Coloquios

Coloquio 12 de Marzo 2015

Irreducible representations and decomposition matrices for rational Cherednik algebras

Expositor: Emily Norton. Kansas State University

Jueves 12 de marzo a las 16:00 hrs.
Sala de magíster.

Resumen: Rational Cherednik algebras H_c(W) have a representation theory that echoes that of semisimple complex Lie algebras, in that there is a highest weight category of «nice» representations, Category O, containing Verma modules which have unique simple quotients. In particular, all the simple representations belong to this category and they are indexed by the simple representations of the underlying complex reflection group W. The characters of simple representations can be found from the decomposition matrix, which encodes the multiplicities of simples in the composition series of Vermas. I will survey what is known for W a real reflection group, and how to explicitly find these decomposition matrices when W is one of the exceptional real reflection groups (type E, F, and H).


Coloquio 3 Marzo 2015

Generalizations of Hilbert Theorem 90 and division algebras.

Expositor: Prof. Bill Jacob. University of California, Santa Barbara

Martes 3 de marzo a las 16:00 hrs.
Sala de magíster.


Coloquio 25 de Noviembre 2014

Ciclos limite medios de algunos sistemas de Liénard generalizados

Expositor: Salomón Rebollo

Jueves 27 de noviembre a las 16:00 hrs.
Sala de magíster.

Resumen: Consideremos un sistema diferencial X en el plano con un centro. Al perturbar X pueden aparecer ciclos límite. El sistema planar más simple que tiene un centro es el oscilador armónico o centro lineal. A pesar de que el problema de determinar el número de ciclos límite que aparecen bajo perturbaciones polinomiales del oscilador armónico ha sido muy estudiado, aún hay preguntas abiertas en este caso. En la charla consideraremos dos familias especiales de perturbaciones polinomiales del oscilador armónico. Los sistemas perturbados resultantes son sistemas de Liénard generalizados. Para estos sistemas proporcionaremos el número exacto de ciclos límite que bifurcan de las órbitas periódicas del oscilador armónico. Mencionaremos algunas de las preguntas abiertas, tanto para el oscilador armónico como para el caso general.


Coloquio 30 de Octubre 2014

Construcción de redes extrañas en el plano

Expositor: Andrés Navas
Universidad de Santiago de Chile

Jueves 30 de octubre a las 16:00 hrs.
Sala de magíster.

Resumen: Comenzaremos recordando algunos problemas/resultados clásicos relacionados con construcciones de embaldosados y redes en el plano. Luego, nos centraremos en la construcción de una red (conjunto de Delaunay) que, pese a que cada uno de sus patrones se repite infinitamente y a lo largo de todas las direcciones, no es equivalente a la red estándar en el sentido lipschitziano. Contextualizaremos esto en el ámbito de la teoría geométrica de grupos, buscando generalizar hasta el cuadro más amplio posible (grupos promediables).


Coloquio 9 de Octubre de 2014

Álgebras de Nichols

Expositor: Leandro Vendramin
Departamento de Matemática, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires

Jueves 9 de octubre a las 16:00 hrs.
Sala de magíster.

Resumen: En esta charla repasaremos la definición y las propiedades básicas de las álgebras de Nichols. Mencionaremos algunas de sus aplicaciones en álgebra y en combinatoria, y presentaremos recientes teoremas de clasificación. Por último, hablaremos sobre problemas abiertos y conjeturas.