Universidad de Talca Instituto de Matemáticas.

Examen Ingreso Doctorado 2025

08 de noviembre de 2024

Tres secciones: álgebra, análisis y topología Tiempo: 3 horas

Álgebra

- 1. Sea A una matriz $n \times n$ sobre \mathbb{C} y sean $\{\lambda_1, \lambda_2, \dots, \lambda_k\}$ los valores propios de A. Muestre que $\{\lambda_1^m, \lambda_2^m, \dots, \lambda_k^m\}$ son los valores propios de A^m para cada $m \ge 1$.
- 2. Sea H un grupo cíclico. Muestre que todos los subgrupos de H son cíclicos.
- 3. Sea $\mathbb{Q}(\alpha)/\mathbb{Q}$ una extensión de cuerpos de grado 5. Muestre que $\mathbb{Q}(\alpha) = \mathbb{Q}(\alpha^2 + \alpha + 1)$.
- 4. Sea $f:A\to B$ un homomorfismo de anillos y sea $P\subseteq B$ un ideal primo. Muestre que $f^{-1}(P)\subseteq A$ es un ideal primo.

Análisis

- 1. Suponga que (K, d) es un espacio métrico compacto y considere funciones $f_n : K \to \mathbb{R}$ que satisfacen
 - $(f_n(x))_{n\in\mathbb{N}}$ es convergente para cada $x\in K$, y
 - $(f_n)_{n\in\mathbb{N}}$ es equicontinua.

Muestre que $(f_n)_{n\in\mathbb{N}}$ es uniformemente convergente.

- 2. Muestre que si $f \ge 0$ en un conjunto A de medida positiva y $\int_A f d\mu = 0$, entonces f = 0, para μ -casi todo punto en A.
- 3. Hallar la imagen de la circunferencia |z+1|=2 situada en el plano complejo bajo la acción

$$z \longmapsto f(z) = \frac{1-z}{z+2}.$$

¿Cuál será la imagen del disco abierto D acotado por la circunferencia |z+1|=2 bajo la misma transformación?

4. Demostrar que toda solución de la ecuación diferencial

$$y'(x) + e^{x^2}y(x) = 0$$

tiende a cero cuando $x \to +\infty$.

- 1. Dados dos espacios topológicos X e Y,
 - (a) probar que la proyección $p_X: X \times Y \longrightarrow X$ es continua y abierta, donde $X \times Y$ tiene la topología producto,
 - (b) probar que si Y es compacto, la proyección p_X es cerrada,
 - (c) sea $H = \{(x, y) \in \mathbb{R} \times \mathbb{R} \mid x \cdot y = 1\}$ con la topología de subespacio de $\mathbb{R} \times \mathbb{R}$. Probar que $p_1(H)$ no es cerrado en \mathbb{R} , donde p_1 es la proyección en la primera componente.
- 2. Sea $X=\mathbb{R}^3-\{(0,0,0)\}.$ Se define la relación de equivalencia sobre los puntos de X siguiente:

$$(x_1, y_1, z_1) \sim (x_2, y_2, z_2)$$
 si $x_1^2 + y_1^2 + z_1^2 = x_2^2 + y_2^2 + z_2^2$

Sea Y la colección de clases de equivalencia en la topología cociente. ¿A que espacio conocido es homeomorfo Y? Justifique bien su respuesta.

3. Demostrar que no hay biyección continua de S^1 sobre un subespacio de \mathbb{R} .

Universidad de Talca Instituto de Matemáticas.

Examen Ingreso Doctorado 2024

20 de octubre de 2023

Tres secciones: álgebra, análisis y topología Tiempo: 4 horas

Álgebra

- 1. Sea T una transformación lineal del espacio vectorial V en V. Sea $v \in V$ tal que $T^m(v) = 0$ pero $T^{m-1}(v) \neq 0$, donde m es un entero positivo. Muestre que los vectores $v, T(v), T^2(v), \ldots, T^{m-1}(v)$ son linealmente independientes.
- 2. Sean $H \leq G$ grupos. Sea $g \in G$ tal que $\operatorname{ord}(g) = m$ y $g^n \in H$ para enteros positivos m y n. Suponiendo que m y n son coprimos, muestre que $g \in H$.
- 3. Sea E/F una extensión algebraica de cuerpos y sea $F \subseteq R \subseteq E$, con R un anillo. Muestre que R es un cuerpo.
- 4. Sea R un anillo con 1 y sea P un ideal primo en R. Muestre que si I y J son ideales en R tales que $I \cap J \subseteq P$ y $J \not\subseteq P$ entonces $I \subseteq P$.

Análisis

1. Sea $(f_n)_{n\in\mathbb{N}}$ una sucesión uniformemente acotada de funciones Riemann integrables en el intervalo [a, b]. Muestre que la sucesión de funciones $(F_n)_{n\in\mathbb{N}}$ definida como

$$F_n(x) = \int_a^x f_n(s)ds$$

tiene una subsucesión convergente.

- 2. (a) Pruebe que la función $u = e^{-x}(x \sin y y \cos y)$ es armónica.
 - (b) Encuentre v tal que f(z) = u + iv sea analítica.
 - (c) Determine f.
- 3. Sea $a: \mathbb{R} \to]0, \infty[$ una función continua y sea y una solución de la ecuación diferencial y'' + ay = 0. Mostrar que y se anula al menos una vez.

- 1. Un espacio es llamado totalmente disconexo si todas sus componentes conexas son conjuntos de un elemento. Demuestre que $\mathbb{R} \setminus \mathbb{Q}$ es totalmente disconexo.
- 2. (a) Sea $X = [0,1] \times [0,1] \subseteq \mathbb{R}^2$. Definimos en X la relación de equivalencia dada por $x \sim x'$ para todo x, x' en la frontera de X (como subespacio de \mathbb{R}^2). Demuestre que X/\sim es homeomorfo a \mathbb{S}^2 la esfera 2-dimensional.

- (b) Sea X=[0,2]. Definimos en X la relación de equivalencia dada por $1\sim 2$. ¿Es X/\sim homeomorfo a [0,1]?
- 3. Sea X un espacio localmente compacto y Hausdorff. Sea $x\in X$ y sea $F\subseteq X$ cerrado. Demuestre que existen abiertos U y V disjuntos tales que $x\in U$ y $F\subseteq V$.

Noviembre de 2022

Tres secciones: álgebra, análisis y topología Tiempo: 4 horas

Álgebra

- 1. Consideremos el polinomio $f(x) = x^3 3x + 1 \in \mathbf{Q}[x]$.
 - (a) Muestre que el polinomio f(x) es irreducible sobre $\mathbf{Q}[x]$.
 - (b) Sea α una raiz de f. Muestre que $K = \mathbf{Q}(\alpha)$ es el cuerpo de descomposición de f(x) sobre \mathbf{Q} .
 - (c) Encuentre el grupo de Galois de K/\mathbf{Q} .
 - (d) Muestre que no hay $a \in K$ tal que $K = \mathbf{Q}(a)$ y $a^3 \in \mathbf{Q}$.
- 2. Sea K un cuerpo y V un K-espacio vectorial. Sean U y W subespacios de V. Muestre que $U \cup W$ es un subespacio de V si y solo si $U \subseteq W$ o $W \subseteq U$.
- 3. Sea R un dominio de integridad. Demuestre que si R es finito entonces es un cuerpo.
- 4. En el anillo $R = \mathbf{Z}[\sqrt{10}]$, pruebe que $\sqrt{10}$ es irreducible pero no primo. De un ejemplo de un ideal en R que no sea principal.
- 5. Pruebe que todo grupo G de orden 15 es abeliano. Mas aún pruebe que este es cíclico. (**Ayuda** Si no fuera abeliano, tendríamos que $Z(G) = \{1\}$ y ahora use la ecuación de clases.)

Análisis

1. Dada una sucesión de números complejos $(z_n)_{n\in\mathbb{N}}$ se definen

$$||(z_n)||_p = \left(\sum_{n \in \mathbb{N}} |z_n|^p\right)^{\frac{1}{p}}, \quad ||(z_n)||_{\infty} = \sup_{n \in \mathbb{N}} |z_n|.$$

Suponga que para cierto q > 1 se cumple que $||(z_n)||_q < \infty$, muestre que

$$\lim_{p\to\infty} ||(z_n)||_p = ||(z_n)||_{\infty}.$$

2. Considere $D^+ = \{z \in \mathbb{C} : \text{Im } z > 0, \ |z| < 1\}$ y defina $f(z) = \frac{1+z}{1-z}$. Determine $f(D^+)$.

3. Sea $q \in C([0,1])$ tal que $q(x) \ge 0$ para todo $x \in [0,1]$. Suponga que $u \in C^2([0,1])$ es la única solución de la ecuación diferencial

$$\begin{cases}
-u'' + qu = 0 & \text{en } [0, 1] \\
u(0) = 1, u(1) = 0.
\end{cases}$$

Muestre que
$$1 \le \left(\int_0^1 |u'(x)| dx\right)^2 \le \int_0^1 |u'(x)|^2 dx$$
 y concluya que $u'(0) \le -1$.

Topología

1. Sea $X = \mathbb{R}^3 - \{(0,0,0)\}$. Se define la relación de equivalencia sobre los puntos de X siguiente:

$$(x_1, y_1, z_1) \sim (x_2, y_2, z_2)$$
 si $x_1^2 + y_1^2 + z_1^2 = x_2^2 + y_2^2 + z_2^2$

Sea X^* el espacio cociente correspondiente. Demostrar que X^* es homeomorfo a un espacio conocido.

- 2. Considere el conjunto X dotado de la topología Fort en p, lo que significa que un subconjunto U en X es abierto si, y sólo si, o bien $p \notin U$ o bien $X \setminus U$ es finito. Compruebe lo siguiente:
 - a) X es disconexo si y sólo si X tiene más de un elemento;
 - b) X es compacto
- 3. Sea X un espacio de Hausdorff y sea $K_i, i \in \{1, 2, 3, ...\}$, una familia de subespacios compactos. Demuestre que si U es un abierto de contiene a $\bigcap_{i=1}^{\infty} K_i$ entonces existe un conjunto finito de compactos $\{K_1, K_2, ..., K_\ell\}$ tal que U contiene a $\bigcap_{i=1}^{\ell} K_i$

Noviembre de 2021

Tres secciones: álgebra, análisis y topología Tiempo: 4 horas

Álgebra

1. Para $A \in \operatorname{Mat}_{n \times n}(\mathbb{C})$ una matriz n por n, su centralizador es:

$$C(A) = \{ B \in \operatorname{Mat}_{n \times n}(\mathbb{C}) \mid AB = BA \}.$$

Muestre que si A es una matriz con n valores propios distintos entonces

$$\dim(C(A)) = n.$$

- 2. Sea G un grupo de orden $7 \cdot 8 \cdot 9 = 504$ que contiene un elemento g de orden 21. Muestre que G contiene un subgrupo H con indice 8. (**Indicación:** Use un 7-subgrupo de Sylow para construir H).
- 3. Sea $f(x) = x^2 + 1$. Determine el conjunto de enteros $q = p^n$ tal que f es irreducible como elemento del anillo de polinomios $\mathbb{F}_q[x]$ con coeficientes en el cuerpo \mathbb{F}_q con q elementos.
- 4. Considere el anillo

$$A = \mathbf{C}[x, y] / \langle x^2 - y^3 \rangle.$$

- (a) Pruebe que A es un dominio de integridad.
- (b) Sea K el cuerpo de fracciones de A. Pruebe que $K \cong \mathbb{C}(t)$. (Indicación: Use el homomorfismo $\varphi: A \to \mathbb{C}[t]: p(x,y) \to p(t^3,t^2)$).

Análisis

1. Para $x \ge 0$ y $n \ge 1$, se define

$$u_n(x) = (-1)^n \ln \left(1 + \frac{x}{n(1+x)} \right).$$

- (a) Mostrar la convergencia puntual de $\sum_{n=1}^{\infty} u_n(x)$ en el dominio $x \ge 0$.
- (b) Mostrar la convergencia uniforme de $\sum_{n=1}^{\infty} u_n(x)$ en $[0, +\infty)$.
- (c) Mostrar que no hay convergencia absoluta de $\sum_{n=1}^{\infty}u_{n}(x)$ para x>0.

- 2. Determine la función entera f = u + iv que satisface f(0) = i y $u(z) = 2x^3y 2xy^3 + x^2 y^2$, donde z = (x, y).
- 3. Sea $f_n(x) = nx^{n-1} (n+1)x^n$ para $x \in (0,1)$. Muestre que

$$\int_{0}^{1} \sum_{n=1}^{\infty} f_{n}(x) dx \neq \sum_{n=1}^{\infty} \int_{0}^{1} f_{n}(x) dx$$

y que
$$\int_0^1 \sum_{n=1}^\infty |f_n(x)| dx = \infty.$$

4. Muestre que si y(x) > 0, $x \in (a, b)$, es una solución no constante de $y'' = \frac{y'}{2\sqrt{y}}$ definida en algún intervalo (a, b), entonces y(x) es estrictamente monótona en (a, b).

- 1. Sea $A = [0,1] \times [0,1]$ como subespacio de \mathbb{R}^2 . Se define una relacion de equivalencia sobre A de la siguiente forma: $(x,y) \sim (x',y')$ ssi $y-x^2=y'-(x')^2$. Sea A^* el espacio cociente correspondiente. ¿A que espacio Z conocido es A^* homeomorfo? Demostrarlo. Ayuda: $usar\ la\ función\ f: A \to Z, f(x,y) = y-x^2$.
- 2. Si A es un subespacio de X, una retracción es una función continua $f: X \to A$ tal que f(a) = a para todo $a \in A$. Determinar si existe una retracción $f: S^1 \times S^1 \to A$, donde $A = (S^1 \times \{b_0\}) \cup (\{b_0\} \times S^1)$.
- 3. Sea X un espacio de Hausdorff. Demostrar que si A es un subespacio de X finito y conexo, entonces A tiene un solo punto.
- 4. Sean A y B susbespacios compactos de un espacio de Hausdorff X. Demostrar que $A \cap B$ es también compacto. Encontrar un contraejemplo cuando X no es de Hausdorff. Ayuda: $tomar\ X = \mathbb{R} \times \{0,1\}\ donde\ \mathbb{R}\ tiene\ la\ topología\ usual\ y\ \{0,1\}\ la\ topología\ trivial.$ Considerar $A = ([0,1] \times \{0\}) \cup ((0,1) \times \{1\})$.

Universidad de Talca Instituto de Matemáticas.

Examen Ingreso Doctorado 2021

11 de Noviembre de 2020

Tres secciones: álgebra, análisis y topología Tiempo: 4 horas

Álgebra

1. Para $n \geq 2$ sea P la siguiente matriz $n \times n$

$$P = \begin{bmatrix} 0 & 0 & 0 & \dots & 0 & 1 \\ 1 & 0 & 0 & \dots & 0 & 0 \\ 0 & 1 & 0 & \dots & 0 & 0 \\ 0 & 0 & 1 & \dots & 0 & 0 \\ \vdots & \vdots & \vdots & & \vdots & \vdots \\ 0 & 0 & 0 & \dots & 1 & 0 \end{bmatrix}$$

Muestre que P es diagonalizable sobre \mathbb{C} .

- 2. Sea G un grupo de orden |G| = 2m donde m es impar.
 - (a) Muestre que G es subgrupo del grupo simétrico S_{2m} y que existe un elemento $\sigma \in G$ tal que el signo de σ en S_{2m} es -1.
 - (b) Muestre que G tiene un subgrupo normal de orden m.
- 3. Para $a \in \mathbb{Z}$ se define $f_a(x) = x^7 + 15x^2 30x + a \in \mathbb{Z}[x]$. Muestre que hay un número infinito de valores de a tales que $f_a(x)$ es irreducible.
- 4. Sea $F \subseteq K$ una extensión de cuerpos y sea $\alpha \in K$. Muestre que α es algebraico sobre F si y solo si α^2 es algebraico sobre F.

Análisis

- 1. Sea $E:\mathbb{C}\to\mathbb{C}$ una función entera. Muestre que las siguientes afirmaciones son equivalentes.
 - E satisface la ecuación $E'(z)=E(z),\,z\in\mathbb{C},$ con E(0)=1.
 - E satisface $\lim_{h\to 0} \frac{E(h)-1}{h} = 1$, $h \in \mathbb{R}$, y E(z+w) = E(z)E(w) para todo $z,w \in \mathbb{R}$.
- 2. Sea E el conjunto de las funciones continuas de [0,1] con valores en $I=]0,\infty[$. Para $f\in E$, se define

$$J(f) = \left(\int_0^1 f(t)dt\right) \left(\int_0^1 \frac{dt}{f(t)}\right).$$

Determinar $m = \inf \{J(f) | f \in E\}$ y tambien determinar todas las funciones de E que satisfacen J(f) = m.

3. Determinar

$$\lim_{x \to 0} \int_{x}^{2x} \frac{\sin(t)}{t^2} dt.$$

Topología

- 1. Se puede demostrar que hay un número infinito de primos usando un argumento topológico. Sea $\mathcal{B} = \{N_{a,b} \mid a,b \in \mathbb{Z}, b > 0\}$ el conjunto de las progresiones aritméticas $N_{a,b} = \{a + kb \mid k \in \mathbb{Z}\}.$
 - (a) Demostrar que $\mathcal B$ forma una base de una topología $\mathcal T$ de $\mathbb Z$.
 - (b) Demostrar que cada $N_{a,b}$ es abierto y cerrado en \mathcal{T} .
 - (c) Sea $P = \{2, 3, \dots\} \subseteq \mathbb{N}$ el conjunto de números primos. Demostrar que

$$\mathbb{Z}\setminus\{-1,1\}=\bigcup\{N_{0,p}\mid p\in P\}.$$

Entonces, si P fuera finito, $\{-1,1\}$ sería abierto en \mathcal{T} .

- 2. Sea K un subespacio compacto no vacío de \mathbb{R}^n para $n \geq 1$. Demostrar directamente que K no es abierto (es decir, sin suponer que \mathbb{R}^n es conexo). Indicación: demostrar que cualquier abierto U de \mathbb{R}^n que contiene a K es tal que $U \setminus K$ no es vacío.
- 3. Sea $p: X \to Y$ una aplicación continua cerrada y sobreyectiva. Demostrar que si X es normal, también lo es Y. Indicación: si U es un abierto de X que contiene a $p^{-1}(y)$, demostrar que existe entorno W de y tal que $p^{-1}(W) \subseteq U$.

20 de Noviembre de 2019

Tres secciones: álgebra, análisis y topología Tiempo: 4 horas

Álgebra

- 1. Sea K un cuerpo. Se considera el conjunto de matrices $L = \left\{ \begin{bmatrix} a & b \\ -b & a \end{bmatrix} : a, b \in K \right\}$.
 - (a) Muestre que L es un anillo con las operaciones usuales sobre matrices. Muestre que L tiene un subcuerpo isomorfo a K.
 - (b) Muestre que L es un cuerpo sí y sólo sí la ecuación $x^2 + 1 = 0$ no tiene solución en K.
 - (c) Usando (a) y (b) construya un cuerpo E con 9 elementos.
- 2. Sea G un subgrupo abeliano del grupo simétrico S_n . Suponga que para cada $a, b \in \{1, 2, ..., n\}$ existe $\sigma \in G$ tal que $\sigma a = b$. Muestre que |G| = n.
- 3. Sea R un dominio de ideales principales y sea $0 \neq P \subset R$ un ideal primo. Muestre que P es un ideal maximal.
- 4. En general para un elemento algebráico γ sobre un cuerpo K se denota por $P_{\gamma,K}(x)$ el polinomio minimal de γ sobre K. Sean α y β elementos algebráicos sobre un cuerpo F y sean $m = \deg P_{\alpha,F}(x)$, $n = \deg P_{\beta,F}(x)$. Demostrar
 - (a) $\deg P_{\alpha,F(\beta)} = m \iff \deg P_{\beta,F(\alpha)} = n$.
 - (b) Si mcd(m, n) = 1 entonces las condiciones en (a) se cumplen.

Análisis

1. Sea (X,d) un espacio métrico y sea $x_0 \in X$ fijo. Denote por $BC(X,\mathbb{R})$ el conjunto de todas funciones $f:X\to\mathbb{R}$ que son continuas y acotadas. Para cada $p\in X$ definimos la función $f_p:X\to\mathbb{R}$ como

$$f_p(x) = d(x, p) - d(x, x_0).$$

- (a) Muestre que $f_p \in BC(X, \mathbb{R})$.
- (b) Verifique que si $p, q \in X$ entonces

$$||f_p - f_q||_{\infty} = d(p, q)$$

(c) Muestre que si $\Phi: X \to BC(X, \mathbb{R})$ está definida como $\Phi(p) = f_p$, entonces $\Phi(X)$ es un espacio métrico completo. Y por lo tanto se concluye que cualquier espacio métrico X es isometrico a un subconjunto denso de un espacio métrico completo.

2. Suponga que f es continua en [0,1] y diferenciable en (0,1). Muestre que si f(0)=0 y $0 \le f'(x) \le 1$ para todo $x \in (0,1)$, entonces

$$\left(\int_{0}^{1} f(x)dx\right)^{2} \ge \int_{0}^{1} (f(x))^{3} dx.$$

3. Sea (X, \mathcal{A}, μ) un espacio de medida finita. Para f, g medibles, definamos

$$d(f,g) := \int_X \frac{|f-g|}{1+|f-g|} d\mu.$$

Diremos que una sucesión de funciones medibles $\{f_n\}_{n\in\mathbb{N}}$ converge en medida a f, lo que denotaremos por, $f_n \xrightarrow{\mu} f$, si para todo $\varepsilon > 0$ se tiene que

$$\lim_{n \to \infty} \mu(\{x \in X : |f_n(x) - f(x)| \ge \varepsilon\}) = 0.$$

Muestre que si $\{f_n\}_{n\in\mathbb{N}}$ es una sucesión de funciones medibles, entonces $\lim_{n\to\infty} d(f_n, f) = 0$ sí y sólo sí $f_n \stackrel{\mu}{\longrightarrow} f$.

4. Sea f una función entera para la cual existen constantes M, R > 0 tal que $|f(z)| \le M|z|^{\alpha}$, para todo |z| > R, donde $0 < \alpha < 1$. Muestre que f es constante.

Topología

- 1. Demostrar que una aplicación continua y sobreyectiva $f: X \to Y$ de un espacio compacto X en un espacio de Hausdorff Y es una aplicación cociente.
- 2. Sean A y B subconjuntos propios de X e Y respectivamente. Si X e Y son conexos, demostrar que

$$(X \times Y) - (A \times B)$$

también es conexo.

3. Sea X un espacio métrico con distancia d. Sean C un compacto en X y V un abierto de X que contiene a C. Demostrar que existe $\delta > 0$ tal que para todo $w \in X - V$ se tiene que $d(w,C) \geq \delta$. Indicación: Acuerdense que $d(x,A) = \inf\{d(x,a) \mid a \in A\}$ es una función continua.

14 de Noviembre de 2018

Tres secciones: álgebra, análisis y topología Tiempo: 4 horas

Álgebra

- 1. Sea A una matriz compleja de dimensión $n \times n$ tal que $A^2 = A$. Muestre que A es diagonalizable.
- 2. Sea G un grupo infinito, y sean H y K subgrupos de G tales que los índices |G:H| y |G:K| sean finitos. Muestre que el índice $|G:(H\cap K)|$ es finito.
- 3. Sea $n = 11 \times 17$. Encuentre todas las soluciones en \mathbb{Z} a la ecuación $x^2 \equiv -x \mod n$.
- 4. Sea $\mathbb{Q}(\alpha)/\mathbb{Q}$ una extensión de cuerpos de grado impar. Muestre que $\mathbb{Q}(\alpha) = \mathbb{Q}(\alpha^2 + \alpha + 5)$

Análisis

1. Suponga que $f \in C^1([a,b])$, f(a) = f(b) = 0 y $\int_a^b f^2(x)dx = 1$. Muestre que

(a)
$$\int_{a}^{b} x f(x) f'(x) dx = -\frac{1}{2}$$
.

(b)
$$\frac{1}{4} \le \int_a^b (f'(x))^2 dx \cdot \int_a^b x^2 f^2(x) dx$$
.

- 2. Sea $G \subset \mathbb{C}$ abierto y conexo. Sea f una función holomorfa en G. Suponga que una de las funciones u, v o |f| es constante en G, donde f = u + iv. Muestre que f es constante en G.
- 3. Sea y=y(x) la solución maximal del problema de Cauchy (o sea, una solución del problema inicial definida en su máximo intervalo de existencia)

(P)
$$\begin{cases} y'' = -y^3, \\ y(0) = 1, \\ y'(0) = 0. \end{cases}$$

(a) Muestre que se cumple

$$\frac{1}{2}(y'(x))^2 + \frac{1}{4}(y(x))^4 = \frac{1}{4},$$

para cada x donde la solución está definida.

- (b) Muestre que la ecuación (P) tiene efectivamente una única solución maximal.
- (c) Muestre que la solución está definida para todo x real.
- (d) Muestre que y(x) = y(-x).

1. Sea X un espacio topológico y sea

$$\Delta = \{(x, x) \mid x \in X\} \subseteq X \times X$$

la diagonal. Demuestre que X is Hausdorff si y solo si $\Delta \subseteq X \times X$ es cerrado en $X \times X$.

- 2. Sea X un espacio métrico y completo con distancia d y sea $f: X \to X$ una aplicación tal que existe $0 \le \alpha < 1$ con $d(f(x), f(y)) \le \alpha d(x, y)$ para todo $x, y \in X$. Demuestre que existe un único punto $x \in X$ con f(x) = x.
- 3. Sean X y Y espacios topológicos con X localmente compacto y Hausdorff. Dotamos el conjunto

$$C(X,Y) = \{f : X \to Y \mid f \text{ es continua}\}$$

con la topologia generado por los conjuntos

$$S(K, U) = \{ f \in C(X, Y) \mid f(K) \subseteq U \}$$

donde K es un subespacio compacto de X y U es un subespacio abierto de Y. (Esto se llama la topologia compacto-abierto.) Demuestre que la aplicación de evaluacion

$$\operatorname{ev}: C(X,Y) \times X \to Y \quad \operatorname{con} \quad \operatorname{ev}(f,x) = f(x)$$

es continua.

15 de Noviembre de 2017

Tres secciones: álgebra, análisis y topología Tiempo: 3 horas

Álgebra

- 1. Sean A y B matrices sobre \mathbb{C} de tamaño $n \times n$ y suponga que A tiene n valores propios distintos. Demuestre que AB = BA si y sólo si existe una matriz invertible C sobre \mathbb{C} tal que $C^{-1}AC$ y $C^{-1}BC$ son matrices diagonales.
- 2. Sea G un grupo tal que su grupo de automorfismos $\operatorname{Aut}(G)$ es un grupo cíclico. Pruebe que G es un grupo abeliano.

Indicación: Considere el homomorfismo canónico $\varphi: G \to \operatorname{Aut}(G)$.

3. Sea $\mathbb{Z}[x]$ el anillo de polinomios sobre los enteros \mathbb{Z} . Sea $\varphi : \mathbb{Z}[x] \to \mathbb{Z}[x]$ un automorfismo de anillo que fija puntualmente los elementos de \mathbb{Z} . Demuestre que φ tiene la forma $\varphi(x) = ax + b$, donde $a = \pm 1$ y $b \in \mathbb{Z}$.

Análisis

1. Para I=[0,1], considere una función continua $g:I\longrightarrow \mathbb{R}.$ Defina la sucesión de funciones $f_n:I\longrightarrow \mathbb{R}$ como

$$f_0(x) = g(x),$$

 $f_n(x) = \int_0^x f_{n-1}(t) dt, \text{ para } n = 1, 2, 3 \dots.$

Demuestre que la secuencia $(f_n)_{n\in\mathbb{N}}$ converge uniformemente a 0.

2. Sea $D(0,1)=\{z\in\mathbb{C}:|z|<1\}$. Muestre que para $z,w\in D(0,1)$ se tiene que

$$\left|\frac{z-w}{1-z\bar{w}}\right| < 1.$$

3. Para $n \ge 1$, se define

$$P_n(x) = x^{2n+1} - x^{n+1} - 1.$$

Muestre que P_n tiene una unica raiz real u_n , demuestre que la sucesión u_n converge y encontrar su limite.

- 1. Sea (X,d) un espacio métrico y sea $F\subseteq X$ un subconjunto finito. Muestre que F es cerrado.
- 2. Demuestre que el intervalo [0,1], el círculo S^1 y la esfera S^2 son espacios homeomorficamente distintos.
- 3. Sea X un espacio compacto y sea \sim una relacion de equivalencia en X. Muestre que el espacio cociente X/\sim es compacto. (No se requiere que un espacio compacto sea de Hausdorff).

16 de Noviembre de 2016

Tres secciones: álgebra, análisis, topología Tiempo: $4\frac{1}{2}$ horas

Álgebra

- 1. Sea V un espacio vectorial de dimensión finita y sea T una transformación lineal de V. Muestre que $T^N = 0$ para un entero N > 0 si y sólo si existe base \mathcal{B} de V tal que la matriz $[T]_{\mathcal{B}}$ sea triangular superior con ceros en la diagonal.
- 2. Sea G un subgrupo del grupo símetrico S_n y suponga que G contiene una transposición. Muestre que existe subgrupo $N \leq G$ tal que |G:N|=2.
- 3. Sea $R = \mathbb{Z}[\sqrt{-5}]$. Muestre que $3 \in R$ es un elemento irreducible de R pero que no es primo. ¿Es R de factorización única?
- 4. Sea $f(x) = x^3 + 9x + 6$ y sea $R = \mathbb{Q}[x]/(f(x))$. Muestre que $\overline{x+1}$ es una unidad en R y encuentre $a, b, c \in \mathbb{Q}$ tal que la inversa de $\overline{x+1}$ tenga forma $\overline{ax^2 + bx + c}$.

Análisis

1. Sea Ω un conjunto abierto conexo no vacio y f una función holomorfa $f \in H(\Omega)$. Sea P la parte real de f y Q la parte imaginaria. Se supone que existen tres reales (no nulos) a, b y c tales que

$$aP(z) + bQ(z) + c = 0, \quad \forall z \in \Omega.$$

(a) Mostrar que P y Q satisfacen

$$\begin{cases} a\frac{\partial P}{\partial x} - b\frac{\partial P}{\partial y} = 0 \\ b\frac{\partial P}{\partial x} + a\frac{\partial P}{\partial y} = 0 \end{cases} \qquad \begin{cases} b\frac{\partial Q}{\partial x} + a\frac{\partial Q}{\partial y} = 0 \\ -a\frac{\partial Q}{\partial x} + b\frac{\partial Q}{\partial y} = 0 \end{cases}$$

- (b) Deducir que f es constante.
- 2. Considere la succesión de funciones

$$f_n(x) = 3^n \left[x^{3^n} - x^{3^{n+1}} \right], \quad n \ge 1, x \ge 0$$

Determinar el dominio D donde hay convergencia puntual y determinar si hay o no convergencia uniforme en D.

- 3. Sea I un intervalo de \mathbb{R} y $f: I \to \mathbb{R}$ una función. Mostrar que f es convexa si y sólo si para todo $[a,b] \subset I$ y para todo $\alpha \in \mathbb{R}$, la función definida en [a,b] por $g(x) = f(x) + \alpha x$ es acotada en [a,b] y que $\max_{x \in [a,b]} g(x) = \max(g(a),g(b))$.
 - (Por definición, se dice que una función f es convexa en un intervalo I si para todo $x,y\in I$ y $t\in [0,1],$ $f(tx+(1-t)y)\leq tf(x)+(1-t)f(y)$).

- 1. Demuestre que los siguientes conjuntos son bases de una topología en \mathbb{R} . Determine además si los espacios topológicos correspondientes son Hausdorff o conexos o compactos.
 - (a) \mathcal{B}_1 la colección de intervalos [a, b] con a < b.
 - (b) \mathcal{B}_2 la colección de los subconjuntos de \mathbb{R} cuyo complemento es finito.
 - (c) \mathcal{B}_3 la colección de intervalos $]-\infty, b[$ con $b \in \mathbb{R}$.
- 2. Demuestre que un espacio topológico X es Hausdorff si y solo si la diagonal $\Delta = \{(x, x) \in X \times X \mid x \in X\}$ es cerrada en $X \times X$ con la topología producto.
- 3. Un espacio es llamado totalmente disconexo si todas sus componentes conexas son conjuntos de un elemento. Demuestre que $\mathbb{R} \setminus \mathbb{Q}$ es totalmente disconexo.

19 de Noviembre de 2015

Tres secciones: álgebra, análisis y topología

Tiempo: 3 horas

Álgebra

- 1. Sean A, B matrices cuadradas con entradas de \mathbb{C} . Suponiendo que A es invertible, demuestre que rang $AB = \operatorname{rang} BA = \operatorname{rang} B$, donde para cada matriz C se denote el rango de C por rang C.
- 2. Demuestre que todos los subgrupos de un grupo cíclico son cíclicos. Encuentre todos los subgrupos de $\mathbb{Z}/75\mathbb{Z}$.
- 3. Encuentre el polinomio minimal de $\sqrt{2} + \sqrt{3} + 1$ sobre \mathbb{Q} .
- 4. Determine si el anillo $\mathbb{C}[X,Y,Z]/(Z^2-XY)$ es un dominio de factorización única.

Análisis

1. Sea $f:[0,1]\to\mathbb{R}$ una función continua. Muestre que

$$\int_0^{\pi} x f(\sin x) dx = \frac{\pi}{2} \int_0^{\pi} f(\sin x) dx.$$

- 2. Identificar la superficie cuádrica en \mathbb{R}^3 definida por la ecuación $x^2 + y^2 + z^2 yz 1 = 0$ y hallar sus proyecciones ortogonales en los tres planos coordenados OXY, OXZ, OYZ.
- 3. Encuentre todos los números complejos z con |z|=1 tal que

$$\left| \frac{z}{\overline{z}} + \frac{\overline{z}}{z} \right| = 1.$$

- 1. Dar una condición necesaria y suficiente para que un espacio topológico X tenga un subconjunto denso de cardinalidad 1 (con un solo punto). Dar un ejemplo de un espacio que verifique esa condición.
- 2. Dados dos espacios topológicos X e Y,
 - (a) probar que la proyección $p_X: X \times Y \longrightarrow X$ es continua y abierta, donde $X \times Y$ tiene la topología producto,
 - (b) probar que si Y es compacto, la proyección p_X es cerrada,
 - (c) probar que $p_1 : \mathbb{R} \times \mathbb{R} \to \mathbb{R}$, donde p_1 es la proyección en la primera componente, no es cerrada.
- 3. Probar que el espacio proyectivo real es la compactificación de Alexandroff (compactificación por un punto) de la banda de Moebius. La banda de Moebius es el espacio cociente obtenido de $(0,1) \times [0,1]$ identificando los puntos (x,0) e (1-x,1), para $x \in (0,1)$. El espacio proyectivo real es el disco unitario $\{(x,y) \in \mathbb{R}^2 \mid x^2 + y^2 \leq 1\}$ con los puntos (x,y), (-x,-y) de la frontera identificados.

19 de Noviembre de 2014

Tres secciones: álgebra, análisis y topología Tiempo: 3 horas

Álgebra

- 1. Sean A, B matrices cuadradas con entradas de \mathbb{C} . Suponiendo que AB = BA, muestre que A y B tienen un vector propio en comun.
- 2. Sea R un anillo comutativo unital y sea Σ el conjunto de ideales de R cuyos elementos son divisores de cero de R. Muestre que Σ tiene elementos maximales y que todo elemento maximal es un ideal primo.
- 3. Sea G el grupo generado por $\sigma_1, \ldots, \sigma_{n-1}$ sujetos a las relaciones

$$\begin{array}{lll} \sigma_i^2 &= 1 & \quad \text{para todo } i \\ \sigma_i \sigma_j &= \sigma_j \sigma_i & \quad \text{si } |i-j| > 1 \\ \sigma_i \sigma_j \sigma_i &= \sigma_j \sigma_i \sigma_j & \quad \text{si } |i-j| = 1. \end{array}$$

Demuestre que G es isomorfo al grupo simétrico S_n .

4. Dos matrices A, B cuadradas se dicen similares si existe una matriz P invertible tal que $A = PBP^{-1}$. Sea A una matriz cuadrada con entradas de \mathbb{C} . Muestre que A y su traspuesta A^t son similares.

Análisis

- 1. Muestre que la función $f(x):=e^{\frac{x^2}{2}}\int_x^\infty e^{\frac{-t^2}{2}}dt$ es una función decreciente en $[0,\infty)$ y que $\lim_{x\to\infty}f(x)=0$.
- 2. Sean $z_1, z_2, z_3 \in \mathbb{C}$. Suponga que $|z_1| = |z_2| = |z_3| = 1$. Muestre que z_1, z_2, z_3 son los vértices de un triángulo equilátero sí y sólo si $z_1 + z_2 + z_3 = 0$.
- 3. Sea $f:\Omega\subset\mathbb{R}\to]0,\infty[$ una función medible tal que $\int_\Omega f(x)\,dx<\infty$ y sea

$$f_n = \int_{\Omega} n \ln \left(1 + \left(\frac{f(x)}{n} \right)^{\alpha} \right) dx,$$

donde $\alpha > 1$.

- a) Mostrar que para todo x > 0, $(1 + x^{\alpha}) \le (1 + x)^{\alpha}$ y que la funcion $\ln(1 + x^{\alpha})/x$ es acotada en $[0, \infty[$.
- b) Usando el teorema de Lebesgue, demostrar que $\lim_{n\to\infty} f_n = 0$

- 1. Sean $Y \in Z$ dos espacios topológicos disjuntos (es decir $Y \cap Z = \emptyset$) y sea $X = Y \cup Z$ la unión de Y y Z. Sea \mathcal{T} la familia de subconjuntos de X dada por $U \in \mathcal{T}$ si y sólo si $U = U_Y \cup U_Z$ donde $U_Y \subset Y$ y $U_Z \subset Z$ son abiertos.
 - (a) Demuestre que \mathcal{T} es una topología en X llamada la topología de la unión disjunta.
 - (b) Si Y y Z son Hausdorff, ¿es $X = Y \cup Z$ Hausdorff con la topología de la unión disjunta?
 - (c) Si Y y Z son conexos, jes $X = Y \cup Z$ conexo con la topología de la unión disjunta?
 - (d) Si Y y Z son compactos, ¿es $X = Y \cup Z$ compacto con la topología de la unión disjunta?
- 2. Sea $A = \{0\} \cup \{\frac{1}{n} \mid n \in \mathbb{Z}_{>0}\} \subseteq \mathbb{R}$ y sea $X = (\mathbb{R} \times \{0\}) \cup (A \times \mathbb{R}) \subseteq \mathbb{R}^2$. Demuestre que X es arco conexo pero no localmente arco conexo (recuerdese que un espacio X es localmente arco conexo si, para todo $x \in X$, cada entorno de $x \in X$ contiene un entorno de x arco conexo).
- 3. Sea X un espacio Hausdorff y sea K_i , $i \in \{1, 2, 3, ...\}$, una familia de subespacios compactos. Demuestre que si U es un abierto que contiene a $\bigcap_{i=1}^{\infty} K_i$ entonces existe un conjunto finito de compactos $\{K_1, K_2, ..., K_\ell\}$ tal que U contiene a $\bigcap_{i=1}^{\ell} K_i$.

18 de Noviembre de 2013

Tres secciones: álgebra, análisis y topología Tiempo: 3 horas

Álgebra

- 1. Sea A una matriz $n \times n$ sobre \mathbb{C} y sean v_1, v_2, \ldots, v_k vectores propios de A a valores propios $\lambda_1, \lambda_2, \ldots, \lambda_k$. Suponiendo que $\lambda_i \neq \lambda_j$ para $i \neq j$, muestre que los v_i son linealmente independientes.
- 2. Sea R un anillo y sea Σ el conjunto de ideales de R cuyos elementos son divisores de cero de R. Muestre que Σ tiene elementos maximales y que todo elemento maximal es un ideal primo.

Análisis

- 1. Muestre que la función $f(x) := e^{\frac{x^2}{2}} \int_x^{\infty} e^{\frac{-t^2}{2}} dt$ es una función decreciente en $[0, \infty)$ y que $\lim_{x \to \infty} f(x) = 0$.
- 2. Sean $z_1, z_2, z_3 \in \mathbb{C}$. Suponga que $|z_1| = |z_2| = |z_3| = 1$. Muestre que z_1, z_2, z_3 son los vértices de un triángulo equilátero sí y sólo si $z_1 + z_2 + z_3 = 0$.
- 3. Sea $f:\Omega\subset\mathbb{R}\to]0,\infty[$ una funcion medible tal que $\int_\Omega f(x)\,dx<\infty$ y sea

$$f_n = \int_{\Omega} n \ln \left(1 + \left(\frac{f(x)}{n} \right)^{\alpha} \right) dx,$$

donde $\alpha > 1$.

- a) Mostrar que para todo x > 0, $(1 + x^{\alpha}) \le (1 + x)^{\alpha}$ y que la funcion $\ln(1 + x^{\alpha})/x$ es acotada en $[0, \infty[$.
- b) Usando el teorema de Lebesgue, demostrar que $\lim_{n\to\infty} f_n = 0$

- (a) Sea $S^n := \{(x_1, \dots, x_{n+1}) \in \mathbb{R}^{n+1} \mid ||(x_1, \dots, x_{n+1})|| = 1\}$ y sea $E(S^n) := \{x \in S^n \mid x_{n+1} = 0\}$ el ecuador de S^n .
 - i. Probar que el cociente de S^n por $E(S^n)$ es homeomorfo al producto wedge de dos copias de S^n .
 - ii. Sea $H(S^n) := \{x \in S^n \mid x_{n+1} \ge 0\}$. Demostrar que el cociente de $H(S^n)$ por su borde $\partial(H(S^n))$ es homeomorfo a S^n .
- (b) Sea \mathbb{R}_l el conjunto de números reales con la topología cuya base de abiertos es:

$$\mathcal{B} := \{ [a, b) \mid a < b \}.$$

Considere la recta $L := \{(x, y) \in \mathbb{R}_l \times \mathbb{R}_l \mid x = -y\}$ en $\mathbb{R}_l \times \mathbb{R}_l$, con la topología inducida por la topología producto. Probar que L es unión de dos cerrados disjuntos.

- (c) Sea $p: E \longrightarrow B$ un cubrimiento, con B conexo. Probar que si $|p^{-1}(b_o)| = k$ para algún $b_o \in B$, entonces $|p^{-1}(b)| = k$ para todo $b \in B$.
- (d) Probar que:
 - i. El espacio R_l del ejercicio 2) no es metrizable.
 - ii. Probar que el conjunto $[0,1] \times [0,1]$ con la topología inducida por la topología dada por el orden lexicográfico de \mathbb{R}^2 es metrizable, y por lo tanto normal. Qué sucede si consideramos $[0,1] \times [0,1]$ con la topología dada por el orden lexicográfico?

Examen de Ingreso al Doctorado-Diciembre 2012

Tres secciones: álgebra, análisis y topología Tiempo: 3 horas

Algebra

- 1. Sea A una matriz real $n \times n$. Muestre que $A^t A$ y A tienen el mismo rango (*Indicación*: considere primero la nulidad de las matrices).
- 2. Sea G un grupo finito, y sea N el subgrupo de G generado por el subconjunto $\{g^2 \mid g \in G\}$. Muestre que N es un subgrupo normal de G y que N contiene al subgrupo comutador [G,G] de G.
- 3. Sea R un dominio principal y sean $A, B \neq 0$ ideales de R. Muestre que $AB = A \cap B$ si y solo si A + B = R.
- 4. Muestre que cada cuerpo algebraicamente cerrado tiene número infinito de elementos.

Análisis

Sea

$$f_n(x) = \frac{1}{(1-x)^2} - (2x+n)$$

donde n es un entero positivo.

- 1. Demuestre que la ecuación $f_n(x) = 0$ admite una unica solución en [0,1[que se denota por x_n .
- 2. Mostrar que $f_n(x) > f_{n+1}(x)$, y que $f_{n+1}(x_n) < 0$ y deducir que la sucesion x_n es creciente y convergente.
- 3. Calcular $f_n\left(1-\frac{1}{\sqrt{n}}\right)$ y deducir el valor $\lim_{n\to\infty}x_n$

- 1. Probar que toda aplicación continua $\mathbb{R} \longrightarrow \mathbb{Q}$ es constante.
- 2. a) Probar que todo espacio conexo por arcos es conexo.
 - b) Dar un ejemplo de un espacio conexo que no es conexo por arcos.
- 3. Probar que el cociente $S^1\times [0,1]\sim$ es homeomorfo a $S^2,$ donde

$$((x,y),t) \sim ((x',y'),t')$$
, si, y solo si, $t=t'=1$, o $t=t'=0$.

Diciembre 2011

Tres secciones: álgebra, análisis y topología Tiempo: 3 horas

Algebra

- 1. Sean G un grupo finito y σ un automorfismo de G.
 - (a) Demuestre que si $\sigma(x) = x^{-1}$ para cada $x \in G$, entonces G es abeliano.
 - (b) Demuestre que si $\sigma^2 = 1$ y $x \neq \sigma(x)$ para cada $x \in G$ con $x \neq 1$, entonces

$$G = \{x^{-1}\sigma(x) \mid x \in G\}.$$

- (c) Suponiendo (b), demuestre que G es abeliano.
- 2. Sea F un cuerpo finito con q elementos. Calcule el número de matrices 2 por 2 invertibles con elementos en F, y el número de matrices 2 por 2 con elementos en F y determinante igual a 1.
- 3. Sea $R=\mathbb{C}[x,y]/(y^2-x^3-x^2)$. Demuestre que R es un dominio. Sea F el cuerpo cuociente de R. ¿Un polinomio mónico $f(t)\in R[t]$ puede tener ceros en $F\setminus R$? Justifique su respuesta.

Análisis (resolver 2 de 3)

1. Usando una seria (u otra herramienta) adecuada, calcule los tres primeros dígitos a,b,c de la presentación decimal

$$\ln 2 = 0.abc...$$

Se requiere una justificación analítica para su respuesta. No se permite el uso de calculadora en ninguna etapa de su trabajo.

2. Las funciones $v, w: [0,1] \to \mathbb{R}$ son de clase C^1 , tienen sus derivadas estrictamente positivas en [0,1] y son tales que

$$v(0) = w(0), \quad v(1) = w(1).$$

Demuestre que existen puntos $x_1 \leq x_2$ en [0,1] tales que

$$v(x_1) = w(x_2), \quad v'(x_1) = w'(x_2).$$

3. Para x > -1 considere la sucesión de funciones

$$x, \frac{1}{1+x}, \frac{1}{1+\frac{1}{1+x}}, \dots, f_n(x), \frac{1}{1+f_n(x)}, \dots$$

Investigue la convergencia de esta sucesión y caracterice los subconjuntos de $(-1, \infty)$ donde esta convergencia es uniforme.

- 1. Sea X el subconjunto de \mathbb{R}^2 formado por la unión de los segmentos de recta L_n de (0,0) a (1,1/n) para $n=0,1,2,\ldots$ junto con el segmento límite L_∞ de (0,0) a (1,0). Se define una topología \mathcal{T} sobre X en la cual O es abierto en X ssi $O \cap L_n$ es abierto en L_n para todo n (incluyendo $n=\infty$), donde cada $L_n \subset \mathbb{R}^2$ tiene la topología del subespacio. Demostrar que \mathcal{T} es una topología. Demostrar que X no es compacto en la topología \mathcal{T} . ¿Es X compacto como subespacio de \mathbb{R}^2 ?
- 2. Encontrar aplicaciones cocientes de $D^2 \to S^1$, de $S^2 \to D^2$ y de $S^2 \to S^1$. Indicación: no se necesitan aplicaciones explícitas. Basta con una buena descripción geométrica.
- 3. Se
a $X\subset\mathbb{R}^2$ la clausura del grafo de sen(1/x)par
ax>0. Encontrar las componentes conexas de
 X. Justificar su respuesta.

Mayo 2011

Tres secciones: álgebra, análisis y topología Tiempo: 3 horas

Algebra

- 1. Sea R un dominio de integridad que contiene un cuerpo F como subanillo. Suponga que R tiene dimensión finita como espacio vectorial sobre F. Pruebe que R es un cuerpo.
- 2. Sea Z(G) el centro de G. Demuestre que no existe grupo G tal que G/Z(G) es isomorfo al grupo cíclico de orden 3. Indicación: demuestre todas sus afirmaciones!
- 3. Encontrar todos los ideales del anillo $\mathbb{Z}[x]/(2, x^3 + 1)$.

Análisis

- 1. Sea f una funcion definida en \mathbb{R} , continua en 0 y tal que f(x) = f(2x) para todo $x \in \mathbb{R}$. Demuestre que f es constante.
- 2. Sea la serie $\sum u_n$ con termino general

$$u_n = \frac{1! + 2! + \dots + n!}{(n+k)!}$$

donde $k \in \mathbb{N}$. Estudiar la naturaleza de la serie en termino del parametro k.

3. Sean f y g dos funciones definidas en $]0, \infty[$ por

$$f(x) = \ln(e^x - 1),$$
 $g(x) = \frac{x e^x}{1 - e^x}$

Demuestre que existe un unico $\alpha \in]0, \infty[$ tal que $f(\alpha) = g(\alpha)$.

1. Sea $I = [0,1] = \{x \in \mathbb{R} | 0 \le x \le 1\}$. Considere el cuadrado ordenado I_0^2 , es decir, el conjunto $I \times I$ con la topología inducida por el orden del diccionario. Determine la clausura de los siguientes conjuntos:

$$A = (1/2, 1) \times \{0\}$$
 $B = (\mathbb{Q} \cap I) \times \{1/2\}.$

- 2. La gráfica de una función $f: X \to Y$ es el conjunto $\{(x, f(x)) \mid x \in X\}$. Demuestre que si f es una función continua, entonces la gráfica de f, como subespacio de $X \times Y$, es homeomorfa a X.
- 3. Considere el conjunto X dotado de la topología Fort en p, lo que significa que un subconjunto U en X es abierto si, y sólo si, o bien $p \notin U$ o bien $X \setminus U$ es finito. Compruebe lo siguiente:
 - a) X es disconexo;
 - b) X es compacto.

Enero 2011

Tres secciones: álgebra, análisis y topología Tiempo: 3 horas

Algebra

- 1. Sea V un espacio vectorial de dimensión finita sobre un cuerpo K. Sean A, B transformaciones lineales de V, tales que $A^2 = B^2 = 0$ y AB + BA = I, donde I denota la identidad de V. Sean N_A y N_B los nucleos de A y B respectivamente.
 - a) Pruebe que $N_A = AN_B$, $N_B = BN_A$ y $V = N_A \oplus N_B$.
 - b) Pruebe que la dimensión de V es par.
 - <u>c</u>) Pruebe que si la dimensión de V es 2 entonces V posee una base con respecto a la cual A y B están representadas por las matrices $\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$ y $\begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$ respectivamente.
- 2. Sea K un cuerpo y sean K[X], K[X,Y] los anillos de <u>polinomi</u>os en una y dos variables respectivamente. Si I es un ideal de K[X,Y] se escribe $\overline{P(X,Y)}$ por la clase de $P(X,Y) \in K[X,Y]$ en K[X,Y]/I y si $Q(X,Y) \in K[X,Y]$ se escribe (Q(X,Y)) por el ideal de K[X,Y] generado por Q(X,Y).
 - <u>a</u>) Pruebe que la aplicación $\varphi: K[X] \to K[X,Y]/(X^2-Y)$ dada por $f(X) \mapsto \overline{f(X)}$ es un isomorfismo de anillos.
 - b) Determine si los anillos $K[X,Y]/(X^2-Y)$ y $K[X,Y]/(X^2-Y^2)$ son isomorfos.

Análisis

- 1. Sea $P(x) = x^5 + 4x^4 + 3x^3 2x^2 + x 1$. Demuestre que P admite al menos una raíz en [0,1].
- 2. Se considera la función definida por

$$f(x) = \begin{cases} x^2 \sin\left(\frac{1}{x}\right), & \text{si } x \neq 0\\ 0, & \text{si } x = 0 \end{cases}$$

Demuestre que f no es de clase C^1 .

3. Calcular

$$\lim_{n \to \infty} \frac{1}{n} \left[\sin \left(\frac{\pi}{n} \right) + \sin \left(\frac{2\pi}{n} \right) + \dots + \sin \left(\frac{n\pi}{n} \right) \right]$$

4. Sea f una función definida en [a,b] y derivable en [a,b] tal que f(a)=f(b) y f'(a)=0. Demuestre que $\exists c \in]a,b[$ tal que

$$f'(c) = \frac{f(c) - f(a)}{c - a}$$

Topología

- 1. Demostrar que no hay biyección continua de S^1 sobre un subespacio de \mathbb{R} .
- 2. Un espacio X se dice regular si para todo punto $x \in X$ y todo conjunto cerrado C que no contiene a x, existen abiertos disjuntos U y V de X tales que $C \subseteq U$ y $x \in V$. Demostrar que un espacio compacto y de Hausdorff es regular.
- 3. Sea $X=\mathbb{R}^3-\{(0,0,0)\}.$ Se define la relación de equivalencia sobre los puntos de X siguiente:

$$(x_1, y_1, z_1) \sim (x_2, y_2, z_2)$$
 si $x_1^2 + y_1^2 + z_1^2 = x_2^2 + y_2^2 + z_2^2$

Sea Y la colección de clases de equivalencia en la topología cociente. ¿A que espacio conocido es homeomorfo Y? Justifique bien su respuesta.

Examen de admisión

Topología

- (1) Sea Y un conjunto ordenado con la topología del orden. Sean $f, g: X \to Y$ continuas. Pruebe que el conjunto $\{x \mid f(x) \leq g(x)\}$ es cerrado en X.
- (2) Sea $f:[0,1] \to [0,1]$ continua. Demuestre que existe un punto x tal que f(x) = x.

Análisis

- (1) Demuestre que la ecuación $x = \cos(x^2)$ tiene una solución en el interválo $[0, \sqrt{\pi}]$.
- (2) Verifique si la serie $\sum_{n=1}^{\infty} \left(\frac{n}{n+1}\right)^{n^2}$ es convergente o divergente.
- (3) Calcule el volumen de la región

$$\{(x, y, x) \in \mathbb{R}^3 \mid x^2 + y^2 + z^2 \le 2, \ z \ge (x^2 + y^2)^{1/4} \}.$$

Álgebra

- (1) Sea $A = (a_{i,j})$ una matriz $n \times n$ sobre \mathbb{C} . Demuestre la equivalencia de las afirmaciones siguientes:
 - (i) existe un entero $N \geq 1$ tal que $A^N = 0$
 - (ii) para todo entero $k \geq 1,$ la traza de A^k es nula

Indicación: Usar los valores propios de A

(2) Sea k un cuerpo y sean X, Y, Z, T variables. Sea $I = \langle X^2 - Y^3, Y^2 - Z^3 \rangle \subset k[X,Y,Z]$ el ideal de k[X,Y,Z] generado por los polinomios $X^2 - Y^3$ y $Y^2 - Z^3$. Demuestre que la aplicación $\phi: k[X,Y,Z] \to k[T]$ dada por $\phi(f(X,Y,Z)) = f(T^9,T^6,T^4)$ es un homomorphismo con núcleo $\text{Ker}(\phi) = I$. ¿Es k[X,Y,Z]/I isomorfo a k[T]?

Indicación: Todo polinomio $f \in k[X,Y,Z]$ se puede escribir de la forma

$$f = a + Xb + Yc + XYd + g$$

 $con\ a, b, c, d \in k[Z]\ y\ g \in I.$

Instrucciones:

- 1.- Este examen consta de 3 partes: Algebra, Topología, Análisis, en cada una de estas partes hay 4 preguntas. Contestar solo 2 preguntas en cada parte.
- 2.- Tiempo total para el examen responder 3 horas.

Sección Topología

- (1) Sea X un espacio topológico. Se dice que D es denso en X si su clausura, $\overline{D} = X$.
- a) Si X es el único subconjunto denso de X, cuál es la topología sobre X?
- b) Encontrar A,D y X tal que D es denso en el espacio topológico X, pero $D\cap A$ no es denso en $A\subseteq X$.
- (2) Sea \mathfrak{T} la topología sobre $\mathbb{R} \times \mathbb{R}$ cuya base está dada por las rectas del tipo y = 2x + k, con $k \in \mathbb{R}$. Demostrar que $(\mathbb{R} \times \mathbb{R}, \mathfrak{T})$ es homeomorfo a $(\mathbb{R}, \mathfrak{T}_1) \times (\mathbb{R}, \mathfrak{T}_2)$ para ciertas topologías \mathfrak{T}_1 y \mathfrak{T}_2 .
- (3) El grafo de una función $f: X \to Y$ es el conjunto de puntos de la forma (x, f(x)) para $x \in X$. Demostrar que si f es una función continua, entonces el grafo de f (como subespacio de $X \times Y$) es homeomorfo a X.
- (4) Mostrar que no hay biyección continua de S^1 sobre un subespacio de \mathbb{R} .

Parte Algebra

- (1) Demuestre que el grupo aditivo $\mathbb Q$ de los números racionales no puede estar generado por un número finito de elementos.
- (2) Demuestre que el anillo $\mathbb{C}[X,Y]/(X^3-Y^2)$ no es principal. Indicación: Considere el homomorfismo $\mathbb{C}[X,Y] \longrightarrow \mathbb{C}[T], \ X \mapsto T^2, Y \mapsto T^3$.
- (3) Sea α una raíz del polinomio irreducible $X^3-3x+4\in\mathbb{Q}[X]$. Sea $\mathbb{Q}(\alpha)$ el cuerpo que genera esta raíz. Calcular explicitamente el inverso de $1+\alpha+\alpha^2$ en $\mathbb{Q}[\alpha]$ como $a+b\alpha+c\alpha^2$ con $a,b,c\in\mathbb{Q}$.
- (4) Sea $A = \begin{bmatrix} 3 & 4 \\ -2 & -3 \end{bmatrix}$. Calcule A^{100} .

Parte Análisis

- (1) Sea $\{a_n\}$ una sucesión de números reales con $\lim_{n\to\infty} a_n = a \in \mathbb{R}$. Definamos $s_n = \frac{1}{n} \sum_{k=1}^n a_k$. Demuestre que $\lim_{n\to\infty} s_n = a$.
- (2) Sea $f:[0,\infty)\to [0,\infty)$ una función continua con f(0)=0. Supongamos que f es diferenciable en $(0,\infty)$ con una derivada f' monótonamente creciente. Demuestre que la función f(x)/x, $x\in (0,\infty)$ es creciente.
- (3) Sea $f:[0,\infty)\to (0,1]$ definida por $f(x)=(x+1)\exp(-x)$. Demuestre que f es biyectiva y calcule $(f^{-1})'(2/e)$ (donde f^{-1} es la función inversa).
- (4) (a) Determine el máximo y el mínimo de la función $f(x, y, z) = z x^2 y^2$ sujeta a las restricciones $x^2 + y^2 = 4$ y x + y + z = 1.
- (b) Calcule $\int \int_A (x+y) \, \mathrm{d}x \, \mathrm{d}y$, donde A es la región acotada por la curva $x^2 + y^2 - 2y = 0$.