∈ Z (A j ) and thus eλ j ∈
G Zn(A•).

As the branching is simple, there is a canonical decomposition

Resn
n−1Mλ = ⊕

µ∈Ân−1
µ↗λ

Mµ,

and recursively, we obtain a decomposition

Resn
0 Mλ = ⊕

T∈[∅,λ]
MT

where MT is a one-dimensional linear subspace of Mλ. Set

eT = eλ0 eλ1 · · ·eλn ∈G Zn(An).
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Then multiplication by eT gives a projection eT : Mλ → Mλ onto MT . Thus G Z (An) contains the subalgebra Dλ

of elements in An which are diagonal in the basis {mT | T ∈ [0,λ]}, where MT = CmT . Now, as An is semisimple,

we have

An
∼=

⊕
λ∈Ân

EndAn (Mλ),

and consequently D , the subalgebra generated by the subalgebras Dλ for λ ∈ Ân , is a maximal commutative

subalgebra of An . As D ⊆G Zn(A•) ⊆An , we deduce that D =G Zn(A•). □

Let λ ∈ Ân and assume that A• h simple branching. A basis of Mλ consisting of simultaneous eigenvectors for

G Zn(A•) is called a Gelfand-Tsetlin basis. A Gelfand-Tsetlin basis is indexed by the set [∅,λ]. If {mT | T ∈ [∅,λ]}

and {m′
T | T ∈ [∅,λ]} then there are nonzero scalars aT ∈C such that m′

T = aT mT for all T ∈ [∅,λ].

We now focus in the case where A• is a sequence of group algebras. The case where An =CSn are the group

algebras of the symmetric groups was studied by Okounkov and Vershik in [64]. In this case we have

THEOREM 1.5. [64, Theorem 2.9] The sequence

CS1 ⊆CS2 ⊆ S3 ⊆ ·· ·

has simple branching.

Here we identify Sn−1 with the subgroup of Sn that fixes n when acting on the set {1, . . . ,n} by permutations.

Let G be a finite group. Then there is an inclusion homomorphism

G ≀Sn−1 → G ≀Sn

(g1, . . . , gn−1; w) 7→ (g1, . . . , gn−1,1; w)

1.2.3. Mackey-Wigner method of little subgroups. Let G be a finite group and A be a finite abelian group.

Assume that G acts on A by group automorphisms and consider the semidirect product E = A⋊G . The method of

little subgroups of Mackey and Wigner provides a procedure for constructing all the irreducible representations

of E from the irreducible representations of G and A.

As A is an abelian group, its irreducible representations are precisely its multiplicative characters. Thus Â is

precisely the set of all group homomorphisms χ : A →C×. The group G acts on Â by the formula

(g ·χ)(a) =χ(g−1 ·a), g ∈G , χ ∈ Â, a ∈ A.

Let {χi | i ∈ Â/G} be a complete set of representatives of the G-orbits in Â, and let

Gi = StabG (χi )

be the G-stabilizer of χi . The character χi can be extended to a one-dimensional character χ̃i of A⋊Gi by

χ̃i (ag ) =χi (a), a ∈ A, g ∈Gi ,

Let (V ,ρ) be an irreducible representation of Gi , then the composition

A⋊Gi Gi GL(V )
ρ

gives V the structure of a representation of A⋊Gi . Set

V (i ) = IndA⋊G
A⋊Gi

(χi ⊗V ),

then V (i ) is a representation of A⋊G .
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THEOREM 1.6. [71, Proposition 25] The collection V (i ), as i runs over the G-orbits in Â and V runs over the irre-

ducible representations of Gi = StabG (χi ), forms a complete set of pairwise non-isomorphic irreducible representa-

tions of A⋊G.

We are specially interested in the case of wreath products. Let G and H be two groups and assume that G

acts by the left on a finite set X . Write H X to denote the set of functions X → H . Then G acts on H X by the

formula

(g ·θ)(x) = θ(g−1 · x), g ∈G , θ ∈ H X , x ∈ X .

Note that H X inherits a group structure from H and that the action of G on H X is by group automorphisms.

Hence we are able to construct the semidirect product H X ⋊G , which we denote by H ≀X G and call the wreath

product of H by G over X .

A special case of wreath products occurs when X = {1, . . . ,n} is endowed with the usual left action of the

symmetric group Sn by permutations. Then if H is any group H X is the same as H n , that is, the direct product of

n copies of H . In this case we write H ≀Sn instead of H ≀{1,...,n} Sn .

Now assume that H is any finite group. Let H∗ be the set of conjugacy classes in H and H∗ the set of irre-

ducible characters of H . An element g ∈ H ≀Sn is of the form g = (h1, . . . ,hn , w) where h1, . . . ,hn ∈ H and w ∈ Sn .

Write w = w1 · · ·ws where w1, . . . , ws are disjoint cycles. If w j = (i1 · · · ik ), write g j = hik · · ·hi1 . The element g j is

determined up to conjugacy in H by g . Define a partition-valued function λ : H∗ → Par as follows. If c ∈ H∗, then

λc is the partition whose parts are the lengths of the cycles w j ∈ Sn such that g j ∈ c. We call λ the type of g .

PROPOSITION 1.7 (Specht). Two elements in H ≀Sn are conjugated if and only if they have the same type.

This result was original proved in Specht’s dissertation [73]. Another reference for this is Section 3 in Appen-

dix B to Chapter I in [56]. It follows from this result that the irreducible representations of H ≀ Sn are in bijec-

tion with partition-valued functions on H∗. We will not describe the irreducible complex linear representations,

which can be easily obtained by means of the Mackey-Wigner method of little subgroups, but instead describe a

Murnaghan-Nakayama rule for their irreducible characters.

THEOREM 1.8 (Stembridge’s Murnaghan-Nakayama rule). [74, Theorem 4.3] Let λ ∈ ParH∗ (n), write H∗ = {χx | x ∈
H∗} and let χλ be the character of the irreducible representation of H ≀Sn indexed by λ. Then

χλ(h1, . . . ,hn , w) = ∑
T∈BST(λ,µ)

t∏
i=1

(−1)h(T,i )χ fT (i )(hi ),

where w = w1 · · ·wt is the disjoint cycle decomposition of w and µi = ℓ(wi ) is the length of wi .

We will always identify Sn−1 with the Sn-stabilizer of n. Given any finite group H , we can consider the tower

of group algebras

C⊂CH ≀S1 ⊂CH ≀S2 ⊂CH ≀S3 ⊂ ·· · ,

which we denote by CH ≀S•. A simple application of the Murnaghan-Nakayama rule implies the following

PROPOSITION 1.9. Let H be a finite group. The following conditions are equivalent.

(i) H is abelian.

(ii) The tower CH ≀S• has simple branching.
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1.3. Classical Littlewood-Richardson numbers

Let Λ be the ring of symmetric functions (see e.g. [56, Chapter]). For each n, let R(Sn) be the Grothendieck

ring of the category finite-dimensional C-linear representations, or, equivalently, the character ring of Sn , and set

R = ⊕
n≥0

R(Sn).

There is a commutative graded isomorphism ([56, Chapter I, (7.3)])

χ : R →Λ

given by

χ([Sλ]) = sλ

where sλ is the Schur function indexed by λ. We call χ the Frobenius characteristic map.

Now, the structure constants for Λ with respect to the basis of Schur functions are called the classic Littlewood-

Richardson numbers. Thus, given three partitions λ,µ,ν ∈ Par these numbers are related by

sµsν =
∑
λ

cλµνsλ.

Applying the inverse of the characteristic map, this tells us that

cλµν = |Ind
S|λ|
S|µ|×S|ν| (Sµ⊗Sλ) : Sλ|. (1.6)

1.3.1. Littlewood-Richardson tableaux. Let λ= µ \ν be a skew-diagram. A semi-standard Young tableau or

column strict tableau on λ is a function T : λ→ A, where A is some subset of Z>0 called the alphabet, such that

for each i we have

T (i , j ) ≤ T (i , j +1)

whenever (i , j ), (i , j +1) ∈λ and such that for all j ,

T (i , j ) < T (i +1, j )

whenever (i , j ), (i +1, j ) ∈λ.

With no loss of generality, assume that ν⊆µ. If T is a semi-standard Young tableau on λ, for each i define a

word wi (T ) by

wi (T ) = T (i ,µi )T (i ,µi −1) · · ·T (i ,νi +1).

Note that wu(T ) could be empty. Define the reverse word of T as the concatenation

w(T ) = w1(T )w2(T ) · · ·wℓ(T )

where ℓ is such that µi = 0 for all i > ℓ. For example, the reverse word of

T =
1 1 3

1 2 4

2 2 2 3

1 3 3

is w(T ) = 3114213222331.

Given a word w = a1a2 · · ·ap in the alphabet {1, . . . ,n}, for each i ∈ {1, . . . ,n} we define

(w : i ) = |{ j ∈ {1, . . . , p} | a j = i }|,

that is (w : i ) is the number of times the letter i occurs in w . We also write

w≤ j = a1a2 · · ·a j , 1 ≤ j ≤ p,
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so that w≤0 =∅, w≤1 = a1, w≤2 = a1a2 and so on up to w≤p = w . We say that w = a1 · · ·ap is a lattice permutation

if for each 1 ≤ i ≤ n and each 1 ≤ j ≤ p we have

(w≤ j : i ) ≥ (w≤ j : i +1),

that is, if the number of times i appears in the word w≤ j = a1 · · ·a j is not less than the number of i +1 occurs in

w≤ j .

If T is a semi-standard Young tableau in the alphabet {1, . . . ,n}, the weight of T is the composition

wt(T ) = ((w(T ) : 1), (w(T ) : 2), · · · , (w(T ) : n)),

that is, it is a sequence µ= (µ1, . . . ,µn) of nonnegative integers such that µi is the number of times that i appears

in T .

A Littlewood-Richardson tableau (LR tableau for short) is a semi-standard Young tableau T on a skew-diagram

such that its reverse word w(T ) is a lattice permutation. Note that if T is a LR tableau, then wt(T ) is a partition.

THEOREM 1.10 (The Littlewood-Richardson rule). The Littlewood-Richardson number cλµν is equal to the number

of Littlewood-Richardson tableaux of shape λ\µ and weight ν.

For a proof,1 we refer to Chapter 5 of [28].

1The reference [56] appears to contain a proof, though I have the impression—perhaps due to my own incomplete understanding—that

there may be gaps in the argument. This theorem has a rather curious history: it was first stated, with only a few simple cases proved, in [54].

In 1938, G. de B. Robinson claimed to give a complete proof of the Littlewood–Richardson rule, but his argument ([68]) also contained gaps,

some of which were later addressed by I. G. Macdonald (see (9.2) in Chapter I of [56]). The first fully rigorous proofs were given independently

by Thomas in [75] and Schützenberger in [69], thanks to the previous work of Robinson, Schensted an Knuth in the Robinson-Schensted-

Knuth (RSK) correspondence.





CHAPTER 2

Cyclotomic groups and their Hecke algebras

2.1. Complex reflection groups

2.1.1. Definitions and terminology. Let h be a finite dimensional complex vector space. An element r ∈
GL(h) is called a (pseudo-)reflection if

codimh fixh(r ) = 1,

that is, if r fixes an hyperplane pointwise. The hyperplane fixh(r ) is called the reflecting hyperplane of r . If r is a

reflection and w ∈ GL(h) then

fix(wr w−1) = w(fix(r )),

thus wr w−1 is again a reflection and GL(h) acts by conjugation on the set of reflections. In general, if W is a

subgroup of GL(h), we denote by T (W ), or just by T , the set of all reflections contained in W . Then W acts by

conjugation on T (W ).

Given a reflection r , if α ∈ h∗ satisfies ker(α) = fix(r ), then there is a unique α∨ ∈ h such that

r (y) = y −〈α, y〉α∨.

In particular λr = 1−〈α,α∨〉 is the only eigenvalue of r distinct from 1. The action of r on the dual space h∗ is

given by

r (x) = x −〈x,α∨
r 〉αr .

We call (W,h) (or just W , by abuse of language) a complex reflection group if W is a finite subgroup of GL(h)

generated by T = T (W ). In this case we call dimCh the rank of W . We say that W is irreducible if the representa-

tion of W on h is irreducible.

We now present a series of classical results in the theory of complex reflection groups.

Let V = ⊕
i∈Zn≥ Vi be a Zn

≥0-graded C-vector space such that Vi is of finite dimension for each i ∈ Zn
≥0. The

Poincaré series of V is defined as

PV (q1, . . . , qn) = ∑
i=(i1,...,in )∈Zn

≥0

(dimCVi )q i1
1 · · ·q in

n ∈Z[[q1, . . . , qn]].

Now, assume that a finite group W acts on V by graded C-linear automorphisms, and let R(W ) be the Grothendieck

group of the category RepC(W ) of finite dimensional C-linear representations of W , then the equivariant Poincaré

series of V is

PW
V (q1, . . . , qn) = ∑

i=(i1,...,in )∈Zn
≥0

[Vi ]q i1
1 · · ·q in

n ∈ R(W )[[q1, . . . , qn]].

Now, there are at least two gradings on C[h], one given by total degree, which means that a monomial xa1
1 · · ·xan

n

has degree a1+·· ·+an , and the other one given by separated degree, which means that xa1
1 · · ·xan

n ∈Z≥0 has degree

(a1, . . . , an) ∈Zn
≥0.

33
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THEOREM 2.1 (Molien’s formula). Let h be a finite dimensional C-vector space and W a finite subgroup of GL(h).

The Poincaré series of the algebra C[h]W of polynomial invariants, graded by total degree, is given by

PC[h]W (q) = 1

|W |
∑

w∈W

1

det(1−qg |h)
.

For a proof, see [41, Theorem 4.13].

THEOREM 2.2 (Chevalley-Shephard-Todd). Let h be a finite dimensional complex vector space, W a finite subgroup

of GL(h). The following conditions are equivalent:

(i) W is a complex reflection group.

(ii) C[h]W is a polynomial algebra. More precisely, there are W -invariant homogeneous polynomial functions

f1, . . . , fs ∈C[h], algebraically independent over C, such that

C[h]W =C[ f1, . . . , fs ].

(iii) C[h] is a free C[h]W -module.

(iv) h/W is a smooth algebraic variety.

For a proof of the equivalence of (i), (ii) and (iii) see Theorem 4 in Chapter V, §5, no. 5 of [12]. The equivalence

between (i) and (iv) is due to Serre [70, Théorème 1’]. The equivalence between (i) and (ii) was originally proved

by Shephard and Todd in Sections 6 to 10 of [72] by a case by case argument using the classification of irreducible

complex reflection groups (see 2.1.4). An uniform proof of the equivalence between (i) and (ii) was given by

Chevalley [16, Theorem (A)]. A very short and elegant proof of the implication (ii)⇒(i) using an algebro-geometric

argument can be found in [48].

2.1.2. Numerical invariants of complex reflection groups. Let (W,h) be an irreducible complex reflection

group with set of reflections T . We denote by A (W ) or just A the set of all reflecting hyperplanes associated to

the reflections in W , that is,

A = {fixh(r ) | r ∈ T }.

If H ∈A , the subgroup WH is a cyclic subgroup of W or order say nH , and the set

TH =WH \ {1}

consists only of those reflections r ∈ T such that fix(r ) = H . Note that

T = ⋃
H∈A

TH (2.1)

and this is a disjoint union.

The Coxeter number of (W,h) is defined as

h = h(W ) = N +N∗

n

where n = dimCh is the rank of W , N = |T | and N∗ = |A |.

LEMMA 2.3. The element z = ∑
r∈T

(1− r ) belongs to the center of CW and it acts on h by the scalar h. Moreover, h is

a rational integer.

PROOF. As W acts on T by conjugation we have, for any w ∈W ,

w zw−1 = ∑
r∈T

(w w−1 −wr w−1) = ∑
r∈T

(1− r ) = z
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so w z = zw , and thus z lies in the center of the group algebra CW . As h is an irreducible C-linear representation

of W , Schur’s lemma implies that z acts on h by a scalar a ∈ C and [71, Proposition 16] implies that a is an

algebraic integer. Now

na = trh(z) = ∑
H∈A

∑
r∈TH

trh(1− r ) = ∑
H∈A

∑
r∈WH

trh(1− r )

Choose a positive definite W -invariant hermitian form on h. If H fix(r ) for r ∈ T , then (1−r )|H = 0 and
∑

r∈WH r |H⊥ =
0, thus

na = ∑
H∈A

∑
r∈WH

trH⊥ (1) = ∑
H∈A

|WH | = ∑
H∈A

(|TH |+1) = |T |+ |A | = N +N∗,

hence h = a, and because a is an algebraic integer and h is a rational number, it follows that h ∈Z. □

The fact that h is an integer number also follows, in the case of a finite Coxeter group, from [12], Chapitre

V, §6, no. 2, Théorème 1, where it is also established that h is the order of a Coxeter transformation, defined as

a product of all the distinct simple reflections of the Coxeter system in some order (actually, Bourbaki adopts

this description of the Coxeter number as the definition of h, which is independent of the ordering in which one

multiplies the simple reflections as any two such Coxeter transformations are conjugate in the group).

We have the following classical result.

THEOREM 2.4 (Shephard-Springer-Todd). Let (W,h) be a complex reflection group and let C[h]W be its invariant

algebra. If f1, . . . , fs are algebraically independent W -invariant homogeneous polynomials that generate C[h]W ,

then s = n = dimh, and the degrees d1, . . . ,dn of these polynomials are uniquely determined by (W,h). Moreover

|W | = d1d2 · · ·dn

and

PC[h]W (q) =
n∏

i=1

1

1−qdi

For a proof see [41, Proposition 3.25 and Theorem 4.19].

A set { f1, . . . , fn} as in Theorem 2.2 is called a set of basic invariants of W , the integers d1, . . . ,dn are called the

degrees of W and the integers mi = di −1 for i = 1, . . . ,n the exponents of W .

2.1.3. The groups G(ℓ,m,n). Let n,ℓ ∈Z>0 and let

µℓ = {ζ ∈C× | ζℓ = 1}

be the multiplicative group of ℓ-roots of unity. Then µℓ is a cyclic group isomorphic to Z/ℓZ and we set, following

the notation introduced by Shephard and Todd,

G(ℓ,1,n) =µℓ ≀Sn .

If m is a positive integer that divides ℓ, consider the group homomorphism

G(ℓ,1,n) →µm , (ζ1, . . . ,ζn ; w) 7→ (ζ1 · · ·ζn)ℓ/m .

The kernel of this homomorphism is denoted by G(ℓ,m,n). As this homomorphism is surjective, then we have

that G(ℓ,m,n) is a normal subgroup of G(ℓ,1,n) of index m.

The group G(ℓ,m,n) acts faithfully on Cn by the formula

g · x = (ζ1xw−1(1), . . . ,ζn xw−1(n)), g = (ζ1, . . . ,ζn ; w) ∈G(ℓ,m,n), x = (x1, . . . , xn) ∈Cn ,

and thus we obtain an injective group homomorphism

ρ : G(ℓ,m,n) → GLn(C)
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called the monomial representation or also the standard representation of G(ℓ,m,n). Recall that a matrix A =
(ai j )n×n ∈ Matn(C) is said to be a monomial matrix if there exists some σ ∈ Sn such that ai , j ̸= 0 if and only if

j = σ(i ), that is, if each row and column contains exactly one nonzero entry. It follows that ρ(g ) is a monomial

matrix for each g ∈G(ℓ,m,n), hence the name “monomial” representation. As ρ is injective, the group G(ℓ,m,n)

is isomorphic to the group consisting of monomial matrices whose nonzero entries are ℓ-roots of unity such that

the product of all the nonzero entries is a m-root of unity. We will identify G(ℓ,m,n) with its image ρ(G(ℓ,m,n))

with no further comment.

EXAMPLES 2.5. (1) G(ℓ,m,1) is a cyclic group of order ℓ/m. It is clearly irreducible.

(2) G(1,1,n) = Sn is the symmetric group and its monomial representation is Cn on which Sn acts by per-

mutations of the components. G(1,1,n) is not irreducible, but Cn = h⊕Cu, where

h= {(x1, . . . , xn) ∈Cn | x1 +·· ·+xn = 0}

and u = (1,1, . . . ,1) ∈Cn . Recall that Sn is the Weyl group of type An−1 and in this case h is (the complex-

ification of) its reflection representation.

(3) G(2,1,n) =µn
2 ⋊Sn is the hyperoctahedral group, which is the group of symmetries of a hypercube, that

is, the polytope in Rn whose vertices are the points

1

2
((−1)k1 , . . . , (−1)kn ), (k1, . . . ,kn) ∈ {0,1}n .

Thus, G(2,1,n) acts on Cn by permutations and simultaneous sign changes on the coordinates. As such,

G(2,1,n) is the Weyl group of type Bn , denoted by W (Bn).

(4) G(2,2,n) is the subgroup of G(2,1,n) consisting of those monomial matrices such that the product of

the nonzero entries equals 1. This is the Weyl group of type Dn .

(5) The group G(ℓ,ℓ,2) is a dihedral group

Dih2ℓ = 〈r, s | r ℓ = s2 = 1, sr s = r−1〉

of order 2ℓ. Indeed, as a monomial matrix group,

G(ℓ,ℓ,2) =


ζ 0

0 ζ−1


∣∣∣∣∣∣∣ ζ ∈µℓ

∪


0 ζ−1

ζ 0


∣∣∣∣∣∣∣ ζ ∈µℓ


and as such, it is easy to see that G(ℓ,ℓ,2) is generated by

r =
e2πi /ℓ 0

0 e−2πi /ℓ

 and s =
0 1

1 0.


Note that r ℓ = s2 = 1 and that sr s = r−1, so there is a surjective group homomorphism Dih2ℓ→G(ℓ,ℓ,2)

given by r 7→ r and s 7→ s. As both groups have the same order, thus surjection is a group isomorphism.

Recall that Dih2ℓ is a Coxeter group of type I2(ℓ). The monomial representation of G(ℓ,ℓ,2) is not the

complexification of the usual representation of I2(ℓ) on R2 as a group of symmetries of a regular ℓ-agon.

Fix a primitive ℓ-root of unity ζ (for instance ζ= e2π
p−1/ℓ), and let ζi be the diagonal matrix whose (i , i ) entry

equals ζ and whose remaining diagonal entries are 1. Let (i j ) be the transposition in Sn that interchanges i and j

and leave the other elements in {1, . . . ,n} unchanged. Then clearly (i j ) is a reflection in G(ℓ,m,n) with reflecting

hyperplane

Hi j = {(x1, . . . , xn) ∈Cn | xi = x j }.
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Because each group acts by conjugation on its set of reflections, we have that ζma
i (i j )ζ−ma

i is also a reflection

for any a = 0, . . . ,ℓ/m −1. Actually, as G(ℓ,m,n) is a normal subgroup of G(ℓ,1,m), we have that ζa
i (i j )ζ−a is a

reflection in G(ℓ,m,n) for all a = 0,1, . . . ,ℓ−1. The matrices ζma
i for a = 1, . . . ,ℓ/m −1 fix the hyperplane

Hi = {(x1, . . . , xn) ∈Cn | xi = 0}

so they are also reflections. It is clear that the reflections (i j ), ζ1(1 2)ζ−1
1 and ζam

i for a = 1, . . . ,ℓ/m −1 generate

G(ℓ,m,n), so G(ℓ,m,n) is a complex reflection group. We actually have completely described the set of reflections

in G(ℓ,m,n). More precisely, set

T0 = {ζa
i (i j )ζ−a

i | i , j = 1, . . . ,n, i < j , a = 0,1, . . . ,ℓ−1} (2.2)

and for k = 1, . . . ,ℓ/m −1,

Tk = {ζmk
i | i = 1, . . . ,n}, k = 1, . . . ,ℓ/m −1. (2.3)

Then we see that the set T of reflections in G(ℓ,m,n) is

T = T0 ∪T1 ∪·· ·∪Tℓ/m−1.

Note that T0 consists of reflections of order 2, while Tk (k = 1, . . . ,ℓ/m −1) consists of reflections of order

ℓ

m gcd(ℓ/m,k)
,

where gcd(u, v) denotes the greatest common divisor of u, v ∈ Z. It is clear that each Tk (k = 1, . . . ,ℓ/m −1) is a

conjugacy class of reflections. For n = 1, the group G(ℓ,m,1) is abelian, T0 = ∅, and each other Tk consists of

exactly one reflection, namely ζmk
1 . If n > 2, T0 is a conjugacy class, but for n = 2, T0 splits into two conjugacy

classes when ℓ/m is even. Also, note that if ℓ= m then Tk =∅ for k ̸= 0.

PROPOSITION 2.6. For positive integers ℓ,m,n such that m | ℓ, the group G(ℓ,m,n) is a complex reflection group of

order ℓnn!/m. Also

N =
(

n

2

)
ℓ+

(
ℓ

m
−1

)
n, N∗ =

(
n

2

)
ℓ+n(1−δℓ,m) and h = (n −1)ℓ+ ℓ

m
−δℓ,m

where δℓ,m is the Kronecker symbol.

Recall that by the fundamental theorem on symmetric polynomials [56, Chapter I (2.4)] we have

C[x1, . . . , xn]Sn =C[e1, . . . ,en]

where e1, . . . ,en are the elementary symmetric polynomials, given by

e j =
∑

1≤i1<i2<···<i j ≤n
xi1 xi2 · · ·xi j .

We have that C(x1, . . . , xn)/C(x1, . . . , xn)Sn is a Galois field extension with Galois group Sn and hence is an algebraic

extension. As the transcendence degree of C(x1, . . . , xn) over C is n, it follows that the transcendence degree of

C(e1, . . . ,en) over C is also n and consequently e1, . . . ,en are algebraically independent. This shows that e1, . . . ,en

are basic invariants of Sn . A simple verification shows that the polynomials

σ j (x1, . . . , xn) = e j (xℓ1 , . . . , xℓn), j = 1,2, . . . ,n −1

and

σn(x1, . . . , xn) = en(x1, . . . , xn)ℓ/m = (x1x2 · · ·xn)ℓ/m

are basic invariants of G(ℓ,m,n). In particular, the degrees of G(ℓ,m,n) are

d j = jℓ, j = 1,2, . . . ,n −1 and dn = nℓ/m.
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2.1.4. The Shephard-Todd classification. Irreducible complex reflection groups where classified in a series

of papers, with contributions of several mathematicians such as Blichfeldt, Bagnera, Mitchel, Shephard and Todd.

The first complete list of irreducible complex reflection groups was published by Shephard and Todd in [72].

Let W be a group and V a finite dimensional C-linear representation of W . A system of imprimitivity for V is

a collection SI = {V1, . . . ,Vs } of nonzero linear subspaces of V such that s > 1 and

V =V1 ⊕·· ·⊕Vs

and such that the action of W on V induces a permutation action on the set SI . We say that V is a imprimitive

representation of W if V admits a system of imprimitivity, otherwise, we say that V is a primitive representation.

When (W,h) is a complex reflection group, we say that W is a primitive (resp. imprimitive) complex reflection

group if the representation of W in h is primitive (resp. imprimitive).

Recall that if W is any finite group acting linearly on a finite dimensional C-vector space V , we can endow V

with a positive definite Hermitian product (·, ·) which is W -invariant, that is, such that

(w(x), w(y)) = (x, y) x, y ∈V , w ∈W.

Thus if W is a finite subgroup of GL(V ), we can assume that W ⊆ U(V ), where U(V ) denotes the unitary group on

V . As usual, we write Un instead of U(Cn). In particular, any rank n complex reflection group (W,h) can be seen

as a subgroup of U(h) ∼= Un .

The following theorem gives a complete classification of the irreducible imprimitive complex reflection groups.

THEOREM 2.7 (Cohen-Shephard-Todd). Any irreducible imprimitive complex reflection group of rank n lying in-

side Un is conjugated in Un to a group G(ℓ,m,n) for some ℓ> 1 and some divisor m of ℓ.

See [41, Theorem 2.14] for a proof.

The really hard part in the classification of complex reflection groups is the primitive case. We shall not give

a complete list of the primitive complex reflection groups here, but just mention that Shephard and Todd list

these groups as Gm where m = 1,4,5, · · · ,37. The groups G2 and G3 are, respectively, G(ℓ,m,n) for ℓ> 1, n > 1 and

(ℓ,m,n) ̸= (2,2,2), and the cyclic groups G(ℓ,1,1). The groups G1 is the family of symmetric groups Sn , and the

groups G35, G36 and G37 are the Weyl groups of type E6, E7 and E8, respectively. The group G28 is the Weyl group

of type F4. The Weyl group of type G2 is a dihedral group of order 12, that is, Dih12 and hence is G(6,6,2). Thus

all the finite Weyl groups arise as complex reflection groups. Also, the Coxeter groups H3 and H4 appear in this

list as the groups G23 and G30, respectively.

The classification of primitive reflection groups of rank > 4 is mostly due to Mitchell in [60], while the clas-

sification of primitive reflection groups of ranks 2, 3 and 4 was primarily obtained by Blichfeldt in [8], [9], [10]

and [11], Bagnera in [4], and then generalized by Mitchell in [58] and [59]. A proof independent of the works of

Mitchell and others was given by Cohen in [18].

2.2. Ariki-Koike algebras

2.2.1. A presentation for cyclotomic groups and braid groups. From now on we refer to the groups G(ℓ,1,n)

as cyclotomic groups. Whether you’re a believer or not, be thankful they’re called cyclotomic groups and not cyclo-

atomic groups—they’re tough enough without the extra explosion!

Recall that the symmetric group Sn is generated by simple transpositions, that is,

si = (i i +1), i = 1, . . . ,n −1,
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and that (Sn , {s1, . . . , sn−1}) is a Coxeter system of type An−1, that is, we have a presentation of Sn with generators

s1, . . . , sn−1 and relations

s2
i = 1, i = 1, . . . ,n −1,

si si+1si = si+1si si+1, i = 1, . . . ,n −2,

si s j = s j si , |i − j | > 1.

There is a Coxeter-like presentation for the cyclotomic groups which we now describe. Set t = ζ1. Note that

si−1si−2 · · · s1t s1 · · · si−2si−1 = ζi , i = 1, . . . ,n,

so the elements t , s1, . . . , sn−1 generate G(ℓ,1,n) as a group. Moreover, there is an obvious surjective group homo-

morphism

Gℓ,n →G(ℓ,1,n) (2.4)

where Gℓ,n is the group with generators t , s1, . . . , sn−1 and relations

tℓ = s2
i = 1, i = 1, . . . ,n −1,

s1t s1t = t s1t s1,

si si+1si = si+1si si+1, i = 1, . . . ,n −2,

si s j = s j si , |i − j | > 1,

si t = t si , i = 2, . . . ,n −1.

Note that is not a Coxeter presentation, but it can be associated to the cyclotomic Coxeter diagram

t s1 s2 sn−2 sn−1

ℓ

where the ℓ in the node corresponding to t means that t has order ℓ.

PROPOSITION 2.8. [3, Proposition 2.1] The homomorphism (2.4) is an isomorphism.

Recall that if we delete the involution relations (that is, s2
i ) in the Coxeter presentation of the symmetric

groups, we obtain the Artin braid group ASn = Bn , which has a presentation with generators T1, . . . ,Tn−1 and

braid relations

Ti Ti+1Ti = Ti+1Ti Ti+1, i = 1, . . . ,n −2,

Ti T j = T j Ti , |i − j | > 1.

There is an obvious surjective group homomorphism

Bn → Sn

Ti 7→ si , i = 1, . . . ,n −1.

We can also delete the relations tℓ = s2
i = 1 in the presentation of the cyclotomic groups G(ℓ,1,n), and the re-

sulting group is the Artin affine braid group B̃n which has a presentation with generators T0,T1, . . . ,Tn−1 and

relations

Ti Ti+1Ti = Ti+1Ti Ti+1 i = 1. . . ,n −2,

Ti T j = T j Ti |i − j | > 1,

T0T1T0T1 = T1T0T1T0.
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Again there is an obvious surjective group homomorphism

ρℓ : B̃n → G(ℓ,1,n)

T0 7→ t ,

Ti 7→ si , i = 1, . . . ,n −1.

Define elements Ji ∈ B̃n for i = 1, . . . ,n recursively as follows. First, set J1 = T0 and

Ji+1 = Ti Ji Ti , i = 1, . . . ,n −1.

We call J1, . . . , Jn the Jucys-Murphy elements of B̃n . Note that

Ji = Ti−1Ti−2 · · ·T1T0T1 · · ·Ti−2Ti−1. (2.5)

PROPOSITION 2.9. The Jucys-Murphy elements J1, . . . , Jn satisfy the following identities.

(1) Ji T j = T j Ji for j ̸= i , i −1.

(2) Ji J j = J j Ji for all i , j = 1, . . . ,n.

PROOF. (1) This is obvious if j > i . Assume that j < i −1. If j = i −2 we have

Ji T j = Ti−1Ti−2 Ji−2Ti−2Ti−1Ti−2

= Ti−1Ti−2 Ji−2Ti−1Ti−2Ti−1

= Ti−1Ti−2Ti−1 Ji−2Ti−2Ti−1

= Ti−2Ti−1Ti−2 Ji−2Ti−2Ti−1

= T j Ji .

If j < i −2, we have, by induction, that

Ji T j = Ti−1 Ji−1Ti−1T j

= Ti−1 Ji−1T j Ti−1

= Ti−1T j Ji−1Ti−1

= T j Ti−1 Ji−1Ti−1

= T j Ji .

(2) Follows from (1) in the case where i < j or i > j , and is trivial if i = j . □

2.2.2. Affine and cyclotomic Hecke algebras. Let A be an integral domain, and q ∈ A be an invertible ele-

ment. For example, we can take the ring of Laurent polynomials A =Z[q, q−1]. The affine Hecke algebra H̃n(q ; A)

is the quotient of the group algebra AB̃ by the Hecke (or quadratic) relation

(Ti −q)(Ti +q−1) = 0, i = 1, . . . ,n. (2.6)

Note that from the Hecke relations, it follows that the elements Ti are invertible in H̃n(q ; A), and that

T −1
i = Ti − (q −q−1). (2.7)

If we choose elements v1, . . . , vn ∈ A, then the cyclotomic Hecke algebra Hn,ℓ(q ; v1, . . . , vℓ; A), also called the Ariki-

Koike algebra, is the quotient of the affine Hecke algebra H̃n(q ; A) by the cyclotomic relation

(T0 − v1)(T0 − v2) · · · (T0 − vℓ) = 0. (2.8)
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We call q the Hecke parameter and v1, . . . , vℓ the cyclotomic parameters. Note that Hn,1(q ; v1; A) is precisely the

Iwahori-Hecke algebra of type An−1 and Hn,2(q ; v1, v2; A) is the Iwahori-Hecke algebra of type Bn . We write

Hn,ℓ(q, v) instead of Hn,ℓ(q ; v1, . . . , vℓ; A) when

A =Z[q±1; v] :=Z[q, q−1, v1, . . . , vℓ]

and q, v1, . . . , vℓ are formal variables.

THEOREM 2.10 (Ariki-Koike). [3, Theorem 3.10] Hn,ℓ(q, v) is a free Z[q±1; v]-module of rank |G(ℓ,1,n)| = n!ℓn .

Note that if we set q = 1 and vi = ζi−1 for i = 1, . . . ,ℓ, then the cyclotomic relation becomes T ℓ
0 = 1 and the

Hecke relations are T 2
i = 1 for i = 1, . . . ,n −1. Thus

Hn,ℓ(q, v) =ZG(ℓ,1,n),

and we have

COROLLARY 2.11. The Ariki-Koike algebras Hn,ℓ(q, v) are flat deformations of the group algebra ZG(ℓ,1,n) of the

cyclotomic groups.

There is a natural embedding

Hn−1,ℓ(q, v ; A) ,→ Hn,ℓ(q, v ; A)

Ti 7→ Ti , i = 0, . . . ,n −1,

and thus we have an increasing tower of A-algebra extensions

A ⊂H1,ℓ(q, v ; A) ⊂H2,ℓ(q, v ; A) ⊂ ·· · .

If A = F is a field, we hope to develop (but in this dissertation we won’t) the representation theory of the algebras

Hn,ℓ(q, v ;F ) by means of the Okounkov-Vershik approach, provided that these are semisimple.

THEOREM 2.12 (Ariki). [2] Let F be a field. The following conditions are equivalent.

(i) Hn(q, v ;F ) is a split semisimple F -algebra.

(ii) Hn(q, v ;F ) is a semisimple F -algebra.

(iii) For i ̸= j and each d ∈Z with |d | < n we have that qd vi ̸= v j and [n]q ! ̸= 0.

Here, if a ∈Z>0 we use the usual q-analogs

[a]q = 1+q +q2 +·· ·+q a−1 and [a]q ! =
a∏

j=1
[ j ]q .

A choice of parameters (q, v1, . . . , vn) is said to be generic if it satisfies (iii) of the previous theorem. This name is

justified as the set of generic parameters is a Zariski open subset of the affine algebraic variety F ℓ+1.

2.2.3. Jucys-Murphy elements and their classical limits. Assume that the parameters q, v1, . . . , vℓ are inde-

terminates, and let

K =Q(q, v1, . . . , vℓ)

be the field of fractions of the ring Z[q±1; v]. If J1, . . . , Jn are the Jucys-Murphy elements of B̃n we denote their im-

ages in Hn,ℓ(q, v ;K ) by Ji (q, v) or Ji (q, v1, . . . , vn), for i = 1, . . . ,n, and call them the Jucys-Murphy elements of the

Ariki-Koike algebra Hn,ℓ(q, v ;K ). As the Ji ’s commute in the affine braid group, the elements Ji (q, v) commute

in the algebra Hn,ℓ(q, v ;K ). From (2.7) we deduce that

Ti Ji (q, v) = Ji+1(q, v)T −1
i = Ji+1(q, v)(Ti − (q −q−1)). (2.9)
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Now, it is easy to see that

lim
q→1

lim
vs→ζs−1

1≤s≤ℓ
Ji (q, v1, . . . , vℓ) = ζi , i = 1, . . . ,n. (2.10)

For us, the following limit will be important:

φi = lim
q→1

lim
vs→ζs−1

1≤s≤ℓ

Ji (q, v)ℓ−1

q −q−1 .

LEMMA 2.13. φi =
∑

1≤ j<i
0≤k≤ℓ−1

ζk
i (i j )ζ−k

i .

PROOF. For i = 1 the conclusion is obvious. Assume that i > 1 and proceed by induction on i . By induction

on m we have that (we write Ji instead of Ji (q, v))

J m
i = (q −q−1)

m−1∑
k=1

Ti−1 J k
i−1 J m−k

i +Ti−1 J m
i−1Ti−1,

so in particular

Jℓi = (q −q−1)
ℓ−1∑
k=1

Ti−1 J k
i−1 Jℓ−k

i +Ti−1 Jℓi−1Ti−1

which can be written as

Jℓi = (q −q−1)
ℓ∑

k=1
Ti−1 J k

i−1 Jℓ−k
i +Ti−1 Jℓi−1Ti−1 − (q −q−1)Ti−1 Jℓi−1

= (q −q−1)
ℓ∑

k=1
Ti−1 J k

i−1 Jℓ−k
i +Ti−1 Jℓi−1(Ti−1 − (q −q−1))

= (q −q−1)
ℓ∑

k=1
Ti−1 J k

i−1 Jℓ−k
i +Ti−1 Jℓi−1T −1

i−1.

Now, by the induction hypothesis we have

φi = lim
q→1

lim
vs→ζs−1

1≤s≤ℓ

Jℓi −1

q −q−1 =
ℓ∑

k=1
si−1ζ

k
i−1ζ

−k
i + si−1

ℓ−1∑
k=0

∑
1≤ j<i−1

ζk
i−1(i j )ζ−k

i−1

 si−1

=
ℓ−1∑
k=0

ζk
i (i −1 i )ζ−k

i +
ℓ−1∑
k=0

∑
1≤ j<i−1

ζk
i (i j )ζ−k

i

= ∑
1≤ j<i

0≤k≤ℓ−1

ζk
i (i j )ζ−k

i ,

as desired. □

In the course of the above proof we established the following identity

J m
i+1 = (q −q−1)

m−1∑
k=0

Ti J k
i J m−k

i+1 +Ti J m
i T −1

i , i = 1, . . . ,n −1, m ∈Z≥1. (2.11)

The elements φ1, . . . ,φn ∈ CG(ℓ,1,n) are called the Jucys-Murphy elements of G(ℓ,1,n). As the elements Ji

commute in the braid group, hence in the Ariki-Koike algebra, then the elements φi also commute.

Again take m = ℓ in (2.11), subtract 1 and divide by q −q−1, so that we obtain

Jℓi+1 −1

q −q−1 =
ℓ−1∑
k=0

Ti J k
i Jℓ−k

i+1 +Ti
Jℓi −1

q −q−1 T −1
i .

Taking limits, this gives

φi+1 =
ℓ−1∑
k=0

siζ
k
i ζ

−k
i+1 + siφi si ,
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that is

φi si = siφi+1 −πi

where

πi =
ℓ−1∑
k=0

ζk
i ζ

−k
i+1. (2.12)

We have proved the following

PROPOSITION 2.14. The Jucys-Murphy elements φi satisfy the following relations in the group algebra CG(ℓ,1,n):

(a) φiζ j = ζ jφi for 1 ≤ i , j ≤ n.

(b) φi si = siφi+1 −πi for 1 ≤ i ≤ n −1, where πi is given in (2.12).

(c) φi s j = s jφi for j ̸= i −1, i .

REMARK 2.15. For each i = 1, . . . ,n let

ψi =
∑

1≤ j<k≤i
0≤s≤ℓ−1

ζs
k ( j k)ζ−s

k ∈CG(ℓ,1, i )

Being a class sum, we have that ψi ∈ Z (CG(ℓ,1, i )) and we can write the Jucys-Murphy elements as

φi =ψi −ψi−1 =
∑

1≤ j<i
0≤s≤ℓ−1

ζs
i (i j )ζ−s

i ∈CG(ℓ,1,n)

This gives another proof of the fact that these elements commute among each other.

2.3. Complex representations of the groups G(ℓ,1,n)

In this section we review the representation theory a la Okounkov-Vershik of the imprimitive groups G(ℓ,1,n).

The key ingredients are the Jucys-Murphy elements of the group algebra CG(ℓ,1,n).

2.3.1. Conjugacy classes in G(ℓ,1,n). The isomorphism classes of C-linear irreducible representations of a

finite group is in bijection with the set of its conjugacy classes. For this reason it is useful to determine the

conjugacy classes in G(ℓ,1,n). We specialize the Specht classification of conjugacy classes for wreath products

given in Proposition 1.7 to the case of cyclotomic groups.

First, recall the conjugacy classes for the symmetric groups (ℓ= 1). If w ∈ Sn , then there is a unique partition

λ = (λ1, . . . ,λs ) of n such that w decomposes as a disjoint product w = c1 · · ·cs where c j is a λ j -cycle. We call

λ the cycle type of w . Two elements in Sn are conjugate in Sn if and only if they have the same cycle type. In

particular, conjugacy classes in Sn (and hence isomorphism classes of irreducible C-linear representations of Sn)

are indexed by partitions of n.

Now let g = (η1, . . . ,ηn ; w) ∈G(ℓ,1,n) = µn
ℓ
⋊Sn . Let µ= (µ1, . . . ,µs ) be the cycle type of w and let w = c1 · · ·cs

be the decomposition of w into disjoint cycles, with c j a µ j -cycle. For each j ∈ {1, . . . , s}, let mi be the unique

element in {0,1, . . . ,ℓ−1} such that

ζm j = ∏
c j (i )̸=i

ηi .

For each k ∈ {0, . . . ,ℓ−1} let λk be the partition whose parts are the µ j such that m j = k (considering repetitions).

Thus λ= (λ0, . . . ,λℓ−1) is a ℓ-partition of n. We call λ the cycle type of g .

PROPOSITION 2.16. Two elements in G(ℓ,1,n) are conjugate if and only if they have the same cycle type. In partic-

ular the conjugacy classes in G(ℓ,1,n) are indexed by Parℓ(n).

PROOF. This follows easily by noticing that if we set g j = ζm j c j for j = 1, . . . , s, then the elements g1, . . . , gs are

pairwise commutative and g = g1 · · ·gs . □
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2.3.2. Intertwining operators for G(ℓ,1,n). If α is a weight of a finite dimensional C-representation V of

G(ℓ,1,n) and 0 ̸= v ∈Vα, we write

wt(v) = (α(φ1),α(ζ1),α(φ2),α(ζ2), . . . ,α(φn),α(ζn)) ∈ (C×µℓ)n

and call it the weight vector of v . We set

wt(V ) = {wt(v) | v ∈Vα \ {0} and α is a weight of V }.

Note that if 0 ̸= v ∈ Vα and α is a weight of V , then either α(φi ) ̸=α(φi+1) or α(ζi ) ̸=α(ζi+1) for all i = 1, . . . ,n −1.

Indeed, if α(φi ) =α(φi+1) and α(ζi ) =α(ζi+1) for some i , we have

φi si v = (siφi+1 −πi )v =
(
α(φi+1)si −

ℓ−1∑
s=0

α(ζi )sα(ζi+1)−s

)
v =α(φi )si v −ℓv

and hence

(φi −α(φi+1))si v =−ℓv ̸= 0

but

(φi −α(φi+1))2si v =−(φi −α(φi ))ℓv = 0

so si v is a generalized eigenvector for φi that is not an eigenvector, which contradicts the fact that G Zℓ(n) acts

by diagonalizable operators on V .

We define the intertwining operators τi on a CG(ℓ,1,n)-module by the formula

τi v = si v + 1

α(φi )−α(φi+1)
πi v, v ∈Vα

for each weight α of V . This is well defined thanks to the previous observation. If α is a weight of V and 0 ̸= v ∈Vα,

we have, after a straightforward but lengthy verification, that

wt(τi v) = si wt(v) (2.13)

where we consider the permutation action of Sn on (C×µℓ)n , also

τ2
i v = (α(φi )−α(φi+1)−πi )(α(φi )−α(φi+1)+πi )

(α(φi )−α(φi+1))2 v (2.14)

and

τiτi+1τi v = τi+1τiτi+1v. (2.15)

These formulas are easy consequences from the properties of intertwining operators for cyclotomic rational

Cherednik algebras, and will be deduced in 3.2.3.

2.3.3. Irreducible complex representations of G(ℓ,1,n). As the conjugacy classes in the complex reflection

group G(ℓ,1,n) are in bijection with the set Parℓ(n), we know that the complex irreducible representations of this

group are also in bijection with Parℓ(n). We want to make this correspondence very explicit. The spectral analysis

of Jucys-Murphy elements is key ingredient in the pursue of this goal.

THEOREM 2.17 (Young semi-normal form). The branching graph Q(CG(ℓ,1,•)) is the Young graph Yℓ. If V is an

irreducible C-linear representation of G(ℓ,1,n) there exists a unique λ ∈ Parℓ(n) such that

wt(V ) = {ct(T ) | T SYT(λ)}

and any Gelfand-Tsetlin basis is indexed by the set SYT(λ) of all directed paths from (∅, . . . ,∅) to λ. Moreover, if

{vT | T ∈ SYT(λ)} is a Gelfand-Tsetlin basis of V we have

φi vT = ℓct(T −1(i ))vT and ζi vT = ζβ(T −1(i ))vT , 1 ≤ i ≤ n,
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that is,

wt(vT ) = ct(T )

for all T ∈ SYT(λ). In particular, the G Zℓ(n)-eigenspaces on any irreducible representation are one dimensional.

This theorem is stated (in a somewhat different form) in [63] as a consequence of the Okounkov-Vershik

approach to the representation theory of Ariki-Koike algebras developed in [62].

Note that irreducible complex representations of G(ℓ,1,n) are completely determined by the spectral infor-

mation of the Jucys-Murphy elements and the elements ζ1, . . . ,ζn , and these spectral information is completely

codified by the set SYT(λ). Thus if we denote the irreducible representation V in the theorem by Sλ, we have that

{Sλ |λ ∈ Parℓ} is a complete set of pairwise non-isomorphic irreducible C-linear representations of G(ℓ,1,n).

We normalize the Gelfand-Tsetlin basis of Sλ as follows. Let Tλ be the row reading tableau of shape λ and let

vλ ̸= 0 be any vector in Sλ such that wt(vλ) = ct(Tλ). For each T ∈ SYT(λ), set

vT = τi1 · · ·τiq vλ

where (si1 , . . . , siq ) is an admissible sequence for T such that T = si1 · · · siq ·Tλ. The element vT does not depend on

the choice of the admissible sequence (si1 , . . . , siq ) thanks to the Iwahori-Matsumoto theorem (see [57, Theorem 2]

or [55, Theorem 1.9]) and (2.15). By (1.1) and (2.13) we have that

wt(vT ) = wt(τi1 · · ·τiq vλ)

= siq · · · si1 wt(vλ)

= siq · · · si1 ct(Tλ)

= ct(si1 · · · siq Tλ)

= ct(T )

which shows that the set {vT | T ∈ SYT(λ)} is a Gelfand-Tsetlin basis for Sλ, which we call a standard GZ-basis.

This basis is uniquely determined up to a scalar multiple of vλ = vTλ . If we fix a G(ℓ,1,n)-invariant positive

definite Hermitian form (·, ·) on Sλ and make the substitution vT 7→ vT /(vT , vT )1/2, the basis {vT | T ∈ SYT(λ)} is

called a normalized GZ-basis. It follows from formulas (2.13), (2.14) and (2.15) that for a normalized GZ-basis

{vT | T ∈ SYT(λ)} and a tableau T ∈ SYT(λ), if ct(T ) = (a1,η1, . . . , an ,ηn), then

τi vT =



0 if si ·T ̸∈ SYT(λ),

vsi ·T if ζβ(T −1(i )) ̸= ζβ(T −1(i+1)),(
1−

(
1

ct(T −1(i ))−ct(T −1(i +1))

)2
)1/2

vsi ·T if ζβ(T −1(i )) = ζβ(T −1(i+1)).

From this, we easily deduce the action of the group generators of G(ℓ,1,n) on Sλ:

ζi vT = ζβ(T −1(i ))vT (2.16)
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and, after setting ai = ct(T −1(i )),

si vT =



vsi ·T if ζβ(T −1(i )) ̸= ζβ(T −1(i+1)),

±vT if

 si ·T ̸∈ SYT(λ) and

ct(T −1(i +1)) = ct(T −1(i ))±1,(
1−

(
1

ai −ai+1

)2
)1/2

vsi ·T − 1

ai −ai+1
vT if

 si ·T ∈ SYT(λ) and

ζβ(T −1(i )) = ζβ(T −1(i+1)).

(2.17)

Now, let µ ∈ (Z≥0)n and let v(µ) be the longest element in Sn such that v(µ) ·µ = µ−, where µ− is the anti-

partition rearrangement of µ (see 1.1.5). We introduce elements φµi ∈CG(ℓ,1,n) by

φ
µ

i = v(µ)−1φv(µ)(i )v(µ)

A simple computation using (1.3) shows that

φ
µ

i = ∑
1≤ j<i
µ j <µi

0≤k≤ℓ−1

ζℓi (i j )ζ−ℓi + ∑
i< j≤n
µ j <µi

0≤k≤ℓ−1

ζℓi (i j )ζ−ℓi

If {vT | T ∈ SYT(λ)} is a standard GZ basis for Sλ, we set

vµT := v(µ)−1 · vT , T ∈ SYT(λ).

Then

φ
µ

i · vµT = ℓct(T −1(v(λ)(i )))vµT and ζi · vµT = ζβ(T −1(v(λ)(i )))vµT . (2.18)

Thus the set {vµT | T ∈ SYT(λ)} is a basis for Sλ consisting of simultaneous eigenvectors for the subalgebra

G Zµ

ℓ
(n) := v(µ)−1G Zℓ(n)v(µ)

of CG(ℓ,1,n).

2.3.4. Comparison with the method of little subgroups. Being a semidirect product of an abelian group by

a symmetric group, the representation theory group G(ℓ,1,n) = µn
ℓ
⋊Sn can also be understood by means of the

Mackey-Wigner method of little subgroups [71, Section 8.2]. We briefly present this approach, which was the

original approach also in the classification of completely irreducible finite dimensional representations of the

Ariki-Koike algebras in [3].

The character group µ̂ℓ of the abelian group µℓ is cyclic and generated by the identity character

χ :µℓ→C×, ζ 7→ ζ,

that is,

µ̂ℓ = {1,χ,χ2, . . . ,χℓ−1}.

The characters of the group µn
ℓ

are given by

(η1, . . . ,ηn) 7→χ(η1)k1 · · ·χ(ηn)kn

where 0 ≤ k j ≤ ℓ−1 for j = 1, . . . ,n. Let χi :µn
ℓ
→C× be the character of µn

ℓ
given by

χi (η1, . . . ,ηn) =χ(ηi ).

Then χ1, . . . ,χn generate the character group µ̂n
ℓ

of µn
ℓ

. More precisely, we have

µ̂n
ℓ
= {χk1

1 · · ·χkn
n | 0 ≤ k j ≤ ℓ−1, j = 1, . . . ,n}.
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Now, the permutation action of Sn on µn
ℓ

induces an action on the character group by the formula

(w ·ψ)(η1, . . . ,ηn) =ψ(w(η1, . . . ,ηn)w−1), w ∈ Sn , ψ ∈ µ̂n
ℓ

, (η1, . . . ,ηn) ∈µn
ℓ .

A simple verification shows that

w ·χi =χw(i ),

hence a class of representatives for the orbits of Sn on µ̂n
ℓ

is given by χν :=χν1
1 χ

ν2
2 · · ·χνn

n where ν= (ν1, . . . ,νn) is a

partition and ν1 ≤ ℓ−1. For each k = 0,1, . . . ,ℓ−1, set

Xk (ν) = Xk = { j | ν j = k},

then the Sn-stabilizer of χν is the subgroup

S(ν) := SX0 ×SX1 ×·· ·×SXℓ−1 ⊆ Sn .

where for X = Xk , SX denotes the subgroup of Sn that fixes the set {1, . . . ,n} \ X pointwise, which is isomorphic to

the symmetric group on the set X . As a subgroup of Sn , the group SXk still acts on µn
ℓ

, so we obtain a subgroups

µℓn ⋊SXk ⊆G(ℓ,1,n).

Extend the character χν to µℓn ⋊SXk by

χν(η1, . . . ,ηn ; w) =χν(η1, . . . ,ηn), (η1, . . .ηn w) ∈µℓn ⋊SXk .

Then as SXk stabilizes χν we see that χν is an irreducible one-dimensional character of µℓn ⋊SXk . If λk ⊢1 |Xk |
then the Specht module Sλ

k
is an irreducible representation of SXk , and thus

Sλ
0 ⊗C · · ·⊗C Sλ

ℓ−1

is an irreducible representation of the subgroup Sν, and composed with the canonical projection µn
ℓ
⋊S(ν) → S(ν)

we obtain an irreducible representation of µn
ℓ
⋊S(ν) ⊆G(ℓ,1,n). Finally, we set

S̃λ = IndG(ℓ,1,n)
µn
ℓ
⋊S(ν)

(Sλ
0 ⊗C · · ·⊗C Sλ

ℓ−1
),

where

λ= (λ0, . . . ,λℓ−1) ∈ Parℓ(n).

By [71, Proposition 25], the collection {S̃λ | λ ∈ Parℓ(n)} is a complete family of pairwise non-isomorphic irre-

ducible complex representations of G(ℓ,1,n).

It can be shown as in [64, Section 8] that the characters of the irreducible representations Sλ obtained in

the previous sections satisfy also the Stembridge’s Murnaghan-Nakayama rule for wreath products and thus S̃λ is

isomorphic to Sλ as representations of G(ℓ,1,n).

REMARK 2.18. In [47, Theorem 2.15] T. Halverson and A. Ram prove a Murnaghan-Nakayama type rule for the

characters of irreducible representations of Ariki-Koike algebras which specializes to Stembridge’s rule in the cy-

clotomic case.
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2.3.5. Examples. We focus on the special case when the ℓ-partition (λ0, . . . ,λℓ−1) has only one nonempty

entry, that is, we assume that there is j ∈ {0, . . . ,ℓ−1} such that λi =∅ for i ̸= j . If λ j = λ is the only nonempty

partition, we write jλ to denote the corresponding ℓ-partition.

EXAMPLE 2.19 (The trivial representation). Let j ∈ {0, . . . ,ℓ−1} and consider the ℓ-partition j (n). The only standard

Young tableau is given by

T =
(
∅, . . . ,∅ , 1 2 · · · n ,∅, . . . ,∅

)
.

Then note that β(T −1(i )) = j for all i ∈ {1, . . . ,n} and that si ·T ̸∈ SYT( j (n)) for all 1 ≤ i ≤ n −1. Thus by (2.16) and

(2.17) we have that

ζi · vT = ζ j vT and si · vT = 1.

In particular, the trivial representation occurs precisely when j = 0, that is

triv = S((n),∅,...,∅).

EXAMPLE 2.20 (The determinant representation). Again take j ∈ {0, . . . ,ℓ−1} and consider the ℓ-partition j (1n).

The only standard Young tableau in this case is

T =

∅, . . . ,∅ ,

1

2
...

n

,∅, . . . ,∅

 ,

and we have

ζi · vT = ζ j vT and si · vT =−vT

In particular, an element w = ζk1
1 · · ·ζkn

n u where ki ∈Z and u ∈ Sn acts by

w · vT = ζ j
∑

ki det(u)vT .

When j = 1, we obtain

w · vT = ζ
∑

ki det(u)vT = det(w)vT

so that the determinant representation of G(ℓ,1,n) is

det = S(∅,(1n ),∅,...,∅).

The inverse of the determinant, that is, the one dimensional representation given by w 7→ det(w)−1 is also an

irreducible representation, which we denote by det−1. Note that for w = ζk1
1 · · ·ζkn

n u as above we have that

w · vT = det(w)vT

precisely when j = ℓ−1, because det(w)−1 = ζ−
∑

ki det(u). This means that

det−1 = S(∅,...,∅,(1n )).

Also, it is clear that

det =∧n(Cn) and det−1 =∧n((Cn)∗).

PROPOSITION 2.21. If λ ∈ Parℓ(n), we have

Sλ⊗det−1 = Sλ
t
.
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PROOF. Given T ∈ SYT(λ), write

T = (T0, . . . ,Tℓ−1) and T ′
k (i , j ) = Tk ( j , i )

for 0 ≤ k ≤ ℓ−1 and (i , j ) ∈ (λk )t . Then

t (T ) = (T ′
1,T ′

2, . . . ,T ′
ℓ−1,T ′

0) ∈ SYT(λt )

and the map

t : SYT(λ) → SYT(λt )

T 7→ t (T )

is a Sn-equivariant bijection. Note that for any 1 ≤ i ≤ n we have

β(t (T )−1(i )) ≡β(T −1(i ))−1 (mod ℓ).

Let {vT | T ∈ SYT(λ)} be a normalized Gelfand-Tsetlin basis for Sλ. Identify det−1 with C as vector spaces and

write v ′
T = vT ⊗1 ∈ Sλ⊗det−1. From (2.16) we have that

ζi · v ′
T = ζi · vT ⊗ζi ·1 = ζβ(T −1(i )) det(ζi )−1vT ⊗1 = ζβ(T −1(i ))−1v ′

T = ζβ(t (T )−1(i ))

The fact that t is Sn-equivariant and that transposition changes the signs of the contents, shows that t (T ) satisfies

a formula analogous to (2.17). Thus {v ′
T | T ∈ SYT(λ)} is a Gelfand-Tsetlin basis for Sλ⊗det−1 and also for Sλ

t
. □

2.4. Drinfel’d Hecke algebras and the Poincaré-Birkhoff-Witt property

During this section, K will denote an arbitrary commutative C-algebra.

2.4.1. Drinfel’d Hecke algebra. Let G be a finite group and V be a free KG-module of finite rank. Then G

acts on V ⊗n for all n ≥ 0 and hence by graded algebra automorphisms on the tensor algebra

T (V ) = ⊕
n≥0

V ⊗n .

In the algebra T (V )⋊G the following identities are easily verified:

g [x, y]g−1 = [g (x), g (y)], x, y ∈V , g ∈G (2.19)

and

[g , x] = (g (x)−x)g , x ∈V , g ∈G . (2.20)

REMARK 2.22. The algebra T (V )⋊G is isomorphic to the quotient of the tensor algebra T (V ⊕KG) by the two-

sided ideal I generated by the elements

g ⊗x − g (x)⊗ g , x ∈V , g ∈G

and

g1 ⊗ g2 − g1g2, g1, g2 ∈G .

Consider a G-indexed family (〈·, ·〉g )g∈G of skew-symmetric K-bilinear forms on V . The Drinfel’d Hecke alge-

bra H=H(V ,G) associated to this data is the quotient of the algebra T (V )⋊G by the two-sided ideal generated by

the elements

[x, y]− ∑
g∈G

〈x, y〉g g , x, y ∈V.

Equivalently, H is the quotient of T (V ⊕KG) by the relations

(H1) g ⊗h − g h for g ,h ∈G ,

(H2) g ⊗x ⊗ g−1 − g (x) for g ∈G and x ∈V , and
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(H3) [x, y]− ∑
g∈G

〈x, y〉g g for x, y ∈V .

As usual, we shall omit the ⊗ symbol to ease the notation.

2.4.2. The PBW property. Let B = {x1, . . . , xn} be a K-linear basis of V . We say that the Drinfel’d Hecke alge-

bra H satisfies the Poincaré-Birkhoff-Witt property (PBW property for short) if the set

BH = {xi1 xi2 · · ·xip g | 1 ≤ i1 ≤ ·· · ≤ ip ≤ n, n ∈Z≥0 and g ∈G}

is a K-linear basis for H.

THEOREM 2.23 (PBW theorem for the Drinfel’d Hecke algebra). The following statements about H are equivalent.

(i) H satisfies the PBW property.

(ii) The following two conditions hold.

(a) For any x, y ∈V and g ,h ∈G,

〈h(x),h(y)〉hg h−1 = 〈x, y〉g .

(b) For all x, y, z ∈V and g ∈G,

〈x, y〉g (g (z)− z)+〈y, z〉g (g (x)−x)+〈z, x〉g (g (y)− y) = 0.

The following proof is sketched in [37], but in order to provide the complete argument, I include here a

detailed proof.

PROOF. Suppose (i) holds. For x, y ∈V and h ∈G we have∑
g∈G

〈h(x),h(y)〉g g = [h(x),h(y)] = h[x, y]h−1 = ∑
g∈G

〈x, y〉g hg h−1 = ∑
g∈G

〈x, y〉h−1g h g

and equating coefficients in both sides, we obtain

〈h(x),h(y)〉g = 〈x, y〉h−1g h ,

which is equivalent to (a). Now let x, y, z ∈V , then by the Jacobi identity we have

0 = [[x, y], z]+ [[y, z], x]+ [[z, x], y]

=
 ∑

g∈G
〈x, y〉g g , z

+
 ∑

g∈G
〈y, z〉g g , x

+
 ∑

g∈G
〈z, x〉g g , y


= ∑

g∈G
(〈x, y〉g [g , z]+〈y, z〉g [g , x]+〈z, x〉g [g , y])

= ∑
g∈G

(〈x, y〉g (g (z)− z)g +〈y, z〉g (g (x)−x)g +〈z, x〉g (g (y)− y)g )

= ∑
g∈G

(〈x, y〉g (g (z)− z)+〈y, z〉g (g (x)−x)+〈z, x〉g (g (y)− y))g ,

and as BH is linearly independent, we deduce (b).

Now, assume that (a) and (b) hold. We realize H as the quotient of T (V ⊕KG) by the relations (H1)-(H3). For

each p ≥ 0, let

Sp = spanK{xi1 · · ·xiq g | q ≤ p, 1 ≤ i1 ≤ ·· · ≤ iq , g ∈G},

and set

S = ⋃
p≥0

Sp .
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Note that 1 ∈ Sp for all p ≥ 0. We prove that S is a left ideal of H, which implies that S = H and hence that BH

generates H as a K-vector space. To prove that S is a left ideal, we show by induction on p ≥ 0 that for any xi ∈ B

and h ∈ G we have that xi Sp ⊆ Sp+1 and hSp ⊆ Sp+1. For p = 0 there is nothing to prove. First take xi ∈ B and

xi1 · · ·xiq g ∈ Sp . There are two possibilities:

• If i ≤ i1, then xi xi1 · · ·xiq g ∈ Sp+1 by definition.

• If i > i1, then we have

xi xi1 xi2 · · ·xiq g = ([xi , xi1 ]+xi1 xi )xi2 · · ·xiq g

= ∑
k∈G

〈xi , xi1〉k kxi2 · · ·xiq g +xi1 xi xi2 · · ·xiq g .

By induction hypothesis, kxi2 · · ·xiq g ∈ Sp ⊆ Sp+1 and hence∑
k∈G

〈xi , xi1〉k kxi2 · · ·xiq g ∈ Sp+1.

So we need to prove that xi1 xi xi2 · · ·xiq g ∈ Sp+1. If i ≤ i2, we are done. So assume that i > i2 and thus

xi1 xi xi2 · · ·xiq g = xi1 ([xi , xi2 ]+xi2 xi )xi3 · · ·xiq g

= xi1

( ∑
k∈G

〈xi , xi2〉k k

)
xi3 · · ·xiq g +xi1 xi2 xi xi3 · · ·xiq g ,

and the result follows by induction.

Let h ∈G and xi1 xi2 · · ·xiq g ∈ Sp , then

hxi1 xi2 · · ·xiq g = ([h, xi1 ]+xi1 h)xi2 · · ·xiq g

= ((h(xi1 )−xi1 )h +xi1 h)xi2 · · ·xiq g

= h(xi1 )hxi2 · · ·xiq g ,

but h(xi1 ) is a linear combination of the elements of B and hxi2 · · ·xiq g ∈ Sp by induction hypothesis, so by the

first part of the induction, hxi1 xi2 · · ·xiq g ∈ Sp+1.

Now for the interesting part: We prove that BH is linearly independent. For this we construct a faithful H-

module that ought to be the regular representation on H. Let y1, . . . , yn and tg for g ∈G be a set of formal symbols,

and consider the K-vector space M spanned by words of the form

yi1 · · · yip tg for 1 ≤ i1 ≤ ·· · ≤ ip , g ∈G .

For each p ≥ 0 set

M≤p = spanK{yi1 · · · yiq tg | q ≤ p, 1 ≤ i1 ≤ ·· · ≤ ip , g ∈G}.

For each x ∈V and h ∈G we define endomorphisms

ℓx ,ℓh : M → M

recursively as operators M≤p → M≤p+1. To define ℓx on M≤p we first define ℓxi for xi ∈ B and if x =∑n
j=1 a j x j we

set

ℓx =
n∑

j=1
a jℓx j .

For p = 0, define

ℓxi (tg ) = yi tg and ℓh(tg ) = thg ,
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and for p ≥ 1,

ℓxi (yi1 yi2 · · · yiq tg ) =

yi yi1 yi2 · · · yiq tg if i ≤ i1,

ℓxi1
ℓxi (yi2 · · · yiq tg )+∑

k∈G 〈xi , xi1〉kℓk ((yi2 · · · yiq tg ) if i > i1

and

ℓh(yi1 yi2 · · · yiq tg ) = ℓh(xi1 )ℓh(yi2 · · · yiq tg ).

We will prove that these operators ℓ• satisfy the relations (H1)-(H3). Being precise, we will prove that

(L1) ℓhℓk = ℓhk for h,k ∈G ;

(L2) ℓhℓx = ℓh(x)ℓh for x ∈V and h ∈G ; and

(L3) [ℓx ,ℓy ] =∑
g∈G 〈x, y〉gℓg .

Once this relations are proved, we have that there is K-algebra homomorphism

ℓ :H→ EndK(M)

so M is a H-module. Thus, if we have a finite sum

s := ∑
1≤i1≤···≤ip≤n

g∈G

ai1,...,ip ;g xi1 · · ·xip g = 0

then

ℓ(s)(t1) = ∑
1≤i1≤···≤ip≤n

g∈G

ai1,...,ip ;g yi1 · · · yip tg = 0

and consequently ai1,...,ip ;g = 0, giving the desired linear independence. All that’s left is to check relations (L1)–(L3).

Go grab a big coffee and get cozy — it’s going to be a slow and boring (but straightforward) calculation.

We prove by induction on p that relations (L1)-(L3) are satisfied when the operators are restricted to M≤p .

We write (Lm)p to denote the relation (Lm) restricted to the subspace M≤p , for m = 1,2,3.

For p = 0 and g ,h,k ∈G we have

ℓhℓk (tg ) = ℓh(tkg ) = thkg = ℓhk (tg ),

giving (L1). Now, if h, g ∈G and xi ∈V ,

ℓhℓxi (tg ) = ℓh(yi tg ) = ℓh(xi )ℓh(tg )

so (L2) is satisfied for p = 0 but xi ∈ B . If x ∈V we expand x =∑
ai x j and use linearity to stablish (L2) for general

x ∈V . Finally for xi , x j ∈ B , without loss of generality assume that i < j (when x = y , both sides of (L3) are equal

to zero because the skew-symmetry of 〈·, ·〉g ), then

[ℓxi ,ℓx j ](tg ) = ℓxi (ℓx j (tg ))−ℓx j (ℓxi (tg ))

= ℓxi (y j tg )−ℓx j (yi tg )

= yi y j tg −ℓxi ℓx j (tg )− ∑
k∈G

〈x j , xi 〉kℓk (tg )

= ∑
k∈G

〈xi , x j 〉kℓk (tg )

proving (L3) for p = 0 and x = xi , y = y j . For general x, y ∈V the result follows by bilinearity.

Now we assume that p > 0 and that (L1), (L2) and (L3) hold when restricted to M≤p−1. Take xi ∈ B and h ∈G ,

and prove (L2) by induction on i . If i ≤ i1 we have

ℓhℓxi (yi1 yi2 · · · yiq tg ) = ℓh(yi yi1 yi2 · · · yiq tg )
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= ℓh(xi )ℓh(yi1 yi2 · · · yiq tg )

giving (L2) in this case. If i > i1, by the induction hypothesis on i and by (L1)p−1

ℓhℓxi (yi1 yi2 · · · yiq tg ) =ℓh

(
ℓxi1

ℓxi (yi2 · · · yiq tg )+ ∑
k∈G

〈xi , xi1〉kℓk (yi2 · · · yiq tg )

)
(L1)p−1=∗ ℓh(xi1 )ℓhℓxi (yi2 · · · yiq tg )+ ∑

k∈G
〈xi , xi1〉kℓhk (yi2 · · · yiq tg )

(L2)p−1= ℓh(xi1 )ℓh(xi )ℓh(yi2 · · · yiq tg )+ ∑
k∈G

〈xi , xi1〉kℓhk (yi2 · · · yiq tg )

=(ℓh(xi )ℓh(xi1 ) + [ℓh(xi1 ),ℓh(xi )])ℓh(yi2 · · · yiq tg )+ ∑
k∈G

〈xi , xi1〉kℓhk (yi2 · · · yiq tg )

(L3)p−1= ℓh(xi )ℓh(xi1 )ℓh(yi2 · · · yiq tg )+ ∑
k∈G

〈h(xi1 ),h(xi )〉kℓkℓh(yi2 · · · yiq tg )

+ ∑
k∈G

〈xi , xi1〉kℓhk (yi2 · · · yiq tg )

(L2)p−1= ℓh(xi )ℓhℓxi1
(yi2 · · · yiq tg )+ ∑

k∈G
〈xi1 , xi 〉h−1khℓkh(yi2 · · · yiq tg )

− ∑
k∈G

〈xi1 , xi 〉kℓhk (yi2 · · · yiq tg )

=ℓh(xi )ℓh(yi1 (yi2 · · · yiq tg )+ ∑
k∈G

〈xi1 , xi 〉h−1kℓk (yi2 · · · yiq tg )

− ∑
k∈G

〈xi1 , xi 〉h−1kℓ(yi2 · · · yiq tg )

=ℓh(xi )ℓh(yi1 (yi2 · · · yiq tg ),

where in =∗ we used the induction hypothesis on i . This completes the inductive step for (L2), so in particular,

we are free to use (L2)p . Now, for (L1), we have

ℓhℓk (yi1 yi2 · · · yiq tg ) = ℓhℓk(xi1 )ℓk (yi2 · · · yiq tg )

(L2)p= ℓhk(xi1 )ℓhℓk (yi2 · · · yiq tg )

(L1)p−1= ℓhk(xi1 )ℓhk (yi2 · · · yiq tg )

(L2)p−1= ℓhkℓxi1
(yi2 · · · yiq tg )

= ℓhk (yi1 yi2 · · · yiq tg ),

which completes the inductive step for (L1), and we are free to use (L1)p also.

Finally, we complete the inductive step for (L3). By bilinearity we can take x = xi and y = x j and by skew-

symmetry we can assume that i < j (for x = y both sides of (L3) equal zero). We proceed by induction on i . There

are two possibilities according to whether i ≤ i1 or i1 < i < j .

• i ≤ i1. In this case we have

[ℓxi ,ℓx j ](yi1 yi2 · · · yiq tg ) =ℓxi ℓx j (yi1 yi2 · · · yiq tg )−ℓx j (yi yi1 yi2 · · · yiq tg )

=ℓxi ℓx j (yi1 yi2 · · · yiq tg )−ℓxi ℓx j (yi1 yi2 · · · yiq tg )

− ∑
k∈G

〈x j , xi 〉kℓk (yi1 yi2 · · · yiq tg )

= ∑
k∈G

〈xi , x j 〉kℓk (yi1 yi2 · · · yiq tg ),
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as desired.

• i > i1. Write α= yi2 · · · yiq tg . Then

[ℓxi ,ℓx j ](yi1 yi2 · · · yiq tg ) =ℓxi ℓx j (yi1 yi2 · · · yiq tg )−ℓx j ℓxi (yi1 yi2 · · · yiq tg )

=ℓxi

(
ℓxi1

ℓx j (α)+ ∑
k∈G

〈x j , xi1〉kℓk (α)

)

−ℓx j

(
ℓxi1

ℓxi (α)+ ∑
k∈G

〈xi , xi1〉kℓk (α)

)
=[ℓxi ,ℓxi1

]ℓx j (α)+ℓxi1
ℓxi ℓx j (α)+ ∑

k∈G
〈x j , xi1〉kℓxi ℓk (α)

− [ℓx j ,ℓxi1
]ℓxi (α)−ℓxi1

ℓx j ℓxi (α)− ∑
k∈G

〈xi , xi1〉kℓx j ℓk (α).

By the induction hypothesis on i we have

[ℓxi ,ℓx j ](yi1 yi2 · · · yiq tg ) = ℓxi1
[ℓxi ,ℓx j ](α)+ ∑

k∈G
〈xi , xi1〉kℓkℓx j (α)+ ∑

k∈G
〈x j , xi1〉kℓxi ℓk (α)

− ∑
k∈G

〈x j , xi1〉kℓkℓxi (α)− ∑
k∈G

〈xi , xi1〉kℓx j ℓk (α)

(L3)p−1= ∑
k∈G

〈xi , x j 〉kℓxi1
ℓk (α)+ ∑

k∈G
〈xi , xi1〉k [ℓk ,ℓx j ](α)+ ∑

k∈G
〈x j , xi1〉k [ℓxi ,ℓk ](α)

= ∑
k∈G

〈xi , x j 〉kℓkℓxi1
(α)+ ∑

k∈G

(
〈xi , x j 〉k [ℓxi1

,ℓk ]+〈xi , xi1〉k [ℓk ,ℓx j ]+〈x j , xi1〉k [ℓxi ,ℓk ]
)

(α)

= ∑
k∈G

〈xi , x j 〉kℓk (yi1 yi2 · · · yiq tg )

+ ∑
k∈G

(
〈x j , xi 〉kℓk(xi1 )−xi1

+〈xi , xi1〉kℓk(x j )−x j +〈x j , xi1〉kℓk(xi )−xi

)
(yi1 yi2 · · · yiq tg )

= ∑
k∈G

〈xi , x j 〉kℓk (yi1 yi2 · · · yiq tg )

+ ∑
k∈G

ℓ〈x j ,xi 〉k (k(xi1 )−xi1 )+〈xi ,xi1 〉k (k(x j )−x j )+〈xi1 ,x j 〉k (k(xi )−xi )((yi1 yi2 · · · yiq tg )

= ∑
k∈G

〈xi , x j 〉kℓk (yi1 yi2 · · · yiq tg ),

where in the last equality we used (b).

The proof is now complete. □

We denote by S(V ) the symmetric algebra on V , that is,

S(V ) = ⊕
n≥0

Sn(V )

where Sn(V ) is the n-th symmetric power of V , which is, by definition, Sn(V ) = V ⊗n/Sn and where the action of

the symmetric group Sn on V ⊗n is given by

w · (v1 ⊗·· ·⊗ vn) = vw−1(1) ⊗·· ·⊗ vw−1(n), v1, . . . , vn ∈V , w ∈ Sn .

Recall that when K is an infinite field, S(V ) ∼=K[V ∗] is (isomorphic to) the algebra of polynomial functions on V ∗

(because V is of finite dimension). We denote by ρ : S(V ) → T (V ) the section of the natural projection T (V ) →
S(V ) defined by

ρ(v1 · · ·vn) = 1

n!

∑
w∈Sn

vw(1) ⊗·· ·⊗ vw(n).

Also, denote by π : T (V )⋊W →H the canonical projection homomorphism.

The following corollary is immediate:
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COROLLARY 2.24. The following conditions are equivalent.

(i) H satisfies the PBW property.

(ii) The multiplication map

S(V )⊗KKG → H

f ⊗ g 7→ f g

is a vector space isomorphism.

(iii) Any element h ∈H can be uniquely written in the form

h = ∑
g∈G

(π◦ρ)(hg )g

where hg ∈ S(V ) for each g ∈G.

A Drinfel’d Hecke algebra that satisfies the PBW property is also called a graded Hecke algebra (see for exam-

ple [67]). These algebras where originally defined by Drinfel’d in [22].

2.4.3. The Ram-Shepler classification. Assume K = C. The PBW theorem implies that the skew-symmetric

bilinear forms (〈·, ·〉g )g∈G are completely determined by the conjugacy classes of elements in G , provided that the

PBW property holds. Note that for each collection (〈·, ·〉g )g∈G of G-indexed skew-symmetric bilinear forms we can

define a function

a : G →
(∧2V

)∗
, g 7→ 〈·, ·〉g

and conversely, any function a : G →
(∧2V

)∗
determines such a collection if we set

〈u, v〉g = a(g )(u ∧ v).

Thus, the set of all the G-indexed collections of skew-symmetric bilinear forms on V is a C-vector space isomor-

phic to

S(G ,V ) := HomSet

(
G ,

(∧2V
)∗)

.

We denote by S0(G ,V ) the subset of S(G ,V ) consisting of all G-indexed families of skew-symmetric bilinear forms

on V that satisfy conditions (a) and (b) of Theorem 2.23, that is, such that the Drinfel’d Hecke algebra that they

determine satisfies the PBW property. This is also a vector space. The following theorem due to A. Ram and A.

Shepler gives a more concise description of the space S0(G ,V ).

THEOREM 2.25. [67, Theorem 1.9] For each g ∈G \ {1}, there exists a ∈ S0(V ,G) such that a(g ) ̸= 0 if and only if the

following conditions are satisfied:

(1) rad(a(g )) = fixV (g ),

(2) codimV fixV (g ) = 2, and

(3) If V⊥(g ) = {v ∈V | a(g )(u ∧ v) = 0 for all u ∈ fixV (g )}, then det(h⊥) = 1 for all h ∈CG (g ), where

h⊥ = h|V⊥(g ) : V⊥(g ) →V⊥(g ).

Moreover, if d is the number of conjugacy classes of elements g ∈G \ {1} that satisfy (1), (2) and (3), then

dimC S0(G ,V ) = d +dimC

(∧2V
)G

.

Here, if a is any symmetric or skew-symmetric bilinear form on V , the set rad(a) is the radical of a, that is

rad(a) = {v ∈V | a(v,u) = 0 for all u ∈V },

and CG (g ) = {h ∈G | g h = hg } is the centralizer of g in G .

Using this result, one obtains the following
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THEOREM 2.26. The next table lists all the triples (ℓ,m,n) such that the vector space S0(G(ℓ,m,n),Cn) contains a

function a such that a(w) ̸= 0 for some w ̸= 1. Moreover, it also gives a representative 1 ̸= w ∈G(ℓ,m,n) of the class

with a(w) ̸= 0.

Triple (ℓ,m,n) Group Representative w with a(w) ̸= 0

(1,1,n) Sn (1 2 3)

(2,1,n), n ≥ 3 W (Bn) ζ1(1 2), (1 2 3)

(2,2,n), n ≥ 3 W (Dn) (1 2 3)

(ℓ,ℓ,2) Dihℓ = I2(ℓ) ζk
1ζ

ℓ−k
2 , 0 < k < ℓ/2

(2m,m,2), m ≡ 1 (mod 2) − ζm
2 (1 2)

(ℓ,ℓ,3), ℓ ̸≡ 0 (mod 3) − (1 2 3)

(2m.m.3) , m ̸≡ 0 (mod 3) or m ̸= 1 − (1 2 3).

In particular, note that for ℓ > 2 and n > 3 the space S0(G(ℓ,m,n),Cn) contains only those functions a :

G(ℓ,m,n) →
(∧2Cn

)∗
such that a(w) = 0 for all w ̸= 1. By condition (a) in Theorem 2.23 we must have that

a(1) ∈
((∧2V

)∗)G

. Consequently we have

COROLLARY 2.27. If ℓ> 2 and n > 3, we have

S0(G(ℓ,m,n),Cn) ∼=
((∧2V

)∗)G

This tells us that the Drinfel’d Hecke algebra maybe is not the right version of a graded Hecke algebra for

the complex reflection groups G(ℓ,m,n). This motivated A. Ram and A. Shepler to define another version of

a “graded” Hecke algebra for these groups, which is now call the degenerated cyclotomic affine Hecke algebra,

which will be studied in the next section.

2.4.4. The symplectic case. Another important observation is that the fact that 〈·, ·〉g ̸= 0 requires

codimfixV (g ) = 2,

suggests that some sort of sympletic reflection structure is more natural in this context. To be precise, let (V ,ω)

be a symplectic vector space and let

Sp(V ,ω) = {s ∈ GL(V ) |ω(s(x), s(y)) =ω(x, y) for all x, y ∈V }

be the symplectic group of (V ,ω), that is, the group of symplectomorphisms of the space (V ,ω). A symplectic

reflection of V is an element s ∈ Sp(V ,ω) such that

codimfixV (s) = 2

and in this case, fixV (s) is called a symplectic reflection hyperplane. A finite subgroup G of Sp(V ,ω) is called a

symplectic reflection group if it is generated by the symplectic reflections it contains. Also, given a finite group G ,

a symplectic representation of G is a triple (V ,ω,ρ) where (V ,ω) is a symplectic vector space and

ρ : G → Sp(V ,ω)

is a group homomorphism. It follows in this case that for a ∈ S0(G ,V ) we have that if a(s) ̸= 0 for some s ∈G , then

codimfixV (s) = 2, that is, ρ(s) must be a symplectic reflection. Thus symplectic reflection groups provide a more

natural context to develop the theory of Drinfel’d Hecke algebras.
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The most natural example of a symplectic vector space is V = h∗⊕h where h is any finite dimensional complex

vector space. Here the usual pairing

〈·, ·〉 : h∗×h→C

extends to a symplectic form (still denoted by 〈·, ·〉) on h∗⊕h by declaring that each subspace h∗ and h is com-

pletely isotropic. Also, if (W,h) is a complex reflection group, then the representation of W in h∗⊕h is faithful

and moreover, is a symplectic representation (with respect to the symplectic form 〈·, ·〉). Also, each reflection

r ∈ W becomes a symplectic reflection in h∗⊕h and thus we can consider (W,h∗⊕h) as a symplectic reflection

group. This observation leads somewhat naturally to the consideration of Rational Cherednik algebras in the next

chapter.

2.5. Cyclotomic degenerate affine Hecke algebras

Consider the cyclotomic groups G(ℓ,1,n). The symmetric algebra S(Cn) is (up to the choice of a basis, which

we always choose to be the standard basis of Cn) the polynomial algebra1 C[u1, . . . ,un]. The cyclotomic degenerate

affine Hecke algebra of G(ℓ,1,n) is the quotient of C[u1, . . . ,un]⊗CG(ℓ,1,n) by the two sided ideal generated by

the elements

ζi u j −u j ζi , i , j = 1, . . . ,n,

si u j −u j si , j ̸= i , i +1,

si ui+1 −ui si −πi , i = 1, . . . ,n −1,

where, as in (2.12),

πi =
ℓ−1∑
k=0

ζk
i ζ

−k
i+1, i = 1, . . . ,n −1.

We denote this algebra by H(ℓ,n).

PROPOSITION 2.28. [67, Proposition 5.2] The map

ui 7→ φi , i = 1, . . . ,n

w 7→ w, w ∈G(ℓ,1,n)

extends to a surjective C-algebra homomorphism H(ℓ,n) →CG(ℓ,1,n).

We also have the following PBW theorem for the algebra H(ℓ,n).

THEOREM 2.29 (PBW theorem for H(ℓ,n)). The multiplication map

C[u1, . . . ,un]⊗CCG(ℓ,1,n) → H(ℓ,n)

f ⊗w 7→ f w

is a vector space isomorphism.

This theorem will be proved in the next chapter (Subsection 3.2.3) as a consequence of the PBW theorem for

Drinfel’d Hecke algebras and the existence of an embedding of H(ℓ,n) into the rational Cherednik algebra.

1We use u1, . . . ,un as indeterminates, to avoid a future change of notation where the indeterminates x1, . . . , xn will have other meaning.
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2.5.1. Some representations of H(ℓ,n). In what follows, we fix two nonnegative integers m and n, as well as

two ℓ-partitions,

λ⊢ℓ m +n and µ⊢ℓ m.

Consider the C-algebra homomorphism

αn,m+n : H(ℓ,n) → CG(ℓ,1,m +n)

ui 7→ φi+m , i = 1, . . . ,n,

si 7→ si+m , i = 1, . . . ,n −1,

ζi 7→ ζi+m , i = 1, . . . ,n.

The image of αn,m+n is contained in the centralizer

Zn,m+n(CG(ℓ,1,•)) = Z (CG(ℓ,1,m +n),CG(ℓ,1,m)),

and consequently, the vector space

Sλ\µ = HomCG(ℓ,1,m)(Sµ,Resm+n
m (Sλ))

has a natural structure of Hℓ,n-module.

Let {vT | T ∈ SYT(ν)} be a Gelfand-Tsetlin basis for Sν, ν being an arbitrary ℓ-partition. For each U ∈ SYT(λ\µ)

define

ψU : Sµ → Resm+n
m (Sλ)

vT 7→ vT∪U .

PROPOSITION 2.30 (Young seminormal form for skew shapes). We have that Sλ\µ = 0 unless µ ⊆ λ in which case

the set

{ψU |U ∈ SYT(λ\µ)}

is a C-basis for Sλ\µ.

PROOF. This is an application of Theorem 2.17. If µ ̸⊆λ then |Resm+n
m (Sλ) : Sµ| = 0 and thus Sλ\µ = 0. If µ⊆λ,

then

|Resm+n
m (Sλ) : Sµ| = dimHomCG(ℓ,1,m)(Sµ,Resm+n

m (Sλ)) = dimSλ\µ,

and also

|Resm+n
m (Sλ) : Sµ| = |{µ=λ0 ↗λ1 ↗···↗λs =λ}| = |SYT(λ\µ)|.

Thus the dimension of Sλ\µ is equal to the cardinality of the set |SYT(λ\µ)|. The set {ψU |U ∈ SYT(λ\µ)} is clearly

a linearly independent set in Sλµ, with cardinality dimSλ\µ and hence a C-basis for Sλ\µ. □

REMARK 2.31. Note that if λ′ and µ′ can be obtained by the same diagonal slides performed on λ and µ, then

the spectral information of the Jucys-Murphy elements, remains unchanged, as it only depends on the contents

on the boxes and the values of the positioning function β (and the tableaux, of course, but any slide induces a

bijection between tableaux). In particular, this implies that Sλ\µ ∼= Sλ
′\µ′ .
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2.5.2. Skew-shape indexed representations. Given a complex number α ∈C we define

tα : H(ℓ,n) → H(ℓ,n)

ui 7→ ui +α,

w 7→ w.

(2.21)

It is easy to see that tα is indeed a well defined automorphism of H(ℓ,n).

There is another automorphism of H(ℓ,n) defined by

ρ H(ℓ,n) → H(ℓ,n)

ui 7→ −un−i+1,

ζi 7→ ζn−i+1,

si 7→ sn−i .

(2.22)

Note that if w0 is the largest element in Sn with respect to Bruhat order or equivalently, the longest element of

the Coxeter system (Sn , {s1, . . . , sn−1}) [12, Chapitre VI, § 1, No. 6, Corollaire 3], then w2
0 = 1 and

ρ(ζi ) = w0ζi w0 and ρ(si ) = w0si w0,

so both ρ and tα preserve the group algebra CG(ℓ,1,n) and moreover are induced by an inner automorphism of

G(ℓ,1,n).

If M is an H(ℓ,n)-module, then the twisted module θM (recall (1.4)), for θ = tα or θ = ρ is isomorphic to M

as a CG(ℓ,1,n)-module.

Now, let D ⊆ R2 × (Z/ℓZ) be a ℓ-skew-shape and let D1, . . . ,Ds be its connected components. After diagonal

slides, we can assume that for each (x, y) ∈ Di we have y ∈Z and that the sets {y | (x, y) ∈ Di } are mutually disjoint,

for i = 1, . . . , s. This means that there are α1, . . . ,αs ∈ C, integral skew-shapes λ1 \µs , . . . ,λs \µs and a skew-shape

λ\µ such that

Di =λi \µi + (αi ,0), i = 1, . . . , s,

the skew-shape λ\µ equals the disjoint union

λ\µ=
s∐

i=1
λi \µi

and the integral skew-shapes λ1 \µ1, . . . ,λs \µs are the connected components of λ \µ. Nor the αi ’s the integral

skew-shapes λi \µi or the skew-diagram λ\µ are uniquely determined by D . Define

SD = IndH(ℓ,n)
H(ℓ,|λ1\µ1|)×···×H(ℓ,|λs \µs |)(

tα1 Sλ1\µ1 ⊗·· ·⊗ tαs Sλs \µs )

It follows from Remark 2.31 that SD is independent, up to isomorphism, of the choices of the αi ’s and the λi \µi ’s.

Moreover, as tαi are the identity on the corresponding group algebra, we have that

ResH(ℓ,n)
CG(ℓ,1,n)

∼= Sλ\µ.

2.5.3. Cyclotomic Littlewood-Richardson numbers. Again, fix nonnegative integers m and n and ℓ-partitions

λ⊢ℓ m +n, µ⊢ℓ m and ν⊢ℓ n. By tensor-Hom adjunction and Frobenius reciprocity, we have the following nat-

ural isomorphisms

HomCG(ℓ,1,n)(Sν,HomCG(ℓ,1,m)(Sµ,Resm+n
m (Sλ))) ∼= HomC(G(ℓ,1,m)×G(ℓ,1,n))(Sµ⊗Sν,Resm+n

m (Sλ))

∼= HomCG(ℓ,1,m+n)(IndG(ℓ,1,m+n)
G(ℓ,1,m)×G(ℓ,1,n)(Sµ⊗Sν),Sλ)
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We shall write Indm+n
m,n instead of (IndG(ℓ,1,m+n)

G(ℓ,1,m)×G(ℓ,1,n) to ease notation. The cyclotomic Littlewood-Richardson num-

bers are defined as the integers

cλµν = dimCHomCG(ℓ,1,m+n)(Indm+n
m,n (Sµ⊗Sν),Sλ).

Define also

cλ\µ
ν = dimCHomCG(ℓ,1,n)(Sν,HomCG(ℓ,1,m)(Sµ,Resm+n

m (Sλ))),

so that we have

cλ\µ
ν = cλµν. (2.23)

A simple application of (7.3) and (9.4) of Appendix B to Chapter I in [56] shows the following

PROPOSITION 2.32. Let λ= (λ0, . . . ,λℓ−1), µ= (µ0, . . . ,µℓ−1) and ν= (ν0, . . . ,νℓ−1) be three ℓ-partitions. Then

cλµν =
ℓ−1∏
j=0

cλ
j

µ jν j .

Following the notation of 2.5.2, we define

cD
ν = cλ\µ

ν ,

so that as CG(ℓ,1,n)-modules, we have

SD ∼=
⊕
ν

(Sν)⊕cD
ν .

2.5.4. The cyclotomic Vazirani theorem on independence of characters. We present a cyclotomic version

of M. Vazirani’s theorem on the linear independence of characters [76, Theorem 5.11].

Consider the commutative algebra u1 =C[u, x]/(xℓ−1). We write ξ for the image of x in u1. For any complex

number a ∈C and any integer b ∈ {0, . . . ,ℓ−1}, set

L(a,ζb) =C

and give it a u1-module structure by declaring

u · z = az and ξ · z = ζb z, z ∈C.

This is obviously an irreducible u1-module. Conversely, if L is an irreducible u1-module, as u1 is a finitely gener-

ated commutative C-algebra, by the Nullstellensatz, L must be one-dimensional, so we can assume, with no loss

of generality, that L =C as C-vector space. Then x acts by an scalar a and as ξ has multiplicative order ℓ it must

act by a ℓ-root of unity, namely ζb for some b ∈ {0, . . . ,ℓ−1}. Thus L = L(a,b). Hence every irreducible u1-module

is isomorphic to L(a,ζb) for some a ∈C and some b ∈Z/ℓZ.

Now, let u be the (commutative) subalgebra of H(ℓ,n) generated by u1, . . . ,un and ζ1, . . . ,ζn . It is clear that

u= u1 ⊗C u1 ⊗C · · ·⊗C u1 (n times).

Hence the irreducible u-modules are of the form

L(a1,ζb1 , . . . , an ,ζbn ) := L(a1,ζb1 )⊗·· ·⊗L(an ,ζbn ),

that is, the irreducible u-modules are parametrized by points in (C×µℓ)n .

The induction functor

IndH(ℓ,n)
u : u-Mod → H(ℓ,n)-Mod

is exact, because by the PBW theorem, H(ℓ,n) is a free u-module: the multiplication map

Cµn
ℓ ⊗CCSn →CG(ℓ,1,n)
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provides a vector space isomorphism, thus by the PBW theorem, we obtain an isomorphism of vector spaces

u⊗CCSn
∼=C[u1, . . . ,un]⊗CCµℓ⊗CCSn

∼= H(ℓ,n).

Thus the elements of Sn are a free basis of H(ℓ,n) as u-module.

Let K (H(ℓ,n)) be the Grothendieck group of the category of finite dimensional H(ℓ,n)-modules and K (u) the

category of finite dimensional u-modules. The restriction functor, being exact, induces a group homomorphism

ch : K (H(ℓ,n)) → K (u)

[M ] 7→ [ResH(ℓ,n)
u (M)].

If M is a finite dimensional H(ℓ,n)-module, we define the formal character of M as

ch(M) = ch([M ]).

THEOREM 2.33. The map ch : K (H(ℓ,n)) → K (u) is injective.

The proof of this theorem is completely analogous to that given in [52, Theorem 5.3.1], so we omit it.

2.6. Dunkl operators

We know review the construction and elementary properties of Dunkl operators. These are commutative

differential-difference operators associated to complex reflection groups, and where introduced by C. Dunkl in

[23] for finite real reflection groups and then extended by C. Dunkl and E. Opdam in [24] for complex reflection

groups.

2.6.1. The parameter space. Let (W,h) be a complex reflection group, T = T (W ) its set of reflections. The

vector space CT of functions c : T →C is endowed with a natural action of W , namely

(w · c)(r ) = c(wr w−1), w ∈W, c ∈CT , r ∈ T.

We write CW = C to the note the space of fixed points under this action, that is, the set of functions c : T → C

such that c(wr w−1) = c(r ) for all r ∈ T and w ∈ W . We call C the parameter space of W . Then C is a C-vector

space whose dimension equals the number of conjugacy classes of reflections in W , that is

dimCC = |T /W |.

We usually write cr instead of c(r ) for r ∈ T and c ∈C .

Let A the set of reflecting hyperplanes of (W,h). Recall that for every H ∈A , the pointwise stabilizer WH of

H is a cyclic group consisting of 1 and those reflections r ∈ T such that fix(r ) = H . Moreover, if H ∈A , r ∈ TH =
WH \ {1} and w ∈W , we have that

w(H) = fix(wr w−1) and Ww(H) = wWH w−1.

Thus the vector space C is isomorphic to the space of functions

c :
⋃

H∈A
{H }× {1, . . . ,nH −1} →C

that are W -equivariant for the action

w · (H , j ) = (w(H), j ), w ∈W, H ∈A , 1 ≤ j ≤ nH −1.

Again, we write cH , j instead of c(H , j ). We can also consider the action of W on the set⋃
H∈A

{H }× (ŴH \ {1})



62 CHAPTER 2. CYCLOTOMIC GROUPS AND THEIR HECKE ALGEBRAS

where ŴH is the (multiplicative) group of characters of the abelian group WH . Note that W acts trivially on ŴH

and thus on this set by the formula

w · (H ,χ) = (w(H),χ), w ∈W, H ∈A , χ ∈ ŴH \ {1}.

Clearly there is a W -equivariant bijection⋃
H∈A {H }× {1, . . . ,nH −1} → ⋃

H∈A {H }× (ŴH \ {1})

(H , j ) 7→ (H ,χ j
H )

where χH is any generator of the cyclic group ŴH . Thus we can also consider the parameter space as the space

of functions

c :
⋃

H∈A
{H }× (ŴH \ {1}) →C

which are W -equivariant.

Now assume that W = G(ℓ,1,n) and h = Cn and let T0, . . . ,Tℓ−1 be the conjugacy classes of reflections de-

scribed in (2.2) and (2.3). There is an obvious isomorphism

C → Cℓ

c 7→ (c(T0),c(T1), . . . ,c(Tℓ−1))

where c(Tk ) = cr for any r ∈ Tk , which is well defined as c is invariant under conjugation. Nevertheless there is

another reparameterization which will be useful for us in this case. Define linear functionals

c0,d1, . . . ,dℓ−1 : C →C

by

c0 : c 7→ c(T0) and d j (c) =
ℓ−1∑
k=1

ζ j k c(Tk ), j = 1, . . . ,ℓ−1, c ∈C .

Then we obtain a linear map

C → Cℓ

c 7→ (c0(c),d1(c), . . . ,dℓ−1(c)).
(2.24)

In matrix form, we have 

1 0 0 · · · 0

0 ζ ζ2 · · · ζℓ−1

0 ζ2 ζ4 · · · ζ2(ℓ−1)

...
...

...
. . .

...

0 ζℓ−1 ζ2(ℓ−1) · · · ζ(ℓ−1)(ℓ−1)





c0

c1

c2

...

cℓ−1


=



c0

d1

d2

...

dℓ−1


The determinant of the matrix of this system is∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 0 0 · · · 0

0 ζ ζ2 · · · ζℓ−1

0 ζ2 ζ4 · · · ζ2(ℓ−1)

...
...

...
. . .

...

0 ζℓ−1 ζ2(ℓ−1) · · · ζ(ℓ−1)(ℓ−1)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= ζ1+2+···+(ℓ−1)

∣∣∣∣∣∣∣∣∣∣∣∣∣

1 ζ · · · ζℓ−2

1 ζ2 · · · ζ2(ℓ−2)

...
...

. . .
...

1 ζ(ℓ−1) · · · ζ(ℓ−1)(ℓ−2)

∣∣∣∣∣∣∣∣∣∣∣∣∣
= ζ

(ℓ
2

)
Vℓ−1(ζ,ζ2, . . . ,ζℓ−1),

where

Vn(ξ1, . . . ,ξn) = ∏
1≤i< j≤n

(ξi −ξ j )
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is the Vandermonde determinant. As ζi ̸= ζ j for 1 ≤ i ̸= j ≤ n, we deduce that the above matrix is invertible and

thus the map (2.24) is a vector space isomorphism.

We define a functional d0 by the equation

d0 +d1 +·· ·+dℓ−1 = 0

and define d j for any j ∈ Z by d j = dk if k ∈ {0, . . . ,ℓ−1} and j ≡ k (mod ℓ). Then, we have an easy formula for

the inverse of (2.24):

ck = 1

ℓ

ℓ−1∑
j=0

ζ− j k d j , k = 1, . . . ,ℓ−1. (2.25)

When working with the groups G(ℓ,1,n) we will always identify C with Cℓ via this last isomorphism and write

(c0,d1, . . . ,dℓ−1) for an element of the parameter space.

2.6.2. Dunkl operators. Let h be a finite dimensional complex vector space and y ∈ h. The linear functional

h∗ → C

x 7→ 〈x, y〉

extends uniquely to a derivation

∂y :C[h] →C[h].

Indeed, ∂y is precisely the directional derivative in direction y , that is,

(∂y f )(z) = lim
t→0

f (z + t y)− f (z)

t
.

If (W,h) is a complex reflection group with set hyperplanes A , let αH ∈ h∗ be a linear functional such that

ker(αH ) = H for each H ∈A . Then W acts on the set

h◦ = h\
⋃

H∈A
H

of W -regular points, that is, points whose W -stabilizer is trivial. If we write

δ= ∏
H∈A

αH ∈C[h],

then the ring of polynomial functions on h◦ is the localization

C[h◦] =C[h][δ−1].

We write D(h◦) to denote the algebra of polynomial differential operators on h◦ (that is, the ring of differential

operators on C[h◦] [19, Chapter 3]). Then D(h◦) is the subalgebra of EndC(C[h◦]) generated by the derivations ∂y

for y ∈ h and the elements f ∈C[h◦] considered as multiplication operators, that is

f : C[h◦] → C[h◦]

g 7→ f g .

The action of W on h◦ induces an action on C[h◦] and hence on EndC(C[h◦]) by

(w ·θ)( f ) = wθ(w−1 · f ).

This action stabilizes the subalgebra D(h◦) ⊆ EndC(C[h◦]) and thus W acts on D(h◦) by C-algebra automorphisms.

Thus we can construct the algebra D(h◦)⋊W as in 0.1.1.
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Let C be the parameter space of a complex reflection group (W,h) and let ħ ∈ C be a complex number. For

each c ∈C , and y ∈ h the Dunkl operator Dc,ħ(y) ∈ D(h◦)⋊W associated to y and c is the operator defined by the

formula

Dc,ħ(y)( f ) =ħ∂y ( f )− ∑
r∈T

cr 〈αr , y〉 f − r ( f )

αr
, f ∈C[h◦].

Actually this definition works for any holomorphic function on h◦, but we won’t need such generality. If f : h◦ →C

is a polynomial function then f − r ( f ) vanishes on fix(r ) and thus f − r ( f ) is divisible by αr . So Dc,ħ(y) preserve

polynomial functions and is homogeneous of degree −1. When ħ = 1 we write Dc (y) instead of Dc,1(y). Recall

that αr is any functional such that fix(r ) = ker(αr ) and two such functionals are linearly dependent. So Dc,ħ(y)

does not depend on the choice of αr . In particular, we can replace αr by αH where fix(r ) = H . If χ ∈ ŴH , we let

eH ,χ = 1

nH

∑
w∈WH

χ(w−1)w ∈CWH

be the corresponding primitive idempotent of the group algebra of WH and define

cH ,χ = 1

nH

∑
r∈TH

cr (1−χ(r )) ∈C

Then we can rewrite the Dunkl operators as

Dc,ħ(y)( f ) =ħ∂y ( f )− ∑
H∈A

〈αH , y〉
αH

∑
χ∈ŴH \{1}

cH ,χnH eH ,χ.

This was, up to sign, the original definition given in [24, Section 2.2].

We have a C-linear map

Dc,ħ : h → D(h◦)⋊W

y 7→ Dc,ħ(y),

thus the set of Dunkl operators is a vector subspace of D(h◦)⋊W .

PROPOSITION 2.34. [24, Proposition 2.1] The map Dc,ħ is W -equivariant. More precisely, for w ∈W and y ∈ h,

wDc,ħ(y)w−1 = Dc,ħ(w(y)).

The most important property (for us) of the Dunkl operators is their commutativity:

THEOREM 2.35 (Dunkl-Opdman). If y1, y2 ∈ h then

Dc,ħ(y1)Dc,ħ(y2) = Dc,ħ(y2)Dc,ħ(y1).

This theorem was originally proved in [24, Theorem 2.12]. A very elementary proof of this result was given

by P. Etingof (see for example [25, Theorem 6.5]).

PROPOSITION 2.36. For x ∈ h∗ and y ∈ h, we have

[Dc,ħ(y), x] =ħ〈x, y〉− ∑
r∈T

〈x,α∨
r 〉〈αr , y〉r.

More generally, if f ∈C[h],

[Dc,ħ(y), f ] =ħ∂y ( f )− ∑
r∈T

〈αr , y〉 f − r ( f )

αr
r.

PROOF. The first part is a straightforward computation. The second one follows from the first and induction

on the degree of f . □
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If again K is a commutative C-algebra, we can set K[h] =K⊗CC[h], and the formulas for the Dunkl operators

define an endomorphism of K[h]. When K = C[ħ, (cr )r∈T ] is the ring of polynomials in indeterminates ħ and

(cr )r∈T such that cwr w−1 = cr for all r ∈ T and w ∈W , the endomorphisms

D(y) : K[h] → K[h]

f 7→ ħ∂y ( f )−∑
r∈T cr 〈αr , y〉 f − r ( f )

αr

will be called generic Dunkl operators. Note that they preserve the polynomial ring K[h]. The same proof given

by Etingof in [25, Theorem 6.5] shows that these generic Dunkl operators commute.

2.6.3. Dunkl operators for G(ℓ,1,n). For the groups G(ℓ,1,n), there is a more explicit expression for the

Dunkl operators in terms of the parameters c = (c0,d1, . . . ,dℓ−1) ∈ Cℓ. Let x1, . . . , xn be the basis for (Cn)∗ dual to

the standard basis of Cn , that is

xi (y1, . . . , yn) = yi , (y1, . . . , yn) ∈Cn .

First, note that if r ∈ T0, we have r = ζk
i (i j )ζ−k

i for some 1 ≤ i < j ≤ n and k = 0, . . . ,ℓ−1 and we can choose

αr =αi , j ,k = xi −ζk x j .

If r ∈ Tk for 1 ≤ k ≤ ℓ−1 then r = ζk
i for some i = 1, . . . ,n and k = 1, . . . ,ℓ−1. In this case we can choose

αr =αi = xi .

Then the Dunkl operators Dc,ħ(yi ) take the form

Dc,ħ(yi )( f ) =ħ ∂ f

∂xi
− c0

∑
1≤ j≤n

j ̸=i

ℓ−1∑
k=0

f −ζk
i (i j )ζ−k

i ( f )

xi −ζk x j
−
ℓ−1∑
k=1

ck
f −ζk

i ( f )

xi
,

where ck = c(Tk ) for k = 0, . . . ,ℓ−1. Under the reparameterization (2.25), we have

Dc,ħ(yi ) =ħ ∂

∂xi
− c0

∑
1≤ j≤n

j ̸=i

ℓ−1∑
k=0

1−ζk
i (i j )ζ−k

i

xi −ζk x j
+ 1

xi

ℓ−1∑
j=0

d j ei j (2.26)

where

ei j = 1

ℓ

ℓ−1∑
k=0

ζ− j kζk
i , j = 0, . . . ,ℓ−1, (2.27)

are the primitive idempotents for the cyclic subgroup WH where H = fix(ζi ). In (2.26) we agree that numerators

precede denominators when acting on a polynomial function.

We also have the following commutation relations in the algebra D((Cn)◦)⋊G(ℓ,1,n):

[Dħ,c (yi ), x j ] = x j Dħ,c (yi )+ c0

ℓ−1∑
k=0

ζ−kζk
i (i j )ζ−k

i , 1 ≤ i ̸= j ≤ n, (2.28)

and, for i = 1, . . . ,n,

[Dħ,c (yi ), xi ] = xi Dħ,c (yi )+ħ− c0
∑

1≤ j≤n
j ̸=i

ℓ−1∑
k=0

ζ
j
i (i j )ζ−k

i −
ℓ−1∑
j=0

(d j −d j−1)ei j . (2.29)
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2.6.4. The Euler vector field. Let (W,h) be a complex reflection and n = dimh. Fix a basis x1, . . . , xn for h∗

dual to a basis y1, . . . , yn group and let eu be the Euler vector field, which is defined by

eu =
n∑

i=1
xi∂yi .

It is easy to see that the definition of eu is independent of the choice of the pair of dual bases x1, . . . , xn and

y1, . . . , yn for h. Recall that if f ∈C[h] is a homogeneous polynomial of degree m, then

eu( f ) = m f .

If ħ ̸= 0 then we define a scaled Euler vector field by

euħ =ħeu. (2.30)

Then

euħ =
∑
i=1

xi Dc,ħ(yi )+ ∑
r∈T

cr (1− r ), (2.31)

and in particular, as {w(x1), . . . , w(xn)} is a basis for h∗ dual to {w(y1), . . . , w(yn)}, we deduce that

w euħ w−1 = euħ, w ∈W. (2.32)

Also, a simple computation shows that

[euħ, x] =ħx and [euħ,Dc,ħ(y)] =−ħDc,ħ(y), x ∈ h∗, y ∈ h. (2.33)



CHAPTER 3

Rational Cherednik algebras

Through this chapter, unless otherwise stated, (W,h) denotes a complex reflection group, T its set of reflec-

tions and A is set of reflection hyperplanes. We denote by C the space of parameters for W . If H ∈A , then WH

denotes the pointwise stabilizer of H in W and nH = |WH |. Also, TH = WH \ {1}. If r ∈ T we choose αr ∈ h∗ such

that fix(r ) =αr and a vector α∨
r ∈ h such that

r (x) = x −〈x,α∨
r 〉αr , x ∈ h∗.

3.1. The rational Cherednik algebra

Let (cr )r∈T be a finite family of indeterminates such that cwr w−1 = cr for all r ∈ T and w ∈ W and let ħ
be another indeterminate. Let A = C[ħ, (cr )r∈T ] be the ring of polynomials in the indeterminates ħ and (cr )r∈T

with coefficients in C and set A[h] = A ⊗C C[h]. The rational Cherednik algebra H(W,h) is the A-subalgebra of

EndA(A[h]) generated by

(1) The algebra A[h] (acting on itself by multiplication),

(2) The group W , and

(3) The Dunkl operators Dc,ħ(y) for y ∈ h.

If we choose c ∈C , ħ ∈C and endow C the the structure of an A-module by means of the specialization map

A →C given by cr 7→ c(r ) and ħ 7→ħ, we write

Hc,ħ(W,h) =C⊗A H(W,h)

In this case we call c ∈C the deformation parameter of Hc,ħ. When ħ= 1 we write Hc (W,h) instead of Hc,1(W,h).

Also, we can consider the field

K= Frac(A)

of fractions of the integral domain A. In this case the K-algebra

Hgen =K⊗A H(W,h)

is called the generic rational Cherednik algebra.

3.1.1. Generators and relations, PBW theorem. We now prove the following theorem.

THEOREM 3.1. The algebra H(W,h) is isomorphic to the quotient of T (A⊗C (h∗⊗h))⋊W by the relations

[x, x ′] = 0, [y, y ′] = 0, x, x ′ ∈ h∗, y, y ′ ∈ h, (3.1)

and

[y, x] =ħ〈x, y〉− ∑
r∈T

cr 〈x,α∨
r 〉〈αr , y〉r, x ∈ h∗, y ∈ h. (3.2)

Temporarily denote by H the quotient of the algebra T (A⊗C (h∗⊕h))⋊W by the relations (3.1) and (3.2).

67
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LEMMA 3.2 (PBW theorem for H). If x1, . . . , xn is basis for h∗ and y1, . . . , yn is the corresponding dual basis of h,

then the set

{xi1 · · ·xip y j1 · · · y jq w | 1 ≤ i1 ≤ ·· · ≤ ip ≤ n, 1 ≤ j1 ≤ ·· · ≤ jq ≤ n, w ∈W }

is a basis for H as a free left A-module.

PROOF. If w ∈ W is not a reflection nor 1, set 〈·, ·〉w = 0. Let 〈·, ·〉1 = ħ〈·, ·〉 where 〈·, ·〉 is the dual paring of

h∗ and h extended to a skew-symmetric bilinear form on h∗ ⊕h and where both h∗ and h are totally isotropic

subspaces. Finally, for r ∈ T , let

〈x, y〉r = cr 〈x,α∨
r 〉〈αr , y〉

again extended to a skew-symmetric bilinear form on A ⊗C (h∗⊕h) such that both A ⊗C h∗ and A ⊗C h are totally

isotropic. Then we have the data to construct the Drinfel’d Hecke algebra H. A simple inspection reveals that H

is the quotient of T (A⊗C (h∗⊕h))⋊W by relations (3.1) and (3.2), thus H= H

Thus it is enough to show that H satisfies conditions (a) and (b) of Theorem 2.23. Condition (a) is obvious

because cwr w−1 = cr for all w ∈ W and r ∈ T . To prove (b), let x, y, z ∈ h∪h∗ (yes, the union, not the direct sum,

because by 3-linearity it suffices to prove this conditions for vectors in h∗ and/or h). If x, y, z ∈ h∗ or x, y, z ∈ h,

then the left hand side of (b) equals zero because h∗ and h are isotropic subspaces of (h∗⊕h,〈·, ·〉w ) for all w ∈W .

For w = 1 and w ∈ W \ T the identity is obvious. So take r ∈ T . We have, up to permutation of w , y and z, two

cases:

• x, y ∈ h∗ and z ∈ h.

〈x, y〉r (r (z)− z)+〈y, z〉r (r (x)−x)+〈z, x〉w (w(y)− y)

=cr 〈y,α∨
r 〉〈αr , z〉〈x,α∨

r 〉αr − cr 〈x,α∨
r 〉〈αr , z〉〈y,α∨

r 〉
= 0.

• x ∈ h∗ and y, z ∈ h. The computations are similar to those in the former case.

□

Because W acts by graded A-algebra automorphisms on T (A⊗C (h∗⊕h)) then if we put h∗ and h in degree 1

and W in degree 0, we have that T (A ⊗C (h∗⊕h))⋊W is a graded A-algebra and thus H is a filtered algebra. We

denote by F m H the degree ≤ m part of H.

LEMMA 3.3. gr(H) ∼= A[h∗⊕h]⋊W as graded A-algebras.

PROOF. Let x1, . . . , xn be a basis for h∗ and y1, . . . , yn be the corresponding dual basis of h. Then

A[h∗⊕C] = A[x1, . . . , xn , y1, . . . , yn],

where we consider yi as a linear functional on h∗ via the usual identification h∗∗ = h.

By the PBW theorem for the algebra H we have that

F m H = spanA{xi1 · · ·xip y j1 · · · y jq w | 1 ≤ i1 ≤ ·· · ≤ ip , 1 ≤ j1 ≤ ·· · ≤ jq , p +q ≤ m, w ∈W }.

Define an A-linear map

F m H → A[h∗⊕h]m ⊗A AW

by

xi1 · · ·xip y j1 · · · y jq w 7→

xi1 · · ·xip y j1 · · · y jq ⊗w if p +q = m,

0 if p +q < m.
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This induces a A-linear isomorphism

ψm : gr(H)m → A[h∗⊕h]m ⊗ AW,

and these isomorphisms assemble to a graded A-linear isomorphism

ψ : gr(H) → A[h∗⊕h]⊗A AW.

The verification that this is a A-algebra isomorphism is a straightforward exercise using the defining relations of

H. □

PROOF OF THEOREM 3.1. By Theorem 2.35 and Proposition 2.36 there is an obvious surjective A-algebra ho-

momorphism

F : H → H(W,h) ,→ D(h)⋊W

given by

x 7→ x, w 7→ w, y 7→ D(y)

for x ∈ h∗, w ∈W and y ∈ h. It is enough to prove that F : H → D(h)⋊W is injective. We consider the filtration on

D(h)⋊W , which is given by declaring

deg x = 1, deg∂y = 1 and deg w = 0

for x ∈ h∗, y ∈ h and w ∈ W . Then it is clear that F is a filtered homomorphism of algebras and thus induces a

graded algebra homomorphism

gr(F ) : gr(H) → gr(D(h)⋊W ) = A[h∗⊕h]⋊W,

which is clearly an isomorphism. Thus F is injective. □

From now on we do not make any distinction between the algebra H(W,h) and the one given by generators

and relations. When W and h are clear for the context, we write Hgen (resp. Hc,ħ, resp. Hc ) instead of Hgen(W,h)

(resp. Hc,ħ(W,ħ), resp. Hc (W,h)).

As a consequence of Theorem 3.1 and Lemma 3.2 we have the following

THEOREM 3.4 (PBW for the Rational Cherednik algebra). The multiplication map

A[h]⊗A AW ⊗A A[h∗] → H(W,h)

f (x)⊗w ⊗ g (y) 7→ f (x)w g (D(y))

is a vector space isomorphism.

Here, if g (y) = y a1
1 · · · y an

n ∈K[h∗] is a monomial (in some basis y1, . . . , yn of h), we set

g (D(y)) = D(y1)a1 · · ·D(yn)an ,

and extend it by linearity to A[h∗].

Again, thanks to Theorem 3.1, we can denote by y the Dunkl operator D(y) when considered as a element in

Hgen.

Moreover, by Lemma 3.3, we have the following

COROLLARY 3.5. For specialization of parameters c ∈C , ħ ̸= 0, the algebra Hc,ħ(W,h) is a Noetherian K-algebra.

PROOF. The graded C-algebra gr(Hgen) ∼=C[h⊕h∗]⋊W is Noetherian, being a finite extension of the Noether-

ian algebra C[h∗⊕h] (that is, C[h⊕h∗]⋊W is finitely generated as (left and/or right) C[h∗⊕h]-module). Thus Hc,ħ
is also Noetherian. □
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REMARK 3.6. If we specialize parameters by taking c ∈ C and ħ ̸= 0, we obtain the corresponding results for the

rational Cherednik algebra Hc,ħ and if we extend to K also for the generic rational Cherednik algebra.

The reason for taking ħ ̸= 0 is that when ħ = 0 the homomorphism F in the proof of Theorem 3.1 is not

injective. For this reason, some authors define rational Cherednik algebras by generators and relations, without

the extra condition of ħ ̸= 0. In the next chapters we will always be considering the case ħ= 1, so there will be no

need to have this hypothesis in mind.

3.1.2. Standard modules. If E is a C-linear representation of W , and denote again by E its extension of

scalars A⊗C E . We can extend the action of AW on E to an action of A[h∗]⋊W by declaring

g ·e = g (0)e, g ∈ A[h∗], e ∈ E .

Thus E becomes a A[h∗]⋊W -modulo. By the PBW theorem, A[h∗]⋊W identifies with the subalgebra of H(W,h)

generated by W and the Dunkl operators, so we can define

∆(E) = IndH(W,h)
A[h∗]⋊W (E) = H(W,h)⊗A[h∗]⋊W E .

The PBW theorem also implies that H(W,h) is a flat right A[h∗]⋊W -module. As a consequence the functor

∆ :CW -Mod → H(W,h)-Mod

is exact.

Again, by the PBW theorem we have that, as A[h]⋊W -modules,

∆(E) ∼= A[h]⊗A E

REMARK 3.7. It is useful to see how the elements of W and the Dunkl operators act on A[h]⊗A E under this

isomorphism. Let f ∈ A[h] and e ∈ E , then, for w ∈W we have

w · ( f ⊗e) = [w, f ]⊗e + f w ⊗e = (w( f )+ f )⊗we

and for y ∈ h, from Proposition 2.36 and the fact that y ·e = 0,

y · ( f ⊗e) = [y, f ]⊗e + f y ⊗e =ħ∂y ( f )⊗e − ∑
r∈T

cr 〈αr , y〉 f − r ( f )

αr
⊗ r (e).

Note in particular that if f has degree ≤ d , then y · ( f ⊗ e) is a linear combinations of simple tensors of the form

f j ⊗e j where f j ∈ A[h] has degree ≤ d −1 and e j ∈ E .

If E is an irreducible CW -module, we call ∆(E) a standard module.

In particular if we take E = triv, the trivial representation of W , then

∆(triv) ∼= A[h]

and a simple inspection shows that for y ∈ h and f ∈ A[h], we have

y · f =ħ∂y ( f )− ∑
r∈T

cr 〈αr , y〉 f − r ( f )

αr
= D(y) f ,

thus ∆(triv) is precisely the defining representation of H(W,h) as a subalgebra of EndA(A[h]). We call ∆(triv) =
A[h] the polynomial representation or the Dunkl representation of H(W,h).

When we specialize parameters to c ∈ C and ħ ∈ C, we write ∆c,ħ(E) for C⊗A ∆(E). If ħ = 1 we write ∆c (E)

instead of ∆c,1(E).
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3.1.3. Category O. Assume that we have fixed c ∈C and ħ ∈C\ {0}. The category Oc,ħ(W,h) =Oc,ħ is the full

subcategory of Hc,ħ-Mod consisting of finitely generated Hc,ħ-modules M that are locally nilpotent with respect

to h, that is, for each m ∈ M there is a positive integer n (depending on m) such that

y1 · · · yn ·m = 0

for all y1, . . . , yn ∈ h.

EXAMPLE 3.8. If E is a finite dimensional representation of W then ∆c,ħ(E) is an object in Oc,ħ. In particular, any

standard module belongs to Oc,ħ.

Indeed, if u ∈∆c,ħ(E) ∼=C[h]⊗E (again, by the PBW theorem), we can write

u =
s∑

j=1
f j ⊗e j

for some f j ∈C[h] and e j ∈ E . Then if n = 1+ max
1≤ j≤s

deg f j we immediately see from Remark 3.7 that

y1 · · · yn ·u = 0

for all y1, . . . , yn ∈ h.

It follows immediately from the definition that category Oc,ħ is closed under subobjects, quotients and ex-

tensions, so Oc,ħ is a Serre subcategory of Hc,ħ-Mod and in particular is an abelian C-linear category.

We denote by (h) the ideal in C[h∗] generated by h. This is precisely the ideal of all polynomials f such that

f (y) = 0 for all y ∈ h. For any d ∈Z≥0, the quotient C[h∗]/(h)d has a C[h∗]-module structure and thus if E is a CW -

module, then C[h∗]/(h)d ⊗C E has a C[h∗]⋊W -module structure. Thus we define the thickened module ∆c,ħ,d (E)

by

∆c,ħ,d (E) = Ind
Hc,ħ
C[h∗]⋊W (C[h∗]/(h)d ⊗C E)

for any CW -module E . Note that as C[h∗](h) ∼= C, we have that ∆c,ħ,0(E) ∼= ∆c,ħ(E). We call ∆c,ħ,d (E) a thickened

standard module if E is an irreducible CW -module.

A ∆-filtration of an Hc,ħ-module M is a finite filtration

0 = M0 ⊆ M1 ⊆ ·· · ⊆ Mt = M

consisting of Hc,ħ-submodules such that

Mi /Mi−1
∼=

⊕
F∈Irr(CW )

∆c,ħ(F )k(F,i )

for some non-negative integers k(F, i ), for all i = 1, . . . , t .

THEOREM 3.9. —

(1) If E is a finite dimensional CW -module, then the thickened module ∆c,ħ,d (E) has a ∆-filtration. In par-

ticular, the thickened modules lie in the category Oc,ħ.

(2) Each object in the category Oc,ħ is a quotient of a finite direct sum of thickened standard modules. As a

consequence, since each thickened standard module is finitely generated as a C[h]-module, each object in

Oc,ħ is finitely generated as a C[h]-module.

(3) [31, Proposition 2.2] Oc,ħ is the Serre subcategory of Hc,ħ-Mod generated by the standard modules ∆c,ħ(E)

for E ∈ Irr(CW ).
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PROOF. (1) For each m ∈ {0, . . . ,d}, let

pm :C[h∗]/(h)d →C[h∗]/(h)m

be the natural projection homomorphism and Kd (d −m) = ker(pm). Then

Mm = Hc,ħ⊗C[h∗]⋊W (Kd (m)⊗C E)

is a submodule of ∆c,ħ,d (E), and we have

0 = M0 ⊂ M1 ⊂ ·· · ⊂ Md =∆c,ħ,d (E).

For each m ∈ {1, . . . ,n} we have an exact sequence of C[h∗]-modules

0 → Kd (m −1) → Kd (m) → Kd (m)/Kd (m −1) → 0,

and hence an exact sequence of C[h∗]⋊W -modules

0 → Kd (m −1)⊗E → Kd (m)⊗E → Kd (m)/Kd (m −1)⊗E → 0.

Note that each y ∈ h act on Kd (m)/Kd (m −1)⊗E by zero. The space Kd (m)/Kd (m −1)⊗E is a finite dimensional

representation of W , and we can decompose it into irreducible CW -modules:

Kd (m)/Kd (m −1)⊗E = ⊕
F∈Irr(CW )

F⊕k(F,m,E),

where k(F,m,E) = |Kd (m)/Kd (m−1)⊗E : F |. This is actually a decomposition of Kd (m)/Kd (m)⊗E as a direct sum

of C[h∗]⋊W -modules. Then, as Hc,ħ is flat over C[h∗]⋊W , we obtain an exact sequence

0 → Mm−1 → Mm → ⊕
F∈Irr(CW )

∆c,ħ(F )⊕k(F,m,E) → 0,

which completes the proof.

(2) Let M be an object in Oc,ħ. Then M is finitely generated as a Hc,ħ-module. Let m1, . . . ,mk be a set of

generators of M . We can assume that the set {m1, . . . ,mk } is preserved by the action of W , for otherwise we

substitute it by the greater set

{w ·mi | i = 1, . . . ,k, w ∈W }.

Let d ≥ 0 be an integer such that y1 · · · yd ·mi = 0 for all y1, . . . , yd ∈ h and i = 1, . . . ,k. Set

E =
k⊕

j=1
Cm j

Then V is a finite dimensional CW -module, and we can decompose it into irreducibles:

E = ⊕
F∈Irr(CW )

F⊕kF .

Consider the map

∆c,ħ,d (E) = Hc,ħ⊗C[h∗]⋊W (C[h∗]/(h)d ⊗E) → M

h ⊗ ( f ⊗mi ) 7→ h · ( f ·mi ).

This is surjective Hc,ħ-module homomorphism. Thus M is a quotient of

∆c,ħ,d (E) = ⊕
F∈Irr(CW )

∆c,ħ,d (F )⊕kF ,

as desired.

(3) By Proposition part (1), the thickened standard modules belong to the Serre subcategory A of Hc,ħ-Mod

generated by the standard modules, and by part (2) any object in Oc,ħ also belongs to A. Thus Oc,ħ ⊆ A. The

other inclusion was stated before. □
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3.1.4. Internal grading and irreducible objects in category O. Assume that ħ ̸= 0. Recall from (2.31) that

euħ =
n∑

i=1
xi yi +

∑
r∈T

cr (1− r ),

thus the Euler vector field eu =∑n
i=1 xi∂yi belongs to Hc,ħ. If E is an irreducible CW -module, then eu acts on the

subspace E = 1⊗E of the standard module ∆c,ħ(E) by the element z =∑
r∈T cr (1− r ) (because each y ∈ h acts on

E by 0). Because z is a class sum, it belongs to the center of CW and hence acts on E by a scalar cE (by Schur’s

lemma). It follows easily by induction on the degree of f ∈ C[h] and formulas (2.33), that if f is a homogeneous

polynomial of degree d , then

eu( f ⊗e) = (cE +d) f ⊗e,

hence

∆c,ħ(E) = ⊕
k∈Z≥0

∆c,ħ(E)k+cE ,

where for any complex number a, we set

∆c,ħ(E)a = {m ∈∆c,ħ(E) | eum = am}.

Let M be a submodule of ∆c,ħ(E), then by [51, Proposition 4.5] it follows that M inherits the grading of

∆c,ħ(E), and thus

M = ⊕
k∈Z≥0

McE+k

where

McE+k = M ∩∆c,ħ(E)cE+k , k ∈Z≥0.

Then the quotient ∆c,ħ(E)/M is also graded, more precisely

∆c,ħ(E)/M = ⊕
k∈Z≥0

(∆c,ħ(E)/M)cE+k

where

(∆c,ħ(E)/M)cE+k
∼=∆c,ħ(E)cE+k /McE+k

for each k ∈Z≥0.

For this reason we refer to any quotient M of a standard module ∆c,ħ(E) as a lowest weight module with lowest

weight E . The lowest weight space of M is, by definition McE . Observe that McE = 1⊗E ∼= E as a C[h∗]⋊W -module.

From Theorem 3.9 it follows that if M is an object in Oc,ħ, we have

M = ⊕
a∈C

Ma

where, for each a ∈C,

Ma = {m ∈ M | (eu−a)N m = 0 for some N ∈Z>0}.

Moreover Ma ̸= 0 if and only if a = cE +k for some E ∈ Irr(CW ) and some k ∈Z≥0. For this reason, the Euler vector

field eu is also called the grading element.

REMARK 3.10. A previous version of this chapter included a remark apologizing for an entirely unnecessary re-

mark, inserted solely to preserve numbering alignment with the original paper where the next proposition first

appeared. Since this chapter was later renumbered (it used to be Chapter 2), that numerical alignment is now

broken—and so is the justification for the original remark. This meta-remark stands as a modest memorial to

that noble but ultimately futile attempt.
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PROPOSITION 3.11. [31, Proposition 2.11] Each standard module ∆c,ħ(E) has a unique maximal proper submodule

Jc,ħ(E). In particular, it has an unique simple quotient Lc,ħ(E). The set

{Lc,ħ(E) | E ∈ Irr(CW )}

is a complete collection of pairwise non-isomorphic simple objects in Oc,ħ. In other words, the map

Irr(CW ) → IrrOc,ħ
E 7→ Lc,ħ(E)

is essentially bijective.

PROOF. Because 1⊗E =∆c,ħ(E)cE generates ∆c,ħ(E) as a C[h]-module (and hence as a Hc,ħ-module), we de-

duce that McE = 0 and consequently

M ⊆ ⊕
k∈Z>0

∆c,ħ(E)cE+k .

Thus the sum Jc,ħ(E) of all proper submodules of ∆c,ħ(E) is contained in
⊕

k∈Z>0 ∆c,ħ(E)cE+k and is the unique

proper submodule of ∆c,ħ(E).

Note that the preceding argument also shows that Lc,ħ(E)cE =∆c,ħ(E)cE = 1⊗E .

Let L be a simple object in Oc,ħ, then Res
Hc,ħ
C[h∗]⋊W (L) ̸= 0 and there is an irreducible CW -module E such that

HomC[h∗]⋊W (E ,Res
Hc,ħ
C[h∗]⋊W (L)) ̸= 0. By Frobenius reciprocity (Theorem 1.1) we deduce that HomHc,ħ (∆c,ħ(E),L) ̸=

0, thus F is a simple quotient of ∆c,ħ(E) and thus L ∼= Lc,ħ(E).

Finally, assume that E and F are irreducible CW -modules. Then if Lc,ħ(E) ∼= Lc,ħ(F ), they must have isomor-

phic lowest weight spaces, thus 1⊗E ∼= 1⊗F as C[h∗]⋊W modules and hence as CW modules. □

3.1.5. Characters. Given any finite group G , we denote by R(G) its representation ring over C, that is, the

Grothendieck group K (CG) of the category of finite dimensional CG-modules. Recall that R(G) is the Grothendieck

completion of the abelian monoid of isomorphism classes [M ] of finite dimensional CW -modules M , where the

sum is defined by

[M ]+ [N ] = [M ⊕N ].

Now, if E is an irreducible CW -module, we define the graded character of the simple module Lc,ħ(E) as the

formal Hahn series

char(Lc,ħ(E))(t ) = ∑
k≥0

[Lc,ħ(E)cE+k ]t cE+k ∈ R(W )[[tC]].

On the other hand, the Kazhdan-Lusztig character of Lc,ħ(E) is the formal power series

charK L(Lc,ħ(E))(q) =
∞∑

i=0

∑
[F ]∈Ŵ

dimC(Exti (∆c,ħ(F )),Lc,ħ(E))[F ]q i ∈ R(G)[[q]],

where, as before, Ŵ denotes the set of isomorphism classes of irreducible CW -modules.

3.1.6. Fourier transform. Given a complex reflection group (W,h), there is a W -invariant positive definite

Hermitian form 〈·, ·〉 on h. Indeed, take any positive definite Hermitian form (·, ·) on h and set

〈y1, y2〉 = 1

|W |
∑

w∈W
(w(y1), w(y2)).

We agree that hermitian forms are antilinear in the first argument and linear in the second argument. From now

on we fix such a W -invariant Hermitian form 〈·, ·〉 on h. Then we obtain an antilinear isomorphism

ν : h → h∗

y 7→ 〈y, ·〉.
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We write y ∈ h∗ instead of ν(y) for y ∈ h and similarly x ∈ h instead of ν−1(x) for x ∈ h∗. Note that

x = x and y = y for x ∈ h∗, y ∈ h.

Now, given c ∈C , we write c to denote the parameter

cr = cr−1 , r ∈ T.

LEMMA 3.12. There is an unique antilinear anti-isomorphism of C-algebras

ω : Hc,ħ → Hc,ħ

such that

ω(x) = x, ω(y) = y and ω(w) = w−1

for all x ∈ h∗, y ∈ h and w ∈W .

PROOF. Let ι : W →W be the inversion anti-isomorphism, that is, ι(w) = w−1. The map

ν−1 ⊕ν : h∗⊕h→ h⊕h∗

extends to an algebra anti-isomorphism

T (h∗⊕h) → T (h⊕h∗)

that together with ι induces an anti-isomorphism

T (h∗⊕h)⋊W → T (h⊕h∗)⋊W.

It is straightforward that this anti-isomorphism maps the defining ideal of Hc,ħ into that of Hc,ħ. By the same

procedure we construct an inverse for ω. □

We call ω the Fourier transform of Hc,ħ. Note that ω maps elements of h∗, which act on C[h] by multiplica-

tion, to Dunkl operators, which act as (deformed) differential operators and conversely. This justifies the name

“Fourier transform” for ω.

A simple computation shows that

ω(euħ) = euħ (3.3)

3.1.7. The contravariant form. In this subsection we assume that c = c and that ħ = 1 (and thus we omit ħ
everywhere in the notation). In this case, the Fourier transform

ω : Hc → Hc

is an anti-involution, that is, ω2 = 1Hc . Note that in this case we have that

ω(eu) = eu.

Let E be an irreducible representation of W and fix a W -invariant positive definite Hermitian form on E ,

denoted by (·, ·). The space C[h]⊗E can be identified with the space of polynomial maps h→ E . More precisely,

given f ∈C[h] and e ∈ E , for any y ∈ h we define

( f ⊗e)(y) = f (y)e,

so that f ⊗e : h→ E is a polynomial map. Now, by the PBW theorem we have an isomorphism of C[h]-modules

∆c (E) ∼=C[h]⊗E ,

and in what follows we identify the standard module ∆c (E) with C[h]⊗E .
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We extend the W -invariant bilinear form (·, ·) on E to ∆c (E) by the formula

( f1 ⊗e1, f2 ⊗e2)c = (e1, (ω( f1) f2 ⊗e2)(0))

where f1, f2 ∈ C[h] and e1,e2 ∈ E . It follows easily from the definitions that (·, ·)c is a Hermitian form on ∆c (E). A

less obvious, yet straightforward, property is

PROPOSITION 3.13. For u, v ∈∆c (E) and h ∈ Hc we have

(h ·u, v)c = (u,ω(h) · v)c .

For this reason, we call (·, ·)c the contravariant form on ∆c (E).

Write

∆c (E) = ⊕
n∈Z≥0

∆c (E)cE+n

for the eu-grading of ∆c (E). If m ̸= n are nonnegative integers, u ∈∆c (E)cE+m and v ∈∆c (E)cE+n we have

m + cE (u, v)c = (eu ·u, v)c = (u,ω(eu) · v)c = (u,eu ·v)c = (u, v)c = (n + cE )(u, v)c ,

but m + cE and n + cE have distinct real parts, so the only possibility is that (u, v)c = 0. Hence we have

(∆c (E)cE+m ,∆c (E)cE+n)c = 0 if m ̸= n, (3.4)

that is, distinct eu-homogeneous components of a standard module are orthogonal with respect to the con-

travariant form.

In particular, the radical Rc (E) of (·, ·)c is a Hc -submodule of ∆c (E). It is a proper submodule, since

(1⊗e,1⊗e)c = (e,e) ̸= 0

if e ̸= 0. Thus Rc (E) ⊆ Jc (E), that is, the radical Rc (E) is contained in the maximal proper submodule Jc (E) (a.k.a.

the radical) of ∆c (E).

PROPOSITION 3.14. The radical of the contravariant form (·, ·)c is precisely the radical of ∆c (E).

PROOF. Let M be a proper submodule of ∆c (E), and write

M = ⊕
n∈Z>0

McE+n

(recall that we already know, from 3.1.4, that the cE -degree component of M is zero). Let m ∈ M , e ∈ E , then by

(3.4) we have that (m,1⊗ e)c = 0. As the elements of the form 1⊗ ec generate ∆c (E) as an Hc -module and M is a

submodule, we deduce that (M ,∆c (E))c = 0, that is, M ⊆ Rc (E). Thus Jc (E) ⊆ Rc (E). □

As a consequence of this, the contravariant form descends to a non degenerate Hermitian form on Lc (E),

which we also call that the contravariant form and still denote by (·, ·)c . We say that Lc (E) is an unitary represen-

tation of Hc if the contravariant form (·, ·)c on Lc (E) is positive definite. The unitary locus of E is the set of all

parameters c ∈ C such that c = c and Lc (E) is unitary. The study of unitary representations began in the paper

[26].
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3.2. Cyclotomic rational Cherednik algebras

We now focus on the rational Cherednik algebras associated to the complex reflection groups G(ℓ,1,n). We

use the reparameterization (2.24), and hence identify the parameter space C with Cℓ. We write c = (c0,d1, . . . ,dℓ−1)

to denote the indeterminates, so that A =C[c0,d1, . . . ,dℓ−1], then define d0 to be −d1 −·· ·−dℓ−1 and dk to be d j

if k ∈ Z, j ∈ {0, . . . ,ℓ− 1} and k ≡ j (mod ℓ). The algebra H(G(ℓ,1,n),Cn) will be called the cyclotomic rational

Cherednik algebra (CRCA for short) and will be denoted by H . From Theorem 3.1 and the commutation relations

(2.28) and (2.29) we obtain the following

THEOREM 3.15. The algebra H is the algebra generated by the polynomial algebras C[x1, . . . , xn], C[y1, . . . , yn] and

the group algebra CG(ℓ,1,n) with relations

w xi w−1 = w(xi ), w yi w−1 = w(yi ), w ∈G(ℓ,1,n), i = 1, . . . ,n, (3.5)

yi x j = x j yi + c0

ℓ−1∑
k=0

ζ−kζk
i (i j )ζ−k

i , 1 ≤ i ̸= j ≤ n, (3.6)

and

yi xi = xi yi +ħ− c0
∑

1≤ j≤n
j ̸=i

ℓ−1∑
k=0

ζk
i (i j )ζ−k

i −
ℓ−1∑
j=0

(d j −d j−1)ei j , i = 1, . . . ,n (3.7)

where ei j is given in (2.27).

3.2.1. The Dunkl-Opdam subalgebra. Let φ1, . . . ,φn be the Jucys-Murphy elements of the groups G(ℓ,1,n).

Recall that they are given by the formula

φi =
∑

1≤ j<i
0≤k≤ℓ−1

ζk
i (i j )ζ−k

i , i = 1, . . . ,n.

Define elements z1, . . . , zn ∈ Hc,ħ by

zi = yi xi + c0φi , i = 1, . . . ,n.

PROPOSITION 3.16. [24, Theorem 3.8] For all i , j = 1, . . . ,n we have zi z j = z j zi .

For another proof of this proposition, take a look at [37, Proposition 4.2]. We also have

PROPOSITION 3.17. [37, Proposition 4.3] The following identities hold in H:

(a) ziζ j = ζ j zi for all i , j = 1, . . . ,n.

(b) If f is a rational function of z1, . . . , zn , then

si f = (si · f )si − c0
f − si · f

zi − zi+1
πi , 1 ≤ i ≤ n −1,

where, for w ∈ Sn we have, as always,

(w · f )(z1, . . . , zn) = f (zw (1), . . . , zw(n)).

In particular we have

zi si = si zi+1 − c0πi 1 ≤ i ≤ n −1

and

zi s j = s j zi , j ̸= i , i +1.
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We recall that

πi =
ℓ−1∑
k=1

ζk
i ζ

−k
i+1, i = 1, . . . ,n −1.

By the preceding propositions the subalgebra

tK =K[z1, . . . , zn ,ζ1, . . . ,ζn]

of Hgen, which is generated by the elements zi and ζi (1 ≤ i ≤ n), is commutative and we call it the Dunkl-Opdman

subalgebra. When we specialize parameters, we write t instead of tK.

We intend to use t in a way similar to that of the Cartan subalgebra of a Kac-Moody Lie algebra, in the sense

that we will be interested in Hc -modules that are t-diagonalizable.

The PBW theorem implies the following

PROPOSITION 3.18. tK is isomorphic, as a K-algebra, to K[z1, . . . , zn]⊗KKµn
ℓ

.

There is a natural diagonal action of the symmetric group Sn on tK given by

(w · f )(z1, . . . , zn ,ζ1, . . . ,ζn) = f (zw(1), . . . , zw(n),ζw(1), . . . ,ζw(n)).

Also, we define an automorphism

φ : tK→ tK (3.8)

by

φ(zi ) = zi+1, i = 1, . . . ,n −1,

φ(zn) = z1 +ħ−
ℓ−1∑
j=0

(d j−1 −d j−2)e1 j ,

φ(ζi ) = ζi+1, i = 1, . . . ,n −1,

φ(ζn) = ζ−1ζ1.

where e1 j is given in (2.27).

LEMMA 3.19. The Euler vector field euħ takes the following form in Hc :

euħ =
n∑

i=1
zi −

∑
1≤i≤n

0≤ j≤ℓ−1

d j−1ei j −nħ+c0ℓ

(
n

2

)
+nd0.

In particular, the Euler vector field belongs to the Dunkl-Opdam subalgebra. This implies that the euħ-eigenspaces

decompose into a direct sum of t-eigenspaces.

The proof is a direct computation using the presentation given in Theorem 3.15. Since I am not aware of a

published reference for this result, I include the argument here for completeness.

PROOF. For simplicity write δ j =∑n
i=1 ei j .

Adding the relations 3.7 for i = 1, . . . ,n we obtain

n∑
i=1

yi xi =
n∑

i=1
xi yi +nħ−c0

∑
i ̸= j

ℓ−1∑
k=0

ζk
i (i j )ζ−k

i −
ℓ−1∑
j=0

(d j −d j−1)δ j

=
n∑

i=1
xi yi +nħ−2c0

n∑
i=1

φi −
ℓ−1∑
j=0

(d j −d j−1)δ j
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so that
n∑

i=1
zi =

n∑
i=1

xi yi +nħ−c0

n∑
i=1

φi −
ℓ−1∑
j=0

(d j −d j−1)δ j . (3.9)

On the other hand, from (2.25) we have

∑
r∈T

cr (1− r ) = c0

ℓ(n

2

)
−

n∑
i=1

φi

+
ℓ−1∑
k=1

ck

n∑
i=1

(1−ζk
i )

= c0ℓ

(
n

2

)
− c0

n∑
i=1

φi +nd0 −
ℓ−1∑
j=0

d jδ j .

Subtracting (3.9) from this we obtain the desired formula. □

REMARK 3.20. If we define

qi = zi +
∑

0≤ j ,k≤ℓ−1
ζ−( j+1)k d j ζ

k
i , 1 ≤ i ≤ n

and consider the deformed Euler element

ẽu =
n∑

i=1
xi yi + n

2
+ ∑

r∈T
cr r

which is the same as the one introduced in [34, Subsection 2.2.3], up to the change of parameters c0 7→ c0 and

ck 7→ 2ck /(2−ζ−k ) for k = 1, . . . ,ℓ−1, we obtain

ẽu =
n∑

i=1
qi + n

2

according to [77, Lemma 2.4]. Our formula can be recovered from this via the automorphism of t given by ζi 7→ ζi

and zi 7→ qn−i+1.

3.2.2. Intertwining operators. In [53], Knop and Sahi define the operator

Φ= xn sn−1sn−2 · · · s2s1.

We call it an intertwining operator. Other intertwining operators where defined in [35], namely

Ψ= y1s1s2 · · · sn−2sn−1

and, for 1 ≤ i ≤ n −1,

σi = si + c0

zi − zi+1
πi .

PROPOSITION 3.21. The following relations are satisfied.

(a) ΨΦ= z1.

(b) ΦΨ= zn −ħ+
ℓ−1∑
j=0

(d j −d j−1)en j .

(c) σ2
i = 1−

(
c0πi

zi − zi+1

)2

for i = 1, . . . ,n −1.

(d) σiσi+1σi =σi+1σiσi+1 for 1 ≤ i ≤ n −2.

(e) σiσ j =σ jσi if |i − j | > 1.

PROOF. Parts (a) and (b) are immediate consequences of the definitions and the relations in Hc,ħ. Part (c) is

proved in [35, Lemma 4.6] and in [37, Lemma 5.2(a)]. Part (e) is obvious from Proposition 3.17. To the best of my

knowledge, part (d) does not appear with proof in the literature. I was briefly tempted to uphold the venerable
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tradition of declaring the argument “routine” and leaving it to the reader. But alas — duty calls. Here is the proof

of part (d).1

First, for i , j = 1, . . . ,n −1, write

πi , j =
ℓ−1∑
k=0

ζk
i ζ

−k
j ,

so that πi =πi ,i+1. A simple verification shows that

πi , jπ j ,k =πi ,kπk, j =πi , jπi ,k and πi , j =π j ,i (3.10)

so in particular π2
i , j = ℓπi , j because πi ,i = ℓ.

From Proposition 3.17, we have

σiσi+1σi =
(

si + c0

zi − zi+1
πi

)(
si+1 + c0

zi+1 − zi+2
πi+1

)(
si + c0

zi − zi+1
πi

)
=si si+1si + si si+1

c0

zi − zi+1
πi + si

c0

zi+1 − zi+2
πi+1si + si

c0

zi+1 − zi+2
πi+1

c0

zi − zi+1
πi + c0

zi − zi+1
πi si+1si

+ c0

zi − zi+1
πi si+1

c0

zi − zi+1
πi +

c2
0

(zi − zi+1)(zi+1 − zi+2)
πiπi+1si +

c3
0

(zi − zi+1)2(zi+1 − zi+2)
π2

i πi+1

=si si+1si

+ c0πi+1si si+1

zi+1 − zi+2
+ c2

0πiπi ,i+2si+1

(zi − zi+2)(zi+1 − zi+2)
+ c2

0πiπi ,i+2si

(zi − zi+1)(zi+1 − zi+2)
+ c3

0

(zi − zi+1)2

(
1

zi − zi+2
+ 1

zi+1 − zi+2

)
π2

i πi+1

+ c0

zi − zi+2
πi ,i+2 −

c2
0

(zi+1 − zi+2)(zi − zi+2)
πiπi+1si

− c2
0πi ,i+2πi si

(zi − zi+2)(zi − zi+1)
− 2c3

0πi ,i+2π
2
i

(zi − zi+2)(zi − zi+1)2 − c3
0π

2
i πi+1

(zi − zi+1)(zi+1 − zi+2)(zi − zi+2)
+ c0

zi − zi+1
πi si+1si

+ c2
0

(zi − zi+1)(zi − zi+2)
πiπi ,i+2si+1 −

c3
0

(zi − zi+1)2(zi − zi+2)
π2

i πi+1

+ c2
0

(zi − zi+1)(zi+1 − zi+2)
πiπi+1si +

c3
0

(zi − zi+1)2(zi+1 − zi+2)
π2

i πi+1.

Grouping terms by powers of c0, we obtain

σiσi+1σi =si si+1si + c0

(
πi+1si si+1

zi+1 − zi+2
+ πi ,i+2

zi − zi+2
+ πi si+1si

zi − zi+1

)
+ c2

0

((
πiπi+1

(zi − zi+1)(zi − zi+2)
+ πiπi ,i+2

(zi+1 − zi+2)(zi − zi+2)

)
si +

πiπi ,i+2

(zi+1 − zi+2)(zi − zi+1)
si+1

)

+ c3
0

ℓ

(zi − zi+1)2

((
1

zi+1 − zi+2
+ 1

zi − zi+2

)
πiπi+1 −

2πiπi ,i+1

zi − zi+2

)

=si si+1si + c0

(
πi+1si si+1

zi+1 − zi+2
+ πi ,i+2

zi − zi+2
+ πi si+1si

zi − zi+1

)
+ c2

0
πiπi+1

(zi − zi+1)(zi+1 − zi+2)
(si + si+1)+ c3

0
ℓπiπi+1

(zi − zi+1)(zi+1 − zi+2)(zi − zi+2)

where we have used (3.10) and its consequence π2
i = ℓπi .

On the other hand,

σi+1σiσi+1 =
(

si+1 + c0

zi+1 − zi+2
πi+1

)(
si + c0

zi − zi+1
πi

)(
si+1 + c0

zi+1 − zi+2
πi+1

)
1To keep track of the terms, I have resorted to using colors — a technique I first mastered in kindergarten, now adapted to the subtleties

of algebraic expansions.
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=si+1si si+1 + si+1si
c0

zi+1 − zi+2
πi+1 + si+1

c0

zi − zi+1
πi si+1 + si+1

c0

zi − zi+1
πi

c0

zi+1 − zi+2
πi+1 + c0

zi+1 − zi+2
πi+1si si+1

+ c0

zi+1 − zi+2
πi+1si

c0

zi+1 − zi+2
πi+1 +

c2
0

(zi+1 − zi+2)(zi − zi+1)
πiπi+1si+1 +

c3
0

(zi − zi+1)(zi+1 − zi+2)2πiπ
2
i+1

=si+1si si+1

+ c0πi si+1si

zi − zi+1
+ c2

0πi+1πi ,i+2si

(zi − zi+2)(zi − zi+1)
+ c2

0πi+1πi ,i+2si+1

(zi − zi+1)(zi+1 − zi+2)
+ c3

0

(zi+1 − zi+2)2

(
1

zi − zi+2
+ 1

zi − zi+1

)
πiπ

2
i+1

+ c0

zi − zi+2
πi ,i+2 −

c2
0

(zi − zi+1)(zi − zi+2)
πiπi+1si+1

− c2
0πi ,i+2πi+1si+1

(zi − zi+2)(zi+1 − zi+2)
− 2c3

0πi ,i+2π
2
i+1

(zi − zi+2)(zi+1 − zi+2)2 − c3
0πiπ

2
i+1

(zi − zi+1)(zi+1 − zi+2)(zi − zi+2)
+ c0

zi+1 − zi+2
πi+1si si+1

+ c2
0

(zi − zi+1)(zi − zi+2)
πiπi ,i+2si+1 −

c3
0

(zi − zi+1)2(zi − zi+2)
π2

i πi+1

+ c2
0

(zi+1 − zi+2)(zi − zi+1)
πiπi+1si+1 +

c3
0

(zi − zi+1)(zi+1 − zi+2)2πiπ
2
i+1,

and again, grouping terms and using (3.10) we obtain

σi+1σiσi+1 = si+1si si+1 + c0

(
πi+1si si+1

zi+1 − zi+2
+ πi ,i+2

zi − zi+2
+ πi si+1si

zi − zi+1

)
+ c2

0
πiπi+1

(zi − zi+1)(zi+1 − zi+2)
(si + si+1)+ c3

0
ℓπiπi+1

(zi − zi+1)(zi+1 − zi+2)(zi − zi+2)
,

which together with the braid relation si si+1si = si+1si si+1 shows (d). □

There is a nice interplay between the intertwiners Φ and Ψ with the Dunkl-Opdam subalgebra, as the follow-

ing result shows.

LEMMA 3.22. [37, Lemma 5.3(b)] Let φ : tK→ tK be the automorphism given in (3.8).

(a) For 1 ≤ i ≤ n −1 and f ∈ t ,

σi f = (si · f )σi .

(b) For f ∈ tK, we have

f Φ=Φφ( f ) and f Ψ=Ψφ−1( f )

3.2.3. Embedding of the cyclotomic degenerated affine Hecke algebra into the rational Cherednik alge-

bra. Let H(ℓ,n) be the cyclotomic degenerated affine Hecke algebra defined in Section 2.5.

PROPOSITION 3.23. ([21, Theorem 1.4 and Section 4.2], [20, Proposition 1.1]) Assume that c0 ̸= 0. Then the map

ui 7→ 1

c0
zi , i = 1, . . . ,n

w 7→ w, w ∈G(ℓ,1,n)

extends to an injective C-algebra homomorphism H(ℓ,n) → Hc (G(ℓ,1,n),Cn).

PROOF. We only need to show that the elements ζi , si ∈ G(ℓ,1,n) and zi satisfy the defining relations of

H(ℓ,n), but this is precisely the content of Proposition 3.17. □

Theorem 2.29 follows from the previous proposition and Theorem 3.4.

We denote the image of H(ℓ,n) in Hc,ħ by Hgr. Thus Hgr is the subalgebra of Hc,ħ generated by the Dunkl-

Opdam subalgebra t and the group algebra CG(ℓ,1,n). The subalgebra u of H(ℓ,n) generated by u1, . . . ,un and

ζ1, . . . ,ζn is therefore isomorphic to the Dunkl-Opdam subalgebra t.



82 CHAPTER 3. RATIONAL CHEREDNIK ALGEBRAS

Note that by definition, the intertwining operators σi depend rationally on z1, . . . , zn and polynomially on the

elements of the group algebra CG(ℓ,1,n). Thus, under the inclusion of H(ℓ,n) into Hc,ħ we can pullback these

operators, obtaining intertwining operators

τi = si + 1

ui −ui+1
πi , 1 ≤ i ≤ n −1

for the cyclotomic degenerate affine Hecke algebra H(ℓ,n). It follows from Proposition 3.21 that

τ2
i = 1−

(
πi

ui −ui+1

)2

= (ui −ui+1 +πi )(ui −ui+1 −πi )

(ui −ui+1)2 , 1 ≤ i ≤ n −1 (3.11)

and

τiτi+1τi = τi+1τiτi+1, 1 ≤ i ≤ n −2. (3.12)

Using the projection H(ℓ,n) →CG(ℓ,1,n) from Proposition 2.28 we deduce that the intertwiners τ1, . . . ,τn for

the cyclotomic group G(ℓ,1,n) introduced in2 2.3.2 we obtain a proof for Equations (2.14) and (2.14).

3.2.4. The Affine Weyl monoid. We define

W≥0 = (Z≥0)n ⋊Sn ,

which as set is the cartesian product (Z≥0)n ×Sn and has composition law

(a1, . . . , an ; w)(b1, . . . ,bn ; v) = (a1 +bw−1(1), . . . , an +bw−1(n); w v),

making it a (non commutative) monoid with identity element (0, . . . ,0;1). We call W≥ the affine Weyl monoid. As

usual, we write aw instead of (a; w) for a ∈ (Z≥0)n and w ∈ Sn , keeping in mind that w a = (w · a)w where, as

always w ·a = (aw−1(1), . . . , aw−1(n)), with a = (a1, . . . , an). Let

ϵi = (0, . . . ,0,1,0, . . . ,0), i = 1, . . . ,n

be the vectors of the standard basis of Zn . These vectors belong to (Z≥0)n and generate it as a commutative

monoid. Set3

Ξ= ϵn sn−1sn−2 · · · s2s1 ∈W≥0

The following relations are satisfied:

Ξsi = si−1Ξ for 2 ≤ i ≤ n −1 and Ξ2s1 = sn−1Ξ
2. (3.13)

Indeed, for 2 ≤ i ≤ n −1 we have, thanks to the braid relations,

si−1Ξ= si−1ϵn sn−1 · · · si+1si si−1si−2 · · · s1

= ϵn si−1sn−1 · · · si+1si si−1si−2 · · · s1

= ϵn sn−1 · · · si+1(si−1si si−1)si−2 · · · s1

= ϵn sn−1 · · · si+1(si si−1si )si−2 · · · s1

= ϵn sn−1 · · · si+1si si−1si−2 · · · s1si

2Note that Subsections 2.3.2 and (2 3) ·2.3.2 =3.2.3 make reference to each other. This is not a coincidence! :-)
3Some mathematicians are skeptical of using the uppercase Greek letter “xi,” Ξ, particularly in handwritten contexts, where it can easily

be mistaken for the congruence symbol ≡. A well-known anecdote involves Barry Mazur (shared to us by Paul Vojta in [50]), who once

used Ξ to denote a complex number. He then wrote the expression
Ξ

Ξ
—the quotient of the complex conjugate of Ξ by Ξ itself—on the

blackboard. However, due to the handwriting, it appeared as though he had written
≡
≡ . The story goes that this was done deliberately to

irritate Serge Lang, who, among his many remarkable qualities, was famously outspoken about mathematical style and known for exclaiming

“That notation sucks!”
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=Ξsi .

On the other hand, from the previous relation we have

sn−1Ξ
2 = sn−1(ϵn sn−1sn−2 · · · s2s1)Ξ

= ϵn−1s2
n−1sn−2 · · · s2s1Ξ

= ϵn−1sn−2 · · · s2s1Ξ

= ϵn−1Ξsn−1sn−2 · · · s3s2

= ϵn−1(ϵn sn−1sn−2 · · · s2s1)sn−1sn−2 · · · s3s2

= ϵn sn−1ϵn sn−2 · · · s2s1sn−1sn−2 · · · s3s2s2
1

= ϵn sn−1sn−2 · · · s1ϵn sn−1 · · · s2s1s1

=Ξ2s1.

Actually, we have

PROPOSITION 3.24. [38, Subsection 3.1] The affine Weyl monoid has a presentation with generators s1, . . . , sn−1 and

Ξ, together with the usual Coxeter relations for the elements s1, . . . , sn−1 and (3.13).

PROOF. Let M be the monoid with this presentation, thus there is a surjective monoid homomorphism

γ : M →W≥0.

By the Coxeter relations, there is a monoid homomorphism γ1 : Sn → M . We denote the image of an element

w ∈ Sn under γ1 by w . Define ϵn =Ξs1s2 · · · sn−1 ∈ M . We claim that ϵn commutes with the elements s1, . . . , sn−2.

Indeed, from relations (3.13) and the braid relations we have that

si ϵn = siΞs1 · · · si−1si si+1si+2 · · · sn−1

=Ξsi+1s1 · · · si−1si si+1si+2 · · · sn−1

=Ξs1 · · · si−1(si+1si si+1)si+2 · · · sn−1

=Ξs1 · · · si−1(si si+1si )si+2 · · · sn−1

=Ξs1 · · · si−1si si+1si+2 · · · sn−1si

= ϵn si

For 1 ≤ i ≤ n −1 define

ϵi = (i n)ϵn(i n).

Note that if w ∈ Sn satisfies w(n) = i then v := (i n)w ∈ StabSn (n) = 〈s1, . . . , sn−2〉, thus v commutes with ϵn , and

hence

wϵn w−1 = (i n)vϵn v−1(i n) = (i n)ϵn(i n) = ϵi .

Thus ϵi = wϵn w−1 for all w ∈ Sn (even if w(n) = n) and thus wϵi w−1 = ϵw(i ) for all 1 ≤ i ≤ n and w ∈ Sn . We now

prove that ϵ1ϵn = ϵnϵ1. Indeed, the element w = sn−1 · · · s2s1 satisfies w(1) = n and thus

ϵ1 = w−1ϵn w = w−1Ξ.

Now, from (3.13) we have

ϵ1ϵn = w−1ΞΞw−1

= s1 · · · sn−2(sn−1Ξ
2)s1s2 · · · sn−1
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= s1 · · · sn−2(Ξ2s1)s1s2 · · · sn−1

=Ξs2s3 · · · sn−1Ξs2 · · · sn−1

=Ξs2s3 · · · sn−1s1s2 · · · sn−1Ξ

=Ξ(w−1)2Ξ

= (Ξw−1)(w−1Ξ)

= ϵnϵ1.

From this, if i ̸= j and v ∈ Sn is any element such that v(1) = i and v(n) = j we have

ϵi ϵ j = vϵ1v−1vϵn v−1 = vϵ1ϵn v−1 = vϵnϵ1v−1 = ϵ j ϵi .

Thus the submonoid of M generated by ϵ1, . . . ,ϵn is commutative. As (Z≥0)n is a free commutative monoid, there

is a unique monoid homomorphism

γ2 : (Z≥0)n → M

such that γ2(ϵi ) = ϵi for i = 1, . . . ,n. As wϵi w−1 = ϵw(i ), we have that γ1 and γ2 ensemble to a monoid homomor-

phism

γ0 : W≥0 → M

which is a two-sided inverse of γ. Thus γ is a monoid isomorphism. □

The affine Weyl monoid has two realizations inside the cyclotomic rational Cherednik algebra:

PROPOSITION 3.25. The two maps

ιΦ :Ξ 7→Φ and ιΨ :Ξ 7→Ψ

defined on the elements s1, . . . , sn−1 by si 7→ si , induce injective monoid homomorphisms

ιΦ : W≥0 → Hc,ħ \ {0} and ιΨ : W≥0 → Hc,ħ \ {0}.

PROOF. By the defining relation of Hc,ħ we have that w xi w−1 = xw(i ) and w yi w−1 = yw(i ), thus there are

obvious monoid homomorphisms

ιΦ : W≥0 → Hc,ħ \ {0}

si 7→ si , i = 1, . . . ,n −1

ϵi 7→ xi , i = 1, . . . ,n

and

ιΨ : W≥0 → Hc,ħ \ {0}

si 7→ sn−i , i = 1, . . . ,n −1

ϵi 7→ yn−i+1, i = 1, . . . ,n.

Note that ιΦ(Ξ) =Φ and ιΨ(Ξ) =Ψ. This homomorphisms are injective thanks to the PBW theorem. □

COROLLARY 3.26. The intertwiners Φ and Ψ satisfy the relations

Φsi = si−1Φ for 2 ≤ i ≤ n −1 and Φ2s1 = sn−1Φ
2 (3.14)

and

Ψsi = si+1Ψ for 1 ≤ i ≤ n −2 and Ψ2sn−1 = s1Ψ
2. (3.15)
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3.2.5. The trigonometric presentation. We give another presentation for the cyclotomic rational Cherednik

algebra Hc,ħ.

Applying Lemma 3.22 to f = ζi , we obtain the relations

ζiΦ=Φφ(ζi ) and ζiΨ=Ψφ−1(ζi ), i = 1, . . . ,n. (3.16)

Additionally we have the following

LEMMA 3.27. In Hc,ħ the following relation holds:

Ψsn−1Φ=ΦsiΨ+ c0

ℓ−1∑
k=0

ζ−kζk
1ζ

−k
n (3.17)

PROOF. By (3.14) we have

Ψsn−1Φ= y1s1 · · · sn−2sn−1sn−1Φ

= y1s1 · · · sn−2Φ

= y1Φs2 · · · sn−1

= (y1xn)sn−1 · · · s2s1s2 · · · sn−1

and by relation (3.6), we deduce

Ψsn−1Φ=
(

xn y1 + c0

ℓ−1∑
k=0

ζ−kζk
1 (1 n)ζ−k

1

)
sn−1 · · · s2s1s2 · · · sn−1.

Using that that sn−1 · · · s2s1s2 · · · sn−1 = (1 n) we obtain

Ψsn−1Φ= xn y1sn−1 · · · s2s1s2 · · · sn−1 + c0

ℓ−1∑
k=0

ζ−kζk
1ζ

−k
n

= xn sn−1 · · · s2 y1s1s2 · · · sn−1 + c0

ℓ−1∑
k=0

ζ−kζk
1ζ

−k
n

= xn sn−1 · · · s2s1s1 y1s1s2 · · · sn−1 + c0

ℓ−1∑
k=0

ζ−kζk
1ζ

−k
n

=Φs1Ψ+ c0

ℓ−1∑
k=0

ζ−kζk
1ζ

−k
n ,

as desired. □

So far, we have that Hc,ħ contains

(a) A subalgebra Hgr isomorphic to the cyclotomic degenerate affine Hecke algebra of Ram and Shepler,

which is generated by the Dunkl-Opdam subalgebra t and the group algebra CG(ℓ,1,n);

(b) A copy of the affine Weyl monoid generated by s1, . . . , sn−1 and the intertwiner Φ; and

(c) A copy of the affine Weyl monoid generated by s1, . . . , sn−1 and the intertwiner Ψ.

This information is subject to the relations (a) and (b) from Proposition 3.21, (3.16) and (3.17). The key observa-

tion is that this gives a presentation for the cyclotomic rational Cherednik algebra Hc,ħ. More specifically, let H trig
c,ħ

be the algebra generated by Hgr together with elements Φ and Ψ, satisfying the following relations:

(T1) Φsi = si−1Φ for 2 ≤ i ≤ n −1 and Φ2s1 = sn−1Φ
2,

(T2) Ψsi = si+1Ψ for 1 ≤ i ≤ n −2 and Ψ2sn−1 = s1Ψ
2,

(T3) ζiΦ=Φφ(ζi ) and ζiΨ=Ψφ−1(ζi ) for i = 1, . . . ,n,

(T4) ΨΦ= z1, ΦΨ= zn −ħ+
ℓ−1∑
j=0

(d j −d j−1)en j , and
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(T5) Ψsn−1Φ=ΦsiΨ+ c0

ℓ−1∑
k=0

ζ−kζk
1ζ

−k
n .

Then we have a natural C-algebra homomorphism

γ : H trig
c,ħ → Hc,ħ.

THEOREM 3.28. [38, Theorem 3.1] The homomorphism γ is an isomorphism of C-algebras.

PROOF. Define xn =Φs1 · · · sn−1 and y1 =Ψs1 · · · sn−1. For w, v ∈ Sn with w(n) = i and v(1) = i set xi = w xn w−1

and yi = v y1v−1. As in the proof of Proposition 3.24, from relations (T1) and (T2) we see that xi and yi are

independent of the choice of w and v and also that the elements x1, . . . , xn are pairwise commutative, as are the

elements y1, . . . , yn of H trig
c,ħ . Note that Φ. Ψ and z1, . . . , zn belong to the subalgebra of H trig

c,ħ generated by CG(ℓ,1,n)

and the elements x1, . . . , xn , y1, . . . , yn and thus H trig
c,ħ is generated as a C-algebra by the group algebra CG(ℓ,1,n),

and the elements xi , yi , for 1 ≤ i ≤ n.

Set

B = {xa1
1 · · ·xan

n yb1
1 · · · ybn

n w | a1, . . . , an ,b1, . . . ,bn ∈Z≥0 and w ∈G(ℓ,1,n)},

then A = spanC(B) is a vector subspace of H trig
c,ħ that contains 1. We prove that A is a left ideal of H trig

c,ħ , which

proves that A = H trig
c,ħ and hence that B generates H trig

c,ħ as a C-vector space. In order to show this, it is enough to

show that A is closed under left multiplication by xi , yi and w for 1 ≤ i ≤ n and w ∈G(ℓ,1,n). This is obvious for

the xi ’s. Let v ∈ Sn and note that

v xa1
1 · · ·xan

n yb1
1 · · · ybn

n w = xa1
v(1) · · ·xan

v(n) yb1
v(1) · · · ybn

v(n)v w ∈ B ⊆ A.

For 1 ≤ i ≤ n −1 we have φ(ζi ) = ζi+1 and by the first relation in (T3),

ζi xn = ζiΦs1 · · · sn−1 =Φζi+1s1 · · · sn−1 =Φs1 · · · sn−1ζi = xnζi

and for i = n we have φ(ζn) = ζ−1ζ1, so

ζn xn = ζnΦs1 · · · sn−1 =Φζ−1ζ1s1 · · · sn−1 = ζ−1Φs1 · · · sn−1ζn = ζ−1xnζn .

Conjugating by an element w ∈ Sn such that w(n) = j ̸= i (resp. w(n) = i ) we deduce

ζi x j = x j ζi , j ̸= i (resp. ζi xi = ζ−1xiζi ).

A similar argument using the second relation in (T3) shows that

ζi y j = y j ζi , j ̸= i and ζi yi = ζyiζi .

Thus

ζi xa1
1 · · ·xan

n yb1
1 · · · ybn

n w = ζbi−ai xa1
1 · · ·xan

n yb1
1 · · · ybn

n ζi w ∈ A.

Now from the first relation in (T4) we have

y1x1 = y1(s1 · · · sn−1xn sn−1 · · · s1) =ΨΦ= z1.

We prove by induction on i that

zi = yi xi + ti

for some ti ∈ C(ℓ,1,n). This has been established for i = 1 (with t1 = 0). Assume it holds for i , then from the

defining relations for Hgr we have

zi+1 = si zi si + c0siπi = si (yi xi + ti )si + c0siπi = yi+1xi+1 + ti+1
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where ti+1 = si ti si + c0siπi . In particular, from the second relation in (T4) we have

yn xn + tn = zn

=ΦΨ+ħ−
ℓ−1∑
j=0

(d j −d j−1)en j

= xn s1 · · · sn−1 y1sn−1 · · · s1 +ħ−
ℓ−1∑
j=0

(d j −d j−1)en j

= xn yn +ħ−
ℓ−1∑
j=0

(d j −d j−1)en j ,

that is, yn xn = xn yn + rn where rn ∈CG(ℓ,1,n). Now, take any wi ∈ Sn such that wi (n) = i , then

wi yn xn w−1
i = wi xn yn w−1

i +wi rn w−1
i ,

that is,

yi xi = xi yi + ri

where ri = wi rn w−1
i ∈CG(ℓ,1,n). Now note that

Ψsn−1Φ= y1s1 · · · sn−2sn−1sn−1xn sn−1sn−2 · · · s1

= y1xn s1 · · · sn−2sn−1sn−2 · · · s1

= y1xn(1 n)

and

Φs1Ψ= xn sn−1 · · · s2s1s1 y1s1 · · · sn−1

= xn y1sn−1 · · · s2s1s2 · · · sn−1

= xn y1(1 n).

Thus, from relation (T5), we obtain

y1xn = xn y1 + c0

ℓ−1∑
k=0

ζ−kζk
1ζ

−k
n (1 n) = xn y1 + r1n (3.18)

where ri n = c0
∑ℓ−1

k=0 ζ
−kζk

1ζ
−k
n (1 n) ∈ CG(ℓ,1,n). Assume that i ̸= j and take wi j ∈ Sn such that wi j (1) = i and

wi j (n) = j , then conjugating (3.18) by wi j we obtain

yi x j = x j yi + ri j

for ri j ∈CG(ℓ,1,n). Now, take an element p = xa1
1 · · ·xan

n yb1
1 · · · ybn

n w ∈ B . We prove by induction on |a| := a1 +·· ·+
an that yi p ∈ A. Indeed, this is obvious if |a| = 0. If |a| > 0 then, take j be the least index such that a j > 0. Then

yi p = yi x
a j

j · · ·xan
n yb1

1 · · · ybn
n w = yi x j p ′

where p ′ = x
a j −1
j · · ·xan

n yb1
1 · · · ybn

n w , then by the previous part, we have that

yi p = (x j yi + t )p ′ = x j yi p ′+ t p ′

for some t ∈CG(ℓ,1,n), and as the x-degree of p ′ is strictly smaller than that of p, and we have proved the result

for left multiplication by elements of the group algebra, the claim follows.

Finally, note that γ(xa1
1 · · ·xan

n yb1
1 · · · ybn

n w) = xa1
1 · · ·xan

n yb1
1 · · · ybn

n w for any element in B and as these elements

are linearly independent in Hc,ħ (by the PBW theorem) it follows that they are linearly independent on H trig
c,ħ . Thus

γ is a vector space isomorphism, and consequently a C-algebra isomorphism. □
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This presentation was rediscovered by B. Webster in [77, Theorem 2.3].



CHAPTER 4

Diagonalizable representations and character formulas

We fix the parameter ħ = 1 and denote by Hc the cyclotomic rational Cherednik algebra associated to the

group G(ℓ,1,n). Similarly, we write ∆c and Lc instead of ∆c,1 and Lc,1, etc. We denote by t the Dunkl-Opdam

subalgebra of Hc and by Hgr the copy of the cyclotomic degenerate affine Hecke algebra inside Hc according to

3.2.3.

In this and the next chapters we heavily use the notations and conventions of 1.1.4. We denote by λ the

irreducible representation Sλ of the group G(ℓ,1,n) indexed by an ℓ-partition λ. In particular, we write ∆c (λ) and

Lc (λ) instead of ∆c (Sλ) and Lc (Sλ), respectively.

An irreducible Hc -module L is said to be diagonalizable or t-diagonalizable if the Dunkl-Opdam subalgebra

acts on L by diagonal operators in some C-linear basis.

4.1. Specht-valued Jack polynomials

4.1.1. t-weights. Let α ∈ t∗ = HomC(t,C). If M is an Hc -module, the generalized α-weight space of M , de-

noted by Mα, is

Mα = {m ∈ M | there is some N ∈Z>0 such that ( f −α( f ))N ·m = 0 for all f ∈ t}.

If m ∈ M , the t-weight of m is the vector (α1,ζβ1 , . . . ,αn ,ζβn ) ∈ (C×µℓ)n such that

zi ·m =αi m and ζi ·m = ζbi m for 1 ≤ i ≤ n.

We write

wtt(m) = (α1,ζβ1 , . . . ,αn ,ζβn ).

Now let φ : t → t be the automorphism of the Dunkl-Opdam subalgebra introduced in 3.8. If M is an Hc -

module and m ∈ M has t-weight (α1,ζβ1 , . . . ,αn ,ζβn ), we have, for 1 ≤ i ≤ n −1,

φ(zi ) ·m = zi+1 ·m =αi+1m and φ(ζi ) ·m = ζi+1 ·m = ζβi+1 m,

while for i = n,

φ(zn) ·m =
z1 +ħ−

ℓ−1∑
j=0

(d j−1 −d j−2)e1 j

 ·m

=
z1 +ħ− 1

ℓ

ℓ−1∑
j=0

(d j−1 −d j−2)
ℓ−1∑
k=0

ζ− j kζk
1

 ·m

=
α1 +ħ− 1

ℓ

ℓ−1∑
j=0

(d j−1 −d j−2)
ℓ−1∑
k=0

ζk(β1− j )

m

=
α1 +ħ− 1

ℓ

ℓ−1∑
j=0

δ j ,β1 (d j−1 −d j−2)ℓ

m

= (α1 +ħ−dβ1−1 +dβ1−2),

89
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and

φ(ζn) ·m = ζ−1ζ1 ·m = ζβ1−1m.

For this reason, it is useful to introduce an automorphism (still denoted by φ) of the space (C×µℓ)n , defined by

(recall that ħ= 1)

φ(α1,ζβ1 , . . . ,αn ,ζβn ) = (α2,ζβ2 , . . . ,αn ,ζβn ,α1 +1−dβ1−1 +dβ1−2,ζβ1−1).

We write ψ=φ−1, hence

ψ(α1,ζβ1 , . . . ,αn ,ζβn ) = (αn −1+dβn −dβn −1,ζβn+1α1,ζβ1 , . . . ,αn−1,ζβn−1 ).

Then, from Lemma 3.22 we obtain the following

PROPOSITION 4.1. Let M be an Hc -module and m ∈ M with t-weight

wtt(m) = (α1,ζβ1 , . . . ,αn ,ζβn ).

(a) If ζβi ̸= ζβi+1 or αi ̸=αi+1, then σi ·m is well defined and is a weight vector with weight

wtt(σi ·m) = si wtt(m).

(b) Φ ·m and Ψ ·m are weight vectors, and

wtt(Φ ·m) =φ(wtt(m)) and wtt(Ψ ·m) =ψ(wtt(m)).

4.1.2. t-spectrum of standard modules. Let λ be a ℓ-partition of n and let {vT | T ∈ SYT(λ)} be a standard

GZ-basis. Then by the PBW theorem, the elements

xµvµT := xµ⊗ vµT ∈∆c (λ) :=∆c (Sλ) ∼=C[x1, . . . , xn]⊗Sλ

form a basis of the standard module ∆c (λ) (see (2.18)).

Extend the ordering on (Z≥0)n introduced in 1.1.5 to (Z≥0)n ×SYT(λ) by

(µ,T ) ≤ (ν,S) if and only if µ≤ ν.

THEOREM 4.2. [36, Theorem 5.1] Let λ ∈ Parℓ(n), µ ∈Zn
≥0, and T ∈ SYT(λ).

(a) The Dunkl-Opdam subalgebra t acts on ∆c (λ) by the formulas

ζi · xµvµT = ζβ(b)−µi xµvµT

and,

zi · xµxµT = (µi +1−dβ(b) −dβ(b)−µi−1 − c0ℓct(b)xµvµT + ∑
(ν,S)<(µ,T )

aν,S xνvνS

for some scalars aν,S ∈C, where b = T −1(v(λ)(i )).

(b) Working with the generic rational Cherednik algebra Hgen, there is an unique tK-eigenvector fµ,T ∈K⊗A

∆(λ) such that

fµ,T = xµvµT + lower terms.

Moreover, the tK-eigenvalue of fµ,T is determined by the formulas in part (a).
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The elements fµ,T for generic values of the parameters, are polynomial functions Cn → Sλ. When ℓ = 1

and λ = (n) (so that Sλ = triv and ∆c (E) ∼= C[x1, . . . , xn]), these are the classical non-symmetric Jack polynomials

introduced by Opdam in [65] and studied in more detail by Knop and Sahi in [53]. For this reason we call the

elements fµ,T the Specht-valued Jack polynomials.

We now present how the intertwining operators act on the basis of Specht-valued Jack polynomials. For this,

given µ ∈Zn , we define

φ(µ1, . . . ,µn) = (µ2,µ3, . . . ,µn ,µ1 +1)

and set ψ=φ−1. Note that φ(Zn
≥0) ⊆Zn

≥0 (actually φ(Zn
≥0) =Zn

≥0 ×Z≥1), but ψ(Zn
≥0) ̸⊆Zn

≥0.

LEMMA 4.3. [36, Lemma 5.3] Let µ ∈Zn
≥0 and T ∈ SYT(λ), where λ ∈ Parℓ(n). For each i ∈ {1, . . . ,n} set

b(i ) := T −1(v(µ)(i )).

(a) If µi <µi+1 or if µi −µi+1 ̸≡β(b(i ))−β(b(i +1)) (mod ℓ), then

σi · fµ,T = fsi ·µ,T .

(b) If µi >µi+1 and µi −µi+1 ≡β(b(i ))−β(b(i +1)) (mod ℓ), then

σi · fµ,T = (δ−ℓc0)(δ+ℓc0)

δ2 fsi ·µ,T ,

where

δ=µi −µi+1 − (dβ(b(i )) −dβ(b(i+1)))− c0ℓ(ct(b(i ))−ct(b(i +1))).

(c) If µi =µi+1, setting j = v(µ)(i ), then

σi · fµ,T =


0 if s j−1 ·T ̸∈ SYT(λ),

fµ,s j−1·T if β(T ( j )) ̸≡β(T ( j −1)) (mod ℓ),(
1− (

ct(T ( j −1))−ct(T ( j ))
)−2

)1/2
fµ,s j−1·T else.

(d) Φ · fµ,T = fφ(µ),T , and

(e)

Ψ · fµ,T =

µn − (dβ(b(n)) −dβ(b(n))−µn )− c0ℓct(b(n)) fψ(µ),T if µn > 0,

0 if µn = 0.

Recall the set Γ(λ) introduced in 1.1.4. This set consists of the ordered pairs (P,Q) such that P : λ→ {1, . . . ,n}

is a bijection, Q : λ→ Z≥0 is a filling of the boxes of λ and if b < b′ then Q(b) ≤ Q(b′) with equality implying

P (b) > P (b′). Define a bijection

γ :Zn
≥0 ×SYT(λ) → Γ(λ)

as follows. Given (µ,T ) ∈ Zn
≥0 ×SYT(λ), define P = v(µ)−1T and Q(b) = µP (b). This map is well defined. For P is

clearly a bijection and if b < b′, then T (b) < T (b′), and by the definition of v(µ) we have

Q(b) =µv(µ)−1T (b) =µ−
T (b) ≤µ−

T (b′) =µv(µ)−1T (b′) =Q(b′).

Moreover, if Q(b) =Q(b′) then µ−
T (b) =µ−

T (b′), and by the maximality of the length of v(µ) in the set {w ∈ Sn | wµ=
µ−} this implies that v(µ)−1T (b) > v(µ)−1T (b′), that is, P (b) > P (b′). Conversely, given (P,Q) ∈ Γ(λ), define µi =
Q(P−1(i )), so that µ ∈ Zn

≥0, and T = v(µ)P . If b < b′ we have that Q(b) ≤ Q(b′), that is, µP (b) ≤ µP (b′). If µP (b) <
µP (b′), then v(µ)P (b) < v(µ)P (b′) and hence T (b) < T (b′). If µP (b) = µP (b′) then P (b) > P (b′) and by the definition

of v(µ) we must have v(µ)P (b) < v(µ)P (b′), that is, T (b) < T (b′). This shows that T ∈ SYT(λ), providing an inverse

for γ.
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It is clear that γ is actually a bijection. Thus, for any (P,Q) ∈ Γ(λ) we set

fP,Q = fγ−1(P,Q).

In terms of this indexing, the action of the Dunkl-Opdam subalgebra on a standard module ∆c (λ) is given by

ζi · fP,Q = ζβ(P−1(i ))−Q(P−1(i )) (4.1)

and

zi · fP,Q = (Q(P−1(i ))+1− (dβ(P−1(i )) −dβ(P−1(i ))−Q(P−1(i ))−1)−ℓc0 ct(P−1(i ))) fP,Q . (4.2)

The map φ :Zn
≥0 →Zn

≥0 extends to a map

φ : Zn
≥0 ×SYT(λ) → Zn

≥0 ×SYT(λ)

(µ,T ) 7→ (φ(µ),T ),

and we can pushforward φ via the bijection γ to obtain a map (still denoted by φ) Γ(λ) → Γ(λ) such that the

diagram

Zn
≥0 ×SYT(λ) Zn

≥0 ×SYT(λ)

Γ(λ) Γ(λ)

φ

γ γ

φ

commutes. Actually, we can make a very explicit description of φ. If (P,Q) ∈ Γ(λ), we set φ(P,Q) = (P ′,Q ′) where

P ′(b) =

P (b)−1 if P (b) ̸= 1,

n if P (b) = 1,
and Q ′(b) =Q(b)+δP (b),1,

where δ is the Kronecker symbol. We set ψ = φ−1, which does not preserve Γ(λ). Then, we can reformulate

Lemma 4.3 in terms of the Γ(λ)-indexing. For this, recall the notion of charged content introduced in (1.2).

LEMMA 4.4. [38, Lemma 4.3] Let λ ∈ Parℓ(n) and (P,Q) ∈ Γ(λ).

(a) If Q(P−1(i )) <Q(P−1(i +1)) or Q(P−1(i ))−Q(P−1(i +1)) ̸≡β(P−1(i ))−β(P−1(i +1)) (mod ℓ), then

σi · fP,Q = fsi ·P,Q .

(b) If Q(P−1(i )) >Q(P−1(i +1)) and Q(P−1(i ))−Q(P−1(i +1)) ̸≡β(P−1(i ))−β(P−1(i +1)) (mod ℓ), then

σi · fP,Q
(δ−ℓc0)(δ+ℓc0)

δ2 fsi ·P,Q ,

where

δ=Q(P−1(i ))−Q(P−1(i +1))− (ctc (P−1(i ))−ctc (P−1(i +1))).

(c) If Q(P−1(i )) =Q(P−1(i +1)), then

σi · fP,Q =


0 if (si ·P,Q) ̸∈ Γ(λ),

fsi ·P,Q if β(P−1(i )) ̸=β(P−1(i +1)),(
1− (ct(P−1(i +1))−ct(P−1(i )))−2

)1/2
fsi ·P,Q else.

(d) Φ · fP,Q = fφ(P,Q), and

(e)

ψ · fP,Q =

(Q(P−1(n))−ctc (P−1(n))+dβ(P−1(n))−Q(P−1(n))) fψ(P,Q) if Q(P−1(n)) > 0,

0 if Q(P−1(n)) = 0.
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It will be useful to see the explicit action of the Euler vector field on Specht-valued Jack polynomials. A direct

application of the formula in Lemma 3.19 gives

eu fP,Q = (cλ+|Q|) fP,Q (4.3)

where

cλ = cSλ = c0ℓ

(
ℓ

2

)
+nd0 −

n∑
i=1

dβ(P−1(i )) −ℓc0

n∑
i=1

ct(P−1(i )) ∈C.

is independent of P . In particular, this implies that

∆c (λ)cλ+d = ⊕
Q∈Tabc (λ,d)

(P,Q)∈Γ(λ)

C fP,Q (4.4)

in the notation of 1.1.1.

4.1.3. The calibration graph. We say that a standard module ∆c (λ) := ∆c (Sλ) has simple spectrum if the t-

spaces on ∆c (λ) are one-dimensional. For (µ,T ) ∈Zn
≥0 ×SYT(λ), and 1 ≤ i ≤ n, set b = T −1(v(µ)(i ))

wt(µ,T )i = (µi +1− (dβ(b) −dβ(b)−µi−1)− c0ℓct(b), ζβ(b)−µi ).

If k,ℓ,n are integers, define

Hk, j ,m = {(c0,d1, . . . ,dℓ−1) ∈Rℓ | k = d j −d j−k +mℓc0}.

If µ is a partition, set

ct+(µ) = max{ct(b) | b ∈µ} and ct−(µ) = min{ct(b) | b ∈µ}.

A hyperplane Hk, j ,m is said to be exceptional for an ℓ-partition λ if k > 0, k ̸≡ 0 (mod ℓ), λℓ ̸=∅ ̸=λℓ−k and

ct−(λ j )−ct+(λ j−k ) ≤ m ≤ ct+(λ j )−ct−(λ j−k ).

LEMMA 4.5. [36, Lemma 7.1] Assume that c0 ̸= 0. The following conditions are equivalent.

(i) ∆c (λ) has simple spectrum;

(ii) for all (µ,T ) ∈ Γ(λ) we have wti (µ,T )i ̸= wt(µ,T )i for 1 ≤ i ≤ n −1;

(iii) the deformation parameter c = (c0,d1, . . . ,dℓ) does not lie in any exceptional hyperplane for λ;

(iv) the Specht-valued Jack polynomials fµ,T are well defined for all (µ,T ) ∈Zn
≥0 ×SYT(λ);

(v) The intertwiners σi , for 1 ≤ i ≤ n −1, are well defined on ∆c (λ), in the sense that either zi ·m ̸= zi+1 ·m or

πi ·m = 0 for any weight vector m ∈∆c (λ).

If ∆c (λ) has simple spectrum, we define the generic calibration graph Γgen(λ) as the directed graph whose

vertex set is Zn
≥0 ×SYT(λ) and with directed edges (µ,T ) → (ν,S) if

(1) S = s j−1 ·T ∈ SYT(λ), with j = v(µ)(i ) and µi =µi+1, or

(2) ν=φ(µ).

The calibration graph Γ↑(λ) is obtained from the generic calibration graph by adding edges (µ,T ) → (ν,S) when-

ever

(3) ν= si ·µ, µi ̸=µi+1 and σi · fµ,T ̸= 0, or

(4) ν=ψ(µ), µn > 0 and Ψ · fµ,T ̸= 0.
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A subset X ⊆ Γ↑(λ) is closed if (ν,S) ∈ X whenever (µ,T ) ∈ X and (µ,T ) → (ν,S) is an arrow in Γ↑(λ). The term

calibration graph comes from the terminology introduced by A. Ram in [66] where he calls the analog of a t-

diagonalizable representation, for the case of an affine Hecke algebra, a calibrated module. The term tame module

is also used in the literature, for the case of diagonalizable representations of Yangians over a Gelfand-Tsetlin

subalgebra, as in [61].

Given a box b ∈λ and k ∈Z>0, define

Γ(b,k) = {(µ,T ) ∈ Γ(λ) |µ−
T (b) ≥ k}

and for distinct boxes b1,b2 ∈λ and k ∈Z>0, set

Γ(b1,b2,k) =
(µ,T ) ∈ Γ(λ)

∣∣∣∣∣∣ either µ−
T (b1) −µ−

T (b2) > k, or

µ−
T (b1) −µ−

T (b2) = k and v(µ)−1(T (b1)) < v(µ)−1(T (b2))

 .

For each (µ,T ) ∈ Γ(λ), define its inversion set R(µ,T ) by

R(µ,T ) = {Γ(b,k) | (µ,T ) ∈ Γ(b,k)}∪ {Γ(b1,b2,k) | (µ,T ) ∈ Γ(b1,b2,k)}.

We can define a distance d on the set Zn
≥0 ×SYT(λ) by

d((µ,T ), (ν,S)) = |R(µ,T )∆R(ν,S)|+ℓ(S ◦T −1)

where for sets A and B , we have

A∆B = (A \ B)∪ (B \ A)

is the symmetric difference, and ℓ(w) is the length of the permutation w ∈ Sn .

LEMMA 4.6. [36, Lemma 7.4] Let (µ,T ) and (ν,S) be two elements in Γ(λ). There is a sequence

(µ,T ) = (µ0,T0), (µ1,T1), . . . , (µm ,Tm) = (ν,S)

of elements of Γ(λ) such that for each 1 ≤ i ≤ m, (µi ,Ti ) is adjacent to (µi−1,Ti−1) and either

(a) R(µi ,Ti ) = R(µi−1,Ti−1), or

(b) R(µi ,Ti ) is obtained from R(µi−1,Ti−1) by adjoining some element of R(ν,S) or by removing some element

not in R(ν,S).

SKETCH OF THE PROOF. We proceed by induction on d = d((µ,T ), (ν,S)). If d = 0 the conclusion is obvious.

Consider the following four properties:

(1) (ν,S) ∈ Γ(T −1(v(µ))(n),µn) \Γ(T −1(v(φ(µ))(n)),µ1 +1),

(2) if µi <µi+1 then (ν,S) ̸∈ Γ(T −1(v(µ)(i +1)),T −1(v(µ)(i )),µi+1 −µi ),

(3) if µi >µi+1 then (ν,S) ∈ Γ(T −1(v(µ)(i )),T −1(v(µ)(i +1)),µi −µi+1), and

(4) If µi =µi+1 and j = v(µ)(i ), then either s j−1 ·T ̸∈ SYT(λ) or ℓ(S ◦T −1 ◦ s j−1) > ℓ(S ◦T −1).

One then proves that if the four properties are satisfied, then (µ,T ) = (ν,S) and the result follows. Otherwise, one

of the four properties are violated, then one can find ,by a case by case consideration according to which property

fails to hold, some (µ′,T ′) in Γ(λ) adjacent to (µ,T ) such that d((µ′,T ′), (ν,S)) < d((µ,T ), (ν,S)) = d and such that

R(µ′,T ′) is either equal to R(µ,T ) or is obtained from it by adjoining some element of R(ν,S) or by removing some

element not in R(ν,S), and the result follows by induction. □

COROLLARY 4.7. Let Q ∈ Tabc (λ) and P,P ′ ∈ Qc . Then there is a sequence of simple transpositions si1 , . . . , sip such

that P ′ = si1 · · · sip ·P and si j · · · sip ·P ∈Qc for all 1 ≤ j ≤ p.
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4.2. Diagonalizable representations of cyclotomic RCA

The following theorem, due to S. Griffeth, is a key step in the classification of unitary representations in

category Oc for the cyclotomic rational Cherednik algebra.

THEOREM 4.8. [38, Theorem 1.1] Let λ ∈ Parℓ(n). The module Lc (λ) is diagonalizable if and only if either

(a) c0 = 0, or

(b) c0 ̸= 0 and for every removable box b ∈λ, either kc (b) =∞ or ℓc (b) < kc (b).

Moreover, in the situation (b), the set of Specht-valued Jack polynomials

{ fP,Q | (P,Q) ∈ Γc (λ)}

is a C-basis for Lc (λ).

The proof of this theorem is rather technical, and fills several pages, so we provide a sketch of the argument.

Assume that c0 ̸= 0. An element (µ,T ) ∈Zn
≥0 ⋊SYT(λ) is said to be c-folded (or just folded if c is clear for the

context) if there is some 1 ≤ i ≤ n −1 such that

wtc (µ,T )i = wtc (µ,T )i+1.

To ease notation, write Γ for the set Zn
≥0 × SYT(λ) and Γc for the image of Γc (λ) under the bijection Γ↔ Γ(λ).

Define the boundary of Γc as the set

∂Γc = {(µ,T ) ∈ Γ\Γc | (ψ(µ),T ) ∈ Γc or (si ·µ,T ) ∈ Γc for some 1 ≤ i ≤ n}.

One first proves that if (µ,T ) ∈ Γc is folded, then Lc (λ) is not t-diagonalizable, by showing that foldings produce

non-trivial Jordan blocks.

The next step is a characterization of t-diagonalizable modules in terms of foldings. More precisely:

THEOREM 4.9. [38, Theorem 5.3] Assume that c0 ̸= 0. Then Lc (λ) is t-diagonalizable if and only if no element of

∂Γc is folded. In this case, a basis for Lc (λ) is given by { fµ,T | (µ,T ) ∈ Γc }.

The key part of the proof is to show that if no element in ∂Γc is folded, then Lc (λ) is diagonalizable. For the

moment, do not assume the no-folding hypothesis and let V be the free C-module on the set Γc . Define operators

ζ̃i , z̃i , σ̃i , Φ̃ and Ψ̃ as follows. Set

b(i ) := T −1(v(µ)(i )).

ζ̃i · (µ,T ) = ζβ(T −1(v(µ)(i )))−µi (µ,T )

z̃i · (µ,T ) = (µi +1− (dβ(T −1(v(µ)(i ))) −dβ(T −1(v(µ)(i )))−µi−1)− c0ℓct(T −1(v(µ)(i ))))(µ,T ).

If (si ·µ,T ) ̸∈ Γc , set σ̃i · (µ,T ) = 0. Otherwise

(a) If µi <µi+1 or if µi −µi+1 ̸≡β(b(i ))−β(b(i +1)) (mod ℓ), then

σ̃i · (µ,T ) = (si ·µ,T ).

(b) If µi >µi+1 and µi −µi+1 ≡β(b(i ))−β(b(i +1)) (mod ℓ), then

σ̃i · (µ,T ) = (δ−ℓc0)(δ+ℓc0)

δ2 (si ·µ,T ),

where

δ=µi −µi+1 − (dβ(b(i )) −dβ(b(i+1)))− c0ℓ(ct(b(i ))−ct(b(i +1))).
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(c) If µi =µi+1, setting j = v(µ)(i ), then

σ̃i · (µ,T ) =


0 if s j−1 ·T ̸∈ SYT(λ),

(µ, s j−1 ·T ) if β(T ( j )) ̸≡β(T ( j −1)) (mod ℓ),(
1− (

ct(T ( j −1))−ct(T ( j ))
)−2

)1/2
(µ, s j−1 ·T ) else.

(d) Φ · (µ,T ) = (φ(µ),T ) if (φ(µ),T ) ∈ Γc and Φ · (µ,T ) = 0 otherwise; and

(e)

Ψ · (µ,T ) =

µn − (dβ(b(n)) −dβ(b(n))−µn )− c0ℓct(b(n))(ψ(µ),T ) if µn > 0,

0 if µn = 0.

Then, after a lengthy calculation, one shows that these operators satisfy the relations satisfied between the inter-

twining operators and the Dunkl-Opdam subalgebra, and define the action of the simple reflections by

si · v = σ̃i · v − c0

zi − zi+1
πi · v.

Then, imposing the no-folding hypothesis, one shows that these operators satisfy the relations from the trigono-

metric presentation of Hc . Thus V is an Hc -module. One verifies that the t-weight spaces are one-dimensional,

that any non-zero weight vector generates V as an Hc -module. One also shows that Ψ acts locally nilpotent on

V , and so the elements yi , which proves that V is an irreducible object in Oc . As the lowest weight part of V is

isomorphic to Sλ, it follows that V ∼= Lc (λ) and thus Lc (λ) is diagonalizable.

To finish the proof of Theorem 4.8, one must translate the no-folding condition into a purely combinatorial

setting. This is the content of Lemma 6.1 and Theorem 6.2 in [38]. We omit the details.

4.2.1. Some finite dimensional t-diagonalizable representations. In Chapter 5 we will introduce the con-

cept of coinvariant type representations, which are certain irreducible objects in category Oc , and prove that they

are always finite dimensional. For this reason, it is useful to have an easy description of finite-dimensional t-

diagonalizable representations in category Oc , which thanks to Theorem 4.8 can be obtained by working out the

combinatorics.

In the remainder of this section, I present several results obtained during my master’s studies. While these

are not part of the main body of this dissertation, they are included here for the sake of completeness, as no pub-

lished account of this earlier work currently exists. As you will see, most of these results are just straightforward

applications of Theorem 4.8.

Let λ be a partition, and write

λ= (nm1
1 ,nm2

2 , . . . ,nmν
ν ),

where n1 > n2 > ·· · > nν > 0, which means that λ has mi rows with ni boxes in each of these rows. Thus the

removable boxes of λ are

b(i ) = (m1 +m2 +·· ·+mi ,ni ) i = 1,2, . . . ,ν, (4.5)

that is, the box in row m1 +m2 +·· ·+mi and column ni . The outside addable boxes of λ are

bout,1 = (1,n1 +1) and bout,2 = (m1 +m2 +·· ·+mν+1,1).

Note that if λ=∅ its only outside addable box is (1,1). The partition λ is a rectangle if ν= 1.

We give names to special boxes in λ:

• b1 = (1,n1) is the box of largest content;

• b2 = (m1,n1) is the removable box of largest content;
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• b3 = (m1 +m2,n2) is the removable box of second largest content;

• b4 = (m1 +·· ·+mν,1) is the box of smallest content;

• b5 = (m1 +m2 +m3,n3) is the removable box of third largest content.

The following diagram illustrates the position of these boxes:

b1

b2

b3

b4 b5

Note that if λ is a rectangle, then the boxes b3 and b5 do not exist. It can happen that two of these boxes are

the same. For example in the following diagram we have that b3 = b4.

How do we search for finite dimensionality? If we want to show that a representation Lc (λ) is diagonaliz-

able and finite dimensional, we need to determine whether the set Γc (λ) is a finite set, as it indexes a basis for

the module Lc (λ), at least when c0 ̸= 0.

Note that if a pair (P,Q) belongs to Γc (λ), there is only a finite number of possibilities for P as it is a bijection

between the set of boxes of λ and the set [n]. Thus have to determine when the number of possibilities for

Q is finite. Note that Q is a non decreasing function, and that the maximal elements in the set of boxes are the

removable boxes. Thus in order for Γc (λ) to be finite is necessary and sufficient that there is some constant k such

that Q(b) ≤ k for all removable boxes b of λ. In order for this to happen, we have two options: the removable box

b satisfies condition (c) in the definition of Γc (λ) or for each removable box b there is some box b′ ∈ λ such that

Q(b′) is bounded above and such that putting b1 = b and b2 = b′, they verify condition (b) in the definition of

Γc (λ).

To ease the writing, we will say that a box b in λ is A-bounded if there is some positive integer k such that

k = dβ(b) −dβ(b)−k +ℓct(b)c0. Similarly, we say that b is B-bounded if there is some box b′ ∈ λ and k ∈ Z>0 with

β(b)−β(b′) ≡ k (mod ℓ) and

k = dβ(b) −dβ(b′) +ℓ(ct(b)−ct(b′)±1)c0.

We say that b′ is a bounding box for b. Thus, Γc (λ) will be a finite set if and only if for every removable box b,

either b is A-bounded or it is B-bounded, with a bounding box b′ such that Q(b′) is bounded above for some

constant independent of Q.

4.2.2. The case λ= (λ0,∅, . . . ,∅). We consider the case λ= (λ0,∅, . . . ,∅). We adopt the notations introduced

in at the beginning of this section for the partition λ0. Thus b1 is the box of largest content in λ0, b2 is the

removable box of largest content, etc. Also, we write λ0 = (nm1
1 , . . . ,nmν

ν ) and b(i ) for the removable boxes of λ0,

1 ≤ i ≤ ν.
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LEMMA 4.10. Let λ= (λ0,∅, . . . ,∅) and assume that c0 ̸= 0 is not a rational number of denominator at most ct(b2)−
ct(b4). If b is a removable box that is B-bounded, then b = b2 and this occurs precisely when c0 > 0 is a rational

number whose denominator is exactly ct(b2)−ct(b4)+1. Moreover, in this case the only bounding box for b = b2 is

b4 and b4 is not B-bounded.

PROOF. Let b be a removable box that is B-bounded and let b′ be a bounding box for b, then there is a

positive integer k with β(b)−β(b′) ≡ k (mod ℓ) and

k = dβ(b) −dβ(b′) +ℓ(ct(b)−ct(b′)±1)c0.

But b,b′ ∈λ0, thus β(b) =β(b′) = 0, which means that k = k ′r for some positive integer k ′ and that

k ′ = (ct(b)−ct(b′)±1)c0.

Note that necessarily c0 > 0 is a rational number in this case. Write c0 = a/r with a,b positive coprime integers

and r > ct(b2)−ct(b4). Then as k ′ ∈Z this implies that

r | ct(b)−ct(b′)±1

from which ct(b2)− ct(b4) < ct(b)− ct(b′)±1. But ct(b2)− ct(b4) maximizes the difference ct(b)− ct(b′), for a re-

movable box b and an arbitrary box b′, thus the only possibility is b = b2, b′ = b4 and ±1 = 1. Hence, as

ct(b2)−ct(b4)+1 ≤ ℓ≤ ct(b)−ct(b′)±1,

necessarily r = ct(b2)−ct(b4)+1.

Now assume that b4 is B-bounded and let b′ is a bounding box for b4. There is some positive integer k = k ′ℓ
such that

k ′ = (ct(b4)−ct(b′))c0 = a(ct(b4)−ct(b′))

r
,

but a and r are coprime, which means that r = ct(b2)−ct(b4)+1 must divide ct(b4)−ct(b′). Clearly ct(b4)−ct(b′) <
r , which is impossible. Thus b4 is not B-bounded. □

THEOREM 4.11. Let c0 > 0.

(a) If c0 is not a rational number whose denominator is at most ct(b2)−ct(b4)+1, and if λ0 has more than

ℓ−1 removable boxes, then Lc (λ) cannot be finite dimensional.

(b) If c0 is a rational number whose denominator is exactly ct(b2)−ct(b4)+1 and λ0 has more than ℓ remov-

able boxes, then Lc (λ) cannot be finite dimensional.

PROOF. Assume first that c0 ̸= 0 is not a rational number whose denominator is at most ct(b2)− ct(b4)+ 1,

then Lc (λ) is diagonalizable. By Lemma 4.10, the only possibility for Lc (λ) to be finite dimensional in this case is

that every removable box of λ is A-bounded. Assume that ν> ℓ−1, that is, that λ has more than ℓ−1 removable

boxes. Then ν≥ ℓ. For each i = 1, . . . ,ν there is a positive integer ki such that

ki = d0 −d−ki +ℓct(b(i ))c0.

We will show that if i ̸= j , then ki ̸≡ k j (mod ℓ). Assume the contrary, that is, that ki ≡ k j (mod ℓ). Thus d−ki =
d−k j , and substracting the equations

ki = d0 −d−ki +ℓct(b(i ))c0 and k j = d0 −d−k j +ℓct(b( j ))c0

we obtain

ki −k j = ℓ(ct(b(i ))−ct(b( j )))c0. (4.6)
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This clearly implies that c0 must be rational. Write c0 = a/ℓ with a and ℓ coprime integers and ℓ> ct(b2)−ct(b4)+
1. Then by (4.6) and as ki −k j ≡ 0 (mod ℓ), we obtain

(ct(b(i ))−ct(b( j )))a

ℓ
= ki −k j

r
∈Z.

This implies that ℓ must divide ct(b(i ))−ct(b( j )), which is impossible.

Now we show that ki ̸≡ 0 (mod ℓ) for all i = 1, . . . ,ν. Indeed, if ki = kr for some integer k, then d−k = d0 and

k = ct(b(i ))c0.

This implies that ct(b(i )) > 0 and ℓ | ct(b(i )). Then

ct(b2)−ct(b4) < ℓ≤ ct(b(i )),

which is impossible because ct(b4) ≤ 0 and ct(b(i )) ≤ ct(b2).

Denote by a the image of a positive integer a ∈Z in Z/ℓZ. Then by the above we conclude that ki ̸= k j for all

i ̸= j . As the set Z/ℓZ has precisely ℓ elements, this implies that ν= ℓ and that ki ≡ 0 (mod ℓ) for some i , which

is absurd because no ki ≡ 0 (mod ℓ). Thus λ cannot have more than ℓ−1 removable boxes.

If c0 is a rational number whose denominator is exactly ct(b2)−ct(b4)+1, we repeat the same proof but taking

the indices 1 = 2, . . . ,ν. □

COROLLARY 4.12. For the group G(1,1,n) and c0 ̸= 0 there are no non-zero irreducible finite dimensional diago-

nalizable representations in the category Oc .

PROOF. Without loss of generality assume c = c0 > 0). If c is a rational number of the form c = k/m for

positive coprime integers k and m, and m ≤ ct(b2)− ct(b4), then Corollary 8.1 in [38] implies that Lc (λ) is not

diagonalizable. Thus we only have to care about the case when c is not a rational number whose denominator is

at most ct(b2)−ct(b4). Consider two cases:

Case 1. c is not a rational number whose denominator is at most ct(b2)−ct(b4)+1. Then by Theorem 4.11(a),

Lc (λ) will be finite dimensional if and only if λ has fewer than ℓ−1 = 0 removable boxes, which means that λ=∅,

i.e., Lc (λ) = 0.

Case 2. c is a rational number whose denominator is exactly ct(b2)− ct(b4)+ 1. In this case λ must be a

rectangle (or empty). Then by Lemma 4.10, b2 is B-bounded with bounding box b4 and b4 is not B-bounded.

Then Lc (λ) will be finite dimensional and diagonalizable if and only if there is an A-bounded box b in the bottom

row of λ. This means that an equation of the form

k = ct(b)c

holds for some positive integer k. But then ct(b) > 0 and the denominator ct(b2)−ct(b4)+1 must divide ct(b) and

therefor

ct(b2)−ct(b4)+1 ≤ ct(b) ≤ ct(b2) ≤ ct(b2)−ct(b4),

which is absurd. □

REMARK 4.13. In Theorem 1.2 of [6], the authors show that for the rational Cherednik algebra Hc (Sn ,h) with

h= {(z1, . . . , zn) ∈Cn |z1 +·· ·+ zn = 0} ∼=Cn−1

the only values of c for which there are finite dimensional representations are c =±r /n, with r ∈Z>0 and (r,n) = 1.

This does not contradicts Corollary 4.12, because G(1,1,n) is a reflection group of rank n, while the result in [6]

is for a reflection group of rank n −1.
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COROLLARY 4.14. Assume that λ= (λ0,∅, . . . ,∅) and that c0 > 0 is not a rational number of denominator at most

ct(b2)−ct(b4)+1. Then Lc (λ) is a finite dimensional diagonalizable representation of Hc if and only if λ has ν≤ ℓ−1

removable boxes and there are positive integers ki , 1 ≤ i ≤ ν such that ki ̸≡ k j (mod ℓ) if i ̸= j and ki ̸≡ 0 (mod ℓ)

for all 1 ≤ i ≤ ν and the equations

d0 −d−ki +ℓct(b(i ))c0 = ki (4.7)

hold for 1 ≤ i ≤ ν.

PROOF. Just note that in this case, there are not removable boxes that are B-bounded, so each removable box

b(i ) must be A-bounded, and this is equivalent to the equations (4.7). The conditions ki ̸≡ k j (mod ℓ) if i ̸= j and

ki ̸≡ 0 (mod ℓ) for all 1 ≤ i ≤ ν are a consequence of the proof of Theorem 4.11. □

COROLLARY 4.15. Assume that λ = (λ0,∅, . . . ,∅), that λ0 is not a rectangle and that c0 > 0 is a rational number

of denominator exactly ct(b2)− ct(b4)+1. Then Lc (λ) is a finite dimensional diagonalizable representation of Hc

if and only if λ has ν≤ ℓ removable boxes and there are positive integers ki , 2 ≤ i ≤ ν such that ki ̸≡ k j (mod ℓ) if

i ̸= j and ki ̸≡ 0 (mod ℓ) for all 1 ≤ i ≤ ν and the equations

d0 −d−ki +ℓct(b(i ))c0 = ki (4.8)

hold for 2 ≤ i ≤ ν.

PROOF. Under these hypothesis, the only B-bounded removable box of λ is b2 and b4 is its only bounding

box. Now, as λ0 is not a rectangle, we have that b4 ≤ b(ν) and b(ν) ̸= b2 = b(1), hence Q(b4) ≤Q(b(ν)). This implies

that Lc (λ) will be finite dimensional if and only if the boxes b(i ), 2 ≤ i ≤ ν are A-bounded. This is precisely the

content of equations 4.8 □

COROLLARY 4.16. Assume that ℓ≥ 2, λ= (λ0,∅, . . . ,∅), that λ0 is a rectangle and that c0 > 0 is a rational number

of denominator exactly ct(b2)−ct(b4)+1. Then Lc (λ) is a finite dimensional diagonalizable representation of Hc if

and only if there is some positive integer k ̸≡ 0 (mod ℓ) such that an equation of the form

d0 −d−k +ℓct(b)c0 = k.

holds for some box b in the bottom row of λ0.

PROOF. Under these hypothesis, it can happens that b2, which is the only removable box in λ, is A-bounded

or is B-bounded and its only bounding box is b4. In the first case, a necessary and sufficient condition for Lc (λ)

to be finite dimensional is that and equation of the form

d0 −d−k +ℓct(b2)c0 = k.

holds, for some positive integer k ̸≡ 0 (mod ℓ). In the second case a necessary and sufficient condition for Lc (λ)

to be finite dimensional is that there is some A-bounded box b with b4 ≤ b. Such a box must be in the bottom

row of λ0. Note that b2 is also a box in the bottom row of λ0. Hence, both cases are covered by the condition

given in the Corollary. □

4.2.3. Type B examples. We classify all finite dimensional t-diagonalizable representations for the cyclo-

tomic rational Cherednik algebras associated to the groups G(2,1,n) for bipartitions (that is, 2-partitions) of the

form λ= (λ0,;). Most of the work is already done in the previous subsection. So, for this subsection we assume

that ℓ= 2. We deal only with the case λ= (λ0,;). We write c = c0 and d = d0, thus di = d if i is even and di =−d

if i is odd.
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The following propositions are, respectively, Corollary 8.2 and Corollary 8.3 in [38]. We reproduce them here

for reader’s convenience.

PROPOSITION 4.17. Assume that c > 0 and that λ0 is a rectangle or b3 = b4. Then the module Lc (λ) is diagonalizable

if and only if

(a) c is not a rational number of denominator at most ct(b2)−ct(b4), or

(b) c = a/r with a and r positive coprime integers such that r ≤ ct(b2)−ct(b4) and an equation of the form

d +ct(b2)c = k

2

holds for some positive odd integer k < 2a.

PROPOSITION 4.18. Assume that c > 0 and that λ0 is not a rectangle and b3 ̸= b4. Then the module Lc (λ) is diago-

nalizable if and only if

(a) c is not a rational number of denominator at most ct(b2)−ct(b4), or

(b) c = a/r with a and r positive coprime integers such that ct(b3)− ct(b4)+ 1 ≤ r ≤ ct(b2)− ct(b4) and an

equation of the form

d +ct(b2)c = k

2
holds for some positive odd integer k < 2a.

We now make use of the results in the previous subsection and the two preceding propositions in order to

obtain a complete classification of finite dimensional diagonalizable representations of the form Lc (λ0,;). We

consider first the case when λ0 is a rectangle.

THEOREM 4.19. Assume λ0 is a rectangle and c > 0. Then the module Lc (λ) is finite dimensional and diagonaliz-

able if and only if either

(a) c is not a rational number whose denominator is at most ct(b2)−ct(b4)+1 and an equation of the form

d +ct(b2)c = k

2

holds for some positive odd integer k; or

(b) c is a rational number whose denominator is exactly ct(b2)−ct(b4)+1 and an equation of the form

d +ct(b)c = k

2

holds for some positive odd integer k and some box b in the bottom row of λ0; or

(c) c = a/r for positive coprime integers a and r with r ≤ ct(b2)−ct(b4) and an equation of the form

d +ct(b2)c = k

2

holds for some positive odd integer k with k < 2a.

PROOF. Case (a) is taken care by Corollary 4.14. For case (b) we use Corollary 4.16. We have that Lc (λ) will

be finite dimensional and diagonalizable in this case if and only if an equation of the form

d −d−k +2ct(b) = k

holds for some positive integer k, where b is some box in the bottom row of λ0. If k is even we obtain that

ct(b)c = k/2 and thus ct(b2)−ct(b4)+1 must divide ct(b). As ct(b) > 0 in this case, we have that

ct(b2)−ct(b4)+1 ≤ ct(b) ≤ ct(b2),
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which means that ct(b4) > 1. This is absurd, thus k must be odd and we obtain an equation of the form

d +ct(b)c = k

2
,

as desired.

If c = a/r for positive coprime integers a and r with r ≤ ct(b2)−ct(b4) then, by Proposition 4.17(b), Lc (λ) is

diagonalizable if and only if an equation of the form

d +ct(b2)c = k

2

for some positive odd integer k < 2a. We show that it also suffices for finite dimensionality. Indeed, if we rewrite

this equation, as d0 =−d1 = d and c0 = c, we obtain

d0 +d−1 +2ct(b2)c0 = k

which means that b2 is A-bounded. This proves (c). □

We now consider the case when λ0 is not a rectangle.

THEOREM 4.20. Assume λ0 is not a rectangle and c > 0. Then the module Lc (λ) is finite dimensional and diago-

nalizable if and only if λ0 has exactly two removable boxes, c = a/r for positive coprime integers a and r with

r = ct(b2)−ct(b4)+1

and an equation of the form

d +ct(b3)c = k

2
holds for some positive odd integer k.

PROOF. By Propositions 4.17 and 4.18 we have to consider two cases: c is not a rational number whose de-

nominator is at most ct(b2)−ct(b4) and c = a/r for positive coprime integers a and r with ct(b3)−ct(b4)+1 ≤ r ≤
ct(b2)−ct(b4).

Case 1. Assume that c is not a rational number whose denominator is at most ct(b2)−ct(b4). Then, if c is not

a rational number whose denominator is at most ct(b2)−ct(b4)+1, by Proposition 4.11 λ0 cannot have more than

r −1 = 1 removable box. But this is impossible because λ0 is assumed not to be a rectangle. Then there are not

finite dimensional diagonalizable representations in this case. Thus c = a/r for positive coprime integers a and r ,

with r = ct(b2)−ct(b4)+1. Then from Corollary 4.15 if follows that Lc (λ) is finite dimensional and diagonalizable

if and only if an equation of the form

d +ct(b3)c = k

2

for some positive odd integer k. Indeed, in this case b(2) = b3 and k ̸≡ 0 (mod 2) means that k is odd.

Case 2. The only remaining case is when

ct(b3)−ct(b4)+1 ≤ r ≤ ct(b2)−ct(b4). (4.9)

We will show that there are not finite dimensional diagonalizable representations in this case, and this will com-

plete de proof. In this case, Lc (λ) is diagonalizable if and only if an equation of the form

d +ct(b2)c = k

2
(4.10)

holds for some positive odd integer k < 2a. This implies that b2 is A-bounded.

We break the remaining of the proof in several steps:
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Step 1. We show that if b ̸= b2 is a removable box which is B-bounded, then b = b3 and its only bounding box

is b4 and this occurs precisely when r = ct(b3)−ct(b4)+1; moreover, b4 is not B-bounded in this case. Indeed, let

2 ≤ i ≤ n and b ∈ λ0 be a bounding box for b(i ). Then as β(b(i )) = β(b) = 0 there exists a positive even integer k

such that

k = 2(ct(b(i ))−ct(b)±1)c.

This implies that r | ct(b(i ))−ct(b)±1 and thus

ct(b(i ))−ct(b)±1 = pr

for some positive integer p (note that p ̸= 0 because k ̸= 0). Then by (4.9) we obtain

p(ct(b3)−ct(b4)+1) ≤ ct(b(i ))−ct(b)±1 = pr ≤ p(ct(b2)−ct(b4)). (4.11)

As i ≥ 2 and the quantity ct(b3)− ct(b4) maximizes ct(b(i ) − ct(b)) then the left inequality in (4.11) must be an

equality, with p = 1, i = 2 (recall that b3 = b(2)), b = b4 and ±1 = 1. In particular

r = ct(b3)−ct(b4)+1

and the only bounding box for b3 is b4. Now, b4 cannot be B bounded for if b is a bounding box for b4 then there

is some positive even integer q such that

q = 2(ct(b4)−ct(b)±1)c,

which implies that

2 ≤ ct(b3)−ct(b4)+1 = r ≤ ct(b4)−ct(b)±1 ≤ 1

which is absurd.

Step 2. We show that there are no A-bounded boxes b with ct(b) ≤ ct(b3). Indeed, assume that a box b with

ct(b) ≤ ct(b3) is A-bounded, thus we have an equation of the form

d0 −d−p +2ct(b)c = p

for some positive integer p. If p is even we obtain that ct(b) > 0, r | ct(b) and thus

ct(b3)+1 ≤ ct(b3)−ct(b4)+1 ≤ r ≤ ct(b) ≤ ct(b3)

which is absurd. Hence p is odd and we obtain an equation

d +ct(b)c = p

2
.

Now if we subtract this equation from (4.10) we obtain

(ct(b2)−ct(b))c = k −p

2
∈Z>0.

This implies that r | ct(b2)−ct(b). On the other hand, we have that k < 2a, thus

(ct(b2)−ct(b))c ≤ k

2
< a

and consequently

ct(b2)−ct(b) < r | ct(b2)−ct(b),

and this is absurd.

Step 3. Conclusion. By Step 2, b3 is not A-bounded, thus it must be B-bounded. By step 1 it only happens

when r = ct(b3)−ct(b4)+1. Now, assume that λ0 has at least three removable boxes. Then b5 (the third removable

box) must be A-bounded by Step 1, but as ct(b5) < ct(b3) this is impossible. Hence λ0 has only two removable
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boxes, namely b2 and b3, and as b4 is the only bounding box for b3, there exists some box b ̸= b3 in the bottom

row of λ0 which is A-bounded. Thus an equation of the form

p = d −d−p +2ct(b)c

holds for some positive integer p. If p is even, then p/2 = ct(b)c, which implies that ct(b) > 0 and r | ct(b) and, in

particular,

ct(b3)−ct(b4)+1 ≤ ct(b) < ct(b3),

which means that 1 < ct(b4) ≤ 0, and this is absurd. Thus p must be odd, and we obtain an equation

d +ct(b)c = p

2
.

If we subtract this equation from (4.10), we obtain

(ct(b2)−ct(b))c = k −p

2
∈Z>0.

Thus r | ct(b2)−ct(b), that is

r ≤ ct(b2)−ct(b). (4.12)

Recall that k < 2a, thus

(ct(b2)−ct(b))
a

r
≤ k

2
< a,

giving

ct(b2)−ct(b) < r

and this contradicts inequality (4.12). Thus there are not finite dimensional diagonalizable representations in this

case. □

EXAMPLE 4.21. Consider the partition λ0 = (5,5,5,3,3), whose Young diagram is

4

2

−4 −3 −2

Here, a number in a box denotes the content of that box.

In this case c = a/r for positive coprime integers a and r with

r = ct(b2)−ct(b4)+1 = 2− (−4)+1 = 7,

and the equation d +ct(b3)c = k/2 becomes

d − 2a

7
= k

2
,

that is

F =


(
a

7
,

2a

7
+ k

2

) ∣∣ (a,7) = 1, a ∈Z>0,k ∈ 1+2Z≥0


is the finite dimensional diagonalizable locus of λ for c > 0. (See Figure 1)
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FIGURE 1. Finite-dimensional diagonalizable locus F for the bipartition λ= ((5,5,5,3,3),;) and

c > 0. The blue dots correspond to the finite dimensional diagonalizable locus of λ, the vertical

lines are the values of c = a/7 and the diagonal lines correspond to the equations d −2c = k/2

for positive odd integers k. The orange circles are points that do not belong to F .

4.3. u-diagonalizable H(ℓ,n)-modules

Recall that u is the subalgebra of H(ℓ,n) generated by u1, . . . ,un and ζ1, . . . ,ζn . This subalgebra is isomorphic

to the Dunkl-Opdam subalgebra t provided that c0 ̸= 0.

We say that a H(ℓ,n)-module M is u-diagonalizable if the commutative subalgebra u acts on M by diagonal-

izable operators.

THEOREM 4.22. [27, Theorem 3.2] Let M be an irreducible u-diagonalizable H(ℓ,n)-module. Let m ∈ M be a

nonzero vector satisfying

ui ·m = ai m and ζi ·m = ζbi m, 1 ≤ i ≤ m,

for some a1, . . . , an ∈C and b1, . . . ,bn ∈ {0, . . . ,ℓ−1}. Then there is a skew-shape D and T ∈ SYT(D) such that

ai = ℓct(T −1(i )) and bi =β(T −1(i )), 1 ≤ i ≤ n,

and M ∼= SD . Moreover D and T are unique up to diagonal slides of their connected components.

For symmetric groups, that is, for ℓ = 1, this classification of u-diagonalizable H(ℓ,n)-modules was first ob-

tained by I. Cherednik in [15].



106 CHAPTER 4. DIAGONALIZABLE REPRESENTATIONS AND CHARACTER FORMULAS

If D is a skew-shape D we define the reverse skew-shape Dr as follows. The twisted module ρSD is still an

irreducible H(ℓ,n)-module and hence there exists an unique (up to diagonal slides of connected components)

skew-shape Dr such that ρSD ∼= SDr
.

4.3.1. Some irreducible H(ℓ,n)-submodules of Lc (λ). Let λ ∈ Parℓ(n) and assume that c0 ̸= 0. Assume that

Lc (λ) is a t-diagonalizable Hc -module. Then the set of Specht-valued Jack polynomials

{ fP,Q | (P,Q) ∈ Γc (λ)}

is a basis for Lc (λ) by Theorem 4.8. For each Q ∈ Tabc (λ), we set

LQ = spanC{ fP,Q | P ∈Qc }.

The fact that the polynomials fP,Q are simultaneous eigenvectors for the Dunkl-Opdam subalgebra t and parts

(a), (b) and (c) of Lemma 4.4 implies that LQ is an H(ℓ,n)-module.

PROPOSITION 4.23. The H(ℓ,n)-module LQ is irreducible for any Q ∈ Tabc (λ).

PROOF. By Proposition 1.5 in [51], any H(ℓ,n)-submodule of LQ must contain some weight vector fP,Q . By

Corollary 4.7 given any P ′ ∈ Qc there is a sequence of simple transpositions si1 , . . . , sip such that P ′ = si1 · · · sip ·P

and si j · · · sip ·P ∈Qc for all 1 ≤ j ≤ p. Then fP,Q generates LQ as H(ℓ,n)-module and thus LQ is irreducible. □

Recall the automorphism ρ : H(ℓ,n) → H(ℓ,n) of H(ℓ,n) given in (2.22). Given (P,Q) ∈ Γc (λ) we have from

Equations (4.1) and (4.2) that

ρ(ζi ) · fP,Q = ζn−i+1 · fP,Q = ζβ(P−1(n−i+1))−Q(P−1(n−i+1)) fP,Q

and

ρ(ui ) · fP,Q = 1

c0
zn−i+1 · fP,Q

= (Q(P−1(n − i +1))+1− (dβ(P−1(n−i+1)) −dβ(P−1(n−i+1))−Q(P−1(n−i+1))−1)−ℓct(P−1(n − i +1))) fP,Q .

We let sc (Q) be the unique (up to diagonal slides of its connected components) skew-shape and T the unique

standard Young tableau of shape sc (Q) such that

β(T −1(i )) ≡β(P−1(n − i +1))−Q(P−1(n − i +1)) (mod ℓ) (4.13)

and

ct(T −1(i )) = ct((P−1(n − i +1)))− 1

ℓc0
Q(P−1(n − i +1))−

(
dβ(P−1(n−i+1)) −dβ(P−1(n−i+1))−Q(P−1(n−i+1))

)
. (4.14)

As a consequence we have

ρ(ζi ) · fP,Q = ζβ(T −1(i )) and ρ(ui ) · fP,Q = ℓct(T −1(i )),

which by Theorem 4.22 implies that ρLQ
∼= Ssc (Q). Moreover, by uniqueness, the skew-shape sc (Q) does not de-

pend on the choice of P . It follows from this that

LQ
∼= Ssc (Q)r

. (4.15)

THEOREM 4.24. [27, Theorem 4.1] Let Lc (λ) be a t-diagonalizable Hc -module with c0 ̸= 0 and let d ∈ Z>0. Then

the degree cλ+d part of Lc (λ) is a semisimple H(ℓ,n)-module and, as H(ℓ,n)-modules,

Lc (λ)cλ+d
∼=

⊕
Q∈Tabc (λ,d)

Ssc (Q)r
.
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PROOF. As Lc (λ) is t-diagonalizable, from Theorem 4.8 we have that

Lc (λ) = ⊕
Q∈Tabc (λ)

LQ

Then we have from (4.4) and (4.15) that

Lc (λ)cλ+d = ⊕
Q∈Tabc (λ,d)

LQ
∼=

⊕
Q∈Tabc (λ,d)

Ssc (Q)r
.

□

4.4. The Fishel-Griffeth-Manosalva character formula

We give a purely combinatorial formula for the graded character of diagonalizable irreducible representations

of Hc in category Oc . This character formula is due to S. Fishel, S. Griffeth and E. Manosalva.

THEOREM 4.25. [27, Theorem 1.1-1] Let λ ∈ Parℓ(n) and Lc (λ) be a t-diagonalizable representation of Hc . Then

the graded character of Lc (λ) is given by

char(Lc (λ)) = ∑
Q∈Tabc (λ)
µ∈Parℓ(n)

c sc (Q)
µ [Sµ]t |Q|

PROOF. Upon restriction to CG(ℓ,1,n), it follows from Theorem 4.24 that

Lc (λ)cλ+d
∼=

⊕
Q∈Tabc (λ,d)

Ssc (Q)r
,

and since the functor ρ : H(ℓ,n)-Mod → H(ℓ,n)-Mod induces isomorphisms under restriction to CG(ℓ,1,n), we

obtain

Lc (λ)cλ+d
∼=

⊕
Q∈Tabc (λ,d)

Ssc (Q) ∼=
⊕

Q∈Tabc (λ,d)
(Sµ)

⊕
c

sC (Q)
µ ,

and the theorem follows. □

REMARK 4.26. Theorem 1.1 in [27] also provides a combinatorial formula for the Kazhdan-Lusztig character of

unitary Lc (λ) in terms of cyclotomic Littlewood-Richardson numbers. Namely, we have

charK L(Lc (λ)) =
∞∑

i=0

∑
µ∈Parℓ(n)

 ∑
(Q,ν,η,χ)∈X (i )

c sC (Q)
ν cνηχcµ

ηχt

q i .

where

X (i ) =

(Q,ν,η,χ)

∣∣∣∣∣∣∣∣∣
Q ∈ Tabc (λ)

ν ∈ Pℓ(n), η ∈ Pℓ(n −1), χ ∈ Pℓ(i )

|Q| = ctc (λ)−ctc (µ)− i


We will not make use of this formula in this work, but I think it is important to mention that it is a consequence of

Theorem 4.25 together with a Hodge-type decomposition of the h∗-homology of unitary representations, which

follows from the work of Huang-Wong in [49] and Ciubotaru in [17] on Dirac cohomology. See also [39]. For the

explicit result, see [27, Theorem 2.1].





CHAPTER 5

Application to diagonal coinvariant rings

In this chapter we will be focused on the diagonal coinvariant ring RW of a complex reflection group (W,h).

Recall that by Lemma 0.1 this ring is given by

RW =C[h∗⊕h]/IW

where

IW =C[h∗⊕h]W
+ C[h∗⊕h].

In all that follows we consider a complex reflection group (W,h) and we denote by Hc the rational Cherednik

algebra H1,c (W,h).

5.1. Coinvariant type representations

The group W has a one dimensional representation det, which is given by the determinant homomorphism.

Given an irreducible Hc -module L, we say that L is of coinvariant type [1] if its det-isotypic component as a

CW -module,

Ldet = {v ∈ L | w · v = det(w)v},

is one-dimensional.

Let L be a coinvariant type representation of Hc and take any nonzero δ ∈ L. Then we define a filtration on L

by

L≤m = H≤m
c δ

where H≤m
c δ = F m Hc is the filtration introduced in 3.1.1. This filtration is exhaustive because L is simple. Then

the associated graded C[h∗⊕h]⋊W -module gr(L) has a natural bigrading: one given by the internal grading due

to the Euler vector field and other given by the associated graded construction. The importance of considering

invariant type representations is given in the following

LEMMA 5.1. [40, Lemma 3.1] Let L be a coinvariant type representation of Hc . If δ ∈ L is a non-zero vector, then the

map

grHc → grL

f 7→ f δ

induces a surjective CW -module homomorphism RW ⊗det → grL.

PROOF. As L is of coinvariant type and det occurs in L≤0 =Cδ, then det does not occur in L≤m/L≤m−1 for all

m ≥ 1. In particular, any homogeneous element f ∈C[h∗⊕h]W must by mapped to 0 by the surjection grHc → grL.

But by Lemma 3.3 we have that grHc = C[h∗⊕h]⋊W , and since W acts on δ just by an scalar, we have that the

composition

C[h∗⊕h] ,→ grHc → grL

is still surjective and annihilates IW (h∗⊕h), thus factors through RW . Twisting by det we obtain the desired CW -

module homomorphism. □

109
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A proof of a more general result in the context of symplectic reflection algebras, due to L. Cartaya and S.

Griffeth, can be found in [13, Lemma 2.1]. This proof can be also found in [40, Lemma 3.1].

COROLLARY 5.2. A coinvariant type representation L is finite dimensional, and in particular L ∈Oc .

COROLLARY 5.3. For any irreducible CW -module E and any coinvariant type representation L, we have

[RW ⊗det : E ] ≥ [ResHc
CW (L) : E ].

5.1.1. The Gordon module. The trivial representation triv of the group G(ℓ,1,n) is indexed by the ℓ-partition

λ= ((n),∅, . . . ,∅).

The Gordon module is the irreducible representation G := Lc (triv) where c0 =−d1 = ·· · = −dℓ−1 = (h +1)/h, where

h = ℓn is the Coxeter number of G(ℓ,1,n). This module is one of the key ingredients in Gordon’s proof of Haiman’s

conjecture (Theorem 0.3).

We choose c0 =−d1 = ·· · =−dℓ−1 = (ℓn+1)/(ℓn), so that d0 = (ℓ−1)(ℓn+1)/(nℓ) Also assume that ℓ≥ 2. Then

Tabc (λ) =
{

Q =
(

a1 a2 · · · an ,∅, · · · ,∅
) ∣∣∣∣ 0 ≤ a1 ≤ a2 ≤ ·· · ≤ an ≤ ℓn

}
(5.1)

Indeed, if there is some b = (1,m) ∈ λ and k ∈ Z>0 with k = dβ(b) −dβ(b)−k +ℓct(b)c0, we must have β(b) = 0 and

hence

k = d0 −d−k +
(m −1)(ℓn +1)

n
that is, if k ̸≡ 0 (mod ℓ),

k = (ℓn +1)m

n
which happens only if n = m, or, if k ≡ 0 (mod ℓ),

k = (m −1)(ℓn +1)

n

which is impossible. Thus condition (c) in the definition of the set Γc (λ) occurs only for b = (1,n), that is, the

only removable box, and k = ℓn +1, which imposes the restriction Q(b) ≤ ℓn. For condition (d) of the definition

of Γc (λ) to hold, we need two boxes b1 and b2 in λ, which must satisfy β(b1) = β(b2) = 0 and a positive integer k

such that k ≡ 0 (mod ℓ) and

k = (ct(b1)−ct(b2)±1)
ℓn +1

n
,

and thus the only possibility is that b1 = (1,n), b2 = (1,1) and k = ℓn +1, which is impossible as k ≡ 0 (mod ℓ).

Thus this condition never holds in this case, and the proof of (5.1) is complete. Moreover, this also shows that

each element in Tabc (λ) is generic.

Let b = (1,n) be the only removable box of λ. Let b′ be another box and k ≡ 0 (mod ℓ) be a positive integer

such that k = ctc (b)−ctc (b′), that is,

k = (n −1−ct(b′))(ℓn +1)

n
.

This is clearly impossible, which means that kc (b) =∞ and thus G is diagonalizable by Theorem 4.8. Moreover,

as the set Tabc (λ) is finite, being in bijection with a subset of the set {0,1, . . . ,ℓn}n , then the set Γc (λ) is also finite,

which means that G is finite dimensional.

Actually, we have something stronger:

PROPOSITION 5.4. The Gordon module G is a coinvariant type representation of Hc .

The proof contains many of the most relevant ideas that will be used in the proof of the main theorem in the

next section.
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PROOF. As G is t-diagonalizable, we have

Gdet = ⊕
Q∈Tabc (λ)

Ldet
Q .

The determinant representation of G(ℓ,1,n) is indexed by the ℓ-partition (∅, (1n),∅, . . . ,∅). By Theorem 4.25, we

have that

dimGdet = ∑
Q∈Tabc (λ)

c sC (Q)
(∅,(1n ),∅,...,∅).

If we write sc (Q) = (Qc,0, . . . ,Qc,ℓ−1), we obtain that

dimGdet = ∑
Q∈Tabc (λ)

c
Qc,0
∅ c

Qc,1
(1n ) c

Qc,2
∅ · · ·cQc,ℓ−1

∅ ,

but c
Qc,i
∅ ̸= 0 if and only if Qc,i =∅. Now, given any box b ∈λ we have β(b) = 0 and thus from (4.13) we must have

β(T −1(i )) = 1, so 1 ≡β(b)−Q(b) (mod ℓ), that is

Q(b) ≡β(b)−1 (mod ℓ). (5.2)

The number c
Qc,1
(1n ) equals the number of Littlewood-Richardson tableaux of shape Qc,1 and weight (1n). Fort this

to happen there cannot be two boxes in the same row of Qc,1, and it must have one connected component. Thus

Q must be row strict and c
Qc,1
(1n ) = 1. As Q ∈ Tabc (λ) is generic, from (5.2) it follows that

Q(1, j ) = jℓ−1, j = 1, . . . ,n,

that is,

Q0 = ℓ−1 2ℓ−1 · · · nℓ−1 .

□

We now compute the dimension of the Gordon module. To this end, we need to compute the cardinality of

the set Γc (λ). Take any Q ∈ Tabc (λ). Abusing language we identify Q with its only nonempty component. Let

0 ≤ a1 ≤ a2 ≤ ·· · ≤ an ≤ ℓn be its entries. Let i1, i2, · · · , ir be the positive integers such that ai−1 < ai if and only if

i = i1 + i2 +·· ·+ i j for some 1 ≤ j ≤ r −1 and i1 +·· ·+ ir = n. Thus there are r distinct entries in Q. We have that Q

is constant on the set {i j , i j +1, . . . , i j+1 −1} and thus on this set P must be decreasing. This gives

|Qc | = n!

i1!(n − i1)!

(n − i1)!

i2!(n − i1 − i2)!
· · · (n − (i1 +·· ·+ ir−1))!

ir !(n − (i1 +·· ·+ ir ))!
= n!

i1!i2! · · · ir !
=

(
n

i1, i2, . . . , ir

)

which is a multinomial coefficient. It follows from this and the multinomial theorem that

|Γc (λ)| =
n∑

r=1

∑
i1,...,ir ≥1

i1+···+ir =n

(
n

i1, i2, . . . , ir

)
= ∑

i1,...,iℓn≥0
i1+···+iℓn=n

(
n

i1, i2, . . . , iℓn

)
= (ℓn +1)n .

This, together with Lemma 5.1 proves the following special case of Theorem 0.3:

THEOREM 5.5. The Gordon module has dimension (h+1)n = (ℓn+1)n . In particular, the diagonal coinvariant ring

RG(ℓ,1,n) has a quotient of dimension (ℓn +1)n , and thus

dimCRG(ℓ,1,n) ≥ (ℓn +1)n .
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5.2. The main theorem

If (W,h) is an irreducible complex reflection group, we define

ϵ(W ) = dimCRW − (h +1)n ,

where n is the rank of W and h its Coxeter number. Theorem 0.3 implies that ϵ(W ) > 0. By using the computer

algebra system MACAULAY, M. Haiman suggested that ϵ(W (Bn)) > 0 for n ≥ 4, where W (Bn) = G(2,1,n) is the

Weyl group of rank n, a.k.a. the hyperoctahedral group. We prove that this is actually the case:

THEOREM 5.6. [1, Theorem 1.1] For all integers n ≥ 4 we have that

ϵ(W (Bn)) > 0.

More specifically:

(a) ϵ(W (B4)) ≥ 1,

(b) ϵ(W (B6)) ≥ 3, and

(c) For all integers n ≥ 5,

ϵ(W (Bn)) ≥


n(n −4)/4 if n ≡ 0 (mod 4),

(n +2)(n −6)/4 if n ≡ 2 (mod 4),

(n −1)(n −3)/4 if n is odd.

We will prove an stronger statement. If E is a representation of W =W (Bn), and χ is an irreducible character

of W , we write W χ the isotypic component of E with isotype the irreducible representation whose character is χ.

The group W has two conjugacy classes of reflections, represented by (1 2) and ζ1. We write c0 = c and d0 = d

so that d1 = −d . Consider the character χ : W → C× given by χ(1 2) = −1 and χ(ζ1) = 1. This is the character

of a one dimensional representation, which by Example 2.20 is indexed by ((1n),∅). Note also that in this case

det = det−1. By Proposition 2.21 we have that

χ′ =χ⊗det ∼= S(∅,(n)).

Let G be the Gordon module. Note that in this case c = d = (2n +1)/(2n). We shall write Hc,d , Lc,d (λ), etc. Define

ϵχ(W (Bn)) = dimC(Rχ′
W )−dimC(Gχ).

We have the following refined version of Theorem 5.6

THEOREM 5.7. For all integers n ≥ 5 we have that ϵχ(W (Bn)) > 0. More precisely

(a) ϵχ(W (B4)) ≥ 1,

(b) ϵχ(W (B6)) ≥ 3, and

(c) For all integers n ≥ 5,

ϵχ(W (Bn)) ≥


n(n −4)/4 if n ≡ 0 (mod 4),

(n +2)(n −6)/4 if n ≡ 2 (mod 4),

(n −1)(n −3)/4 if n is odd.

The rest of this section is devoted to the proof of Theorem 5.7. First, given and bipartition λ = (λ0,λ1) and

Q ∈ Tabc,d (λ), write sc,d (Q) = (Qc,d ,0,Qc,d ,1). Then as in the proof of Theorem 5.4 we have that
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(1) det occurs in LQ if and only if Q(b) ≡ β(b)+ 1 (mod 2) for all b ∈ λ and no two boxes of Qc,d ,1 are in

the same row, in which case it appears with multiplicity one. Also, this is possible if Q is row-strict.

Moreover, if Q is generic, then it is sufficient that Q is row-strict.

(2) χ occurs in LQ if and only if Q(b) ≡β(b) (mod 2) and no two boxes of Qc,d ,0 are in the same row. In this

case, again for generic Q, we have that row-strictness is sufficient and χ occurs with multiplicity one.

5.2.1. The dimension of Gχ. Take λ= ((n),∅) and choose generic parameters c and d satisfying the equation

2n +1 = 2(d + (n −1)c).

Note that the choice c = d = (2n +1)/(2n) satisfies this equation. We have that

Tabc,d (λ) =
{

Q =
(

a1 a2 · · · an ,∅, · · · ,∅
) ∣∣∣∣ 0 ≤ a1 ≤ a2 ≤ ·· · ≤ an ≤ 2n

}
.

We already know that det occurs for Q with entries 1,3, . . . ,2n −1, so that G is of coinvariant type. On the other

hand, χ occurs precisely when Q is row strict and has even entries. There are n +1 ways of choosing Q, which is

equivalent to choose which number in the list 0,2, . . . ,2n is omitted in the construction of Q. This shows that

dimCGχ = n +1.

5.2.2. Proof of part (a) of Theorem 5.7. Take λ= ((2,2),∅) and let b be the unique removable box in λ. We

have ct(b) = 0. Let c be generic and d = 5/2, so that the equation

5 = 2(d +ct(b)c)

holds, and imposes the condition Q(b) ≤ 4. Note that in this case all Q ∈ Tabc,d (λ) are generic and there is an

unique occurrence of the determinant in the summand LQ for

Q = 1 3

1 3
,

which means that Lc,5/2(λ) is of coinvariant type. On the other hand, there are six occurrences of χ produced by

the fillings
0 2

0 2

0 2

0 4

0 4

0 4

0 2

2 4

0 4

2 4
and

2 4

2 4
.

Thus we have

ϵχ(W (B4)) ≥ 6−dimCG = 6− (4+1) = 1,

which proves part (a) of the theorem.

5.2.3. Proof of part (b) of Theorem 5.7. Take λ= ((3,3),∅), and let b be the only removable box of λ, so that

ct(b) = 1. Consider generic parameters (c,d) such that

7 = 2(d + c),

which imposes that Q(b) ≤ 6. The only occurrence of the determinant in Lc,7/2(λ) is given by

1 3 5

1 3 5

while there are ten occurrences of χ given by the fillings

0 2 4

0 2 4

0 2 4

0 2 6

0 2 4

0 4 6

0 2 4

2 4 6

0 2 6

0 2 6

0 2 6

0 4 6

0 2 6

2 4 6

0 4 6

0 4 6

0 4 6

2 4 6

2 4 6

2 4 6
.
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Thus

ϵχ(W (B6)) ≥ 10− (6+1) = 3.

5.2.4. Proof of part (c) of Theorem 5.7. Now, assume that n ≥ 5 and let λ= ((k,1m),∅), where k+m = n. We

call Sλ a hook lowest weight because the nonempty component of λ is a hook. In this case λ has two removable

boxes, b and b′. We choose b and b′ in such a way that

ct(b) = m −1 and ct(b′) =−k.

Choose parameters c and d such that

3 = 2d +2ct(b′)c and 2nc = 2k.

Then a filling Q of λ belongs to Tabc,d (λ) precisely when Q(b′) ≤ 2 and Q(b) ≤Q(b′)+2k and Q generic if Q(b) ≤
Q(b′)+2k −1. At this point m and k are arbitrary subject to k +m = n. We specialize their values as follows:

k =


n/2+1 if n ≡ 0 (mod 4),

n/2+2 if n ≡ 2 (mod 4),

(n +1)/2 if n is odd.

Why this choice of k? The full reason won’t be clear until the end of the proof. For now: because it’s my disserta-

tion and I said so. (Just kidding!)

Note that in all cases, k is coprime to n and by Theorem 4.20 we have that Lc,d (λ) is a finite dimensional

t-diagonalizable representation of Hc,d . We now prove that Lc,d (λ) is of coinvariant type. The unique generic

row-strict Q with odd entries has 1’s in the first column and the odd entries 1,3, . . .2k −1 across the first row, that

is

Q =

1 3 5 · · · 2k −1

1

...

1

.

If Q ∈ Tabc,d (λ) is another row-strict filling with odd entries, it must satisfy

Q(b) = 1+2k =Q(b′)+2k,

so its not generic, and thus any P ∈Qc,d must verify P (b) > P (b′). Choose

P =

m +1 m +2 · · · n

m

...

2

1

.
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If (a1,ζb1 , . . . , an ,ζbn ) is the t-weight vector of the Specht-valued Jack polynomial fP,Q , we must have

ai =Q(P−1(i ))+1− (d0 −d−Q(P−1(i ))−1)−2ct(P−1(i ))c

=

Q(m +2− i ,1)+1−2(i −m −1)c if 1 ≤ i ≤ m,

Q(1, i −m)+1−2(i −m −1)c if m +1 ≤ i ≤ n.

Recall that ai = 2c ct(T −1(i )) for the unique standard Young tableau T given in the construction of sc,d (Q). Thus

we have

ct(T −1(i )) =

(Q(m +2− i ,1)+1)/(2c)− (i −m −1) if 1 ≤ i ≤ m,

(Q(1, i −m)+1)/(2c)− (i −m −1) if m +1 ≤ i ≤ n.

Then

ct(T −1(1)) = Q(m +1,1)+1

2c
+m = 1

k/n
+m

and

ct(T −1(n)) = Q(1,k)+1

2c
− (k −1) = k +1

k/n
− (k −1),

so that

ct(T −1(n))−ct(T −1(1)) = 1.

On the other hand,

β(T −1(1)) = b1 =β(P−1(1))−Q(P−1(1)) = 0−Q(m +1,1) =−1 ≡ 1 (mod 2)

and

β(T −1(n)) = bn =β(P−1(n))−Q(P−1(n)) = 0−Q(1,k) =−(2k +1) ≡ 1 (mod 2).

Thus in Qc,d ,1 there must be a row with at least two boxes, and consequently there are no occurrences of det in

LQ in this case. This proves that Lc,d (λ) is of coinvariant type.

We compute a lower bound for the number of occurrences of χ in Lc,d (λ). First, note that if Q is a row-strict

filling on λ in the alphabet {0,2, . . . ,2k} satisfying Q(b′) ≤ 2 and Q(b) ≤Q(b′)+2k −2, then Q is generic and hence

produce a copy of χ. If Q(b′) = 0, then Q(b) ≤ 2k −2 and the only possibility is

Q =

0 2 4 · · · 2k −2

0

...

0

.

If Q(b′) = 2, then either the first column of Q consists entirely of 2’s, in which case the only possibility is

Q =

2 4 · · · 2k

2

...

2
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or the first column of Q contains at least one 0 and one 2. In this case, we must choose the number of 2’s in the

first column, which must be a number between 1 and m, and we have to choose one element of the list {2, . . . ,2k}

which will be excluded from the first row of Q. There are km such choices and consequently there are 2+km

such Q’s in total:

Q =

0 2 · · · 2i −2 2i +2 · · · 2k

0

...

0

2

...

2

Then we have

ϵχ(W (Bn)) ≥ (2+km)− (n +1)

which proves part (c) of the theorem.

REMARK 5.8. Note that to obtain the best possible lower bound with this approach, we require the quantity 2+km

to be as large as possible. Moreover, to ensure diagonalizability, we impose that k and m are coprime. This

explains the choice of k made in the proof.
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