Álgebras de incidencia e inversión de Moebius para espacios de descomposición
Expositor: Andrew Tonks London Metropolitan University
Jueves 14 de agosto a las 12:00 hrs.
Sala del instituto de estudios humanísticos.
Resumen: La teoría clásica de álgebras de incidencia y de inversión de Moebius para posets localmente finitos se puede generalizar en dos direcciones. Primeramente, es posible sustituir los posets por categorías a la manera de Leroux. Entonces, los datos numéricos involucrados pueden ser vistos como el resutado de tomar cardinalidades (homotópicas) después de trabajar directamente con los objetos combinatorios y algebraicos básicos, como hacen Lawvere y Menni. En esta charla, introduciremos generalizaciones ulteriores de estas construcciones, que llamaremos espacios de descomposición. Los ejemplos fundamentales proceden de objetos categóricos débiles en infinito-grupoides. En particular, obtenemos el álgebra de Hopf de Connes-Kreimer como espacio de descomposición de bosques combinatorios, y las álgebras de Hall derivadas correspondientes a la construcción S de Waldhausen de una infinito-categoría estable.
Trabajo conjunto con
Imma Gálvez Carrillo (Universitat Politècnica de Catalunya)
Joachim Kock (Universitat Autònoma de Barcelona) Disponible en arxiv:1404.3202